
SENECA ARMY DEPOT ACTIVITY

US Army, Engineering & Support Center Huntsville, AL

00003

Seneca Army Depot Activity Romulus, NY

DRAFT

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT RADIOACTIVE WASTE BURIAL SITES (SEAD-12)

SENECA ARMY DEPOT ACTIVITY

EPA Site ID# NY0213820830 NY Site ID# 8-50-006 CONTRACT NO. DACA87-02-D-0005 DELIVERY ORDER NO. 0011

May 2005

DRAFT

SEAD-12 Supplemental Remedial Investigation Report

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK 14541

and

US ARMY CORPS OF ENGINEERS HUNTSVILLE, ALABAMA 35816

Prepared by:

PARSONS

150 Federal Street, 4th Floor Boston, Massachusetts 02110

EPA Site ID# NY0213820830 NY Site ID# 8-50-006 Contract Number DACA87-02-D-0005 Delivery Order No. 0011 743156

TABLE OF CONTENTS

Desc	<u>ription</u>		Page
ES	EXEC	CUTIVE SUMMARY	ES-1
1	INTR	ODUCTION	1-1
	1.1	Purpose of Report	1-1
	1.2	Site Background	
		1.2.1 Depot	
		1.2.2 Buildings 813 and 814	
	1.3	1.2.3 EM-5	
	1.3	Comparison Criteria for Investigation Results	
	1.5	Previous Remedial Investigation Results	
		1.5.1 VOC Concentrations Proximate to Buildings 813 and 814	
		1.5.1.1 Soil Gas Survey Results	
		1.5.1.2 Groundwater Chemistry	
		1.5.1.3 Surface Water/Ditch Soil Chemistry	
		1.5.1.4 Soil Chemistry	
	1.6	Report Organization	
2		OY AREA INVESTIGATION	
	2.1	Introduction	2-1
	2.2	Building 813 and 814 Investigation	2-1
		2.2.1 Groundwater Investigation	2-1
		2.2.1.1 Temporary Monitoring Well Installation	2-1
		2.2.1.2 Groundwater Sampling	2-2
		2.2.1.3 Sample Analysis	2-2
		2.2.2 Surface Water/Sediment Investigation	2-3
		2.2.3 TCE Source Investigation	2-3
		2.2.3.1 Phase I Test Pit - November 3, 2004	
		2.2.3.2 Phase II - November 10 and 11, 2004	
		2.2.3.3 Phase III - December 20 - 22, 2004	
		2.2.3.4 Soil Sampling and Analysis	
	2.3	EM-5 Soil Investigation	
		2.3.1 Surface and Subsurface Soil Sampling	
		2.3.2 Sample Analysis	
	2.4	Site Survey	
	2.5	Data Validation	

3	RESU	LTS		3-1					
	3.1	Groun	ndwater Results	3-1					
	3.2		ce Water and Ditch Soil Sample Results						
	3.3	Soil R	lesults	3-2					
		3-2							
		3.3.1.1 Phase I Test Pitting - November 3, 2004							
			3.3.1.2 Phase II - November 10 and 11, 2004	3-2					
			3.3.1.3 Phase III - December 20-22, 2004						
		3.3.2	Stockpiles						
		3.3.3	EM-5	3-4					
4	CONO	CLUSIO	NS AND RECOMMENDATIONS	4-1					
	4.1		usions						
			VOC Contamination at Building 813/814						
			4.1.1.1 Groundwater						
			4.1.1.2 Surface Water/Ditch Soil						
			4.1.1.3 Soil						
		4.1.2							
	4.2	nmendations							

LIST OF TABLES

<u>Number</u>	<u>Table Name</u>
Table 1-1	Soil Gas Survey Results – Original RI
Table 2-1	Preliminary Temporary Well Placement Rationales
Table 3-1	Groundwater VOC Detections
Table 3-2	Sediment VOC Detections
Table 3-3	Test Pit Soil VOC Detections
Table 3-4	Stockpile Soil VOC Detections
Table 3-5	Comparison of Pb-210 Results from RI and SRI

Page iii

LIST OF FIGURES

Figure Title
Future Land Use
SEAD-12 Site Plan
Buildings 813 and 814
RI Sample Locations – Building 813 and 814
Previous Soil Sample Locations at EM-5
TCE Detected During RI
Proposed Temporary Well Locations
Temporary Well and Surface Water/Ditch Soil Sample Locations
Soil Sample Locations from Test Pit at Building 813/814
Building 813/814 Excavation As Built
EM-5 Soil Sample Locations
Groundwater and Surface Water/Ditch Soil Detections
Soil Sample TCE Results in Building 813/814 Test Pit
TCE Concentrations in Stockpile Samples at Building 813/814

Page iv

Page v

LIST OF APPENDICES

Appendix A: Temporary Well Construction Diagrams

Appendix B: Sampling Records

Test Pit Logs Appendix C:

Appendix D: Laboratory SOP – Method HASL 300

Appendix E: **Analytical Results**

References

- Code of Federal Regulations (CFR), 1993. *National Oil and Hazardous Substances Pollution Contingency Plan (NCP)*. 42 CFR 9620.
- Parsons, 2002a. *Draft Feasibility Study (FS) Report for the Radioactive Waste Burial Sites (SEAD-12)*. Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot.
- Parsons, 2002b. Revised Final Remedial Investigation (RI) Report at the Radioactive Waste Burial Sites (SEAD-12). Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot.
- Parsons, 2003a. Generic *Installation Remedial Investigation/Feasibility Study (RI/FS) Work Plan for Seneca Army Depot Activity*. Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot.
- Parsons, 2004. Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites (SEAD-12). Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot.

May 2005 Page vi

EXECUTIVE SUMMARY

This Supplemental Remedial Investigation (SRI) report summarizes SRI site investigation activities, presents data on the nature and extent of contamination, and makes recommendations for the path forward at Building 813/814 and the EM-5 area in the Radioactive Waste Burial Sites (SEAD-12) area at the Seneca Army Depot Activity (SEDA) in Romulus, NY. The two areas were recommended for further investigation in a Feasibility Study (FS) prepared following a Remedial Investigation (RI) performed at SEAD-12 in 1995 through 1999. The additional investigation at Building 813/814 was recommended due to elevated volatile organic compound (VOC) concentrations detected in a monitoring well adjacent to the building, and further investigation of EM-5 was recommended to further evaluate elevated levels of Pb-210 detected in soil samples.

Thirteen temporary wells were installed in the vicinity of the elevated VOC concentrations detected during the RI. Groundwater samples were collected from these temporary wells and two existing permanent wells to determine the extent of VOC contamination. Results of the sample analysis indicated that VOC contamination, primarily in the form of trichloroethene (TCE), was limited to the area immediately adjacent to one of the permanent wells, MW12-37. Based on these results, a test pit investigation was initiated to determine the source of the TCE contamination in the groundwater. The investigation traced elevated TCE levels to the footer of the building, where exploration halted due to concerns for the structural integrity of the building. An abandoned sewer pipe exiting the building was identified as a potential source; the majority of the pipe was removed during the test pitting operation.

The ten RI soil sample locations at EM-5 exhibiting the highest Pb-210 concentrations were resampled as part of the SRI. The SRI samples were analyzed using a modified DOE EML HASL-300 method which was intended to lower uncertainty levels that had been relatively high in the samples analyzed during the RI. Results of the analysis of the soil from the re-sampled locations indicated that Pb-210 is not a concern at EM-5.

Recommendations were developed for the two areas based on the conclusions drawn from the field investigation. These include a deed restriction to be placed on Building 813/814, the removal of the temporary wells installed during the project, and re-sampling of test pit soil that remains stockpiled adjacent to the building. No further action is proposed at EM-5. It is proposed that these recommendations be incorporated into the forthcoming Draft Final Feasibility Study Report for the Radioactive Waste Burial Sites (SEAD-12) that also addresses the Disposal Pit areas within SEAD-12.

1 INTRODUCTION

1.1 PURPOSE OF REPORT

The purpose of this report is to present the findings of the Supplemental Remedial Investigation (SRI) conducted at the Radioactive Waste Burial Sites (SEAD-12) at the Seneca Army Depot Activity (SEDA) in Romulus, New York. The work for the SRI was undertaken in response to issues noted in the Revised Final RI Report at the Radiological Waste Burial Sites (SEAD-12; Parsons, 2002b) and the Draft Feasibility Study (FS) Report for the Radioactive Waste Burial Sites (SEAD-12; Parsons, 2002a), which presented the results of several different investigations designed to characterize the nature and extent of risks posed by the conditions at SEAD-12. As indicated in the RI and FS reports, there were two issues within SEAD-12 that required additional investigation: the VOC contamination in the vicinity of Building 813 and 814 and the elevated concentrations of Pb-210, a radionuclide, in the soil at the EM-5 area. The work conducted during the SRI was outlined in the Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites (Parsons, 2004).

The additional Remedial Investigation activities carried out at these two areas were performed as part of the United States Army Corps of Engineers (USACOE) remedial response activities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at SEDA. They followed the requirements of the New York State Department of Environmental Conservation (NYSDEC), the U.S. Environmental Protection Agency, Region II (EPA), and the Interagency Agreement (IAG).

1.2 SITE BACKGROUND

1.2.1 Depot

Seneca Army Depot Activity (SEDA or the Depot) was constructed in 1941 on approximately 10,600 acres of former farmland in western New York. The Depot was owned by the United States Government and operated by the Department of the Army. From its inception in 1941 until its recommended closure in 1995, SEDA's primary mission was the receipt, storage, maintenance, and supply of military items, including munitions and equipment. A number of hazardous wastes were stored and generated at the Depot as part of its mission, and SEDA was proposed for inclusion on the National Priority List (NPL) as a Federal Facility site in July of 1989. The Depot's listing was approved by Congress and finalized in August of 1990. The Depot's EPA identification number is NY0213820830. The site is also identified by NYSDEC as Inactive Hazardous Waste Site Number 8-50-006.

In accordance with requirements of Section 120 of CERCLA (Title 42, *U.S. Code*, Sec. 9620), the US Army, the EPA, and the NYSDEC negotiated and signed a Federal Facilities Agreement (FFA) or

an Interagency Agreement (IAG) governing site investigation and remediation of the Depot in January 1993. This agreement determined that future investigations were to be based on CERCLA guidelines and RCRA was considered an Applicable or Relevant and Appropriate Requirement (ARAR) pursuant to Section 121 of CERCLA. In October 1995, SEDA was designated as a facility recommended for closure under the provisions of the Base Realignment and Closure (BRAC) process. In 2000, the facility was closed.

Pursuant to the requirements of BRAC, the Seneca County Board of Supervisors had established the Seneca Army Depot Local Redevelopment Authority (LRA) in October 1995. The primary responsibility assigned to the LRA was to plan and oversee the redevelopment of the Depot. The Reuse Plan and Implementation Strategy for SEDA was adopted by the LRA and approved by the Seneca County Board of Supervisors on October 22, 1996. Under this plan and subsequent amendment, areas within the Depot were classified according to their most likely future use. The proposed future use designations identified by the LRA and approved by the Board of Supervisors included:

- Housing;
- Institutional;
- Industrial;
- Warehousing;
- Conservation/recreational land:
- An area designated for a future prison;
- An area for an airfield, special events, institutional, and training; and
- An area to be transferred from one federal entity to another (i.e., the area of the existing navigational LORAN transmitter).

A map showing the LRA's recommended future land use for the Depot is provided as **Figure 1-1**. In 2000, the Army began to deed portions of the Depot over to the State of New York (Prison) and the Seneca County Industrial Development Authority (SCIDA) Adolescent Center for redevelopment and reuse. In September 2003, the majority of the conservation/recreation land was also transferred to SCIDA. A number of parcels still undergoing remediation, including the ones discussed in this report, were held out of the transfer and are still under government control.

1.2.2 Buildings 813 and 814

Buildings 813 and 814 were primarily used for painting operations that took place in SEAD-12, the Former Weapons Storage Area (**Figure 1-2**). The buildings were originally constructed in the 1950s, and modifications were made to both over time. Building 813 originally contained a number of small offices and equipment rooms along with one large, open room. This room contained the paint booth,

which was a completely self-contained, pre-fabricated room that was replaced at least once during the period the building was used. An addition to this building was completed in the late 1980s and included a new sand blasting room. This addition covered what was once an open area between Building 813 and Building 814.

Building 814 originally contained one furnace room and a large, open room. The building was lengthened in the late 1960s, at which point an office was constructed in the southeast corner of the building. Two storage rooms were constructed inside the main room of the building and two other rooms were added to the building's exterior between 1970 and 1990, however, the exact timeframe of these modifications is not known. The basic layouts of the buildings are shown in **Figure 1-3**.

1.2.3 EM-5

As part of the original RI, a geophysical investigation of all of SEAD-12 was performed using an EM-31 ground conductivity meter. The survey detected 44 conductivity anomalies which were designated EM-1 through EM-44. Test pits were excavated at a number of these EM anomalies, including two in the location of anomaly EM-5 (**Figure 1-2**). The test pit operation at EM-5 uncovered items such as horseshoes, square nails, and broken glass, which were apparently associated with an original farmstead that predated SEDA. None of the debris recovered appeared to be related to military activities.

1.3 SITE PHYSICAL CHARACTERISTICS

SEAD-12 is fairly flat with a slight downward trend to the west, towards Seneca Lake. The only notable topographic features in the area are a series of surface water control ditches that run along the sides of most of the roads in the Depot. The bottoms of some of these ditches can be nearly 6 feet below the nearby ground surface elevation. Although there are some wooded spots in SEAD-12, most of the area has been cleared and is either open field or is occupied by buildings or ammunition storage igloos. Buildings 813 and 814 are located on the eastern side of SEAD-12, adjacent to Building 815 to the west and an open field to the east. There is a paved parking lot between 815 and 813/814 and one of the deeper ditches runs along the north, east, and south sides of the connected buildings. EM-5 lies in the middle of a grassy field on the western side of SEAD-12.

Geologically, the areas around Buildings 813/814 and EM-5 are similar to the rest of the Depot, which is located within one distinct unit of glacial till that covers the area between the western shore of Lake Cayuga and the eastern shore of Lake Seneca. The till ranges in thickness from less than 2 feet to as much as 15 feet, with the average being only a few feet thick. This till is generally characterized by brown to gray-brown silt, clay and fine sand with few fine to coarse gravel-sized inclusions of weathered shale. Larger diameter weathered shale clasts (as large as 6-inches in

diameter) are more prevalent in basal portions of the till and are probably rip-up clasts removed by the active glacier during the late Pleistocene era. A zone of gray weathered shale of variable thickness is present below the till in almost all locations at SEDA. This zone is characterized by fissile shale with a large amount of brown interstitial silt and clay.

1.4 COMPARISON CRITERIA FOR INVESTIGATION RESULTS

The investigation of SEAD-12 falls under the jurisdiction of both the State of New York regulations (administered by NYSDEC) and Federal regulations (administered by USEPA Region II). Applicable or Relevant and Appropriate Requirements (ARARs) are promulgated regulatory standards or requirements and as such are legally enforceable and generally applicable and equivalent to the media or conditions at the site. In addition to ARARs, advisories, criteria, or guidance may be evaluated as "To Be Considered" (TBC) regulatory items. CERCLA indicates that the TBC category could include advisories, criteria, or guidance that were developed by USEPA, other federal agencies, or states that may be useful in developing CERCLA remedies. These advisories, criteria, or guidance are not promulgated and, therefore, are not legally enforceable standards such as ARARs. To date, ARARs have only been propagated for groundwater and surface water at the site.

In reviewing ARARs and TBCs for the site, the following documents were used for comparison of chemical constituents at the site:

- Soils and Ditch Soils New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046 (January 1994) - TBC.
- Surface Water NYSDEC Technical and Operation Guidance Series (TOGS, 1.1.1),
 Class C Standards (June 1998) ARAR.
- Groundwater TOGS, 1.1.1, Class GA Standards (June 1998) ARAR.

For constituents in surface water and groundwater, the regulatory criteria used for comparison to field data are from the above published standards which are considered ARARs for the site. For soil, criteria from TAGM-4046 are considered TBCs. These criteria are referenced both during the evaluation of previous investigations as well as the evaluation of the data collected during the SRI.

1.5 PREVIOUS REMEDIAL INVESTIGATION RESULTS

As indicated in the **Section 1.1**, the complete results of the original RI conducted at SEAD-12 are contained in The Revised Final RI Report at the Radiological Waste Burial Sites (SEAD-12; Parsons, 2002b) and the Draft Feasibility Study (FS) Report for the Radioactive Waste Burial Sites (SEAD-12;

Parsons, 2002a). The specific RI results that led to the implementation of the SRI are briefly discussed below.

1.5.1 VOC Concentrations Proximate to Buildings 813 and 814

1.5.1.1 Soil Gas Survey Results

Thirty-nine soil gas survey samples were collected in and around Buildings 813 and 814 to determine if the area had been impacted by VOCs (**Figure 1-4**) as a result of the former painting operations conducted in the buildings. The soil gas samples collected were analyzed for benzene, toluene, and p-xylenes (three of the four components of BTEX) as well as 1,2-dichloroethene (DCE), trichloroethene (TCE), and total VOCs. Of the individual VOCs analyzed, TCE exhibited the highest concentrations across the site, with values ranging as high as 2,400 ppb. A number of other soil gas locations around the buildings were identified as having elevated concentrations of total VOCs that did not appear to be particularly related to high TCE values or to any of the other specific constituents analyzed. The locations of these elevated TCE and total VOC concentrations were noted as sites that required further investigation. The complete soil gas survey results are presented in **Table 1-1**.

1.5.1.2 Groundwater Chemistry

In the area of Buildings 813 and 814, four (4) overburden monitoring wells (**Figure 1-4**) were installed, with the locations of the wells based primarily on the soil gas survey results. Monitoring well location MW12-37 was placed approximately 10 feet from the northeast corner of Building 813 to further investigate the elevated soil gas TCE concentrations detected in that location. Monitoring well locations MW12-38 and MW12-39 were placed in approximately the same locations as soil gas sample locations SG12-122 and SG12-148, respectively, in order to investigate the elevated total VOC concentrations detected in those locations. Monitoring well location MW12-38 is also in the suspected downgradient direction of the highest TCE detection at soil gas sample location SG12-147. The fourth monitoring well location, MW12-40, was placed approximately 300 feet downgradient of Buildings 813 and 814 to determine the extent of VOC contamination in the area.

The results of the groundwater sampling program during the RI at SEAD-12 indicated that VOCs were present in groundwater at two of these four wells. The samples collected at monitoring well MW12-37, located at the northeast corner of Building 813, contained a concentration of 1,600 μ g/L of TCE during both of the two sampling events conducted; the NYSDEC Class GA Standard for groundwater is 5μ g/L. The groundwater samples collected during the second sampling event also showed an estimated DCE concentration of 30 μ g/L, which also exceeds the NYSDEC Class GA Standard of 5 μ g/L. The sample collected during the second event at MW12-40 showed a TCE concentration of 1.7 μ g/L, however, this does not exceed the GA Standard.

1.5.1.3 Surface Water/Ditch Soil Chemistry

Surface water and ditch soil samples were collected from three locations within the ditch that runs adjacent to Buildings 813 and 814 as indicated in **Figure 1-4**. In the surface water samples, only metals were detected; and of the metals detected, only concentrations of iron and aluminum exceeded NYS AWQS Class C Standards. Although they exceeded the Class C Criteria, the concentrations of these two metals were in line with background values across the site and the iron and aluminum were not considered a contaminant of concern. The SW12-30 sample also contained a concentration of 1 μ g/L of TCE, which is below the Class C Standards.

Each of the three ditch soil samples, which were co-located with the surface water sample locations, contained detectable concentrations of VOCs, semivolatile organic compounds (SVOCs), pesticides/Polychlorinated Biphenyls (PCBs), and metals. Risk assessment performed for the RI indicated that nothing in the SEAD-12 ditch soil posed a threat to human health or the environment, and the medium was not considered to be of concern in the FS.

1.5.1.4 Soil Chemistry

Both surface and subsurface soil samples were collected in the vicinity of Buildings 813 and 814 during the RI (**Figure 1-4**). Three surface soil samples, SS12-66, SS12-67, and SS12-68, were collected to the northwest of the Buildings 813 and 814, near monitoring well MW12-40. The subsurface soil samples were collected during the installation of the four monitoring wells, MW12-37, MW12-38, MW12-39, and MW12-40, to the north and west of the Buildings 813 and 814. The results of the analysis of the surface and subsurface soil samples indicate that there were metals that exceeded TAGM values at these locations. However, none of the VOC or SVOC detections in the surface or subsurface soils exceeded their respective TAGM values.

1.5.2 Investigation of Radionuclides at EM-5

In addition to the test pitting performed at EM-5 during the RI, a total of 30 surface soil and subsurface soil samples were collected and analyzed for radionuclides (**Figure 1-5**). Using the Wilcoxon Rank Sum statistical analysis, the EM-5 soils were compared to a background data set to determine if there were any radionuclides that exceeded background concentrations. For the radionuclides distinguishable from background at EM-5, both the residential and worker Derived Concentration Guideline Level (DCGLs) were added to the background dataset as described in MARSSIM (NRC, 2000) and in Section 4.1.2.3 of the RI (Parsons, 2002). When compared to the worker DCGLs, Lead-210 exceeded DCGLs; Lead-210 is part of the Radium-226 decay series. The DCGL exceedances were not extremely high, and it was believed that the elevated Pb-210 levels may

have been naturally occurring and associated with the archaeological anomalies found during test pit activities performed in the area; there was no indication of Army activity in this area. Since the analytical uncertainty associated with the RI samples was rather large, NYSDEC comments on the Draft FS recommended a different analytical method for gamma spectroscopy that would minimize analytical error. The SRI suggested further investigation of the area to confirm the detections.

1.6 REPORT ORGANIZATION

The remaining sections of this report discuss the activities performed during the SRI and the conclusions resulting from the fieldwork. **Section 2** describes the fieldwork performed during the project and the analyses run on the samples collected. **Section 3** summarizes the results of sample analysis performed for the project. **Section 4** summarizes the conclusions drawn from the work completed during the project and presents recommendations for the two sites based on the data collected.

2 STUDY AREA INVESTIGATION

2.1 INTRODUCTION

Additional investigations were performed within the SEAD-12 area based on the results of the Remedial Investigation (RI) at the Radiological Waste Burial Sites (Parsons, 2002). Based on comments received from the regulatory community, additional investigation of an elevated trichloroethene (TCE) detection in groundwater outside Buildings 813/814, as well as elevated detections of Pb-210 within the EM-5 area of the site were performed. In order to further investigate these two issues, the Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites was submitted in March, 2004. The purpose of the Supplemental RI (SRI) was to determine the extent of TCE contamination in groundwater by installing temporary monitoring wells using a phased approach. In addition, several soil sample locations within the EM-5 area were to be re-sampled and analyzed using a different method (as requested by NYSDEC) for the analysis of Pb-210. The following section describes the fieldwork performed during the SRI.

2.2 BUILDING 813 AND 814 INVESTIGATION

2.2.1 Groundwater Investigation

2.2.1.1 Temporary Well Installation

The highest VOC concentrations observed during the original RI were TCE concentrations in groundwater, although TCE was also detected in one surface water sample and VOCs were detected in a number of soil gas samples. The SRI fieldwork at Buildings 813 and 814 focused on delineating potential VOC plumes in this area, in particular, the TCE plume that appeared to extend downgradient from MW12-37. To further delineate the VOC contamination, the Army proposed the installation of 15 temporary wells in locations where elevated VOCs were detected in the soil gas survey or in areas downgradient from the RI TCE detections (**Figure 2-1**). The proposed placement of each temporary well is shown in **Figure 2-2**, and the rationale for the proposed locations is presented in **Table 2-1**. As indicated in the figure, the wells were to be installed in two phases to ensure that the outer boundaries of any VOC plumes were well defined.

The nine Phase I temporary wells, TW12-1 through TW12-9, were installed on May 24 and 25, 2004 with the exception of TW12-2. The boring advanced in this location hit bedrock prior to reaching the water table, so the hole was abandoned. Groundwater samples were collected from the eight temporary wells and the samples were analyzed for VOCs. The VOC results from Phase I, which will be discussed in detail in **Section 3**, indicated that the elevated TCE concentration detected in MW12-37 during the RI was relatively localized. Therefore, five additional wells, rather than the originally projected six, were located between the building and the Phase I locations in an effort to determine

the boundary of any plume if one existed. The five Phase II temporary wells were installed on June 9 and 10, 2004. The final locations of the 13 temporary wells installed during the SRI are shown on **Figure 2-3**.

The temporary monitoring wells were installed according to the procedures outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995), with the exception that the temporary wells were not finished with bollards, casings, or concrete collars. All soil boring points were advanced to auger refusal, which was taken to represent the depth to bedrock. Monitoring wells were then established in the completed borings using 2" PVC with a maximum screen length of ten feet. The completion diagram for each of the wells is contained in **Appendix A**.

2.2.1.2 Groundwater Sampling

Groundwater samples were collected at each of the temporary monitoring wells installed during this program. As stated in **Section 2.2.1.1**, the sampling of these wells took place in two phases to ensure that any VOC plumes were accurately defined. Phase I samples were collected from the first eight temporary wells installed and were analyzed for VOCs. The results of this analysis were used to position the five Phase II temporary wells, which were also sampled following installation. In order to confirm the TCE concentrations observed during the original RI, permanent wells MW12-37 and 40 were also re-sampled during the SRI. The Phase II wells and the permanent wells were sampled during the same event, and the samples sent for VOC analysis.

All of the temporary well samples were collected in accordance with procedures specified in the EPA SOP titled *Groundwater Sampling Procedure*, *Low Flow Pump Purging and Sampling* (EPA, 1998). In general, each well was purged and sampled using a bladder pump. Samples were collected only after water quality indicator parameters including turbidity, temperature, specific conductivity, pH, dissolved oxygen content (DO), and oxidation-reduction potential (ORP), stabilized in the well (i.e. were constant for three consecutive readings). The groundwater sampling records are contained in **Appendix B**.

2.2.1.3 Sample Analysis

The samples collected were submitted to a laboratory certified by New York State's Contract Laboratory Program (CLP), Analytical Services Protocol (administered by NYSDOH) and the US Army Corp of Engineers (USACE), Hazardous, Toxic, and Radioactive Waste (HTRW) Center of Expertise (i.e., former Missouri River Division). Organic compounds characterized during this investigation focused on compounds listed on the EPA's Target Compound List (TCL). Additionally, attempts were made to quantify the next 10 volatile tentatively identified compounds (TICs), in accordance with standard EPA and NYSDEC CLP protocols. EPA SW-846 Method 8260B was used for all VOC determinations. A duplicate sample, a rinse blank, and a Matrix Spike/Matrix Spike

Duplicate (MS/MSD) sample were collected during each phase of sampling and were submitted to the lab with the rest of the temporary well samples and a trip blank supplied by the lab for quality control (QC) purposes. A detailed discussion of the lab results is contained in **Section 3**.

2.2.2 Surface Water/Ditch Soil Investigation

Seven surface water/ditch soil samples were collected on June 24, 2004 from the drainage ditch adjacent to Buildings 813 and 814. One set of samples, SW/SD 12-69, re-examined RI sample location SW/SD12-30, which showed a 1 µg/L concentration of TCE during the RI. Three of the samples, SW/SD12-70, -71, and -74, were collected in the ditch to the north of this location at approximately 100-foot intervals to assess whether or not VOCs were discharging to the surface water. SW12-72 and 73 were both collected to the northwest of the elevated TCE detection at MW12-37 to determine if TCE was migrating downgradient from that location via the ditches rather than through groundwater. Finally, SW/SD12-68 was collected south of SW/SD12-69 to ensure that VOCs were not migrating in the suspected upgradient direction via the surface water in the ditch. **Figure 2-3** shows the locations of the collected surface water/ditch soil samples.

The surface water samples and ditch soil samples were collected according to the sampling methods outlined in the Field Sampling and Analysis Plan. Both the surface water and ditch soil samples were analyzed for VOCs by Method 8260B, and the ditch soil samples were also analyzed for total organic carbon (TOC) by EPA Method 9060. As with the groundwater samples, a full set of QC samples was collected and submitted to the lab for both the surface water and ditch soil samples. The surface water/ditch soil sampling records are contained in **Appendix B**, and detailed discussion of the lab results is contained in **Section 3**.

2.2.3 TCE Source Investigation

2.2.3.1 Phase I Test Pit - November **3**, 2004

The results obtained from the groundwater and surface water/ditch soil sampling operations performed during the SRI indicated that the TCE plume detected in MW12-37 was localized. However, TCE continued to be detected in groundwater at MW12-37 as it had been in 1997. Based on the continued presence of elevated TCE concentrations in this location, the Army proposed a test pit investigation to determine if there was a subsurface point source for the TCE, such as buried debris associated with the painting operations in the building. Representatives from the US Environmental Protection Agency (USEPA) and New York State Department of Environmental Conservation (NYSDEC) concurred with the plan for a test pit investigation during a conference call on July 6, 2004.

On November 3, 2004, approximately 20 cubic yards of soil were removed from the area immediately surrounding MW12-37. The pit was excavated to bedrock depth, and the only notable object discovered was an abandoned 6-inch clay sewer pipe. The pipe appeared to run north from the building and was approximately 1 foot to the west of the former MW12-37, which was removed during excavation. The pipe appeared to be empty, and no visible contamination was sighted in the soil removed from the hole. There were also no elevated readings detected by the field photoionization detector (PID).

Three soil samples, TP813-1T, TP813-2T, and TP813-3T, were collected from the south, north, and east sides of the pit, respectively. The "T" suffix signifies a temporary sample location that was removed in a later phase of excavation; an "F" suffix signifies locations remaining after the final phase of the investigation. One composite sample, SP813-1, was also collected on November 3 from the stockpile of excavated soil, which had been staged immediately adjacent to the pit. This stockpile was re-sampled (SP813-3) on November 10 and moved prior to the initiation of Phase II of the investigation. The locations of the test pit samples and the final location of the stockpiles are shown on **Figure 2-4**. The test pit logs for the investigation are included in **Appendix C**.

2.2.3.2 Phase II - November 10 and 11, 2004

TCE concentrations exceeding the TAGM limit were detected in all three of the sidewall samples collected on November 3. As a result, the Army decided to expand the scope of the test pit investigation in an attempt to determine the location of the TCE source. The test pit was expanded by approximately 160 cubic yards on November 10 and 11, 2004. During test pitting activities, a flame ionization detector (FID) was used to field screen for elevated VOCs.

Metal debris was found near the northern limit of the Phase II test pit, approximately 22 feet from the NE corner of the building. Soils were not discolored near this debris nor were there any elevated FID readings. One sample, TP813-4F, was collected from the soil immediately surrounding the debris. Additionally, stained soils were observed in the weathered shale in the southern portion of the test pit near the east side of the building. Two samples, TP813-7T and TP813-8T, were collected from the area of the stained shale. Three more samples were collected from the eastern (TP813-5F), northern (TP813-6F), and western (TP813-9T) sides of the pit to determine if a source could still be present in those directions. No samples were collected from the base of the test pit, as it extended down to competent bedrock.

The soil removed during Phase II of the excavation was stockpiled in the same area as the material removed during Phase I; however, the piles from the two Phases were kept separate. An effort was also made to segregate soil from differing areas of the pit itself, with the stained shale and the soil containing metal debris separated from the soil that was not visually impacted. **Figure 2-4** illustrates how the material was grouped in the stockpile area. Samples were collected from the stockpiled

material on December 9 to determine which, if any, of the material could be used to refill the excavation when it was completed. Samples SP813-3 through SP813-7 were collected from the stockpiles on December 9, with each collected from a pile that was deemed to be representative of a set of piles exhibiting relatively similar properties. At least one sample was collected for every 50 cubic yards of soil in the stockpile area. **Figure 2-4** also indicates which samples represented each group of piles. The samples collected during the second phase of investigation were analyzed for VOCs, and the full results of both the test pit and stockpile sample analyses are contained in **Section 3**.

2.2.3.3 Phase III - December 20 - 22, 2004

The VOC results from the second phase of investigation indicated that the northern and eastern bank wall samples were below the NYSDEC TAGM level for TCE. However, the level of TCE in the samples collected from the south wall and western walls exceeded the TAGM value. The Army decided to extend the test pit to the south and west in a further attempt to determine the extent of the TCE impacted soil.

Phase III of the investigation, conducted on December 20 and 21, 2004, removed an additional 50 cubic yards of material from the southern and western ends of the existing test pit. The southeastern side of the pit was extended to TW12-24, which contained no detectable VOCs during the groundwater investigation. Following the extension of the excavation to TW12-24, no further evidence of any stained soil was observed in the shale at the base or side of the pit. To preserve the structural integrity of the building, the southwestern side of the test pit was extended only to the northern edge of the building. Finally, the western side was extended approximately 15 feet to halfway between the eastern and western sides of the building. Three samples, TP813-10F through TP813-12F, were collected from beneath the edge of the building, with TP813-11F collected from the eastern side where the stained soils were originally observed. An additional sidewall sample, TP813-13F, was collected from the western wall of the pit, and one stockpile sample, SP813-8, was collected from the area of the stockpiled Phase III soil exhibiting the highest PID readings.

The test pit was backfilled on December 21 and 22 using soil removed during the first two phases of the investigation. Only those piles that were determined to be below TAGMs based on the results of the stockpile samples collected in December were used in backfilling. These included the Phase I soil and the Phase II soils that were not visibly impacted. The soil removed during the third phase of test pitting was stockpiled as indicated on **Figure 2-4** pending sample analysis and was not returned to the hole. **Figure 2-5** is an as built diagram of the final pit.

2.2.3.4 Soil Sampling and Analysis

The soil samples were collected from the pit according to the methods outlined in the Field Sampling and Analysis Plan. Both the samples collected in the excavation and the stockpile samples were grab samples. Grab samples, rather than composite samples, were collected from the stockpiles due to the risk of volatilizing VOCs in the soil during the mixing of a composite from more than one pile. Each of the stockpile samples was judged to be representative of the other material removed from the same area in the excavation. All of the soil samples were analyzed for VOCs by Method 8260B, and a one set of QC samples was collected and submitted to the lab for both the November and December samples. A detailed discussion of the lab results is contained in **Section 3**.

2.3 EM-5 SOIL INVESTIGATION

2.3.1 Surface and Subsurface Soil Sampling

Due to the elevated levels of Pb-210 detected at EM-5, additional re-sampling and analysis of RI soil sample locations was proposed for this area to verify the results of the RI investigation. The SRI sampling locations were selected from existing sample locations based on the highest detections of Pb-210 during the RI. One modification was made to the sampling plan proposed in the SRI Workplan; the subsurface sample to be collected at MW12-23 was replaced by a subsurface sample collected at TP12-15A, as further review of the RI data indicated that the Pb-210 concentration in this location had been higher than the one seen at MW12-23. Eight surface soil and two subsurface soil samples were collected from ten locations on June 24, 2004 (**Figure 2-6**). All of the samples were collected using a hand driven split-spoon. If necessary, a hand auger was used to remove material above the sample depth at the subsurface locations. The soil sampling records are contained in **Appendix B**.

2.3.2 Sample Analysis

All samples were analyzed for Ra-226 (the parent of Pb-210) and its daughter products by General Engineering Laboratories (GEL) using a Modified DOE EML HASL-300 Method. NYSDEC had requested the use of this method to verify the RI results and minimize the uncertainty of the RI. GEL's Standard Operating Procedures for the Determination of Gamma Isotopes (Modified DOE EML HASL-300) is included as **Appendix D**. One set of QA/QC samples was collected from surface soil location SS12-107 and submitted to the laboratory with the rest of the samples. The results of the lab analysis are contained in **Section 3**.

2.4 SITE SURVEY

A surveyor, licensed by the State of New York, was contracted to determine the locations of all temporary wells installed during this program as well as the locations of the surface water/ditch soil samples. Site surveys were performed in accordance with good land surveying practices and conformed to all pertinent state, federal, and USACOE laws and regulations governing land surveying. The procedures are outlined in Section 3.13.1 of the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan*.

2.5 DATA VALIDATION

Validation of analytical data resulting from analytical determinations in soil was performed in a manner that is generally consistent with procedures defined in the EPA's "National Functional Guidelines for Organic Data Review" and consistent with EPA Region 2's Standard Operating Procedures. The data package submittal received from the various laboratories used for the project contained all data generated during the analyses, including mass spectral identification charts, mass spectral tuning data, spike recoveries laboratory duplicate results, method blank results, instrument calibration, and holding times documentation.

All analyses were subjected to full data validation. Full data validation is a *qualitative* and *quantitative* review of those items evaluated during a qualitative assessment in addition to calculating sample and laboratory QC results with the instrument raw data. This level of data quality provides assurance that all sample results reported by the laboratory were transcribed, calculated, and reported correctly. Therefore, this level of data review requires laboratories to submit all environmental sample results, laboratory QC results, and instrument raw data (i.e., a full data package or "CLP-type" data deliverable).

3 RESULTS

3.1 GROUNDWATER RESULTS

A total of fifteen temporary and permanent monitoring wells were sampled during the Supplemental Remedial Investigation (SRI) project and analyzed for VOCs. The detections observed in the groundwater VOC analysis are summarized in **Table 3-1** and shown on **Figure 3-1**. A complete record of the analytical results is presented in **Appendix E**. As shown on **Table 3-1**, there were no exceedances of NYSDEC's Class GA Groundwater Standards in the samples collected following the installation of the Phase I temporary wells, TW12-1 through TW12-9. The only detections in the Phase I wells were for trichloroethene (TCE) and acetone. TCE was detected in wells TW12-1 and TW12-3 at concentrations of 4.1 μ g/L (J) and 4.2 μ g/L (J), respectively. Both of these concentrations are below the TCE standard of 5 μ g/L. Acetone was detected at a concentration of 47 μ g/L (J) at TW12-9 and a concentration of 51 μ g/L at TW12-4. There is no standard for acetone, but these two detections were near the NYSDEC GA guidance value of 50 μ g/L. Acetone is considered a relatively common lab contaminant; and although it was not detected in the laboratory trip blank, it is unlikely that these detections are indicative of an acetone release to groundwater.

Because there was no significant detection of TCE in the first round results, the Phase II temporary wells were generally positioned between the building and the Phase I well locations. The five Phase II wells installed, TW12-22 through TW12-26, were positioned to better define the area adjacent to MW12-37, the only well containing a TCE exceedance in the RI samples, and the area adjacent to the TCE detection at TW12-1. Two permanent wells, MW12-37 and MW12-40, were also sampled with the Phase II temporary wells. The only detections observed during the Phase II groundwater investigation were for TCE and cis-1,2-dichloroethene (cis-1,2,-DCE) in MW12-37. Both detections also exceeded the Class GA Standards, with TCE detected at a concentration of 2,400 μ g/L and cis-1,2-DCE at a concentration of 41 μ g/L. The TCE observed during the RI was still present.

3.2 SURFACE WATER AND DITCH SOIL SAMPLE RESULTS

Seven surface water and ditch soil locations were investigated in the drainage ditch near the two buildings. The surface water and ditch soil samples were co-located and shared location IDs with the exception of the SW or SD prefix. As with the groundwater samples collected, the surface water and ditch soil samples were analyzed for VOCs. The surface water results are shown on **Figure 3-1**, and the ditch soil detections are summarized in **Table 3-2** and also shown on **Figure 3-1**. A complete record of surface water and ditch soil analytical results is presented in **Appendix E**. There were no detections of VOCs in the surface water samples; and two analytes, toluene and acetone, were detected in the ditch soil samples. Toluene was detected in samples SD12-68, -69, -71, and -72; and acetone was detected in samples SD12-68 and -70. The toluene detections were all well below the NYSDEC TAGM 4046 Standard of 1,500 µg/Kg. The highest toluene concentration observed in the

samples was 7.4 $\mu g/Kg$. The two acetone detections were 110 $\mu g/Kg$ at SD12-70 and 72 $\mu g/Kg$ at SD12-68; both are below the TAGM limit of 200 $\mu g/Kg$.

3.3 SOIL RESULTS

3.3.1 TCE Source Investigation

3.3.1.1 Phase I Test Pitting- November 3, 2004

Three samples and a duplicate were collected from the north, east, and south sidewalls of the initial test pit excavated north of Building 813. All four samples were analyzed for VOCs, and all four contained concentrations of TCE that exceeded NYSDEC TAGM 4046; the TCE results are shown on **Figure 3-2.** The highest TCE concentration was 65,000 μ g/Kg in the duplicate sample for location TP813-3T, which was on the east side of the test pit. The concentration in the initial sample was comparable to this at 60,000 μ g/Kg. The TP813-1T (south sidewall) and TP813-2T (north sidewall) concentrations were not as high as those on the east side, with concentrations of 11,000 μ g/Kg and 7,000 μ g/Kg, respectively. However, both of these concentrations are at least 10 times the TAGM value of 700 μ g/Kg. A number of other VOCs were also detected in the four test pit samples, but none of the others exceeded TAGMs and the concentrations detected were approximately 1,000 times lower than those for TCE.

3.3.1.2 Phase II - November 10 and 11, 2004

Following the detection of elevated levels of TCE in the sidewalls of the test pit, the pit was expanded to determine if the TCE source material was located outside of the area investigated on November 3. Six more sidewall samples were collected following the enlargement of the test pit to determine the potential location of a source. TP813-4F was collected from the area immediately beneath rusted metal debris that had been discovered and removed during the exploration activities, and TP813-5F through TP813-9T were collected from the sidewalls of the pit.

No TCE was detected in TP813-4F, the sample collected under the rusted debris, suggesting that the debris was not associated with a source of TCE in the subsurface. All of the samples collected from the sidewalls contained detectable concentrations of TCE, with concentrations above TAGMs in three of the five samples, TP813-7T, -8T, and -9T. The three TCE exceedances were between 1,000 and 1,400 μ g/Kg. TP813-7T and TP813-8T had been collected near visually stained soils. The two detections not exceeding the standard were 160 μ g/Kg (J) at TP813-5F and 590 μ g/Kg at TP813-6F. The two locations below TAGMs were immediately adjacent to the drainage ditch on the northern and eastern sides of the pit. These data, in conjunction with the surface water and ditch soil data that indicated no TCE was present, suggested that source material would not be present further out in these directions (i.e. towards the ditch). No further investigation was planned to the east or north of

the November 11 pit boundaries. The exceedances on the west and south sides of the test pit indicated that a source could be present in either of those directions, and a further phase of exploration was planned. The only other analytes detected in the samples were toluene at a concentration of $100 \, \mu g/Kg$ in sample TP813-6F and cis-1,2,-DCE at a concentration of $2,800 \, \mu g/Kg$ in sample TP813-7T.

