

JULY 1995

and APP 1 - 2019年夏夏夏日日 - 2019 Anno - 2019 - 2019年1月1日 - 2019 Anno - 2019 - 2019年1月1日 - 201

1

Ľ.

PROJECT SCOPING PLAN REMEDIAL INVESTIGATION/FEASIBILITY STUDY AT SEAD-64D SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

. .

Prepared For: Seneca Army Depot Activity Romulus, New York

ne area

Prepared By:

Parsons Engineering Science, Inc. Prodential Center Boston, Massachusetts

TABLE OF CONTENTS

Se	ection
~ ~	WVAU AA

Page 1

1.0	INTRO	DUCT	ION	1-1
	1.1	Purpos	se of Report	1-1
	1.2 [`]	Report	Organization	1-1
	1.3	Backg	round	1-1
2.0	SITE (CONDI	TIONS	2-1
	2.1	Physic	al Setting	2-1
	2.2	Regior	nal Geological Setting	2-1
	2.3	Regior	nal Hydrogeological Setting	2-1
3.0	SCOPI	NG OI	F THE RI/FS	3-1
	3.1	Conce	ptual Site Model	3-1
		3.1.1	Site History	3-1
		3.1.2	Physical Site Characterization	3-1
			3.1.2.1 Physical Site Setting	3-1
			3.1.2.2 Site Geology	3-2
			3.1.2.3 Soil Gas Survey	3-4
			3.1.2.4 Geophysics	3-11
			3.1.2.5 Site Hydrology and Hydrogeology	3-19
			3.1.2.6 Chemical Analysis Results	3-21
		3.1.3	Environmental Fate of Constituents	3-31
			3.1.3.1 Semivolatile Organic Compounds	3-31
			3.1.3.2 Heavy Metals	3-32
		3.1.4	Data Summary and Conclusions	3-35
	3.2	Prelim	inary Identification of Potential Receptors and Exposure	
		Scenar	rios	3-35
		3.2.1	Potential Source Areas and Release Mechanisms	3-37
		3.2.2	Potential Exposure Pathways and Receptors - Current Uses	3-37
			3.2.2.1 Ingestion and Dermal Exposure Due to Surface	
			Water Runoff and Sediment	3-37
			3.2.2.2 Soil Ingestion and Dermal Contact	3-38
			3.2.2.3 Groundwater Ingestion, Inhalation, and	
			Dermal Contact	3-38
			3.2.2.4 Dust Inhalation and Dermal Contact	3-38
		3.2.3	Potential Exposure Pathways and Receptors - Future Use	3-38

i

TABLE OF CONTENTS (CONT.)

Sectio	<u>on</u>		Page
	3.3	Scoping of Potential Remedial Action Alternatives	3-39
	3.4	Preliminary Identification of Applicable or Relevant and	
		Appropriate Requirements (ARARs)	3-39
	3.5	Data Quality Objectives (DQOs)	3-39
	3.6	Data Gaps and Data Needs	3-40
		3.6.1 Rationale for the Remedial Investigation	3-40
		3.6.2 Soil Data	3-40
		3.6.3 Groundwater Data	3-41
		3.6.4 Surface Water/Sediment Data	3-42
		3.6.5 Ecological Data	3-42
		3.6.6 Archeological Data	3-42
4.0	TASK	C PLAN FOR THE RI	4-1
	4.1	Pre-Field Activities	4-1
	4.2	Field Investigations	4-1
		4.2.1 Geophysical Survey	4-2
		4.2.2 Soil Investigation	4-2
		4.2.2.1 Soil Boring Program	4-2
		4.2.2.2 Test Pit Program	4-2
		4.2.2.3 Surface Soil Sampling Program	4-5
		4.2.2.4 Soil Sampling Summary	4-5
		4.2.3 Groundwater Investigation	4-5
		4.2.3.1 Monitoring Well Installation and Sampling	4-5.
		4.2.3.2 Aquifer Testing	4-6
		4.2.4 Surface Water/Sediment Sampling Program	4-6
		4.2.5 Ecological Investigation	4-6
		4.2.5.1 Site Description	4-7
		4.2.5.2 Contaminant-Specific Impact Analysis	4-8
		4.2.6 Archeological Investigation	4-10
		4.2.7 Analytical Program	4-10
		4.2.8 Surveying	4-13
	4.3	Data Reduction, Assessment, and Interpretation	4-13
	4.4	Baseline Risk Assessment	4-13
	4.5	Data Reporting	4-14

TABLE OF CONTENTS (CONT.)

Sectio	on		Page
	4.6	Task Plan Summary	4-14
5.0	TASI	K PLAN FOR THE FS	5-1
	5.1	Development of Remedial Action Objectives	5-1
	5.2	Development of Remedial Response Alternatives	5-1
	5.3	Screening of Remedial Action Alternatives	5-1
	5.4	Detailed Analysis of Remedial Action Alternatives	5-1
	5.5	Task Plan Summary for the FS	5-1
6.0	PLAI	NS AND MANAGEMENT	6-1
	6.1	Scheduling	6-1
	6.2	Staffing	6-1

.

,

June 1995

Page ili K:\Seneca\RIFS\SEAD64D\Report.TOC

1

	LIST OF TABLES	
<u>Table</u>	Title	Page
3-1	Summary of ESI Soil Gas Survey Results	3-6
3-2	Results of ESI Seismic Refraction Survey	3-13
3-3	Groundwater Elevation Summary from ESI	
3-4	Soil Analysis Results from ESI	
3-5	Groundwater Analysis Results from ESI	3-30
3-6	Summary of Fate and Transport Parameters for Selected	Organic
	Compounds	3-33
4-1	Summary of Sampling and Analyses	4-12

June 1995

Page iv K:\Seneca\RIFS\SEAD64D\Report.TOC LIST OF FIGURES

Figure	Title	Page
1-1 .	Seneca Army Depot Activity Map	1-2
1-2	Site Plan	1-3
3-1	Location of ESI Sampling Points	3-3
3-2	Location of ESI Soil Gas Sampling Points	3-5
3-3	Location of ESI Seismic and GPR Surveys	3-12
3-4	Location of ESI Electromagnetic Transects	3-15
3-5	EM Survey, Quadrature Response	3-16
3-6	EM Survey, In-Phase Response	3-17
3-7	Groundwater Elevation Map	3-20
3-8	Exposure Pathway Summary	3-36
4-1	Proposed Sampling Locations	4-3
4-2	Proposed Sampling Locations - South End	4-4

LIST OF APPENDICES

Appendix A	ESI Boring and Test Pit Logs
Appendix B	ESI Monitoring Well Installation Diagrams
Appendix C	ESI Monitoring Well Development Reports
Appendix D	Field Sampling and Analysis Plan
Appendix E	Health and Safety Plan
Appendix F	Chemical Data Acquisition Plan
Appendix G	United States Department of Interior Fish and Wildlife Services Endangered and Threatened Species Letter
Appendix H	Response to Review Comments
Appendix I	Scope of Work

LIST OF ACRONYMS

1,2-DCA	1,2-Dichloroethane
1,2-DCE	1,2-Dichloroethylene (total)
AA	Atomic absorption
AMC	U.S. Army Material Command
AN	Army-Navy
AOC	Areas of Concern
APCS	Air Pollution Control System
AQCR	Genesee-Finger Air Quality Control Region
ARAR	Applicable or Relevant and Appropriate Requirements
ASTM	American Society for Testing and Materials
BOD	Biological Oxygen Demand
CEC	Cation exchange capacity
CERCLA	Comprehensive Environmental Response, Compensation and Liability
	Act
CLP	Contract Laboratory Program
cm	Centimeters
cm/sec	Centimeters per second
COD	Chemical Oxygen Demand
Cr	Chromium
CaCO ₃	Calcium Carbonate
CRT	Cathode ray tube
DARCOM	Development and Readiness Command
DERA	Defense Environmental Restoration Account
DO	Dissolved oxygen
DOT	Department of Transportation
DQO	Data Quality Objective
DRMO	Defense, Revitalization and Marketing Office
EM-31	Electromagnetic
EPA	Environmental Protection Agency
ESI	Expanded Site Inspections
FS	Feasibility Study
ft	Feet
ft/ft	Feet per foot
ft/sec	Feet per second
ft/yr	Feet per year

Page vii K:\Seneca\RIFS\SEAD64D\Report.TOC

LIST OF ACRONYMS (CONT.)

GA	Classification: The best usage of Class GA waters is as a source of
CC	Cas chromotograph
	Gallons per minute
CDP	Ground population roder
CPI	Geo Becoreb Institute
CSSI	Gas Research Institute
USSI USSI	Geophysical Survey Systems, Inc.
HSWA	Hazardous and Solid waste Amendments
IAG	Interagency Agreement
Koc	Organic carbon coefficient
Ib	pound
L/min	Liters per minute
MCL	Maximum Contaminant Level
mg/l	Milligram per liter
mg/kg	Milligrams per kilogram
MHz	Megahertz
Miniram	Minature Real-Time Aerosol Meter
mL	Milliliter
mmhos/m	Millimhos per meter
MSL	Mean sea level
MW	Monitoring Well
NA	Not analyzed or not available
NBS	National Bureau of Standards
NGVD	National Geologic Vertical Datum
NO ₂ /N	Nitrite-Nitrogen
NO ₃ /N	Nitrate-Nitrogen
NPL	National Priority List
NTU	Nephelometric turbidity units
NYSDEC	New York State Department of Environmental Conservation
OB	Open Burning
OD	Open Detonation
OVM	Organic Vapor Meter
Pb	Lead
PAH	Polynuclear Aromatic Hydrocarbon
Parsons ES	Parsons Engineering Science, Inc.
PCB	Polychlorinated biphenyls

LIST OF ACRONYMS (CONT.)

PID	Photoionization detector		
ppm	parts per million		
ppmv	parts per million per volume		
PSCR	Preliminary Site Characterization Report		
QA	Quality Assurance		
QA/QC	Quality Assurance/Quality Control		
QC	Quality Control		
RAGS	EPA Risk Assessment Guidance for Superfund		
RCRA	Resource Conservation and Recovery Act		
RF	Response factor		
RI	Remedial Investigation		
RI/FS	Remedial Investigation/Feasibility Study		
ROD	Record of Decision		
RQD	Rock Quality Designation		
SB	Soil boring		
SCS	Soil Conservation Service		
SD	Sediment sample		
SEAD	Seneca Army Depot (old name)		
SEDA	Seneca Army Depot Activity		
sec	Seconds		
SOW	Statement of Work		
SS	Soil sample		
SVO	Semivolatile Organic Compounds		
SW	Surface water sample		
SWMU	Solid Waste Management Unit		
TAGM	Technical and Administrative Guidance Memorandum		
TAL	Target analyte list		
TCL	Target compound list		
TDS	Total dissolved solids		
TKN	Total Kjeldah Nitrogen		
TOC	Total Organic Carbon		
TOX	Total Organic Halogens		
TRPH	Total Recovered Petroleum Hydrocarbons		
TP	Test Pit		
UCL	Upper Confidence Level		
ug/g	Micrograms per gram		

LIST OF ACRONYMS (CONT.)

ug/kg l	Micrograms per kilogram				
ug/mg l	Micrograms per milligram				
ug/L l	Micrograms per liter				
USACE	United States Army Corps of Engineers				
USAEHA	United States Army Environmental Hygiene Agency				
USATHAMA U	United States Army Toxic and Hazardous Materials Agency				
USCS	Unified Soil Classification System				
USDA	United States Department of Agriculture				
USGS U	United States Geological Survey				
VOA	Volatile Organic Analysis				
VOC	Volatile Organic Compound				
Vs	Volt Second				

Page x K:\Seneca\RIFS\SEAD64D\Report.TOC

1.0 <u>INTRODUCTION</u>

1.1 PURPOSE OF REPORT

This Project Scoping Plan was prepared by Parsons Engineering Science, Inc. (Parsons ES) to outline the work proposed for a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) at SEAD-64D at the Seneca Army Depot Activity (SEDA) in Romulus, New York. This Plan is based on the results and recommendations presented in a draft report, issued in April 1995, on the Expanded Site Investigation (ESI) conducted at this Area of Concern titled, "Expanded Site Inspection, Seven Low Priority AOCs, SEADs 60, 62, 63, 64 (A,B,C, and D), 67, 70, and 71". The purpose of this project is to determine the nature and extent of environmental impacts, and evaluate and select appropriate remedial actions. These actions will comply with Applicable or Relevant and Appropriate Requirements (ARARs) and take into account the risks to human health and the environment.

This work will be performed as part of the United States Army Corps of Engineers (USACE) remedial response activities under CERCLA. It will follow the requirements of the New York State Department of Environmental Conservation (NYSDEC), the U.S. Environmental Protection Agency Region II (EPA), and the Interagency Agreement (IAG).

1.2 **REPORT ORGANIZATION**

The remaining sections of this report are organized to describe the overall site conditions, provide a scoping of the RI/FS, and to provide task plans for the RI and FS. Section 2.0 presents a description of regional geologic and hydrogeologic site conditions. Section 3.0 discusses the results of previous investigations to develop a conceptual site model, identification of potential receptors and exposure scenarios using the conceptual site model, scoping of potential remedial action technologies, preliminary identification of ARARs, data quality objectives, and data gaps and needs. The task plans for the RI and FS are discussed in Sections 4.0 and 5.0, respectively. Section 6.0 discusses scheduling and staffing.

1.3 BACKGROUND

SEAD-64D is a former garbage disposal area at SEDA in Romulus, NY located on the southwest side of the SEDA facility (Figure 1-1). The site is a large, heavily vegetated area as shown in Figure 1-2.

2.0 SITE CONDITIONS

2.1 PHYSICAL SETTING

The physical setting of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

2.2 REGIONAL GEOLOGICAL SETTING

The geologic setting of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

2.3 REGIONAL HYDROGEOLOGICAL SETTING

The hydrogeology of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

3.0 <u>SCOPING OF THE RI/FS</u>

This section describes the conceptual model for SEAD-64D based on the results of the ESI. This information is used to identify the known contaminant sources and receptor pathways. The data quality objectives and potential remedial actions for SEAD-64D are also described. The information in this section is used to develop a list of the data gaps and needs that will be the basis for designing the Remedial Investigation in Section 4.0 and performing the feasibility study and baseline risk assessment.

3.1 CONCEPTUAL SITE MODEL

This section will describe the site history, the results of the ESI, and the environmental fate of the primary contaminants on site to develop a conceptual model of SEAD-64D.

3.1.1 <u>Site History</u>

The area occupied by SEAD-64D was a vineyard before SEDA was constructed in 1941. Since then, the land was allowed to reforest. At some time, SEDA cut fire lanes through the vegetation for firefighting.

SEAD-64D was reportedly used for waste disposal during the period from 1974 to 1979 when the on-site incinerator was inoperable. The SWMU Classification Report states that metal drums and other industrial waste were also reportedly disposed on site.

3.1.2 Physical Site Characterization

3.1.2.1 Physical Site Setting

SEAD-64D covers approximately 90 acres between West Patrol Road and the SEDA railroad tracks along the North-South Baseline Road (Figure 1-2). The site is approximately 2,800 feet long in a north-south direction and is approximately 1,600 feet wide in an east-west direction at the north end and 1,200 feet at the south end. Firebreaks are cut into the vegetation in the area and trend east-west and north-south.

The site is heavily vegetated with low brush, small deciduous trees, and grass. Areas in the southern portion of the site are heavily vegetated with large deciduous trees. Stressed vegetation was observed adjacent to West Patrol Road.

The land on site slopes generally downward to the west. An intermittent stream flows west through the south-central portion of the site, then off SEDA property. There are several wetlands along the east side of the site. There are low areas along the east side of West Patrol Road.

Two disposal areas were observed on site as evidenced by metal or other debris on the ground surface. These two areas are shown on Figure 1-2. At the south end of the site, an elongate east-west trending mound approximately 75 feet long contains trash and debris. Immediately to the north and east of this elongated mound are three 25-foot to 30-foot diameter depressions that are 2 to 4 feet deep. There are two other mounds nearby. In the east-central portion of the site, metal disposed on the ground surface was also observed.

Shallow north-south trending furrows in the ground surface are present over most of the site. These furrows are probably related to the former use of the site as a vineyard prior to the establishment of SEDA.

The site is bordered by the non-combustible fill area, the Ash Landfill, and an inactive incinerator (SEADs-8, 6, and 15, respectively) to the north, a railroad line and undeveloped land to the east, forested land to the south, and the West Patrol Road and the SEDA property boundary to the west.

3.1.2.2 Site Geology

Subsurface soil samples were obtained from ten borings (SB64D-1 to -10) and five borings in which monitoring wells were installed (MW64D-1 to -5) as located on Figure 3-1. The boring logs, presented in Appendix A, were used to define the site geology.

The following strata were observed in the borings with increasing depth: topsoil, glacial till, weathered shale, and shale. All the strata and the bedrock surface parallel the slope of the ground surface.

June 1995

Page 3-2 K:\Seneca\RIFS\SEAD64D\Sect-3

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF ESI SOIL GAS SURVEY RESULTS

Sample	Lo	cation	OVM Screen	Concentration	
Name	Line	Station	(ppm)	(ppmV as TCE)	
Soil Gas Points Based on a Grid System:					
SGL53-1	53	8700	0.0	0.0	
SGL53-2	53	8900	0.0	0.0	
SGL53-3	53	9100	0.0	0.0	
SGL53-4	53	9300	0.0	0.0	
SGL53-5	53	9500	0.0	0.0	
SGL53-6	53	9700	0.0	0.0	
SGL53-7	53	9900	0.0	0.0	
SGL49-8	49	10,000	0.0	0.0	
SGL49-9	49	9800	0.0	0.0	
SGL49-10	49	9600	0.0	0.0	
SGL49-11	49	9400	0.0	0.0	
SGL49-12	49	9200	0.0	0.0	
SGL49-13	49	9000	0.0	0.0	
SGL49-14	49	8800	0.0	0.0	
SGL49-15	49	8600	0.0	0.0	
56217-15		0000	0.0	0.0	
SGL45-16	45	8700	0.0	0.0	
SGL45-17	45	8900	0.0	0.0	
SGL45-18	45	9100	0.0	0.0	
SGL45-19	45	9300	0.0	0.0	
SGL45-20	45	9500	0.0	0.0	
SGL45-21	45	9700	0.0	0.0	
SGL45-22	45	9900	0.0	0.0	
SGL41-23	41	10,000	0.0	0.0	
SGL41-24	41	9800	0.0	0.0	
SGL41-25	41	9600	0.0	0.0	
SGL41-26	41	9400	0.0	0.0	
SGL41-27	41	9200	0.0	0.0	
SGL41-28	41	9000	0.0	. 0.0	
SGL41-29	41	8800	0.0	0.0	
SGL41-30	41	8600	0.0	0.0	
SGL37-31	37	8700	0.0	0.0	
SGL37-32	37	8900	0.0	0.0	
SGL37-33	37	9100	No Sample (R)	No Sample (R)	
SGL37-34	37	9300	0.0	0.0	
SGL37-35	37	9500	0.0	0.0	
SGL37-36	37	9700	0.0	0.0	
SGL37-37	37	9900	0.0	0.0	

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF ESI SOIL GAS SURVEY RESULTS

Sample	Loc	cation	OVM Screen	Concentration
Name	Line	Station	(ppm)	(ppmV as TCE)
SGL33-38	33	10,000	0.0	0.0
SGL33-39	33	9800	0.0	0.0
SGL33-40	33	9600	0.0	0.0
SGL33-41	33	9400	0.0	0.0
SGL33-42	33	9200	0.0	0.0
SGL33-43	33	9000	0.0	0.0
SGL33-44	33	8800	0.0	0.0
SGL33-45	33	8600	0.0	0.0
SGL33-46	33	8400	0.0	0.0
SGL33-47	33	8200	0.0	0.0
SGL33-48	33	8000	0.0	0.0
SGL33-49	33	7800	0.0	0.0
SGL33-50	33	7600	0.0	0.0
SGL33-51	33	7400	0.0	0.0
SGL33-52	33	7200	0.0	0.0
SGL29-53	29	7300	0.0	0.0
SGL29-54	29	7500	0.0	0.0
SGL29-55	29	7700	0.0	0.0
SGL29-56	29	7900	0.0	0.0
SGL29-57	29	8100	No Sample (R)	No Sample (R)
SGL29-58	29	8300	0.0	0.0
SGL29-59	29	8500	0.0	0.0
SGL29-60	29	8700	0.0	0.0
SGL29-61	29	8900	0.0	0.0
SGL29-62	29	9100	0.0	0.0
SGL29-63	29	9300	0.0	0.0
SGL29-64	29	9500	0.0	0.0
SGL29-65	29	9700	0.0	0.0
SGL29-66	29	9900	0.0	0.0
			0.0	0.0
SGL25-67	2.5	10,000	0.0	0.0
SGL25-68	2.5	9800	0.0	0.0
SGL25-69	25	9600	0.0	0.0
SGL25-70	25	9400	0.0	0.0
SGL25-71	25	9200	0.0	0.0
SGL25-72	2.5	9000	0.0	0.0
SGL25-73	2.5	8800	0.0	0.0
SGL25-74	25	8600	0.0	0.0
SGL25-75	25	8400	0.0	0.0
SGL25-76	25	8200	0.0	0.0
SGL25-77	25	8000	0.0	0.0
SGL25-78	25	7800	0.0	0.0
SGL25-79	25	7600	0.0	0.0
SGL25-80	25	7400	No Sample (W)	No Sample (W)
SGL25-81	25	7200	0.0	0,0

PRE64D\TBL3-1.WK4

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF ESI SOIL GAS SURVEY RESULTS

Sample	Lo	cation	OVM Screen	Concentration		
Name	Line	Station	(ppm)	(ppmV as TCE)		
				······································		
SGL21-82	21	7300	0.0	0.0		
SGL21-83	21	7500	0.0	0.0		
SGL21-84	21	7700	0.0	0.0		
SGL21-85	21	7900	No Sample (W)	No Sample (W)		
SGL21-86	21	8100	0.0	0.0		
SGL21-87	21	8300	0.0	0.0		
SGL21-88	21	8500	0.0	0.0		
SGL21-89	21	8700	0.0	0.0		
SGL21-90	21	8900	0.0	0.0		
SGL21-91	21	9100	0.0	0.0		
SGL21-92	21	9300	0.0	0.0		
SGL21-93	21	9500	0.0	0.0		
SGL21-94	21	9700	0.0	0.0		
SGL21-95	21	9900	0.0	0.0		
SGL17-96	17	10,000	0.0	0.0		
SGL17-97	17	9800	0.0	0.0		
SGL17-98	17	9600	0.0	0.0		
SGL17-99	17	9400	0.0	0.0		
SGL17-100	17	9200	0.0	0.0		
SGL17-101	17	9000	0.0	0.0		
SGL17-102	17	8800	0.0	0.0		
SGL17-103	17	8600	0.0	0.0		
SGL17-104	17	8400	0.0	0.0		
SGL17-105	17	8200	0.0	0.0		
SGL17-106	17	8000	0.0	0.0		
SGL17-107	17	7800	0.0	0.0		
SGL17-108	17	7600	0.0	0.0		
SGL17-109	17	7400	0.0	0.0		
SGL13-110	13	7300	0.0	0.0		
SGL13-111	13	7500	0.0	0.0		
SGL13-112	13	7700	0.0	0.0		
SGL13-113	13	7900	0.0	0.0		
SGL13-114	13	8100	0.0	0.0		
SGL13-115	13	8300	0.0	0.0		
SGL13-116	13	8500	0.0	0.0		
SGL13-117	13	8700	0.0	0.0		
SGL13-118	13	8900	0.0	0.0		
SGL13-119	13	9100	0.0	0.0		
SGL13-120	13	9300	0.0	0.0		
SGL13-121	13	9500	0.0	0.0		
SGL13-122	13	9700	0.0	0.0		
SGL13-123	13	9900	0.0	0.0		

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF ESI SOIL GAS SURVEY RESULTS

Sample	Lo	cation	OVM Screen	Concentration
Name	Line	Station	(ppm)	(ppmV as TCE)
SGL9-124	9	10,000	0.0	0.0
SGL9-125	9	9800	0.0	0.0
SGL9-126	9	9600	0.0	0.0
SGL9-127	9	9400	0.0	0.0
SGL9-128	9	9200	0.0	0.0
SGL9-129	9	9000	0.0	0.0
SGL9-130	9	8800	0.0	0.0
SGL9-131	9	8600	0.0	0.0
SGL9-132	9	8400	0.0	0.0
SGL9-133	9	8200	0.0	0.0
SGL9-134	9	8000	0.0	0.0
SGL9-135	9	7800	0.0	0.0
SGL9-136	9	7600	0.0	0.0
SGL 9-137	ģ	7400	0.0	0.0
SGL 9-138	<u> </u>	7250	0.0	0.0
SGL/-138	. 1	7250	0.0	0.0
SGL 5-139	5	7300	0.0	0.0
SGL 5-140	5	7500	No Sample (R)	No Sample (B)
SGL 5-141	5	7700		
SGL 5-142	5	7900	0.0	0.0
SGL5-142	5	8100	0.0	0.0
SGL3-143	5	8200	0.0	0.0
SGL3-144	5	8500	0.0	0.0
SGL5-145	5	8300	0.0	0.0
SGL5-146	5	8700	0.0	0.0
SGL5-147	5	8900		
SGL5-148	5	9100	No Sample (W)	No Sample (W)
SGL5-149	5	9300	No Sample (W)	No Sample (W)
SGL5-150	5	9500	0.0	
SGL5-151	5	9700	No Sample (W)	No Sample (W)
SGL5-152	5	9900	0.0	0.0
Soil Gas Points B	ased on Geop	hysical Anomalies:	:	
SG-A	28	8980	0.0	0.0
SG-B	27	8795	0.0	0.0
SG-C	39	8960	0.0	0.0
SG-D	50	8780	0.0	0.0
SG-E	48	897 0	0.0	0.0
SG-F	7	7520	No Sample (R)	No Sample (R)
SG-G	21	7600	0.0	0,0
SG-H	7	9770	0.0	0.0
SG-I	11	9530	0.0	0.0
SG-I	15	9780	0.0	0.0
SG-K	19	9940	0.0	0.0

PRE64D\TBL3-1.WK4

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF ESI SOIL GAS SURVEY RESULTS

Sample	Lo	cation	OVM Screen	Concentration		
Name	Line	Station	(ppm)	(ppmV as TCE)		
SG-L	18	9540	0.0	0.0		
SG-M	23	9360	0.0	0.0		
SG-N	22	9620	0.0	0.0		
SG-O	28	9760	0.0	0.0		
SG-P	31	9400	0.0	0.0		
SG-Q	42	9770	0.0	0.0		
SG-S	44	9310	0.0	0.0		
SG-T	15	7230	0.0	0.0		

Notes:

1) Rod Blanks and field duplicates were collected daily for Quality Control.