3.3.1.3 Phase III - December 20 - 22, 2004

The final phase of source investigation, Phase III, extended the walls of the pit further to the south, southeast, and west based on sample results from TP813-7T, TP813-8T, and TP813-9T. Four more sidewall samples and another duplicate were collected following the completion of this phase of investigation. VOC analysis of these samples indicated that two of the four contained TCE concentrations exceeding the TAGM values. The higher of the two exceedances, 4,800 μ g/Kg (J), was detected in sample TP813-10F. This sample was collected immediately beneath the northern footer of Building 813, underneath the outlet of an abandoned sewer pipe exiting the building. This pipe had extended farther to the north, but all of the pipe past the northern wall of the building was removed during test pitting activities. The other TCE exceedance was detected in TP813-12F at a concentration of 1,000 μ g/Kg (J). This sample was collected approximately 10 feet west of TP813-10F. TP813-11F, collected underneath the eastern footer of the building near the location of stained soils that had been removed, contained 11 μ g/Kg of TCE, a concentration well below the TAGM. The analytical results for TP813-13F and the duplicate collected at the same location on the western side of the test pit showed a concentration of 1.3 μ g/Kg (J) and a non-detect with an SQL of 4.5 μ g/Kg, respectively. The concentration is well below the TAGM.

Of the non-TCE compounds, acetone was detected at the highest concentration, $32 \mu g/Kg$. None of the non-TCE VOCs exceeded any of the established TAGMs. A list of the VOCs detected in the excavation is summarized in **Table 3-3**, and a complete record of the test pit results is contained in **Appendix E**.

The limit of the TCE source (i.e. where the TCE in soil was less than the NYSDEC TAGM) had been identified in all directions except at the northern boundary of Building 813. Due to the impracticality of excavating further beneath the footer of the building, no additional investigation was pursued. Test pit activities ceased after discussions between the Army, NYSDEC, and USEPA at the BRAC Closure Team (BCT) meeting on January 18, 2005.

3.3.2 Stockpiles

A total of eight soil samples and a duplicate were collected from stockpiled soils during the SRI. A list of the VOCs detected in the stockpiles is summarized in **Table 3-4**, and a complete record of the stockpile sample results is contained in **Appendix E**. **Figure 3-3** shows the locations of the stockpile

samples and the TCE concentrations of each. Stockpiled soil with TCE concentrations below the TAGM value was backfilled following the completion of the test pit investigation. The two stockpile samples not shown on the figure, SP813-1 and SP813-2, were collected on November 3 and November 10, respectively, from the Phase I soil when it was located immediately adjacent to the test pit. The Phase I soil was moved to the location shown on the figure and re-sampled on December 9. The Phase II stockpile samples were also collected on December 9, and the Phase II stockpile samples were collected on December 21.

3.3.3 EM-5

A total of 10 locations were sampled during the SRI project and analyzed for Ra-226 and its daughter products using Modified DOE EML HASL 300 Method. Ra-226 is the parent of Pb-210, which was the only radiological contaminant of concern at EM-5 based on analysis performed during the original RI. The RI analysis used a Wilcoxon Rank Sum Test (WRS) to compare Depot-wide background radiological concentrations with the concentrations detected at EM-5. Prior to the background to site comparison, Derived Concentration Guideline Levels (DCGLs) were developed for each isotope and added to each background data point. The DCGLs were developed according to procedures outlined in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM-EPA, 1997) using RESRAD version 5.82 and the NYSDEC TAGM-4003 total effective dose equivalent of 10 millirems per year. Using the WRS, Pb-210 was the only isotope detected that exceeded the background value adjusted using the DCGL calculated for a worker at EM-5. The Pb-210 DCGL for a worker at EM-5 was calculated to be 33.05 pico-curies/gram (pCi/g).

Pb-210 was not detected in any of the samples analyzed during the SRI, and the uncertainties and detection limits associated with the SRI analyses were much lower than those reported for the RI analyses. Therefore, there is no longer any reason to believe that Pb-210 concentrations exceed background values at EM-5. **Table 3-5** shows a comparison between the SRI Pb-210 results and the RI Pb-210 results for the same locations. A complete record of the radiological results is presented in **Appendix E**.

4 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The objective of the Supplemental Remedial Investigation (SRI) was two fold: 1) to investigate the VOC contamination detected in the groundwater in the vicinity of Building 813 and 814 during the Remedial Investigation conducted in 2000; and 2) re-sample and re-analyze the elevated detections of Pb-210 in the soil at the EM-5 area. This section provides the conclusions and recommendations made with respect to each area.

4.1 CONCLUSIONS

4.1.1 VOC Contamination at Building 813/814

4.1.1.1 Groundwater

The first step in the SRI field program was the installation of 13 temporary monitoring wells. Groundwater from these wells and two existing permanent wells was collected and analyzed for VOCs to better define the location of a TCE plume identified during the original RI. Only one exceedance of the NYSDEC Class GA Standard for TCE was observed in the groundwater samples, and this exceedance was in the same location as the exceedance observed during the RI. No other VOCs were detected at concentrations above their respective Class GA Standards.

Based on the results of the groundwater investigation, a test pit investigation was performed in the area immediately surrounding MW12-37, the well containing the TCE contaminated groundwater. The specific conclusions drawn from the test pit investigation will be discussed in **Section 4.3**, but the results suggest that the source soils in the area were located and partially removed during the investigation. As the TCE detected during the original RI did not migrate to any of the temporary wells installed during the SRI, it does not appear that any TCE remaining beneath the building will migrate significantly in the future either.

4.1.1.2 Surface Water/Ditch Soil

No exceedances of the NYSDEC Class C surface water standards or TAGM 4046 soil standards were detected in either the surface water or the ditch soil samples collected in the drainage ditch adjacent to Building 813/814. Toluene and acetone were detected in the ditch soil samples, but the detections were all well below the TAGM values. It is not believed that there have been any significant releases of VOCs to the ditch, and the identification and removal of the TCE impacted soil at MW12-37 appreciably limits the likelihood that any VOCs will migrate to the ditch in the future.

4.1.1.3 Soil

A test pit was excavated in an attempt to determine the source of the TCE detected in the groundwater adjacent to the Building 813/814. Approximately 230 cubic yards of soil were removed from the area surrounding MW12-37, the only well sampled that showed a TCE concentration exceeding groundwater standards. The test pit operation took place in three stages, with sidewall samples collected following the completion of each expansion of the pit. The samples were analyzed for VOCs to determine if the limits of the source had been reached or if it existed outside of the limits of the investigation. Exploration ceased on each side of the pit when the sample collected on that side exhibited TCE concentrations below the NYSDEC TAGM value of 700 ug/Kg. The only exception was on the south side of the test pit, where further digging was prevented by the building. Two locations in this area still showed TCE concentrations that exceeded the TAGM, TP813-10F at 4,800 ug/Kg and TP813-12F at 1,000 ug/Kg (see Fig. 3-2).

During the test pitting, TCE concentrations of up to 65,000 ug/Kg (TP813-3T duplicate) were removed immediately adjacent to the former location of MW12-37. A potential source of the TCE is an abandoned sewer pipe, most of which was removed during the test pit activities. A leak in the pipe could have resulted in the discharge of TCE to the area near MW12-37. TP813-12F, the sample showing the highest remaining TCE concentration was collected immediately beneath this pipe where it extended northward from beneath the footer of the building. While it is probable that the TCE impacted soils extend beneath Building 813, it is believed that the soil containing the highest TCE concentrations had been located and subsequently removed during the investigation. As the Army did not want to risk the structural integrity of the building, excavation ceased at the footer on both the northern and eastern sides of the building. Digging was halted on the southeastern side of the test pit due to the proximity to TW12-24, which did not contain any VOCs during the groundwater investigation. The open excavation was backfilled using approximately 100 cubic yards of stockpiled material that had been sampled, analyzed, and found to be below TAGMs for all VOC constituents.

4.1.2 **EM-5 Soils**

The Pb-210 results from the EM-5 area soil sample analyses performed during the original RI were elevated compared to background values for Pb-210. However, there was a large uncertainty associated with the lab results; and there were no known Army activities at this area that suggest the area was impacted. In order to address concerns that Pb-210 levels may be elevated in this area, the ten locations from the original RI with the highest Pb-210 concentrations or highest uncertainties were re-sampled during the SRI. The SRI samples were analyzed for Ra-226 and its daughter products, including Pb-210, using Modified DOE EML HASL-300 Method. The results of this analysis indicated that there were no detections of Pb-210 in the SRI samples. The uncertainties associated with each of the samples were also a great deal lower than those from the original data.

4.2 **RECOMMENDATIONS**

The following is recommended at Building 813/814 and EM-5 based on the conclusions above. The recommendations for Building 813/814 were discussed with NYSDEC and USEPA at a BCT meeting held on January 18, 2005.

- No further action is recommended at Building 813/814. A deed notice will be placed on Building 813/814, stating that an investigation of indoor air quality must be performed prior to use of the building.
- The temporary wells installed during the project will be removed/abandoned according to accepted monitoring well decommissioning procedures.
- The stockpiles remaining on-site will be re-sampled in the spring, most likely in April or May, and analyzed for VOCs. If TCE concentrations are below the TAGM value, the stockpiled soil will be backfilled; otherwise, the soil will be disposed of off site.
- No further action will be performed at EM-5.
- A Draft Feasibility Study (FS) was submitted for SEAD-12 in May, 2002 (Parsons). The Army will proceed with the submittal of the Draft Final FS. Based on the results of the SRI, this FS will recommend no further action at Building 813/814 and EM-5; a deed restriction will be recommended at Building 813/814; and the remainder of the Draft Final FS will focus on the remedial action at the Disposal Pit areas within SEAD-12.

Tables

Table 1-1
RI Soil Gas Survey Results
SEAD-12 Supplemental RI Report
Seneca Army Depot Activity
Romulus, New York

	DICHLOROETHENE	BENZENE	TRICHLOROETHENE	TOLUENE	P-XYLENES	TOTAL VOC
LOC_ID	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppmv)
SG12-117	0	0	6	0	0	6
SG12-118	0	0	0	0	0	3
SG12-119	0	132	461	11	0	5
SG12-120	0	0	0	197	0	6
SG12-121	452	3	1708	21	0	7
SG12-122	0	0	0	250	14	9
SG12-123	0	116	0	170	0	4
SG12-124	0	0	0	0	0	5
SG12-125	0	0	0	0	0	3
SG12-126	0	146	0	250	141	6
SG12-127	0	0	0	396	82	4
SG12-128	0	0	0	0	0	4
SG12-129	0	0	1	0	0	2
SG12-130	0	0	6	12	0	10
SG12-131	0	0	0	174	0	5
SG12-132	0	0	55	123	0	5
SG12-133	0	4	0	0	0	2
SG12-134	0	0	89	190	0	10
SG12-135	0	0	97	0	0	3
SG12-136	0	0	54	281	0	4
SG12-137	0	0	146	217	351	9
SG12-138	0	0	138	36	0	2
SG12-139	0	0	414	125	0	5
SG12-140	0	0	206	275	0	4
SG12-141	0	0	191	1	0	4
SG12-142	0	43	0	147	10	4
SG12-143	0	140	0	217	0	6
SG12-144	4	0	39	94	0	4
SG12-145	0	118	0	48	0	5
SG12-146	0	0	0	0	0	4
SG12-147	119	82	2407	22	0	7
SG12-148	0	74	110	171	0	6
SG12-149	0	0	0	0	0	3
SG12-150	0	123	0	212	136	6
SG12-151	0	0	958	32	0	3
SG12-152	0	0	98	0	0	2
SG12-153 SG12-154	0	0	31 633	1	0	3
SG12-155	0	0	224	144	0	3
SG12-155 SG12-156	0	0	0	0	0	2
SG12-150 SG12-157	0	0	0	10	0	4
SG12-157 SG12-158	0	69	148	2	0	2
SG12-159	0	0	0	0	0	3
SG12-160	0	0	0	149	0	9
SG12-161	0	0	193	2	0	6
SG12-162	0	0	10	206	0	9
SG12-163	0	94	0	12	0	4
SG12-164	0	0	0	0	0	7
SG12-165	0	0	245	180	0	4
SG12-166	0	0	0	0	0	13
SG12-167	0	4	0	13	0	4
SG12-168	0	0	()	93	()	/
SG12-168 SG12-169	0	0	0	93 320	0	7 28

Table 2-1 Well Placement Rationale - Existing and Proposed Monitoring Wells SEAD-12 Supplemental RI Report Seneca Army Depot Activity, Romulus, NY

Monitoring Well	Status	Rationale	
Loc ID			
		Existing Permanent or 1st Phase Temporary Wells	
MW12-37	existing	1,708 ppbv TCE concentration in soil gas sample SG12-121;	TCE
		concentration of 1,600 ug/L during two sampling events in the Remedial Investigation	
MW12-38	existing	8.5 ppmv total VOC concentration in soil gas sample SG12-122	
MW12-39	existing	6.0 ppmv total VOC concentration in soil gas sample SG12-148	
MW12-40	existing	Placed 300' downgradient of Bldg 813 and elevated TCE concentration at SG12-121	
TW12-1	proposed	633 ppbv TCE concentration in soil gas sample SG12-154	
TW12-2	proposed	5.5 ppmv total VOC and 471 ppbv BTEX concentrations in soil gas sample SG12-150	
TW12-3	proposed	2,407 ppbv concentration of TCE in soil gas sample SG12-147. Well will be installed if location is accessible.	
TW12-4	proposed	10.0 ppmv total VOC concentration in soil gas samples SG12-130 and SG12-134	
TW12-5	proposed	191 ppbv TCE concentration in soil gas sample SG12-141	
TW12-6	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-7	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-8	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-9	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
	•	2nd Phase Temporary Wells - 6 of 12 to be Installed	
TW12-10	proposed	Installation based on detections at TW12-3	
TW12-11	proposed	Installation based on detections at TW12-3	
TW12-12	proposed	Upgradient background location, which will be permanent.	
TW12-13	proposed	Installation based on detections at TW12-6 or TW12-9	
TW12-14	proposed	Installation based on detections at TW12-7	
TW12-15	proposed	Installation based on detections at TW12-7 or TW12-8	
TW12-16	proposed	Installation based on detections at TW12-8	
TW12-17	proposed	Installation based on detections at TW12-8 or TW12-9	
TW12-18	proposed	Installation based on detections at TW12-9	
TW12-19	proposed	Installation based on detections at TW12-5	
TW12-20	proposed	Installation based on detections at TW12-3	
TW12-21	proposed	Installation based on detections at TW12-1	

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

														_
LOCATION ID									TW12-1		TW12-1 (D)		TW12-3	
MATRIX									GW		GW		GW	
SAMPLE ID									122275		122284		122277	
TOP OF SAMPLE									5.20		5.20		5.00	
BOTTOM OF SAMPLE									10.20		10.20		10.00	
SAMPLE DATE									5/26/2004		5/26/2004		6/11/2004	
QC CODE									SA		DU		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	UJ	50	U	50	UJ
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	UJ	10	U	10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	4.0	J	4.1	J	4.2	J

LOCATION ID									TW12-22		TW12-23		TW12-23 (D)	
MATRIX									GW		GW		GW	
SAMPLE ID									122285		122286		122297	
TOP OF SAMPLE									13.50		13.30		13.30	
BOTTOM OF SAMPLE									23.50		23.30		23.30	
SAMPLE DATE									6/11/2004		6/10/2004		6/10/2004	
QC CODE									SA		SA		DU	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10 U		10	
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10 U		10 U	

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-4		TW12-5		TW12-6	
MATRIX									GW		GW		GW	
SAMPLE ID									122278		122279		122280	
TOP OF SAMPLE									3.75		8.70		5.00	
BOTTOM OF SAMPLE									8.75		13.70		10.00	
SAMPLE DATE									5/27/2004		5/27/2004		5/27/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	51		50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	U	10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10 U		U 10	

LOCATION ID									TW12-24		TW12-25		TW12-26	
MATRIX									GW		GW		GW	
SAMPLE ID									122287		122288		122289	
TOP OF SAMPLE									8.10		7.30		5.90	
BOTTOM OF SAMPLE									13.10		12.30		8.90	
SAMPLE DATE									6/11/2004		6/11/2004		6/11/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	10 U		U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10	U	10	U

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-7		TW12-8		TW12-9	
MATRIX									GW		GW		GW	
SAMPLE ID									122281		122282		122283	
TOP OF SAMPLE									7.10		5.00		4.90	
BOTTOM OF SAMPLE									12.10		10.00		9.90	
SAMPLE DATE									5/27/2004		5/27/2004		5/27/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	47	J
cis-1,2-Dichloroethene	µg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10 U		10	UJ
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10 U		J 10	

LOCATION ID									MW12-37		MW12-40	
MATRIX									GW		GW	
SAMPLE ID									122291		122290	
TOP OF SAMPLE									7.53		8.30	
BOTTOM OF SAMPLE									12.43		13.30	
SAMPLE DATE									6/11/2004		6/11/2004	
QC CODE									SA		SA	
STUDY ID									SRI		SRI	
			Frequency			Number	Number	Number				
			of	Criteria	Action	of	of	of				
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	41		10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	2400		10	U

Table 3-2 Building 813/814 Ditch Soil VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SD12-68	SD12-69		SD12-70		SD12-71	Т
MATRIX									DITCH SOIL	DITCH SOIL		DITCH SOIL	D	ITCH SOIL	_
SAMPLE ID									124250	124251		124252		124253	
TOP OF SAMPLE									0.00	0.00		0.00		0.00	
BOTTOM OF SAMPLE									0.20	0.20		0.20		0.20	
SAMPLE DATE									6/22/2004	6/22/2004		6/22/2004		6/22/2004	
QC CODE									SA	SA		SA		SA	
STUDY ID									SRI	SRI		SRI		SRI	
			Frequency			Number	Number	Number							
			of	Criteria	Action	of	of	of							
Parameter	Units	Maximum	Frequency	Type	Action Level	Exceed	Detect	Analyses	Value (Q) Value	(Q)	Value (Q)	Value	(Q)
Acetone	μg/Kg	110	25%	TAGM 4046	200	0	2	8	72 J	40	U	110 J		69	UJ
Toluene	μg/Kg	7.4	63%	TAGM 4046	1500	0	5	8	2.0 J	2.3	3 J	12 L	JJ	7.4	IJ
Total Organic Carbon	mg/Kg	31000	100%			0	8	8	31000 J	30000	J	11000 J		27000) J

LOCATION ID									SD12-72	SD12-72	D)	SD12-73		SD12-74	
MATRIX									DITCH SOIL	DITCH SO	OIL	DITCH SOIL		DITCH SOIL	
SAMPLE ID									124254	124257		124255		124256	
TOP OF SAMPLE									0.00	0.00		0.00		0.00	
BOTTOM OF SAMPLE									0.20	0.20		0.20		0.20	
SAMPLE DATE									6/22/2004	6/22/200	4	6/22/2004		6/22/2004	
QC CODE									SA	DU		SA		SA	
STUDY ID									SRI	SRI		SRI		SRI	
			Frequency			Number	Number	Number							
			of	Criteria	Action	of	of	of							
Parameter	Units	Maximum	Frequency	Type	Action Level	Exceed	Detect	Analyses	Value (Q) Va	ue (Q)	Value ((Q)	Value	(Q)
Acetone	μg/Kg	110	25%	TAGM 4046	200	0	2	8	48 l	J	61 UJ	60 l	UJ	62	UJ
Toluene	μg/Kg	7.4	63%	TAGM 4046	1500	0	5	8	7.2		5.7 J	12 l	UJ	12	UJ
Total Organic Carbon	mg/Kg	31000	100%			0	8	8	18000 .	220	00 J	29000	J	22000	J

Table 3-3 Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-1T	TP813-2T	TP813-3T	TP813-3T (D)	TP813-4F	TP813-5F
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123682	123683	123684	123686	123688	123689
TOP OF SAMPLE									7	7	6	6	4	3
BOTTOM OF SAMPLE									7.5	7.5	6.5	6.5	5	4
SAMPLE DATE									11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/10/2004	11/10/2004
QC CODE									SA	SA	SA	DU	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (C
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	0.14 UJ	0.18 UJ	3.2 J	1.3 J	510 U	490 U
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	4.9 U	6.1 UJ	450 U	5.1 U	2000 U	2000 U
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	0.07 UJ	6.6 J	54 U	0.07 UJ	1000 U	980 U
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	0.16 UJ	0.19 UJ	1.6 J	0.16 U	510 U	490 U
cis-1,2-Dichloroethene	μg/Kg	2800	47%			0	7	15	13 J	19 J	21	9.1	510 U	490 U
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	1.5 UJ	1.9 UJ	390 U	1.5 U	1000 U	980 U
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	0.42 UJ	0.52 UJ	45 UJ	0.43 U	510 U	490 U
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	0.17 UJ	0.21 UJ	53 U	0.18 U	510 U	490 U
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	11000	7000	60000	65000	540 U	160 J
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	0.15 UJ	0.19 UJ	37 U	0.16 U	510 U	490 U
Percent Solids	%	89.1	73%			0	11	15					85.5	84.3
Total Organic Carbon	mg/Kg	5420	13%			0	2	15						4120

LOCATION ID									TP813-9T	TP813-10F	TP813-11F	TP813-12F	TP813-13F	TP813-13F (D)
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123694	123701	123702	123703	123704	123705
TOP OF SAMPLE									5	4	3	2	3	3
BOTTOM OF SAMPLE									6	5	4	3	4	4
SAMPLE DATE									11/11/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004
QC CODE									SA	SA	SA	SA	SA	DU
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q	Value (Q)	Value (Q)	Value (Q) Value
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	1700 U	16 U	4.3 J	32	17 U	18
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	860 U	8.1 U	3.2 U	9.9 U	8.6 U	9.1
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	430 U	4 U	1.6 U	1.4 J	4.3 U	4.5
cis-1,2-Dichloroethene	μg/Kg	2800	47%	TAGM 4046		0	7	15	430 U	4 U	1.5 J	4.9 J	4.3 U	4.5
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	860 U	8.1 UJ	3.2 UJ	4.5 J	8.6 UJ	9.1
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	430 U	3.2 J	1.6 U	4.9 U	4.3 U	4.5
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	1400	4800 J	11	1000 J	1.3 J	4.5
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	430 U	4 U	1.5 J	4.9 U	4.3 U	4.5
Percent Solids	%	89.1	73%			0	11	15	84	81	80.7	77.3	89.1	87.9
Total Organic Carbon	mg/Kg	5420	13%			n	2	15						

Table 3-3 Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-6F		TP813-7T		TP813-8T	T
MATRIX									SOIL		SOIL		SOIL	
SAMPLE ID									123691		123692		123693	,
TOP OF SAMPLE									3		5		5	j
BOTTOM OF SAMPLE									4		6		6	j
SAMPLE DATE									11/10/2004		11/10/2004		11/11/2004	
QC CODE									SA		SA		SA	ı
STUDY ID									SRI		SRI		SRI	i
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	; (Q)
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	390	U	440	U	590	U
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	1600	U	1800	U	2300	U
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	780	U	880	U	1200) U
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	390	U	440	U	590	U
cis-1,2-Dichloroethene	μg/Kg	2800	47%			0	7	15	390	U	2800		590	U
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	780	U	880	U	1200) U
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	390	U	440	U	590	U
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	100	J	440	U	590	U
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	590		1200		1100)
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	390	U	440	U	590	U
Percent Solids	%	89.1	73%			0	11	15	84.4		86.7		85.2	2
Total Organic Carbon	mg/Kg	5420	13%			0	2	15	5420					

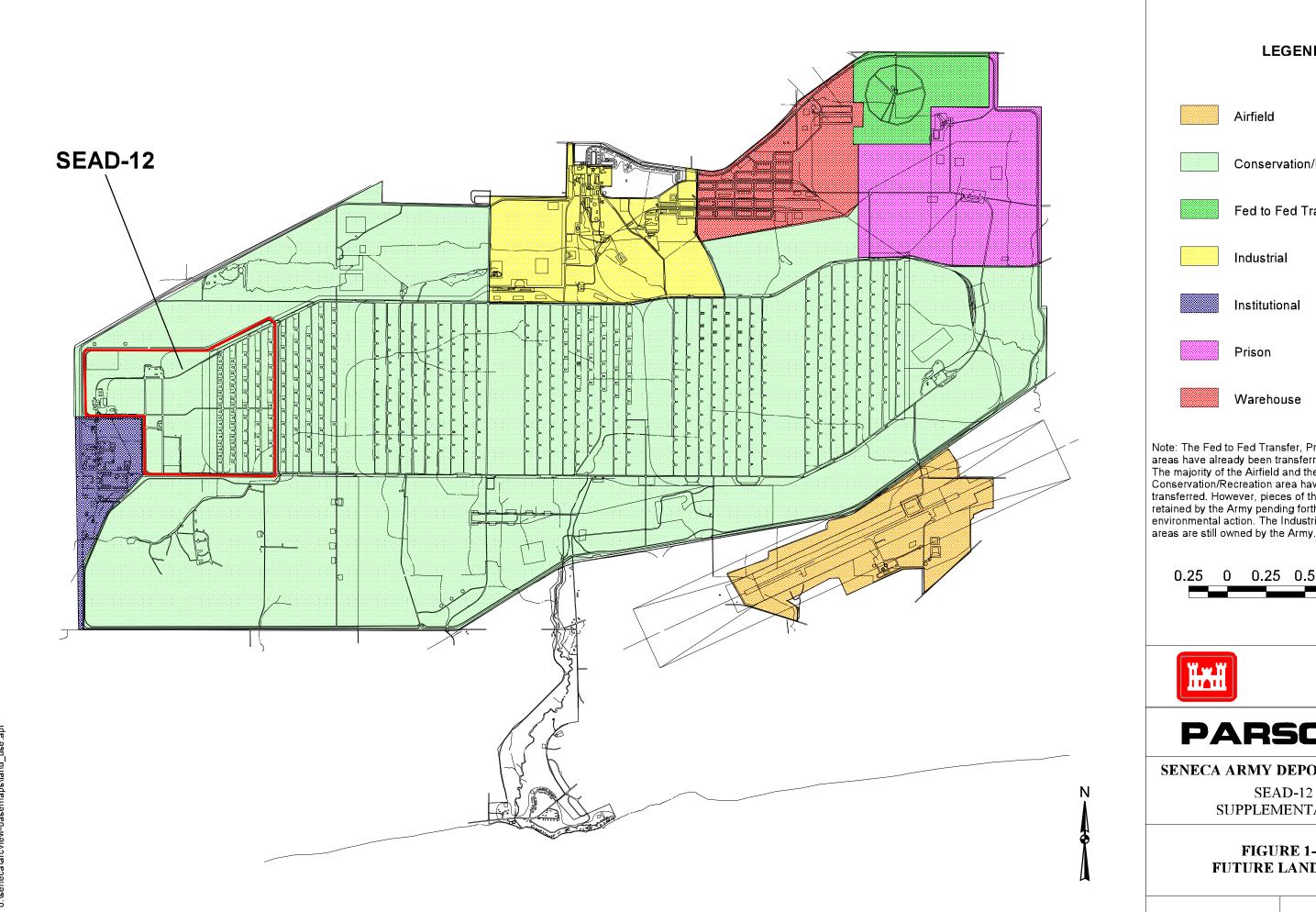
LOCATION ID								
MATRIX								
SAMPLE ID								
TOP OF SAMPLE								
BOTTOM OF SAMPLE								
SAMPLE DATE								
QC CODE								
STUDY ID								
			Frequency			Number	Number	Number
			of	Criteria	Action	of	of	of
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15
cis-1,2-Dichloroethene	μg/Kg	2800	47%	TAGM 4046		0	7	15
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15
•								
Percent Solids	%	89.1	73%			0	11	15
Total Organic Carbon	mg/Kg	5420	13%			0	2	15
-								

Table 3-4 Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-1	SP813-2		SP813-3	SP813-3	- (SP813-4
MATRIX									SOIL	SOIL		SOIL	SOIL		SOIL
SAMPLE ID									123685	123687		123695	123696		123697
TOP OF SAMPLE									N/A	N/A		N/A	N/A		N/A
BOTTOM OF SAMPLE									N/A	N/A		N/A	N/A		N/A
SAMPLE DATE									11/3/2004	11/10/2004		12/9/2004	12/9/2004	1	12/9/2004
QC CODE									SA	SA		SA	SA		SA
STUDY ID									SRI	SRI		SRI	SRI		SRI
			Frequency			Number	Number	Number							
			of	Criteria	Action	of	of	of							
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value	(Q)	Value (Q)	Value	(Q)	Value
1,1-Dichloroethene	μg/Kg	0.65	11%	TAGM 4046	400	0	1	9	0.19 UJ	680	U	4.4 U	4.8	U	4.8
1,1-Dichloroethene Acetone	μg/Kg μg/Kg	0.65 3.8	11% 11%	TAGM 4046 TAGM 4046	400 200	0	1	9	0.19 UJ 6.4 UJ	680 2700		4.4 U 18 U	4.8 19		4.8 19
,						-	1 1 1	_			U			U	
Acetone	μg/Kg		11%	TAGM 4046	200	0	1 1 1 5	9	6.4 UJ	2700	U U	18 U	19	U	19
Acetone Carbon Disulfide	μg/Kg μg/Kg	3.8	11% 11%	TAGM 4046	200	0	1 1 1 5	9	6.4 UJ 0.09 UJ	2700 1400	U U U	18 U 8.8 U	19 9.5	U U J	19 9.6
Acetone Carbon Disulfide cis-1,2-Dichloroethene	μg/Kg μg/Kg μg/Kg	3.8 1 20	11% 11% 56%	TAGM 4046 TAGM 4046	200 2700	0	1 1 1 5 1	9 9	6.4 UJ 0.09 UJ 3.3 J	2700 1400 680	U U U	18 U 8.8 U 2.4 J	19 9.5 2.6	U U J	19 9.6 1.7
Acetone Carbon Disulfide cis-1,2-Dichloroethene Methylene Chloride	μg/Kg μg/Kg μg/Kg μg/Kg	3.8 1 20 950	11% 11% 56% 11%	TAGM 4046 TAGM 4046	200 2700 100	0 0 0 0	1 1 1 5 1 1	9 9 9 9	6.4 UJ 0.09 UJ 3.3 J 0.59 UJ	2700 1400 680 950	U U U	18 U 8.8 U 2.4 J 4.4 U	19 9.5 2.6 4.8	U U J U	19 9.6 1.7 4.8
Acetone Carbon Disulfide cis-1,2-Dichloroethene Methylene Chloride Tetrachloroethene	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	3.8 1 20 950 1.7	11% 11% 56% 11%	TAGM 4046 TAGM 4046 TAGM 4046 TAGM 4046	200 2700 100 1400	0 0 0 1	1 1 1 5 1 1 1 9	9 9 9 9	6.4 UJ 0.09 UJ 3.3 J 0.59 UJ 0.55 UJ	2700 1400 680 950 680	U U U U	18 U 8.8 U 2.4 J 4.4 U 4.4 U	19 9.5 2.6 4.8 4.8	U U J U	19 9.6 1.7 4.8 4.8

			I			1	ı	1	00010 =				00010 -		000100	_
LOCATION ID									SP813-5		SP813-6		SP813-7		SP813-8	
MATRIX									SOIL		SOIL		SOIL		SOIL	
SAMPLE ID									123698		123699		123700		123706	
TOP OF SAMPLE									N/A		N/A		N/A		N/A	
BOTTOM OF SAMPLE									N/A		N/A		N/A		N/A	П
SAMPLE DATE									12/9/2004		12/9/2004		12/9/2004		12/21/2004	٦
QC CODE									SA		SA		SA		SA	П
STUDY ID									SRI		SRI		SRI		SRI	П
			Frequency			Number	Number	Number								П
			of	Criteria	Action	of	of	of								
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)	Value (0	((
1,1-Dichloroethene	μg/Kg	0.65	11%	TAGM 4046	400	0	1	9	4.2	U	5.2	Ü	390	U	0.65 J	
Acetone	μg/Kg	3.8	11%	TAGM 4046	200	0	1	9	17	U	21	U	1500	U	3.8 J	٦
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	1	9	8.4	U	10	U	770	U	1 J	٦
cis-1,2-Dichloroethene	μg/Kg	20	56%	TAGM 4046		0	5	9	4.2	U	5.4	U	390	U	20	٦
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	1	9	4.2	U	5.2	U	390	U	1.7 U	٦
Tetrachloroethene	μg/Kg	1.7	11%	TAGM 4046	1400	0	1	9	4.2	U	5.2	U	390	U	1.7 J	
trans-1,2-Dichloroethene	μg/Kg	1.3	11%	TAGM 4046	300	0	1	9	4.2	U	5.2	U	390	U	1.3 J	
Trichloroethene	μg/Kg	28000	100%	TAGM 4046	700	6	9	9	9.3		7400	J	1700		18000 J	
Vinyl Chloride	μg/Kg	7.4	11%	TAGM 4046	200	0	1	9	4.2	U	5.2	U	390	U	7.4	

Table 3-4 Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY


LOCATION ID									
MATRIX									
SAMPLE ID									
TOP OF SAMPLE									
BOTTOM OF SAMPLE									
SAMPLE DATE									
QC CODE									
STUDY ID									
			Frequency			Number	Number	Number	
			of	Criteria	Action	of	of	of	
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	(Q)
1,1-Dichloroethene	μg/Kg	0.65	11%	TAGM 4046	400	0	1	9	U
Acetone	μg/Kg	3.8	11%	TAGM 4046	200	0	1	9	U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	1	9	U
cis-1,2-Dichloroethene	μg/Kg	20	56%			0	5	9	J
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	1	9	U
Tetrachloroethene	μg/Kg	1.7	11%	TAGM 4046	1400	0	1	9	U
trans-1,2-Dichloroethene	μg/Kg	1.3	11%	TAGM 4046	300	0	1	9	U
Trichloroethene	μg/Kg	28000	100%	TAGM 4046	700	6	9	9	
Vinyl Chloride	μg/Kg	7.4	11%	TAGM 4046	200	0	1	9	U

LOCATION ID								
MATRIX								
SAMPLE ID								
TOP OF SAMPLE								
BOTTOM OF SAMPLE								
SAMPLE DATE								
QC CODE								
STUDY ID								
			Frequency			Number	Number	Number
			of	Criteria	Action	of	of	of
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses
1,1-Dichloroethene	μg/Kg	0.65	11%	TAGM 4046	400	0	1	9
Acetone	μg/Kg	3.8	11%	TAGM 4046	200	0	1	9
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	1	9
cis-1,2-Dichloroethene	μg/Kg	20	56%	TAGM 4046		0	5	9
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	1	9
Tetrachloroethene	μg/Kg	1.7	11%	TAGM 4046	1400	0	1	9
trans-1,2-Dichloroethene	μg/Kg	1.3	11%	TAGM 4046	300	0	1	9
Trichloroethene	μg/Kg	28000	100%	TAGM 4046	700	6	9	9
Vinyl Chloride	μg/Kg	7.4	11%	TAGM 4046	200	0	1	9

Table 3-5 Comparison of RI and SRI Pb-210 Results for EM-5 Soil Samples

	SRI Result					
Loc_ID	(pCi/g)	SRI Q	SRI Uncertainty	RI Result (pCi/g)	RI Q	RI Uncertainty
SS12-102	3.46	U	+/- 4.13	27.5	U	
SS12-107	1.56	U	+/- 4.49	55.9		+/- 35.2
SS12-107 (D)	3.11	U	+/- 2.97	55.9		+/- 35.2
SS12-108	1.88	U	+/- 6.59	50.6		+/- 32.8
SS12-109	1.60	U	+/- 2.71	23.1	UJ	
SS12-117	2.64	U	+/- 5.05	53.2		+/- 36.2
SS12-118	1.54	U	+/- 2.15	32.7	U	
SS12-119	2.92	U	+/- 3.92	50.4		+/- 32.2
SS12-120	0.827	U	+/- 7.86	24.2	U	
TP12-15C	1.64		+/- 2.25	79	J	+/- 48.6
TP12-15A	0.0728	U	+/- 2.07	50	J	+/- 49.4

Figures

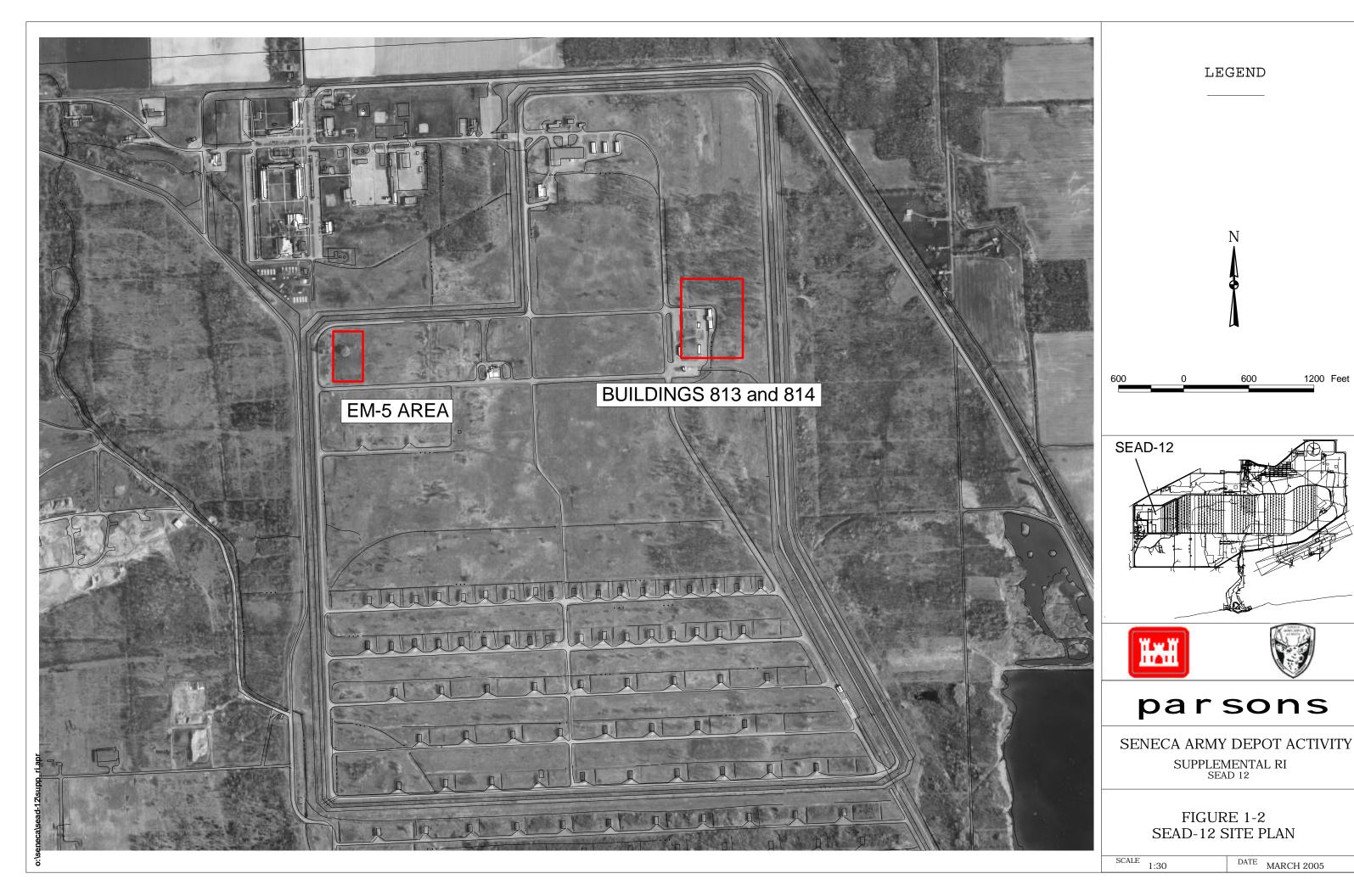
LEGEND

Conservation/Recreation

Fed to Fed Transfer

Note: The Fed to Fed Transfer, Prison, and Institutional areas have already been transferred to new owners. The majority of the Airfield and the Conservation/Recreation area have also been transferred. However, pieces of these areas have been retained by the Army pending forthcoming environmental action. The Industrial and Warehouse areas are still owned by the Army.

0 0.25 0.5 0.75 Miles


PARSONS

SENECA ARMY DEPOT ACTIVITY

SUPPLEMENTAL RI

FIGURE 1-1 **FUTURE LAND USE**

MARCH 2005

LEGEND

G12-128

Y SOIL GAS SAMPLE LOCATION

MW12-37

MONITORING WELL LOCATION subsurface soil samples also collected

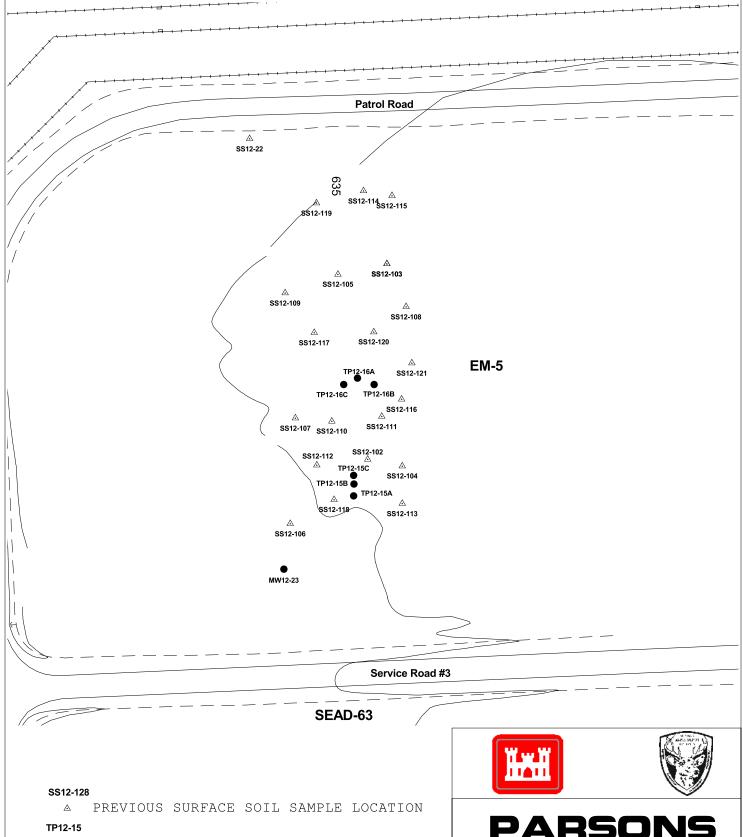
SS12-67

Z SURFACE SOIL SAMPLE LOCATION

SW/SD12-30

\$ SURFACE WATER/SEDIMENT
SAMPLE LOCATION

parsons


SENECA ARMY DEPOT ACTIVITY

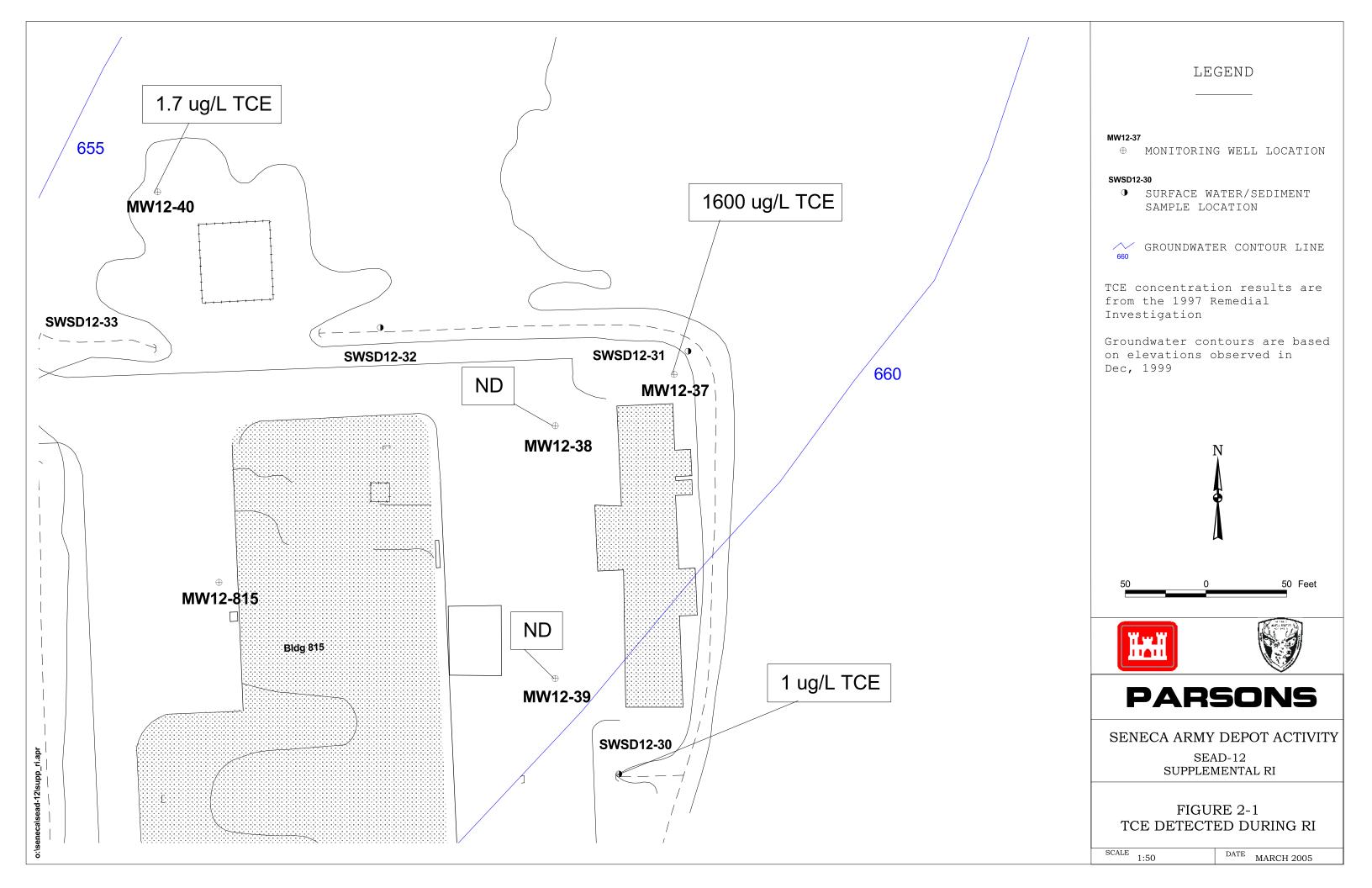
SEAD-12 SUPPLEMENTAL RI


FIGURE 1-4 RI SAMPLING LOCATIONS BUILDINGS 813 and 814

SCALE 1:50

DATE MARCH 2005

PREVIOUS SUBSURFACE SOIL SAMPLE LOCATION


PARSO

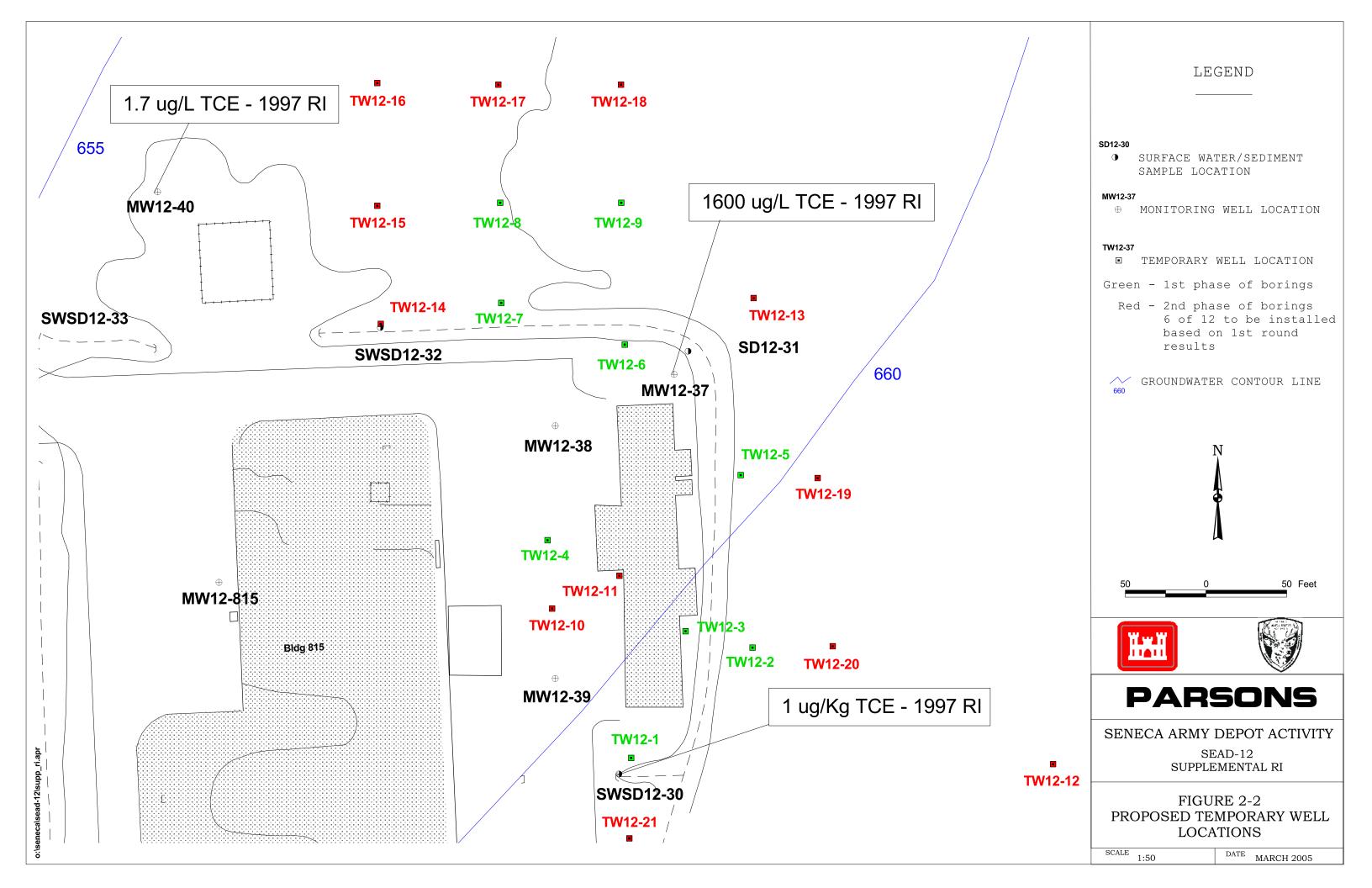

SENECA ARMY DEPOT ACTIVITY SEAD-12 SUPPLEMENTAL RI

FIGURE 1-5 PREVIOUS SOIL SAMPLE LOCATIONS AT EM-5

SCALE 1:100

MARCH 2005

TP813-6F TP813-9T TP813-2T TP813-13F TP813-3T -TP813-5F TP813-1T **TP813-10F** TP813--7T TP813-12F TP813-8T **SOIL STAGING** TP813-11F **AREA** 3 8 BLDG Samples TCE Average Stockpile Stockpile Collected Concentration Concentration SP813-3 3,100 ug/Kg 588.1 ug/Kg * SP813-3 (D) 190 ug/Kg (100 cy) SP813-4 110 ug/Kg SP813-5 9.3 ug/Kg SP813-6 7,400 ug/Kg (remains stockpiled) (80 cy) SP813-7 1,700 ug/Kg 8 DG SP813-8 18,000 ug/Kg 18,000 ug/Kg BL (remains stockpiled) (50 cy) MW12-39 * Concentration used for SP813-3 = (SA + DU)/2

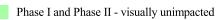
LEGEND

TP813-2T

Soil Sample Location in Excavation

> T suffix - sample location removed during next phase of excavation

F suffix - sample location not removed


SP813-2

Stockpile Sample Location

Area of Excavation

Stockpile Groups

Returned to excavation

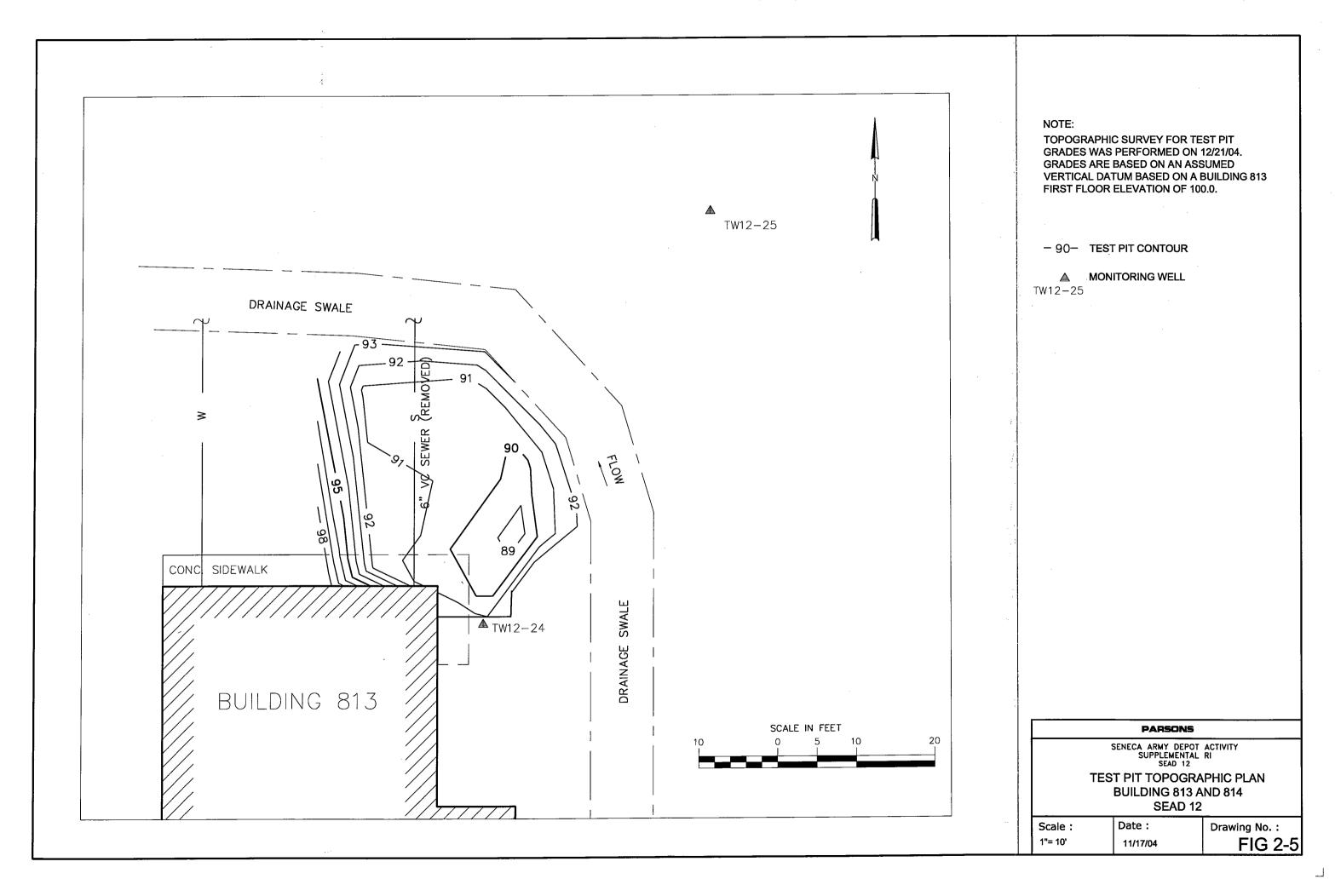
(backfilled)

4,550 ug/Kg

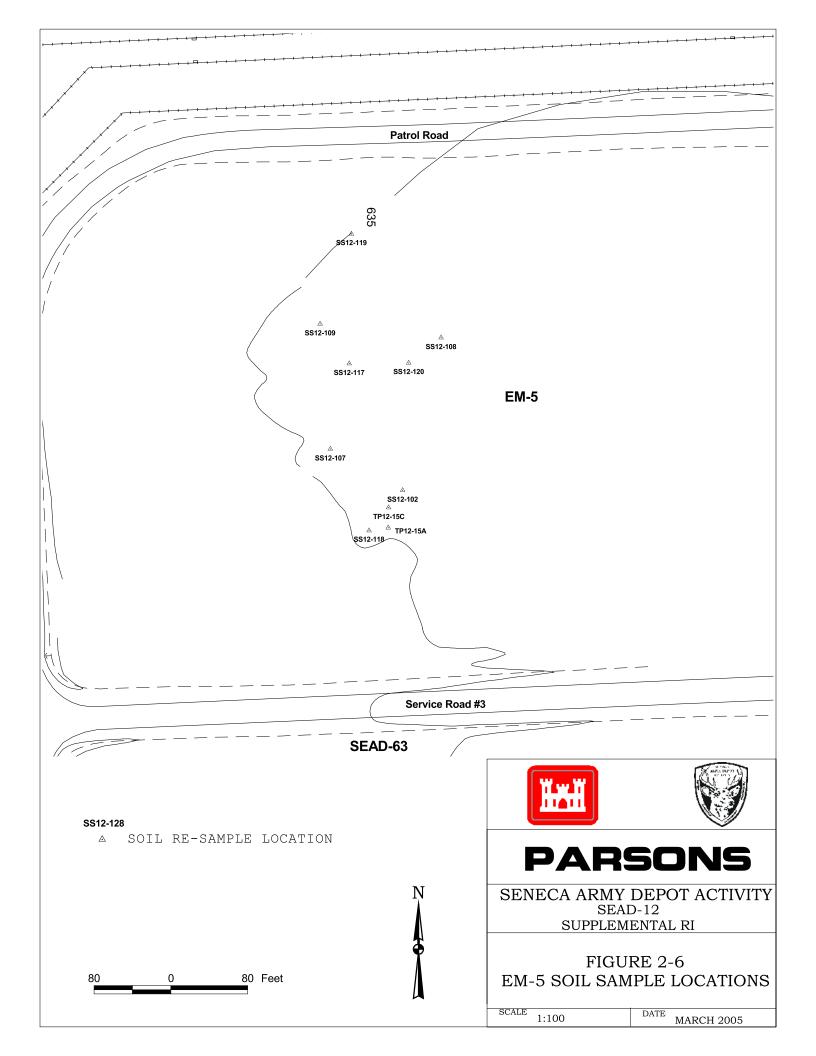
Phase III - visually impacted Stockpiled pending further analysis

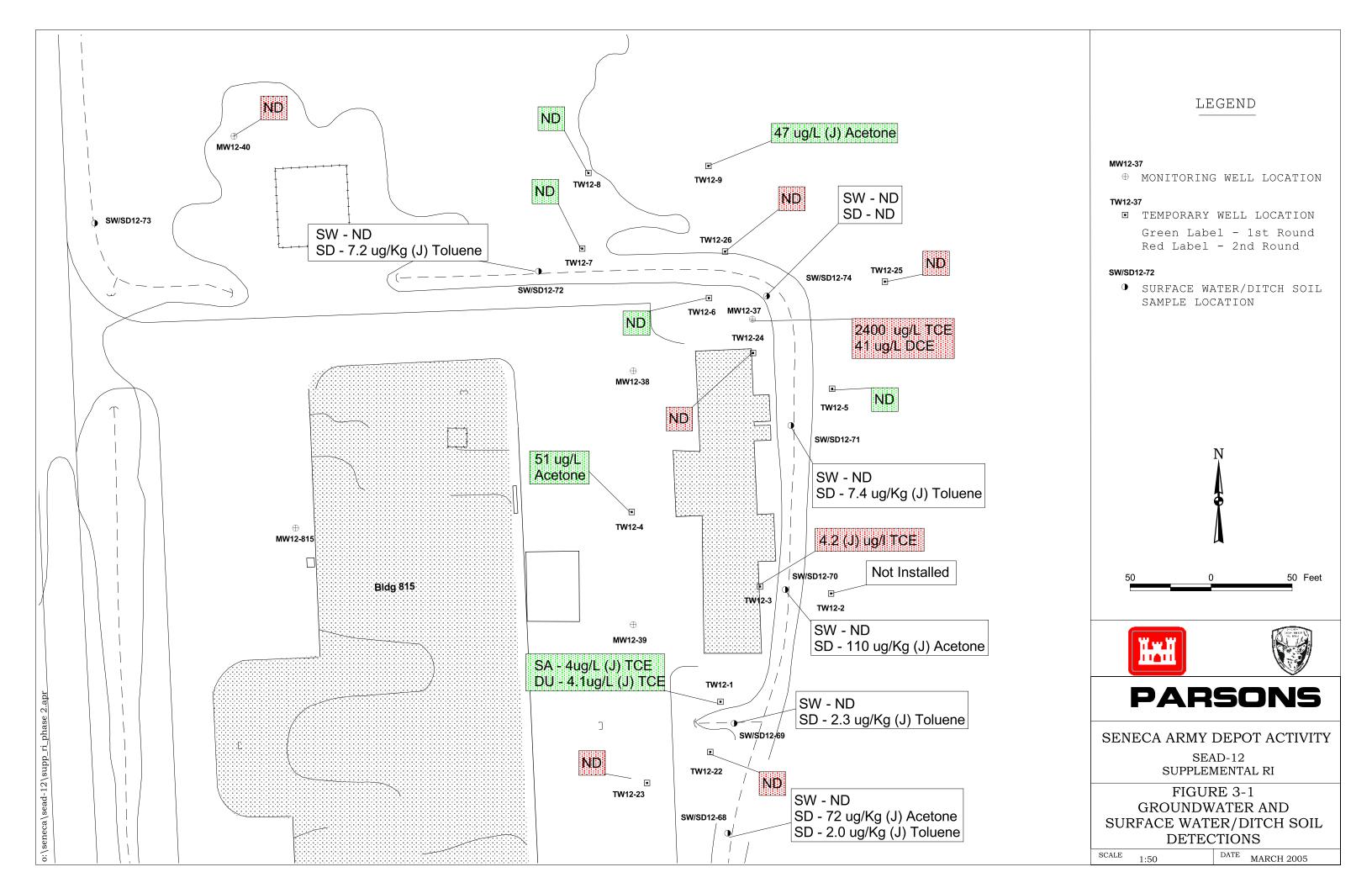
40 Feet

PARSONS


SENECA ARMY DEPOT ACTIVITY

SEAD-12 SUPPLEMENTAL RI


FIGURE 2-4 SAMPLE LOCATIONS FROM TEST PIT AT BUILDINGS 813 AND 814


SCALE 1:30

DATE MARCH 2005

L

TP813-6F TP813-9T TP813-2T TP813-13F TP813-3T -TP813-5F TP813-1T **TP813-10F** TP813-7T TP813-12F TP813-8T **SOIL STAGING** TP813-11F **AREA** 3 8 BLDG Samples TCE Average Stockpile Stockpile Collected Concentration Concentration SP813-3 3,100 ug/Kg 588.1 ug/Kg * SP813-3 (D) 190 ug/Kg (backfilled) (100 cy) SP813-4 110 ug/Kg SP813-5 9.3 ug/Kg SP813-6 7,400 ug/Kg 4,550 ug/Kg (remains stockpiled) (80 cy) SP813-7 1,700 ug/Kg 8 DG SP813-8 18,000 ug/Kg 18,000 ug/Kg B (remains stockpiled) (50 cy) MW12-39 * Concentration used for SP813-3 = (SA + DU)/2

LEGEND

TP813-2T

Soil Sample Location in Excavation

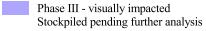
> T suffix - temporary sample location removed during next phase of excavation

F suffix - final confirmatory sample location

SP813-2

Stockpile Sample Location

Approximate Area of Excavation


Stockpile Groups

Phase I and Phase II - visually unimpacted Returned to excavation

Phase II - visually impacted Stockpiled pending further analysis

40 Feet

PARSONS

SENECA ARMY DEPOT ACTIVITY

SEAD-12 SUPPLEMENTAL RI

FIGURE 3-3 TCE CONCENTRATIONS IN STOCKPILE SAMPLES AT BUILDINGS 813 AND 814

SCALE 1:30

DATE MARCH 2005

Appendix A

Temporary Well Construction Diagrams

Appendices

COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION

				
PARSONS ENGINEERING SCIENCE, INC.		CLIENT:	USACOE	WELL#: MWJW12-/
PROJECT: RI FIELD INVEST	FIGATION	PROJEC	T NO:	
SWMU # (AREA): SEAD-	12	INSPE	CTOR:	McAllister
SOP NO.:		СНЕСКЕ	DBY:	
DRILLING CONTRACTOR: Noth nagle		POW DEPTH (ft) :		
DRILLER: Jay.		INSTALLATION :	STARTED:	
DRILLING COMPLETED: May 24 2	1004	INSTALLATION (COMPLETED:	
BORING DEPTH:		SURFACE COMPI	LETION DATE:	
DRILLING METHOD(S):	<u>. </u>	COMPLETION CO	ONTRACTOR/CREW:	
BORING DIAMETER(S):		BEDROCK CONF	TRMED (Y/N?)	·
PROTECTIVE SURFACE CASING				
DIAMETER (ft):			LENGTH (ft):	
RISER				
TYPE: DIAMETER(in): 2/ucq			TR (ft):	3.29
DIAMETER(in): 2/uc4			LENGTH (ft):	10.29
SURFACE COLLAR				
TYPE:			RADIUS (ft):	
THICKNESS OF CENTER (ft):		THIC	KNESS OF EDGE (in):	
SCREEN			<u>, , , , , , , , , , , , , , , , , , , </u>	
TYPE: PVC			TSC (ft):	5.2 ft 5 foot
DIAMETER (in):	SLOT SIZE:	0.010	LENGTH (ft):	5 foot
POINT OF WELL (SILT SUMP)			<u> </u>	
TYPE: end Cap	BSC (ft):		POW(ft):	
GROUT ,				
TYPE: HOAR	TG (ft):		LENGTH (ft):	
SEAL				
TYPE: Growler Bente	TBS (ft):	Serface	LENGTH (ft):	464
SAND PACK				
FINE SAND TYPE: #00	TSP (ft):	4.00	LENGTH (ft):	64
COARSE SAND TYPE:	TSP (ft):		LENGTH (ft):	
ACRONYMS				
TR Top of Riser		tom of Screen	TO	•
TSC Top of Screen BGD Background		nt of Well o of Sand Pack	TB	S Top of Bentonite Seal
COMMENTS			. 31 . 23.	
Temporay well no	t yet compl	eru.		
	# 477 pages			IDEA GE
SEE DAGE 2 FOR SCHEMATIC	* ALL DEPTH ME	ASUREMENTS REFEREN	CED TO GROUND SU	JRFACE

OVERBURDEN MONITORING WELL COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION

	KOMDWAI	DOM - D	CIGITED COMIL		
PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	well#: MW 7wiz-3
PROJECT:	RI FIELD INVESTIG		PROJECT !	NO:	
SWMU # (AREA):	SEAD- /	2 RI	INSPECTO	OR:	McAllista
SOP NO.:	Builday 813/814		CHECKED I	BY:	
DRILLING CONTRACTOR:	Hothnayle		POW DEPTH (ft):		9' 10"
DRILLER:			INSTALLATION STA	ARTED:	
DRILLING COMPLETED:	May 24 2009		INSTALLATION CO	MPLETED:	
BORING DEPTH:	10.25		SURFACE COMPLET	IION DATE:	Tempora
DRILLING METHOD(S):	<u> </u>		COMPLETION CON	TRACTOR/CREW:	
BORING DIAMETER(S):	6 inch		BEDROCK CONFIR	MED (Y/N?)	<u> </u>
PROTECTIVE SURFAC	E CASING				
DIAMETER (ft):				LENGTH (ft):	
RISER					
TYPE:	2 inch PVC 2 inch			TR (ft):_	
DIAMETER(in):	2,144			LENGTH (ft):	
SURFACE COLLAR	······				
TYPE:_				RADIUS (ft):	
THICKNESS OF CENTER (ft):			THICKN	VESS OF EDGE (in):	
SCREEN					
TYPE:	PVC			TSC (ft):	5' 10'
DIAMETER (in):		SLOT SIZE:	• O10	LENGTH (ft):	
POINT OF WELL (SILT	Γ SUMP)				^
ТҮРЕ:	end Cap	BSC (ft):	9 kept 10 clushes	POW(ft):	9 fact 10 in
GROUT					
	Chop Bentonile	TG (ft):		LENGTH (ft):	
SEAL	_ 1	<u></u>			_
	Chip Benbouile	TBS (ft):	4 foot he Surfac	LENGTH (ft):	4 Feet
SAND PACK			40 1		
FINE SAND TYPE:	<u>#eo</u>	TSP (ft):	4 feet	LENGTH (ft):	Stout Win
COARSE SAND TYPE:	<u></u>	TSP (ft):		LENGTH (ft):	
ACRONYMS					
1	Top of Riser		ottom of Screen	TG	•
	Top of Screen Background		oint of Well op of Sand Pack	TBS	S Top of Bentonite Seal
COMMENTS: Tempon		nut yet	completed		Art Const. D. Const. P. Const.
	,	* ALL DEPTH M	IEASUREMENTS REFERENCE	3D TO GROUND SI	JRFACE
SEE PAGE 2 FOR SCHEM					

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

Re	DADWAY BOX -	SURFACE COM	PLETION	TW12-4
PARSONS ENGINEERING SCIENC	E, INC.	CLIENT:	USACOE	WELL#: ***
PROJECT: RI FIEL SWMU # (AREA): SOP NO.: Building	DINVESTIGATION SEAD- 12 RD 9(3/8/4	_ [CT NO: ECTOR: ED BY:	743156 McAllister
DRILLER:	nagle	POW DEPTH (ft) INSTALLATION	:	8.65
BORING DEPTH: DRILLING METHOD(S): May 8.7 HSA	14 1004 5	_ INSTALLATION _ SURFACE COME _ COMPLETION C		Тещрапу
BORING DIAMETER(S): 6	inch	BEDROCK CON	FIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE CASING				
DIAMETER (ft):			LENGTH (ft):	
RISER TYPE: DIAMETER(in):		_	TR (ft):_ LENGTH (ft):_	
SURFACE COLLAR TYPE: THICKNESS OF CENTER (ft):		_ 	RADIUS (ft): CKNESS OF EDGE (in):	
SCREEN TYPE: PVC DIAMETER (in): 2 inc.	A SLOT SIZE:	- 0.044	 	3.75 5 Fout
POINT OF WELL (SILT SUMP) TYPE:end Ca	P BSC (ft):	<i>8</i> ⋅ 5 5	POW(ft):	8.65
GROUT TYPE:	TG (ft):		LENGTH (ft):	
seal _{Type:} <u>Chip</u> B	entoute TBS (ft):	Surface	LENGTH (ft):	3feet
SAND PACK FINE SAND TYPE: COARSE SAND TYPE:	TSP (ft):		LENGTH (ft):	5 -6 5
ACRONYMS TR Top of Riser TSC Top of Screen BGD Background	BSC POW TSP	Bottom of Screen Point of Well Top of Sand Pack	TG TBS	Top of Grout Top of Bentonite Seal
COMMENTS: Temporay we	ll not yet c	ompleted		
SEE PAGE 2 FOR SCHEMATIC	* ALL DEPTH	MEASUREMENTS REFEREN	CED TO GROUND SU	RFACE

OVERBURDEN MONITORING WELL COMPLETION REPORT & INSTALLATION DETAIL TEMPORARY WELL - SURFACE COMPLETION

			SOLUTION CO.		
PARSONS ENGINE	ERING SCIENCE, INC.		CLIENT:	USACOE	WELL#: MWT6/125
PROJECT:	RI FIELD INVEST	IGATION	PROJ	ECT NO:	
SWMU # (AREA):	SEAD-	12.	INSF	ECTOR:	McHiltsten
SOP NO.:			CHEC	KED BY:	
DRILLING CONTRACTO	or: Nothnagle		POW DEPTH (fi):	
DRILLER:	Jay		INSTALLATION		
DRILLING COMPLETE	44 4 1 14)4	INSTALLATION	N COMPLETED:	
BORING DEPTH:			SURFACE COM	IPLETION DATE:	
DRILLING METHOD(S)	:		COMPLETION	CONTRACTOR/CREW:	
BORING DIAMETER(S)	:		BEDROCK CO	NFIRMED (Y/N?)	
PROTECTIVE SUR	FACE CASING			*** *	· · · · · · · · · · · · · · · · · · ·
DIAMETER (ft):				LENGTH (ft):	:
RISER					
	PE: PVC			TR (ft):	8.65
DIAMETER(2		•	LENGTH (ft):	13.65 incscreme
SURFACE COLLAR			·	<u> </u>	2011
	TE:			RADIUS (ft):	
THICKNESS OF CENTER	-		ТН	ICKNESS OF EDGE (in):	
SCREEN					
	PVC.			TOC (0)	6.5 feet
DIAMETER (in):	Linch	SLOT SIZE:	0.010	TSC (ft): LENGTH (ft):	5 foot
		_ GLOT BILE.		ERIGITI (II):	
POINT OF WELL (S	PE: End Cap	B00 (0)		now//-	
· · · · · · · · · · · · · · · · · · ·	re: Law Cup	BSC (ft):		POW(ft):	. respec
GROUT	PE: None				e respond
TY	PE: None	TG (ft):		LENGTH (ft):	
SEAL	PIRI	.1	e (1 C L
TY	_{PE:} Grandar Berlon	Me TBS (ft):	Surface	LENGTH (ft):	4ft
SAND PACK	400		101		est a
FINE SAND TYPE:	#00	TSP (ft):	4H bys.	LENGTH (ft):	trans.
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):	
ACRONYMS					uu.
TR	Top of Riser	BSC	Bottom of Screen	TO	•
TSC BGD	Top of Screen Background	POW TSP	Point of Well Top of Sand Pack	TB	S Top of Bentonite Seal
COMMENTS:	Duonground	131	TOP OF DAILY T ACK		
COMMINICATIO.					7,522
					i Valoria V Valoria Valoria
		* ALL DEPTH	MEASUREMENTS REFERE	ENCED TO GROUND SU	JRFACE
SEE PAGE 2 FOR SCI	HEMATIC				į

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

ROADWAY BOX -	SURFACE COMPLETION	JWIT- P
PARSONS ENGINEERING SCIENCE, INC.	CLIENT: USACOE	WEL L#: MW
PROJECT: RI FIELD INVESTIGATION	PROJECT NO:	743156
SWMU#(AREA): SEAD- 12 RT	INSPECTOR:	mallister
SOP NO.: Buildry 813/814	CHECKED BY:	
DRILLING CONTRACTOR: Nothing 6	POW DEPTH (ft):	10.0
DRILLER:	INSTALLATION STARTED:	
DRILLING COMPLETED: May 25 2004	INSTALLATION COMPLETED:	
BORING DEPTH: 10.30	SURFACE COMPLETION DATE:	Tempora
DRILLING METHOD(S):	COMPLETION CONTRACTOR/CREW:	
BORING DIAMETER(S):	BEDROCK CONFIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE CASING		
DIAMETER (ft):	LENGTH (ft):	
RISER		2
түре:	TR (ft):	
DIAMETER(in):	LENGTH (ft):	
SURFACE COLLAR		
ТҮРЕ:	RADIUS (ft):	
THICKNESS OF CENTER (ft):	THICKNESS OF EDGE (in):	
SCREEN		
TYPE: PVC	TSC (ft):	5 feet
DIAMETER (in): 2. uch slot size:	0.0(0 LENGTH (ft):	5 foct
POINT OF WELL (SILT SUMP)		
TYPE: <u>End Cap</u> BSC (ft):	9.90 POW(ft):	10.00
GROUT		
TYPE: TG (ft):	LENGTH (ft):	
SEAL		
TYPE: Chip Bentonite TBS (ft):	4.5 ft Bgs LENGTH (ft):	<u>5.5fl</u>
SAND PACK		4-6-1
FINE SAND TYPE: # OO TSP (ft):_	Surface LENGTH (ft):	4.Sfeet
COARSE SAND TYPE: TSP (ft):	LENGTH (ft):	
ACRONYMS		
The state of the s	Bottom of Screen TG	•
	Point of Well TBS Top of Sand Pack	Top of Bentonite Seal
COMMENTS: Temporay Well not yel	compeled	
* ALL DEPTH I	MEASUREMENTS REFERENCED TO GROUND SU	RFACE
SEE PAGE 2 FOR SCHEMATIC		

COMPLETION REPORT & INSTALLATION DETAIL TW 12-7

PARSONS ENGINEERING SCIENCE, INC.			CLIENT:	USACOE	WELL#: MW	"E
PROJECT:	RI FIELD INVESTIG	ATION	PROJECT NO:			. 14.44
SWMU # (AREA):	SEAD- /	2	INSPEC	CTOR:	McAllosta	7555 2575
SOP NO.:			CHECKE	D BY:		_
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (ft) :		//	13 SEL
DRILLER:	Jay		INSTALLATION S	STARTED:		
DRILLING COMPLETED:	May 24 20	204	INSTALLATION (COMPLETED:		•
BORING DEPTH:			SURFACE COMPL	ETION DATE:		. Ken
DRILLING METHOD(S):			COMPLETION CO	NTRACTOR/CREW:		- Au
BORING DIAMETER(S):			BEDROCK CONF	IRMED (Y/N?)		
PROTECTIVE SURFAC	E CASING					
DIAMETER (ft):				LENGTH (ft):	:	TEUA.
RISER				272.2.7	· · · · · · · · · · · · · · · · · · ·	
ТҮРЕ: _	PVC			TR (ft):	200 steka	<i>)</i> ==
DIAMETER(in):	2 inch			LENGTH (ft):		31.1
SURFACE COLLAR	. (,			76.176.
TYPE:	None			RADIUS (ft):	:	200
THICKNESS OF CENTER (ft):			THICK	KNESS OF EDGE (in):		-222
SCREEN	_					• • •
TYPE:_	DVC			TSC (ft):	Afect	ture.
DIAMETER (in):	Linch	SLOT SIZE:	0.01	LENGTH (ft):	200	
POINT OF WELL (SILT				- 2		
ТҮРЕ: _	End Cap	BSC (ft):	9.064	POW(ft):	9.025	128
GROUT		- 		17700		25 4 2
TYPE: _	None	TG (ft):		LENGTH (ft):	:	
SEAL						
TYPE: _	Guanaulan Barbuil	e TBS (ft):	Surface	LENGTH (ft):	3.5 Ft	22.2
SAND PACK			A. 1			n Assa
FINE SAND TYPE:	#1 sand	TSP (ft):	3.5 ft bgs	LENGTH (ft):	5.5 ft.	W. STEVE
COARSE SAND TYPE:		TSP (ft):	<u></u>	LENGTH (ft):	:	- green
ACRONYMS						TOTAL
	Top of Riser		ottom of Screen	Te	•	***
	Top of Screen Background		rint of Well op of Sand Pack	TE	BS Top of Bentonite Se	al
COMMENTS: Dal L	hole 9.028 Ft			17 12-2	The state of the s	
equal or						7.00 gard 7.10 gard
total we	11 hearnt 12.10					
						1 (27)
SEE PAGE 2 FOR SCHEM		ALL DEPTH M	EASUREMENTS REFERENCE	CED TO GROUND S	URFACE	

COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION Tw 12-8

	ROILD WILL	JOH SCHILL	ice com bi	311011		
PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW	
PROJECT:	RI FIELD INVESTIGAT	ПОИ	PROJECT N	O:	743 <i>15</i> 6	
SWMU # (AREA):	SEAD- 1入	<u>PL</u>	INSPECTO	PR:	McAllosten	
SOP NO.:		·	CHECKED B	Y:		
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (ft):		······································	
DRILLER:			INSTALLATION STA	RTED:		
DRILLING COMPLETED:	My 25 200	9	INSTALLATION COM	MPLETED:		
BORING DEPTH:	10 feet		SURFACE COMPLET	ION DATE:		
DRILLING METHOD(S):	1+5A		COMPLETION CONT	RACTOR/CREW:		
BORING DIAMETER(S):	61464		BEDROCK CONFIRM	MED (Y/N?)		
PROTECTIVE SURFACE CASING						
DIAMETER (ft):				LENGTH (ft):_		
RISER						
ТҮРЕ:				TR (ft):		
			•			
SURFACE COLLAR	 		*			
ТҮРЕ:				RADIUS (ft):		
THICKNESS OF CENTER (ft):			THICKNI	ESS OF EDGE (in):		
SCREEN						
TYPE:	PVC			TSC (ft):	Sfeel	
– DIAMETER (in):	Linch	SLOT SIZE:	.010	LENGTH (ft):	- 6 /	
POINT OF WELL (SILT	SUMP)					
түре:	·,	BSC (ft):		POW(ft):		
GROUT		`		<u> </u>		
TYPE:		TG (ft):		LENGTH (ft):		
SEAL		10 (1).				
TYPE:	Chip Bentonik	TBS (ft):Sc	vrface	LENGTH (ft):	4 feet	
SAND PACK	11 60	1	^ 1		10 1	
FINE SAND TYPE:	#00	TSP (ft): 4	feet	LENGTH (ft):	6 feet	
COARSE SAND TYPE:	·	TSP (ft):		LENGTH (ft):		
ACRONYMS						
	Top of Riser	BSC Bottom of S		TG	•	
	Top of Screen Background	POW Point of We TSP Top of Sand		TBS	Top of Bentonite Seal	
COMMENTS:		•			<u> </u>	
Temp	aray well				•	
					•	
SEE DACE 2 FOR SCHEM		LL DEPTH MEASURE	MENTS REFERENCE	O TO GROUND SU	RFACE	

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL TW 12-9						
PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW	
PROJECT: SWMU # (AREA): SOP NO.:	RI FIELD INVESTIG. SEAD- 12 743156		PROJECT INSPEC CHECKED	TOR:	743156 Mc411ister	
DRILLING CONTRACTOR: DRILLER: DRILLING COMPLETED: BORING DEPTH:	May 25 200 10.2 feet	04	POW DEPTH (ft): INSTALLATION C INSTALLATION C SURFACE COMPLI	OMPLETED:	9:11 Temporary.	
DRILLING METHOD(S): BORING DIAMETER(S):	HSA 6 incl	<u>h</u>	COMPLETION CON BEDROCK CONFI	NTRACTOR/CREW: RMED (Y/N?)	Y	
PROTECTIVE SURFACT DIAMETER (ft):	CE CASING			LENGTH (ft):		
RISER TYPE: DIAMETER(in):						
SURFACE COLLAR TYPE: THICKNESS OF CENTER (ft):			THICK	RADIUS (ft):		
SCREEN TYPE: DIAMETER (in):	PVC 2.Incu	SLOT SIZE:	0.010	TSC (ft): LENGTH (ft):	4.11 ft stoot	
POINT OF WELL (SILT	rsump) End Cap	BSC (ft):	9.01	POW(ft):	9.4	
GROUT TYPE:		TG (ft):		LENGTH (ft):		
SEAL TYPE:	Chip Benkontle	TBS (ft):	Surface	LENGTH (ft):	4. 5 \$}	
SAND PACK FINE SAND TYPE: COARSE SAND TYPE:	# 00	TSP (ft):	4. 5 H.	LENGTH (ft):	4.5 f h	
TSC	Top of Riser Top of Screen Background	POW Poi	tom of Screen nt of Well o of Sand Pack	TG TB:	•	
COMMENTS: Tempo		LO SOND	ASSIDEMENTS DEFEDENCE	PED TO CROUND O	IDEACE	