 2) "No Sample" indicates that high groundwater was present (W) or refusal was encountered within 2.5 feet (R); therefore no soil gas sample was collected.

PRE64D\TBL3-1.WK4

conjunction with calibration curve data to calculate concentrations expressed as TCE in parts per million by volume (ppmv). Table 3-1 shows the concentrations of volatiles calculated at each sampling point as well as the maximum OVM readings of the soil gas immediately prior to sampling.

3.1.2.4 Geophysics

Several geophysical survey techniques were used on site. A seismic survey was used to determine the approximate groundwater flow direction on site. An electromagnetic survey was used to locate possible disposal areas. A ground penetrating radar survey was used to detect anomalies in the subsurface conditions, such as filled pits.

Seismic Survey

Four seismic refraction profiles, each 120 feet long, were performed at the locations shown in Figure 3-3 to obtain approximate groundwater depth information. The results of the seismic refraction survey conducted at SEAD-64D are shown in Table 3-2. Saturated overburden was detected only on profiles P1 and P2 at depths of 5.4 and 6.2 feet at P1 and 4.1 feet at P2.

The seismic refraction profiles detected 4 to 15 feet of unconsolidated overburden (1,050 to 4,900 ft./sec.) overlying bedrock (8,200 to 13,000 ft./sec.). In particular, the unconsolidated material included unsaturated overburden (1,050 to 1,370 ft./sec.) and saturated overburden (4,580 to 4,900 ft./sec.).

Seismic velocities typical of weathered shale (8,200 to 8,400 ft./sec.) were detected on profiles P1 and P3. However, on both profiles, the low velocity bedrock layer was detected only over a portion of the seismic transect. At distance 120 feet on profile P1, weathered rock was detected at a depth of 5.7 feet (refer to Table 3-2). On profile P3, weathered rock was detected at a depth of approximately 5.8 feet at distances -5 feet and 57.5 feet. At distance 120 feet of this profile, competent rock (13,000 ft/sec) was detected at a depth of 14.8 feet.

A review of Table 3-2 indicates that the bedrock slopes to the west, generally following the surface topography. Groundwater flow is also expected to be to the west, following the slope of the bedrock.

the test pit. Drums, cans, and fencing were present on the ground surface. No buried objects were observed.

Soils excavated from the three test pits were continuously screened for volatile organic compounds and radioactivity with an OVM-580B and a Victoreen-190, respectively. Excluding the 3 ppm OVM reading from the waste material in TP64D-1, no readings above background levels (0 ppm of organic vapors and 10-15 micro Rhems per hour of radiation) were observed during the excavations.

3.1.2.5 Site Hydrology and Hydrogeology

The main hydrologic features on SEAD-64D include an intermittent stream, drainage channels on the east and west sides of the site, and wetlands on the east side as shown in Figure 3-7.

Runoff on the site is controlled by the topography. Over most of the site, surface runoff flows west toward a drainage channel on the east side of the West Patrol Road. Along the eastern side of the site north of the stream, runoff flows primarily south toward wetlands and east into a drainage channel. South of the stream, runoff flows radially toward a low area located on site.

An intermittent unnamed stream flows west across the south central section of the site. Aerial photographs indicate the stream may start in the wetlands located in the southeastern corner of the site. The stream appears to flow west under the West Patrol Road and off SEDA property.

Drainage channels are shown on the topographic map along the eastern and western sides of the site. The eastern drainage channel flows south along the west side of the railroad tracks. This channel does not appear to collect or discharge water to the wetlands on the east side of the site. The drainage channel on the west side of the site appears to flow from the north end and south end of the site parallel to the West Patrol Road into a low area on the east side of the road.

June 1995

Page 3-19 K:\Seneca\RIFS\SEAD64D\Sect-3

Five monitoring wells, screened in the till/weathered shale aquifer were installed during the ESI. The monitoring well installation diagrams and development reports are presented in Appendices B and C, respectively. Groundwater in the till/weathered shale aquifer on site flows west based on groundwater elevations measured in the five monitoring wells on July 6, 1994 and July 25, 1994 (Table 3-3 and Figure 3-7). Recharge of water to the monitoring wells during sampling was good.

3.1.2.6 Chemical Analysis Results

Soil and groundwater were sampled as part of the ESI conducted at SEAD-64D in 1994. The results of the investigation were presented in the report titled "Expanded Site Inspection, Seven Low Priority AOCs, SEADs 60, 62, 63, 64(A,B,C, and D), 67, 70, and 71" which was issued in April 1995. A total of 35 surface and subsurface soil samples were collected at SEAD-64D. Groundwater from five monitoring wells was also sampled as part of this investigation. The following sections describe the nature and extent of contamination identified at SEAD-64D in soil and groundwater.

<u>Soil</u>

The analytical results for the 35 soil samples collected as part of the investigation of SEAD-64D are presented in Table 3-4. The following sections describe the nature and extent of contamination in SEAD-64D soils. These data are compared to the criteria in the Technical and Administrative Guidance Memorandum (TAGM): Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, 1992).

Volatile Organic Compounds

Methylene chloride, 2-butanone, and toluene were detected in several samples at concentrations well below their criteria. Methylene chloride was detected in approximately 20 percent of the samples at concentrations up to $3 \mu g/kg$. 2-Butanone and toluene were each detected in one sample at concentrations of 8 and $1 \mu g/kg$, respectively.

Semivolatile Organic Compounds

A total of 17 semivolatile organic compounds (SVOs) were found at varying concentrations in the soil samples obtained at SEAD-64D. Thirteen of the compounds are polynuclear

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN GROUNDWATER ELEVATION SUMMARY FROM ESI

	TOP OF PVC		WELL DEVELO	PMENT		SAMPLING	3	WATER LEVEL MEASUREMENTS			
MONITORING	CASING		DEPTH TO	GROUNDWATER		DEPTH TO	GROUNDWATER		DEPTH TO	GROUNDWATER	
WELL	ELEVATION		GROUNDWATER	ELEVATION		GROUNDWATER	ELEVATION		GROUNDWATER	ELEVATION	
NUMBER	(MSL)	DATE	TOC (FT)	(MSL)	DATE	TOC (FT)	(MSL)	DATE	TOC (FT)	(MSL)	
MW64D-1	667.79	6/23/94	4.71	663.08	7/8/94	3.82	663.97	7/6/94 7/25/94	3.43 4.26	664.36 663.53	
MW64D-2	635.20	6/28/94	4.05	631.15	7/9/94	4.87	630.33	7/6/94 7/25/94	4.45 7.66	630.75 627.54	
MW64D-3	648.88	6/27/94	3.72	645.16	7/8/94	3.42	645.46	7/6/94 7/25/94	2.99 4.48	645.89 644.40	
MW64D-4	661.33	6/27/94	7.94	653.39	7/8/94	6.54	654.79	7/6/94 7/25/94	6.23 9.22	655.10 652.11	
MW64D-5	652.49	6/27/94	7.34	645.15	7/18/94	7.24	645.25	7/6/94 7/25/94	5.53 7.37	646.96 645.12	

-

•

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0-0.2 04/14/94 SS64D-1 217694 43535	SOIL SEAD-64 0-0.2 04/14/94 SS64D-2 217695 43535	SOIL SEAD-64 0-0.2 04/14/94 SS64D-3 217696 43535	SOIL SEAD-64 0-0.2 04/14/94 SS64D-4 217697 43535	SOIL SEAD-64 0-0.2 04/14/94 SS64D-5 217698 43535	SOIL SEAD-64 0-0.2 06/23/94 SE64D-1-00 225467 44799
COMPOUND VOLATILE ORGANICS	UNITS										
Methylene Chloride	ug/Kg	3	23%	100	0	2 J	3 J	14 U	12 U	2 J	11 U
2-Butanone	ug/Kg	8	3%	300	0	14 U	14 U	14 U	12 U 12 U	14 U	11 U
Ioluene	ug/kg	1	3%	1500	U	14 0	14 0	14 0	12 0	14 0	110
SEMIVOLATILE ORGANICS											
Phenol	ug/Kg	42	6%	NA	NA	460 U	470 U	440 U	400 U	420 U	370 U
Naphthalene	ug/Kg	31	6%	13000	0	460 0	4/0 0	29 J	400 0	420 0	370 0
2-Methylnaphthalene	ug/Kg	49	14%	36400	0	30 J 35 J	27 J 36 J	49 J 57 I	400 0	420 0	370 0
Di a bubliobibalate	ug/Kg	77	49%	8100	ő	460 U	470 11	440 11	400 0	420 11	370 U
Eluoranthene	ug/Kg	240	43%	50000*	ŏ	47 J	62 J	99 J	21 J	33 J	370 U
Pyrene	ua/Ka	160	40%	50000*	õ	38 J	47 J	81 J	20 J	25 J	370 U
Benzo(a)anthracene	ug/Kg	86	20%	220	0	22 J	23 J	41 J	400 U	420 U	370 U
Chrysene	ug/Kg	110	26%	400	0	34 J	36 J	53 J	400 U	22 J	370 U
bis(2-Ethylhexyl)phthalate	ug/Kg	1100	43%	50000*	0	120 J	470 U	440 U	19 J	420 U	370 U
Di-n-octyiphthalate	ug/Kg	75	3%	50000*	0	460 U	470 U	440 U	400 U	420 U	370 U
Benzo(b)fluoranthene	ug/Kg	160	23%	1100	0	26 J	28 J	39 J	400 U	420 U	370 U
Benzo(k)tluoranthene	ug/Kg	110	17%	1100	3	27 J 25 J	27 1	55 J 43 J	400 0	420 0	370 0
Benzo(a)pyrene	ug/Kg	61	23%	3200	0	460 11	470 11	26 1	400 U	420 0	370 11
Dibonz(a b)anthracona	ug/Kg	40	11%	14	4	460 U	470 U	440 U	400 U	420 U	370 11
Benzo(a,h.i)perviene	ua/Ka	68	17%	50000*	ō	460 U	470 U	23 J	400 U	420 U	370 U
	-0-0										
METALS		00000	100%	14502	17	11200	9030	12000	12000	10300	16700
Aluminum	mg/Kg	20800	100%	3 50	0	0.24 111	0.16 []]	0.18 [1]	0.19.1	0.19 11	0.23 111
Anumony	ma/Ka	7.8	100%	7.5	1	43	3.9	6.4	4.5	3.6	6.1
Barium	ma/Ka	152	100%	300	ò	76.4	74.6	89.3	61.8	77.3	87.7
Beryllium	ma/Ka	0.99	100%	1	Ō	0.53 J	0.43 J	0.65 J	0.56 J	0.45 J	0.76 J
Cadmium	ma/Ka	0.97	100%	1	0	0.38 J	0.35 J	0.42 J	0.42 J	0.27 J	0.76 J
Calcium	mg/Kg	162000	100%	101904	3	88900	129000	34900	84800	84100	10600
Chromium	mg/Kg	29.6	100%	22	14	18.3	13.5	20.4	18.8	15.3	25.2
Cobalt	mg/Kg	18.6	100%	30	0	9.3 J	7.8 J	12.7	8.8	7.3 J	12.8
Copper	mg/Kg	32.7	100%	25	10	18.8	14.5	20.6	19.7	15.5	28.1
Iron	mg/Kg	36600	100%	26627	18	23200	17800	20400	22900	12.2	14.2
Lead	mg/Kg	16200	100%	12222	2	7720	9080	7460	13400	11600	6610
Magnesium	mg/Kg	1240	100%	669	18	475 J	424 J	750 J	457 J	323 J	606
Mercury	mg/Kg	0.08	69%	0.1	0	0.02 J	0.01 J	0.02 J	0.01 J	0.01 J	0.02 J
Nickel	ma/Ka	41.2	100%	34	8	25.7	20.3	32.4	28.5	20.3	40.3
Potassium	mg/Kg	3240	100%	1762	20	1610	1480	1590	2200	2330	1870 J
Selenium	mg/Kg	2	80%	2	0	0.53 J	0.27 U	0.49 J	0.21 U	0.33 U	1.7
Sodium	mg/Kg	266	89%	104	5	100 J	95.7 J	59.6 J	151 J	30.3 J	43.6 J
Thallium	mg/Kg	0.76	46%	0.28	16	0.39 U	0.25 U	0.28 U	0.2 U	0.31 U	0.33 U
Vanadium	mg/Kg	35.3	100%	150	0	18.2	14.1	21.1	18.5	18.4	24.7
Zinc	mg/Kg	111	100%	83	19	/2.6	63.1	87.9	80.4	54.8	102
OTHER ANALYSES											
Total Solids	%W/W					71.4	70.1	74.1	82.2	78.6	90.5

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER UNITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0.2-1.2 06/23/94 SB64D-1-01 225468 44799	SOIL SEAD-64 2-3 06/23/94 SB64D-1-02 225469 44799	SOIL SEAD-64 0-0.2 06/23/94 SB64D-2-00 225470 44799	SOIL SEAD-64 2-3.5 06/23/94 SB64D-2-02 225471 . 44799	SOIL SEAD-64 4-6 06/23/94 SB64D-2-03 225472 44799	SOIL SEAD-64 0-0.2 06/24/94 SB64D-3-00 225473 44799
VOLATILE ORGANICS	UNITS										
Methylene Chloride	ug/Kg	3	23%	100	0	1 J	1 J	12 U	12 U	11 U 11 U	13 0
2-Butanone	ug/Kg	8	3%	300	U	12 U	11 U	12 0	12 U	11 0	13 11
loluene	ug/Kg	1	370	1500	0	12 0	11 0	12 0	12 0		10 0
SEMIVOLATILE ORGANICS											
Phenol	ug/Kg	42	6%	NA	NA	380 U	360 U	380 U	410 U	350 U	42 J
Naphthalene	ug/Kg	31	6%	13000	0	380 U	360 U	380 U	410 U	350 U	440 U
2-Methylnaphthalene	ug/Kg	49	14%	36400	0	380 U	360 U	380 U	410 U	350 U	440 U
Phenanthrene	ug/Kg	100	31%	50000*	0	380 U	360 U	380 0	410 0	350 0	98 J
Di-n-butylphthalate	ug/Kg	77	49%	8100	0	380 U	360 U	380 0	410 U	350 0	37 J 240 J
Fluoranthene	ug/Kg	240	43%	50000"	0	380 0	360 U	380 0	410 0	300 0	240 J
Pyrene	ug/Kg	160	40%	50000	0	380 0	360 0	300 0	410 0	350 0	86 1
Benzo(a)anthracene	ug/Kg	86	20%	220	0	380 11	360 U	380 11	410 11	350 11	110 .
Chrysene	ug/Kg	1100	2070	50000*	0	32 1	29.1	25 .1	410 U	33 J	96 J
Dis(2-Einyinexyi)phinalate	ug/Kg	75	3%	50000*	ő	380 U	360 U	380 U	410 U	350 U	440 U
Di-n-octyphinalate Ronzo/b)fluoranthene	ug/Kg	160	23%	1100	ŏ	380 U	360 U	380 U	410 U	350 U	86 J
Benzo(k)fluoranthene	ug/Kg	110	17%	1100	õ	380 U	360 U	380 U	410 U	350 U	110 J
Benzo(a)nyrene	ua/Ka	77	23%	61	3	380 U	360 U	380 U	410 U	350 U	77 J
Indeno(1,2,3-cd)pyrene	uo/Ko	61	14%	3200	0	380 U	360 U	380 U	410 U	350 U	61 J
Dibenz(a,h)anthracene	ua/Ka	40	11%	14	4	380 U	360 U	380 U	410 U	350 U	34 J
Benzo(g,h,i)perylene	ug/Kg	68	17%	50000*	0	380 U	360 U	380 U	410 U	350 U	54 J
METALO											
Auminum	ma/Ka	20800	100%	14593	17	14100	7480	14800	17600	11100	14200
Antimony	ma/Ka	0.49	26%	3,59	0	0.17 UJ	0.17 UJ	0.22 UJ	0.28 UJ	0.21 UJ	0.26 UJ
Arsenic	ma/Ka	7.8	100%	7.5	1	6.9	3.8	6.2	6.3	5	5.9
Barium	mg/Kg	152	100%	300	0	81.5	38.5	93.2	115	45.3	103
Beryllium	mg/Kg	0.99	100%	1	0	0.7	0.32 J	0.73 J	0.93 J	0.5 J	0.71 J
Cadmium	mg/Kg	0.97	100%	1	0	0.66 J	0.54 J	0.78 J	0.97 J	0.65 J	0.64 J
Calcium	mg/Kg	162000	100%	101904	3	3830	36900	13800	4250	45600	4900
Chromium	mg/Kg	29.6	100%	22	14	22.1	11.8	21.7	25.3	16.9	18.0
Cobalt	mg/Kg	18.6	100%	30	0	11.5	1.1	11.8	10.0	20.6	0.1 J 216
Copper	mg/Kg	32.7	100%	25	10	27.5	10.7	29800	36600	24200	23200
Iron	mg/Kg	36600	100%	20027	18	32000	88	29800	15.5	82	19.1
Lead	mg/Kg	16200	100%	12222	2	5240	11800	5700	5850	9520	3800
Magnesium	mg/Kg	1240	100%	669	18	640	415	688	1240	476	549
Manganese	mg/Kg	0.08	69%	0.1	0	0.04.1	0.02 .1	0.05 J	0.06 J	0.02 J	0.08 J
Mercury	ma/Ka	41 2	100%	34	8	37.8	20.6	31.4	41.2	28	22.5
Retaccium	mg/Kg	3240	100%	1762	20	1380 J	1080 J	1800 J	1470 J	1190 J	1820 J
Salanium	ma/Ka	2	80%	2	0	1.4	0.44 J	1.6	1.6	0.62 J	2
Sodium	ma/Ka	266	89%	104	5	35.7 J	26.4 J	50.4 J	35.9 J	78.9 J	19.7 U
Thallium	ma/Ka	0.76	46%	0.28	16	0.45 J	0.3 J	0.32 U	0.41 U	0.3 U	0.58 J
Vanadium	ma/Ka	35.3	100%	150	0	23.3	13.5	22.1	23.9	15.8	22.4
Zinc	mg/Kg	111	100%	83	19	95.3	63.1	93	98.4	86.1	82.9
OTHER ANALYSES						96 5	01.2	85.0	813	93.2	74 7
I otal Solids	%vv/vv					30.5	31.2	50.0	51.0		

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER UNITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0.2-2 06/24/94 SB64D-3-01 225497 45048	SOIL SEAD-64 2-3.2 06/24/94 SB64D-3-02 225498 45048	SOIL SEAD-64 0-0.2 06/24/94 SB64D-4-00 225522 45048	SOIL SEAD-64 0.2-2.0 06/24/94 SB64D-4-01 225523 45048	SOIL SEAD-64 2-4 06/24/94 SB64D-4-02 225524 45048
VOLATILE ORGANICS		2	~~~~	400	•	44.11	10.11	44.11	40.11	44.11
Aethylene Chlonde 2-Butanone	ug/Kg	3	23%	300	0	11 U	12 U	14 U	12 0	11 U
Toluene	ug/Kg	1	3%	1500	õ	11 Ŭ	12 U	14 U	12 U	11 Ŭ
SEMIVOLATILE ORGANICS										
Phenol	ua/Ka	42	6%	NA	NA	390 U	42 J	460 U	420 U	370 U
Naphthalene	ug/Kg	31	6%	13000	0	390 U	390 U	460 U	420 U	370 U
2-Methylnaphthalene	ug/Kg	49	14%	36400	0	390 U	390 U	460 U	420 U	370 U
Phenanthrene	ug/Kg	100	31%	50000*	0	22 J	390 U	36 J	420 U	370 U
Di-n-butylphthalate	ug/Kg	77	49%	8100	0	390 U	37 J	71 J	420 U	370 U
Fluoranthene	ug/Kg	240	43%	50000*	0	31 J	390 U	61 J	420 U	370 U
Pyrene	ug/Kg	160	40%	50000*	0	20 J	390 U	54 J	420 U	370 U
Benzo(a)anthracene	ug/Kg	86	20%	220	0	390 U	390 0	38 J	420 U	370 0
Chrysene	ug/Kg	110	26%	400	0	390 0	390 0	41 J	420 U	3/0 0
bis(2-Ethylhexyl)phthalate	ug/Kg	1100	43%	50000°	U	390 0	390 0	39 J	1100	34 J
Di-n-octylphthalate	ug/Kg	/5	3%	1100	0	390 0	390 0	400 0	420 0	370 0
Benzo(b)nuorantnene	ug/Kg	100	23%	1100	0	11 000	390 0	47 1	420 0	370 0
Benzo(k)iluoranuiene	ug/Kg	77	23%	61	3	390 11	390 11	68.1	420 11	370 U
Indeno(1,2,3-cd)nyrene	ug/Kg	61	14%	3200	ñ	390 11	390 U	53 J	420 U	370 11
Dibenz(a b)anthracene	uaKa	40	11%	14	4	390 U	390 U	40 J	420 U	370 U
Benzo(g,h,i)perylene	ug/Kg	68	17%	50000*	Ō	390 U	390 U	68 J	420 U	370 U
METALS										
Aluminum	ma/Ka	20800	100%	14593	17	14900	16100	17400	20100	9770
Antimony	mg/Kg	0.49	26%	3.59	0	0.22 J	0.47 J	0.4 J	0.3 UJ	0.21 UJ
Arsenic	mg/Kg	7.8	100%	7.5	1	5.9	6	6.6	6.9	4.3
Barium	mg/Kg	152	100%	300	0	92.1	111	116	114	62.7
Beryllium	mg/Kg	0.99	100%	1	0	0.74	0.73 J	0.78 J	0.81 J	0.46 J
Cadmium	mg/Kg	0.97	100%	1	0	0.36 J	0.51 J	0.43 J	0.4 J	0.41 J
Calcium	mg/Kg	162000	100%	101904	3	3060 J	4940 J	5120 J	11800 J	130000 J
Chromium	mg/Kg	29.6	100%	22	14	20.7	20.5	22.9	21.1	14.3
Cobalt	mg/Kg	18.6	100%	30	10	10.4	8.5 J	11.5 J	13.0	9.7
Copper	mg/Kg	32.7	100%	20	10	20.7	24	20.0	20.2	20500
Iron	mg/Kg	30000	100%	20027	2	17	103	20300	15.6	74
Lead	mg/r.g	16300	100%	10000	2	3890	/110	3000	5330	9290
Magnesium	marka	1240	100%	669	18	690	564	884	859	751
Mariganese	malka	0.08	60%	01	0	0.07	0.06.1	0.08	0.06.1	0.02.1
Nickol	mg/Kg	41 2	100%	34	8	25.8	23.6	27.2	35.6	24.8
Potassium	mg/Ka	3240	100%	1762	20	1440 J	2130 J	2280 J	2020 J	1520 J
Selenium	ma/Ka	2	80%	2	0	1.3	1.2	1.7	1.1 J	0.51 J
Sodium	ma/Ka	266	89%	104	5	14.5 U	25.4 J	27.1 U	28.6 J	90.4 J
Thallium	mg/Kg	0.76	46%	0.28	16	0.41 J	0.48 J	0.52 U	0.44 U	0.31 U
Vanadium	mg/Kg	35.3	100%	150	0	23.7	25.4	26.9	30.8	14.4
Zinc	mg/Kg	111	100%	83	19	85.8	89	91	88.3	63.9
OTHER ANALYSES Total Solids	%WW					85.4	84.4	71.2	78.5	89.9