SEE PAGE 2 FOR SCHEMATIC

COMPLETION REPORT & INSTALLATION DETAIL W12-22 **ROADWAY BOX - SURFACE COMPLETION** PARSONS ENGINEERING SCIENCE, INC. CLIENT: USACOE WELL #: MW 743156 RI FIELD INVESTIGATION PROJECT: PROJECT NO: SWMU # (AREA): SEAD- 12 RIC madister INSPECTOR: SOP NO .: CHECKED BY: 23.514 DRILLING CONTRACTOR: POW DEPTH (ft): DRILLER: INSTALLATION STARTED: Tone 2004 DRILLING COMPLETED: INSTALLATION COMPLETED: 245 Temporary BORING DEPTH: SURFACE COMPLETION DATE: 145*A* DRILLING METHOD(S): COMPLETION CONTRACTOR/CREW: 6 lucn BORING DIAMETER(S): BEDROCK CONFIRMED (Y/N?) PROTECTIVE SURFACE CASING DIAMETER (ft): LENGTH (ft): RISER Duc TYPE: TR (ft): Zinch DIAMETER(in): LENGTH (ft): SURFACE COLLAR RADIUS (ft) THICKNESS OF CENTER (ft): THICKNESS OF EDGE (in): SCREEN DVC TYPE: TSC (ft): 0.010 DIAMETER (in): SLOT SIZE: LENGTH (ft): POINT OF WELL (SILT SUMP) BSC (ft): POW(ft): GROUT TYPE: C TG (ft): LENGTH (ft): SEAL TYPE: Chip Bentonit TBS (ft): LENGTH (ft): SAND PACK 9 feet 400 12 feet FINE SAND TYPE: TSP (ft): LENGTH (ft): COARSE SAND TYPE: TSP (ft): LENGTH (ft): **ACRONYMS** TR Top of Riser BSC **Bottom of Screen** TG Top of Grout TSC Top of Screen POW Point of Well Top of Bentonite Seal RGD Background TSP Top of Sand Pack COMMENTS: Temporay we (1 * ALL DEPTH MEASUREMENTS REFERENCED TO GROUND SURFACE

SEE PAGE 2 FOR SCHEMATIC

COMPLETION REPORT & INSTALLATION DETAIL POADWAY BOY - SURFACE COMPLETION TW12-23

	KOADWAY	OA - 80	UKIACE CON	IFLETION	100775
PARSONS ENGINEERING	SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW
PROJECT:	RI FIELD INVESTIGAT		PRO:	IECT NO:	743156
SWMU # (AREA):	SEAD- /2	RI	INS	PECTOR:	mcalloster
SOP NO.:	7431%		СНЕС	CKED BY:	
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (ft) :	13.25
DRILLER:			INSTALLATIO	N STARTED:	
DRILLING COMPLETED:	June 9 2004		INSTALLATIO	N COMPLETED:	
BORING DEPTH:	23.3ft		SURFACE CO	MPLETION DATE:	Temportry
DRILLING METHOD(S):			COMPLETION	CONTRACTOR/CREW:	
BORING DIAMETER(S):			BEDROČK CO	ONFIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE CASING					
DIAMETER (ft):		·		LENGTH (ft):	
RISER	Dik				
ТҮРЕ:	PUC			TR (ft):	
DIAMETER(in):	2 juin			LENGTH (ft):	14 fect
SURFACE COLLAR					
түре:				RADIUS (ft):	
THICKNESS OF CENTER (ft):			Ti	HICKNESS OF EDGE (in):	
SCREEN	£		delimite A.	_	,2 D
ТҮРЕ:	Puc		0.640	TSC (ft):	13.3
DIAMETER (in):	2inch s	SLOT SIZE:	0.000	LENGTH (ft):	10 Foot
POINT OF WELL (SILT S	SUMP)		4 >		
ТҮРЕ:	End Cap	BSC (ft):	23.25	POW(ft):	23.3
GROUT					
ТҮРЕ:		TG (ft):		LENGTH (ft):	
SEAL					
TYPE:	Chip Benloute	TBS (ft):	8.984	LENGTH (ft):	2.7
SAND PACK	•			01	401
FINE SAND TYPE:	too	TSP (ft):	BA# 11	LENGTH (ft):	2 feet
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):	
ACRONYMS		1.51			
	p of Riser		ottom of Screen	TC	•
<u> </u>	p of Screen ckground		vint of Well op of Sand Pack	ТВ	S Top of Bentonite Seal
COMMENTS					
Tempona	ny Well				•
	v				
* ALL DEPTH MEASUREMENTS REFERENCED TO GROUND SURFACE					

COMPLETION REPORT & INSTALLATION DETAIL
TEMPORARY WELL - SURFACE COMPLETION 12-24

PARSONS ENGINEERI	ING SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW		
PROJECT:	RI FIELD INVESTIGAT	ION	- PI	ROJECT NO:		- 3	
SWMU # (AREA):	SEAD- 12		r	NSPECTOR:			
SOP NO.:			Сн	ECKED BY:			
DRILLING CONTRACTOR:	Notheraule		POW DEPTI	H (ft) :	<u> </u>	?	
DRILLER:	Joh			TION STARTED:		- 12	
DRILLING COMPLETED:	June 10	2004	INSTALLAT	TION COMPLETED:			
BORING DEPTH:			SURFACE C	COMPLETION DATE:			
DRILLING METHOD(S):			COMPLETION CONTRACTOR/CREW:				
BORING DIAMETER(S):			BEDROCK	CONFIRMED (Y/N?)		V	
PROTECTIVE SURFACE	CE CASING						
DIAMETER (ft):				LENGTH (ft):		ng ti	
RISER	~				0 . 1		
TYPE:	PVC	·····-		TR (ft):	8.0(- 12	
DIAMETER(in):	2 inch			LENGTH (ft):		-445 -125	
SURFACE COLLAR				· · · · · · · · · · · · · · · · · · ·			
ТҮРЕ:				RADIUS (ft):		**	
THICKNESS OF CENTER (ft):				THICKNESS OF EDGE (in):		. 172	
SCREEN	Φ.~.				A - 1 .	15	
TYPE:	PVC			TSC (ft):	43 feet		
DIAMETER (in):	Linch s	SLOT SIZE:	0.0	LENGTH (ft):	C 0 1.	•	
POINT OF WELL (SIL)							
TYPE:	End Cap	BSC (ft):		POW(ft):			
GROUT					1.2.2.4.2	150	
ТҮРЕ:	None	TG (ft):		LENGTH (ft):		14	
SEAL		2 (1.).	_			- 7	
	Grunnstein Bentoute	TBS (ft):	Surface 3.1 Cent	LENGTH (ft):	3.1 64		
SAND PACK			- 10 .			- 45	
FINE SAND TYPE:	#1 sand	TSP (ft):	3.1 teet	LENGTH (ft):	6.2 feet	-	
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):			
ACRONYMS						;	
TR	Top of Riser	BSC	Bottom of Screen	TC	G Top of Grout		
	Top of Screen Background	POW TSP	Point of Well Top of Sand Pack	TB	S Top of Bentonite Seal	1	
COLO COLO DE LA COLO DELLA COLO DE LA COLO D	24/		<u> </u>			 ,	
COMMENTS: Ayar	refusal @ 9.36F	9	* * 1	entle 3.1 to Sont	80 C	-	
Screen	5 feet	I	That Death	13.01			
#1 San	el to 3.1 feet		8Hekup	3.71 Feet		7.4	
SEE PAGE 2 FOR SCHEM		LL DEPTH	MEASUREMENTS REF	ERENCED TO GROUND SU	JRFACE		
SEC PAIR / PUR NUMBER	IAIR.						

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

TW	12	25
----	----	----

ROADWAY BOX - SI	URFACE COMPLETION $1 \omega (2-2.5)$
PARSONS ENGINEERING SCIENCE, INC.	CLIENT: USACOE WELL#: NAW
PROJECT: RI FIELD INVESTIGATION	PROJECT NO: 743156
SWMU # (AREA): SEAD- 12 RT	INSPECTOR: Weallister
SOP NO.:	CHECKED BY:
DRILLING CONTRACTOR: Nothwayle	POW DEPTH (ft): /2⋅3↓-
DRILLER:	INSTALLATION STARTED:
DRILLING COMPLETED: June 9 2009	INSTALLATION COMPLETED:
BORING DEPTH: 12.3 feet	SURFACE COMPLETION DATE:
DRILLING METHOD(S): HSA	COMPLETION CONTRACTOR/CREW:
BORING DIAMETER(S): 6 iun	BEDROCK CONFIRMED (Y/N?)
PROTECTIVE SURFACE CASING	
DIAMETER (ft):	LENGTH (ft):
RISER	
ТҮРЕ:	TR (ft):
DIAMETER(in):	LENGTH (ft):
SURFACE COLLAR	
ТҮРЕ:	RADIUS (ft):
THICKNESS OF CENTER (ft):	THICKNESS OF EDGE (in):
SCREEN TYPE: PVC	TSC (ft): 7·344
DIAMETER (in): 2,'uca slot size:	0.010 LENGTH (ft): 4.85 Foot
POINT OF WELL (SILT SUMP)	
TYPE: <u>End Cap</u> BSC(ft):_	12.25 POW(ft): 12.3
GROUT	
TYPE: TG (ft):	LENGTH (ft):
SEAL TYPE: Chop Bentonile TBS (ft):	5.2 feet LENGTH (ft): 5.2 feet
SAND PACK	A
FINE SAND TYPE: #OO TSP (ft):	S.2 feet LENGTH (ft): - 8,9 ()
COARSE SAND TYPE: TSP (ft):	LENGTH (ft):
ACRONYMS	,
	tom of Screen TG Top of Grout
	nt of Well TBS Top of Bentonite Seal
COMMENTS: Tempory well to	ASUREMENTS REFERENCED TO GROUND SURFACE
SEE PAGE 2 FOR SCHEMATIC	AND ORDERED TO GROUND SURFACE

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

Re	DADWAY B	<u>OX - S</u>	SURFACE COME	PLETION	1W12- 26
PARSONS ENGINEERING SCIENC	CE, INC.		CLIENT:	USACOE	WELL#:-MW
PROJECT: RI FIEL	D INVESTIGATI	ON	PROJEC	CT NO:	743156
SWMU # (AREA):	SEAD- 12	RE	INSPE	CTOR:	mcAllisle
SOP NO.:	·	·.	СНЕСКІ	ED BY:	
DRILLING CONTRACTOR:	nagle		POW DEPTH (ft)	:	10.9CF
DRILLER:			INSTALLATION	STARTED:	
DRILLING COMPLETED: JULE			INSTALLATION	COMPLETED:	<u> </u>
BORING DEPTH:			SURFACE COMP	LETION DATE:	
DRILLING METHOD(S): 45A			COMPLETION CO	ONTRACTOR/CREW:	
BORING DIAMETER(S): 6	nch		BEDROCK CON	FIRMED (Y/N?)	
PROTECTIVE SURFACE CASING					
DIAMETER (ft):				LENGTH (ft):	
RISER					
$_{ ext{TYPE:}}$				TR (ft):	
DIAMETER(in): 24	nc11			LENGTH (ft):	
SURFACE COLLAR					
ТҮРЕ:				RADIUS (ft):	
THICKNESS OF CENTER (ft):			THIC	CKNESS OF EDGE (in):	
SCREEN	۸.				
түре:	K .			TSC (ft):	5.9£h
DIAMETER (in); 2.14c	۷ sl	OT SIZE:	O-0W	LENGTH (ft):	Sfoot
POINT OF WELL (SILT SUMP)					
TYPE: End (ap	BSC (ft):	10.854	POW(ft):	10.9 CF
GROUT					
TYPE:		TG (ft):		LENGTH (ft):	
SEAL TYPE: Chip (Bentonite	TBS (ft):_	Surface	LENGTH (ft):	4.95+
SAND PACK	· · · · · · · · · · · · · · · · · · ·		4 - 41		
FINE SAND TYPE: #00		TSP (ft):_	4.9 ft	LENGTH (ft):	6 feet
COARSE SAND TYPE:		TSP (ft):_		LENGTH (ft):	
ACRONYMS					
TR Top of Riser			ottom of Screen	TG	Top of Grout
TSC Top of Screen BGD Background			oint of Well op of Sand Pack	TBS	Top of Bentonite Seal
COMMENTS: Temporry U		101 1	op of Santa Fack		
	* ALL	_ DEPTH_M	IEASUREMENTS REFEREN	ICED TO GROUND SU	JRFACE
SEE DAGE 2 FOR SCHEMATIC				· —	

Appendices

Appendix B

Sampling Records

SAMPLING RECORD - SURFACE WATER DATE: June 12 2004 PARSONS McAllister CONSULTANT: INSPECTOR: SEAD PROJECT: RL LABORATORY: Chemlech Ruldon 813-814 K. Hummber LOCATION: LAB. STAFF: WEATHER / FIELD CONDITIONS CHECKLIST CHAIN OF CUSTODY #: (RECORD MAJOR CHANGES) GROUND / SITE REL. WIND (FROM) TIME TEMP **WEATHER** HUMIDITY VELOCITY DIRECTION SURFACE **MONITORING** (0 - 360) INSTRUMENT (24 HR) (APPRX) (GEN.) (APPRX) (APPRX) CONDITIONS **DECTECTOR** 630 M:00 West uet Overcust HKH 10-15am PLD Ppm LOC SAMPLE MON. **TURBIDITY** SPEC QC SPL SAMPLING CONT VOC CLR ID **DFS** DEPTH TIME TEMP (NTU) pH COND D.O. DEVICE TYPE / SIZE (Y/N) SW/SD 13430 72/.77 3/40ml VOA 1ft Hostu 6.30 ·31 15:10 20B BOHLE 12-68 121000 SWISD 7.4 .46 3/40ml VOA 7.1 bottle 1.5 -18 15:45 22.2 63.9 .b 12(00) 12-69 SW 15D .75 7.2 3/4cml VOA 1600 47.2 nb 7.1 1861 ·6f 13.96 boffle 12/002 N 12.70 SWISD 7.3 .73 7.5 3/40ml .SH 16:20 19.44 bottle 1.84 76ato 121003 ·470 12.71 WA SW/SD 44.6 ntu 7.3 .70 8.06 bottle 3/40 M 311 11:40 21 56 121006 1.294 · (Agen VOA 12-74 SWISD 3/40m 72 5.52 68 bottle 34 17:00 2015 20 121004 Oppor 12.72 JUA sulsb 12/005 3/20cm/ 26 nfc 75 70 7.62 1.411 5 10.31 bofflo 17:40 Oppm 12.73 ubul.

DFS-DISTANCE FROM SHORE (FEET)
IDENTIFY UNITS FOR ALL MEASURMENTS
CLEANING PROCEDURES ACCORDING TO SOP

PAGE OF

		AM	TPT.T	SAMPLING RECORD	FCOL	1	FDIMEN	L		
	<u>ا</u>	JENEY.				۱۰				
	PARSONS				CLIENT:	INSPECTOR :		DATE: J	24	2004
PROJECT:	ECT:	δ	EM-5	Kesample				SOIL TYPE		
PR							SURFACE SOIL	SOIL	ICES	SEDIMENT
COMMENTS:	Samples		collected	य में ज	Canton	Sfeel split spoon	NOW TO THE RESIDENCE OF THE PROPERTY OF THE PR	MONITORING	ORING	
							GM - Moelle	Ludium		
	SAMPLE INFORMATION	FORM,	4 TION			SOIL INF	SOIL INFORMATION			
LOCATION	SAMPLE	SA	SAMPLE DEPTH (in)		GRAB or COMPOSITE	SAMPLE DESCRIPTION	USCS Classification	Lod +OC Soreen	QC Split	Other Notes
5312-118	173678	0	7.	1(18	מינות דק	Ony brown, Sitt & Clay soft loose, some State framents fine to course the loss		6	2	
701-7185	123677	٥	7.	11:40		Do brown Sill & Cla Soft loss Some State Framents Fire to come Ag		0.0	No	
5512-103	173676	0	7.	11:5}		Moist. brown Siltaclay Some Shale framents f-c trace oncome		0.0	Š	
2512-120	123671	0	7.	12:08		moist brown Silt #day some stabetryments trace organic		0.0	No	
5512-108	123673	0	7.	12:18		Dry brown Siltandly softlass Some stale figures transcongune		0.0	No	
5512-117	123674	0	7.	12:29		Dy 11-bown Siltart Clg. Trace organic material (nats)		0.0	2	Nails au wood at lac
5512.109	123267 12326745 123263450	0	.2	12:40		Dry 14-bown Silkand clay Some Conavel M-c the opening		0.0	\es	Sourp MS MRD MSD
TP12-15C	089871	8.0	6 ,83	15:46		H. Gra Sit & Clg. Some Grovel little organic mat		0.0	No	
5512-119	123670	0	7.	13:09		11-15my Stlf #Cly 8000 Gravel m-c trans organs		0.0	No	
TRISA	123675	3.0	3.5	15:39		1-grag to boun Grewel (stule)		0,0	No	
Rinse Blank										
(MRD Sauple	to collated		7	b0)-71 SS		123267)		,		

HAENGASENECALFORMSASSSAMPRD.XLS

PAGE #1 of 2

.SAI	MPLIN	G REC	<u> </u>	<u> </u>	DWAI	EK		
PARSONS			CLIENT	<u> </u>		WELL#:	TWI	2 · [
PROJECT (STUDY_ID):	50	EAD 12	RI		DATE:	5/2	-	
SWMU # (AREA):	30,76	m 8/3/8	34	_	LABORAT	ORY: C	<u>hemfek</u>	
SCREENED INTERVAL (TOC):		3:55 to	855 1	_	MONITORI	NG DATE:		
STATE WELL PERMIT #:	* Not 5	Langura	cleusto	ų .	INSTRUM	ENT	. DE	TECTOR
WEATHER:	S	720		_	PID	/ FID	φ	•
FREE PRODUCT (NO/ YES) Thickness		N						****
BOREHOLE DIAMETER FACTORS								<u> </u>
DIAMETER (INCHES):	1 1.:	()	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6	554 1.02	1.47 2.0	00 2.61	3.30 5.8	7
PURGE METHOD:	Blodder	Poop	•	OC CONCENTRA		1.14	Ø	
STATIC DEPTH TO WATER (TOC):		\$ 6.50	STANDING WA	TER VOLUME I	N WELL (gallons)		1.0	
WELL DEPTH (TOC):	13.	25	THREE WELL	VOLUMES (gallo	ns):	3.4		
FEET OF WATER IN WELL:	7.		ONE:		TWO:	THRE	Е;	
Measure	indicator para	PUF meters after ea	RGING DA		more than 3 re			
	14:26	15:26	15:35	15:44	15:53	16:02	(6:11	16:20
Time: Depth to Water (ft)	7.60	8.72	8.72	8.72	8.72	8.72	8.72	8.72
Depth to bottom				•			0 12	
opening of							·	
	10.5	10.5	10.5	10.5	10.5	10.5	<i>V</i> -S	10.5
Purge Device (TOC)	80 m/	1.	10.1	/Anal	60-01		60 nd	1 1
Flow Rate (ml/min.)	ON	60 ml	60 m	60ml	(GU MAN)	60ml	0 1M	60m/
Volume of Water	C1			1.			A =	
Removed (gals)	Scoul	3700ml	4200 ml	4700	5200	5700ml	6200 m	6700ml
pН	~ 5	7.18	722	7.21	7.20	7.19	7.16	7.15
Specific Conductivity (umhos)	8 3	1.25	1.21	1,20	LIB	1.19	1.13	1.12
Dissolve Oxygen (DO)	¥.E	9.38	5.89	5.37	4.77	4.47	3.80	3.40
Temperature (deg. C)	27	19.00	19.97	20.1	20.35	2040	19.84	19.73
ORP (mV)	\$ 8	138	120	114	108	106	102	102
		78	56.5	52.5	489	50	51	5/
Turbidity (NTU)	EDOTH TO H	1			' ' ' -		01	<u> </u>
<u></u>	CPIH IOV	VATER ME	ASUKEM	ENIS AFI	EK PUKGI	NG		<u> </u>
	1	Depth to	Water (ft)	Pre-Purge / "Sta	atic" Wate	,		 %
Date	Time		Purge"	-	umn (ft)		olumn (ft)	RECOVERY
Notes:	<u>.l.</u>	<u> </u>		1		<u> </u>		1
* Purging should not ex	ceed 5 volur	nes						
(1) Determine water column in the			e" and "static"	conditions)				
by subtracting the measured wa								

Purse began at 14:26 it look I hoor to establish a flow rate of 60 ml/num with a stobilized water level of 8.72 feet.

PAGE #2 of 2

SAI	MPLIN	G REC	ORD - (GROUN	IDWA T	ER		
PARSONS			CLIENT	:		WELL#	: Tw 17	1-1
PROJECT (STUDY_ID):	5€	AD I	2 RI		DATE:	8/:	26/04	
SWMU # (AREA):	Bu	riding 8	13/814	<u> </u>	LABORAT		Chemtek	<u> </u>
SCREENED INTERVAL (TOC):	73	·55 - 8	55 #		MONITOR			
STATE WELL PERMIT #:	# Not :	Sarand	elevotion	•	INSTRUM	ŒNT	D	ETECTOR
WEATHER:	•	Sun	720	•	PID	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		NA		<u> </u>				
BOREHOLE DIAMETER FACTORS	<u></u>				<u> </u>			
DIAMETER (INCHES):	1 1.5	/ · }	3 4	5	6 7	8	9 10	
GALLONS/FOOT:		0.163	0.367 0.6			00 2.61		87
PURGE METHOD:	Bladde		_WELL HEAD V	OC CONCENTRA	ATION (ppm):		<u>B</u>	
STATIC DEPTH TO WATER (TOC):		50	_STANDING WA	TER VOLUME I	N WELL (gallons): 19	.14	· · · · · · · · · · · · · · · · · · ·
WELL DEPTH (TOC):		.55	THREE WELL V	VOLUMES (gallon	ns):		149	
FEET OF WATER IN WELL:	7.0		ONE:		TWO:	THR	EE:	
Manaura	indicator nom		RGING DA			d*\		
TIME BEGIN PURGING: Measure	indicator para	imeters after ea	ich voiunie (ai	1/2 Volume m	TIME END	-		
Time:	16:29	16:38	16:47	16:56				
Depth to Water (ft)	8.72	8.72	8.72	8.72	co			T
Depth to bottom		1		1	2			
opening of					克			
	10.5	10.5	10.5	10.5	10			
Purge Device (TOC) Flow Rate (ml/min.)	60 m/	60ml	60ml	60ml	<u>\$</u>	 		
	77.77				8		1	
Volume of Water	7,200 ml	7700ml	Broom	87comi	/			
Removed (gals) pH	7.16	7.17	717	7.17	®			
	1.10	1.09	1.08	1.07	-		-	
Specific Conductivity (umhos)		1:			R			-
Dissolve Oxygen (DO)	3.4	2.65	2.50	2.43	Ö	<u> </u>	-	1
Temperature (deg. C)	19.21	19.87	19.85	19.80		<u> </u>		
ORP (mV)	99	97	96	97			<u> </u>	<u> </u>
Turbidity (NTU)	52.3	59	56	54				
DF	ртн то ч	VATER ME	EASUREMI	ENTS AFTI	ER PURGI	ŅĠ		
		Denth to	Water (ft)					%
Date	Time		Purge"	Pre-Purge / "State Colum	tic" Wate mn (ft)		Column (ft)	RECOVERY
		†		 		 		-
Notes:	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>
* Purging should not exc	ood 5 volun	nac						
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured wat		-	/ Clarie Co	oonanc,				
(2) Divide the "after purge" water co		-	olumn and mu	Itiply by 100				

Do has not Stabilized continue to collect field parameters Although Sample time is 16:20

	Well Number: TW12-1		SAMPLING INFOR	MATION		
1	Well Number: 1 W 2 P	Jung	en e			• •
57	SAMPLE PARAMETER	TIME	CONTAINER	COLOR		TURBIDITY SAMPLE AFTER (CHECK ONE)
	VOC NYC CLPAS	P 16:20	40 ml VOA	None		12275
l	1	1	2-40 M 1/0A	1		122284
٨ ا			2-40 ml VOA		•	120100
4			2.40 ml vot			120001
			2.40 mi VOA		3 4	122275
t	Y	7	2.40 ml VOA		•	122275/
ŀ			राष्ट्रद		: ;	
ŀ						
t						
t						
E	QA\QC:					<u> -</u> -
Ç	QA/QC DUPLICATE SAMPLE COLL Duplicate Sample Name:	ECTED: (YES	or NO [2228	84		٠.
Ç	QA\QC RINSATE SAMPLE NAME:	. ^	120 100	9	• •	
N	MATRIX SPIKE SAMPLE COLLECT	ED: YES Or	NO [122]	fsus 15msD		
1						
Ī	INVESTIGATION DERIVED WAS	TE (IDW):	3 5, 2	•	•	
Ī	INVESTIGATION DERIVED WAS	FE (IDW): . Date	·	•		· · · · · · · · · · · · · · · · · · ·
Ī		Date Date ansfered to Drum	5/27 3/9/			· · · · · · · · · · · · · · · · · · ·
I		Date	5/27 3901			· · · · · · · · · · · · · · · · · · ·

2 of 2

Page 1of

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER		
PARSONS			CLIENT	: SEAD	- 12	WELL#	TW12	- 1
PROJECT (STUDY_ID):	SEA	D-12-	RT.		DATE:	5/2	6/04	
SWMU # (AREA):	56	10 12		_	LABORAT	ORY:	Chempek	
SCREENED INTERVAL (TOC):	11.75	- 6.75		_	MONITORI	NG DATE:	5/26	3
STATE WELL PERMIT #:				_	INSTRUM	ENT	DE'	TECTOR
WEATHER:	Sun	700		_	PID	/ FID	Ø	•
FREE PRODUCT (NO/ YES) Thickness		NA			.]			,
BOREHOLE DIAMETER FACTORS			·		. ģ			
DIAMETER (INCHES):	1 1.5	/ \	3 4	-	6 7	8	9 10	
GALLONS/FOOT:		92 0.163		554 1.02	1.47 2.0	00 2.61	3.30 5.87	<u> </u>
PURGE METHOD:	Bladder		•	OC CONCENTR			777	
STATIC DEPTH TO WATER (TOC):	7.0		STANDING W	ATER VOLUME	IN WELL (gallons			-
WELL DEPTH (TOC):	11.7			VOLUMES (galk		2.2		·
FEET OF WATER IN WELL:	4.70		ONE: • 5	<u>C</u>	TWO:	THR	ee: 2.3	<u> </u>
Meacure	indicator para				f more than 3 re	equired*)		
TIME BEGIN PURGING: 486		5/2 7	ich volume (a	. 172 Volumo I	TIME END I		14:14	
Time:	14:00	865 D	10:29	1058	10:47	10:58	(1:05	
Depth to Water (ft)	7.8	7.80	7.82	7:82	782	7.82	782	
Depth to bottom								
opening of		A W	201	011	aff	all	984	
• •	98F	19A	984.	94	THE	9H	715	
Purge Device (TOC)	100 mille	BS w/onin	65 min	65 N	65 ml	65mi	65Wl .	
Flow Rate (ml/min.)	(COMING	O MORE	D-M-4	0.3 80	0. 101	0000	10000	
Volume of Water		Of an a		2/00	lina	4700	6150	5
Removed (gals)	(800 m)	2500 el	30.50	3600	4150		5250	2
рН	_	6.8(6.80	6.78	6.74	6.70	6.69	<u> </u>
Specific Conductivity (umhos)		5.12	5.22	5.25	5.26	5.26	5.25	2
Dissolve Oxygen (DO)	_	3.14	3.02	2.92	2.76	1.56	2.55	4
	-	18.2	18.2	18.2	18:14	18.24	18-24	7
Temperature (deg. C)	-	1 4	20	+	24	26	18	6
ORP (mV)	-	14		122	-			<u>G</u>
Turbidity (NTU)	<u>. </u>	29.3	24.5	12.8	23	<u> 1</u> 2	13	
D1	EPTH TO V	VATER ME	ASUREM	ENTS AFT	ER PURGI	NG		
		l <u>.</u> .	40.					
Date	Time		Water (ft) Purge"	Pre-Purge / "St	tatic" Water lumn (ft)		Column (ft)	% RECOVER
2410					(/			
:			_	 	•	 		
	<u> </u>	.]				<u> L. </u>		<u> </u>
Notes:	15 1						,	
* Purging should not ex			" and "atatic"	conditions)				
(1) Determine water column in the by subtracting the measured wa			and static	conditions)				
(2) Divide the "after purge" water c			olumn and mu	ltiply by 100	1 - 11	%)	oc	
to determine the percent of reco	_				(5940)	n = 376	D M(

14:14 Stop pumpy at 100 mylmin well has drawn bown to 83ft. 69:30 Mg 27 2004 Puzal 1500 ml yesterdy # 122278

Well Number TW12-4		SAMPLING INFORMA	ATION	
Well Number: 1012 SAMPLING DEVICE:				
DAYK LINU DEVICE.		•		
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYC CLP		240 ml van	Clean	1222.78
		· .		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
				-
QA\QC:		<u></u>		
QA/QC DUPLICATE SAMPLE COLLECT	ED: YES	or NO		
Duplicate Sample Name:			•	
QA\QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):			
	f		· · · · · · · · · · · · · · · · · · ·	
Volume Transf	Date:	24h		· ·
	rum Number:			· · · · · · · · · · · · · · · · · · ·
	•			
COMMENTS:				
	20	d a L Illia	1) 11	Liber
Sample 1222	to c	collected at 11.10	this weu	ω~>
drawn down	/	11 6/1	I had IGM	M Rouwed
Offmur soon	compe	ry on 0/0	1500	¥
the well Tw				
tody before	Sample	122278 W	as collected.	
U	4	=	•	

SAI	MPLIN	G REC	ORD - (GROUN	DWAT			
PARSONS			CLIENT:			WELL#:	TW 12	· 5
PROJECT (STUDY_ID):	SEAL	D IZ KII	<u> </u>		DATE:		H04	
SWMU # (AREA):	Build	top 813/8	8/4		LABORAT		Chemlek	
SCREENED INTERVAL (TOC):					MONITORI	NG DATE:		
STATE WELL PERMIT #:					INSTRUM	ENT	DE	TECTOR
WEATHER:	5	un 70°			PID	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		MA						
BOREHOLE DIAMETER FACTORS								,
DIAMETER (INCHES):	1 1.5	/ 1	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.87	<u> </u>
PURGE METHOD:	Blodd	w	WELL HEAD VO	OC CONCENTRA	TION (ppm):		2	
STATIC DEPTH TO WATER (TOC):	8.10		STANDING WA	TER VOLUME IN	I WELL (gallons)		101	
WELL DEPTH (TOC):	13-65	-:	THREE WELL V	OLUMES (gallon	s):	2.7		
FEET OF WATER IN WELL:	5.55	TOTAL	ONE:	- 1	TWO:	THRE	3E:	
Massura	*		RGING DA'			iad*\		
TIME BEGIN PURGING: /4:36	indicator para	meters after ea	ich volume (ai	1/2 volume ii i	more than 3 re TIME END P			
Time:	15:36	15:40	15:50	1530-	1600	1625	16.10	
Depth to Water (ft)	8.70	8.70	8.70	8.75	8-75	8-75	3.75	
Depth to bottom					 			
-	,, , ,	11	l , _					
opening of	11.65	11.65	11.65	11.65	1165	11.65	11.65	
Purge Device (TOC)		<u> </u>	<u> </u>	11.65 40mc	11/0-		`	-
Flow Rate (ml/min.)	40ml	40ml	Asml	40ml	York	lon/	40MI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Volume of Water						_		July 1
Removed (gals)	2500	2900	3400 N					K.
рН	6.71	6.53	6.72	6.76	674	670	6.71	0
Specific Conductivity (umhos)	1.14	2.19	2.19	2,2/	2,24	2.26	2.25	2
Dissolve Oxygen (DO)	10.06	6.95	6.60	6.80	663	6-60	6.59	R
Temperature (deg. C)	19.59	20 AO	20.72	20,78	20,40	20.40	20.40	2
ORP (mV)	14	26	14	16	24	26	26	8
Turbidity (NTU)	32.5	133	44.4	23	69.4	76.4	98.5	÷
		VATER ME	EASUREMI	ENTS AFTI	ER PURGI	NG		
			-					
_			Water (ft)	Pre-Purge / "Stat				%
Date	Time	"After	Purge"	Colur	nn (ft)	Water C	column (ft)	RECOVERY
								ļ
Notes:								
 * Purging should not exc 								
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured wat (2) Divide the "after purge" water co			olumn and mul	ltinly by 100				

* Turbidity is not 985 the weter is not worky properly

Well Number: TW 12-5 SAMPLING DEVICE: Bladden Po	· · · · · · · · · · · · · · · · · · ·	SAMPLING INFORM	ATION	•
SAMPLING DEVICE: Bladden Pe	mp.			•
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC MYSCLPAS	16:00	2-40 ml VOA	No color	1222 79
				·.
				·
Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (Volume Transf	IDW):	2901]
COMMENTS: Sample # 122 TW12-5	1279	collected at		soupe fer
• • • • • • • • • • • • • • • • • • • •			en e	

Pege 1 of 2

MPLIN	G REC	<u> </u>	<u> </u>	<u>DWA1</u>	ER		
		CLIENT:			WELL#:	TW 12	-6
SEAL	D·12			DATE:			
Budda	n 83/81	4	_	LABORAT			
(6.0	5 - 5.0!	5	- -	MONITORI	NG DATE:		
	•		-	INSTRUM	ENT	DE	TECTOR
Ş	w 70°		_	PID	/ FID		
χ	A		-				
	/ 1	3 4	5	6 7	8	9 10	
		0.367 0.6	54 1.02	1.47 2.0			7
		WELL HEAD V	OC CONCENTRA	ATION (ppm):			
		STANDING WA	TER VOLUME I	N WELL (gallons)	• • • • •	28	
		THREE WELL V	OLUMES (gallor	ns):		12-	
5.(ONE:	T	TWO:	THRE	E: 2.73	
indicator nam				more than 2 re	anirad*)		
mulcator para	meters after ea	ion voiume (at	1/2 volume II		_		
1230	1100	1115	1/20		T	1175	1140
1		5 dt				7,00	9
7. 73	0.24	. 204					<u> </u>
							!
ر ما			_ /			l	
13,00	13,05	13.05	13.00	<u> </u>	シ ー		
75	20	20	20 -	- در	-S		5
_	647	6 35	6.38	6.42	6.44	6.45	6.45
						 	2.55
					1	l _	7.90
<u> </u>				1			5 /
	(r.71						21,59
`	12		23	23			18
-	19.8	24.0	26.7	34./	40,0	48,3	57.7
PTH TO W	ATER ME	CASUREMI	ENTS AFTI	ER PURGI	NG		
							%
Time	"After	Purge"	Colu	mn (ft)	Water C	olumn (ft)	RECOVERY
		·····	<u> </u>				
	•		•				
eed 5 volun	ies				•		•
orehole(for bo	th "after purge	" and "static"	conditions)				
	SSAI Builds (6.00 SSAI 0.041 0.00 SSAI 0.00 0.0	SEAD - 17 But lay 83 (84 16.05 - 5.05 Sout 70° N/4 1	CLIENT: S&AD -	CLIENT: SCAD	CLIENT: DATE: LABORAT	DATE: 5/2 Bull BS BS BS BS BS BS BS	CLIENT: WELL #: TW X SGAD Policy Bafely Baf

Note:

** Low and Flow rate to 59 secr sefill to I see dirchare time

to lose up low fech orse rate of wall. Did this at is 1050

gwamps ** OTW drapply slowly at marriana of low rate able to he

produced by bladdo Mans. A final DTW will be

to determine the percent of recovery for the well.

beck of

SAI	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT:			WELL#:	TW12	6
PROJECT (STUDY_ID):	564	D 12-	- RI		DATE:	1	127/04	
SWMU # (AREA):	Build	day 813	1814	_	LABORAT			
SCREENED INTERVAL (TOC):				_	MONITORI	NG DATE:		
STATE WELL PERMIT #:			····	_	INSTRUM	ENT		TECTOR
WEATHER:	$\overline{}$	Jun 70	, o	_	PID /	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		<u> </u>					<u> </u>	·
BOREHOLE DIAMETER FACTORS				_	_	2		
DIAMETER (INCHES): GALLONS/FOOT:	1 1.5 0.041 0.09	4 1	3 4 0.367 0.69	5 i54 1.02	6 7 1.47 2.0	8 10 2.61	9 10 3.30 5.87	,
PURGE METHOD:	Bladder			OC CONCENTRA	- .		Ø	
STATIC DEPTH TO WATER (TOC):	7-45		_	TER VOLUME IN		:	9143	
WELL DEPTH (TOC):	13.05		-	OLUMES (gallon				
FEET OF WATER IN WELL:			ONE:		TWO:	THRE	E: 2-73	5
		PUI	RGING DAT	ΓA:				
	indicator parai	meters after ea	ich volume (at			-		
TIME BEGIN PURGING:	11.50	11ºEE	1 6 2 4 4 4 1		TIME END P	T	12:25	1-11-7
Time:	11:50	11:55	12:00	12:05	12:10	12:20	12.25	12:30
Depth to Water (ft)	!	ļ	!					
Depth to bottom		1	1					
opening of	اعد در		!					
Purge Device (TOC)	13.05	13.05	13,05	13.05	3.05	1308	13.05	1305
Flow Rate (ml/min.)	20ml	20 ml/m	20ml/m	20 ml/m	20 ml/m	20 mym	10 adjun	20 mllon
Volume of Water					* ********	7-07		· · · · · ·
Removed (gals)		1	!					
pH	6.64	6.46	6.46	6.47	6.48	649	648	6.48
	249	2.47	2.48	245	2.43	2.40	2.36	2.35
Specific Conductivity (umhos)		7.24	7.71	7.19	711	7.01	6.93	6.87
Dissolve Oxygen (DO)	7.39	1100	1101		19 07	12.4	10 70	4
Temperature (deg. C)	21.72	21.83	21.91	-	22.07			2280
ORP (mV)	16	15	14	14	12	11	10	8
Turbidity (NTU)	80.1	94.7	110	126	138	183	228	297
DF	EPTH TO W	ATER ME	ASUREMF	ENTS AFTE	ER PURGIN	√G		
	!			1				
Date	Time		Water (ft) Purge"	Pre-Purge / "Stati Colum	tic" Water mn (ft)		olumn (ft)	% RECOVERY
								-
· · · · · · · · · · · · · · · · · · ·	 	 						
Notes:	<u> </u>	<u> </u>		<u></u>		<u> </u>		
* Purging should not exc	eed 5 volun	neg						
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured water				,				
(2) Divide the "after purge" water co	olumn by the "s	static" water co	olumn and mul	tiply by 100				

Sample Collected @ 12:30 # 122280 4000 ml purged

Well Number: Two 2 6 SAMPLE PARAMETER TIME CONTAINER COLOR TURBITY SAMPLE TAFTER CHECK ONE) WENDER OF THE CHECK ONE) L 22280 CANCE: QANCE: QANCE: QANCE OUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QALC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW):			SAMPLING INFOR	MATION	₹
QAQC: QAQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QAQC RINSATE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Volume Transfered to Drun: TURBIDITY SAMPLE T. AFTER (CHECK ONE) AND COLUMN No. (OLUA 122280 1 22880 1 22880 1		$\frac{\partial \theta_{k}}{\partial t} = - i \lambda$.	* · · · · · · · · · · · · · · · · · · ·	· A
ATTER (CHECK ONE) COLOR AFTER (CHECK ONE) 1 22280 2 40ml WA No COLOA 1 22280 2 40ml WA 1 22280 2 40ml WA No COLOA 1 22280 2 40ml WA	AMPLING DEVICE:				TUDDIDITY CANDI E TAKE
QAVQC: QAVQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum: 1.5/27 1.544	SAMPLE PARAMETER				
QAVQC: QAVQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum: 1.51.7	LOC NYS CLPAP	(CLA)	2-40ml voa	No colua	122280
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4				•	No.
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4				* * * * * * * * * * * * * * * * * * * *	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4	 ···		•		
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 6/2-7 Volume Transfered to Drum: 1-344					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum:	And the second s			•	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 6/2-7 Volume Transfered to Drum: 1-3-4	•			in in the second of the second	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4	1000		4. 4		
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
Date: 5/2-7 Volume Transfered to Drum: 1-314	Ouplicate Sample Name: ANQC RINSATE SAMPLE NAME:	- 1			***. ***
Volume Transfered to Drum: 1-850	NVESTIGATION DERIVED WASTE	(IDW):		×	
		Date:			
		sfered to Drum: Drum Number:			
Diametramot	•	Diam Number.			
COMMENTS:	OMMENTS:			W. Barrier	
Final DTW was 9.00 often Sampley.	[earl DTW way	9.00	offer Samp	ltry.	