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER LINITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0-0.2 06/25/94 SB64D-5.00 225570 45058	SOIL SEAD-64 2-4 06/25/94 SB64D-5.02 225571 45058	SOIL SEAD-64 4-6 06/25/94 SB64D-5.03 225572 45058	SOIL SEAD-64 0-0.2 06/25/94 SB64D-6.00 225573 45058	SOIL SEAD-64 0.2-2 06/25/94 SB64D-6.01 225574 45058	SOIL SEAD-64 2-4 06/25/94 SB64D-6.02 225575 45058
VOLATILE ORGANICS				100	•	40.11		40.11	12 11	42.11	4.1
Methylene Chloride	ug/Kg	3	23%	300	0	13 U	12 U	12 U	13 U	12 U	11 U
Toluene	ug/Kg	1	3%	1500	õ	13 U	1 J	12 Ŭ	13 U	12 U	11 U
SEMIVOLATILE ORGANICS											
Phenol	ug/Kg	42	6%	NA	NA	450 U	380 U	370 U	440 U	380 U	370 U
Naphthalene	ug/Kg	31	6%	13000	0	- 31 J	380 U	370 U	440 U	380 U	370 U
2-Methylnaphthalene	ug/Kg	49	14%	36400	0	46 J	22 J	370 U	440 U	380 U	370 U
Phenanthrene	ug/Kg	100	31%	50000*	0	100 J	29 J	370 0	34 J	380 U	370 0
Di-n-butylphthalate	ug/Kg	77	49%	8100	U	// J	40 J	75 J 270 U	/0 J 52 J	32 J 290 U	74 J 370 JI
Fluoranthene	ug/Kg	240	43%	50000*	0	140 J 100 J	25 J	370 0	JZ J 41 J	380 11	370 0
Pyrene Benze (a) anthraeana	ug/ng	160	20%	220	ñ	66.1	380 U	370 U	43 J	380 U	370 U
Chorsene	ug/Kg	110	26%	400	õ	97 J	28 J	370 U	47 J	380 U	370 U
bis(2-Ethylhexyl)phthalate	ua/Ka	1100	43%	50000*	ō	450 U	380 U	370 U	440 U	380 U	370 U
Di-n-octylphthalate	ug/Kg	75	3%	50000*	0	450 U	380 U	370 U	75 J	380 U	370 U
Benzo(b)fluoranthene	ug/Kg	160	23%	1100	0	160 J	22 J	370 U	48 J	380 U	370 U
Benzo(k)fluoranthene	ug/Kg	110	17%	1100	0	450 UJ	21 J	370 U	47 J	380 U	370 U
Benzo(a)pyrene	ug/Kg	77	23%	61	3	64 J	23 J	370 U	47 J	380 0	370 0
Indeno(1,2,3-cd)pyrene	ug/Kg	61	14%	3200	0	53 J	380 U	370 0	43 J	380 11	370 0
Dibenz(a,h)anthracene	ug/Kg	40	17%	14 50000*	4	34 J 41 J	22 .1	370 U	46 .1	380 U	370 U
Benzo(g,n,i)perviene	uging	00	- 17.70	00000	v	410					
METALS		20000	100%	14502	17	16400	16900	20800	14500	18900	12200
Aluminum	mg/Kg	20800	26%	3 50	0	0.49	0.24 111	0.28 111	0.22	0.23 [1]	0.22 UJ
Anumony	ma/Ka	78	100%	7.5	1	5.8 J	6 J	6 J	5.6 J	5.5 J	3.4 J
Barium	ma/Ka	152	100%	300	o o	116	123	110	113	152	59.1
Beryllium	ma/Ka	0.99	100%	1	0	0.88 J	0.8 J	0.87 J	0.72 J	0.88 J	0.56 J
Cadmium	mg/Kg	0.97	100%	1	0	0.75 J	0.43 J	0.4 J	0.48 J	0.45 J	0.35 J
Calcium	mg/Kg	162000	100%	101904	3	4770	3260	2760	3700	3630	30500
Chromium	mg/Kg	29.6	100%	22	14	22.4	23.3	29.6	20	24	19.5
Cobalt	mg/Kg	18.6	100%	30	10	10.5 J 22 7	21.6	12.9	27.2	24.9	17
Copper	mg/Kg	32.7	100%	25	18	25600	29000	34600	24300	28200	25300
Iron	ma/Ka	60.7	100%	30	2	29.9	13.5	13.4	16.4	13.1	6.1
Magnesium	ma/Ka	16300	100%	12222	2	3970	4540	6030	3980	4650	7390
Manganese	mg/Kg	1240	100%	669	18	698	851	638	627	851	645
Mercury	mg/Kg	0.08	69%	0.1	0	0.14 R	0.07 J R	0.04 J R	0.06 J R	0.06 J R	0.01 U
Nickel	mg/Kg	41.2	100%	34	8	25.7	28.2	39.5	24.7	26.1	30.8
Potassium	mg/Kg	3240	100%	1762	20	3240 J	24/0 J	3090 J	21/U J	2340 J	0.46.11
Selenium	mg/Kg	2	80%	104	5	71.0	90.1	99.7.1	75 .1	94.9 .1	170 .1
Sodium	mg/Kg	200	46%	0.28	16	065.1	0.5 J	0.53 J	0.74 J	0.34 U	0.33 U
Venedium	ma/Ka	35.3	100%	150	0	26.6	26.4	32	24.9	31.9	16.6
Zine	mg/Kg	111	100%	83	19	111 J	83.3 J	101 J	70.3 J	77 J	60.7 J
2110											
OTHER ANALYSES	0/18/88/					73.6	85.0	88.2	75.2	85.8	88
I otal Solids	Yowwww					73.0	00.0			00.0	

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER LINITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0-0.2 06/24/94 SB64D-7-00 225525 45048	SOIL SEAD-64 0.2-2.0 06/24/94 SB64D-7-01 225526 45048	SOIL SEAD-64 2-4 06/24/94 SB64D-7-02 225527 45048	SOIL SEAD-64 0-0.2 06/24/94 SB64D-8-00 225528 45048	SOIL SEAD-64 0.2-2.0 06/24/94 SB64D-8-01 225529 45048	SOIL SEAD-64 2-4 06/24/94 SB64D-8-02 225530 45048
VOLATILE ORGANICS	ONITS										
Methylene Chloride	ug/Kg	3	23%	100	0	14 U	12 U	11 U	13 UJ	12 U	11 U
2-Butanone	ug/Kg	8	3%	300	0	14 U	12 U	11 U	13 UJ	8 J	11 U
loluene	ug/Kg	1	3%	1500	0	14 0	12 0	11 0	13 03	12 0	11 U
SEMIVOLATILE ORGANICS											
Phenol	ug/Kg	42	6%	NA	NA	460 U	390 U	360 U	450 U	380 U	370 U
Naphthalene	ug/Kg	31	6%	13000	0	460 U	390 U	360 U	450 U	380 U	370 U
2-Methylnaphthalene	ug/Kg	49	14%	36400	0	460 U	390 U	360 U	450 U	380 U	3/0 U
Phenanthrene	ug/Kg	100	31%	50000-	0	460 0	390 0	300 0	24 J 56 J	360 0	270 11
Di-n-butyiphthalate	ug/Kg	240	49%	60000*	0	30	390 0	360 17	48 1	380 11	370 0
Puorantinene	ug/Kg	240	40%	50000	ň	41.1	390 11	360 11	54 .1	380 11	370 U
Benzo(a)anthracene	ua/Ka	86	20%	220	õ	460 U	390 U	360 U	450 U	380 U	370 U
Chrysene	ua/Ka	110	26%	400	ŏ	460 U	390 U	360 U	450 U	380 U	370 U
bis(2-Ethylhexyl)phthalate	ug/Kg	1100	43%	50000*	0	66 J	58 J	46 J	48 J	380 U	32 J
Di-n-octylphthalate	ug/Kg	75	3%	50000*	0	460 U	390 U	360 U	450 U	380 U	370 U
Benzo(b)fluoranthene	ug/Kg	160	23%	1100	0	460 U	390 U	360 U	450 U	380 U	370 U
Benzo(k)fluoranthene	ug/Kg	110	17%	1100	0	460 U	390 U	360 U	450 U	380 U	370 U
Benzo(a)pyrene	ug/Kg	77	23%	61	3	460 0	390 0	360 0	450 0	380 0	370 0
Indeno(1,2,3-cd)pyrene	ug/Kg	61	14%	3200	0	460 0	390 0	360 U	450 0	380 11	370 0
Dibenz(a,n)anthracene	ug/Kg	40	17%	14 50000+	4	460 0	390 11	360 11	450 0	380 11	370 11
Belizo(g,ii,i)perylette	ugnig	00	17.75	00000	U	400 0	000 0		100 0		0.00
METALS					_						
Aluminum	mg/Kg	20800	100%	14593	17	17700	17500	13000	16100	15500	12400
Antimony	mg/Kg	0.49	26%	3.59	0	0.25 UJ	0.25 UJ	0.24 UJ	0.28 UJ	0.22 UJ	0.27 UJ
Arsenic	mg/Kg	7.8	100%	7.5	1	5.7	5.7	3.7	5,8 116	4.0	5,3
Banum	mg/Kg	152	100%	300	0	0.82	0.85	06.1	0.81	0.68	0.56
Cadmium	mg/Kg	0.93	100%	1	ŏ	0.49 J	0.42 J	0.46 J	0.61 J	0.49 J	0.44 J
Calcium	ma/Ka	162000	100%	101904	3	5980 J	3690 J	80900 J	10900 J	29700 J	64000 J
Chromium	mg/Kg	29.6	100%	22	14	23.9	24.1	19	23.3	21.3	19.3
Cobalt	mg/Kg	18.6	100%	30	0	11.5	12.2	11.7	13.9	10.8	12.7
Copper	mg/Kg	32.7	100%	25	10	32.7	28.5	17.2	28	21.2	22.4
Iron	mg/Kg	36600	100%	26627	18	30100	34400	26600	32500	28200	28600
Lead	mg/Kg	60.7	100%	30	2	18.9 J	15.8 J	13.8 J	32.5 J	9.9 J	9 J 9170
Magnesium	mg/Kg	16300	100%	12222	2 18	4350	4900	642	1040	659	748
Manganese	mg/Kg	0.08	69%	005	0	0.07.1	0.05	0.04	0.06.1	0.04 .1	0.02 .1
Nickel	mg/Kg	41 2	100%	34	8	28	30.5	29.5	34.4	29.4	34.7
Potassium	ma/Ka	3240	100%	1762	20	2550 J	1670 J	1790 J	2030 J	1840 J	1390 J
Selenium	mg/Kg	2	80%	2	0	1.2	1.7	0.62 J	1.9	1.3	0.55 U
Sodium	mg/Kg	266	89%	104	5	27.5 J	22.6 J	90.6 J	21.3 U	37.3 J	94.7 J
Thallium	mg/Kg	0.76	46%	0.28	16	0.47 J	0.37 U	0.57 J	0.57 J	0.32 U	0.39 U
Vanadium	mg/Kg	35.3	100%	150	0	28.3	27.2	16.7	23.9	22.3	16.7
Zinc	mg/Kg	111	100%	83	19	90.8	86	69.8	106	85.2	85.9
OTHER ANALYSES											
Total Solids	%W/W					71.2	83.8	92.3	73.6	86	89.5

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SOIL ANALYSIS RESULTS FROM ESI

	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID SDG NUMBER	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NUMBER ABOVE TAGM	SOIL SEAD-64 0-0.2 06/25/94 SB64D-9.00 225576 45058	SOIL SEAD-64 0.2-2 06/25/94 SB64D-9.01 225577 45058	SOIL SEAD-64 2-4 SB64D-9.02 225578 45058	SOIL SEAD-64 0-0.2 06/25/94 SB64D-10.00 225579 45058	SOIL SEAD-64 0.2-2 06/25/94 SB64D-10.01 225580 45058	SOIL SEAD-54 4-5.1 06/25/94 SB64D-10.03 225581 45058
	UNITS										
Methylene Chloride	ug/Kg	3	23%	100	0	13 U	12 U	1 J	14 U	12 U	12 U
2-Butanone	ug/Kg	8	3%	300	0	13 U	12 U	11 U 11 U	14 U 14 U	12 0	12 0
Toluene	ug/Kg	1	3%	1500	U	13 0	12 0	110	14 0	12 0	12 0
SEMIVOLATILE ORGANICS										(00.11	
Phenol	ug/Kg	42	6%	NA	NA	450 U	400 U	360 U	460 U	400 0	370 0
Naphthalene	ug/Kg	31	6%	13000	U	450 0	400 0	360 11	460 0	400 0	370 11
2-Methylnaphtnalene	ug/Kg	49	14%	50000*	0	450 U	400 U	360 U	460 11	400 U	370 U
Phenanthrene Di a bublobthalate	ug/Kg	77	49%	8100	ő	53 J	34 J	360 U	70 J	45 J	24 J
Eluoranthene	ug/Kg	240	43%	50000*	ō	33 J	400 U	360 U	38 J	400 U	370 U
Pyrene	ug/Kg	160	40%	50000*	Ō	24 J	400 U	360 U	33 J	400 U	370 U
Benzo(a)anthracene	ug/Kg	86	20%	220	0	450 U	400 U	360 U	460 U	400 U	370 U
Chrysene	ug/Kg	110	26%	400	0	450 U	400 U	360 U	460 U	400 U	370 U
bis(2-Ethylhexyl)phthalate	ug/Kg	1100	43%	50000*	0	450 U	400 U	360 U	460 U	400 0	370 0
Di-n-octyiphthalate	ug/Kg	75	3%	50000*	U	450 0	400 0	300 0	460 0	400 0	370 0
Benzo(b)fluoranthene	ug/Kg	160	23%	1100	0	450 1	400 0	360 U	460 U	400 U	370 U
Benzo(k)nuoranmene	ug/Kg	77	23%	61	3	450 U	400 U	360 U	460 U	400 U	370 U
Indeno(1.2.3.cd)ovrene	ug/Kg	61	14%	3200	ō	450 U	400 U	360 U	460 U	400 U	370 U
Dibenz(a,h)anthracene	ug/Kg	40	11%	14	4	450 U	400 U	360 U	460 U	400 U	370 U
Benzo(g,h,i)perylene	ug/Kg	68	17%	50000*	0	450 U	400 U	360 U	460 U	400 U	370 U
METALS											
Aluminum	mg/Kg	20800	100%	14593	17	13800	15800	12600	12100	19900	9180
Antimony	mg/Kg	0.49	26%	3.59	0	0.31 UJ	0.25 J	0.33 J	0.28 UJ	0.26 UJ	0.35 J
Arsenic	mg/Kg	7.8	100%	7.5	1	6 J	6.7 J	5.2 J	4.6 J	7.8 J	4.4 J
Barium	mg/Kg	152	100%	300	0	110	107	0.61	0.66 1	0.99	97.7
Beryllium	mg/Kg	0.99	100%	1	0	0.62 J	0.54 J	0.38 .1	0.43 J	0.56 J	0.4 J
Cadmium	mg/Kg	162000	100%	101904	3	3090	16300	47700	4750	5810	162000
Calcium	ma/Ka	29.6	100%	22	14	20.2	23.7	19.9	16.7	27.5	14.5
Cobalt	ma/Ka	18.6	100%	30	0	11.2 J	12.8	9.8 J	8.5 J	11.9	6.7 J
Copper	mg/Kg	32.7	100%	25	10	30.4	28.3	23.5	25	26.8	15.7
Iron	mg/Kg	36600	100%	26627	18	25500	32500	26000	21000	36200	17000
Lead	mg/Kg	60.7	100%	30	2	19.1	12.0	9.7	31/0	5180	16300
Magnesium	mg/Kg	16300	100%	660	∠ 18	973	4030	539	684	776	352
Manganese	mg/Kg	0.08	69%	0.09	0	0.06 J R	0.47 R	0.09 J R	0.11 J R	0.06 J R	0.03 J
Nickel	ma/Ka	41.2	100%	34	8	25.1	34	31.5	18.1	35.3	19
Potassium	ma/Ka	3240	100%	1762	20	1970 J	1530 J	1540 J	1670 J	2300 J	2040 J
Selenium	mg/Kg	2	80%	2	0	1 J	1.2	0.54 U	1.3	1.3	0.5 U
Sodium	mg/Kg	266	89%	104	5	103 J	101 J	148 J	97.3 J	108 J	266 J
Thallium	mg/Kg	0.76	46%	0.28	16	0.66 J	0.76 J	0.38 0	0.49 J 21 4	0.0Z J 35.3	173
Vanadium	mg/Kg	35.3	100%	150	10	23.7	23.9	75.7	618.1	89.4 .1	40.6 J
Zinc	mg/Kg	111	100%	83	19	12.8 J	01.0 0	10.7 0	01.0 0		.0.0 0
OTHER ANALYSES Total Solids	%W/W					73.9	82.4	91	71.1	82.2	87.7

NOTES:

.

NOTES:
b) * = As per proposed TAGM, total VOCs < 10 ppm, total SVOs < 500 ppm, and individual SVOs < 50 ppm.
c) NA = Not Available.
d) U = The compound was not detected below this concentration.
e) J = The reported value is an estimated concentration.
f) UJ = The compound may have been present above this concentration, but was not detected due to problems with the analysis.
g) R = The data was rejected during the data validation process.

aromatic hydrocarbons (PAHs). These PAHs were detected primarily in the soil samples from the 0- to 0.2-foot range. Other compounds included three phthalates and phenol.

Only two SVOs, benzo(a)pyrene and dibenz(a,h)anthracene, were detected at concentrations above their criteria. These exceedances occurred in the surface soil samples obtained from four borings: SB64D-3, 4, 5, and 6.

Pesticides and PCBs

No pesticides or PCBs were found in the soil samples collected at SEAD-64D.

Metals

A variety of samples were found to contain metals at concentrations just slightly above their criteria. Of the 22 metals analyzed, 13 were found in one or more samples at concentrations above their criteria. The majority of those exceedances appear to reflect natural variations in site soils. The exceptions to this are lead, thallium and sodium which were reported in some samples at concentrations at least two times their criteria.

Groundwater

Five monitoring wells were installed on site. One well, MW64D-1, was installed as a background well. The other four, MW64D-2, 3, 4, and 5, were installed downgradient of electromagnetic anomalies. The summary of chemical analysis results is presented in Table 3-5. The following sections describe the nature and extent of groundwater contamination identified at SEAD-64D.

Volatile Organic Compounds

No volatile organic compounds were detected in the groundwater samples collected at SEAD-64D.

Semivolatile Organic Compounds

No semivolatile organic compounds were detected in the groundwater samples collected at SEAD-64D.

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN GROUNDWATER ANALYSIS RESULTS FROM ESI

	MATRIX LOCATION SAMPLE DATE ES ID		FREQUENCY		FEDERAL DRINKING	NUMBER ABOVE	WATER SEAD-64 07/08/94 MW64D-1 226385	WATER SEAD-64 07/09/94 MW64D-2 226386	WATER SEAD-64 07/08/94 MW64D-3 226387	WATER SEAD-64 07/08/94 MW64D-4 226388	WATER SEAD-64 07/18/94 MW64D-5 227269
	SDG NUMBER	MAXIMUM	DETECTION	CLASS GA	MCL	CRITERIA	45257	45257	45257	45257	45332
COMPOUND	UNITS			(a)	(h)						
METALS					.,						
Aluminum	ug/L	30100	100%	NA	50-200 *	5	177 J	1390	453	494	30100 J
Antimony	ug/L	1.5	20%	3	6	0	1.3 U	1.3 U	1.5 J	1.3 U	1.3 U
Arsenic	ug/L	10	20%	25	NA	NA	2 U	2 U	2 U	2 U	10
Barium	ug/L	693	100%	1000	2000	0	88.6 J	62.8 J	75.9 J	63 J	693
Beryllium	ug/L	3.1	20%	NA	4	0	0.1 U	0.1 U	0.1 U	0.1 U	3.1 J
Cadmium	ug/L	1.3	40%	10	5	0	0.2 U	0.2 U	1.3 J	0.2 U	1 J
Calcium	ug/L	902000	100%	NA	NA	NA	142000	122000	120000	140000	902000
Chromium	ug/L	47.1	80%	50	100	0	0.4 U	1.5 J	0.63 J	0.42 J	47.1
Cobalt	ug/L	82.3	100%	NA	NA	NA	0.69 J	2.8 J	1.5 J	1.4 J	82.3
Copper	ug/L	41.3	80%	200	1000 *	0	0.5 U	3.9 J	2 J	0.68 J	41.3
Iron	ug/L	65800	100%	300	300 *	5	440	1730	538	552	65800
Lead	ug/L	71.6	40%	25	15 **	1	0.9 U	1.2 J	0.89 U	0.89 U	71.6
Magnesium	ug/L	35900	100%	NA	NA	NA	14800	13000	14800	13200	35900
Manganese	ug/L	8250	100%	300	50 *	5	223	456	86.6	106	8250
Mercury	ua/L	0.05	40%	2	2	0	0.04 U	0.04 U	0.04 U	0.04 J	0.05 J
Nickel	ug/L	108	100%	NA	100	1	1.4 J	4.1 J	1.1 J	1.5 J	108
Potassium	ug/L	7080	100%	NA	NA	NA	3340 J	3240 J	1770 J	1280 J	7080 J
Sodium	ug/L	12300	100%	20000	NA	NA	12300	4490 J	6520	3350 J	4390 J
Thallium	ug/L	3.2	60%	NA	2	3	2.2 J	1.9 U	3.2 J	1.9 U	2.1 J
Vanadium	ug/L	42.9	100%	NA	NA	NA	0.69 J	2.1 J	0.9 J	0.69 J	42.9 J
Zinc	ug/L	305	100%	300	5000 *	1	3.8 J	12.4 J	14.4 J	6.5 J	305
OTHER ANALYSES											
pH	Standard Units						7.2	7.9	7.5	7.3	7.8
Conductivity	umhos/cm						725	490	550	595	550
Temperature	°C						22	15.6	16.9	15.2	15.3
Turbidity	NTU						1.5	181	127	141	>200

NOTES:

a) NY State Class GA Groundwater Regulations

b) NA = Not Available

d) U = The compound was not detected below this concentration.

e) J = The reported value is an estimated concentration.

f) UJ = The compound may have been present above this concentration,

but was not detected due to problems with the analysis.

g) R = The data was rejected during the data validation process.

h) Federal Primary and Secondary(*) Drinking Water Maximum Contaminant Levels

(40 CFR 141.61-62 and 40 CFR 143.3)

i) ** the value is an action level, reported in Drinking Water Regulations and Health Advisories, USEPA, May 1994

07/06/95

Pesticides and PCBs

No pesticides or PCBs were detected in the groundwater samples collected at SEAD-64D.

Metals

All of the inorganics on the Target Analyte List (TAL), except selenium, silver, and cyanide, were detected in one or more of the five groundwater samples. Seven metals were detected in the groundwater samples at concentrations above the lowest criteria for NY AWQS Class GA criteria or the Federal primary and secondary drinking water MCLs: aluminum, iron, lead, manganese, nickel, thallium, and zinc. Aluminum, iron, and manganese concentrations exceeded the criteria in the background and all the downgradient locations. Lead, nickel, thallium, and zinc concentrations exceeded the criteria in one or two of the downgradient samples.

When the data for each downgradient groundwater sample are compared to the background groundwater data, many of the metals concentrations are higher than the background concentrations, especially at MW64D-5. All the downgradient samples also had higher turbidities (127 to > 200 NTUs) than the background sample (1.5 NTU). Groundwater from MW64D-5 had a turbidity greater than 200 NTU and looked silty. The higher turbidity in the downgradient wells may influence the reported metals concentrations.

3.1.3 Environmental Fate of Constituents

The potential contaminants of concern at SEAD-64D (The Generic Installation RI/FS Workplan addresses all potential contaminants of concern site-wide as "constituents of concern") are semivolatile organic compounds, primarily polynuclear aromatic hydrocarbons (PAHs), and metals.

The following discussion is meant to present general information on the fate of these potential contaminants of concern, and where possible, site-specific characteristics are presented. Further discussion of these potential contaminants of concern, and all contaminants of concern at SEDA, is provided in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

3.1.3.1 Semivolatile Organic Compounds

The following information was obtained from the document, "Management and Manufactured Gas Plant Sites, Volume III, Risk Assessment," Gas Research Institute (GRI), May 1988,
GRI-87/0260.3. A summary of fate and transport parameters for semivolatile organic compounds is presented in Table 3-6.

PAH compounds have a high affinity for organic matter and low water solubility. Water solubility tends to decrease and affinity for organic matter tends to increase with increasing molecular weight. Therefore, naphthalene (molecular weight 128.16) is much more soluble in water than is benzo(a)pyrene (molecular weight 252.3). When present in soil or sediments, PAHs tend to remain bound to the soil particles and dissolve slowly into the groundwater or the water between the soil particles in the vadose zone. Because of the high affinity for organic matter, the physical fate of the chemicals is usually controlled by the transport of particulates. Thus, soil, sediment, and air represent important media for the transport of PAHs.

Because of their high affinity for organic matter, PAH compounds are readily taken up (bioaccumulated) by living organisms. However, organisms have the ability to metabolize the chemicals and to excrete the polar metabolites. This ability varies among organisms. Fish appear to have well-developed systems for metabolizing PAHs and excreting them. Shellfish (bi-valves) appear to be less able to metabolize the compounds. As a result, PAH concentrations are usually low in fish tissue and higher in shellfish tissue.

Natural processes can alter PAH concentrations in the environment. Biodegradation due to microorganisms, is an important process affecting the concentration of PAHs in soil, sediment, and water. Volatilization is another important process which occurs more readily for the lighter molecular weight PAHs than the higher molecular weight PAHs.

3.1.3.2 Heavy Metals

Fate and Transport Factors

In general, metals tend to be persistent and relatively insoluble in the environment. The behavior of heavy metals in soil is unlike that of organic compounds. For example, volatilization of metals from soil is not considered a realistic mechanism for contaminant migration and is not considered here. However, leaching and sorption will be considered.

Leaching of heavy metals from soil is controlled by numerous factors. The most important consideration for leaching of heavy metals is the chemical form (base metal or cation) present in the soil. The leaching of metals from soil is substantial if the metal exists as a soluble salt. Metallic salts have been identified as a component of such items as tracer ammunition, ignitor compositions, incendiary ammunition, flares, colored smoke, and primer explosive

TABLE 3-6

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF FATE AND TRANSPORT PARAMETERS FOR SELECTED ORGANIC COMPOUNDS

		VAPOR	HENRY'S LAW				
	SOLUBILITY	PRESSURE	CONSTANT	Koc		HALF - LIFE	
COMPOUND	(mg/l)	(mmHg)	(atm-m³/mol)	(ml/g)	Kow	(days)	BCF
Semivolatile Organic Compounds							
Phenol	93000	0.341	4.54E-07	1.42E+01	2.88E+01	3-5	1.4-2
2-Methylphenol	25000	0.24	1.50E-06	2.74E+02	8.91E+01	1-3	
4-Methylphenol		0.11	4.43E-07	2.67E+02	8.51E+01	1-3	
2,4-Dimethylphenol	4200	0.0573	2.38E-06	2.22E+02	2.63E+02	1-3	9.5-150
Benzoic Acid	2700			2.48E+02	7.41E+01		
Naphthalene	31.7	0.23	1.15E-03	1.30E+03	2.76E+03	1-110	44-95
2-Methylnaphthalene	25.4	0.0083	5.80E-05	8.50E+03	1.30E+04	1-3	
2-Chloronaphthalene	6.74	0.017	4.27E-04	4.16E+03	1.32E+04		
2,6-Dinitrotoluene	1320	0.018	3.27E-06	9.20E+01	1.00E+02	4	4.6
Acenaphthene	3,42	0.00155	9.20E-05	4.60E+03	1.00E+04		
Dibenzofuran				4.16E+03	1.32E+04		
2,4-Dinitrotoluene	240	0.0051	5.09E-06	4.50E+01	1.00E+02	5	
Diethylphthalate	896	0.0035	1.14E-06	1.42E+02	3.16E+02	1-3	14-117
Fluorene	1.69	0.00071	6.42E-05	7.30E+03	1.58E+04		
N-Nitrosodiphenylamine	113		1.40E-06	6.50E+02	1.35E+03	4	65-217
Hexachlorobenzene	0.006	0.000019	6.81E-04	3.90E+03	1.70E+05		
Phenanthrene	1	0.00021	1.59E-04	1.40E+04	2.88E+04	1-200	
Anthracene	0.045	0.000195	1.02E-03	1.40E+04	2.82E+04		
Di-n-butylphthalate	13	0.00001	2.82E-07	1.70E+05	3.98E+05	1-3	89-1800
Fluoranthene	0.206	0.0177	6.46E-06	3.80E+04	7.94E+04	140-440	
Pyrene	0.132	2.50E-06	5.04E-06	3.80E+04	7.59E+04	9-1900	
Butylbenzylphthalate	2.9	8.60E-06	1.20E-06	2.84E+04	5.89E+04		663
Benzo(a)anthracene	0.0057	1.50E-07	1.16E-06	1.38E+06	3.98E+05	240-680	
Chrysene	0.0018	6.30E-09	1.05E-06	2.00E+05	4.07E+05	160-1900	
Bis(2-Ethylhexyl)phthalate	0.285	2.00E-07	3.61E-07	5.90E+03	9.50E+03	Neg. Deg.	
Di-ni-octylphthalate	3			2.40E+06	1.58E+09		
Benzo(b)fluoranthene	0.014	5.00E-07	1.19E-05	5.50E+05	1.15E+06	360-610	
Benzo(k)fluoranthene	0.0043	5.10E-07	3.94E-05	5.50E+05	1.15E+06	910-1400	
Benzo(a)pyrene	0.0012	0.000568	1.55E-06	5.50E+06	1.15E+06	220-530	
Indeno(1,2,3-cd)pyrene	0.00053	1.00E-10	6.86E-08	1.60E+06	3.16E+06	600-730	
Dibenz(a,h)anthracene	0.0005	5.20E-11	7.33E-08	3.30E+06	6.31E+06	750-940	
Benzo(g,h,i)perylene	0.0007	1.03E-10	5.34E-08	1.60E+06	3.24E+06	590-650	

Notes:

Koc = organic carbon partition coefficient Kow = octanol-water partition coefficient BCF = bioconcentration factor Neg. Deg. = Negligible Biodegradation

References:

1. IRP Toxicology Guide

2. Basics of Pump-and-Treat Ground-Water Remediation Technology (EPA, 1990).

3. Handbook of Environmental Fate and Exposure Data (Howard, 1989).

4. Soil Chemistry of Hazardous Materials (Dragun, 1988)

5. Hazardous Waste Treatment, Storage, and Disposal Facilities, Air Emissions Models (EPA, 1989).

6. USATHAMA, 1985

7. Values for Koc not found were estimated by: logKoc = 0.544logKow + 1.377 (Dragun, 1988).

· ·

compositions. In particular, barium nitrate, lead stearate, lead carbonate, and mercury fulminate are potential heavy metal salts or complexes which are components of ammunition that may have been tested or disposed of at SEDA. During the burning of these materials, a portion of these salts oxidize to their metallic oxide forms. In general, metal oxides are considered less likely to leach metallic ions than metallic salts. Upon contact with surface water or precipitation, the heavy metal salts may be dissolved, increasing their mobility and increasing the potential for leaching to the groundwater.

Heavy metals may also exist in the base metallic form as a component of the projectiles tested or disposed of at SEDA. Bullets are composed mainly of lead, which may contain trace amounts of cadmium and selenium. Objects composed of these metals, such as bullets or projectiles, will dissolve slowly.

Oxidation and reduction, another mechanism, involves valence state changes to the metal ions and has a large influence on fate mechanisms. An example of the variation in contaminant fate and transport due to oxidation and reduction changes is iron. Iron (Fe) normally exists in one of two valence states, +2 and +3 [Fe(II) and Fe(III)]. Fe(II) is more soluble than Fe(III); therefore, it has a greater mobility. The valence can also affect the toxicity of a compound. For example, chromium +6 is more toxic than chromium +3.

Soil pH can also affect metal migration. If the soil pH is greater than 6.5, most metals are fairly immobile, particularly those normally present as cations. At higher pH values, metals form insoluble carbonate and hydroxide complexes. In acidic soils (pH less than 5), metals are more mobile. For example, the surface soil at the OB Grounds which has undergone an RI/FS, has pH values ranging from 5 to 8.4 (SCS, 1972). The subsurface soil is more alkaline with measured pH values ranging from 7 to 9. Therefore, metals at the OB Grounds would be expected to be present primarily in insoluble forms.

Fate and Transport of Selected Metals

More specific information regarding the fate and transport of lead, which was detected at concentrations greater than two times its criteria, is presented below.

Lead is extremely persistent in both water and soil. Environmental fate processes may transform one lead compound to another; however, lead is generally present in the +2 oxidation state, and will form lead oxides. It is largely associated with suspended solids and

June 1995

Page 3-34 K:\Seneca\RIFS\SEAD64D\Sect-3 sediment in aquatic systems, and it occurs in relatively immobile forms in soil. Lead, which has been released to soil, may become airborne as a result of fugitive dust generation.

3.1.4 Data Summary and Conclusions

The results of the ESI conducted at SEAD-64D identified a large debris pile at the south end of SEAD-64D that may be impacting the soils and groundwater locally due to municipal waste. Two other debris piles were observed in this area; the contents of which were not investigated. An area of disposed metallic debris was identified on the ground surface in the east-central section of SEAD-64D. Criteria for PAHs were exceeded in several surface soil samples across the site which may have been caused by the formerly active incinerator located approximately 500 feet north of the site. Most soil samples also had at least one exceedance of the criteria for a heavy metal. The groundwater sample collected from MW64D-5 had a high concentration of heavy metals, several of which were orders of magnitude above their respective criteria, though the sample's high turbidity may have affected these results.

This information suggests that there have been localized impacts to the soil and possibly to the groundwater at SEAD-64D which may pose a risk to receptors. In addition, emissions from the former incinerator may have impacted the surface soils across much of SEAD-64D.

3.2 PRELIMINARY IDENTIFICATION OF POTENTIAL RECEPTORS AND EXPOSURE SCENARIOS

This section will identify the source areas, release mechanisms, potential exposure pathways, and likely human and environmental receptors at SEAD-64D using the conceptual site model. The potential exposure pathways are presented in Figure 3-8.

This section also discusses the current understanding of site risk for SEAD-64D based upon the data gathered for the ESI. This information is used to assess whether sources of contamination, release mechanisms, exposure routes, and receptor pathways developed based on the conceptual site model are valid, or if they may be eliminated from further consideration prior to conducting the risk assessment.

This is a generic discussion. The future use scenario and the required degree of cleanup will be proposed on a site-by-site basis as part of each feasibility study. The future plans for each

H:\ENG\SENECA\SCOPING\SEAD64D\64DEXP.CDR

site will be taken into account at that time. Currently, the Army has no plans to change the use of this facility or to transfer the ownership.

3.2.1 Potential Source Areas and Release Mechanisms

The primary source areas identified during the ESI are the waste material located in the eastcentral area and at the south end of SEAD-64D and the surface soils across the site. The constituents of concern for these sources are SVOs and heavy metals.

The primary release mechanisms from the waste material and the surface soils are surface water runoff, infiltration of precipitation, and wind erosion. Wind erosion is expected to be a minor mechanism since the site is vegetated. Groundwater, surface water, and sediment are secondary sources. Groundwater discharge to surface water is a secondary release mechanism.

3.2.2 Potential Exposure Pathways and Receptors - Current Uses

The potential exposure pathways from sources to receptors are shown schematically in Figure 3-8. At SEDA, human and vehicular access to the site is restricted to SEDA on-site workers by a chain-link fence around the SEDA facility.

There are two primary receptor populations for potential releases of contaminants from SEAD-64D:

- SEDA personnel and other people may visit the site. This is not an active site; therefore, these receptors would be exposed only on an intermittent or occasional basis.
 Terrestrial and acquatic biota near the site
- 2. Terrestrial and aquatic biota near the site.

The exposure pathways and media of exposure are described below as they may affect the various receptors.

The numerical assumptions that will be used in the baseline risk assessment for the current usage exposure scenario are listed in Table 4-1 of the Generic Installation RI/FS Workplan.

3.2.2.1 Ingestion and Dermal Exposure Due to Surface Water and Sediment

Human receptors of impacted surface water and sediment include on-site workers who may

incidentally ingest or come in contact with the surface water and sediment. Terrestrial biota that drink from and come in contact with impacted surface waters may be affected. Aquatic biota in the surface water and sediment may also be affected.

3.2.2.2 Soil Ingestion and Dermal Contact

Incidental ingestion of the waste material and soil is a potential exposure pathway for on-site workers and terrestrial biota. Dermal contact with the waste material and soil is a potential pathway for on-site workers and terrestrial biota.

3.2.2.3 Groundwater Ingestion, Inhalation, and Dermal Contact

Ingestion of, inhalation of, and dermal contact with groundwater are not potential exposure pathways for on-site workers or terrestrial biota. The groundwater beneath the site is not used currently as a drinking water source and connection to other potable groundwater aquifers has not been demonstrated. It is not anticipated that there would be direct exposure of on-site workers or terrestrial biota to the groundwater from the site.

3.2.2.4 Dust Inhalation and Dermal Contact

Inhalation and dermal contact with impacted dust is a potential exposure pathway for on-site workers and terrestrial biota.

3.2.3 Potential Exposure Pathways and Receptors - Future Use

For future uses of SEAD-64D, on-site residents would be added to the above mentioned receptors. For the ingestion of soil, surface water, and sediment, the most susceptible receptor would be children. Dermal contact with soil is a potential exposure pathway for future residents. Ingestion of groundwater is a potential route of exposure to all future on-site residents assuming on-site groundwater is used as their water supply. Inhalation and dermal contact of fugitive dust is also a potential route of exposure for all on-site future residents.

The numerical assumptions that will be used in the baseline risk assessment for the future usage exposure scenario are listed in Table 4-1 of the Generic Installation RI/FS Workplan.

3.3 SCOPING OF POTENTIAL REMEDIAL ACTION ALTERNATIVES

Based upon data gathered during the ESI, the media and contaminants of concern at SEAD-64D for selecting potential remedial action alternatives are the following:

- a. subsurface and surficial soils containing semivolatiles;
- b. groundwater containing heavy metals; and
- c. surface water and sediment in the stream, drainage channels, and wetlands that may contain semivolatiles and heavy metals.

A comprehensive list of remedial response action alternatives as they pertain to SEDA is provided in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

3.4 PRELIMINARY IDENTIFICATION OF APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs)

Identification and refinement of ARARs will be performed during the RI/FS process. As additional data is collected regarding the nature and extent of contamination, site specific conditions, and potential use of various remedial technologies, additional ARARs will be selected and existing ARARs will be reviewed for their applicability. These data will be reported within the SEAD-64D RI/FS Report.

A comprehensive list of ARARs as they pertain to SEDA is provided in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

3.5 DATA QUALITY OBJECTIVES (DQOs)

The RI investigation at SEAD-64D will conform with all the stated DQOs. Chemical analysis of soil and groundwater samples will generally require Level IV quality data.

The DQOs as they pertain to SEDA are discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

June 1995

Page 3-39 K:\Seneca\RIFS\SEAD64D\Sect-3

3.6 DATA GAPS AND DATA NEEDS

3.6.1 Rationale for the Remedial Investigation

A conceptual site model was developed for the ESI Work Plan identifying potential source area release mechanisms and receptor pathways at SEAD-64D. The ESI results were used to refine the conceptual site model and determine additional data requirements for an evaluation of risks to human health and the environment, compliance with the DQOs and ARARs, and the development of preliminary remedial action alternatives.

The ESI data indicate there are two waste disposal sites at SEAD-64D that could affect soil, groundwater, surface water, and sediment. One is located in the east central section of the site. The other is located at, and south of, the south end of SEAD-64D. These two sites will require further investigation. Test pits will be excavated at geophysical anomalies, mounds, and topographically unusual features identified on the site plan to evaluate whether there are any other disposal sites at SEAD-64D. PAHs and heavy metals were present in some of the surface soil samples across the site at concentrations greater than the TAGMs. They may be due to prior emissions from the incinerator located north of the site. Surface soil samples will be collected in a systematic pattern over the site and analyzed to evaluate whether the PAHs and heavy metals are due to the incinerator. Surface water and sediment samples will be obtained to evaluate whether the PAHs and metals in surface soils affect these media through surface water runoff.

3.6.2 <u>Soil Data</u>

- Extend the topographic map of SEAD-64D 400 feet south to obtain information on the site conditions in the area of disposed material.
- Obtain additional geophysical data to locate the eastern extent of the waste material in the east central area of the site.
- Obtain soil samples from the disposal area in the east central area of the site to evaluate whether the waste has impacted the soil quality.
- Determine if waste material is present at potential clear areas south of SB64D-1, at a potential rubble pile, at a geophysical anomaly, and any other berms located 100 to 300 feet south and west of the waste material at the south end of SEAD-64D.

- Obtain samples of the waste material and the soils below the potential rubble pile at the south end of SEAD-64D.
- Obtain surface soil samples systematically over the site to evaluate whether the incinerator north of the site is the source of the PAHs and heavy metals detected in the surface soil.
- Collect and analyze soil samples for a baseline risk assessment and to develop remedial action alternatives.
- Compare SEAD-64D data to sitewide soil background data that has been compiled from 57 samples obtained from the ESIs performed at 25 SEADs and Remedial Investigations at the OB Grounds and Ash Landfill.
- Analyze soil samples for general chemical and physical parameters. This information would be used during the selection of remedial action alternatives.
- Establish database to determine compliance with ARARs, to perform a baseline risk assessment, and to develop remedial action alternatives.

3.6.3 Groundwater Data

- Determine whether contaminants are present in the groundwater downgradient of the two identified waste disposal areas.
- Determine the hydraulic conductivity of the aquifer to assess the potential for contaminant migration and to select potential remedial action alternatives.
- Analyze groundwater samples for general chemical parameters. This information would be used during the selection of remedial action alternatives.
- Analyze an additional sample of the background groundwater at SEAD-64D to allow comparison with other SEAD-64D groundwater data.
- Establish database to determine compliance with ARARs, to perform a baseline risk assessment, and to develop remedial action alternatives.

3.6.4 Surface Water/Sediment Data

- Define the hydrology of the site by determining flow rates, if possible, and flow directions in the drainage channels and streams.
- Evaluate whether surface water runoff transports PAHs and heavy metals present in the surface soil to the drainage channel, stream, and wetland sediments.
- Analyze surface water and sediment samples for general chemical parameters. This information will be used during the selection of potential remedial action alternatives and determine whether the surface water quality meets the state criteria.
- Determine the background surface water/sediment quality by obtaining samples of surface water and sediment from the head of the stream and where the drainage channels enter the site.
- Establish a database to determine compliance with ARARs, to perform a baseline risk assessment, and to develop remedial action alternatives.

3.6.5 Ecological Data

- Perform an ecological investigation to systematically document visual observations between obvious and potentially impacted and non-impacted areas.
- Analyze flora, fauna, and endangered species on, and in the vicinity of, the site.
- Establish a database to determine compliance with ARARs, to perform a baseline risk assessment, and to develop remedial action alternatives.

3.6.6 Archaeologic Data

• Perform an archaeologic investigation of the house foundation located on the south side of the stream.

4.0 TASK PLAN FOR THE RI

This section describes the tasks required for completion of the Remedial Investigation (RI) at SEAD-64D. These include the following:

- 1. Pre-field Activities
- 2. Field Investigations
- 3. Data Reduction, Interpretation, and Assessment
- 4. Data Reporting
- 5. Task Plan Summary

4.1 PRE-FIELD ACTIVITIES

Pre-field activities include the following:

- 1. A site inspection to familiarize key project personnel with site conditions and finalize direction and scope of field activities.
- 2. A comprehensive review of the Health and Safety Plan with field team members to insure that the hazards that might occur and preventative and protective measures for those are completely understood.
- 3. An inspection of all equipment necessary for field activities to insure proper functioning and usage.
- 4. A comprehensive review of sampling and work procedures with field team members.
- 5. Site clearance, if required.

4.2 FIELD INVESTIGATIONS

The following field investigations will be performed for the RI characterization of SEAD-64D:

- 1. Geophysical investigation,
- 2. Soil investigation (surface soil samples, test pits, and soil borings),
- 3. Groundwater investigation (overburden wells),
- 4. Ecological investigation,
- 5. Archeological investigation, and
- 6. Surveying.

4.2.1 <u>Geophysical Survey</u>

An electromagnetic survey will be performed in a 150- by 250-foot area that was not surveyed during the ESI. This area is located in the east central portion of the site immediately east of the geophysical anomaly as shown in Figure 4-1. The survey will be used to locate the eastern extent of the geophysical anomaly identified in the ESI of this site. Geophysical survey procedures are discussed in Appendix D, Field Sampling and Analysis Plan.

4.2.2 <u>Soil Investigation</u>

4.2.2.1 Soil Boring Program

Soil borings will be performed where waste material was found at the south end of the site and at the east-central area of the site. The borings will be located as shown in Figures 4-1 and 4-2.

Nine soil borings will be performed within the area of the geophysical anomaly in the eastcentral area of the site. The ESI data indicate that the depth to bedrock is approximately 4 feet; therefore, soil samples from each boring location will be obtained for chemical analysis from the following depths: 0 to 0.2 feet, 0.2 to 2 feet, and 2 to 4 feet.

One boring will be performed on a potential rubble pile at the south end of the site as shown in Figure 4-2. Samples for chemical analysis will be obtained as follows: a composite sample of the waste material, soil immediately below the waste material, soil at the water table, and an intermediate soil sample.

Soil boring procedures and subsurface soil sampling criteria from borings are discussed in Appendix D, Field Sampling and Analysis Plan. These samples will be analyzed for the parameters listed in Section 4.2.7.

4.2.2.2 Test Pit Program

Test pits will be excavated at 19 locations across the site as shown in Figures 4-1 and 4-2 to evaluate whether there are other disposal sites on SEAD-64D. The test pits will be excavated at geophysical anomalies, mounds, and topographically unusual features identified on the site

Page 4-2 K:\Seneca\RIFS\SEAD64D\Sect-4

plan and in aerial photographs. Additional test pits will be excavated at the south end of the site if other berms, piles, or depressions are observed in this area. No soil samples will be obtained from these test pits for chemical analysis.

The test pit excavation procedure is discussed in Appendix D, Field Sampling and Analysis Plan.

4.2.2.3 Surface Soil Sampling Program

An abandoned incinerator, formerly used to burn municipal waste, is located approximately 500 feet north of the site. PAHs and heavy metals present in the surface soils on site may be due to particulate deposition from the incinerator. Therefore, 36 surface soil samples will be obtained in a systematic pattern across the site as shown in Figure 4-1.

The surface soil sampling procedure is discussed in Appendix D, Field Sampling and Analysis Plan. These samples will be analyzed for the parameters listed in Section 4.2.7.

4.2.2.4 Soil Sampling Summary

Surface soil samples will be obtained at 36 locations across the site and at nine boring locations. One waste sample will be obtained from a boring. Twenty-one subsurface soil samples will be obtained for chemical analysis from ten borings. No samples will be obtained from the 19 test pits. These soil samples will be analyzed for the parameters listed in Section 4.2.7.

4.2.3 Groundwater Investigation

4.2.3.1 Monitoring Well Installation and Sampling

The purpose of the groundwater investigation is to determine whether the groundwater quality is being impacted at the two locations where waste material is located on site.

A total of five new overburden monitoring wells will be installed at SEAD-64D at the locations shown in Figures 4-1 and 4-2. The borings for these wells will be continuously sampled to competent rock. A monitoring well will then be installed in the boring and screened over the entire length of the overburden aquifer. These wells and the existing well MW64D-5 will be developed before they are sampled.

Water level measurements will be made in all the existing and proposed monitoring wells to obtain updated groundwater flow direction information.

The following wells will be sampled twice for chemical analysis: the background well MW64D-1, the proposed well immediately west of the waste material in the east-central area of the site, the existing well MW64D-5, and three proposed wells west of the waste identified during the ESI at the south end of the site.

Installation, development, sampling, and groundwater level measurement procedures for overburden wells are provided in Appendix D, Field Sampling and Analysis Plan. Groundwater samples from the six monitoring wells identified above will be analyzed for the parameters listed in Section 4.2.7.

4.2.3.2 Aquifer Testing

Slug tests will be performed at the five monitoring wells installed during the ESI (MW64D-1 to -5) to determine hydraulic conductivities at various locations on site. The procedures for slug testing (hydraulic conductivity determination) are provided in Appendix D, Field Sampling and Analysis Plan.

4.2.4 Surface Water/Sediment Sampling Program

Surface water and sediment samples will be obtained from 19 locations on site to evaluate the transport of PAHs and heavy metals in, and the general quality of, the surface water and sediment. The surface water flow rate and direction will also be measured at each location. The 19 locations are shown on Figures 4-1 and 4-2.

Surface water/sediment sampling and surface water flow rate measurement procedures are provided in Appendix D, Field Sampling and Analysis Plan. These samples will be analyzed for the parameters listed in Section 4.2.7.