SAI	MPLIN	G REC	ORD -	GROUN	IDWAT	ER		
PARSONS			CLIENT	:		WELL#	: TWI	۲.7
PROJECT (STUDY_ID):	SEAL) 12 RI			DATE:			
SWMU # (AREA):	Rudi		1814	_	LABORAT	ORY:		
SCREENED INTERVAL (TOC):		7		_	MONITOR	ING DATE:		<u> </u>
STATE WELL PERMIT #:				_	INSTRUM		DE	TECTOR
WEATHER:	76	100 POM				/ FID	0	
FREE PRODUCT (NO/ YES) Thickness		NA		_		, , ,		
BOREHOLE DIAMETER FACTORS					11			
DIAMETER (INCHES):	1 1	$\sqrt{2}$	3	4 5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.	.654 1.02	1.47 2.	00 2.61	3.30 5.8	7
PURGE METHOD:	Redde	- Fund	WELL HEAD	OC CONCENTRA	ATION (ppm):		Ø	
STATIC DEPTH TO WATER (TOC):	7.3		- STANDING W	ATER VOLUME I	N WELL (gallons): •	774	
WELL DEPTH (TOC):	12.10		- THREE WELL	VOLUMES (gallos	ns):			
FEET OF WATER IN WELL:	4.7	5	ONE:		TWO:	THR	EE: 2.32	-
		PUI	RGING DA	TA:				
Measure	indicator para	meters after ea	ich volume (a	t 1/2 volume if	more than 3 re	equired*)		
TIME BEGIN PURGING:			1		TIME END	PURGING:		
Time:	14:60	14:16						
Depth to Water (ft)	8-35	8.35						
Depth to bottom			1 . ^					
opening of	las	100 0	β,					
Purge Device (TOC)		10.5	\$					·
Flow Rate (ml/min.)	Admi	Aoul	8					
Volume of Water					Ì			
Removed (gals)	6500	7000	6,		1			
pН	6.81	6.81	6					
Specific Conductivity (umhos)	2.6A	2.63	8					
Dissolve Oxygen (DO)	1.89	1.89	0					
Temperature (deg. C)	16.54	16.59	2					
ORP (mV)	59	57	1					
Turbidity (NTU)	30	36.7.	0					
	РТН ТО V	VATER ME	ASUREM	ENTS AFT	ER PURGI	NG		
_	m.		Water (ft)	Pre-Purge / "Sta				%
Date	Time	"After	Purge"	Colu	ımn (ft)	Water C	Column (ft)	RECOVERY
						ļ		
Notes:					:			
* Purging should not exc								
(1) Determine water column in the b		_	" and "static"	conditions)				
by subtracting the measured wat		-	dume e- 4	delale by 100				
(2) Divide the "after purge" water co to determine the percent of reco	-		and mi	ашрау бу 100				

Sample Collected @ 14:10 Sample # 1222Bl

SAI	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT:	:		WELL#	TWIZ	1-7
PROJECT (STUDY_ID):	<u>S6</u>	AD 12			DATE:		5127/04	
SWMU # (AREA):	Boile		/314	•	LABORAT	ORY:	ches	wek
SCREENED INTERVAL (TOC):	10'1	100 5.10		•	MONITORI	NG DATE:		
STATE WELL PERMIT #:				•	INSTRUM	ENT	DF	ETECTOR
WEATHER:	50	ou 70	, -	•	PID	/ FID	More	140
FREE PRODUCT (NO/ YES) Thickness		N4		-			R	
BOREHOLE DIAMETER FACTORS		~						
DIAMETER (INCHES):	1 1.5	- 1)	3 -4	•	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6		1.47 2.0	00 2.61	3.30 5.8	1
PURGE METHOD:	Bladh	_	_	OC CONCENTRA			77	
STATIC DEPTH TO WATER (TOC):	7.3		STANDING WA	TER VOLUME I	N WELL (gallons)	· • f	49	
WELL DEPTH (TOC):	4.75		_	VOLUMES (gallor			EE: 2-32	
FEET OF WATER IN WELL:	<u>. 7.60</u>		ONE:	TDA.	TWO:	THRE	iE:	
Measure TIME BEGIN PURGING:	indicator para		RGING DA' ach volume (at		more than 3 re		_	
Time:	12:3/	/2:44	12:57	13:10	13:13	13:26	13:39	13:52
Depth to Water (ft)	8.20	8.30	8.35	8.35	8.55	8.35	8-35	8.35
Depth to bottom					**			
opening of	10.6	10.6	10.6	10.6	IAI	10.6	10.6	10.6
Purge Device (TOC)			1	10 -	10.6		(5.0	
Flow Rate (ml/min.)	4000/	Aoni	46m1	Aom l	Aom1	40mi	40ml	Aoud
Volume of Water					1	•		
Removed (gals)	1500 m	300ml	3500m/	4600	4560	5000	5500	6660
рН	6-61	648	6-61	6.69	6.71	6.65	6.69	6.78
Specific Conductivity (umhos)	2.5%	2.66	2.59	2.58	2.62	2.67	2.68	2.67
Dissolve Oxygen (DO)	5.07	4.11	3.27	2.89	2.63	2.38	2.01	1.90
Temperature (deg. C)	20.62	20.79	10.78	20.65	19.30	17.30	16.62	16.63
ORP (mV)	65	73	67	64	64	69	66	60
Turbidity (NTU)	0	0	0	7.5	8.9	9.1	23.5	26.3
DF	PTH TO W	ATER MF	ASUREMI	ENTS AFTI	ER PURGIN	NG		
Date	Time		Water (ft) r Purge"	Pre-Purge / "Stat Colui	utic" Water umn (ft)		olumn (ft)	% RECOVERY
	<u> </u>		•				·	
Notes:	<u> </u>	<u> </u>	 	<u> </u>		<u> </u>	<u></u>	<u>l</u>
* Purging should not exc (1) Determine water column in the b	orehole(for bo	th "after purge	e" and "static" (conditions)				

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

Well Number 7		SAMPLING INFORM	MATION	
SAMPLING DEVICE:		·		
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLP ASP	1440	2-40ml VOA	None	122281
	* .			
				·
*	• •	,		
	• .			
	•			
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (YES or	NO .	·	
; :	Date:	5/27		
Volume Transf	ered to Drum:	2 34		
D	rum Number:			
COLORONA				
comments: Sande Collect	1 1 0	1/11/11/11	71201	
Sample Collect	ed C	14:10 # (2281	
			•	

PARSONS PROJECT (STUDY_ID): SWMU # (AREA): SCREENED INTERVAL (TOC):	SE Builde	40 i.	CLIENT: 2 KI 184		DATE:		TW 12	-8	
SWMU # (AREA): SCREENED INTERVAL (TOC):	SE Buildi	40 l 4 30/	2 RI 184		DATE:				
SWMU # (AREA): SCREENED INTERVAL (TOC):	Builde	4 33/	184	. ,	*		·		
SCREENED INTERVAL (TOC):	<u> </u>			Bulling 33/84 LABORATORY:					
	`				MONITORI		hembeun		
STATE WELL PERMIT #:	٠				INSTRUM		DE	TECTOR	
WEATHER:	•	Sun	700		PID /	/ FID	Ø		
FREE PRODUCT (NO/ YES) Thickne		NA							
BOREHOLE DIAMETER FACTORS									
DIAMETER (INCHES):	1 1.5		3 4	5	6 7	8	9 10		
GALLONS/FOOT:	0.041 0.09		0.367 0.65	54 1.02	1.47 2.00	0 2.61	3.30 5.87		
PURGE METHOD:	Bladde	r pomp	WELL HEAD VO	OC CONCENTRA	TION (ppm):	<u> </u>	5 		
STATIC DEPTH TO WATER (TOC):	4.7	·	STANDING WA	TER VOLUME IN	N WELL (gallons):	<u>D</u>	・グナー		
WELL DEPTH (TOC):	12.4	.	THREE WELL V	OLUMES (gallon:	s):		3.Lgallons)	
FEET OF WATER IN WELL:	52		ONE:		TWO:	THRE	Е:		
Manage	! 4! ston mano		RGING DA		45am 2 ma	!! * \			
Measu TIME BEGIN PURGING:	ıre indicator paraı	meters after eac	ch volume (at		more than 3 red TIME END P	-			
Time:	13.25	13:31	13:45		14:05	14:10	14:15	14:20	
Depth to Water (ft)	7.35	7.50	7.70	7.85	7.85	7.85	7.85	7.85	
Depth to bottom	1,					, 55			
-			!	'		ļ			
opening of	1240	1240	12.40	12:40	1240	124	12 40	meda	
Purge Device (TOC)							12.46	1270	
Flow Rate (ml/min.)	30 ml/m	30a//m	304/m	30 MI/M	30 Al 10	30 melan	30 m/a	Dala	
Volume of Water				1					
Removed (gals)	!				, , , , ,	, , ,		1.00	
pН				6.69	6.65	6.64	6.6/	6.61	
Specific Conductivity (umhos)				2.63	2.76	2.75	2.74	2.72	
Dissolve Oxygen (DO)				10.31	8.14	7.48	7.15	6.53	
Temperature (deg. C)				20.06	20.60	20.80	20.95	21.56	
ORP (mV)				<i>5</i> 5	54	64	<i>55</i>	56	
Turbidity (NTU)				31.5	20.2	20.5	25.8	268	
	DEPTH TO W	ATER ME	ASUREME		ER PURGIN	1G		T	
		_	Water (ft)	Pre-Purge / "Stati				%	
Date	Time	"After	Purge"	Colur	mn (ft)	Water Co	olumn (ft)	RECOVERY	
		<u> </u>		<u> </u>		<u> </u>			
		l			!				
Notes:									
* Purging should not e	xceed 5 volun	ies							
(1) Determine water column in th		= -	" and "static" (conditions)					
by subtracting the measured v (2) Divide the "after purge" water			.1	(c) -1 1 100					

SAMPLING RECORD - GROUNDWATER										
PARSONS			CLIENT:			WELL#:	TW12	-8		
PROJECT (STUDY_ID):	SEA	0 12	RI		DATE:		127/04			
SWMU # (AREA):	Buildin	4 813/2		•	LABORAT	ORY: (Chenteel	1		
SCREENED INTERVAL (TOC):		-			MONITORI					
STATE WELL PERMIT #:				· !	INSTRUM	ENT	DE	TECTOR		
WEATHER:	5.	n 70°		. 1	PID	/ FID	P			
FREE PRODUCT (NO/ YES) Thickness		NA								
BOREHOLE DIAMETER FACTORS										
DIAMETER (INCHES):	1 1.5	()) 3 4	5	6 7	. 8	9 10	1		
GALLONS/FOOT:	0.041 0.09		0.367 0.65		1.47 2.0	00 2.61	3.30 5.87	<u>'</u>		
PURGE METHOD:	7,000er		-	OC CONCENTRA			<u> </u>			
STATIC DEPTH TO WATER (TOC):	11/2		-		N WELL (gallons):	<u>_</u>) "			
WELL DEPTH (TOC):	5.2			OLUMES (gallon	•	<u>2.5</u>				
FEET OF WATER IN WELL:			ONE: C	<u> </u>	TWO:	THRE	BE: 2.59			
Measure	indicator paran				more than 3 re	auired*)				
TIME BEGIN PURGING:					TIME END P	URGING:				
Time:	H:25	14:30	14:35	14:40	14:45	14:50	14:55	15:00		
Depth to Water (ft)	7.85	7.85	7.85	7.85	7-85	7.85	785	7.85		
Depth to bottom	[]						1			
opening of	48 61			'			1 1	1 1		
Purge Device (TOC)	12.40	12.40	12.40	1240	12.40	12.40	1240	12.40		
Flow Rate (ml/min.)	304/4	30m/m	30vel/un	30100	30mm/m	30 ml/m	3044	30MI/M		
Volume of Water	_	-			[!		Ī !			
Removed (gals)	-	- 1	-	-	-	- !		-		
рН	6.62	6.62	6-62	6.61	6.62	6.63	6.63	6.64		
Specific Conductivity (umhos)	2.67	2.69	2.61	1.58	2.54	2.49	1-46	242		
Dissolve Oxygen (DO)	6.49	6.08	583	5.58	5.37	5.16	5.03	5.00		
Temperature (deg. C)	21.7	21.78	21.73	21-88	12.32	22.53	22.67	72.51		
ORP (mV)	56	58	59	61	61	62	62	63		
Turbidity (NTU)	31	31.8	36-2	382	40.1	40.4	48.5	55.7		
	PTH TO W				<u> </u>	1G				
<u>.</u> .	_	_	Water (ft)	Pre-Purge / "Stati				%		
Date	Time	"Atter	Purge"	Colun	mn (ft)	Water Co	olumn (ft)	RECOVERY		
				<u> </u>		<u> </u>		1		
				<u> </u>		<u> </u>				
Notes:										
* Purging should not exce			- "							
(1) Determine water column in the be by subtracting the measured water			' and "static" c	onditions)						

to determine the percent of recovery for the well.

Sample Collected et 15:15

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

(22282

2 gallons purged

SA	MPLIN	G REC	ORD - (GROUN	DWAT	ER				
PARSONS			CLIENT	CLIENT: WELL#: TW 12-8						
PROJECT (STUDY_ID):	SEAR) 12	RI		DATE:		: 27			
SWMU # (AREA):	R.V.	u 80/8		-	LABORAT		rentem			
SCREENED INTERVAL (TOC):		y 00/6	<i></i>	•	MONITORI					
				-	INSTRUM		DE	TECTOR		
STATE WELL PERMIT #:	<	on 70°	,	-			Ø	TECTOR		
WEATHER:				-	PID	FID				
FREE PRODUCT (NO/ YES) Thickness	<u> </u>	N4			<u> </u>	· · ·				
BOREHOLE DIAMETER FACTORS				•			9 10			
DIAMETER (INCHES): GALLONS/FOOT:	I 1.5	()	3 4 0.367 0.6	5 54 1.02	6 7 1.47 2.0	8 0 2.61	3.30 5.87	,		
	RADA	Punp				2.01	3.50 5.0.			
PURGE METHOD:	<u>Dooder</u>	- Charles	WELL HEAD V				. 42			
STATIC DEPTH TO WATER (TOC):	13.4	<u> </u>	-		N WELL (gallons):		41	· ·		
WELL DEPTH (TOC):	17.4		THREE WELL Y	OLUMES (gallo	ns):		34	,		
FEET OF WATER IN WELL:	5.2	-	ONE:	77	TWO:	THRE	E: 2-54			
			RGING DA							
Measur TIME BEGIN PURGING:	e indicator para	meters after ea	ach volume (at	1/2 volume if	more than 3 real					
	15.00	1000	10.10		TIME END F	OKGING.	Ι	ı		
Time:	15:05	15:10	15:15			<u>. </u>				
Depth to Water (ft)	7.85	7.85								
Depth to bottom			00				•	ļ		
opening of	1111		(1)							
Purge Device (TOC)	12-40	12.40	\$				ļ			
Flow Rate (ml/min.)	30 ml/m	30ml/m	-5							
Volume of Water		_								
Removed (gals)	,		0							
pН	6.66	6.66								
Specific Conductivity (umhos)	2.39	2.35	che							
Dissolve Oxygen (DO)	4.87	4.75	B							
Temperature (deg. C)	12.52	22.60	25							
ORP (mV)	63	63	25.5							
Turbidity (NTU)	67.8	68								
D	ЕРТН ТО V	VATER ME	EASUREMI	ENTS AFT	ER PURGIN	\G				
						,				
_	j		Water (ft)	Pre-Purge / "St				%		
Date	Time	"After	Purge"	Coli	uma (ft)	Water C	olumn (ft)	RECOVERY		
Notes:	1	·						-		
* Purging should not ex	ceed 5 volun	nes								
(1) Determine water column in the			e" and "static"	conditions)						
by subtracting the measured wa		_								
(2) Divide the "after purge" water of			olumn and mu	ltiply by 100						
to determine the percent of reco	overy for the we	:11.								

Sample Collected at 15:15 sample # 122282

71112-8		SAMPLING INFORM	IATION	
Well Number: TW 12-8 SAMPLING DEVICE: Bladlen	Pump			
SAMPLING DEVICE: Olavour	Porte		· · · · · · · · · · · · · · · · · · ·	
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLP ASP	15:15	2-40 ml vo4	No Color	122282
	•	:		
	· · ·	 		
			· · · · · · · · · · · · · · · · · · ·	
	<u> </u>			
	}			
QA/QC DUPLICATE SAMPLE COLLEC Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED	: YES or	or NO		·
INVESTIGATION DERIVED WASTE	(IDW):			
•	Date	W, 6-1		
Volume Trans	fered to Drum: Drum Number:			
				· ·
COMMENTS:				
		H		
Sample Cellec	60 a	15:15 1222	BL	
Can	a c	•		

SA	MPLI	\G	REC	ORD	- GF	ROUN	NDW A	ATE	R			
PAR S ONS				CLII	ENT:			V	VELL#:	Th	1-17	9
PROJECT (STUDY_ID):	SE	PD	12-	RI			DATE:			127/0		<u> </u>
SWMU # (AREA):	Builde	NI.	8/3/	1814			LABO	RATOR		Ch	eme	bh
SCREENED INTERVAL (TOC):		0					MONIT	ORING	DATE:	٤	5/47	•
STATE WELL PERMIT #:							INSTE	RUMEN	T		DET	ECTOR
WEATHER:	50	m	700	>				PID / F	(D		Ø	
FREE PRODUCT (NO/ YES) Thickness		M	-									
BOREHOLE DIAMETER FACTORS			\wedge									
DIAMETER (INCHES):		1.5	$\binom{2}{2}$	3	4	5	6	7	8	9	10	
GALLONS/FOOT:		0.092	0.163	0.367	0.654	1.02	1.47	2.00	2.61	3.30	5.87	
PURGE METHOD:	Bailer			_			ATION (ppm	_				
STATIC DEPTH TO WATER (TOC):	12.			_			N WELL (ga	llons):				
WELL DEPTH (TOC):		<u>0</u> 5		_	ELL VOLU	JMES (gallo	•					
FEET OF WATER IN WELL:		<u></u>	ÞΙΠ	ONE: RGING	DATA	•	TWO	:	THRE	SE:		
Measure	indicator pa	ramet					more than	3 requi	red*)			
TIME BEGIN PURGING:					`		TIME EI	•	•			
Time:	15:35											
Depth to Water (ft)												
Depth to bottom		1										
opening of	[(')]							ŀ			ŀ	
Purge Device (TOC)	<u>\alpha</u>											
Flow Rate (ml/min.)	- M											
Volume of Water	8											
Removed (gals)												
pН	8,											
Specific Conductivity (umhos)	a											
Dissolve Oxygen (DO)	8											
Temperature (deg. C)	4											
ORP (mV)	228	ļ										
Turbidity (NTU)	33			<u> </u>								
DE	ртн то	WA]	TER MI	EASUR	EMEN7	rs afti	ER PUR	GING				
												Ì
Date	Time			Water (fi r Purge"	t) Pre	-Purge / "Sta	tic" V mn (ft)	Vater	Water Co	olumn (f	e/	% RECOVERY
Date	Title	+	Alte	i i uige	_	Colu	illii (It)		water Ci	otanni (i	(1)	RECOVERT
		╁┈										
Notes:	<u> </u>			···- ·								
* Purging should not exc	eed 5 volu	mes										
(1) Determine water column in the b				e" and "sta	atic" cond	litions)						
by subtracting the measured wat	er level from	the w	vell point.									
(2) Divide the "after purge" water co	-		c" water c	olumn an	d multiply	y by 100						
to determine the percent of recov	ery for the w	ell.										

* See back page for samply Details

·		CAMPI DIC DICODA	AADTONI	
Well Number: TW 12-9		SAMPLING INFORM	MATION	
77			•	
SAMPLING DEVICE: Sailer	T			- 1
SAMPLE PARAMETER	TO CO	COLUM ANION	201.05	TURBIDITY SAMPLE TAKEN
	TIME	CONTAINER	COLOR	AFTER (CHECK ONE)
VOC MYS CLPASP	15:35	2-40ml VOA	No Color	122283
			· · · · · · · · · · · · · · · · · · ·	
,• .	.			
•	1			
		İ		_
			. , = 7.5.111	
		,		
QA\QC:	TD. VEC	- NO		
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name:	ED: YES	or NO		
QA\QC RINSATE SAMPLE NAME:				
MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):		,	
	Date:			\neg
Volume Transf				┥
	rum Number:	-		┥
•	-	•		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
COMMENTS:		,		1 0/
There is not	enough	water in	this well to	low the
Dample. A gro	b sa	mple will	be collected with	h a dedikated
1 1 1 1	-	' ' ' ' '		<u> </u>
bailer with NO	Pury 1	ny of He	well or sandpace	k. (neels
			•	
Sample 1222	.83	collected at	15:35 / 5/2	17
condict the				1

5/26 ms, uso, RB, TB, SA, DU Tw- 12-1 Did not inskull 12-2 DRY 12-3 12.4 5-27 5.27 125 12-6 5-27 12.7 5.27 5.27 12.8 Grob

SA	SAMPLING RECORD - GROUNDWATER											
PARSONS			CLIENT:		***************************************	WELL#:	: TW12-	3				
PROJECT (STUDY_ID):	554	D 12	RF		DATE:	JUNC	11 2004					
SWMU # (AREA):	Builde	m Di	3/8/4	-	LABORAT							
SCREENED INTERVAL (TOC):		-		-	MONITORI	ING DATE:						
STATE WELL PERMIT #:				-	INSTRUM		DF	ETECTOR				
WEATHER:	Sui	n 70°	,	-	PID	/ FID						
FREE PRODUCT (NO/ YES) Thickness				<u> </u>								
BOREHOLE DIAMETER FACTORS		^^										
DIAMETER (INCHES):	1 1.5	()	3 4	=	6 7	8	9 10					
GALLONS/FOOT:		0.163	0.367 0.6		1.47 2.0	00 2.61	3.30 5.87	1				
PURGE METHOD:	Bladder	<u>. را د می د می د ا</u>	-	OC CONCENTRA								
STATIC DEPTH TO WATER (TOC):	12.75	525	-		IN WELL (gallons)	r1	·0S					
WELL DEPTH (TOC):	6.50		-	VOLUMES (gallor	·		- 15					
FEET OF WATER IN WELL:	<u> </u>		ONE: RGING DA'	TA.	TWO:	THRE	EE: 3.15					
Measure	indicator para	run imeters after ea			more than 3 re	equired*)						
TIME BEGIN PURGING:					TIME END P	PURGING:						
Not real trace - 4 422 time 9	20145	21105	21120	21135	21.46	21:55	22:00	22:05				
Depth to Water (ft)		8.175	8.250		813	8.3	3.325	8.325				
Depth to bottom												
opening of	""			_			_	'				
Purge Device (TOC)	w			_		_	-					
Flow Rate (ml/min.)	25 m/m											
Volume of Water	0.15	0.20	0.25	0.30	0.33	6.4						
Removed (gals)		0.20	0.05	0.,0		''						
рН	7.21	7.20	7.20	7.19	7.16	7.15	7.15	7.14				
Specific Conductivity (umhos)	1.45	1.42	1.37	1.37	1.39	1.38	1.38	1.37				
Dissolve Oxygen (DO)	1.71	0.86	0.70	0.70	0.73	0.91	0.86	1.04				
Temperature (deg. C)	19.13	17.70	19.23	19.68	20.76	22.93	23.46	24.27				
ORP (mV)	92	72	72	59	61	90	97	105				
Turbidity (NTU)	48.2	50.2	34.6	31.2	27.0	17.7	18.5					
DF	PTH TO W	VATER ME	ASUREMF	ENTS AFTI	ER PURGII	^						
D .	7	1 ~	Water (ft)	Pre-Purge / "Stat				%				
Date	Time	"Atter	Purge"	Colur	ımn (ft)	Water Co	olumn (ft)	RECOVERY				
	 !							<u> </u>				
						<u> </u>						
Notes:												
* Purging should not exc												
(1) Determine water column in the b			" and "static" o	conditions)								
by subtracting the measured water (2) Divide the "after purge" water co		=	olumn and mul	tiply by 100								

Sample # 122277 collected @ 11:30

SA	MPLIN	G REC	ORD -	GROUI	NDWAT	ER		
PARSONS			CLIENT				TW12.	3
PROJECT (STUDY_ID):	SEA	D 12 i	≥I		DATE:	July		
SWMU # (AREA):	Bulde	m 8/3/	814	-	LABORAT		11 ~2	' T
SCREENED INTERVAL (TOC):		U J	<u> </u>	-	MONITORI		T	
STATE WELL PERMIT #:		·		-	INSTRUM		TEL CALC D	
WEATHER:	Sur	700		-	PID / FID			ETECTOR
FREE PRODUCT (NO/ YES) Thickness			······································	-	1110	, LID	· · · · · · · · · · · · · · · · · · ·	
BOREHOLE DIAMETER FACTORS							1	
DIAMETER (INCHES):	l 1.	5 (2)	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0	0.162	0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.8	7
PURGE METHOD:			WELL HEAD V	OC CONCENTR	ATION (ppm):			
STATIC DEPTH TO WATER (TOC):), <u>25</u>	STANDING WA	TER VOLUME	IN WELL (gallons):		1.05	
WELL DEPTH (TOC):	12	<u>-75</u>	THREE WELL V	OLUMES (gallo	ens);			
FEET OF WATER IN WELL:		· 50	ONE:		TWO:	THRE	E: 3.1	5
Miss			RGING DA					
Measure TIME BEGIN PURGING:	indicator para	meters after ea	ach volume (at	1/2 volume if	more than 3 red			
Time:	22:12	27:18	22:23	<u> </u>	TIME END P	URGING: Z	37.54	
Depth to Water (ft)	8.325	8.350	3.350		 			ļ
Depth to bottom			<u> </u>					
opening of	10.01				1			
Purge Device (TOC)	10 tt				-		_	
Flow Rate (ml/min.)	25mlm							
Volume of Water			0.5	Tutal Parge	0.5 gals			
Removed (gals)			0,3	Pulge				
рН	7.14	7.14	7.13					
Specific Conductivity (umhos)	1.39	1.39	1.39					
Dissolve Oxygen (DO)	1.33	1.35	1.38					
Temperature (deg. C)	24.69	25.30	25.62		·	·		
ORP (mV)	112	114	115					
Turbidity (NTU)		18.3						
DE	РТН ТО W	ATER ME	ASUREME	NTS AFT	ER PURGIN	I G		
Date	Time	•	Water (ft) Purge"	Pre-Purge / "Sta Colu	tic" Water mn (ft)	Water Co	lumn (ft)	% RECOVERY
							Admir (117)	RECOVERT
			:					
Purging should not exce (1) Determine water column in the both by subtracting the measured water column in the both by subtracting the purge" water column to determine the percent of recovery.	orehole(for bot r level from th umn by the "si	h "after purge' e well point, tatic" water co						

Well Number: TW 12-3		SAMPLING INFORMA	TION	
SAMPLING DEVICE: LOW FOW	,			
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN
VOC NYS CLPASP	11:30	2-40ml VOA Hel	COLON	AFTER (CHECK ONE)
				- '0
	 		<u> </u>	
	-			
QAVQC: QAVQC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: NVFSTICATION DERIVED WASTER	YES or	or NO		
NVESTIGATION DERIVED WASTE (IDW):			
Volume Transf		The 4		
-	,			
the Water leve Purge perond. The lowest whome of 2.75 inches	The s	Sample vale QED pump	of 15 ml/s	minute was the diaudoun

SAMPLING RECORD - GROUNDWATER									
PARSONS			CLIENT:			WELL#:	TW12	22	
PROJECT (STUDY_ID):	SEAG) 12	RI		DATE:	Ĵme	10, 200	4	
SWMU # (AREA):	Builde	813/8		-	LABORAT		hen tech		
SCREENED INTERVAL (TOC):)	<u> </u>	•	MONITORI				
STATE WELL PERMIT #:			~ 	-	INSTRUMENT DE			TECTOR	
WEATHER:	Rus	1 60°		-		/ FID	0	_	
FREE PRODUCT (NO/ YES) Thickness		<u></u>		-					
BOREHOLE DIAMETER FACTORS					<u> </u>		'		
DIAMETER (INCHES):	1 1.:	$5 \left(2\right)$) 3 4	5	6 7	8	9 10		
GALLONS/FOOT:	0.041 0.0	0.163	0.367 0.6	554 1.02	1.47 2.0	0 2.61	3.30 5.87	7	
PURGE METHOD:			WELL HEAD VO	OC CONCENTRA	ATION (ppm):		. 4		
STATIC DEPTH TO WATER (TOC):	5.6		STANDING WA	TER VOLUME I	N WELL (gallons)	3.	15		
WELL DEPTH (TOC):	25.2	<u> </u>	THREE WELL V	OLUMES (gallon	15):		<i>a</i> F		
FEET OF WATER IN WELL:	19.5		ONE:	=	TWO:	THRE	E: 9.5		
Mascura	indicator nam	PUN	RGING DA'	TA:					
TIME BEGIN PURGING: 13. Massure indicator parameters after each volume (at 1/2 volume if more than 3 required*) 15! 16 TIME END PURGING:									
Time:	14:40	14:497		15:26	15:36	15:46	15:56	16:06	
Depth to Water (ft)		7.65	7.625	7.59	7.59	7.63	7.78	7.96	
Depth to bottom									
opening of	4 4 61								
Purge Device (TOC)	30th								
Flow Rate (ml/min.)	40ml/m	80 m/m	50 ~1/m	400/	35~1/m	50 m/m	sofil/m	ap ny	
	1. soft as:		.	_	 				
Volume of Water	.75	0.85	1.0	1.25	1.40	1.75	2.0	2.45	
Removed (gals)	_ `		<u></u> -					ļ	
pН	6.47	6.69	6.67	6.63	6.66	6.67	4.66	6.65	
Specific Conductivity (umhos)	2.07	1:05	1.04	1.03	1.10	1.00	1.00	0.99	
Dissolve Oxygen (DO)	2.10	1.76	1.95	1.55	1.44	1.39	1.36	1.30	
Temperature (deg. C)	4.57	13.26	13.88	13.96	13.97	14.00	13.92	13.66	
ORP (mV)	46	44	44	45	44	43	42	40	
Turbidity (NTU)	85.9	71.2	36.9	23.6	21.3	18.0	18.4	16.2	
		VATER ME					<u> </u>		
			Water (ft)	Pre-Purge / "Stat	tic" Water			. %	
Date	Time	"After	Purge"	-	mn (ft)	Water Co	olumn (ft)	RECOVERY	
		<u> </u>							
,									
Notes:									

* Purging should not exceed 5 volumes

- (1) Determine water column in the borehole(for both "after purge" and "static" conditions) by subtracting the measured water level from the well point.
- (2) Divide the "after purge" water column by the "static" water column and multiply by 100 to determine the percent of recovery for the well.

Sample 122285 @ 16:50

Page 20f3

SA	MPLIN	G REC	ORD - (GROUN	IDWAT	ER		
PARSONS			CLIENT:	:		WELL #:	TWIZ	-22
PROJECT (STUDY_ID):	Sco	yd 12 i	RI		DATE:	June	e 10 1	2004
SWMU # (AREA):	30:10	lan 813	1814	-	LABORAT		•	
SCREENED INTERVAL (TOC):	······································			-	MONITORI			
STATE WELL PERMIT #:				•	INSTRUM		D!	ETECTOR
WEATHER:	Rat	1 60°		-		/ FID	\\	,
FREE PRODUCT (NO/ YES) Thickness				- 1		7		
BOREHOLE DIAMETER FACTORS		$\overline{}$		 	<u> </u>			
DIAMETER (INCHES):	l 1.5	$5 \left(\begin{array}{c} 2 \end{array} \right)$	3 4	. 5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0	092 0.162	0.367 0.6	554 1.02	1.47 2.0	00 2.61	3.30 5.8	87
PURGE METHOD:			WELL HEAD V	OC CONCENTRA	ATION (ppm):			
STATIC DEPTH TO WATER (TOC):		67	STANDING WA	TER VOLUME IN	N WELL (gallons)):	3.18	
WELL DEPTH (TOC):	25.	.20	THREE WELL V	VOLUMES (gallon	ns):			
FEET OF WATER IN WELL:	19.	53	ONE:		TWO:	THRE	E: 9:5	5
			RGING DA					
· ·	indicator para	meters after ea	ich volume (at	1/2 volume if		=		
TIME BEGIN PURGING:	 	т:	T*** ***	T C	TIME END P	URGING:		· ·
Time:	16:16	-	16138	16:46				
Depth to Water (ft)	7.90	7.90	7.90	7.80				
Depth to bottom			!		Total			
opening of		!	!		Total Purge	5 gal		
Purge Device (TOC)	!	!		1				
Flow Rate (ml/min.)	45 m/m	30 m/m	20 ~1/m	35~1/2				
Volume of Water			2.60					
Removed (gals)	6,1	()	[7,00				
	1.65	6.63	011	6.65				
pH	19 98	0.97	200					
Specific Conductivity (umhos)				0.97		<u> </u>		
Dissolve Oxygen (DO)	1.31	1,34		1.29				<u> </u>
Temperature (deg. C)		14,23	15.05	15.21				
ORP (mV)	40	42	43	41				
Turbidity (NTU)	13.4	14.5	13.4	16.0				
DE	РТН ТО W	ATER ME	ASUREME	ENTS AFTE	ER PURGIN	1 <u>G</u>		
								T
Parta	Time		Water (ft)	Pre-Purge / "Stati			- (0)	%
June 10 2004	Time		Purge"		mn (ft)	Water Co		RECOVERY
50 re 10 mg	16:46	7-80	3	5.67		14	<i>.5</i> 3	
Notes:						<u> </u>		
* Purging should not exce								
(1) Determine water column in the be			' and "static" c	onditions)				
by subtracting the measured water		•						
(2) Divide the "after purge" water co.	lumn by the "s	tatic" water co	lumn and mult	tiply by 100				

Poge 30f3

16.15.22		SAMPLING INFORM	MATION		
Well Number: Tw12-22 SAMPLING DEVICE: law flow					
AMPLING DEVICE: OW HOW	I	1		·····	
SAMPLE PARAMETER	TIME	CONTAINER	COLOR		TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLPASP	16:50	2-40ml/04 Hel			13.4
VUL IV 13 UP/13	10.00	2º quadrut 119	<u> </u>	 	1,7,1
	ŀ				
			<u> </u>		
	-				
•					
QA\QC: QA\QC DUPLICATE SAMPLE COLLECT	TED: YES	or NO			
Ouplicate Sample Name: QA\QC RINSATE SAMPLE NAME:					
MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO			
					
NVESTIGATION DERIVED WASTE (IDW):				
		JUNE 10			
Volume Transi					4
ı	Drum Number	Leon	I		_i
COMMENTS:					
Sanda 125	205	M 1/:50	T 4 1/1	4.10.1	25 /
Sample 127	485	(a) 16.50	7000 10	2004	3-19alos Pug

SAI	MPLIN	G REC	ORD - (GROUN	IDWAT	ER		
PARSONS			CLIENT	•	=	WELL#:	TW 12.	23
PROJECT (STUDY_ID):	Buildi.	u 813/8	314		DATE:	June	10 200	
SWMU # (AREA):	Sood	12 RE		-	LABORAT		hented	
SCREENED INTERVAL (TOC):				-	MONITORI	-		
STATE WELL PERMIT #:				_	INSTRUM		DE	TECTOR
WEATHER:	Rain	600		-	PID	/ FID		
FREE PRODUCT (NO/ YES) Thickness		*********		-				
BOREHOLE DIAMETER FACTORS		~						
DIAMETER (INCHES):	1 1.	$5 \left(\begin{array}{c} 2 \\ 2 \end{array}\right)$	3 4	5	6 7	8	9 10	
GALLONS/FOOT:		092 0168	0.367 0.6	554 1.02	1.47 2.0	0 2.61	3.30 5.8	7
PURGE METHOD:	low Flo		WELL HEAD V	OC CONCENTRA	ATION (ppm):		Ø	
STATIC DEPTH TO WATER (TOC):	8:9		_STANDING WA	TER VOLUME I	N WELL (gallons)	<u> X</u>	.64	
WELL DEPTH (TOC):	25.2		THREE WELL	VOLUMES (gallor	1\$):		-0.01	
FEET OF WATER IN WELL:	16.2		ONE:		TWO:	THRE	E: 7.94	
Managera	indicator nare		RGING DA		more than 2 ra	anirad*)		
TIME BEGIN PURGING:	mulcator para	imeters after ea	acii volume (at	1/2 volume n	more than 3 re TIME END P	-		
Time:	15:40	15:45	15:50	15:55	16:00	/6:05	16:10	16:15
Depth to Water (ft)	9.45	9.75	9.75	9.75	9.75	9.75	9.75	9.75
Depth to bottom		• • • • • • • • • • • • • • • • • • •						
opening of	20f1	20ft	0.		4.01			
Purge Device (TOC)	Yeh.	WFF	20ft	20ft	soft	30ft	120 Ft	20lh
Flow Rate (ml/min.)	Anlla.	40ml/m	40m/m	40ml/m	40ml/m	40m//m	40mllm	40m/4
Volume of Water						15.		
Removed (gals)						2.5gal		
pH	6.95	6.95	6.95	6.96	6.95	6.95	6.95	6.95
Specific Conductivity (umhos)	756	754	.752	750	.750	.752	.750	.748
Dissolve Oxygen (DO)	2.56	2.56	2.49	2.42	2.41	2.40	2.33	2.30
Temperature (deg. C)	14-90	14.95	15.00	15.30	15.53	15:38	15.68	15.98
ORP (mV)	60	60	61	61	6(61	62	62
Turbidity (NTU)	8.01	7.44	6.4	5.90	5.64	5.53	5.45	5.5/
		VATER ME	EASUREMI	ENTS AFTI	ER PURGIN	NG	<u> </u>	<u> </u>
Date	Time	1	Water (ft) Purge"	Pre-Purge / "Sta Colu	tic" Water mn (ft)		olumn (ft)	% RECOVERY
	 		<u> </u>				·	
Notes:	L	<u> </u>	·····	1				L
* Purging should not exc (1) Determine water column in the b by subtracting the measured wat (2) Divide the "after purge" water co	orehole(for bo er level from t	oth "after purge he well point.	e" and "static"	conditions)	e pursed	5.25	Spallons	
to determine the percent of recov	ery for the we	ell.	<u>.</u> .					

Sample = 12286 16:15 12286 M5 16:15 12286 M50 16:15 12297 Doplicate 17:00

							**	
SAI	MPLIN	G REC	<u>ORD - (</u>	GROUN	<u>IDWAT</u>	ER_		
PARSONS			CLIENT	•		WELL#:	TW-	13
PROJECT (STUDY_ID):	Build	ing 813/	84		DATE:	Jun	e 10 20	04
SWMU # (AREA):	SEA	10 12	RI	-	LABORAT	ORY:	Chembers	t
SCREENED INTERVAL (TOC):				-	MONITORI	NG DATE:		
STATE WELL PERMIT #:				- 	INSTRUM	ENT	DE	TECTOR
WEATHER:	Kara	600		-	PID	/ FID		
FREE PRODUCT (NO/ YES) Thickness				<u> </u>				
BOREHOLE DIAMETER FACTORS	·	40					 	
DIAMETER (INCHES):	1 1.5	()	3 4		6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0			654 1.02	1.47 2.0	0 2.61	3.30 5.8	7
PURGE METHOD:	Blodde		-	OC CONCENTRA		7	<u> </u>	
STATIC DEPTH TO WATER (TOC):	8.95		_	ATER VOLUME II		<u>^.</u>	64	
WELL DEPTH (TOC):	16.25		_	VOLUMES (gallor			E: 7.94	
FEET OF WATER IN WELL:	10-7		ONE: RGING DA	т.	TWO:	THRE	E: 7.77	
. <u>M</u> easure	indicator para			1/2 volume if	more than 3 re	anired*)		
TIME BEGIN PURGING: (1:58	•				TIME END P	•		
Time:	H:30	14:40	14:55	15:10	15:15	15:25	15:30	15:35
Depth to Water (ft)	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75
Depth to bottom								
opening of	1001		١					
• •	Joth	20ft	20Ct	20ft	20ft	20ft		
Purge Device (TOC)	An all	10-1/4	Aimlim	<u> </u>			AANII.	A Audi .
Flow Rate (ml/min.)	40 mllm	40ml/m	At MILIA	Asm/m	Lowin	40m/m	40ml/m	40m/m
Volume of Water	Igollon			1				
Removed (gals)	·							
pН	689	6-89	6.89	6.90	6.91	6.91	692	6.95
Specific Conductivity (umhos)	.761	.755	.754	755	.755	-756	754	.755
Dissolve Oxygen (DO)	3-07	3.40	2.99	2.83	2.81	2.79	1.68	1.63
Temperature (deg. C)	4.99	15.40	15.80	16.33	16.32	15.48	15-42	14.92
ORP (mV)	59	60	61	61	61	60	60	59
Turbidity (NTU)	12.9	13.3	13.0	9.14	8.63	8.42	8.46	8.45
			'	ENTS AFTI		√G	<u> </u>	
							-	
			Water (ft)	Pre-Purge / "Stat	tic" Water			%
Date	Time		r Purge"		mn (ft)		olumn (ft)	RECOVERY
June 10 2004	16:15	9.7	<u>5</u>	8.	75	(6-)	45	
Notes:		· · · · · · · · · · · · · · · · · · ·		<u></u>		<u></u>		1.