4.2.5 <u>Ecological Investigation</u>

June 1995

The following procedure for the ecological investigation was developed from the New York State Department of Environmental Conservation (NYSDEC) Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (1994). The purpose of the ecological investigation is to determine if aquatic and terrestrial resources have been affected by a release of contaminants from the site. The investigation will be completed in two parts. The first part will be the site description, which will involve the accumulation of data describing the physical characteristics of the site, as well as the identification of aquatic and terrestrial resources present or expected to be present at the site. The second part will be the contaminant-specific impact analysis, which involves the determination of whether the identified aquatic and terrestrial resources have been impacted by contaminants that have been released at the site. The second part of the ecological investigation is dependent upon the chemical analysis data obtained for the RI.

4.2.5.1 Site Description

The purpose of the site description is to determine whether aquatic and terrestrial resources are present at the site and if they were present at the site prior to contaminant introduction. If they were present prior to contaminant introduction, the appropriate information will be provided to design a remedial investigation of the resources. The information to be gathered includes site maps, descriptions of aquatic and terrestrial resources at the site, the assessment of the value of the aquatic and terrestrial resources, and the appropriate contaminant-specific and site-specific regulatory criteria applicable to the remediation of the identified aquatic and terrestrial resources.

A topographic map showing the site and documented aquatic and terrestrial resources within a two mile radius from the site will be obtained. The aquatic and terrestrial resources of concern are Significant Habitats as defined by the New York State Natural Heritage Program; habitats supporting endangered, threatened or rare species or species of concern; regulated wetlands; wild and scenic rivers; significant coastal zones; streams; lakes; and other major resources.

A map showing the major vegetative communities within a half mile radius of the site will be developed. The major vegetative communities will include wetlands, aquatic habitats, NYSDEC Significant Habitats, and areas of special concern. These covertypes will be identified using the NYSDEC Natural Heritage Program descriptions and classifications of natural communities.

To describe the covertypes at the site, the abundance, distribution, and density of the typical vegetative species will be identified. To describe the aquatic habitats at the site, the abundance and distribution of aquatic vegetation will be identified. The physical characteristics of the aquatic habitats will also be described and will include parameters such as the water chemistry, water temperature, dissolved oxygen content, depth, sediment chemistry, discharge, flow rate, gradient, stream-bed morphology, and stream classification.

The aquatic and terrestrial species that are expected to be associated with each covertype and aquatic habitat will be determined. In particular, endangered, threatened and rare species, as well as species of concern, will be identified. Alterations in biota, such as reduced vegetation growth or quality will be described. Alterations in, or absence of, the expected distribution or assemblages of wildlife will be described.

A qualitative assessment will be conducted evaluating the ability of the area within a half mile of the site to provide a habitat for aquatic and terrestrial species. The factors that will be considered will include the species' food requirements and the seasonal cover, bedding sites, breeding sites and roosting sites that the habitats provide.

The current and potential human use of the aquatic and terrestrial resources of the site and the area within a half mile of the site will be assessed. In addition to assessing this area, documented resources within two miles of the site and downstream of the site that are potentially affected by contaminants will also be assessed. Human use of the resources that will be considered will be activities such as hunting, fishing, wildlife observation, scientific studies, agriculture, forestry, and other recreational and economic activities.

The appropriate regulatory criteria will be identified for the remediation of aquatic and terrestrial resources and will include both site-specific and contaminant-specific criteria.

4.2.5.2 Contaminant-Specific Impact Analysis

Information from the site description developed in Section 4.2.5.1 and from the characterization of the contaminants at the site developed from the results of the RI will be used to assess the impacts of contaminants on aquatic and terrestrial resources. The impact analysis will involve three steps, each using progressively more specific information and fewer conservative assumptions and will depend upon the conclusion reached at the previous step regarding the degree of impact. If minimal impact can be demonstrated at a specific step, additional steps will not be conducted.

Pathway Analysis

A pathway analysis will be performed identifying aquatic and terrestrial resources, contaminants of concern and potential pathways of contaminant migration and exposure. After performing the pathway analysis, if no significant resources or potential pathways are present, or if results from field studies show that contaminants have not migrated to a resource along a potential pathway, the impact on aquatic and terrestrial resources will be

considered to be minimal and additional impact analyses will not be performed.

Criteria-Specific Analysis

Presuming that the presence of contaminated resources and pathways of migration of siterelated contaminants has been established, the contaminant levels identified in the field investigation will be compared with available numerical criteria or criteria developed according to methods established as part of the criteria. If contaminant levels are below criteria, the impact on resources will be considered to be minimal and additional impact analyses will not be performed. If numerical criteria are exceeded or if they do not exist and cannot be developed, an analysis of the toxicological effects will be performed.

Analysis of Toxicological Effects

The analysis of toxicological effects is based on the assumption that the presence of contaminated resources and pathways of migration of site-related contaminants has been established. The purpose of the analysis of toxicological effects is to assess the degree to which contaminants have affected the productivity of a population, a community, or an ecosystem and the diversity of species assemblages, species communities or an entire ecosystem through direct toxicological and indirect ecological effects.

A number of approaches are available to conduct an analysis of toxicological effects. One or more of the four following approaches will be used to assess the toxicological effects.

- Indicator Species Analysis-A toxicological analysis for a indicator species will be used if the ecology of the resource and the exposure scenarios are simple. This approach assumes that exposure to contaminants is continuous throughout the entire life cycle and does not vary among individuals.
- **Population Analysis-**A population level analysis is relevant to and will be used for the evaluation of chronic toxicological effects of contaminants to an entire population or to the acute toxicological effect of contaminant exposure limited to specific classes of organisms within a population.
- **Community Analysis-** A community with highly interdependent species including highly specialized predators, highly competitive species, or communities whose composition and diversity is dependent on a key-stone species, will be analyzed for alternations in diversity due to contaminant exposure.

• Ecosystem Analysis-If contaminants are expected to uniformly affect physiological processes that are associated with energy transformation within a specific trophic level, an analysis of the effects of contaminant exposure on trophic structure and trophic function within an ecosystem will be performed. Bioconcentration, bioaccumulation, biomagnification, etc., are concepts that may be used to evaluate the potential effects of contaminant transfer on trophic dynamics.

4.2.6 Archeological Investigation

The results of the archeological survey performed on SEDA, titled "An Archeological Overview and Management Plan for Seneca Army Depot" (Final Report No. 16, September 1986), were reviewed to determine whether any known or potential archeological resources were present at SEAD-64D. The only archeological resources identified at or near SEAD-64D were three potential resources numbered 105, 108, and 109 in the survey. All three are identified as former farmsteads.

The remains of only one foundation were observed on SEAD-64D located on the south side of the stream that flows west through the site. A preliminary archeological assessment of the foundation and nearby land will be performed. The foundation and any nearby areas that contain remains will be located, described, photographed, surveyed, and shown on a topographic map. One or two shallow (less than one foot deep) pits will be dug with a shovel in each area containing remains to obtain preliminary information on the depth of the remains. Any remains in the pits will be documented. The pit locations will be surveyed and shown on a topographic map. Each pit will be backfilled with the material that was removed from it.

4.2.7 <u>Analytical Program</u>

A total of one waste sample, 66 soil samples, 6 groundwater samples, 19 surface water samples, and 19 sediment samples will be collected for chemical testing.

All the samples, except for the 36 surface soil samples obtained from across the site, will be analyzed for the following: TCL volatile organic compounds (EPA Method 524.2 for groundwater samples only), TCL semivolatile organic compounds, TCL pesticides/PCBs, and TAL metals and cyanide according to the NYSDEC Contract Laboratory Program (CLP) Statement of Work (SOW).

A second round of groundwater samples will be obtained approximately two months after the

first round. These samples will be chemically analyzed for the same parameters as listed in the previous paragraph except the volatile organic compounds will be analyzed using EPA Method 524.2.

The 36 surface soil samples obtained from across the site will be analyzed for the TCL semivolatile organic compounds and the TAL metals and cyanide according to the NYSDEC CLP SOW.

All the surface soil, waste, and subsurface soil samples from the 10 borings (31 samples) will be analyzed for total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1.

The four samples from the boring at the south end of the site and both subsurface samples from three of the nine borings in the east central section of the site will be analyzed for grain size (including the distribution in the silt and clay fractions), Total Organic Carbon (TOC), Cationic Exchange Capacity (CEC), pH, leachability, and density.

The six groundwater samples from both rounds will be analyzed in the field for pH, temperature, specific conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential. The following analyses will be performed by the laboratory: TRPH, alkalinity, ferrous iron, sulfate, sulfide, nitrate, TOC, biological oxygen demand (BOD), hardness, total dissolved solids (TDS), and chemical oxygen demand (COD).

The 19 surface water samples will be analyzed in the field for pH, temperature, specific conductivity, and dissolved oxygen. The following analyses will be performed by the laboratory: total suspended solids (TSS), TDS, alkalinity, hardness, ammonia, nitrate/nitrite, phosphate, TOC, and turbidity.

The 19 sediment samples will be analyzed for grain size, TOC, CEC, and pH. The westernmost sample from the unnamed stream and the sample furthest downstream in the drainage channel along the eastern border of SEAD-64D will also be analyzed for density.

A summary of the analyses to be performed at SEAD-64D is provided in Table 4-1.

TABLE 4-1

SENECA ARMY DEPOT ACTIVITY SEAD-64D PROJECT SCOPING PLAN SUMMARY OF SAMPLING AND ANALYSES

	VOCs		SVOs	Pesticides/PCBs	Metals	TPH	General Chem.	Density
	TCL	Method	TCL	TCL	TAL	Method	and Physical	
MEDIA	NYSDEC CLP	524.2	NYSDEC CLP	NYSDEC CLP	NYSDEC CLP	418.1	Parameters(1)	
Soil Surface	0	0	36	0	36	0	0	0
Subsurface	31	0	31	31	31	31	10	10
Groundwater	6	6	12	12	12	12	12	0
Surface Water	10	0	10	10	10	0	10	0
Surface water	19	0	19	19	. 19	U	17	U
Sediment	19	0	19	19	19	0	19	2

.

Notes:

1) The general chemistry and physical parameters that will be analyzed for each medium are listed in Section 4.2.7.

2) QA/QC sampling requirements are described in Appendix C, Section 5.3 of the Generic Installation RI/FS Workplan.

4.2.8 <u>Surveying</u>

Surveying will be performed at SEAD-64D for the following purposes:

- 1. Extend the topographic map approximately 400 feet south of the mapped area.
- 2. Mapping the direction and computing the velocity of groundwater movements;
- 3. Locating the environmental sampling points;
- 4. Estimating the volume of impacted soils and sediments which may require a remedial action; and
- 5. Mapping the extent of any impacted groundwater above established ARAR limits.

The location, identification, coordinates, and elevations of all the control points recovered and/or established at the site and all of the geophysical lines, soil borings, monitoring wells (new and existing), surface soil sampling points, and surface water/sediment sampling points will be surveyed and plotted on the topographic map to show their location with respect to surface features within the project area. The extent of the waste materials will also be surveyed and plotted on the topographic map.

Site surveys will be performed in accordance with good land surveying practices and will conform to all pertinent state laws and regulations governing land surveying. The surveyor will be licensed and registered in New York.

The site field survey requirements are presented in Appendix D, Field Sampling and Analysis Plan.

4.3 DATA REDUCTION, ASSESSMENT, AND INTERPRETATION

Data reduction, assessment, and interpretation are discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

4.4 BASELINE RISK ASSESSMENT

The baseline risk assessment is discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

June 1995

Page 4-13 K:\Seneca\RIFS\SEAD64D\Sect-4

4.5 DATA REPORTING

Data reporting is discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

4.6 TASK PLAN SUMMARY

Detailed task plan summaries that indicate the number and type of samples to be collected at SEAD-64D are provided in Table 4-1.

General information about the Task Plan Summary is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.0 TASK PLAN FOR THE FS

The task plan for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.1 DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES

A discussion of the development of remedial action objectives for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.2 DEVELOPMENT OF REMEDIAL RESPONSE ALTERNATIVES

A discussion of the development of remedial response alternatives for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.3 SCREENING OF REMEDIAL ACTION ALTERNATIVES

A discussion of the screening of remedial action alternatives for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.4 DETAILED ANALYSIS OF REMEDIAL ACTION ALTERNATIVES

A discussion of the detailed analysis of remedial action alternatives for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.5 TASK PLAN SUMMARY FOR THE FS

The task plan summary for the FS is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

June 1995

Page 5-1 K:\Seneca\RIFS\SEAD64D\Sect-5

6.0 PLANS AND MANAGEMENT

The purpose of this Work Plan is to present and describe the activities that will be required for the site remedial investigation/feasibility study at SEAD-64D. The Field Sampling and Analysis Plan (Appendix D) details procedures that will be used during the field activities. Included in this plan are procedures for sampling soil, sediments, surface water, fish, shellfish, and groundwater. Also included in this plan are procedures for developing and installing monitoring wells, measuring water levels, and packaging and shipping samples.

The Health and Safety Plan (Appendix E) details procedures to be followed during field activities to protect personnel involved in the field program.

The Chemical Data Acquisition Plan (Appendix F) describes the procedures to be implemented to assure the collection of valid data. It also describes the laboratory and field analytical procedures which will be used during the RI.

6.1 SCHEDULING

A discussion of the scheduling for the RI/FS to be conducted at SEAD-64D is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

6.2 STAFFING

A discussion of the staffing for the RI/FS to be conducted at SEAD-64D is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

APPENDIX A

ESI BORING AND TEST PIT LOGS

.

.

PR ASSOC [DRILLI [S/	OJECT I IATED L PR DATE DATE CO NG CON DRILLING	PROJ LOCAT JNIT/A OJECT STAR OMPLE ITRAC 3 MET 3 MET	IECT: TION: REA: T NO: ITED: TTED: TOR: HOD: HOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLI 3" S	IN LC ICA J D-64 518-(3/94 3/94 IRE S LOW PLIT	DW PRIO ARMY DI D D1000 GOILS IN STEM A SPOONS	RITY EPOT, /ESTI UGEF	AOCs DEPTH TO WATER (ft): NA BORING LOCATION (N/E): 991352.4 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0881. e Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	4 7	2.00	1.7	0	BGD	0.5		Dark gray-brown SILT + CLAY, trace(+) very fine Sand, trace very fine to fine gray Shale fragments and Gravel, very stiff, iron staining.	ML
	6 6					1 1.2		Light brown CLAY + SILT, little very fine Sand, trace fine gray Shale fragments and Gravel, trace coarse gray Shale fragments, some iron staining, grading from medium stiff to soft, moist.	ML
						1.7		Grading from light brown SILT + very fine SAND to very fine to fine SAND, little Silt, trace fine gray Shale fragments soft to very soft, saturated.	SM
.02	18 30	2.00	2.0	0	BGD	- 2 2.1		AA (1.2-1.7'), saturated.	SM ML
	32 40					- 3		Clay, trace gray very fine gray Shale fragments, medium stiff, wet. Light brown very fine to fine SAND, trace Silt, little coarse gray Shale fragments, trace fine to medium gray Shale fragments, Coarse Shale Gravel, loose, wet to saturated.	SM
.03	40 62 72	2.00	2.0	0	BGD	4		Brown very fine to fine SAND, trace(+) Silt, trace fine gray Shale fragments, little coarse Shale fragments, loose, wet to saturated.	SM
	52					-5 5.0		Tan siltstone GRAVEL, trace iron staining.	GM SM
.04	78 100/.3	0.80	0.8	0	BGD	- 6 6.4			
						6.7 6.8		Gray-brown very fine SAND, little Silt, little gray coarse Shale fragments, trace Clay, trace fine gray Shale fragments, medium stiff, wet.	ML
						- 7		Gray fractured SHALE, saturated.	-
								BORING TERMINATED AT 7.8'	
NOT	ES: Bo SE	ottom 364D-	of ove 1.01(2	rburd "-2'),	en at SB64	, 6.7'. The 4D-1.02(2)	follow '-4').	ving samples were collected for chemical analysis: SB64D-1.00(0-2"),	1
	2	AR	50	NS				UNITED STATES ARMY LOG OF BORING SB64I	D-1
EP	IGIN	EEF	lNG	i-SC	IEN	CE, IN	с.	Seneca Army Depot Romulus, New York Sheet	1 of 1

PR ASSOCI	oject i Iated u Pro	PROJ LOCAT INIT/AI OJECT	ION: REA:	SEVE SENE SEAE 7205	EN LO ECA / D-641 518-0	ow Prio Army Di D 01000	RITY EPOT	AOCs DEPTH TO WATER (ft): 6.7 , ROMULUS NY BORING LOCATION (N/E): 991351.4 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA	0802. e Plane
DRILLI DRILLI D SA	DATE DATE CO NG CON DRILLING MPLING	STAR DMPLE TRAC METH	TED: TED: TOR: IOD: IOD:	06/2 06/2 EMPI HOLL 3" SI	3/94 3/94 RE S .OW PLIT	oils inv stem a spoons	/ESTI UGER	GATIONS CHECKED BY: FO	
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	3 4 5 5	2.00	1.3	0	BGD	1.0		Brown, very fine SAND + SILT, little fine gray Shale fragments, trace medium Gravel, trace iron-stained Clay, trace organics, medium stiff, dry to moist.	ML
						- 1 1.3		Brown SILT, trace organics, soft, moist. No Recovery	- -
.02	3 4 4	2.00		0	BGD	- 2 2.3		AA, (0-1'), soft, moist. AA, (1-1.3'), trace roots, trace fine Gravel.	ML ML
						- 3 3.6		Light brown, iron-stained SILT + very fine SAND, little Clay, trace organics, trace very fine, weathered gray Shale fragments, medium stiff, moist. No Recovery	ML -
.03	12 18 20 18	2.00	2.0	0	BGD	- 4 - 4 - 5 - 5 - 5.4		 AA, (3-3.6'), little very fine to fine gray Shale fragments. Gray, fine to coarse, fractured + weathered SHALE fragments + very fine to fine SAND, trace Silt and Clay, medium dense, moist. 	ML GM
						6.0		AA, (4-4.3').	ML
.04	18 20 26 16	2.00	1.3	0	BGD	6.5 6.7 - 7 7.1 7.3		Light brown very fine to fine SAND, some gray, very fine to medium weathered Shale fragments, trace Silt, medium stiff, wet. AA, saturated. Gray fractured + weathered, SHALE, saturated (6.7-6.8'), moist to wet (6.8-7.1'), iron stained. AA, (6.5-6.7').	SW - SW -
.05	41 100/.3	0.80	0.5	0	BGD	- 8 8.5		No Recovery Gray highly fractured, medium weathered SHALE, trace iron-stained, 0.1 lenses of olive gray Silt and very fine Sand, moist. No Recovery	-
						- 9 10.0			
NOT	ES: Bo SE	ottom 364D-	of ove 2.01(2	rburd ?"-1.3	en at '), SB	6.7'. The 64D-2.02	follov (2.3'-3	ving samples were collected for chemical analysis: SB64D-2.00(0-2"), 3.6'), SB64D-2.03(4'-6'). UNITED STATES ARMY)-2
			ISO RING	NS i-SC	IEN	CE, IN	с.	CORPS OF ENGINEERS Seneca Army Depot Romulus, New York Sheet	1 of 2

PROJECT PROJECT NO	: SEV : 720	/EN 518	LOW	/ Priori [.] 000	TY A	GROUND SURFACE ELEVATION: NA	
ROJECT LOCATION	SEN	IEC/	AR	MY DEP	ОΤ,	ROMULUS NY CHECKED BY: FO	
Sample Number Blow Counts (# Blows per 6") Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.06 100/.2 0.20	0.0	0	BGD			Gray SHALE	-
						BORING TERMINATED AT 10.2'	
NOTES: Bottom	of over	burde	n at	6.7'. The f	ollow	ving samples were collected for chemical analysis: SB64D-2.00(0-2"),	
	2.01(2 SOF	NS	, JB	<u>.</u>	<u></u>	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot)-2
ENGINEER	RING	SCI	EN	CE, INC	C.	Romulus, New York Sheet 2	of 2

PR ASSOC DRILLI I SA	OJECT I RATED L PR DATE DATE CO NG CON DRILLING	PROJ LOCAT INIT/AI OJECT STAR OMPLE ITRAC METH METH	ECT: ION: REA: NO: TED: TED: TED: IOR: IOD:	SEV SEA 720 06/2 06/2 EMF HOL 3" \$	EN L ECA D-64 518-0 24/94 24/94 PIRE S LOW	DW PRIORIT ARMY DEPO D D1000 SOILS INVES STEM AUG SPOONS	Y AOCs DEPTH TO WATER (ft): 3.2 BORING LOCATION (N/E): 992695.3 7411 REFERENCE COORDINATE SYSTEM: GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR ER ER	196.(Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recoverv (ft)	VOC Screen-PID	Rad Screen (cps)	Depth (ft)	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.01	4 6 10 8	2.00	2.	0 0	BGD	1 1.2	Dark brown SILT, some very fine Sand, little organics, grading from soft to medium stiff, slightly moist to moist.	ML
.02	6 12 10 5	2.00	0.	4 0	BGD	- 2 2.0 2.7 - 3 3.2 3.4	 Light brown-orange SILT + very fine SAND, trace very fine Gravel and gray Shale fragments, little orange Clay, trace organics, stiff, dry to slightly moist. Light brown SILT and very fine SAND, trace very fine Gravel and gray Shale fragments, little orange Clay, stiff, moist. Light brown SILT + very fine to fine SAND, little medium Sand, trace fine Gravel and gray Shale fragments, trace Gravel Cobble, wet. Fine SAND, little very fine Sand and Silt, trace fine Gravel and gray Shale 	ML ML SW
.03	10 38 25 17	2.00	0.	9 0	BGD	- 4 4.0 4.4 4.9	Tragments, saturated. No Recovery Brown CLAY + SILT, trace fine to medium gray Shale fragments, saturated. Gray highly fractured, medium to coarse SHALE fragments, saturated, iron stained. No Recovery	ML GW
.04	65 12 10 14	2.00	1.	3 0	BGD	- 6 6.4 - 7 7.0	Gray highly fractured, medium to coarse SHALE fragments, trace olive gray Silt, iron-stained fragments, saturated. Very fine to coarse gray SHALE fragments + gray, iron-stained CLAY, stiff, saturated. Light brown, iron-stained SILT + very fine SAND + fine to medium gray SHALE fragments, stiff, saturated. No Recovery	GM GC GM
.05	100/.4	0.40	o.	4 0	BGD	- 8 8.0 8.2 8.4	Light gray, iron-stained CLAY + fine gray SHALE fragments, stiff, wet. AA, (6-6.4'), dry to moist. No Recovery	GC GC
NOT	ES: Bo (0	ottom .2-2.0	of ov '), SE	erburg 64D-	den at 3.02 (10.0 8.4'. The foll 2'-3.2'), SB64	owing samples were collected for chemical analysis: SB64D-3.00(0-2"), SB64D-3.01 ID-3.01 MRD (0.2-2.0'), and SB64D-3.20 (duplicate of .01) UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot	3

PROJECT:	SEVEN LOW PRIORI	Y AOCs GROUN	D SURFACE ELEVATION: NA
PROJECT NO: PROJECT LOCATION:	SENECA ARMY DEP	T, ROMULUS NY	CHECKED BY: FO
Sample Number Blow Counts (# Blows per 6") Advance (ft)	Sample Recovery (ft) VOC Screen-PID Rad Screen (cps) Depth (ft)	This log is part of the report prepared to named project and should be read toge interpretation. This summary applies of the time of drilling. Subsurface condition	by Engineering-Science, Inc. for the ether with that report for complete only at the location of this boring and at ions may differ at other locations.
.06 100/.2 0.20	0.2 0 BGD	DESCH	d SHALE, dry.
		BORING TERMIN	NATED AT 10.2'
(0.2-2.0	or overburden at 8.4'. The fo '), SB64D-3.02 (2'-3.2'), SB	owing samples were collected for chemical 4D-3.01 MRD (0.2-2.0'), and SB64D-3.20 (analysis: SB64D-3.00(0-2"), SB64D-3.01 (duplicate of .01)
	SONS	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot	LOG OF BORING SB64D-3
ENGINEER	ING-SCIENCE, INC	Romulus, New York	Sheet 2 of 2

PR ASSOC I DRILLI I SA	OJECT I IATED U PR DATE DATE CO NG CON ORILLING	PROJ OCAT NIT/A OJECT STAR OMPLE TRAC	IECT: S ION: S REA: S NO: TED: O TED: O TOR: I IOD: I	SEVE SEAE 7205 06/24 06/24 EMPI HOLL 3″ SI	EN LC ECA 518-C 518-C 4/94 4/94 RE S LOW PLIT	OW PRIOI ARMY DE D D1000 GOILS INV STEM AU SPOONS	RITY EPOT VESTI UGER	AOCs DEPTH TO WATER (ft): 4.0 , ROMULUS NY BORING LOCATION (N/E): 992588.8 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	1199.(e Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.01	4	2.00	1.7	0	BGD			Brown SILT, little very fine Sand, little organic material, moist.	ML
	8					0.4		Light brown CLAX trace Silt trace() organic material stiff maint	<u> </u>
	10 14					0.9		Light brown CLAT, trace Sit, trace(-) organic material, still, moist.	ŬL.
	14					- 1 1.7		Light gray CLAY + SILT, little weathered Siltstone, trace Shale fragments, trace organic material, loose, moist.	ML
						2.0		No Recovery	-
.02	32 50 41	2.00	1.7	0	BGD	- 2 2.7		Light gray-olive brown CLAY, little Silt, trace weathered Shale fragments, loose, dry.	CL
	25					- 3 3.7		Gray fractured SHALE, wet. Light brown, very fine SAND, some Silt, little weathered, fractured Shale, loose, moist, saturated at (3.6-3.7').	SM
						4.0		No Recovery	•
.03	11	2.00	0.9	0	BGD	-4 4.4		Light brown very fine SAND, trace(+) Silt, trace Shale fragments.	SP
	9 2 5					4.9		Light brown-tan SILT, little very fine Sand, saturated.	ML
						6.0		No Recovery	-
.04	25	1.00	⊤ 1.0	0	BGD	-6		AA, (4.4-4.9').	ML
	100/.5					7.0		Dark gray, highly weathered SHALE, wet.	
						-7		No Recovery	-
.05	100/.4	0.40	0.4	0	BGD	- 8		Gray, highly weathered SHALE, dry to damp.	-
								. BORING TERMINATED AT 8.4'	
NOT	ES: Bo	ottom	of over	rburde	en at] 6.5'. The	follov	ving samples were collected for chemical analysis: (SB64D-4.00), (SB64D-4.01),	
	_{(S}	B64D	-4.02).					UNITED STATES ARMY CORPS OF ENGINEERS LOG OF BORING SB64D)-4
	P	AF	501	NS				Seneca Army Depot	
E	IGIN	EEF	NING	-SC	IEN	CE, IN	C.	Romulus, New York Sheet 1	of 1

PR SSOCI C DRILLII DRILLII SA	OJECT I ATED U PR DATE DATE CO NG CON RILLING	PROJ LOCAT INIT/AI OJECT STAR OMPLE ITRAC METI	ECT: ION: REA: NO: TED: TED: TOR: IOD: IOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLI 3" SI	EN LC CA / D-64 518-0 5/94 5/94 RE S OW PLIT	DW PRIO ARMY D D D1000 SOILS IN STEM A SPOONS	RITY EPOT /EST UGEF	AOCs DEPTH TO WATER (ft): 6.0 , ROMULUS NY BORING LOCATION (N/E): 991240.7 740 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0681.: Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.01	4 6 7 8	2.00	1.7	0	BGD	- 1 1.7	.0 .0 .0 .0	Brown SILT, little very fine Sand, little organic material, trace fine Shale fragments, loose, moist. Light brown SILT, some very fine Sand trace(-) fine Gravel, trace(-) organic material, loose, damp.	ML
.02	11 11 14 16	2.00	1.6	0	BGD	- 2 - 3 - 3.6	0 0 0	No Recovery Light brown very fine SAND + SILT, trace(+) very fine to fine Shale fragments, trace(-) organic material, medium stiff, dry.	ML
.03	13 13 24 77	2.00	1.9	o	BGD	- 4 - 5 5 5.2		No Recovery Light brown SAND + SILT, trace(+) very fine to fine Shale fragments, trace Clay, medium stiff, dry.	ML
.04	74 48 100/.1	1.10	 	0	BGD	- 6 6.0 - 6 6.0 - 6.7 - 7		Light brown alternating lenses of very fine SAND, little(+) Silt, trace Clay and weathered/fractured Shale, wet. No Recovery Weathered + fractured SHALE w/little lense of light brown very fine Sand and Silt, saturated. Gray weathered/fractured SHALE, saturated. No Recovery	ML
.05	100/.2	0.20	<u>=0.1</u>	0	BGD	- 8		Gray fractured SHALE. BORING TERMINATED AT 8.2'	-
NOT		Dittom 364D-	of ove 5.01(2	 2"-2'), NS	en at SB64	5.5'. The 4D-5.02(2	follov '-4').	wing samples were collected for chemical analysis: SB64D-5.00(0-2"), UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Parmitus New York	D-5

PR ASSOCI DRILLII DRILLII SA	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ .OCAT NIT/AF DJECT STAR MPLE TRACT METH METH	ECT: S ION: S REA: S NO: TED: C TED: C TED: C TED: C IOD: S IOD: S	SEVE SENE SEAE 7205 06/2 06/2 EMPI HOLL 3" SI	N LC CA / D-64 518-C 5/94 5/94 RE S OW PLIT	OW PRIOD ARMY DE D D1000 SOILS INV STEM A SPOONS	RITY POT /ESTI UGEF	AOCs DEPTH TO WATER (ft): NA BORING LOCATION (N/E): 993876.2 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0349.(∍ Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	uscs
.01	3 8 16 15	2.00	1.3	0	BGD	- 1 1.3		Brown SILT, little very fine Sand, little organic material, trace(-) fine Shale, loose, moist. Light brown SILT + very fine SAND, trace(+) very fine Shale fragments, trace(-) organic material, medium stiff, organic.	ML
.02	24 18 35 57	2.00	1.8	0	BGD	- 2 2.0 2.3 2.8 - 3		Light brown CLAY, trace(-) Silt + very fine Sand. Gray-brown SILT + very fine SAND, little very fine to fine Gravel (Shale), trace Clay, trace medium to coarse Shale fragments, medium stiff, moist to wet. Olive gray-gray weathered SHALE + CLAY w/little Silt, trace organic	CL ML GC
.03	25 100/.4	0.90	0.5	0	BGD	3.4 3.8 - 4 4.0 - 4		material, dry. Olive gray to gray highly weathered SHALE, dry. No Recovery AA, (3.4-3.8'), moist to wet. No Recovery	
.04	100/.2	0.20	<u>0.1</u>	0	BGD	- 6		Dark gray fractured SHALE, dry. BORING TERMINATED AT 6.2'	
								·	
NOT	ES: Bo	ottom 364D-	of ove 6.01(2	rburd("-2'),	en at SB64	4.5'. The 4D-6.02(2)	follov '-4').	ving samples were collected for chemical analysis: SB64D-6.00(0-2"),	
E		AR	501 XING	NS -SC	IEN	CE, IN	с.	CORPS OF ENGINEERS Seneca Army Depot Romulus, New York	D-6
PR ASSOC DRILLII C SA	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ OCAT NIT/AI OJECT STAR OMPLE TRAC METH METH	ECT: ION: REA: NO: TED: TED: TED: TOR: IOD: IOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLL 3" SI	EN LO ECA / 5-64 518-0 4/94 4/94 IRE S _OW PLIT	OW PRIOD ARMY DE D D1000 SOILS INV STEM AU SPOONS	RITY EPOT, /ESTI UGER	AOCs DEPTH TO WATER (ft): 4.2 ROMULUS NY BORING LOCATION (N/E): 993532.9 744 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0778.(Plane
-----------------------------------	---	--	---	---	---	---	--------------------------------	---	-----------------
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.01	5 6 8 10	2.00	1.7	0	BGD	- 1		 Brown SILT, little(-) very fine Sand, trace(+) organic material, loose, moist to wet. Light brown SILT, some very fine Sand, trace weathered fine Shale fragments, trace(-) organic material, medium stiff, moist. 	ML
.02	18 18 24 40	2.00	1.6	0	BGD	- 3		Light brown tan SILT + very fine SAND, loose, wet. No Recovery Light brown-gray SILT, some very fine Sand, little(-) Clay, trace(+) Shale fragments, moist.	ML - ML
.03	42 100/.4	0.90	 0.9	0	BGD	- 4		No Recovery Gray highly weathered SHALE, wet to saturated (4.2-4.6'), damp to moist (4.6-4.9').	
								BORING TERMINATED AT 4.9'	
NOT	ES: Bo	ottom 364D-	of ove 7.02(2	rburd ?'-4').	en at] 4'. Sampl	les tak	en for chemical analysis were: SB64D-7.00(0-2"), SB64D-7.01(2"-2'),)-7
		AR	S C	NS i-SC	IEN	CE, IN	с.	CORPS OF ENGINEERS Seneca Army Depot Romulus, New York Sheet 1	of 1

PR ASSOCI DRILLII C SA	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ LOCAT INIT/AI OJECT STAR OMPLE ITRAC METH METH	TON: REA: NO: TED: TED: TOR: HOD: HOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLI 3" SI	EN LO ECA / 5-64 518-0 4/94 4/94 RE S _OW PLIT	ow Pric Army D D D1000 SOILS IN STEM A SPOONS	VEST	AOCS DEPTH TO WATER (ft): 4 , ROMULUS NY BORING LOCATION (N/E): 993098.6 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0816.8 e Plane		
Sample Number	0 Number 0 Number (# Blow Counts (# Blows per 6") 0 Advance (ft) 0 Noc Sample 0 VOC Screen-PID 0 Pepth (ft)							This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	uscs		
.01	4 5 9 10	2.00	1.9	0	BGD	- 1		Dark brown SILT, some very fine Sand, little organics, trace very fine gray Shale fragments. Grading from light brown to olive gray SILT, little very fine Sand, trace organics, trace very fine to fine gray Shale fragments, little iron-stained Clay, medium stiff to stiff, slightly moist.	ML ML-GC		
.02	12 14 18 16	2.00	1.8	B 0.	BGD	- 2 2.0		No Recovery Olive-gray SILT, some very fine Sand, little heavily iron-stained Clay, little very fine to coarse gray Shale fragments, trace coarse Gravel, trace coarse gray fine fragments, fractured Shale from (3.5-3.8), stiff, slightly moist.	ML		
.03	29 65 71 100/.3	1.70	 1.7	0	BGD	- 4 4.1 4.1 - 5 - 5	D 3 5 8 	No Recovery Gray very fine to medium SHALE fragments, some light gray Clay and Silt, saturated. Highly fractured, slightly weathered SHALE, trace light gray Clay, saturated. Highly fractured, highly weathered SHALE, moist. AA, iron-stained medium Shale fragments from (4.5-5.7'), dry to moist.	GC-GM - - -		
	5.7 BORING TERMINATED AT 5.8'										
NOT	ES: Bo	ottom .2-2.0	of ove)'), SB	erburd 64D-8	en at 3.02 (」 4.3'. Th 2.0-4.0').	e follov	wing samples were collected for chemical analysis: SB64D-8.00 (0-2"), SB64D-8.	.01		
			ISO RING	NS i-sc	IEN	CE, IN	IC.	CORPS OF ENGINEERS Seneca Army Depot Romulus, New York	レ-8 1 of 1		

PR ASSOC DRILLI DRILLI SA	OJECT I IATED L PR DATE OATE CO NG CON ORILLING	PROJ LOCAT INIT/A OJECT STAR OMPLE ITRAC METI	IECT ION REA NO TED TED TOR IOD		SEVE SEAC 7205 06/2 06/2 MPI HOLL 8" SI	EN LC CA D-64 518-0 5/94 5/94 RE S OW 2LIT	DW PRIOI ARMY DE D D1000 COILS INV STEM AU SPOONS	RITY POT ZESTI JGER	AOCs DEPTH TO WATER (ft): 4.5 , ROMULUS NY BORING LOCATION (N/E): 993140.6 747 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	1264.7 Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample	Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	4	2.00		2.0	0	BGD	0.2		DESCRIPTION Dark brown SILT, little Clay, little very fine Sand, little organics, loose,	ML
	6 14 8						0.8 - 1 1.2 2.0		moist. Light brown to brown SILT and very fine SAND, trace very fine Gravel, trace organics, medium stiff to soft, slightly moist. Brown SILT, little iron-stained Clay, trace very fine Sand, trace very fine to fine gray Shale fragments, trace organics, medium stiff. Gray-brown CLAY and + highly fractured, weathered, iron-stained SHALE, little Silt, medium soft to soft, moist.	ML GC
.02	6 14	2.00	+	1.9	0	BGD	- 2		AA(.8-1.2')	GC
	15 12						2.8			
							- 3 3.2		AA, little very fine Sand.	CL
.03	6 4 7 10	2.00		1.9	0	BGD	3.5 3.9 - 4 4.0 4.5 4.9 - 5 / 5.4		Light brown very fine to fine SAND, trace fine to medium gray Shale fragments, little coarse sand-sized gray Shale fragments, little Silt, iron-stained, wet. Fractured, weathered, iron-stained SHALE fragments and light brown, iron-stained Silt and very fine Sand, wet to moist. No Recovery Brown SILT + very fine SAND, little fine to coarse gray Shale fragments, iron-stained, soft, moist to wet. AA, saturated. Light brown very fine to medium SAND, trace very fine to fine gray SHALE	GM ML ML SW CL
.04	6 100/.2	0.70	Ţ	0.7	0	BGD	5.9 - 6 6.0 6.4		Light gray, iron-stained CLAY and very fine to coarse, weathered gray SHALE fragments, trace very fine Sand, soft, wet.	CL
							6.7		Olive gray SILT and CLAY, very fine to coarse gray Shale fragments, loose, saturated. Gray, fractured, weathered, iron-stained, coarse gray Shale fragments, saturated. No Recovery BORING TERMINATED AT 6.8'	
ΝΟΤ	ES: Bo	ottom	ofo	ver	burde	en at	6.4'. The	follow	ving samples were collected for chemical analysis: SB64D-9.00(0-2"),	
			9.0' S(<u>1(2</u> "	<u>-2'),</u> 15	3864	-9.02(2'	-4').	UNITED STATES ARMY CORPS OF ENGINEERS)-9
EN	IGIN	EEF		IG-	sci	EN	CE, ING	C.	Seneca Army Depot Romulus, New York Sheet 1	of 1

PR SSOCI DRILLII DRILLII SA	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ LOCAT INIT/A OJECT STAR OMPLE ITRAC METH METH	TED: TED: TED: TED: TED: TED: TED: TED:	SEVE SEAE 7205 06/2 06/2 EMPI HOLL 3" SI	EN LC ECA / 5-64 518-0 5/94 5/94 RE S -0W PLIT	OW PRIO ARMY DI D D1000 OILS IN STEM A SPOONS	RITY EPOT /EST UGEF	AOCs DEPTH TO WATER (ft): 5.0 7, ROMULUS NY BORING LOCATION (N/E): 992967.4 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): NA DATUM: NAD 1983 INSPECTOR: KK, LR IGATIONS CHECKED BY: FO	1344. e Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	ÚSČS
.01	3 4 5	2.00	1.6	0	BGD	0.7		DESCRIPTION Dark brown SILT, little organics, moist.	ML
	5					- 1		Little brown, iron-stained SILT and CLAY, trace very fine Sand, trace organic, trace(-) very fine gray Shale fragments, medium stiff, moist.	ML
.02	9 15 18	2.00	 2.0	0	BGD	1.6 2.0 - 2 2.5		Brown SILT, trace iron-stained Clay, little very fine to fine gray Shale fragments, soft to medium stiff, moist. No Recovery AA (1.4-1.6'), medium stiff. Light iron stained CLAY, trace very fine to fine gray Shale fragments, stiff,	ML ML CL
03	18	2.00			BGD	- 3 3.3		slightly moist. Olive gray SILT, little very fine Sand, trace Clay, little very fine to fine gray Shale fragments, stiff to medium stiff, slightly moist	ML
	12 19 10	2.00				4.3 5.0 - 5 5.2		AA, (2.5-3.3'), trace decayed organics. Light brown very fine SAND and SILT, little weathered fine gray Shale fragments, soft, saturated.	.CL ML
.04	19 24 27 30	2.00	1.0	0	BGD	- 6 6.0 6.7 7.0		No Recovery Slightly weathered, highly fractured, coarse gray SHALE fragments, iron-stained, saturated. Olive gray CLAY and very fine to coarse gray SHALE fragments, saturated.	GW GC
.05	85 55 50 100/.1	1.60	0.7 	0	BGD	- 8 8.0 8.7 - 9		No Recovery Gray fractured SHALE, trace iron staining, saturated. No Recovery	-
								BORING TERMINATED AT 9.6'	
ΝΟΤ	ES: Bo SI	ottom 364D-	of ove 10.01	rburd (2"-2'	en at), SB(6.0'. The	follov 8(4'-5	wing samples were collected for chemical analysis: SB64D-10.00(0-2"), .1').	-1
			50	NS		CE 111		UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot	-10

PR ASSOC I DRILLI I S/	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ LOCAT INIT/AI OJECT STAR OMPLE ITRAC 3 METH 3 METH	ECT: ION: REA: NO: TED: TED: TED: TOR: HOD:	SEVE SEAE 7205 03/2 03/2 EMPI HOLI 3" SI	IN LC ICA 5-64 518-0 8/94 8/94 IRE S LOW PLIT	DW PRIOI ARMY DE D D1000 SOILS INV STEM A SPOONS	RITY EPOT /ESTI UGEF	AOCs DEPTH TO WATER (ft): 3.0 , ROMULUS NY BORING LOCATION (N/E): 993059.7 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): 666.6 DATUM: NAD 1983 INSPECTOR: KK, LR IGATIONS CHECKED BY: FO	41523. ⁻ te Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	1 2 6 8	2.00	1.5	0	BGD	- 1 1.2		Dark brown SILT, little organic, trace fine to medium Shale fragments and Gravel, soft, moist.	ML
.02	9	2.00	⊥ 1.7	0	BGD	1.5 2.0	· · · · ·	Light green-gray CLAY, iron staining, medium stiff, moist. No Recovery Light olive gray CLAY, little fine to medium Shale fragments, trace Silt, soft,	CL - CL
	18 40 40					2.7 3.0		wet, iron staining. Olive gray CLAY, some fine to medium Shale fragments, trace very fine Sand, trace Silt, very soft, wet to saturated. Gray fractured, slightly weathered, SHALE, trace Silt, loose, saturated.	CL GM
.03	30 39	1.30	⊥ ⊤1.3	0	BGD	3.7 4.0 - 4 4.4		No Recovery Gray fractured + weathered SHALE fragments and olive gray CLAY, trace very fine Sand, loose, saturated.	GC
	100/.3					-5 5.0		Gray fractured, SHALE, trace olive gray Clay, loose, saturated. Light gray CLAY, iron staining, stiff, moist	GC
								Gray SHALE. BORING TERMINATED AT 5.3' AUGER REFUSAL	
NOT	res: Bo	ottom	of ove	rburd	en at	3.0'. No s	sample	UNITED STATES ARMY CORPER OF ENGLISHING MW64	.D-1
		'AA IEEI	ISO RING	NS j-SC	IEN	CE, IN	с.	Seneca Army Depot Romulus, New York Sheet	1 of 1

PRO SSOCI DRILLII C SA	DJECT L ATED U PRI DATE DATE CC NG CON DRILLING	PROJ OCAT NIT/AF DJECT STAR)MPLE TRAC } METH	ECT: ION: REA: NO: TED: TED: TOR: HOD:	SEVE SEAE SEAE 7205 06/2 06/2 EMPI HOLI 3" S	IN LC ICA / D-641 518-(1/94 1/94 IRE S LOW PLIT	OW PRIOD ARMY DE D D1000 SOILS INV STEM AU SPOONS	RITY A EPOT, /ESTICUGER	AOCs DEPTH TO WATER (ft): 3.6 ROMULUS NY BORING LOCATION (N/E): 993638.6 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): 633.7 DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0197.0
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	NSCS
.01	3	2.00	1.2	0	BGD	0.3		Dark brown SILT + very fine SAND, trace fine Gravel, some organics, soft,	ML
	2 3							moist. Brown SILT + CLAY, trace organics, very soft, moist to wet.	ML
	4					0.9		Tan nink CLAV little/.) brown Silt trace fine Gravel medium stiff mojet	
						1,2		No Recovery	
.02	3 5 5	2.00	2.0	0	BGD	- 2		AA (0.9-1.2'), yellow, red, pink, gray, light brown Clay, trace fine Gravel, trace medium Sand, medium stiff, moist.	CL
						- 3 3.3			
						3.4	8. I	Red + pink fine SAND, wet to saturated.	SP
						4.0		Brown-gray SILT + very fine SAND, little fine gray Shale fragments, little coarse Sand-sized gray Shale fragments, wet to saturated.	ML.
.03	5 8 9	2.00	2.0	0	BGD	4.7		Gray fine to medium SHALE fragments + brown-gray very fine SAND, little Silt, loose, saturated.	GM
	15					5.1		Light gray CLAY + SILT, little fine gray Shale fragments, little coarse gray	ML
						7		Grav fine to coarse SHALE fragments + brown-gray, iron-stained SILT,	GM
						6.0		loose, saturated.	
.04	21 38	2.00	1.3	0	BGD	6.4		Gray fine to medium SHALE fragments + gray SILT, saturated.	GM
	45					6.9		Gray highly fractured SHALE, trace gray Silt, saturated.	- 11
	55					-7 7.3		AA, (6-6.4').	GM
								No Recovery	
						8.0			
.05	100/.5	0.50	0.5	0	BGD	-8		Gray coarse SHALE fragments + gray-brown CLAY + SILT, soft, saturated.	GM-GC
.06	100/.1	0.10	L_0	NA	NA	0.0		No Recovery	
						9		BORING TERMINATED AT 9'	
NOT	ES: Br	ottom	of ove	rburd	len at		sample	es were collected for chemical analysis.	
	2	AF	150	NS				UNITED STATES ARMY LOG OF BORING MW64	D-2
E	NGIN	EEI	RING	i-sc	IEN	CE. IN	C.	Seneca Army Depot Romulus New York Sheet	1 of 1

PR ASSOC I DRILLI C SA	OJECT I IATED U PR DATE DATE CO NG CON DRILLING	PROJ OCAT NIT/AI DJECT STAR MPLE TRACT METH METH	ECT: ION: REA: NO: TED: TED: TED: TCR: IOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLL 2" SI	EN LC ECA / 5-64 518-0 0/94 RE S -OW PLIT	OW PRIOD ARMY DE D 01000 OILS INV STEM A SPOONS	RITY POT, VESTI UGER	AOCs DEPTH TO WATER (ft): 6.4 , ROMULUS NY BORING LOCATION (N/E): 993017.4 74 REFERENCE COORDINATE SYSTEM: New York State GROUND SURFACE ELEVATION (ft): 647.3 DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	0735.8 9 Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	2	2.00	1.3	0	BGD	0.1	3÷.3	Dark brown SILT, some organics, soft, moist.	ML
	3 4 5					- 1 1.3		Grading from SILT + some Clay, to CLAY + some Silt, dark brown to tan, trace organics, trace(-) fine Gravel, soft, moist.	ML
								No Recovery	-
.02	8	2.00	T 1.6	0	BGD	2.0		AA (1.0-1.3') tan Clay, some Silt, soft, iron-stained	CI
	10 15 17					2.3		Tan-gray, heavily iron-stained CLAY, little Silt, trace organics, trace fine gray Shale fragments, stiff, dry.	CL
						-3 3.1		Limestone Cobble.	
						3.6		AA, (2.3-2.9'), some fine Sand, wet (3.2-3.4'), dry (3.4-3.6'), medium Shale fragments (3.6').	
						4.0		No Recovery	-
.03	16 20 20 20	2.00	2.0	0	BGD	- 4 - 5 - ; 5.7		Brown SILT + very fine SAND, some fine to medium gray Shale fragments, trace coarse Sand-sized gray Shale fragments, moist to wet.	ML
						6.0	•••	AA, trace fine Shale fragments, loose, wet.	ML
.04	27 55	1.40	1.4	0	BGD	6.4		Brown SILT + CLAY + gray fine to medium weathered SHALE fragments, stiff, moist, iron-stained.	GM-GC
	100/.4					6.8		Gray weathered SHALE, trace Silt, loose, saturated.	-
						7 7.0		AA, (6.0-6.4'). Gray highly weathered SHALE dry	ML
						7.4		No Recovery	
								BORING TERMINATED AT 7.8'	
NOT	TES: Bo	ottom	of ove	rburd	en at	7'. No sa	mples	were collected for chemical analysis.	
		AR	so	NS		• ****		UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot	D-3
E	NGIN	EEF	RING	i-SC	IEN	CE, IN	с.	Romulus, New York Sheet	1 of 1