- * Purging should not exceed 5 volumes
- (1) Determine water column in the borehole(for both "after purge" and "static" conditions) by subtracting the measured water level from the well point.
- (2) Divide the "after purge" water column by the "static" water column and multiply by 100 to determine the percent of recovery for the well.

well Number: TW12-23 SAMPLING DEVICE: low Flow					
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE T AFTER (CHECK ONE)	raken
VOC NYSCLPASD	1645	2-40ml VOA H		5.81	
-	·				
					*
	·				
		•			·
` <u>, </u>		,			
	1	1			
QA/QC DUPLICATE SAMPLE COLLEC		or NO			
COMMENTS:	(IDW): Date sfered to Drum Number	2297 0 101 NO Dune 10 3:23 Deun 1	Saupe		•
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED INVESTIGATION DERIVED WASTE Volume Tran COMMENTS: Sample = 122 122 122 122 122	Date of the stered to Drum Number	2297 5 101 NO 3.23 Decrit	Sample Mahrix Spike MS Duplitake Duplitake Rinse Blenk	JUR 10	•

SA	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS		· .	CLIENT		 	<u> </u>	TWZ.	14
PROJECT (STUDY_ID):	SEAL	7 12 5	7	<u> </u>	DATE:	June		
SWMU # (AREA):	B.:1	44" 813	lou	-				
SCREENED INTERVAL (TOC):		and Did	1017	-	LABORAT		em tech	
STATE WELL PERMIT #:		·.		-	MONITORI			
WEATHER:	Sui	1 740		-	INSTRUM		DE	TECTOR
FREE PRODUCT (NO/ YES) Thickness		77	· · · · · · · · · · · · · · · · · · ·	-	PID	/ FID	<u> </u>	
BOREHOLE DIAMETER FACTORS	· <u> </u>				<u> </u>		<u> </u>	
DIAMETER (INCHES):	l 1,	\sim	3 4				•	
GALLONS/FOOT:		992 (163)	0.367 0.6	•	6 7 1.47 2.0	8	9 10	
PURGE METHOD:	Bladde	<u> </u>		OC CONCENTRA		2.61	3.30 5.8	1
STATIC DEPTH TO WATER (TOC):	8.7				N WELL (gallons)			
WELL DEPTH (TOC):	130					6		
FEET OF WATER IN WELL:	4.7		ONE:	/OLUMES (gailor			A 00	
			RGING DA	ΤΔ.	TWO:	THRE	E: 208	<u> </u>
Measure	indicator para				more than 3 re	ouired*)		
TIME BEGIN PURGING:					TIME END P			
Time:	15:28	15:33	15:38	15:43	15:48	15:52	15:58	16'09
Depth to Water (ft)	9.15	9.15	9,2	9.2	9.2	9,2	1,2	9.2
Depth to bottom								
opening-of								
Purge Device (TOC)				ļ		1		
Flow Rate (ml/min.)	25~1/2	25 m/m	25 2/	25 1/2	25 m/	25 AY	2541	25 m/m
Volume of Water	///	7//	/m	//n	103 /m	100	12	c Im
Removed (gals)			0.15			0.25		
	705	701		7 .				
pH Specific Conductivity	7.05	7.06	7.07	7.08	7.08	7.68	7.08	7.08
Specific Conductivity (umhos)	1.26	1.25	1.25	1.25	1.24	1.24	1.23	1.23
Dissolve Oxygen (DO)	4.76	4.16	3.99	3.69	3.53	3.35	3,30	3.30
Temperature (deg. C)	18.71	18.43	18.54	18,19	18.27	18,10	18,10	18,28
ORP (mV)	103	102	104	100	102	102	104	105
Turbidity (NTU)	48.4	45.3	38,3	39.5	35,1	43.1	38,2	33.7
DE	РТН ТО W	ATER ME	ASUREME	NTS AFTE				
				, <u> </u>				
Data			Water (ft)	Pre-Purge / "Stat	ic" Water		•	%
Date	Time	"After	Purge"	Colur	nn (ft)	Water Co	olumn (ft)	RECOVERY
								
Notes:								
* Purging should not exc	eed 5 volum	ies						
(1) Determine water column in the b	orehole(for bot	h "after purge"	and "static" c	onditions)				
by subtracting the measured wat	er level from th	e well point.						
(2) Divide the "after purge" water co	numn by the "s	tatic" water co	lumn and muli	tiply by 100				•

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER			
PARSONS			CLIEN			WELL#	·Τω	117 - 1	14
PROJECT (STUDY_ID):	SEA	D 12	EE		DATE:		. ,		
SWMU # (AREA):	Builde	m 813/	94		LABORAT	FORY ·		······	· · · · · · · · · · · · · · · · · · ·
SCREENED INTERVAL (TOC):			_ <u> </u>			ING DATE:	T		
STATE WELL PERMIT #:					INSTRUM		+	DETI	CTOR
WEATHER:		n 740				/FID	+	DETE	CIOR
FREE PRODUCT (NO/ YES) Thicknes	ss					7110	+	· ·	
BOREHOLE DIAMETER FACTORS				 					
DIAMETER (INCHES): GALLONS/FOOT:	1 1.	()	3	4 5	6 7	8	9	10	
PURGE METHOD:	0.041 0.0	0.163		0.654 1.02		00 2.61	3.30	5.87	
STATIC DEPTH TO WATER (TOC):	8.75			VOC CONCENTRA					
WELL DEPTH (TOC):	13.01	<u> </u>		ATER VOLUME I		i):	.69		
FEET OF WATER IN WELL:	4.26		_	. VOLUMES (gallo	ns):		-		
EDI OF WATER IN WELL:	4.70	Ditt	ONE:	A CD A	TWO:	ТН	REE: X	<u>-08</u>	
Measur	e indicator para		RGING D		more than 2 -			16	Sarpled
TIME BEGIN PURGING:			ien volume (at 1/2 volume n		equired*) PURGING:	618		complete
Time:	16:08	16:13				1	1		
Depth to Water (ft)	9.2	9.2				 	 		
Depth to bottom						<u> </u>	1		
opening of									
Purge Device (TOC)			1				,		
Flow Rate (ml/min.)	25 1/2	25 m/m					1	$\neg \vdash$	
Volume of Water		0.3		Total	OUR	66/8			
Removed (gals)		0,,		Purse	0.42	1700			
рН	7.08	7.08							
Specific Conductivity (umhos)	1.23	1.23					†		
Dissolve Oxygen (DO)	3.30	3,26							
Temperature (deg. C)	18.25	15130							
ORP (mV)	107	108					<u> </u>		
Turbidity (NTU)	34.4	33.5							
DI	EPTH TO W	ATER ME	ASUREM	ENTS AFTI	ER PURGII	NG			
		_							
Date	Time		Water (ft) Purge"	Pre-Purge / "Stat	ic" Water nn (ft)		Column (ft		% ECOVERY
					·	- Value	oranin (it	- ``	ECOVERT
				<u> </u>				_	
Notes:									
* Purging should not exc									
(1) Determine water column in the l	borehole(for bot	h "after purge"	and "static"	conditions)					
by subtracting the measured water co. (2) Divide the "after purge" water co.	ter level from th	e well point.	lume	drinte to too					
to determine the percent of reco	very for the wel	iacie water co l.	rumn and m t	ниргу пу 100					•

Samplet 122287 6 16:19

Tul 12.24		SAMPLING INFORMA	TION	
Well Number: TW 12-24 SAMPLING DEVICE: low Flow	,			
SAMPLING DEVICE: LOW - LOW	<u> </u>			
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYSCLPASP	16:19	2-40 ml Nort Ha	COLOR	" ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
M 14 Days	10.17	A-TOMINON ITCI		33.5nlv
	·			
		,		,
			· · · · · · · · · · · · · · · · · · ·	
QA\QC: QA\QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA\QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED:		or NO		
INVESTIGATION DERIVED WASTE (IDW);			
·				
Volume Transf	Date			
	orum Number			
	• •			
COMMENTS:		•		
	_			
Sanglet 12228	37 Co	leded @ 16:19		
Sample		•		
				İ

Page 10f3

SA	<u>MPLIN</u>	G REC	ORD -	GROUN	NDWAT	ER		
PARSONS			CLIENT			T	·TWIZ	25
PROJECT (STUDY_ID):	SEA	13 12	RI		DATE:		1 2004	~3
SWMU # (AREA):	Buile	da 813/6	314	_	LABORAT		ewlech	
SCREENED INTERVAL (TOC):				-		ING DATE:	Corred	
STATE WELL PERMIT #:				-	INSTRUM		Di	TECTOR
WEATHER:	_Sun	70°		-		/ FID	 	ILCIOR
FREE PRODUCT (NO/ YES) Thickness	i	W		-			†	
BOREHOLE DIAMETER FACTORS		\sim			<u> </u>			
DIAMETER (INCHES): GALLONS/FOOT:	1 1.	1 7	3 4	5	6 7	8	9 10	
PURGE METHOD:	0.041 0.0	092 10163		554 1.02		00 2.61	3.30 5.8	7
STATIC DEPTH TO WATER (TOC):	- 2/	6		OC CONCENTRA				
WELL DEPTH (TOC):	14.8			TER VOLUME I):	0	
FEET OF WATER IN WELL:	6.19		_	VOLUMES (gallor	ns):			7
	6.13		ONE:	TA.	TWO:	THRI	ее: 3 0	
Measure	indicator para				more than 3 m	equired*\		
TIME BEGIN PURGING: 11:43	_				TIME END I			
Time:	12:30	12:35	12:40	12:45	12:50	12:55	13:00	13:05
Depth to Water (ft)	9.48	9.45	9.451	9-454	9.45	945	9.45	9.50
Depth to bottom					•	1.5	7.13	1.00
opening of	in e							
Purge Device (TOC)	12.5	12.5	12.5					
Flow Rate (ml/min.)	30m//m	30m/m	Bom//m	30ml/m	30m/m	30 m/m	30m/m	Zoud
Volume of Water				0 0 1 mg/pm	35.434	3514/101	Jomyay	30m/m
Removed (gals)	· Boul	3242ml	3343	3543	3693	3943	3993	4(4341
рН	7.14	7.13	7.11	7.08	6.98	6.89	6.93	7.08
Specific Conductivity (umhos)	1.15	1.12	1.10	1.13	1.15	1.4	1.18	1.16
Dissolve Oxygen (DO)	6.07	6.08	6.10	7	5.99	5.79	—	
Temperature (deg. C)	15.21	15.23		6.05			5.63	5.68
			15.43	15.23	14.61	14.55	15.55	16.13
ORP (mV)	63	65	66	70	76	87	74	67
Turbidity (NTU)	35.0	33.2	30.6	360	36.4	35.6	31.6	
DE	PTH TO W	ATER ME	ASUREME	NTS AFTE	ER PURGI	VG ⋅		
Date	Time	Depth to "After	Water (ft) Purge"	Pre-Purge / "Stat	ic" Water nn (ft)		olumn (ft)	%
June 11 2004	13:45	9.57		8.65		Water Co	olumn (II)	RECOVERY
				000	<u></u>		<u></u> .	
Notes:						<u> </u>		<u> </u>
* Purging should not exce (1) Determine water column in the b	orehole(for bot	h "after purge"	and "statie" o	conditions)				
by subtracting the measured water (2) Divide the "after purge" water co	r level from th lumn by the "ci	e well point. tatic" water co	lump and mul	tiply by 100				
to determine the percent of recov	ery for the well	<u></u>	iaim and mul	apiy uy 100				

PARSONS	MPLIN				WIAI			<u> </u>	
ROJECT (STUDY_ID):	50	10 17	CLIENT	<u> </u>	γ	WELL#: TW12- 25			
WMU # (AREA):	Bar.	11 12	1014	-	DATE: JUNE 11 1004				
CREENED INTERVAL (TOC):		My DI	1017	-	LABORAT		herten		
TATE WELL PERMIT #:				-	MONITORI		DUNE 11	2004	
/EATHER:	411	1720	 	-	INSTRUM		DE	TECTOR	
REE PRODUCT (NO/ YES) Thickne		NA		-	PID	/ FID	ļ	<u> </u>	
OREHOLE DIAMETER FACTORS					l		<u> </u>		
AMETER (INCHES):	1 1.	5 2	3 4	5	6 7	8	9 10		
ALLONS/FOOT:	0.041 0.	0.163	0.367 0.6	54 1.02	1.47 2.0		3.30 5.8	7	
URGE METHOD:	- Dec	,	_WELL HEAD V	OC CONCENTRA	ATION (ppm):				
ATIC DEPTH TO WATER (TOC):	14 3 65	<u>· · · · · · · · · · · · · · · · · · · </u>	STANDING WA	TER VOLUME I	N WELL (gallons)	:	1.0		
ELL DEPTH (TOC):			THREE WELL \	OLUMES (gailon	is):				
ET OF WATER IN WELL:	6.		ONE:		TWO:	THRE	EE: 31	<u>)</u>	
Measu	re indicator para		RGING DA						
ME BEGIN PURGING: 11:43		·	ien volume (at	1/2 volume ii	TIME END P				
Time:	13:10	13:15	13:20	13:25			13,40	13:45	
Depth to Water (ft)	9.50	9.55	9.55	4.55	9.55	9.57	9.57	13.43	
Depth to bottom			1 5	(03	100	1.01	1.0.		
·					3	1		100	
opening of	125	13 6	100			10 -		Sam	
Purge Device (TOC)		12.5	12.5	12.5	12.5	12.5	12.5	₹	
Flow Rate (ml/min.)	30m//m	30 m//m	30ml/m	30al/m	30m//m	30m/m	30m/m	\$	
Volume of Water	100			4					
Removed (gals)	4293	4443	4593m1	4743 _{wl}	4893	5043	5193	07	
рН	7.10	7.15	7.17	7.17	7:17	דור	<u> </u>	9.7	
Specific Conductivity (umhos)	1.18	1.16	112	1		747	7.16	2	
	5.67	— <u> </u>	F (/	1.15	1.16	1.17	1.16		
Dissolve Oxygen (DO)		5.67	5.66	5.67	5.66	5.66	5.66	\$ 00	
Temperature (deg. C)	16.35	16.14	16.61	7 .	16.37	16.53	16.47	Ø	
ORP (mV)	65	65	66	66	67	67	67		
Turbidity (NTU)	20.1	/4.6	10.7	8.98	8.54	8-34	8.10		
Tatolary (1110)	EPTH TO W	ATER ME	ASUREME		R PURGIN		777		
ger an experience of the contract of the contr									
and the second of the second o									
ger an experience of the contract of the contr			Water (ft)	Pre-Purge / "Stati				%	
D	Time		Water (ft) Purge"	Pre-Purge / "Stati Colum		Water Co	olumn (ft)	% RECOVERY	
D						Water Co	olumn (ft)		

Sample ID # 127288 @ 3'45

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

Total volume Purged 1.9 gallons (includes flow cell Volume 750ml)

Page 3 of 3

SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TA AFTER (CHECK ONE)
a NySapasp	13:45	2-40 ml 1804 Hcl		8.10 nh
•				
		7		
				•
	1			
QC DUPLICATE SAMPLE COLLECTION OF THE COLLECTION	CTED: YES	or NO		
QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: TRIX SPIKE SAMPLE COLLECTED	D: YES or	or NO		
QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: OC RINSATE SAMPLE NAME: FRIX SPIKE SAMPLE COLLECTED ESTIGATION DERIVED WASTE	O: YES or (IDW):	NO		
QC: QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: TRIX SPIKE SAMPLE COLLECTED ESTIGATION DERIVED WASTE	O: YES or (IDW): Date:	NO TOP 4 [950]		
QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: OF RINSATE SAMPLE NAME: FRIX SPIKE SAMPLE COLLECTED ESTIGATION DERIVED WASTE	O: YES or (IDW):	NO TOP 4 [950]		
QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: COLLECTED TRIX SPIKE SAMPLE COLLECTED ESTIGATION DERIVED WASTE Volume Transpired WASTE	O: YES or (IDW): Date: sfered to Drum: Drum Number:	NO TURN M [1950] Delican (
QC DUPLICATE SAMPLE COLLECTICATE SAMPLE COLLECTICATE SAMPLE NAME: CRINSATE SAMPLE NAME: CRIX SPIKE SAMPLE COLLECTED ESTIGATION DERIVED WASTE Volume Tran	O: YES or (IDW): Date: sfered to Drum: Drum Number:	NO TURN M [1950] Delican (
QC DUPLICATE SAMPLE COLLECTION OF THE PROPERTY	D: YES or Date: Secret to Drum: Drum, Number:	NO TURN 11 [1950] Decon (Inches throughout	Puyo

Page 10f3

SA	MPLIN	G REC	ORD - (GROUN	IDWAT	ER		
PARSONS			CLIENT			WELL#:	TW12-	26
PROJECT (STUDY_ID):	SEAL) 12 RI			DATE:	TUA	e 11 200	
SWMU # (AREA):	Buildre	2 813		•	LABORAT		entech	
SCREENED INTERVAL (TOC):		, , ,	·	•	MONITOR			
STATE WELL PERMIT #:				•	INSTRUM		Di	ETECTOR
WEATHER:	50	n 700		-		/ FID		STECTOR
REE PRODUCT (NO/ YES) Thickness							-	
BOREHOLE DIAMETER FACTORS					<u> </u>			
DIAMETER (INCHES):	1 1	5 2	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0	092 0.163	0.367 0.6	54 1.02	1.47 2.0		3.30 5.8	
PURGE METHOD:			WELL HEAD V	OC CONCENTRA	ATION (ppm);	•		
STATIC DEPTH TO WATER (TOC):	8.1	0	_	TER VOLUME I			945	
WELL DEPTH (TOC):	/3-		-	OLUMES (gallor	-			
FEET OF WATER IN WELL:	5.8		ONE:	OLOMES (ganor			E: 2.8	1
			RGING DA	TA·	TWO:	THRE	E:)
TIME BEGIN PURGING: 12:01	indicator para				more than 3 re	equired*)		
	1 1	· · · · · · · · · · · · · · · · · · ·		· · · · ·	TIME END I	URGING:		
Time:	12:55	1:05	1:10	1:15	1:20	1:25	1:30	1:35
Depth to Water (ft)	8.725		3.775	8.79	8.8	8.7	8.8	8.825
Depth to bottom								
opening of								
							ĺ	
Purge Device (TOC)	2001/	25-1/	 	 -		ļ		
Flow Rate (ml/min.)	26 m/m	25 ~ 1/m	ļ		<u> </u>			25 ~/~
Volume of Water	0.15	0.2	1 7 KY	0.25	022	4.3		
Removed (gals)		0.2	0.00	0.20	0.27	0.5		1
рН	4.29	6.28	6.24	6.26	6.18	4.15	6.15	1 .5
	 	1.18	 			 	6.15	4.13
Specific Conductivity (umhos)	1.20		1.18	1.17	1.17	1.17	1.17	1.17
Dissolve Oxygen (DO)	4.11	5.34	5.14	5.15	5.06	4.83	4.82	4.79
Temperature (deg. C)	20.73		21.20	20.98	21.17	21.74	21.80	21.15
ORP (mV)	62	64	73	80	84	87	77	85
Turbidity (NTU)	135	132	110	90.2	89.7	88.2	78.8	80.1
DI	EPTH TO W	ATER ME	CASUREME	NTS AFTI				
				·		,		
•			Water (ft)	Pre-Purge / "Stat	tic" Water			%
Date	Time	"After	Purge"	Colu	mn (ft)		olumn (ft)	RECOVER
							-	†
Notes:	·	L		L		L		<u> </u>
 Purging should not exc 	eed 5 volum	100			•			
(1) Determine water column in the b	orehole(for bo	th "after nurge	" and "static" 4	conditions				
by subtracting the measured wat	er level from th	e well point.		.c.idittotta)				
(2) Divide the "after purge" water co	olumn by the "s	tatic" water co	Olumn and mul	tiply by 100				

Sample 122284@13:53 Towards to 269

Page 20f3

SA	MPLIN	G REC	ORD -	GROU	NDW	ATE	R		7017
PARSONS			CLIEN					· The	12-26
PROJECT (STUDY_ID):	SEA) (2).	RI		DATE		Tune	17	2004
SWMU#(AREA):	Buldun	913/9	14		1	RATOR		6000	7
SCREENED INTERVAL (TOC):	-	- 5,5	•			ORING		new	reen
STATE WELL PERMIT #:						RUMENT		 	
WEATHER:	Su	n 70°				PID / FI		+	DETECTOR
FREE PRODUCT (NO/ YES) Thicknes	is	VA'				TID/FI		 	
BOREHOLE DIAMETER FACTORS					<u> </u>			<u> </u>	
DIAMETER (INCHES):	1 1.:	5 2	3	4 5	6	7	8	9	10
GALLONS/FOOT:	0.041 0.0	0.163	0.367	0.654 1.02	1.47	2.00	2.61	3.30	5.87
PURGE METHOD:			WELL HEAD	VOC CONCENTR	ATION (ppn	1):			
STATIC DEPTH TO WATER (TOC):	840)	STANDING	WATER VOLUME	IN WELL (g	illons):	.9	45	· · · · · · · · · · · · · · · · · · ·
WELL DEPTH (TOC):	1340		THREE WEL	L VOLUMES (galk	ms):				
FEET OF WATER IN WELL:	5 ⋅ 8		ONE:		TWO	:	THRI	EE: 25	}. ·
M			RGING D						
TIME BEGIN PURGING:	e indicator para	meters after ea	ach volume	(at 1/2 volume if					
Time:	1:40	T .	Г	Т	TIME E	ND PURC	GING:		
Depth to Water (ft)	8.825			-	╁			 	
Depth to bottom	10.005	1 CM		<u> </u>	┨──		 -	 	1.7 . 4
opening of		an							
Purge Device (TOC)		\$							
Flow Rate (ml/min.)	25 m/m					_			
Volume of Water		8			 	_			
Removed (gals)		8							•
рН	6.11	2				_		<u> </u>	
Specific Conductivity (umhos)	1.18	©							
Dissolve Oxygen (DO)	4.84	Ü						<u> </u>	
Temperature (deg. C)	21.97	. Cri							
ORP (mV)	93	W							
Turbidity (NTU)	76.9							· ·	
DI	EPTH TO W	ATER ME	ASUREM	IENTS AFT	ER PUR	GING			
Date	Time		Water (ft) Purge"	Pre-Purge / "Sta	itie" \ imn (ft)	Vater	Water C	al (6)	%
Jule 1/ 2004	13:53	8.8		8.10			water C	olumn (ft)	RECOVERY
· · · · · · · · · · · · · · · · · · ·									
Notes:									
* Purging should not exc (1) Determine water column in the by by subtracting the measured wat (2) Divide the "after purge" water co	borehole(for bot ter level from th olumn by the "si	h "after purge e well point. tatic" water co							*
to determine the percent of reco	very for the well	l.							

Sample ID # 122289 @ 13:53 Volume porged is \$75 gallon

		SAMPLING INFO	RMATION	, , ,
Well Number: TW12-26 SAMPLING DEVICE: low Flow				·
SAMPLING DEVICE: LOW Flow	•	,		
				TURBIDITY SAMPLE TAKEN
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	AFTER (CHECK ONE)
VOC NYS CLPASP	13:53	2-40 ml/004		76.9
			-	
			· ·	
QA/QC:	men. Vec	or NO		
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name:	IED: IES	oi NO		
QA\QC RINSATE SAMPLE NAME:				
MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):			
	~ .	A laterth	 	_, [
Volume Transi	Date: fered to Drum:	\$(164		_
	Orum Number:	Person (]
COMMENTS:				
	A -	A 12.05	11 - 4 .1	a solla
12 Sample # 12	12 99	(7)83	the sample rate of	uos 23 milio
the lowest rate	160 (DED DOWN	wdl so.	
the romati me	LAC ,	~ 10.4	V	
		•		-

	AZAI		CORD -		AD WA		41:1:	
PARSONS		<u> </u>	CLIENT	:		WELL#	. MW i	1-37
PROJECT (STUDY_ID):	55		RF.	.	DATE:	June	11 200	4
SWMU # (AREA):	Build	ing BB	1814	_	LABORA	TORY :	Chemfee	4
SCREENED INTERVAL (TOC):		-		_	MONITOR	ING DATE:	JUNE 1	12004
STATE WELL PERMIT #:				_	INSTRUM	MENT	DI	ETECTOR
WEATHER:	<u>Su</u>	1 750			PIC	/ FID		
FREE PRODUCT (NO/ YES) Thicknes	s	<u>N</u> A	<u> </u>					
BOREHOLE DIAMETER FACTORS DIAMETER (INCHES):								
GALLONS/FOOT:		$\begin{array}{cccc} 0.5 & & & 2 \\ 0.092 & & & & & & \\ \end{array}$)	4 5	6 7	8	9 10	
PURGE METHOD:	13624		· · · · · · · · · · · · · · · · · · ·	654 1.02		00 2.61	3.30 5.8	87
TATIC DEPTH TO WATER (TOC):		5	_	OC CONCENTR			170	
/ELL DEPTH (TOC):	13.9				IN WELL (gailons	3):	1-10	
EET OF WATER IN WELL:	6.3			VOLUMES (galk	ons):		3 1 2	
	9.		ONE: RGING DA	Τλ.	TWO:	THE		
Measur	e indicator par		ach volume (at		bla quoli	y were	13# 97	18073
IME BEGIN PURGING: 14:30	<u> </u>		(4)	· · · · · · · · · · · · · · · · · · ·	TIME END		Sample L	lee :
Time:	15:00	15:05	15:10	15:15	15:20	15:25	(5:32	15:35
Depth to Water (ft)	\$.75	7.75	7.82	785	7.85	7.85	-	+
Depth to bottom			 		100	1.02	7.87	787
opening of	11.0	11.0	111			ĺ		
Purge Device (TOC)		1 11.0	11.0	11.0	111.0	11-0	111	110
Flow Rate (ml/min.)	25ml/h	2511	25M/	25M1	100 11	06.1	10	11.0
	- Juni (1)	7554	13111	ויייכא	25MI	25ml	25ml	25ml
Volume of Water	750.1	!						
Removed (gals)	750m		<u>.</u>				<u> </u>	
pН	6	6.90	691	6.81	6.80	6.82	7.00	7.08
Specific Conductivity (umhos)		962	-951 .	.99	.97	.94	. 821	.817
Dissolve Oxygen (DO)	3 6	19345	1849727	2.60	2.41	2.01	2.02	2.02
Temperature (deg. C)	77	19.45	18.99	20-11	20.7	20.5	20.70	19.88
ORP (mV)	7	87	87	88	89	90	84	88
Turbidity (NTU)	3	34.8	33.7	18.3	8.08	8-06	8.25	8.44
DE	ертн то v		EASUREMI		ED DIDCT	NC	1 0 -0	10.11
	T			AFI	IN I UNGI	10		
Dec			Water (ft)	Pre-Purge / "Sta	nic" Water			%
Date	Time	"After	Purge"	4 -	ima (ft)		olumn (ft)	RECOVERY
						L		
otes:			<u> </u>	·				<u> </u>
 Purging should not exc 								
(1) Determine water column in the b	orehole(for bo	th "after purge	" and "static"	conditions)				
by subtracting the measured wat	a= 11 C	harmall makes						

gwsmpr

1 of 2

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER		
PARSONS			CLIENT			WELL#	MWI	17-37
PROJECT (STUDY_ID):	554	D-12			DATE:		11 200	
SWMU # (AREA):	Bisto		1814		LABORAT		heinfach	<u> </u>
SCREENED INTERVAL (TOC):				-	MONITOR		- Confect	
STATE WELL PERMIT #:				-	INSTRUM			
WEATHER:	5	in 740		-		/FID	DI	ETECTOR
FREE PRODUCT (NO/ YES) Thicknes			· · · · · · · · · · · · · · · · · · ·	-	PID	/ FID	 	<u></u>
BOREHOLE DIAMETER FACTORS					<u> </u>		<u></u>	
DIAMETER (INCHES):	1 1.	5 /2	3 4	5	6 7	8	9 10	
GALLONS/FOOT:		0,163	0.367 0.6	654 1.02	1.47 2.0		3.30 5.8	17
PURGE METHOD:	Slade	les .	WELL HEAD V	OC CONCENTR.	ATION (ppm):			
STATIC DEPTH TO WATER (TOC):	7.1	5	_STANDING WA	ATER VOLUME I	N WELL (gallons	: 1.10	0	
WELL DEPTH (TOC):	13.0	10	THREE WELL	VOLUMES (gallo	ns):	,	·	· · · · · · · · · · · · · · · · · · ·
FEET OF WATER IN WELL:			ONE:		TWO:	THRE	E: 3.50	'
		PUI	RGING DA	TA:				
Measure TIME BEGIN PURGING:	e indicator para	imeters after ea	nch volume (at	1/2 volume if			•	* *
Time:	15:40	15:45	15:50	·14 • 15 P	TIME END P		1 // **	1 ***
Depth to Water (ft)	7.87	7.87		/\$:55 7 8 7	16:00	16:05	16:10	16:15
Depth to bottom	1.01	FOT	7.87	101	7.87	7.90	7.90	7.90
		1	İ					
opening of	11.0	((.0	11.0		1	١		
Purge Device (TOC)		11.0	1	1(.0	11.0	11.0	11.0	11.0
Flow Rate (ml/min.)	25m//m	25ml/m	25m//m	25ml/m	26m/m	25m/m	25 Mon	25M/m
Volume of Water							<i> </i>	
Removed (gals)								3900 m
рН	7.18	7:18	7.17	7.17	7.16	7.16	7.16	1 = -
Specific Conductivity (umhos)	.760	768	.759	745	.736	.723	.712	7.16
Dissolve Oxygen (DO)	1.96	1.95	1.94					.713
	20.06		18 84	1.93	1.90	1.90	. 1.90	1.90
Temperature (deg. C)	+	2018	19.41		19-86	19.89	19.43	20.21
ORP (mV)	88	87	87	87	86	<i>8</i> 6	.86	86
Turbidity (NTU)	8.25	8.12	7.93	4.90	4.54	4.23	4.13	4.08
DE	PTH TO W	ATER ME	ASUREME	ENTS AFTI	ER PURGIN	√G	· · · · · · · · · · · · · · · · · · ·	
				·				
Date	Time	-	Water (ft)	Pre-Purge / "Stat		•		%
		"After	rurge	Colui	nn (ft)	Water Co	olumn (ft)	RECOVERY
								
Notes:	L							
	,							
* Purging should not exc	ced 5 volum	ies Luca						
 Determine water column in the b by subtracting the measured water 	er level from th	n latter purge'	and "static" o	conditions)				
(2) Divide the "after purge" water co	dumn by the "s	tatic" water on	lumn and mol	tiply by 100				
to determine the percent of recov	very for the wal		, and mun					

Sample # 122291 collected at 16115 1.1 gallons purged /wL= 7.90ft

Well Number: MW 12-37		SAMPLING INFORM	ATION	
SAMPLING DEVICE: LOW Flow				
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
NYS CLP ASP (VOC)	16:15	2-40ml VOA HU	4.08 tubility	THE TEXT CITE ON CO.
	<u> </u>			
QA\QC:		<u> </u>		
Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (I	•	NO		
DERIVED WASTE (I		The Name of State of		
Volume Transfe		1.13al		_
D	rum Number:	Saul 4-1		
COMMENTS:	<u> </u>			
Sample Collected	((a)	16:15 1222	91	
Jampse Collected			``(

Page 10f3

SA	MPLIN	G REC	ORD -	GROUN	DWAT	ER A	16/2-2	10
PARSONS			CLIENT				MW-4	
PROJECT (STUDY_ID):	SEA1	0 12			DATE:	JVne		
SWMU # (AREA):	Builde	7 813/86	4	-	LABORAT		- 11 /00	
SCREENED INTERVAL (TOC):	8.3			-	MONITORI		<u> </u>	
STATE WELL PERMIT #:				-	INSTRUM	·	DE	TECTOR
WEATHER:	SUI	1 700	·	-		/ FID	DE	TECTOR
FREE PRODUCT (NO/ YES) Thickness		NA		-	110	/ FID		
BOREHOLE DIAMETER FACTORS					1	 	<u>L </u>	
DIAMETER (INCHES):	1 1.5	$\sqrt{2}$	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.8	7
PURGE METHOD:	Bladde		WELL HEAD V	OC CONCENTRA	TION (ppm):			
STATIC DEPTH TO WATER (TOC):	<u>8.65</u>		STANDING WA	TER VOLUME I	N WELL (gallons)		5	
WELL DEPTH (TOC):	13.30		THREE WELL	OLUMES (gallon	ıs);			
FEET OF WATER IN WELL:	4.65		ONE:		TWO:	THRE	E: 2.2	7
Mar			RGING DA					
TIME BEGIN PURGING: 0905	indicator para	meters after ea	ich volume (at	1/2 volume if				
Time:	09:35	09:40	09:45	AG C C	TIME END P			
				0950	0955	10:00	10:05	10:16
Depth to Water (ft)	9.15	9.15	<i>4,15</i>	9.15	9.15	9.15	9.15	9.15
Depth to bottom				:				
opening of	1461		. A.	۸,	۸,			
Purge Device (TOC)	lott	10ff	loff	cost	10ft	10ff	10\$4	10F4
Flow Rate (ml/min.)	40mllm	40ml/m	40ml/m	40 ml/m	Avml/m	40 ML	40 ml/m	40mln
Volume of Water	22				-			
Removed (gals)	•33	•						
рН	6.53	6.50	6.49	6.48	650	6.53	6.63	6.64
Specific Conductivity (umhos)	.749	.775	760	.770	. 767	750	.753	750
Dissolve Oxygen (DO)	2.02	2.08	2.04	2.05	2.01	1.99	200	1.95
Temperature (deg. C)	15.85		15.70	15.66	15.21	14.75	14.80	14.83
ORP (mV)	91	92	92	92	91	92	93	93
Turbidity (NTU)	13-1	12.2	12.5	11.3	10.6	10.3	10.5	
	РТН ТО W	ATER ME					10.3	10.2
	T			ACTO ALTE	KIUKUI	IG.		·
_		Depth to 1	Water (ft)	Pre-Purge / "State	c" Water			%
Date	Time	"After	Purge"	Colum		Water Co	lumn (ft)	RECOVERY
·								
Notes:								
* Purging should not exce	ed 5 volum	es						
(1) Determine water column in the bo	orehole(for bot	h "after purge"	and "static" o	onditions)				
by subtracting the measured water (2) Divide the "after purge" water set	r level from the	e well point.						
(2) Divide the "after purge" water col to determine the percent of recove	umn by the "st ery for the well	auc water col	tumn and mult	uply by 100				

Page 20f3

SA	MPLIN	G RECO	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT:			WELL#:	MWI	2.40
PROJECT (STUDY_ID):	5EA	0 12			DATE:	JUAC 11	2504	
SWMU # (AREA):	Buildu	by 813	1814		LABORAT	ORY:		
SCREENED INTERVAL (TOC):	8.33	to 13.			MONITORI	NG DATE:		
STATE WELL PERMIT #:					INSTRUM	ENT	DE	TECTOR
WEATHER:	Son	70°			PID	/ FID		
FREE PRODUCT (NO/ YES) Thickness		14						
BOREHOLE DIAMETER FACTORS		Λ.						
DIAMETER (INCHES):	1 1.5	1 1	3 4	5	6 7 1.47 2.0	8 0 2.61	9 10 3.30 5.8	•
GALLONS/FOOT:	low flow		0.367 0.6		=	0 2.51	3.30 3.8	<u>, </u>
PURGE METHOD:	B.LC	<u> </u>	-	OC CONCENTRA			75	-
STATIC DEPTH TO WATER (TOC):	13.30	<u>)</u>			N WELL (gallons)		70	
WELL DEPTH (TOC): FEET OF WATER IN WELL:	4.65		ONE:	OLUMES (gallon	TWO:	THRE	E: 2.3	7
TEDIOI WATER IIV WEEE.	-,,-00		RGING DA	TA:	:			
Measure	indicator para				more than 3 re	quired*)		
TIME BEGIN PURGING:	T #			T	TIME END P			·
Time:	10:15	10:20	10:15	[0:30	10:35	10:40	10:45	10:50
Depth to Water (ft)	9.15	9.15	9.15	9.5	9.15	9.15	9.15	9.15
Depth to bottom						٠		
opening of	10ft	101	i é C1	lat L				
Purge Device (TOC)	WAL	10 ff	10ff	oft	10ft	10ft	loft	10ft
Flow Rate (ml/min.)	40mln	40mlu	40mlu	Hoalin	4011/m	40 Mm	40mil m	40mi/m
Volume of Water						12		
Removed (gals)	1.0gal					1.30al	,	
	6.64	6.65	6.67	6.89	6.90	7.00	7.00	7.00
pH				.552	,550	<u> </u>	<u> </u>	
Specific Conductivity (umhos)	.751	. 754	.700		,330	-548	548	.547
Dissolve Oxygen (DO)	1.89	1.84	1.79	1.75	1.73	1.74	1.73	1.74
Temperature (deg. C)	14.93	15.05	14.79	14.80	14.95	15.23	15.15	15.20
ORP (mV)	93	92	81	81	80	79	1名	77
Turbidity (NTU)	11.2	12.7	8.8	8.3	72	2.0	1.7	2.2
	ертн то w			ENTS AFTI	ER PURGII	NG		·
		-			•			
			Water (ft)	Pre-Purge / "Star				%
Date	Time		Purge"	4 .	mn (ft)	Water C	olumn (ft)	RECOVERY
June 11 2009	10:50	9.15	++	8.65	···			
		<u> </u>						
Notes:								
* Purging should not exc			n 10. * *	91.1				
 Determine water column in the lower by subtracting the measured wa 			and "static"	conditions)				
(2) Divide the "after purge" water o		-	olumn and mu	tiply by 100				

Sample # 122290 Collected at 10:50

to determine the percent of recovery for the well.

/ell Number: /// // // //		SAMPLING INFORM	MATION	
AMPLING DEVICE: low Flow	•	•		·
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLPASP		2-40ml/164 Hel		2.2 ntu
				-
			,	
			·	
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED INVESTIGATION DERIVED WASTE	D: YES or C (IDW):	NO		
Volume Tran	nsfered to Drum Drum Number			
	,			_
COMMENTS:		* *	.:	**
	_	•	@ 10:50 2.2	

Appendix C

Test Pit Logs

				r	ГE	ST PIT R	EPO	RT	
		PAR!	50NS			CLIENT: 1	USACOE	TEST PIT NO.:	SEAD 12
PROJECT: LOCATION			12 Test Pit it - East side	- Seneca Q A	Area			JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT D	ATA					· · · · · · · · · · · · · · · · · · ·		INSPECTOR: S. Anderson CONTRACTOR: Environmental Products &	Services
LENGTH	WI	DTH	DEPTH		EX	CAVATION METHOD		START DATE: 11/3/04	1
			3 to 8 ft	Excavator				COMPLETION DAT 11/11/04	
								CHECKED BY: J. Rossmann	
MONITORING I INSTRUME		DE	TECTOR	- DAGKOROV				QA/QC DUPLICATE SAMPLE: YES OR	NO
PID	IN I		TECTOR	BACKGRO	UND	TIME/DAT	Е	Duplicate Sample Number: MRD Sample Number:	
FID				0		11/10/04 & 11/11/04		QA/QC Rinsate Sample Number:	
								Comments:	
DЕРТН (FT)	voc	NO.	AMPLE DEPTH RANGE	STRATA				MPLE RIPTION	REMARKS
1					- Tops	with amount modi		AAJOR COMPONENT, Minor Components tze, density, stratification, wetness, etc.)	_
3					- Brov	vn, fine/medium, TILI	. Dry to m	oist.	-
		123689	2 . 4		-	ple collected at roughl]
4	6.3	71	3 to 4 feet	1 +		reading not on actual s /brown SHALE fragm		se proximity	_
5					- ´ -	J			_
6				-	End	of excavation at the dr	ainage ditch	. Original area of	_
					-	vation sloped - depth v	-	-	-
7				-	-				_
8					-				-
9					-				
*				+					_
10									
11					-				_
								7	

Cross Section:

Drainge Diter

bottom

123689 Fractured Shulp

Vicinity of

Southside

nunya Siste

						TE	ST PIT REPO		I OF
		ı	PARS	SONS			CLIENT: USACOE	TEST PIT NO.:	SEAD 12
PROJI LOCA				12 Test Pit t - North side		Area		JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST	PIT D	ATA		-				CONTRACTOR: Environmental Products &	Services
LENGT	T		отн	DEPTH	1	EXC	CAVATION METHOD	START DATE: 11/3/04	
				3 to 8 ft	Excavator			COMPLETION DAT 11/11/04	<u> </u>
								CHECKED BY: J. Rossmann	
MONITOR	ING D	ΑΤΔ			<u> </u>			QA/QC DUPLICATE SAMPLE: YES OR	NO
	RUMEN		DE	TECTOR	BACKGRO	OUND	TIME/DATE	Duplicate Sample Number:	NO
PII					0		11/3/04	MRD Sample Number:	
FII	D				0		11/10/04 & 11/11/04	QA/QC Rinsate Sample Number:	
								Comments:	
			s	AMPLE	STRATA		<u></u>		
DEPTH (F	FT)	voc	NO.	DEPTH RANGE				SAMPLE SCRIPTION	REMARKS
		:						, MAJOR COMPONENT, Minor Components n-size, density, stratification, wetness, etc.)	
1					_	Tops	soil		
<u>,</u>						_			-
2					_	- Bros	wn, fine/medium, TILL. Dry to	moiet	-
3						- 510	wn, mic/medium, 1122. Dry to	moist.	
4		0	123691	3 to 4 feet		Sam	ple collected at roughly same ele	vation as other sides.]
<u> </u>			123			Grey	y/brown SHALE fragments.		_
5						_			-
6						_			-
\ <u></u>					_	End	of excavation at the drainage dit	ch. Original area of	1 -
7						exca	vation sloped - depth varied fron	n South/West sides.	
						<u>_</u>			_
8									_
						_			-
9——	\dashv								-
10	\dashv								
]]
11									

Cross Section:

Draing in the Disternal Draing in T2+03f4 123691

East

				\mathbf{T}	EST PIT REP	ORT	PAGE 1 OF
	F	PARS	ONS		CLIENT: USACOE	TEST PIT NO.:	SEAD 12
PROJECT: LOCATION			12 Test Pit t - South sid	- Seneca Q Are	a	JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT D	MTA					CONTRACTOR: Environmental Products	& Services
LENGTH	WII)TH	DEPTH	<u> </u>	EXCAVATION METHOD	START DATE: 11/3/2	
			10 ft	Excavator		COMPLETION DA' 11/11/2	004
						CHECKED BY: J. Rossmann	
				<u> </u>		O A /OO D I THE CAN THE CAN THE P. MEC	OD NO
MONITORING I			TECTOR	BACKGROUN	D TIME/DATE	QA/QC DUPLICATE SAMPLE: YES Duplicate Sample Number:	OR NO
INSTRUMEN PID	N1	DE	TECTOR	0	11/3/2004	MRD Sample Number:	
FID				0	11/10/04 & 11/11/04	QA/QC Rinsate Sample Number:	
			_,			Comments:	
 -							
		S	AMPLE	STRATA		SAMPLE	REMARKS
DEPTH (FT)	voc	NO.	DEPTH		г	DESCRIPTION	REWARKS
DEI III (I I)	100	110.	RANGE				
					(As per Burmeister: color, grain s	ize, MAJOR COMPONENT, Minor Components	
			<u> </u>		with amount modifiers and g	grain-size, density, stratification, wetness, etc.)	
			1		°opsoil		-
·							
2							
				L	Brown, fine/medium, TILL. Dry	to moist.	
3				1 +			
				-			
4				+			
_				-			
5				 			-
6	6.3	693	5-6 ft		ractured Shale mixed with Brown	ı Till.	
· -		123692; 12369			About 1 foot area of stained soil, s		'
7		692;			Excavated further at this location t	o clear out the contamination.	
		123					
8				+			
_							
9				-			-
10				F	Competent Bedrock		
1							\dashv
11,							.
Cross Section	1:					annel 1 st extra 2	Building 803

Sidewalk

· 123693 (after excundig 4 mone fret)
• 123692

Chea of "Stannig+ Smell"

				r -	ΓE	ST PIT	REPO	RT		· ·
	ı	PARS	SONS			CLIENT:	USACOE	TEST PIT NO.:		SEAD 12
PROJECT: LOCATION			12 Test Pit t - West side	- Seneca Q A	теа			JOB NUMBER: GROUND ELEV: INSPECTOR:	743156-03100 S. Anderson	
TEST PIT D	r	OTH	DEPTH 10 ft	Excavator	EXC	AVATION METHO)D	CONTRACTOR: START DATE: COMPLETION DA' CHECKED BY:	### Invironmental Products & 11/3/04 I 11/11/04 J. Rossmann	
MONITORING I INSTRUME PID FID		DE	TECTOR	BACKGROU 0	1	TIME/1 11/3/04 11/10/04 & 11/11/04	DATE	QA/QC DUPLICAT Duplicate Sample Numb MRD Sample Numb QA/QC Rinsate Sam Comments:	er:	NO
DEРТН (FT)	voc	NO.	AMPLE DEPTH RANGE	STRATA	<u>l</u>		DESC	AMPLE CRIPTION MAJOR COMPONENT, N -size, density, strainteation,		REMARKS
1	0.1	123694 123688	5-6 ft		Rusty Fracto	oil m, fine/medium, T metal debris four ured Shale mixed wer line found above	nd about 4.5 to with Brown Ti	5 feet. Sampled		
Cross Section:				Sov	Buil	3	Sof	1 236	,94	nash

				r	ГЕ	ST PIT REPO		AGE I OF
		PARS	SONS	-		CLIENT: USACOE	TEST PIT NO.:	SEAD 12
PROJECT: LOCATION	_			- Seneca Q A			JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT D	l	ЭТН	DEPTH 10 ft	Excavator	EXC	CAVATION METHOD	CONTRACTOR: Environmental Products & START DATE: 12/20/200 COMPLETION DA1 12/21/200 CHECKED BY: E. Ashton	4
MONITORING I INSTRUME PID FID		DF	ETECTOR	BACKGRO 0	UND	TIME/DATE 12/20/2004 12/21/2004	QA/QC DUPLICATE SAMPLE: YES Of Duplicate Sample Number: MRD Sample Number: QA/QC Rinsate Sample Number: Comments:	RNO
DEPTH (FT)	voc	NO.	DEPTH RANGE	STRATA		DE	SAMPLE SCRIPTION e, MAJOR COMPONENT, Minor Components ann-size, density, stratification, weiness, etc.)	REMARKS
1		123701 123702	3-4 ft 4-5 ft		123 123 123 und	wn, fine/medium, TILL. Dry to 702 collected on east side of bui 701 collected on north side of bu er outlet of destroyed sewer pipe ctured Shale mixed with Brown oned soils observed and removed enpetent Bedrock	lding corner uilding corner	-

		TF	EST PIT REPO	RT	GE 1 O I
	PARSONS		CLIENT: USACOE	TEST PIT NO.:	SEAD 12
PROJECT: _ LOCATION:	SEAD 12 Test Pit Test Pit - West sid			JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT DATA	ІДТН ДЕРТН	FX	CAVATION METHOD	CONTRACTOR: Environmental Products & START DATE: 11/3/2004	
EEROII	10 ft	Excavator		COMPLETION DA3 12/21/2004 CHECKED BY: E Ashton	
MONITORING DATA INSTRUMENT	DETECTOR	BACKGROUND	TIME/DATE	QA/QC DUPLICATE SAMPLE: YES OR Duplicate Sample Number:	NO
PID FID	- DEADGRON	0 0	12/21/2004	MRD Sample Number: QA/QC Rinsate Sample Number:	:
				Comments:	
	SAMPLE	STRATA		ALCO E	REMARKS
DEPTH (FT) VOC	NO. DEPTH RANGE		DES	SAMPLE SCRIPTION MAJOR COMPONENT, Minor Components	KEWAKKS
1	2-3 ft 402521 3-4 ft	Bro	psoil own, fine/medium, TILL. Dry to actured Shale mixed with Brown T cavation halted at 5'		

Cross Section:

Appendix D

Laboratory SOP EML HASL-300 EPA Method 901.1

Appendices The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 1 of 12

VERIFY THE VALIDITY OF THIS SOP EACH DAY IN USE

STANDARD OPERATING PROCEDURE

FOR

THE DETERMINATION OF GAMMA ISOTOPES

(GL-RAD-A-013 REVISION 10)

APPLICABLE TO METHODS: EPA 600/4-80-032 Method 901.1 (Modified) DOE EML HASL-300 (Modified)

PROPRIETARY INFORMATION

This document contains proprietary information that is the exclusive property of General Engineering Laboratories, LLC (GEL). No contents of this document may be reproduced or otherwise used for the benefit of others except by express written permission of GEL.

GEL's Document Control
Officer certifies this
document to be a true copy
of the fully executed
original.

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 2 of 12

TABLE OF CONTENTS

1.0	STANDARD OPERATING PROCEDURE FOR THE DETERMINATION OF GAMMA ISOTOP	'ES3
2.0	METHOD OBJECTIVE, PURPOSE, CODE AND SUMMARY	3
3.0	METHOD APPLICABILITY	
4.0	DEFINITIONS	3
5.0	METHOD VARIATIONS	4
6.0	SAFETY PRECAUTIONS AND WARNINGS	4
7.0	INTERFERENCES	
8.0	APPARATUS, MATERIALS, REAGENTS, EQUIPMENT, AND INSTRUMENTATION	5
9.0	SAMPLE HANDLING AND PRESERVATION	
10.0	SAMPLE PREPARATION	
11.0	PREPARATION OF STANDARD SOLUTIONS AND QUALITY CONTROL STANDARDS	7
12.0	INSTRUMENT CALIBRATION AND PERFORMANCE	
13.0	ANALYSIS AND INSTRUMENT OPERATION	8
14.0	EQUIPMENT AND INSTRUMENT MAINTENANCE	
15.0	DATA RECORDING, CALCULATION, AND REDUCTION METHODS	
16.0	QUALITY CONTROL REQUIREMENTS	10
17.0	DATA REVIEW, APPROVAL, AND TRANSMITTAL	
0.81	RECORDS MANAGEMENT	
19.0	LABORATORY WASTE HANDLING AND WASTE DISPOSAL	
20.0	REFERENCES	

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 3 of 12

1.0 STANDARD OPERATING PROCEDURE FOR THE DETERMINATION OF GAMMA ISOTOPES

2.0 METHOD OBJECTIVE, PURPOSE, CODE AND SUMMARY

- 2.1 This standard operating procedure provides the necessary instructions to conduct the analysis for Gamma Isotopes in water, soil, urine and miscellaneous matrices.
- 2.2 Water samples are counted in Marinelli beakers. Soil samples are sealed in aluminum cans, which are counted immediately if Ra-226 is not desired. If Ra-226 is desired, the sealed can is set aside to allow secular equilibrium between Rn-222 and Bi-214. Quantification is done by the abundance of the 609 KeV Bi-214 line.
- 2.3 This method has been modified from the source method EPA 600/4-80-032 "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," August 1980, Method 901.1, and the Department of Energy (DOE) EML Procedures Manual source method for Gamma PHA in soils and sediments, HASL-300. For all matrices, similar principles of radiochemical concentration and counting are used.
- 2.4 This method has been modified on the basis of GEL's Performance Based Measurement System (PBMS).

3.0 METHOD APPLICABILITY

- 3.1 Minimum Detectable Activity (MDA): The MDA is based upon sample volume, instrument background, instrument efficiency, count time and other statistical factors, as well as specific isotopic values such as abundance and half-life.
- 3.2 Method Precision: If the activity is greater than 5 times the RDL (Required Detection Limit) an allowed method precision of equal to or less than 20% is used. For activity between the MDA and 5 times the RDL, an allowed method precision of 100% is used. There are no requirements if the activity is less than the MDA.
- 3.3 Method Bias (Accuracy): The method accuracy requirement for gamma spectroscopy is \pm 25% of the true value.
- Analysts go through a partnered training program with an already certified analyst for gamma spectroscopy. The analyst receives training on reviewing of standard analytical requirement such as RPD, method bias and technical review of gamma spectra. The analyst can then become qualified to perform the analysis by passing an unknown sample analysis and correctly identifying the isotope(s). Technical training records are maintained electronically by the Quality Systems staff.

4.0 **DEFINITIONS**

- 4.1 <u>Clean Line</u>: An energy line of an isotope with no known energy lines of other isotopes within 2 KeV. (This excludes daughters that use the same line for quantification.)
- 4.2 <u>Interfered Line</u>: An energy line of an isotope with one or more energy lines of one or more different isotopes within 2 KeV.
- 4.3 <u>Single and Double Escape Interference Lines</u>: When high energy gamma lines above 511 KeV have a large emission rate, it is possible to see single and double escape lines caused by electron capture (energy line 511 is a single escape line, energy line 1022 is a double escape line.) For example, for 10,000 gps at 1332, the single

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 4 of 12

escape interference line can be seen at 1332-511=821, and the double escape interference line at 1332-1022=310.

- 4.4 <u>Summation Interference</u>: When high gamma emission rates are seen, sample summation can occur. Prominent in geometries close to detection and in low energy range (i.e., 10,000 gps at 88 KeV, 15,000 gps at 210 KeV), a summation interference can be seen at 88+88=176 KeV, 210+210=420 KeV, 210+88=298KeV
- 4.5 <u>Palse Positive</u>: An isotope that has failed one or more of several tests including halflife, abundance, and energy tolerance (± 2 KeV)
- 4.6 <u>Abundance Test</u>: The test where the software calculates the total possible lines from the library and checks to see how many were actually seen. The cutoff for a positive identification is 75%.
- 4.7 Energy Tolerance: The test where the software checks the energy line in the spectrum to see if it is within the energy tolerance setting. (The standard setting is 2 KeV.) If it is within this setting then the line is associated with that nuclide. The energy line can be associated with more than one nuclide.
- 4.8 <u>Half-Life Test</u>: The test to determine if the half-life of the isotope is long enough not to have decayed away. The half-life of the sample is the time from sample date to analysis date plus 1/2 the count time. A limit of no more than eight half-life is the standard setting.
- 4.9 <u>Key Line</u>: The line chosen by the builder of the library to be the prominent line of the isotope. This line is used in the MDA table for purposes of calculating activity, error and MDA. For non-identified isotopes the key line is used as the basis for calculating a region around the key line and then calculating and activity error and MDA. Usually this line is the most abundant line on a line that is relatively free from interference.
- 4.10 Abundance: The branching ratio or ratio of disintegration of the isotope at a particular energy. For example, Cobalt-60 has an abundance, or branching ratio, of 99% at 1332 KeV
- 4.11 Accuracy: The error of the reported result due to the counting statistics of the instrument used for quantification.
- 4.12 <u>Back Scatter</u>: The detection of a count that occurs when an event interacts with counting materials, changes direction, and scatters back to the detector.

5.0 METHOD VARIATIONS

Modifications to the procedure are limited to GEL's use of additional isotopes for the daily calibration check and the inclusion of a more stringent calibration and resolution periodicity.

6.0 SAFETY PRECAUTIONS AND WARNINGS

- 6.1 Keep hands free from moving parts of canning device and Gamma shields.
- 6.2 Personnel performing this analytical procedure are trained in and follow the safe laboratory practices outlined in the Safety, Health and Chemical Hygiene Plan, GL-LB-N-001.
- 6.3 Personnel handling radioactive materials are trained in and follow the procedures outlined in GL-RAD-S-004 for Radioactive Material Handling.

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 5 of 12

- 6.4 Personnel handling biological materials are trained in and follow the procedures outlined in GL-RAD-S-010 for Handling Biological Materials.
- 6.5 If there is any question regarding the safety of any laboratory practice, stop immediately, and consult qualified senior personnel such as a Group or Team Leader.

7.0 INTERFERENCES

- 7.1 Some Gamma isotopes emit gamma lines that may overlap with other isotopes. If the energies of the two isotopes are within 2 KeV, the peaks may not be resolvable and will give a positive bias to the result. This problem is minimized by careful review of the peak search.
- 7.2 Soil samples may vary in density from the standard used for calibration. This may bias the results due to self-absorption of lower energy (<100 K).

8.0 APPARATUS, MATERIALS, REAGENTS, EQUIPMENT, AND INSTRUMENTATION

- 8.1 Ancillary Equipment
 - 8.1.1 100 cc aluminum cans with lids for soil and miscellaneous samples
 - 8.1.2 Gelman Sciences PETRI dish for soil and miscellaneous samples
 - 8.1.3 2 L and 500 mL Marinelli beakers for water samples
 - 8.1.4 Air displacement pipette. 1 mL
 - 8.1.5 Can annealing tool
 - 8.1.6 Graduated cylinder
- 8.2 Reagents, Chemicals and Standards
 - 8.2.1 NIST traceable mixed gamma standard in 100cc aluminum can
 - 8.2.2 NIST traceable 2.0 liter mixed gamma standard in 2 L Marinelli beaker
 - 8.2.3 NIST traceable mixed gamma standard in 0.5 L Marinelli
 - 8.2.4 NIST traceable mixed gamma standard in snap falcon PETRI dish
 - 8.2.5 Standard soil blank
 - 8.2.6 NIST traceable aqueous Cs-137 standard
 - 8.2.7 Mixed Gamma Standard: Contains Am-241, Co-57, Co-60, Y-88, Sr-113, Pb-210, Cd-109 as a minimum.
- 8.3 Instrumentation
 - 8.3.1 High purity germanium detector, with associated electronics and data reduction software
 - 8.3.2 Top loader balance

9.0 SAMPLE HANDLING AND PRESERVATION

- 9.1 For soil samples, 500g of sample should be collected, preferably in a plastic container to avoid breakage.
- 9.2 For water samples, 2 liters of sample should be collected in a plastic container and preserved to pH2 with Nitric acid.

10.0 SAMPLE PREPARATION

- 10.1 Soil sample preparation.
 - 10.1.1 Prepare the sample for gamma counting in accordance with SOP GL-RAD-A-021 "Soil sample preparation for the determination of radionuclides".

- 10.1.2 Fill the appropriate container with sample prepared from step 10.1.1 using the following steps as a guideline:
 - 10.1.2.1 If Ra-226 analysis is required, the sample is placed in a 100cc can for in-growth.

NOTE: It is recommended that in-growth be allowed 14 days to quantify Ra-226. Shorter intervals can be used at the request of the client. However, shorter in-growth periods may decrease the accuracy of the data. If there is insufficient mass of sample to fill the 100cc can, contact the team or group leader.

- 10.1.2.2 All homogenized samples shall be placed in the 100cc can.

 Determine the net weight of the sample. If the net weight is less than 55 grams or greater than 190 grams, contact the team or group leader to determine the appropriate counting container.

 Record sample weight and date on sample container.
- 10.1.2.3 If there is insufficient sample to fill the 100cc can, place sample in the 10cc petri dish, cap and seal. Record sample weight and date on sample container.
- 10.1.2.4 If there is insufficient sample to fill the 10cc petri dish, perform the following digestion process:
 - 10.1.2.4.1 Weigh out an appropriate aliquot into a labeled teflon beaker. Record this weight on the sample container.
 - 10.1.2.4.2 Add 10 mL of concentrated nitric acid to each sample.
 - 10.1.2.4.3 Place samples on medium heat (~300 °F) and cover each sample with a teflon lid. Reflux all samples for 30 minutes.
 - 10.1.2.4.4 Remove teflon lids and add 5 mL concentrated hydrochloric acid and 10 mL hydrofluoric acid to each sample. Cover samples and reflux for 120 minutes.
 - 10.1.2.4.5 Remove teflon lids and allow samples to evaporate to dryness.
 - 10.1.2.4.6 Add 5 mL of concentrated nitric acid and evaporate to dryness.
 - 10.1.2.4.7 Repeat Step 10.3.6.
 - 10.1.2.4.8 Add 5 mL of concentrated nitric acid to the dry samples. Place the samples back on the hotplate long enough so that the dried sample dissolves into the acid.
 - 10.1.2.4.9 Transfer solution to a 500 mL vessel and dilute to 500 mL. Record original sample mass and diluted volume on sample
- 10.2 Water sample preparation

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 7 of 12

10.2.1 Mix and measure an appropriate volume into a 2 L or 500 mL Marinelli beaker and record the volume on the Gamma que sheet.

If Radium analysis is required, measure 100 mL and seal in a 100 cc can. Record volume, sealed date, and sealed time on Gamma que sheet.

10.3 Urine Sample Preparation

- 10.3.1 Place a 24-hour urine container (or other suitable container) on a balance and tare the balance.
- 10.3.2 Transfer the entire volume of the sample received to the tared container and record the volume of sample received.
- 10.3.3 Add 8 M HNO₃ acid to the original sample container (typically 25 50 mL). Shake in the container and then heat in a microwave for approximately 30 seconds to remove sample residue from the sides of the sample container.
- 10.3.4 Add the nitric acid rinse to the 24-hour urine container and record the volume of the original sample plus acid.
- 10.3.5 Cap and shake the 24-hour urine container to homogenize the sample. Transfer an aliquot (typically 500 mL) of this solution to a Marinelli Beaker.
- 10.3.6 Record the amount of the original sample, excluding the nitric acid added, on the gamma spec que sheet.

 Example: 800 mL is received and 50 mL of 8 M HNO₃ is added from the rinse of the sample container. 500 mL is transferred to the Marinelli Beaker. The recorded volume on the que sheet should be (500 mL/850 m/) x 800 mL = 470.6 mL.
- 10.4 Preparation of miscellaneous matrices
 - 10.4.1 Prepare the sample in accordance with SOP GL-RAD-A-026 "Preparation of Special Matrices for the Determination of Radionuclides."
 - 10.4.2 Once the appropriate section of GL-RAD-A-026 has been performed, prepare the sample for gamma counting by referring to section 10.1.2 above.

11.0 PREPARATION OF STANDARD SOLUTIONS AND QUALITY CONTROL STANDARDS

Refer to "Preparation of Radioactive Standards" (GL-RAD-M-001) for instructions concerning the preparation of standard solutions.

12.0 INSTRUMENT CALIBRATION AND PERFORMANCE

- 12.1 The gamma spectrometer should be calibrated for the appropriate geometry every 12 months or when daily QC check standards indicate instrument problems. Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for calibration instructions.
- Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for instructions concerning the Gamma Spectrometer.

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 8 of 12

12.3 Refer to "Counting Room Instrument Maintenance and Performance Checks" (GL-RAD-I-010) for instructions concerning instrument maintenance.

13.0 ANALYSIS AND INSTRUMENT OPERATION

- 13.1 Prepare the sample as outlined in section 10.0
- 13.2 Place the sample on the detector and count the sample an appropriate amount of time in the gamma shield. See "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for specific instructions on operating the gamma spectrometers.

14.0 EQUIPMENT AND INSTRUMENT MAINTENANCE

- 14.1 Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for instructions concerning the Gamma Spectrometer.
- 14.2 Refer to "Counting Room Instrument Maintenance and Performance Checks" "
 (GL-RAD-I-001) for instructions concerning instrument maintenance.

15.0 DATA RECORDING, CALCULATION, AND REDUCTION METHODS

15.1 Data Recording

Record the following information on the Gamma Que Sheet: preparation date, analyst's initials, spike isotope, spike code, spike volume, LCS isotope, LCS code, LCS volume, nominal concentration LCS, and nominal concentration MS. For each sample record the detector number, sample mass, sample date and time.

15.2 The instrument will report sample pCi/g or pCi/L according to the following equations:

Sample pCi/g =
$$\frac{A*d}{2.22*E*V*B*CNT*ABS}$$

Sample pCi/L =
$$\frac{A*d}{2.22*E*V*B*CNT}$$

Where:

A = net peak area (counts)

ABS = relative absorption factor

B = abundance (gammas/disintegration)

E = counting Efficiency (counts/gamma)

V = sample volume (grams or liters)

ct = sample count time (minutes)

$$d = decay factor = d = \frac{1}{e^{\lambda_i}}$$

15.3 Counting uncertainty is calculated according to the following equation:

pCi/unit = Ac * 1.96
$$\sqrt{\left(\frac{\text{ef} - \text{er}}{\text{E}}\right)^2 + \left(\frac{\text{pk} - \text{er}}{\text{pk}}\right)^2 + \left(\frac{\text{ab} - \text{er}}{\text{A}}\right)^2 + \left(\frac{\text{sy}}{100}\right)^2 + \left(\text{Decay}\right)^2}$$

Where:

Ac = Activity from 15.2

Decay =
$$\left(\frac{T_{1/2 \text{ err}}}{T_{1/2}}\right)^2 * \left[\frac{\lambda \text{Er}}{1 - e^{-\lambda E_r}} - \lambda (T_s + E_r) - 1\right]$$

15.4 The method MDA in pCi/g or pCi/L are calculated according to the following equations:

MDA (pCi/unit) =
$$\frac{d * \left(2.71 + 4.66 \sqrt{\text{cpm}_{b} * \text{ct}}\right)}{2.22 * \text{E} * \text{V} * \text{B} * \text{ct}}$$

Where:

A = net peak area (counts)

ABS = relative absorption factor

B = abundance (gammas/disintegration)

E = counting Efficiency (counts/gamma)

V = sample volume (grams or liters)

ct = sample count time (minutes)

 $d = decay factor = d = \frac{1}{e^{-\lambda t}}$

15.5 The absorption factor is calculated by the following equations:

$$I_1 = \frac{\ln((SSepm - Sepm)/ECepm)}{(((SSepm - Sepm)/ECepm) - 1)}$$

$$I_0 = \frac{In((SSTepm - STepm)/ECepm)}{(((SSTepm - Sepm)/ECepm) - 1)}$$

$$ABS = \frac{1}{\ln n}$$

Where:

SScpm = sample plus the source cpm at the region of interest

Scpm = sample cpm at the region of interest

ECcpm = source cpm on the empty can at the region of interest in = natural logarithm

SStcpm = standard plus the source cpm at the region of interest

Stepm = standard plus the source cpm at the region of in Stepm = standard cpm at the region of interest

- 15.6 The VAX operating system will report the following information with each completed sample:
 - 15.6.1 The nuclide identification report
 - 15.6.2 The minimum detectable activity report
 - 15.6.3 The peak search report.
- 15.7 The following criteria are used to accept a reported gamma isotope from the NID report:
 - 15.7.1 The peak FWHM should be less than 2 KeV.

	The Determination of Gamma Isotopes	
SOP Effective Date: 2/4/92		GL-RAD-A-013-Rev
Revision 9 Effective June 2002		02-RAD-A-013-Rev

- 15.7.2 The activity of a non-target isotope will not be reported unless it is greater than the minimal detectable activity of a method blank with similar volume and count time.
- 15.7.3 The energy tolerance should be between 2 and 3 KeV.
- 15.7.4 The sensitivity setting should be between 0.1 and 3. The default setting is 3.
- 15.7.5 Start channel on peak search should be approximately 50 and end channel should be 4096.
- 15.7.6 The confidence level setting should be 5.
- 15.7.7 These settings should not be changed without approval from a group leader.
- 15.8 The following guidelines are used to accept unidentified lines on the peak search after environmental background subtraction:
 - 15.8.1 The line matches the natural fingerprint of the Uranium-238 or Thorium-232 decay chains (i.e. 63, 75, 93, 239, 295, 352, 511, 609, 1120, etc.).
 - 15.8.2 The line matches as a summation peak from two other lines in the spectrum.
 - 15.8.3 The line has a net area of less than 20.

16.0 QUALITY CONTROL REQUIREMENTS

16.1 Analyst and Method Verification

Refer to "Analyst and Analytical Methods Validation Procedures" (G-RAD-D-003) for instructions concerning the validation of analysts and analytical methods.

- 16.2 Method Specific Quality Control Requirements
 - 16.2.1 A method blank will accompany each batch of 20 or less samples. The reported value should be less than or equal to the CRDL for all target isotopes. Matrix spikes are prepared by spiking a portion of the QC sample with Cs-137 (as a minimum).
 - 16.2.2 For water samples only, a matrix spike (MS) should be run with every batch of 20 samples. The recovery of the spike should fall between 75 and 125%. The recovery is calculated as follows:

$$\%REC = \frac{\text{spike(pCi/g)} - \text{sample(pCi/g)}}{\text{spikedamount(pCi/g)}} *100$$

or:

$$%REC = \frac{\text{spike(pCi/L)} - \text{sample(pCi/L)}}{\text{spikedamount(pCi/L)}} * 100$$

NOTE: Performing a matrix spike on a soil sample would result in direct contamination of the sample, therefore, only water samples require an MS.

A sample duplicate should be run with every batch of 20 or less samples. The relative percent difference (RPD) between the sample and the duplicate should be ≤0 20%. The RPD is calculated as follows.

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 11 of 12

$$RPD = \frac{\text{high sample (pCi/g) - low sample (pCi/g)}}{\text{Average (pCi/g)}}$$

or:

$$RPD = \frac{\text{high sample (pCi/L) - low sample (pCi/L)}}{\text{Average (pCi/L)}}$$

- 16.2.4 A laboratory control spike (LCS) should be run with every batch of 20 samples or less. The recovery of the spike should fall between 75 and 125%. The LCS should contain Cs-137 as a minimum. Some clients may request a mixed gamma standard. For soils, a mixed gamma expired calibration source may be used as an LCS. For liquids and filters, spike a blank sample with Cs-137 as a minimum.
- 16.2.5 The recovery is calculated as follows:

$$LCS = \frac{observed_pCi/g}{known_pCi/g} *100$$

or:

$$LCS = \frac{observed_pCi/L}{known_pCi/L} *100$$

16.3 Actions required if the Quality Control Requirements Are Not Met

If any of the above criteria cannot be satisfied, the analyst should inform the group
leader and initiate a non-conformance report as outlined in "Documentation of
Nonconformance Reporting and Dispositioning, and Control of Nonconforming
Items" (GL-QS-E-004).

17.0 DATA REVIEW, APPROVAL, AND TRANSMITTAL

- 17.1 The first level of review is the analyst review. The analyst will perform the following steps of review:
 - 17.1.1 Visually check the que sheet, spreadsheet, raw data and data report to make sure the information has been transcribed correctly.
 - 17.1.2 Review the raw data to see if there are any hits not on the requested list. If there are, report to the client by adding the information into LIMS.

A true identification or a "hit" is any isotope greater than 10 pCi/L or 5 pCi/g on the identified nuclide list. The error must also be less than 40% of the result and not have interference by another isotope or have a very short half-life.

- 17.1.3 Check to see that the required detection limit (RDL) is met if required.
- 17.1.4 Check hits to see if they are true hits (see 18.1.2.1) and not an interference or a false positive.

Identifications are classified into two categories: false positives (interference), and true identification (hit). The false positives are rejected by checking the abundance test results for the isotope and by checking last results for the half-life. The result is considered

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 12 of 12

interference and rejected by checking to see if there are any clean lines in sample spectrum for the isotope. If none exist, then the identification is rejected. If the key line has a possible interference and secondary lines do not confirm the activity calculation, the identification is rejected. Isotopes that pass these criteria are accepted as true identifications. The above tests and criteria are standard and will be followed unless directed otherwise by contract, specification or instructions.

17.1.5 Complete the batch checklist.

- 17.2. The second level review is performed by the Data Validator or Report Specialist, who reviews the batch checklist, checks requested and non-requested hits, and reviews the transcription.
- 17.3 After the review process is complete, the data is transmitted from the laboratory personnel to the reporting personnel as outlined in "Data Review and Validation Procedures" (GL-RAD-D-003).

18.0 RECORDS MANAGEMENT

- Each analysis that is performed on the instrument is documented in the run log according to "Run Logs" (GL-LB-E-009).
- 18.2 All raw data printouts, calculation spreadsheets and batch checklists are filed with the sample data for archival and review.

19.0 LABORATORY WASTE HANDLING AND WASTE DISPOSAL

- 19.1 All soil sample cans are opened and sample returned to original sample containers after completion of batch.
- 19.2 Radioactive waste is disposed of as outlined in the Laboratory Waste Management Plan (GL-LB-G-001).

20.0 REFERENCES

- 20.1 USEPA. Prescribed Procedures for Measurement of Radioactivity in Drinking Water. Method 901.1, August 1980,
- 20.2 Canberra Nuclear Genie System Spectroscopy, Applications and Display User's Guide. Vol. I and II, May 1991.
- 20.3 EML procedures manual, HASL-300-Ed.25, 1982.

Appendix E

Analytical Results

Building 813/814 Surface Water VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									C\\\\\10 C0	CW42 CO	CW42.70	C\\\(10.74	CW42.72	CM42 72 (D)	CW42 72	C\\\(10.74
LOCATION ID MATRIX									SW12-68 SW	SW12-69 SW	SW12-70 SW	SW12-71 SW	SW12-72 SW	SW12-72 (D) SW	SW12-73 SW	SW12-74 SW
SAMPLE ID									121000	121001	121002	121003	121004	121007	121005	121006
TOP OF SAMPLE									0	0	0	0	0	0	0	0
BOTTOM OF SAMPLE									0	0	0	0	0	0	0	0
SAMPLE DATE									6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
QC CODE									SA							
STUDY ID									SRI							
			Frequency			Number	Number	Number						0	0	
			of	Criteria	Action	of	of	of								
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1,2-Tetrachloroethane	μg/L	0	0%			0	0	8	0.22 U							
1,1,1-Trichloroethane	μg/L	0	0%			0	0	8	0.24 U							
1,1,2,2-Tetrachloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,1,2-Trichloroethane	μg/L	0	0%			0	0	8	0.24 U							
1,1-Dichloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,1-Dichloroethene	μg/L	0	0%			0	0	8	0.16 U							
1,1-Dichloropropene	μg/L	0	0%			0	0	8	0.21 U							
1,2,3-Trichlorobenzene	μg/L	0	0%			0	0	8	0.18 U							
1,2,3-Trichloropropane	μg/L	0	0%			0	0	8	0.28 U							
1,2,4-Trichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 U							
1,2,4-Trimethylbenzene	μg/L	0	0%			0	0	8	0.24 U							
1,2-Dibromo-3-Chloropropane	μg/L	0	0%			0	0	8	0.20 R							
1,2-Dibromoethane	μg/L	0	0%			0	0	8	0.20 U							
1,2-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.17 UJ							
1,2-Dichloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,2-Dichloropropane	μg/L	0	0%			0	0	8	0.21 U							
1,3,5-Trimethylbenzene	μg/L	0	0%			0	0	8	0.22 U							
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 UJ							
1,3-Dichloropropane	μg/L	0	0%			0	0	8	0.22 U							
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 UJ							
2,2-Dichloropropane	μg/L	0	0%			0	0	8	0.20 U							
2-Chlorotoluene	μg/L	0	0%			0	0	8	0.50 U							
Acetone	μg/L	0	0%			0	0	8	1.5 R							
Acrylonitrile	μg/L	0	0%			0	0	8	0.94 R							
Allyl Chloride	μg/L	0	0%			0	0	8	0.18 U							
Benzene	μg/L	0	0%			0	0	8	0.24 UJ							
Bromobenzene	μg/L	0	0%			0	0	8	0.21 UJ							
Bromodichloromethane	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ	0.20 U	0.20 U	0.20 U
Bromoform	μg/L	0	0%			0	0	8	0.22 U							
Butyl chloride	μg/L	0	0%			0	0	8	0.22 U							
Carbon Disulfide	μg/L	0	0%			0	0	8	0.18 U							
Carbon Tetrachloride	μg/L	0	0%	111/00550.01		0	0	8	0.22 U							
Chlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.21 UJ							
Chlorodibromomethane	μg/L	0	0%			0	0	8	0.17 U							
Chloroethane	µg/L	0	0%			0	0	8	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U
Chloroform	µg/L	0	0%			0	0	8	0.22 U							
cis-1,2-Dichloroethene	μg/L	0	0%			0	0	8	0.24 U							
cis-1,3-Dichloropropene	µg/L	0	0%			0	0	8	0.19 U							
Cyclohexane Dichlorodifluoromethane	µg/L	0	0%			0	0	8	N/A	N/A	N/A 0.09 U	N/A	5 U 0.09 U	N/A 0.09 U	N/A	N/A
	µg/L	0	0%			-			0.09 U	0.09 U		0.09 U			0.09 U	0.09 U
Diisopropyl Ether Ethyl Benzene	μg/L	0	0% 0%			0	0	8	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ
Ethyl ether	μg/L	0	0%			0	0	8	0.21 U	0.21 UJ 0.21 U	0.21 UJ	0.21 UJ 0.21 U	0.21 U	0.21 UJ 0.21 U	0.21 UJ 0.21 U	
Ethyl methacrylate	μg/L μg/L	0	0%			0	0	8	0.21 U	0.21 U 0.25 U	0.21 U	0.21 U	0.21 U	0.21 U 0.25 U	0.21 U 0.25 U	0.21 U 0.25 U
Hexachlorobutadiene	μg/L μg/L	0	0%	NYSDEC Class C	0.01	0	0	8	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U
Hexachloroethane	μg/L μg/L	0	0%	NYSDEC Class C	0.6	0	0	8	0.17 U							
Isopropylbenzene	μg/L μg/L	0	0%	INTODEC Class C	0.0	0	0	8	0.20 UJ							
Meta/Para Xylene	μg/L	0	0%			0	0	8	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.20 UJ	0.43 UJ	0.43 UJ	0.43 UJ
Methacrylonitrile		0	0%			0	0	8	0.43 U							
Methyl Acetate	μg/L μg/L	0	0%			0	0	8	N/A	N/A	N/A	N/A	5 U	N/A	N/A	N/A
Methyl bromide	μg/L μg/L	0	0%			0	0	8	0.22 U							
Methyl butyl ketone	μg/L μg/L	0	0%			0	0	8	1.1 U							
Methyl chloride	μg/L μg/L	0	0%			0	0	8	0.11 U							
Methyl cyclohexane	μg/L μg/L	0	0%			0	0	8	0.11 U	0.11 U N/A	0.11 U	0.11 U	5 U	0.11 U	0.11 U	0.11 U
Methyl ethyl ketone	μg/L μg/L	0	0%			0	0	8	0.94 R							
Methyl iodide	μg/L μg/L	0	0%			0	0	8	0.94 K	0.94 K 0.14 U	0.94 K	0.94 R 0.14 U	0.94 K	0.94 K	0.94 K	0.94 K
Methyl isobutyl ketone	μg/L μg/L	0	0%			0	0	8	1.0 U							
Methyl methacrylate	μg/L μg/L	0	0%			0	0	8	0.53 U							
Methyl Tertbutyl Ether	μg/L μg/L	0	0%			0	0	8	0.37 U	0.33 U	0.37 U	0.37 U	0.33 U	0.33 U	0.33 U	0.37 U
Methylene bromide		0	0%			0	0	8	0.37 U							
ivieuryierie bronniue	μg/L	U	U 70	1		_ U	U	0	U.24 U							

Building 813/814 Surface Water VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SW12-68	SW12-69	SW12-70	SW12-71	SW12-72	SW12-72 (D)	SW12-73	SW12-74
MATRIX									SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE ID									121000	121001	121002	121003	121004	121007	121005	121006
TOP OF SAMPLE									0	0	0	0	0	0	0	0
BOTTOM OF SAMPLE									0	0	0	0	0	0	0	0
SAMPLE DATE									6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
QC CODE									SA	SA	SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
			Frequency	Criteria	Action	Number of	Number	Number								
Methylene Chloride	μg/L	0	0%	NYSDEC Class C	200	0	0	8	0.18 U	0.18 U	0.18 U					
Naphthalene	μg/L	0	0%			0	0	8	0.17 U	0.17 U	0.17 U	0.17 U	0.17 UJ	0.17 U	0.17 U	0.17 U
n-Butylbenzene	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U					
Ortho Xylene	µg/L	0	0%			0	0	8	0.21 UJ	0.21 UJ	0.21 UJ					
p-Chlorotoluene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
p-Isopropyltoluene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
Propionitrile	μg/L	0	0%			0	0	8	3.3 R	3.3 R	3.3 R					
Propylbenzene	μg/L	0	0%			0	0	8	0.24 U	0.24 U	0.24 U					
sec-Butylbenzene	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U					
Styrene	μg/L	0	0%			0	0	8	0.19 UJ	0.19 UJ	0.19 UJ					
t-Butyl Alcohol	μg/L	0	0%			0	0	8	2.2 R	2.2 R	2.2 R					
tert-Butylbenzene	μg/L	0	0%			0	0	8	0.18 U	0.18 U	0.18 U					
Tetrachloroethene	μg/L	0	0%			0	0	8	0.34 U	0.34 U	0.34 U					
Tetrahydrofuran	μg/L	0	0%			0	0	8	0.78 R	0.78 R	0.78 R					
Toluene	μg/L	0	0%	NYSDEC Class C	6000	0	0	8	0.22 UJ	0.22 UJ	0.22 UJ					
trans-1,2-Dichloroethene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
Trans-1,3-Dichloropropene	μg/L	0	0%			0	0	8	0.19 U	0.19 U	0.19 U					
Trans-1,4-Dichloro-2-butene	μg/L	0	0%			0	0	8	1.4 R	1.4 R	1.4 R					
Trichloroethene	μg/L	0	0%	NYSDEC Class C	40	0	0	8	0.24 U	0.24 U	0.24 U					
Trichlorofluoromethane	μg/L	0	0%			0	0	8	0.09 U	0.09 U	0.09 U					
Vinyl Chloride	μg/L	0	0%			0	0	8	0.14 U	0.14 U	0.14 U					

Building 813/814 Groundwater VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-1	TW12-1 (D)	TW12-3	TW12-4	TW12-5	TW12-6	TW12-7	TW12-8	TW12-9	TW12-22	TW12-23
MATRIX									GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
SAMPLE ID									122275	122284	122277	122278	122279	122280	122281	122282	122283	122285	122286
TOP OF SAMPLE									5.20	5.20	5.00	3.75	8.70	5.00	7.10	5.00	4.90	13.50	13.30
BOTTOM OF SAMPLE									10.20	10.20	10.00	8.75	13.70	10.00	12.10	10.00	9.90	23.50	23.30
SAMPLE DATE									5/26/2004	5/26/2004	6/11/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	6/11/2004	6/10/2004
QC CODE									SA	DU	SA	SA	SA	SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number											
			of	Criteria	Action	of	of	of											
Parameter	Unit	Maximum		Туре	Level	Exceedances	Detections A	Analyses	Value (C	, , ,	Value (Q	,	, , ,	Value (0	, , , , , , , , , , , , , , , , , , , ,	Value	· /	Value (Q)	
1,1,1-Trichloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2,2-Tetrachloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2-Trichloroethane	μg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 UJ	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2,4-Trichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dibromo-3-Chloropropane	μg/L	0	0%	NYSDEC CLASS GA	0.04	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dibromoethane	μg/L	0	0%	NYSDEC CLASS GA	0.0006	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	0.6	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichloropropane	µg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Acetone	μg/L	51	12%	NIVODEO OL AGO OA	4	0	2	17	50 UJ	50 U	50 UJ	51	50 U	50 U	50 U	50		50 U	50 U
Benzene	μg/L	0	0%	NYSDEC CLASS GA	1 00	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Bromodichloromethane	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	80 80	0	0	17 17	10 UJ 10 UJ		10 U 10 U	10 U	10 U	10 U	10 U 10 U	10		10 U 10 U	10 U 10 U
Bromoform Carbon Disulfide	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17			10 UJ	10 U	10 U	10 U		10			10 UJ
Carbon Distillide Carbon Tetrachloride	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ 10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 UJ 10 U	10 U
Chlorobenzene	μg/L μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chlorodibromomethane	µg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chloroethane	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chloroform	μg/L	0	0%	NYSDEC CLASS GA	7	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
cis-1,2-Dichloroethene	µg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
cis-1,3-Dichloropropene	µg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Cyclohexane	µg/L	0	0%		0	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Ethyl Benzene	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Isopropylbenzene	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Meta/Para Xylene	µg/L	0	0%			0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Methyl Acetate	µg/L	0	0%			0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Methyl bromide	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl butyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 UJ	50 U	50 U	50 U	50 U	50	UJ 50 UJ	50 UJ	50 UJ
Methyl chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl cyclohexane	μg/L	0	0%			0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl ethyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 U	50 U	50 U	50 U	50 U	50	U 50 UJ	50 U	50 U
Methyl isobutyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 U	50 U	50 U	50 U	50 U	50	U 50 UJ	50 U	50 U
Methyl Tertbutyl Ether	μg/L	0	0%			0	0	17	10 UJ	10 U	10 UJ	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methylene Chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Ortho Xylene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Styrene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Tetrachloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U		10		10 U	10 U
Toluene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
trans-1,2-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Trans-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	4.0 J	4.1 J	4.2 J	10 U	10 U	10 U		10		10 U	10 U
Trichlorofluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
Vinyl Chloride	μg/L	0	0%	NYSDEC CLASS GA	2	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Dichlorodifluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 UJ	10 U	10 U	10 U	10 U	10	U 10 UJ	10 UJ	10 UJ