PR ASSOC I DRILLI C SA	OJECT I IATED L PR DATE DATE CO NG CON DRILLING	PROJ OCAT INIT/A OJECT STAR OMPLE ITRAC	IECT: TON: REA: TED: TED: TED: TOR: HOD:	SEVE SEAE 7205 06/2 06/2 EMPI HOLL 2" SI	EN LC ECA / D-64 518-C 0/94 0/94 RE S LOW PLIT	OW PRIO ARMY DI D 01000 OILS INV STEM A SPOONS	RITY EPOT /ESTI UGEF	AOCs DEPTH TO WATER (ft): 3.5 , ROMULUS NY BORING LOCATION (N/E): 992533.5 74 REFERENCE COORDINATE SYSTEM: New York Stat GROUND SURFACE ELEVATION (ft): 659.7 DATUM: NAD 1983 INSPECTOR: KK, LR IGATIONS CHECKED BY: FO	41082.2 te Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
.01	4	2.00	1.5	0	BGD			DESCRIPTION Brown SILT + very fine SAND, little organics, trace(-) fine gray Shale	ML
.01	7 9 12	2.00				0.4 0.5 - 1 1.3 1.5		Gray fractured SHALE fragments, trace brown Silt, dry. Gray fractured SHALE fragments, trace brown Silt, dry. Red CLAY, little(-) brown Silt, trace organics, soft, moist. Gray fractured SHALE fragments, dry. Fine to medium gray SHALE fragments + brown SILT + CLAY, trace very fine Sand soft moist	CL GM-GC
.02	40 38 15 12	2.00	1.9	o	BGD	- 2 2.5 - 3		No Recovery AA, (1.3-1.5'). Gray highly weathered SHALE, dry. Also, .01 lense of light brown, moist Clay at (2.6'), (2.9'), and (3.2').	
.03	6 7 9 8	2.00	1.7	o	BGD	-4 4.0 4.3 4.6 4.8 -5 5.2		Brown SILT, and very fine to fine Sand, little fine gray Shale fragments, soft, saturated. No Recovery Brown SILT, fine Sand and very fine Sand, little coarse Sand-sized gray Shale fragments, trace fine gray Shale fragments, soft, saturated. Fine to coarse SAND, trace Shale fragments, trace Silt, loose, saturated. SILT, very fine SAND + coarse SHALE fragments, loose, saturated. AA, (4.3-4.6'), saturated.	ML ML SM GM GM
.04	9 14 12 18	2.00	2.0	0	BGD	- 6 6.0 6.4 6.7 6.9 - 7 7.1 7.5		AA, (5.2-5.7'), 4-4.3'), saturated. No Recovery AA, (4.3-4.6), saturated. Gray CLAY + fine to medium gray SHALE fragments, medium stiff, moist. AA, (4.6-4.8'), wet to saturated. Gray weathered + fractured SHALE, moist iron-stained. AA, (6.2-6.4'), iron-stained, moist. Gray fractured SHALE, trace Silt, saturated.	GM GC GC CL -
.05	100/.3	0.30	0.3	0	BGD	- 8 8.3		Gray highly weathered SHALE, dry to moist, trace iron staining. No Recovery	
						- 9		BORING TERMINATED AT 9.9'	
NOT	ES: Bo	ttom	of ove	rburde	en at	, 7.5'. No s	ample	es were collected for chemical analysis.	· ·
) P IGIN	AR EEF	5 0 1 XING	NS -SCI	EN	CE, IN	c.	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York	D-4 1 of 1

PR ASSOC I DRILLII E SA	OJECT I IATED L PR DATE DATE CO NG CON PRILLING	PROJ LOCAT JNIT/A OJECT STAR OMPLE ITRAC METH METH	ECT: ION: REA: NO: TED: TED: TOR: IOD: IOD:	SEVE SEAU 7205 06/2 EMPI HOLL 2" SI	En L(ECA 5-64 518-(2/94 2/94 RE S LOW PLIT	DW PRIO ARMY DI D D1000 GOILS INV STEM A SPOONS	RITY POT /ESTI UGEF	AOCs DEPTH TO WATER (ft): 6.2 , ROMULUS NY BORING LOCATION (N/E): 991371.4 74 REFERENCE COORDINATE SYSTEM: New York Stat GROUND SURFACE ELEVATION (ft): 651.0 DATUM: NAD 1983 INSPECTOR: KK, LR GATIONS CHECKED BY: FO	10724.3 te Plane
Sample Number	Blow Counts (# Blows per 6")	Sample Advance (ft)	Sample Recovery (ft)	VOC Screen-PID (ppm)	Rad Screen (cps)	Depth (ft)	Macro Lithology	This log is part of the report prepared by Engineering-Science, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
.01	2	2.00	1.3	0	BGD	0.4		Dark brown SILT, little organics, soft, moist.	ML
	2 4 7							Light brown SILT, little Clay, trace(-) fine gray Shale fragments, trace organics, soft, moist.	ML
	,					-1	.	Gray brown SILT, soft, moist.	ML
						1.4	40 47 40 10 1. U	Gray limestone Cobble.	
						2.0		No Recovery	
.02	12 18	2.00	2.0	0	BGD	- 2 2.6		Gray fine to medium SHALE fragments, medium to highly weathered, some light gray to light brown Silt + Clay, slightly moist.	GM-GC
	14							Light brown very fine SAND + SILT, little fine gray Shale fragments, little	ML
						-3 3.1		Light brown SILT + fine to medium weathered gray Shale fragments, trace fine Sand, medium stiff, moist to wet.	ML
.03	7 8 49 64	2.00	1.7	0	BGD	- 4		Light brown very fine SAND + fine to medium gray Shale fragments, medium to highly weathered, little coarse gray Shale fragments, saturated to wet.	GM
	04					- 5		Gray highly weathered SHALE, dry.	· ·
						5.7	8- 1	Light brown SILT + very fine SAND, some fine to medium gray weathered	SM
04	58	0 70			BGD	-6 6.2		No Recovery	
	100/.2	0.70						Highly weathered SHALE, dry to moist.	GM
						6.7		Gray fine to medium SHALE fragments, little light brown Silt, saturated. No Recovery	-
								BORING TERMINATED AT 7.2'	
NOT	ES: Bo	ottom	ofove	rburd	en at	6.7'. No s	ample	es were collected for chemical analysis.	
	<u>ב</u>			Ne				UNITED STATES ARMY CORPS OF ENGINEERS	D-5
			اليب النب					Seneca Army Depot	
E	IGIN	EE	NING	i-SC	IEN	CE, IN	C.	Romulus, New York Sheet	1 of 1

Sheet 1 of 1

								PAGE OF 2
				TEST	PIT REPO	RT		· · ·
EN	GINEE	RING-SCIE	NCE, INC.	CLIENT:	USACOE	•	TEST PI	r #: TP640-1
PROЛ	ECT:	15 5	WMU	ESI		-	JOB NUMBI	ER: 720518
LOCA	TION:	RÔMY	LUS, NY	/			EST. GROU	ND ELEV.
TECT	DET DAT	ГA					INSPECTOR	JWC/ABS
LEI	NGTH	WIDTH	DEPTH	E	XCAVATION/SHORING METHOD		START DAT	$E: \frac{ES/ESI}{6/13/9}$
20) f	3'	\$ 1	BACK	HOE		COMPLETIC	ON DATE: 6/13/94
							CHECKED B	Y:
			<u>L</u>				DATE CHEC	CKED:
MONI	TORING	DATA	DETECTOR	PACKEROUND		QA/QC DUP	LICATE SAM	PLE: YES or NO
OV	M - 5	BOB	In. O eV	Ø PPM	0930 Am/ 6/13/94	MRD Sample Nu	mber:	
VIC	TORE	EN-190	DANCAKE	10-15 MR/H	09304 6/13/94			
	1		- F			QA/QC Rinsa	te Sample Num	iber:
					· · · · · · · · · · · · · · · · · · ·	COMMENT	S:	
SCAT P	L VOC (CAL		STRATA	DECODIDITION	E MATERIALS		
(FT)	RAD.	NUMBER	DEPTH RANGE	SCHEMATIC	(BURMEISTER M	ETHODOLOGY)		REMARKS
	Reem			mun	TOP Soil			
					1.,			
					1.1+ 0			
				c 6 e	Light Drown	>111 ();	u)	
<u> </u>	Doom			e ^s c	WITH Dr. A.	+	T	
	CARE .				WITH DOMES	ic wa	510	
1	BREU			2				
				• ^ >				
				< < .				
1				• • •				
-								
<u> </u>								
				6 5 3				
2				(5 9				
					11	<u> </u>		
			•		d'			Found: -
					4			METAL CANS.
<u> </u>	27		1		Little Light	Brown	Si IT	GLASS
 	7.664				(511) :. 0	a waat'a	MACTO	Trash BARS (Full
	RUD					BMESCIC	00 HSIC	
3	UKOU			(('				LAmp
- ´								CArpel -
_								PAINT CAN
_				4 ¹ ,				—
-								
				- ()	1.1			
	h				4	Cire		
	Reem			·) · •	Light Gray	5,11 W	1:14	
	auro			. ((
	DKEN				Shale Class	sts		
)				
				«)· (),				
5				0 (1'				

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

TEST PIT #: 64D^ (

•

1

								PAGE 2 OF 2
				TEST	' PIT	REPOR	T	
ENG	INEER	ING-SCI	ENCE, INC.	CLIENT:			TEST. PIT	#: TP64D-1
MONI	INSTRUM	ENT	DETECTOR	BACKGROUND		TIME/DATE	DATE START: DATE FINISH:	6/13/94
							INSPECTOR: CONTRACTOR:	JWC/ABS ES/ESI
SCALE	VOC./	SA	MPLE	SIRATA		DESCRIPTION OF MA	TERIALS	T
(FT)	RAD.	NUMBER	DEPTH RANGE	SCHEMATIC		(BURMEISTER METHO	DOLOGY)	REMARKS
				-)				
				• •) •				
_				4 7 0				
					<u> </u>			
					6'2" -			
				-		IT GRAY	SIT	
					Well	light Briff	See ween	
					Sh	ale Clasts		
			5					
					<i>α</i> !			
			, .		DT	E DIT		
			/		Dollon	1 OF VIL		·
					SAN	ne as AE	Bove (6'2"-8')	
							× /	-
-								
-								
_								
_								_
			SER	MASTER ACRONY	M LIST FOR CO	MPLETE LISTING OF	ABBREVIATIONS	TEST PIT # TP/4D-1

				TEST	PIT REPO	RT		LAGE (UF)		
EN	GINEE	RING-SCIE	NCE. INC.	CLIENT:	USACOE		TEST PE	F #: TR640 2		
PROT	CT			FST			TOB NUMBE	R. 7704D-2		
LOCA	FION:	ROMU	LUS NY		······································	n a st	EST. GROUI	ND ELEV.		
						-	INSPECTOR	JWC/ABS		
TEST I	PIT DA	ra I manari	No.		VALUE ON OTOD NO. 1000 100		CONTRACTO	OR: <u>ES/ESI</u>		
	NGIH	2'2"	DEPTH	BACK	XCAVATION/SHORING METHOD		COMPLETIO	E: $6/3/94$		
							CHECKED B	Y:		
							DATE CHEC	CKED:		
MONI	FORING	DATA	Y			QA/QC DUP	LICATE SAME	LE: YES or NO		
	INSTRU	IMENT	DETECTOR	BACKGROUND	TIME/DATE	Duplicate Sample Number.				
	TAPE	EU-180	10.0 24	10-15 11 D/4	1030 m / 6/ 3/94	MIKD Sample Nu	шœг.			
<u>- • · · ·</u>	1010	ER-110	PARCARE	IC- IS ANY RO		QA/QC Rinsa	te Sample Num	ber:		
							-			
						COMMENT	S:			
	1000		17		DESOURIELL	MATERIALO				
(FT)	RAD.	NUMBER	DEPTH RANGE	SCHEMATIC	BURMEISTER M	THODOLOGY)		REMARKS		
—	Qoom			m	Top soil					
	-,			hum	N 1711		÷ • • •			
	BKGO				Une 15 L	ong sec	1:04			
				mm	of 8 gauge	wire	Found			
				h	at 2"					
1										
 				• • •	1.1.					
	Reem			1 o e	Light Brown	Silt				
	BKGD			3 8 3	0					
 -	10100			£ : 0						
				000						
2										
— —					AL 111					
-				•)••)•	2.1"					
			1		Olive Gray S	SEIT U	~/ /			
	Dage			7 74	Stale CLOST	<	-			
	9 666) • •) • •	shale clust					
-	BKGD			e \$ 2 0	2"TO 4" TD	8 pol	CIAY			
3				. ((5 -0,7 -10	NEU-				
				i j	Pipe at 2'	3" P	ipe			
				• •) ^ •	Luns F-W. W	AS OrY	and			
<u> </u>				· · · · · ·	NOT BAIK Fills	d				
				(
-										
4)) .	<u>V</u>	www.thereadd.com				
					4'2"					
					Bottom of Pit					
						1				
					Weathered S	hale w	ilh			
					Some Olive	Gray S	ict			
-						•				
5										

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS TEST PIT #: TP640-2

• •

r							·····	PAGE OF
				TEST	PIT REPO	RT		
EN	GINEE	RING-SCIE	NCE, INC.	CLIENT:	USACOE		TEST PI	C #: TP64D-3
PROJE	CT:	15 50	wmu	ESI	• •	*	JOB NUMBE	R: 720518
LOCA	FION:	Rou	nolus A	14			EST. GROUI	ND ELEV.
TECT		ГА					INSPECTOR	Juc/ABS
LEN	IT DA	WIDTH	DEPTH	E	XCAVATION/SHORING METHOD		START DAT	$\frac{ES}{EST}$
13	3'	3'	4'	BACKH	9E		COMPLETIO	N DATE: $6/13/94$
							CHECKED B	Y:
1 CONT	DODING		1	1			DATE CHEC	CKED:
MONI	INSTRU	B DAIA	DETECTOR	BACKGROUND	TIME/DATE	QA/QC DUP	LICATE SAME	LE: YES or NO
OV	M - 5	80 B	10.0eV	à ppm	1145 Am 6/13/94	MRD Sample Nu	mber:	
Vie	Toree	n 190	PANCAKE	10-15 u.R/H.	1145 1 6/13/94			
						QA/QC Rinsa	te Sample Num	ber:
[.	
						COMMENT	5:	
SCALE	VOC./	SAM	PLE	STRATA	DESCRIPTION O	F MATERIALS		
(FT)	RAD.	NUMBER	DEPTH RANGE	SCHEMATIC	(BURMEISTER M	ETHODOLOGY)		REMARKS
	m			m	Traceil Aut 5	Marta de		
-	Q.66m/			h	100 5011, 1001 5	95 cm3		
<u> </u>	BKGD			mun	- Debris on Si	vs FACE :	6" ID	
			-	mm	clay pipes.	metal f	entina	
				h	Deume (Du		, enclosed	
-				mm	citris can	2.		
				mm			1	
				mun				
					11 11			
 	Bar				19		1	
	Q PR MY			0 0 0 9	Light Brun	SIT		- 1
	BKO-D				Light Drown			
<u> </u>			ļ					
								•
			i					
				0000				·
- 2								
				. 5 5	2 1 11			
	& Pem/			0 .52.5.	0			
	BKGD			5.5.0	OLIVE Gray	SIIT W	: 76	
	-		**			<i>c</i> 1. . .	-	
					some shale	Class	5	
				3 5 4 6 5 1				
				5.5.5				
				<u></u>	Battom of out	1.1.10	······································	
					wollow of Pil :	4'0"		
					weathered 5	hALE w	ith	
-					Sam pli			
-					some clive	Gray Si	[]	
5								
L				h				

See master acronym list for complete listing of abbreviations TEST PIT #: TPG4D-3

. .

...

APPENDIX B

ESI MONITORING WELL INSTALLATION DIAGRAMS

,

WELL INSTALLATION STARTED: 03/28/94 WELL INSTALLATION COMPLETED: 03/28/94

PROJECT: SEVEN LOW PRIORITY AOCS PROJECT LOCATION: SENECA ARMY DEPOT, ROMULUS NY DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS DRILLING METHOD: HOLLOW STEM AUGER

REFERENCE COORDINATE SYSTEM: New York State Plane GROUND SURFACE ELEVATION (ft): 666.6 GEOLOGIST: K.KELLY CHECKED BY: FO

WELL LOCATION (N/E): 993059.7 741523.1 DATUM: NAD 1983

STRATA MICRO DESCRIPTION (from boring log)	SYMBOL	WELL DETAILS	DEPTH (ft)		ELEVATION (ft)	WELL CONSTRUCTION DETAILS
			0.0 1.5 2.5 3.6 4.4 5.3	TR TC GS TBS TSP TSC BSC POW	666.6 665.1 664.1 663.1 662.3 661.4	PROTECTIVE COVER Diameter: 4 Type: RISER Interval: 3.5 RISER Diameter: 2 Type: SCH. 40-PVC Interval: 4.2 SCREEN Diameter: 2 Type: SCH. 40-PVC/0.010 Interval: 4.2 SCREEN Diameter: 2 Type: SCH. 40-PVC/0.010 Interval: 3 SURFACE SEAL Type: CEMENT Interval: 1.5 GROUT Type: N/A Interval: 1.5 GROUT Type: BENTONITE PELLETS Interval: 1 SANDPACK Type: #1, #3 Interval: 2.75 WELL DEVELOPMENT DATA Date: 6/25/94 WELL DEVELOPMENT DATA Date: 1315 S.5 WELL DEVELOPMENT DATA Date: 6/25/94 WELL DEVELOPMENT DATA Date: 1315 S.5 WELL DEVELOPMENT DATA Date: 2.75 WELL DEVELOPMENT DATA Date: 1315 S.5 Uration: 3 DAYS Rate: .232 L/MIN Y Final Measurements: Temporature Conductivity pH (degrees C) (micromhos/cm) Turbidity (NTU) 7.45 15.9 TOP OF PROTECTIVE CASING GROUNT SLLT TSC TOP OF SCREEN SEAL GROUT SLLT TSC TOP OF SCREEN SEAL CLAY TD TOTAL DEPTH POW POINT OF WELL NO RECOVERY
PARSONS ENGINEERING-S	S	NCE, INC.	UNI COI Sen Ron	TED RPS (eca / nulus	STATE OF ENG Army D , New	S ARMY SINEERS Pepot York COMPLETION REPORT OF WELL No. MW64D-1 Sheet 1 of 1

WELL INSTALLATION STARTED: 06/21/94 WELL INSTALLATION COMPLETED:

PROJECT: SEVEN LOW PRIORITY AOCS PROJECT LOCATION: SENECA ARMY DEPOT, ROMULUS NY DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS DRILLING METHOD: HOLLOW STEM AUGER 06/21/94

REFERENCE COORDINATE SYSTEM: New York State Plane GROUND SURFACE ELEVATION (ft): 633.7 GEOLOGIST: K.KELLY

WELL LOCATION (N/E): 993638.6 740197.6 DATUM: NAD 1983

CHECKED BY: FO

PROJECT: PROJECT LOCATION: DRILLING CONTRACTOR: DBILLING METHOD WELL INSTALLATION STARTED: WELL INSTALLATION COMPLETED: 06/20/94

SEVEN LOW PRIORITY AOCs
SENECA ARMY DEPOT, ROMULUS NY
EMPIRE SOILS INVESTIGATIONS
HOLLOW STEM AUGER
06/20/94
00/00/04

REFERENCE COORDINATE SYSTEM: New York State Plane GROUND SURFACE ELEVATION (ft): 647.3

WELL LOCATION (N/E): 993017.4 740735.8 DATUM: NAD 1983 GEOLOGIST: K.KELLY CHECKED BY: FO

WELL INSTALLATION STARTED: 06/20/94

PROJECT: SEVEN LOW PRIORITY AOCS PROJECT LOCATION: SENECA ARMY DEPOT, ROMULUS NY DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS DRILLING METHOD: HOLLOW STEM AUGER

REFERENCE COORDINATE SYSTEM: New York State Plane GROUND SURFACE ELEVATION (ft): 659.7 GEOLOGIST: K.KELLY

WELL LOCATION (N/E): 992533.5 741082.2 DATUM: NAD 1983

WELL INSTALLATION COMPLETED: 06/20/94

WELL INSTALLATION STARTED: 06/22/94 WELL INSTALLATION COMPLETED: 06/22/94

PROJECT: SEVEN LOW PRIORITY AOCS PROJECT LOCATION: SENECA ARMY DEPOT, ROMULUS NY DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS DRILLING METHOD: HOLLOW STEM AUGER

REFERENCE COORDINATE SYSTEM: New York State Plane GROUND SURFACE ELEVATION (ft): 651.0 GEOLOGIST: K.KELLY

WELL LOCATION (N/E): 991371.4 740724.3 DATUM: NAD 1983 CHECKED BY: FO

STRATA MICRO DESCRIPTION (from boring log)	SYMBOL	WELL DETAILS	DEPTH (ft)		ELEVATION (ft)	WELL CONSTRUCTION DETAILS
				TPC TB		PROTECTIVE COVER
				TC		Diameter: 4
0			0.0	GS	651.0	Type: RISER
ML ML						Interval: 3.5
ML			1.5	TBS	649.5	RISER Diameter: 2
-						Type: SCH. 40-PVC
GM-GC						Interval: 5.9
ML			3.3	TSP	647.8	SCREEN
ML			3.8	TSC	647.3	Diameter: 2
GM						Interval: 1.95
5.						SURFACE SEAL
- 5						Type: CEMENT
SM			6.3	BSC	644.7	Interval: 1.5
- - -						
<u> </u>	1		7.2	POW	643.9	Interval: N/A
						SEAL
						Type: BENTONITE PELLETS
						Interval: 1.75
						SANDPACK
		i -				Interval: 3.85
						WELL DEVELOPMENT DATA WATER LEVELS
						Date: 7/10/94 <u>Date 1000 Depth,1K</u> Method: BAII /PLIMP ¥ 6/28 1330 7.26
						Duration: 10 DAYS ¥ 7/10 1635 6.64
						Rate: .411 L/MIN 🛓
						Final Measurements:
						pH (degrees C) (micromhos/cm) Turbidity (NTU)
						7.00 13.3 470 15
						ZZI SUBFACE
						SEAL SAND TBS TOP BENTONITE SEAL
						GROUT
						SEAL CLAY BSC BOTTOM OF SCREEN
	al	I	UNI	TED :	STATE	
PARSON	5		COF	RPS C	of eng	INEERS WELL No. MW64D-5
	CIE	NCE. INC.	Sen	eca A	Army D	epot VVLLL 100. 101004D-5 Vork Sheet 1 of 1
		, 11 /	non	านเนร	, INC W	