Building 813/814 Groundwater VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-23 (D)	TW12-24	TW12-25	TW12-26	MW12-37	MW12-40
MATRIX									GW	GW	GW	GW	GW	GW
SAMPLE ID									122297	122287	122288	122289	122291	122290
TOP OF SAMPLE													7.53	
BOTTOM OF SAMPLE									13.30 23.30	8.10 13.10	7.30 12.30	5.90 8.90	12.43	8.30 13.30
SAMPLE DATE									6/10/2004	6/11/2004	6/11/2004	6/11/2004	6/11/2004	6/11/2004
QC CODE									DU	SA	SA	SA	SA	SA SRI
STUDY ID						NI:	Niversia	NI	SRI	SRI	SRI	SRI	SRI	SKI
			Frequency	Outs - ut -	A -4!	Number	Number	Number						
Parameter	Unit	Maximum	of Detection	Criteria	Action Level	of Evandances	Of	of	Value (Q	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane		0		Type NYSDEC CLASS GA		Exceedances 0	0	,	10 U	10 U	. ,	10 U	. ,	value (Q)
	µg/L	0	0%	NYSDEC CLASS GA	5 5	0	0	17	10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U
1,1,2,2-Tetrachloroethane	µg/L	0	0%		5	0	0	17 17	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	µg/L		0%	NYSDEC CLASS GA NYSDEC CLASS GA			0							
1,1,2-Trichloroethane	µg/L	0	0%		1 5	0	0	17	10 U	10 U	10 U	10 U 10 U	10 U	10 U
1,1-Dichloroethane	µg/L	-	0%	NYSDEC CLASS GA	_	-	0	17	10 U	10 U	10 U		10 U	10 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	5 5	0	0	17 17	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U
	µg/L		0%		_	-	-							
1,2-Dibromo-3-Chloropropane	µg/L	0	0%	NYSDEC CLASS GA	0.04	0	0	17 17	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane 1,2-Dichlorobenzene	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	0.0006	0	0	17	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
·	µg/L	-	0%		3	0	0							
1,2-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	0.6	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	µg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	μg/L	51	12%	NIVODEO OL AGO OA	-	0	2	17	50 U	50 U	50 U	50 U	50 U	50 U
Benzene	μg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	μg/L	0	0%		_	0	0	17	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Carbon Tetrachloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chlorodibromomethane	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	μg/L	0	0%	NYSDEC CLASS GA	7	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10 U	10 U	10 U	10 U	41	10 U
cis-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Cyclohexane	μg/L	0	0%		_	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Ethyl Benzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Meta/Para Xylene	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Acetate	μg/L	0	0%		_	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl bromide	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl butyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Methyl chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl cyclohexane	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl ethyl ketone	μg/L	0	0%			0	0	17	50 U	50 U	50 U	50 U	50 U	50 U
Methyl isobutyl ketone	μg/L	0	0%			0	0	17	50 U	50 U	50 U	50 U	50 U	50 U
Methyl Tertbutyl Ether	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methylene Chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Ortho Xylene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Trans-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10 U	10 U	10 U	10 U	2400	10 U
Trichlorofluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl Chloride	μg/L	0	0%	NYSDEC CLASS GA	2	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ

Building 813/814 Ditch Soil VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

								DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL
						1	1								
								124250	124251	124252	124253	124254	124257	124255	124256
								0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
								6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
								SA	SA	SA	SA	SA	DU	SA	SA
								SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
		Frequency			Number	Number	Number	91	<u> </u>					<u> </u>	¥1.11
			Criteria	Action			-								
Units	Maximum							Value (Q)	Value (Q)	Value (Q)	Value (O)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
	0					0	8	11.						, ,	12 UJ
	0					0	8								12 UJ
OO/ICO			17 COW 4040	000		-	8								12 UJ
						0	8								12 UJ
LIG/KG	U		TAGM 4046	200		- 0	8								12 UJ
						-	8								12 UJ
	_					-	9								12 UJ
JUING			1701VI 4040	3400		- 0	Ω								12 UJ
							Ω								12 UJ
HC/KC			TACM 4046	7000			Ω								12 UJ
							Ω								12 UJ
UG/NG			1 AGIVI 4040	100			Ω								12 UJ
HC/KC			TACM 4046	1600			Ω								12 UJ
							0								12 UJ
							0								62 UJ
	-						-								
UG/KG			1 AGIVI 4046	60			8								12 UJ
							8								12 UJ
110/140			TA CN4 4040	0700			8								12 UJ
							8								12 UJ
						-	8								12 UJ
UG/KG			TAGM 4046	1700			8								12 UJ
110 "10			T. 014 4040	1000			8								12 UJ
						-	8								12 UJ
UG/KG			TAGM 4046	300			8								12 UJ
	U						8								12 UJ
	U					- 0	8								12 UJ
							8								12 UJ
							8								12 UJ
UG/KG			TAGM 4046	5500		- 0	8								12 UJ
						<u> </u>	8								12 UJ
						-	8								12 UJ
	U						8								12 UJ
						-	8								12 UJ
							8								62 UJ
	0					0	8								12 UJ
	0	0%			0	0	8								12 UJ
	0	0%				0	8								62 UJ
UG/KG	0	0%	TAGM 4046	1000		0	8								62 UJ
	0					0	8								12 UJ
UG/KG	0	0%	TAGM 4046	100	0	0	8								12 UJ
	0	0%			0	0	8								12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	1400	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	7.4	63%	TAGM 4046	1500	0	5	8	2.0 J	2.3 J	12 UJ	7.4 J	7.2 J	5.7 J	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	300	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	700	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	200	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	UG/KG UG/KG UG/KG	UG/KG 0 UG/KG 0	UG/KG 0 0% UG/KG 0 0%	Units Maximum Frequency Type UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 110 25% TAGM 4046 UG/KG 110 25% TAGM 4046 UG/KG 0 0% TAGM 4046	Units Maximum Frequency Type Action Leve UG/KG 0 0% TAGM 4046 800 UG/KG 0 0% TAGM 4046 600 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 200 UG/KG 0 0% TAGM 4046 400 UG/KG 0 0% TAGM 4046 3400 UG/KG 0 0% TAGM 4046 3400 UG/KG 0 0% TAGM 4046 7900 UG/KG 0 0% TAGM 4046 100 UG/KG 0 0% TAGM 4046 1600 UG/KG 0 0% TAGM 4046 1600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 8500 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 100 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 1000	Units Maximum Frequency Type Action Leve Exceed UG/KG O 0% TAGM 4046 800 O O O O O O O O O	Units Maximum Frequency Type Action Leve Exceed Detect UG/KG 0 0% TAGM 4046 800 0 0 0 0 0 0 0 0	Units	Units	Units	United Delect Delect Delect Analyses Value (Q) Value (Q) Value (Q) United (Q) Unite	United December Company Comp	United Delite D		

Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-1T	TP813-2T	TP813-3T	TP813-3T (D)	TP813-4F	TP813-5F	TP813-6F	TP813-7T	TP813-8T
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123682	123683	123684	123686	123688	123689	123691	123692	123693
TOP OF SAMPLE									7	7	6	6	4	3	3	5	5
BOTTOM OF SAMPLE									7.5	7.5	6.5	6.5	5	4	4	6	6
SAMPLE DATE									11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/10/2004	11/10/2004	11/10/2004	11/10/2004	11/11/2004
QC CODE									SA	SA	SA	DU	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
0.02.12			Frequency			Number	Number	Number	O. W.	Or ti	Orti	Or ti	Or ti	Orti	Orti	Or vi	Orti
			of	Criteria	Action	of	of	of									
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances		Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value	(Q) Value	(Q) Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	15	0.18 UJ	0.22 UJ	56 U	0.18 U	510 U	490 U	390 L	` '	· /
1.1.2.2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	15	0.35 UJ	71 UJ	68 U	0.36 U	510 U	490 U	390 L		
1.1.2-Trichloroethane	μg/Kg	0	0%	171GW 4040	000	0	0	15	0.33 UJ	0.42 UJ	71 U	0.34 U	510 U	490 U	390 L	_	
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	15	0.23 UJ	0.29 UJ	30 U	0.24 U	510 U	490 U	390 L		
1.1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	0.14 UJ	0.18 UJ	3.2 J	1.3 J	510 U	490 U	390 L	_	
1.2-Dichloroethane	μg/Kg	0	0%	TAGM 4046	100	0	0	15	2.0 UJ	2.5 UJ	3.2 J 44 U	2.1 U	510 U	490 U	390 (
1,2-Dichloropropane	μg/Kg	0	0%	TAGIVI 4040	100	0	0	15	0.22 UJ	0.28 UJ	44 U	0.23 U	510 U	490 U	390 L	_	
Acetone	μg/Kg μg/Kg	32	13%	TAGM 4046	200	0	2	15	4.9 UJ	6.1 UJ	450 U	5.1 U	2000 U	2000 U	1600 L	_	
Benzene		0	0%	TAGM 4046	60	0	0	15	0.13 UJ	0.17 UJ	33 U	0.14 U	510 U	490 U	390 L		
Bromodichloromethane	μg/Kg	0	0%	1 AGIVI 4040	00	0	0	15	0.13 UJ	0.17 UJ	48 UJ	0.14 U	510 U	490 U	390 (_	
Bromoform	μg/Kg μg/Kg	0	0%			0	0	15	0.22 UJ	0.27 UJ	35 U	0.23 U	510 U	490 U	390 (
Carbon Disulfide		6.6	7%	TAGM 4046	2700	0	1	15	0.20 UJ	6.6 J	54 U	0.20 UJ	1000 U	980 U	780 L		
Carbon Tetrachloride	μg/Kg	0.6	0%	TAGM 4046	600	0	0	15	0.07 UJ	0.24 UJ	65 U	0.07 UJ	510 U	490 U	390 L		
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	15	0.19 UJ	0.24 UJ	51 U	0.20 U	510 U	490 U	390 L		
	μg/Kg		0%	TAGIVI 4046	1700	0	0	15	0.23 UJ 0.19 UJ		51 U			490 U	390 t	-	
Chlorodibromomethane	μg/Kg	0	0%	TACM 4040	1000	0	0			0.24 UJ		0.20 U	510 U		390 L		
Chloroethane	μg/Kg		13%	TAGM 4046	1900 300		2	15	0.34 UJ	0.43 UJ	120 U	0.36 UJ	510 U	490 U	390 L		
Chloroform	μg/Kg	1.6	47%	TAGM 4046	300	0	7	15	0.16 UJ	0.19 UJ	1.6 J	0.16 U	510 U	490 U		-	
cis-1,2-Dichloroethene	μg/Kg	2800					0	15	13 J	19 J	21	9.1	510 U	490 U	390 L		590 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TA ONA 4040	5500	0	0	15	0.13 UJ	0.16 UJ	21 U	0.13 U	510 U	490 U	390 L		
Ethyl Benzene	μg/Kg	0	0%	TAGM 4046	5500	0	Ū	15	0.16 UJ	0.20 UJ	56 U	0.17 U	510 U	490 U	390 L		
Meta/Para Xylene	μg/Kg	0	0%			0	0	15	0.34 UJ	0.42 UJ	130 U	0.35 U	510 U	490 U	390 L	-	
Methyl bromide	μg/Kg	0	0%			-	0	15	0.46 UJ	0.58 UJ	110 U	0.48 UJ	510 U	490 U	390 L	_	
Methyl butyl ketone	μg/Kg	0	0%			0	0	15	2.1 UJ	2.6 UJ	91 U	2.2 U	1000 U	980 U	780 L		
Methyl chloride	μg/Kg	0	0%	TA ON 4 40 10	000	0	0	15	0.22 UJ	0.27 UJ	94 U	0.22 U	510 U	490 U	390 L		
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	1.5 UJ	1.9 UJ	390 U	1.5 U	1000 U	980 U	780 L		
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	15	1.6 UJ	2.0 UJ	180 U	1.6 U	1000 U	980 U	780 L		
Methylene Chloride	μg/Kg	0	0%	TAGM 4046	100	0	0	15	0.44 UJ	0.56 UJ	85 U	0.46 UJ	510 U	490 U	390 L	_	
Ortho Xylene	μg/Kg	0	0%			0	0	15	0.28 UJ	0.35 UJ	50 U	0.29 U	510 U	490 U	390 L		
Styrene	μg/Kg	0	0%			0	0	15	0.20 UJ	0.26 UJ	47 U	0.21 U	510 U	490 U	390 L	_	
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	0.42 UJ	0.52 UJ	45 UJ	0.43 U	510 U	490 U	390 L		
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	0.17 UJ	0.21 UJ	53 U	0.18 U	510 U	490 U	100 J		
trans-1,2-Dichloroethene	μg/Kg	0	0%	TAGM 4046	300	0	0	15	0.24 UJ	0.30 UJ	71 U	0.25 U	510 U	490 U	390 L		
trans-1,3-Dichloropropene	μg/Kg	0	0%			0	0	15	0.17 UJ	0.21 UJ	58 U	0.17 U	510 U	490 U	390 L		
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	11000	7000	60000	65000	540 U	160 J	590	1200	1100
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	0.15 UJ	0.19 UJ	37 U	0.16 U	510 U	490 U	390 L	J 440	U 590 U
Percent Solids	%	89.1	73%			0	11	15					85.5	84.3	84.4	86.7	85.2
Total Organic Carbon	mg/Kg		13%			0	2	15					65.5	84.3 4120	5420	80.7	85.2
Total Organic Carbon	ilig/Ng	5420	13%			U		15						4120	5420		

Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-9T	TP813-10F	TP813-11F	TP813-12F	TP813-13F TI	P813-13F (D)
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123694	123701	123702	123703	123704	123705
TOP OF SAMPLE									123094	4	3	2	3	3
BOTTOM OF SAMPLE									6	5	4	3	4	4
SAMPLE DATE									11/11/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004
QC CODE									SA	12/21/2004 SA	12/21/2004 SA	12/21/2004 SA	12/21/2004 SA	DU
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
S10D1 ID			Fraguenay			Number	Number	Number	SKI	SKI	SKI	SKI	SKI	SKI
			Frequency of	Cuitouio	A a4ia	of	of	of						
Parameter	Unit	Maximum	Detection	Criteria Type	Action Level	Exceedances			Value (Q)	Value (Q)	Value (Q)	Value (O)	Value (Q)	Value (Q)
1.1.1-Trichloroethane		0	0%		800	0	Detections 0	Analyses 15	430 U	Value (Q)	1.6 U	Value (Q) 4.9 U	4.3 U	4.5 U
1,1,2,2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046 TAGM 4046	600	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
· · · ·	μg/Kg	0	0%	TAGIVI 4046	600	0	0	15		4 U			4.3 U	
1,1,2-Trichloroethane	μg/Kg	-		TAGM 4046	200	0	0	15	430 U	4 U	1.6 U 1.6 U	4.9 U 4.9 U		4.5 U
1,1-Dichloroethane	μg/Kg	0	0%			0	-	15	430 U 430 U	4 U		4.9 U	4.3 U 4.3 U	4.5 U
1,1-Dichloroethene	μg/Kg	3.2	13% 0%	TAGM 4046 TAGM 4046	400 100	0	0	15	430 U	4 U	1.6 U 1.6 U	4.9 U	4.3 U	4.5 U 4.5 U
1,2-Dichloroethane	μg/Kg	0	0%	TAGIVI 4046	100	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	
1,2-Dichloropropane	μg/Kg	-		TA ONA 4040	000	-	-							4.5 U
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15 15	1700 U	16 U 4 U	4.3 J	32	17 U 4.3 U	18 U
Benzene	μg/Kg	0	0% 0%	TAGM 4046	60	-	0		430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Bromodichloromethane	μg/Kg	0				0	0	15	430 U	4 U	1.6 U	4.9 U		4.5 U
Bromoform	μg/Kg	0	0%	TA ON 4040	0700	-	1	15	430 U		1.6 U	4.9 U	4.3 U	4.5 U
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0		15	860 U	8.1 U	3.2 U	9.9 U	8.6 U	9.1 U
Carbon Tetrachloride	μg/Kg	0	0%	TAGM 4046	600	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chlorodibromomethane	μg/Kg	0	0%	TA 014 4040	1000	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chloroethane	μg/Kg	0	0%	TAGM 4046	1900	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	7	15	430 U	4 U	1.6 U	1.4 J	4.3 U	4.5 U
cis-1,2-Dichloroethene	μg/Kg	2800	47%			0	· ·	15	430 U	4 U	1.5 J	4.9 J	4.3 U	4.5 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TA 014 4040	5500	0	0	15 15	430 U	4 U 4 U	1.6 U	4.9 U	4.3 U	4.5 U
Ethyl Benzene	μg/Kg	0	0%	TAGM 4046	5500	0	0	-	430 U		1.6 U	4.9 U	4.3 U	4.5 U
Meta/Para Xylene	μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl bromide	μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl butyl ketone	μg/Kg	0	0%			0	0	15	860 U	8.1 UJ	3.2 UJ	9.9 UJ	8.6 UJ	9.1 UJ
Methyl chloride	μg/Kg	0	0%	T. 01. 10.10		0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	860 U	8.1 UJ	3.2 UJ	4.5 J	8.6 UJ	9.1 UJ
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	15	860 U	8.1 UJ	3.2 UJ	9.9 UJ	8.6 UJ	9.1 UJ
Methylene Chloride	μg/Kg	0	0%	TAGM 4046	100	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Ortho Xylene	μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Styrene	μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	430 U	3.2 J	1.6 U	4.9 U	4.3 U	4.5 U
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
trans-1,2-Dichloroethene	μg/Kg	0	0%	TAGM 4046	300	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
trans-1,3-Dichloropropene	μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	1400	4800 J	11	1000 J	1.3 J	4.5 U
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	430 U	4 U	1.5 J	4.9 U	4.3 U	4.5 U
Percent Solids	%	89.1	73%			0	11	15	84	81	80.7	77.3	89.1	87.9
Total Organic Carbon	mg/Kg	5420	13%			0	2	15						

Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-1	SP813-2		SP813-3		SP813-3	SP813-4	SP813-5	SP813-6	SP813-7	SP813-8
MATRIX									SOIL	SOIL		SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123685	123687		123695		123696	123697	123698	123699	123700	123706
TOP OF SAMPLE									N/A	N/A		N/A		N/A	N/A	N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A		N/A		N/A	N/A	N/A	N/A	N/A	N/A
SAMPLE DATE									11/3/2004	11/10/200	4	12/9/2004		12/9/2004	12/9/2004	12/9/2004	12/9/2004	12/9/2004	12/21/2004
QC CODE									SA	SA	-	SA		DU	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI		SRI		SRI	SRI	SRI	SRI	SRI	SRI
0.02.1.2			Frequency			Number	Number	Number	0	0.1.1		J. 1.		O 1.11	U	J	0.1.1		Gr.
			of	Criteria	Action	of	of	of											
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(O) Val	ıe (Q)	Value	(O)	Value (Q)	Value (Q) Value (Q)	Value (Q)	Value (0) Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	9	0.23 l	(/	30 U	4.4	(/	4.8 U	4.8 U	, (,	5.2 U	390 U	1.7 U
1.1.2.2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	9	0.46 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
1,1,2-Trichloroethane	μg/Kg	0	0%	1710101 4040	000	0	0	9	0.44 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	9	0.30 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
1.1-Dichloroethene	μg/Kg	0.65	11%	TAGM 4046	400	0	1	9	0.19 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	0.65 J
1.2-Dichloroethane	μg/Kg	0.03	0%	TAGM 4046	100	0	0	9	2.7 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
1,2-Dichloropropane	μg/Kg	0	0%	1710101 4040	100	0	0	9	0.29 (30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Acetone	μg/Kg	3.8	11%	TAGM 4046	200	0	1	9	6.4 (00 U	18	-	19 U	19 U		21 U	1500 U	3.8 J
Benzene	μg/Kg	0	0%	TAGM 4046	60	0	0	9	0.17 (30 U	4.4		4.8 U	4.8 U		5.2 U	390 U	1.7 U
Bromodichloromethane	μg/Kg	0	0%	1AGW14040	00	0	0	9	0.17		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Bromoform	μg/Kg	0	0%			0	0	9	0.29 U		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	1	9	0.20 0		00 U	8.8	-	9.5 U	9.6 U		10 U	770 U	1.7 U
Carbon Tetrachloride		0	0%	TAGM 4046	600	0	0	9	0.09 t		30 U	4.4	-	9.5 U	9.6 U		5.2 U	390 U	1.7 U
Chlorobenzene	μg/Kg	0		TAGM 4046	1700	0	0	9			30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Chlorodibromomethane	μg/Kg	0	0% 0%	TAGIVI 4046	1700	0	0	9	0.30 l 0.25 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Chloroethane	μg/Kg	0		TAGM 4046	1900	0	0	9	0.25 t		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Chloroform	μg/Kg	0	0%			0	0	9				4.4	-	4.8 U	4.8 U		5.2 U		1.7 U
	μg/Kg		0%	TAGM 4046	300	0	5	9	0.20 l		30 U		-					390 U	
cis-1,2-Dichloroethene	μg/Kg	20	56%			0		9	3.3		30 U	2.4	-	2.6 J	1.7 J	4.2 U	5.4 U	390 U	20
cis-1,3-Dichloropropene	μg/Kg	0	0%	TA 014 4040	5500		0		0.17 \		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Ethyl Benzene	μg/Kg	0	0%	TAGM 4046	5500	0	0	9	0.21 l		30 U	4.4		4.8 U	4.8 U		5.2 U	390 U	1.7 U
Meta/Para Xylene	μg/Kg	0	0%			0	0	1	0.44 \		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Methyl bromide	μg/Kg	0	0%			0	0	9	0.61 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Methyl butyl ketone	μg/Kg	0	0%			0	0	9	2.8 l		00 U	8.8		9.5 UJ	9.6 U		10 UJ	770 U	3.3 UJ
Methyl chloride	μg/Kg	0	0%	7.0		0	0	9	0.28 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Methyl ethyl ketone	μg/Kg	0	0%	TAGM 4046	300	0	0	9	2.0 l		00 U	8.8		9.5 UJ	9.6 U		10 UJ	770 U	3.3 UJ
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	9	2.1 l		00 U	8.8		9.5 UJ	9.6 U		10 UJ	770 U	3.3 UJ
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	1	9	0.59 l		50	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Ortho Xylene	μg/Kg	0	0%			0	0	9	0.37 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Styrene	μg/Kg	0	0%			0	0	9	0.27 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Tetrachloroethene	μg/Kg	1.7	11%	TAGM 4046	1400	0	1	9	0.55 l		30 U	4.4		4.8 U	4.8 U		5.2 U	390 U	1.7 J
Toluene	μg/Kg	0	0%	TAGM 4046	1500	0	0	9	0.22 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
trans-1,2-Dichloroethene	μg/Kg	1.3	11%	TAGM 4046	300	0	1	9	0.32 เ		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.3 J
Trans-1,3-Dichloropropene	μg/Kg	0	0%			0	0	9	0.22 l		30 U	4.4	-	4.8 U	4.8 U		5.2 U	390 U	1.7 U
Trichloroethene	μg/Kg	28000	100%	TAGM 4046	700	6	9	9	28000		00	3100		190	110	9.3	7400 J	1700	18000 J
Vinyl Chloride	μg/Kg	7.4	11%	TAGM 4046	200	0	1	9	0.20 l	JJ 6	30 U	4.4	U	4.8 U	4.8 U	4.2 U	5.2 U	390 U	7.4

EM-5 Soil Sample Radiological Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID	T					SS12-106	SS12-107	SS12-107 (D)	SS12-108	SC12 100	2010.417
MATRIX				<u> </u>		SOIL	SOIL	SOIL	SOIL	SS12-109 SOIL	SS12-117
SAMPLE ID					Ì	123677	123676	123681	123673	123672	SOIL 123674
TOP OF SAMPLE						0	0	0	0	123072	0
BOTTOM OF SAMPLE						0.2	0.2	0.2	0.2	0.2	0.2
SAMPLE DATE						6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004
QC CODE						SA	SA	DU	SA SA	SA SA	SA
STUDY ID						SRI	SRI	SRI	SRI	SRI	SRI
			Frequency	Number	Number						J J J
			of	of	of		-				
Parameter	Unit	Maximum	Detection	Detections	Analyses	Value (Q) Uncertai	nty Value (Q) U	ncertainty Value (Q) Uncertain	y Value (Q) Uncertainty	Value (Q) Uncertainty	Value (Q) Uncertainty
Actinium-228	PCI/G	0.962	100%	11	11	0.784 0.187	0.851 0.22		0.946 0.194	0.779 0.223	0.760 0.204
Americium-241	PCI/G	0	0%	0	11	0.0239 U 0.113	0.0428 U 0.10		-0.0957 U 0.120	0.0531 U 0.0998	-0.0298 U 0.103
Antimony-124	PCI/G	0	0%	0	11	0.0166 U 0.0211	0.0147 U 0.02		-0.0124 U 0.0213	-0.00663 U 0.0287	-0.0124 U 0.0247
Antimony-125 Barium-133	PCI/G	0	0%	0	11	0.0275 U 0.0455	0.0382 U 0.05		-0.037 U 0.0529	0.0128 U 0.0615	-0.0538 U 0.064
Barium-140	PCI/G PCI/G	0	0%	0	11	-0.0106 U 0.0238	0.0107 U 0.02		0.00497 U 0.0259	0.0014 U 0.0308	-0.000114 U 0.0336
Beryllium-7	PCI/G	0 0	0%	0	11	0.0291 U 0.114	0.151 U 0.16		0.058 U 0.161	0.113 U 0.159	-0.0223 U 0.150
Bismuth-212	PCI/G	0.747	0% 100%	0	11	0.138 U 0.153	0.021 U 0.18		0.0871 U 0.170	0.0144 U 0.216	0.0661 U 0.213
Bismuth-214	PCI/G	0.747	100%	11 11	11	0.556 0.216 0.773 0.100	0.572 0.28		0.434 0.327	0.747 0.326	0.484 0.350
Cerium-139	PCI/G	0.007	0%	0	11	-0.00395 U 0.100	0.800 0.12		0.706 0.106	0.787 0.139	0.637 0.114
Cerium-141	PCI/G	0	0%	0	11	0.00766 U 0.0355	0.00289 U 0.010		0.00118 U 0.0158	-0.00882 U 0.0193	0.00217 U 0.0186
Cerium-144	PCI/G	0	0%	0	11	-0.0462 U 0.098	0.0171 U 0.038		0.0247 U 0.0453	0.054 U 0.0538	0.0311 U 0.0385
Cesium-134	PCI/G	0	0%	0	11	0.00 UJ 0.0282	0.00 UJ 0.03		-0.0244 U 0.110	-0.0427 U 0.130	-0.012 U 0.123
Cesium-136	PCI/G	0	0%	0	11	0.048 U 0.0496	-0.00783 U 0.063		0.0406 U 0.0288 -0.0124 U 0.0533	0.00335 U 0.034	0.045 U 0.0397
Cesium-137	PCI/G	0.522	82%	9	11	0.102 0.0312	0.399 0.059	3.331 33 311.12	-0.0124 U 0.0533 0.324 0.053	-0.0114 U 0.0672 0.382 0.0641	0.0167 U 0.0674
Chromium-51	PCI/G	0	0%	0	11	-0.0313 U 0.166	-0.0595 U 0.22°		0.324 0.033 0.271 U 0.192	0.0206 U 0.234	0.522 0.0556
Cobalt-56	PCI/G	0	0%	0	11	0.0141 U 0.0218	0.00667 U 0.046		-0.00477 U 0.0215	0.0266 U 0.0254	0.124 U 0.236 0.0292 U 0.0275
Cobalt-57	PCI/G	0	0%	0	11	0.00773 U 0.0125	-0.00296 U 0.014		0.00419 U 0.0135	0.00397 U 0.0157	-0.0066 U 0.0151
Cobalt-58	PCI/G	0	0%	0	11	-0.00491 U 0.0203	-0.00472 U 0.023		-0.00256 U 0.0232	-0.00683 U 0.0225	-0.00622 U 0.0243
Cobalt-60	PCI/G	0	0%	0	11	0.000928 U 0.0212	0.0093 U 0.026		0.0107 U 0.023	0.000628 U 0.0282	0.0174 U 0.0285
Europium-152	PCI/G	0	0%	0	11	-0.0291 U 0.0468	-0.0133 U 0.059	3 -0.0493 U 0.0533	-0.0218 U 0.0566	0.0348 U 0.0626	-0.0599 U 0.0683
Europium-154	PCI/G	0	0%	0	11	0.057 U 0.072	-0.0136 U 0.077	0.00815 U 0.0635	-0.0285 U 0.0726	-0.0119 U 0.0844	0.0326 U 0.0779
Europium-155	PCI/G	0	0%	0	11	0.0532 U 0.0829	0.0911 U 0.057		0.0762 U 0.0787	0.0724 U 0.0665	0.00 UJ 0.104
Iridium-192	PCI/G	0	0%	0	11	0.00731 U 0.0162	-0.00821 U 0.020		0.0237 U 0.0179	0.00221 U 0.0225	0.00172 U 0.0229
Iron-59 Lead-210	PCI/G	0	0%	0	11	0.00422 U 0.048	0.0117 U 0.053		-0.0298 U 0.0526	0.0374 U 0.0607	-0.0591 U 0.0567
Lead-211	PCI/G PCI/G	0	0% 0%	0	11	3.46 U 4.13	3.11 U 2.97	1.56 U 4.49	1.88 U 6.59	1.60 U 2.71	2.64 U 5.05
Lead-212	PCI/G	0.966	100%	0 11	11	0.127 U 0.465	-0.138 U 0.543		-0.129 U 0.616	0.442 U 0.669	0.270 U 1.38
Lead-214	PCI/G	0.932	100%	11	11	0.856 0.0961 0.843 0.115	0.948 0.108		0.940 0.113	0.775 0.095	0.759 0.0663
Manganese-54	PCI/G	0.0254	9%	1	11	-0.00636 U 0.0205	0.932 0.145		0.809 0.118	0.885 0.134	0.722 0.120
Mercury-203	PCI/G	0.02.04	0%	0	11	-0.00858 U 0.0214	0.0227 U 0.023 0.00996 U 0.027		0.0227 U 0.0393	0.0207 U 0.0342	0.00675 U 0.0262
Neodymium-147	PCI/G	0	0%	0	11	0.00261 U 0.234	-0.0883 U 0.281	6 0.0203 U 0.021 0.0512 U 0.233	0.0218 U 0.0282	0.0348 U 0.0351	0.029 U 0.0336
Neptunium-239	PCI/G	0	0%	0	11	-0.0178 U 0.0943	0.0389 U 0.107	-0.00949 U 0.115	0.279 U 0.244 -0.0648 U 0.105	0.0788 U 0.303	0.306 U 0.315
	PCI/G	0	0%	0	11	0.00928 U 0.0177	0.0143 U 0.024		-0.0648 U 0.105 -0.0118 U 0.0178	-0.0409 U 0.116 -0.0188 U 0.0212	-0.0769 U 0.113
····	PCI/G	0	0%	0	11	-0.0188 U 0.0248	0.0506 U 0.038		0.0216 U 0.0299	0.0285 U 0.0332	0.0084 U 0.0244
Potassium-40	PCI/G	27.6	100%	11	11	21.8 1.94	21.5 1.91	23.0 1.88	23.6 2.02	20.1 1.80	0.0182 U 0.0328 18.2 1.14
	PCI/G	0	0%	0	11	-0.00695 U 0.0175	-0.000243 U 0.022		-0.00283 U 0.0186	0.011 U 0.0219	0.00 UJ 0.0507
	PCI/G	0	0%	0	11	0.0227 U 0.0213	-0.00604 U 0.025		0.0112 U 0.0241	0.00711 U 0.0301	0.0123 U 0.028
·····	PCI/G	0.867	100%	11	11	0.773 0.100	0.800 0.127		0.706 0.106	0.787 0.139	0.637 0.114
	PCI/G	0.962	100%	11	11	0.784 0.187	0.851 0.228	0.844 0.193	0.946 0.194	0.779 0.223	0.760 0.204
	PCI/G	0	0%	0	11	0.0306 U 0.162	0.0972 U 0.207		0.044 U 0.168	0.115 U 0.203	0.0861 U 0.199
	PCI/G	0	0%	0	11	-0.0236 U 0.0195	0.0014 U 0.022		0.0108 U 0.0207	0.00223 U 0.0269	3.170E-05 U 0.0245
	PCI/G	0 007	0%	0	11	0.0203 U 0.0257	-0.00748 U 0.027	······································	-0.0102 U 0.026	-0.00436 U 0.0301	0.0118 U 0.0279
······································	PCI/G	0.327	100%	11	11	0.327 0.0513	0.245 0.048		0.283 0.0527	0.310 0.0547	0.251 0.0595
······	PCI/G PCI/G	0.867	100%	11	11	0.773 0.100	0.800 0.127	0.754 0.124	0.706 0.106	0.787 0.139	0.637 0.114
······	PCI/G	0	0%	0	11	0.954 U 1.05	0.640 U 1.13	0.453 U 1.20	1.04 U 1.46	0.266 U 1.44	0.164 U 1.27
·····	PCI/G	0	0%	0	11	-0.0184 U 0.0215	-0.0165 U 0.027		0.00428 U 0.0248	-0.0176 U 0.0277	-0.0113 U 0.0303
······································	PCI/G	0	0%	0	11	0.0332 U 0.154	0.0834 U 0.186	0.0828 U 0.121	0.107 U 0.194	0.00 UJ 0.229	0.140 U 0.164
	PCI/G	0	0%	0	11	0.954 U 1.05	0.640 U 1.13	0.453 U 1.20	1.04 U 1.46	0.266 U 1.44	0.164 U 1.27
	PCI/G	0	0%	<u> </u>	11	0.00253 U 0.0168 -0.0907 U 0.0515	-0.0075 U 0.023		0.0122 U 0.0185	-0.00218 U 0.0233	0.010 U 0.0246
······································	PCI/G	0	0%	<u> </u>	11	0.0328 U 0.0518	0.0219 U 0.061		0.00679 U 0.0553	-0.0264 U 0.073	0.0242 U 0.0643
					<u> </u>	0.0020 0 0.0010	0.00339 U 0.040	0.0271 U 0.0342	0.0274 U 0.038	0.0647 U 0.0457	-0.00139 U 0.0457

EM-5 Soil Sample Radiological Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID	1		T	T		SS12-118	SS12-109	0040 400				
MATRIX			 		<u> </u>	SOIL	SOIL SOIL	SS12-120	TP12-15	5A	TP12-15C	
SAMPLE ID				† 		123678	123670	SOIL	SOIL	_	SOIL	
TOP OF SAMPLE	1		 	<u> </u>	ļ	0		123671	123678	5	123680	
BOTTOM OF SAMPLE	=		!	ļ .	-	0.2	0	0	3		0.5	
SAMPLE DATE	1		†	 		6/24/2004	0.2	0.2	3.5		0.8	
QC CODE	╂┈┈┤			-	 		6/24/2004	6/24/2004	6/24/200	04	6/24/2004	
STUDY ID					 	SA	SA	SA	SA		SA	
מוטטווט	 		F	NI	A.L	SRI	SRI	SRI	SRI		SRI	
			Frequency	1	Number		***************************************	1				
Parameter	Linit	Massimosum	of Detection	of	of				***************************************			
Actinium-228	Unit	Maximum	Detection	Detections		Value (Q) Uncertainty				/alue (Q) Uncertain	y Value	(Q) Uncertainty
Americium-241	PCI/G PCI/G	0.962	100%	11	11	0.862 0.198		.232 0.951		0.193	0.934	0.203
Antimony-124	PCI/G	0	0%	0	11	0.0133 U 0.0862	0.012 U 0			0257 U 0.0845	-0.0156	U 0.0737
Antimony-125		0	0%	0	11	-0.00984 U 0.0193	0.00784 U 0			0494 U 0.0184	0.000192	U 0.0183
Barium-133	PCI/G	0	0%	0	11	-0.0144 U 0.052	0.0387 U 0			0.018 U 0.0425	-0.0219	U 0.0432
Barium-140	PCI/G	0	0%	0	11	0.00586 U 0.0229	-0.0108 U 0			0101 U 0.0232	-0.00994	U 0.0227
	PCI/G	0	0%	0	11	0.0301 U 0.124	-0.0256 U 0		U 0.163	-0.12 U 0.128	-0.000504	U 0.110
Beryllium-7	PCI/G	0	0%	0	11	-0.13 U 0.189	-0.0218 U 0		U 0.228	D.117 U 0.152	0.113	U 0.150
Bismuth-212	PCI/G	0.747	100%	11	11	0.641 0.274		255 0.470		0.226	0.568	0.311
Bismuth-214	PCI/G	0.867	100%	11	11	0.867 0.123		116 0.641		0.795 0.114	0.701	0.109
Cerium-139	PCI/G	0	0%	0	11	-0.00412 U 0.0135	-0.002135 U 0		U 0.0276 0.0	0448 U 0.0134		U 0.0149
Cerium-141	PCI/G	0	0%	0	11	-0.00805 U 0.0269	0.0269 U 0			0115 U 0.0226		U 0.0376
Cerium-144	PCI/G	0	0%	0	11	-0.0155 U 0.094	-0.0563 U 0		U 0.154 -0.	0709 U 0.0929		U 0.0989
Cesium-134	PCI/G	0	0%	0	11	0.00 UJ 0.0385	0.0203 UJ 0			0.00 UJ 0.0308		UJ 0.0319
Cesium-136	PCI/G	0	0%	0	11	-0.0218 U 0.0538	-0.005312 U 0.			0595 U 0.0505		U 0.0486
Cesium-137	PCI/G	0.522	82%	9	11	0.115 0.0366	0.2322 0.	0474 0.367	0.0684 -0.0	0818 U 0.0187	0.0134	U 0.0196
Chromium-51	PCI/G	0	0%	0	11	-0.0501 U 0.185	0.0802 U 0.	200 0.145).047 U 0.161	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U 0.222
Cobalt-56	PCI/G	0	0%	0	11	-0.000664 U 0.0204	0.0273 U 0.	0368 -0.00152		0292 U 0.0194		U 0.0199
Cobalt-57	PCI/G	0	0%	0	11	-0.00279 U 0.0112	-0.00714 U 0.	0133 -0.00877		0029 U 0.0116		U 0.0121
Cobalt-58	PCI/G	0	0%	0	11	-0.0102 U 0.0193	0.00458 U 0.	0214 -0.00481		0.003 U 0.0188		U 0.0194
Cobalt-60	PCI/G	0	0%	0	11	0.00353 U 0.0239	-0.0125 U 0.	024 -0.00306		0207 U 0.0196		U 0.0201
Europium-152	PCI/G	0	0%	0	11	-0.0408 U 0.0502	-0.0413 U 0.	0579 0.0208	·····	0146 U 0.0448		U 0.0735
Europium-154	PCI/G	0	0%	0	11	-0.0664 U 0.0737	0.004132 U 0.	0732 0.0228	U 0.083 -0.00	0739 U 0.127	-0.00388	
Europium-155	PCI/G	0	0%	0	11	0.0288 U 0.0489	0.054 U 0.	063 0.0247		0273 U 0.0603		U 0.0634
ridium-192	PCI/G	0	0%	0	11	0.00245 U 0.0174	0.005826 U 0.	0198 -0.0172		0038 U 0.0153		U 0.0167
ron-59	PCI/G	0	0%	0	11	0.00134 U 0.0484	0.02182 U 0.			0254 U 0.0506		U 0.0469
_ead-210	PCI/G	0	0%	0	11	1.54 U 2.15	2.922 U 3.	92 0.827		0728 U 2.07		U 2.25
_ead-211	PCI/G	0	0%	0	11	0.202 U 0.455	0.1023 U 0.	610 -0.62		.373 U 0.503		U 0.462
_ead-212	PCI/G	0.966	100%	11	11	0.904 0.0901	0.914 0.	0.942		.966 0.0903	0.918	0.0896
_ead-214	PCI/G	0.932	100%	11	11	0.813 0.108	0.813 0.	113 0.866		.883 0.109	0.882	0.112
Manganese-54	PCI/G	0.0254	9%	1	11	0.027 U 0.0298	0.01414 U 0.	02843 0.0224 (0676 U 0.0191	0.0254	0.0187
Mercury-203	PCI/G	0	0%	0	11	0.00751 U 0.0209	0.02333 U 0.			0.00 UJ 0.0256		U 0.0261
Neodymium-147	PCI/G	0	0%	0	11	0.0322 U 0.278	0.01666 U 0.	251 -0.00576 l	······································	0.12 U 0.232		U 0.230
Neptunium-239	PCI/G	0	0%	0	11	-0.0514 U 0.0855	-0.01749 U 0.	0.016 U	J 0.146 0.0	0341 U 0.0906		U 0.0951
Niobium-94	PCI/G	0	0%	0	11	0.0201 U 0.0239	5.900E-05 U 0.			0326 U 0.0181		U 0.0167
Niobium-95	PCI/G	0	0%	0	11	0.0296 U 0.0582	0.0038 U 0.	0.0418 U		0125 U 0.0248		U 0.0255
Potassium-40	PCI/G	27.6	100%	11	11	24.5 1.98	20.09 1.		1.88	27.6 2.09	26.4	2.17
Promethium-144	PCI/G	0	0%	0	11	0.00256 U 0.0183	-0.004 U 0.0			0279 U 0.0172		U 0.0194
Promethium-146	PCI/G	0	0%	0	11	0.0136 U 0.0229	0.0169 U 0.0			0904 U 0.0208	0.00335	
Radium-226	PCI/G	0.867	100%	11	11	0.867 0.123	0.754 0.			.795 0.114	0.701	0.109
Radium-228	PCI/G	0.962	100%	11	11	0.862 0.198	0.962 0.3			.946 0.193	0.934	0.203
Ruthenium-106	PCI/G	0	0%	0	11	-0.0261 U 0.166	-0.01654 U 0.		······································	0541 U 0.150		U 0.155
	PCI/G	0	0%	0	11	-0.00274 U 0.0207	0.0182 U 0.0)207 -0.000367 L	J 0.0257 -0.00	0662 U 0.0178	-0.0114	
Sodium-22	PCI/G	0	0%	0	11	-0.0258 U 0.0265	-0.001373 U 0.0	0.0082 L)271 U 0.0455	-0.00132	
hallium-208	PCI/G	0.327	100%	11	11	0.308 0.0434	0.281 0.0	0.255	~~- }	.321 0.0506	0.276	0.0431
horium-230	PCI/G	0.867	100%	11	11	0.867 0.123	0.7539 0.1	16 0.641	····	.795 0.114	0.701	0.109
horium-234	PCI/G	0	0%	0	11	0.650 U 1.04	0 UJ 1.3	33 1.45 L		.868 U 1.02		J 0.920
in-113	PCI/G	0	0%	0	11	0.00024 U 0.0221	1.305 U 0.0			0572 U 0.0197	-0.0195	
Jranium-235	PCI/G	0	0%	0	11	0.0265 U 0.0954	0.127 U 0.1			0683 U 0.127	0.00922	
	PCI/G	0	0%	0	11	0.650 U 1.04	0.00 UJ 1.3			.868 U 1.02		J 0.920
'ttrium-88	PCI/G	0	0%	0	11	-0.00392 U 0.0174	-0.003045 U 0.0			0.00 UJ 0.0168	-0.00253 U	
inc-65	PCI/G PCI/G	0	0%	0	11	-0.0131 U 0.0562	-0.000501 U 0.0			1454 U 0.0562	-0.00253 t	