APPENDIX C

ESI MONITORING WELL DEVELOPMENT REPORTS

INEERING PROJECT : LOCATION: RILLING MET PUMP MET SURGE MET INSTALLATIO VATER DEPTH LL DIA. (ID C BORING DIA DIAMETER (IN FALLONS/FT: TANDING WA WATER COL. F	-SCIE) THOD (s): THOD (s): THOD (s): THOD (s): DN DATE: N DATE: H (TOC): CASING): AMETER: DATE: DI (TOC): CASING): AMETER: DI (TOC): CASING): AMETER: DI (TOC): CASING): AMETER:	NCE, 15 SWM SENEC. p_1 Tc^2 ORS (q^2 q_1c^3 USIDE W	INC. 11 ESI A ARM H5 A eristall Flon & 3/28 4 2 8 GAL/F 3 0.367 1.5:	CLIEN (SEAD- Y DEPOT Y DEPOT Hr (Sulley [94] .7] .0 .7] .0 .7] .0 .7] .0 .7] .0 .7] .0 .7] .0 .7] .0 .654	T: USA 64.7 7, ROMULUS, 1 7, ROMULUS, 1 7, ROMULUS, 1 7, ROMULUS, 1 7, ROMULUS, 1 7, ROMULUS, 1 6 1.02 1.47	ST INSTAL MEASU POW	۲ART DEVELOP END DEVELOP END DEVELO ILED POW DEP SILT TH AFTER DEVELO 8 8 25 9	WELI DATE: PROJE INSPEC CONTRA	. #: Μ CT NO. : TTOR: TTOR: REW: ATE: DATE: SH	W64D-1 6/23/94 55 6/23 6/25 5.25 6.24	/
PROJECT : LOCATION: PRILLING MET PUMP MET SURGE MET INSTALLATIO VATER DEPTH LL DIA. (ID C BORING DIA DIAMETER (IN FALLONS/FT: TANDING VO TANDING WA WATER COL. F	THOD (s): THOD (s): THOD (s): DN DATE: H (TOC): CASING): METER: J): JUMETER: J):	$\frac{15 \text{ SWM}}{\text{SENEC.}}$ $\frac{0}{163}$ $\frac{1}{163}$ $\frac{1}{163}$	$\frac{4U \text{ ESI}}{A \text{ ARM}}$ $\frac{110 \text{ A ARM}}{100 \text{ Constant}}$ $\frac{110 \text{ A ARM}}{100 \text{ Constant}}$ $\frac{100 \text{ A ARM}}{100 \text{ Constant}}$ $\frac{100 \text{ A ARM}}{100 \text{ Constant}}$	(SEAD- Y DEPOT	<u>64</u> <u>7</u> , ROMULUS, 1 <u>ft</u> <u>ft</u> <u>ft</u> <u>ft</u> <u>1.02</u> 1.47	NY SI INSTAL MEASU POW 7 2.00	۲ART DEVELOP END DEVELO LED POW DEP SILT TH AFTER DEVELO 8 8 25 9	DATE: PROJE INSPEC CONTRAC CON	CT NO. : TOR: <u>///</u> TOR: REW: ATE: DATE: SH C.S.	6/23/91 5 6/23 6/25 5.25 6.24	۲
COCATION: RILLING MET PUMP MET SURGE MET INSTALLATIO VATER DEPTH LL DIA. (ID C BORING DIA DIAMETER (IN ALLONS/ FT: TANDING WA WATER COL. F	THOD (s): THOD (s): THOD (s): DN DATE: H (TOC): CASING): METER: FACTO	SENEC. 0. $1c^{2}$ 0.163 USIDE W	A ARM H5 A 2013 to 14 2000 P 2013 to 14 2000 P 3 4 2 8 GAL/F 3 0.367 1.5:	Y DEPOT	ft ft ft ft ft ft ft ft 1.02 1.47	ST INSTAL MEASU POW 7 2.00	۲ART DEVELOP END DEVELO LED POW DEP IRED POW DEP SILT TH AFTER DEVELO 8 8 25 9	PROJE INSPEC CONTRAC CI MENT DA PMENT D TH(TOC): IN(TOC):	CT NO. : TOR: // // TOR: REW: OATE: SH G.S.	53 6/23 6/25 <u>260p = 1</u> . 5.25 6.24	 ft ft ft ft
RILLING MET PUMP MET SURGE MET INSTALLATIO VATER DEPTH LL DIA. (ID C BORING DIA DIAMETER (IN FALLONS/ FT: TANDING VO TANDING WA WATER COL. F	THOD (s): THOD (s): THOD (s): THOD (s): DN DATE: H (TOC): CASING): METER: DETER: DETER: DETER:	$\frac{p}{1c^{2}}$ ORS ((H5A 2013 tol 210, 1 210, 1 210, 1 3 4 2 8 GAL/F 3 0.367 1.5:	172 2017er 194 .71 .0 .5 .0 	ft ft	ST INSTAL MEASU POW 7 2.00	۲ART DEVELOF END DEVELO LED POW DEP IRED POW DEP SILT TH AFTER DEVELO 8 8 25 9	INSPEC CONTRAC MENT DA PMENT D PMENT D (TH(TOC): CKNESS: DPMENT: 10	TOR: // // TOR: REW: ATE: DATE: SH C.S.	5 6/23 6/25 <u>rkup = 1</u> . 5.25 6.24	
PUMP MEI SURGE MEI INSTALLATIO VATER DEPTI LL DIA. (ID C BORING DIA DIAMETER (IN FALLONS/FT: TANDING VO TANDING WA WATER COL. E	THOD (s): THOD (s): DN DATE: H (TOC): CASING): AMETER: FACTO I):	$\frac{0}{1e^{2}}$	21:3+ald Flon & 3/28 3/28 4 2 8 GAL/F 3 0.367 1.5:	17: 4 0.654	ft ft	INSTAL MEASU POW 7 2.00	۲ART DEVELOP END DEVELO LED POW DEP IRED POW DEP SILT TH AFTER DEVELO 8 8 25 9	CONTRAC C MENT D PMENT D PMENT D TH(TOC): CKNESS: DPMENT: 10	TOR: REW: ATE: DATE: SH G.S.	6 23 6/55 <u>skup = 1.</u> 5.25 6.24	0 ' 11 11 11 11 11 11 11 11 11 1
SORGE MEI INSTALLATIO VATER DEPTH LL DIA. (ID C BORING DIA DIAMETER NAMETER (IN FALLONS/FT: TANDING VO TANDING WA WATER COL. E	HOD (S): N DATE: H (TOC): CASING): METER: J): LUME IN ATER IN	DRS (0 (0.163)	$\frac{4}{3}/28$ $\frac{4}{2}$ $\frac{2}{8}$ $\frac{3}{0.367}$ $\frac{3}{1.5}$.7; .7; .0" .5" T): 4 0.654	ft 	INSTAL MEASU POW 7 2.00	۲ART DEVELOP END DEVELO LED POW DEP SILT TH AFTER DEVELO 8 8 2 5 9	MENT DA PMENT D PMENT D (TH(TOC): CKNESS: DPMENT: 10	REW: ATE: DATE: SH G.S.	6 2 3 6/25 2tup = 1. 5.25 6.24	0 / 11 11 11 11 11 11 11 11 11 1
VATER DEPTI LL DIA. (ID C BORING DIA DIAMETER (IN ALLONS/ FT: TANDING VO TANDING WA WATER COL. F	H (TOC): CASING): METER: FACTO I):	DRS ((2) (0.163)	4 2 8 GAL/F 3 0.367 1.5:	. 7 j .0 " .5 " T): 4 0.654	ft 	INSTAL MEASU POW 7 2.00	END DEVELO LED POW DEP IRED POW DEP SILT TH AFTER DEVELO 8 8 2 5 9	PMENT D TH(TOC) : TH(TOC): CKNESS: DPMENT:	DATE <u>:</u>	6/25 <u>rkup = 1.</u> 5.25 6.24	0' n n ft ft
VATER DEPTI LL DIA. (ID C BORING DIA DIAMETER NAMETER (IN ALLONS/FT: TANDING VO TANDING WA WATER COL. F	H (TOC): CASING): METER: FACTO J): LUME IN	DRS ($(0,163)$	4 2 8 GAL/F 3 0.367 1.5	. 7 j .0 " .5 " T): 4 0.654	ft (t ft 5 6 1.02 1.47	INSTAL MEASU POW	LED POW DEP IRED POW DEP SILT THI AFTER DEVELO 8 マズ 9	TH(TOC) : TH(TOC): CKNESS: DPMENT: 10	<u> </u>	<u>rekup = 1.</u> 5.25 6.24	0 ' ft ft ft ft
VATER DEPTI LL DIA. (ID (BORING DIA DIAMETER DIAMETER (IN FALLONS/FT: TANDING VO TANDING WA WATER COL. F	H (TOC): CASING): METER: FACTO I):	ORS (0.163)	4 8 GAL/F 3 0.367 	.71 .0" .5" T): 4 0.654	ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft	INSTAL MEASU POW 7 2.00	LED POW DEP IRED POW DEP SILT TH AFTER DEVELO 8 マム 9	TH(TOC) : TH(TOC): CKNESS: DPMENT: 10		5.25 6.24	ft ft ft
DIAMETER DIAMETER (IN ALLONS/FT: TANDING VO TANDING WA WATER COL. F	FACTO	ORS (0 (0.163) VSIDE W	GAL/F 3 0.367 1.5:	<u>, 5</u> T): 4 0.654	ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft	POW 7	SILT TH SILT TH AFTER DEVELO 8 8 2 5 9	IH(TOC): CKNESS: DPMENT:		<u>е.д</u> ц	ft ft
DIAMETER (IN GALLONS/ FT: TANDING VO TANDING WA WATER COL. F	FACTO	ORS (0	GAL/F 3 0.367 1.53	T): 4 0.654	5 6 1.02 1.47	POW	AFTER DEVELO 8 ఇ.5 9	DPMENT:			ft
DIAMETER (IN FALLONS/ FT: TANDING VO TANDING WA WATER COL. F	FACTO	ORS (0 0.163 ASIDE W	GAL/F 3 0.367 j. 5 :	4 0.654	5 6 1.02 1.47	7	8 8 5 9	10			
DIAMETER (IN GALLONS/ FT: TANDING VO TANDING WA WATER COL. F	I): LUME IN	(12 (0.163) VSIDE W	3 0.367 j. 5 (4 0.654	5 6 1.02 1.47	7 2.00	8 85 9	10			
GALLONS/ FT: TANDING VO TANDING WA WATER COL. F	LUME IN	(0.163)	0.367 j. 5	0.654	1.02 1.47	2.00			11	12	
TANDING VO TANDING WA WATER COL. F	LUME IN	ISIDE W	j. 5.	11 -			2.61 2.5 3.30	4.08	4.93	5.87	
TANDING VO TANDING WA WATER COL. F	LUME IN	SIDE W) × . (6	3			74			
TANDING WA WATER COL. I	TER IN		*	WATEF	R COLUMN X	WELL DIA	METER FACTO	R =	.25	GAL. = A	
WATER COL. I			AD 50A	CE = 1	53x (2.	95 11	63) x . 3				
	BELOWS	EAL(ft)	X (BOF	RING DIA	AM. FACTOR -	- WELL D	IAM FACTOR)	X 0.3 =	1.28	GAL. = B	
							,				
INGLE STAND	DING WA	TER VO	DLUME	= A + B	=	• • • • • • • • • • •		••	1.53	GAL. = C	
AINIMUM VOI	LUME TO) BE RE	MOVE	D = 5X	c				7.65	GALS.	
								3x =	4.6		
	STARTING	START	END	ELAPSED	GALLONS	T				Turbidity	Ending
ΑCTIVITY	H20 DEPTH	TIME	TIME	TIME	REMOVED	pН	CONDUCTIVITY	TEMP	COLOR	(NTU)	Water Depth
Suryz	6.24 ***	1430	1450	20	Igal				Brown	(100+	6.) Dory
surge	3.88	1107	1/22	15	1.5321				Brown	1000+	6.0 Dry
pump list (0)	4.30	1200	1220	20	1.5	7.43	700	16.0	6 min	len 23.0	6.3 Dry
punp 2nd	1220	1230	1305	35	1.5	7.42	675	15.8	clear	14.0	6.0
pump 3rd	2,2	1315	1345	30	1.5	7.45	700	15.9	clear	2.5	5.6
					Comple	re					
TOTAL S/EU	NAT				Z						
ECOVERS			L	L	1						~
OD FAIR	POOR						DATE	G/27	aved W	ASTE (IDW)
\sim							VOLUME	ligal	6 sels		
							DRUM #	640-3	63-15		
	ACTIVITY SUrge punp lit (b) punp 22 punp 32 punp 32 FOTALS/FIL RECOVERY OD FAIR	ACTIVITY HODEPTH ACTIVITY HODEPTH SUrge 3.88 punp lit (b) 4.30 punp lit (b) 4.30 punp 3.0 5.5 FOTALS/FINAL RECOVERY OD FAIR POOR	ACTIVITY HODEPTH TIME ACTIVITY HODEPTH TIME $\frac{9.71}{52.244ccs}$ 1107 $\frac{9.72}{5.244ccs}$ 1107 $\frac{9.72}{5.244ccs}$ 1200 $\frac{9.72}{5.5}$ 1200 $\frac{9.72}{5.5}$ 1215 $\frac{9.72}{5.5}$ 1315 TOTALS/FINAL RECOVERY OD FAIR FOOP	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACTIVITY STARTING START END ELAPSED ACTIVITY HODEPTH TIME TIME TIME $\frac{4CTIVITY}{4200EPTH}$ TIME TIME TIME $\frac{4.71}{5.24}$ ($\frac{1}{5.2}$) (AINIMUM VOLUME TO BE REMOVED = $5 \times C$ ACTIVITY HODEPTH TIME TIME TIME REMOVED SURGE 3.88 (107) 1/22 15 1.5 521 pump (st (b)) 4.30 1200 1220 20 1.5 pump 2.2 5.5 1315 1345 30 1.5 pump 3.2 5.5 1315 1345 30 1.5 Comple	AINIMUM VOLUME TO BE REMOVED = $5 \times C$ ACTIVITY HODEPTH TIME TIME TIME REMOVED pH SURGE 3.85 1107 1122 15 1.5521 pump 151 (b) 4.30 1200 1220 20 1.5 7.43 gunp 2.1 1220 1200 1220 20 1.5 7.43 gunp 3.1 5.5 1315 1345 30 1.5 7.45 Complete TOTALS/FINAL 7 RECOVERY OD FAIR POOR	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

.

H:\ENG\SENECA\15SWMU\FIELDFMS\WELLDEV.WK3

ENG	INFERING	-SCIE	YCE.	INC.	CLIENI	: USA	COE		WELL		MW640	1-2
1	PROTECT :		15 SWM	TIESI (SEAD-	64D			DATE:		6/28/9	14
Ĩ	LOCATION:		SENEC/	ARM	DEPOT,	ROMULUS, I	YY		PROJEC	CTNO.:	7205	18
			دين درياني						<u>l</u>		5(
D	RILLING MET	HOD (s):		HSA	11.				INSPEC.	IOR:	25	
	PUMP MEI	HOD (1):		peusi lelt	alla line		2	Ľ	CE CE	XEW:		
	SUKGE MEI	NDATR:		10 2º	2194		sr	ART DEVELOP	MENT DA	TB:	6/28/9	14
				<u>u </u>	and his	a alta min		BND DEVELO	PMENT D	ATE:	6/28/94	+ 20 6
				med						<u> </u>	GA -	1 24 1
7	WATER DEPTI	H (TOC):	(4,05	<u>) 5,50</u> 24	II	MHASTO	RED FOW DEFI			10.34	
WE	BORING DIA	METER	-		8.5"		ALL-SUD	SILT THI	CKNESS:			
	BORING DA	247 <i>21.7 A Fa</i> 444	-		010	<u></u>	POWA	FTER DEVEL	OPMENT:		10.3	6
	DLAMETER	FACIO	DRS (C	JAL/F	T):		L					,
)		13.		2		5 6	7	8 6 5 9	10	11	12	
1	GALLONS/FT:	():	0.163	0.367	0,654	1,02 1.47	2.00	2.61 7.958.30	4.08	4.93	5,87	
					1 17	al ANT	11.	Tec et d	12			1151
	Values in	paren H	NISED CODE VI	are -	tor ¥	COLLINAN X	(LOING)	VETER FACTO	11- 11-	08	GAL. 🖛 A	4,05
	STANDING VU	LUMB IC	10 21 . 10 21 .	-55	6) = 4.7	TG	4.76 x	, K3	~~~ ((0,0)	(10.34-4	105-= 10
-			ANNUL.	AR SPA	CB ==		.,		```		Const. 1	6.24
	standing W/									1		
1	STANDING WATER COL.	BELOW S	EAL(fr)	X (BOF	RING DIA	M.FACIOR	- WELL DI	IAM FACTOR)	X.0.3 =	4	GAL = B	
1	STANDING WA WATER COL.	BELOW S	EAL(fi)	х (вор 16 (Z	ring dia 2,95 -, 1	M.FACTOR	- WELL D	IAM FACTOR)	x.0.3 =	<u>4-</u> 5,2)	GAL = B د ,2۹×	2.787
:	STANDING WATER COL. SINGLE STANI	BELOW S	EAL(fr) 4, TER VC	Х (ВОР } (2) (2	$\frac{1}{2} = \mathbf{A} + \mathbf{B}$	M.FACTOR 63),3	- Well D	iam factor)	X.0.3 = (4- 5, e) 4, 8	GAL. = B د , 29 × GAL. = C	2.787
:	STANDING WA WATER COL : SINGLE STANI	DING WA	EAL(fr) 4, 3 TER VC	Х (BOF {6 (2) LUME	$\frac{1}{2} = \mathbf{A} + \mathbf{B}$	M.FACTOR (63),3	– WBL I. D)	iam factor)	X 0.3 = (4 5, e) 4, 8 (6, D) 24	GAL = B ك , 2۹ × GAL = C	2.787
:	STANDING WA WATER COL. : SINGLE STANI MINIMUM VO	DING WA	EAL(ft) 4, 3 TER V() BE RE	x (BOF }6 (2 XUME MOVEI	$\frac{1}{2} = \mathbf{A} + \mathbf{B}$	M.FACIOR (63),3	– WELL D	IAM FACTOR)	X 0,3 = ($\frac{4}{5,2}$ $\frac{4,8}{(6,D)}$ $\frac{24}{(30)}$	GAL = B	2.787
1	STANDING WA WATER COL. SINGLE STANI MINIMUM VO	DING WA	EAL(II) 4, - TER VO BE RE	x (BOF }6 (2 NUMB MOVE	RINGDIA 2,95 -, / = A + B D = 5 X (M.FACTOR (63),3 	- WB(1, D)	IAM FACTOR)	x 0,3 = (4 5,e) 4,8 (6.D) 24 (30)	GAL = B د , 29 × GAL = C GALS	2.787
:	STANDING WA WATER COL. SINGLE STANI MINIMUM VO	DING WA	EAL(fi) 4, TER VO BE RE	X (BOF 16 (Z NUME MOVEI	2.95 -, 1 .= A + B D = 5 X (EARSED	M. FACTOR (63),3 	- WB(1, D)	IAM FACTOR)	× 0,3 = 	4- 5,e) 4,8 (6.D) 24 (30)	GAL = B L, 29 × GAL = C GALS. Turbidity	2.787 End
DATE	STANDING WATER COL.	STARTING	EAL(fi) 4, - TER VC) BE RE START THE C(-) EE	X (BOF 4 G (2 DLUME MOVEL END TIME	$\frac{2}{2}$	M. FACTOR (63),3 dallons REMOVED	– WBL1, D)	CONCOCTIVITY	X 0,3 = (4- 5, e) 4, 8 (6, D) 24 (30)	GAL = B L, 29 × GAL = C GALS, Turbidity (NTU)	2.787 Endi Water I
DATE 622	STANDING WATER COL. SINGLE STANI MINIMUM VO ACHVITY S UIG Ing	STARTING HODEFTH 4,05	EAL(ii) 4, TER VC BE RE 5240 7,55 10:20	X (BOF +6 (2)+10 (2)+10 HOVEI MOVEI TIME 10:15 10:15	ELAFSED 20 mm	M. FACTOR (63),3 C	- WBLL D	CONSOCCIUMY	X 0,3 = (4- 5, e) 4, 8 (G. D) 24 (30)	GAL = B L, 29 x GAL = C GALS. Turbidity (NTU)	2.787 Endi Water I 4.2
DATE 622	STANDING WATER COL. SINGLE STANI MINIMUM VO ACTIVITY S UIG ING 14 VOL Cont.	STARTING HIDDEPTH 4,05 4,10	EAL(II) 4,	X (BOF 16 (Z 14 (Z	ELAPSED 20 min. 20 min. 20 min.	M. FACTOR (3),3 (4),3 (4),3	- WBLL D	ам FACTOR)	х. 0,3 = (15°с 145°с	4- 5, e) 4, 8 (6, D) 24 (30) coros	GAL = B 2,29 × GAL = C GALS. Turbidity (NTU) 1000 +	2.787 Endi Water I 4.2 4.4
DATE 622	STANDING WATER COL. SINGLE STANI MINIMUM VO ACTIVITY S UIG ING 14 VOI CONT. 2 NJ VOI.	STARTING HODEFTH 4,05 4.10 4.44	EAL(II) 4,	X (BOF 46 (2 51,UME MOVEL MOVEL 10150 11:20 11:20	ELAPSED 20 min. 30 min.	M. FACTOR (3),3 (Allons REMOVED 3 (6	- WBLL D	ам FACTOR) соноослинту 475 475	х 0,3 = (темр 15°с 14,5°с	4- 5, e) 4, 8 (G. D) 24 (30) corros H.bm. Clearty	GAL = B 6, 29 x GAL = C GALS. Turbidity (NTU) 1000 + 9, 1	2.787 Endi Water I 4.2 4.4 4.4
DATE 622	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGING 14 VOL CONT. 2nd VOL 3rd VOL	STARTING HODDEFTH 4.05 4.10 4.44 4.46	EAL(II) 4,	X (BOF 16 (Z 16 (Z 10 UMB MOVEL 10 15 10 15 10 15 11 20 11 25 11 25	ELAPSED 20 mm 20 mm	M. FACTOR (3),3 (4),3 (4),3	- WBLL D PH 7.2.3 7.24 ²	ам FACTOR)	× 0.3 = 15℃ 14.5℃	4- 5, e) 4, 8 (6. D) 24 (30) 0005 H.bm. Clearty	GAL. = B 6, 29 x GAL. = C GALS. Turbidity (NTU) 1000 + 9, 1	2.787 Endi Water I 4.2 4.4
DATE 628	ACTIVITY SUNGLESTANI MINIMUM VO ACTIVITY SUNGING 14vol cont. 2nd vol. 3rd vol. Sung # 2	STARTING HOD DEPTH 4.05 4.10 4.44 4.46 4.14	EAL(II) 4,	X (BOF 6 (Z) UME MOVEL MOVEL 10:15 0:15 0:15 11:20 11:20 11:20	ELAPSED 20 = 5 X (BLAPSED 20 = 5 X (20 mm. 30 min. 5 min. 20 min.	M. FACTOR (3),3 (allons REMOVED 3 (1 (1 (1	- WBL1, D 	ам. FACTOR) сомосслият 475 475	х 0,3 = (15°с 14,5°с	4 5, e) 4, 8 (G. D) 24 (30) caros H.bm. Clearty	GAL = B 6, 29 × GAL = C GALS, Turbidity (NTU) 1000 + 9, 1	2.787 End Water1 4.2 4.4
DATE 628 41%	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGING 14 vol cont. 2nd vol. 3rd vol. Sug. # 2.	STARTING HODDEPTH 4,05 4.10 4.44 4.46 4.14 4.48	EAL(II) 4,	ж (BOF 6 (2) (UMB МОУЕН 10:15 10:50 11:20 11:20 11:50 12:15	ELAPSED 20 = 5 X (ELAPSED 20 mm 20 mm	M. FACTOR (3),3 (43),3 (43),3 (41),3 (41),0 (41)	- WBLL D - WBL	соносститя 475 475 475	× 0.3 = (15°C 14.5°C	4 5, 2) 4, 8 (G. D) 24 (30) coros H.bm. Clearty Cloarty	$GAL = B$ $L_2 = K$ $GAL = C$ $GALS$ $Turbidity$ (NTU) $lcoco +$ $S.1$ 212	2.787 End Water1 4.2 4.4 4.4
DATE 628 4th 5m	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGGING 17vol cont 2nd vol, 3rd vol, 3rd vol, 3rd vol Sugg # 2 544 vol.	STARTING HIDDEPTH 4.05 4.10 4.44 4.46 4.14 4.48 4.46 4.44 4.46 4.44 4.46	EAL(II) 4,	X (BOF 16 (Z 11 UMB MOVEL MOVEL 11:20 11:20 11:20 11:50 12:15 12:40	ELAPSED 20 mm 20 mm	M. FACTOR (3),3 C	- WBLL D - WBL	ам FACTOR) соноссиля 475 475 475 450	× 0.3 = (15°C 14.5°C 15°C 14°C	4- 5, e) 4, 8 (G. D) 24 (30) cours H.bm. Clearty Clear	GAL = B $L_{2} = R$ GAL = C GAL = C C GAL = C C GAL = C C C C C C C C	2.787 End Water1 4.2 4.4 4.4 4.4 4.4
DATE 6/28 4/1k 5/1k	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGGING 14 vol cont. 2nd vol. 3rd vol. Sugg # 2 5 th vol. 6 th vol.	STARTING BELOW S DING WA LUMB TO STARTING HODDEPTH 4.05 4.10 4.44 4.46 4.46 4.44 4.46 4.48 4.48 4.48	EAL(II) 4,	X (BOF HG (2 D) UMB MOVEL MOVEL 10:15 10:50 11:20 11:20 12:15 12:40 (3:05	ELANSED 20 = 5 X (ELANSED 20 = 5 X (20 mm 20	M. FACTOR (3),3 C	- WBLL D - WBL	ам FACTOR) соноослинт 475 475 475 475 450 450	× 0.3 = 15℃ 14.5℃ 	4 5, 2) 4, 8 (G. D) 24 (30) cours H.bm. Clearty Clear Clear	GAL = B $L_{2} = C$ GAL = C GAL = C C GAL = C C C C C C C C	2.787 End Water1 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
DATE 6/20 4th 5th	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUIGING 14 vol cont. 2nd vol. 3rd vol. 3rd vol. 5ug # 2 5 4 vol. 6 14 vol.	STARTING HODGEFTH 4.05 4.10 4.44 4.46 4.14 4.46 4.14 4.48 4.46 4.48	EAL (II) 4,	X (BOF 46 (Z 51,UME MOVEL MOVEL 10:50 11:20 11:20 12:40 12:40 13:05	ELAPSED 20 = 5 X (ELAPSED 20 = 5 X (20 mm. 20 mm. 30 min. 20 mm. 20	M. FACTOR 63),3 C Gallons REMOVED 3 6 7 1 6 6 6 6 6	- WBLL D 	ам FACTOR) соноослинту 475 475 475 475 450 450	x 0,3 = (15°C 14.5°C 15°C 15°C 14°C	4 5, e) 4, 8 (G. D) 24 (30) cocos H.bm. clearty clearty clear	GAL = B $L_{2} = C$ GAL = C GAL = C C GAL = C C GAL = C C C C C C C C	2.787 End Water 1 4.2 4.4 4.2 4.4 4.2 4.2 4.2 4.2 4.2 4.2
DATE 628 4th 5th	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGGING 14vol cont. 2nd vol. 3rd vol. 3rd vol. 3rd vol. 5ug 7 2 5th vol. 6th vol.	STARTING HIDDEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.44 4.46 4.46 4.4	EAL(II) 4,	X (BOF 16 (Z 1.UMB MOVEL MOVEL 11:20 11:20 11:20 11:20 11:50 12:40 12:40 13:05	ELAPSED 20 mm 20 mm	M. FACTOR (3),3 (0),3	- WBLL D - WBL	ам FACTOR) соноослият 475 475 475 475 450 450	x 0.3 = (15°C 14.5°C 15°C 14°C 14°C	4 5, e) 4, 8 (G. D) 24 (30) 00005 H.bm. Clearty Clear Clear	GAL = B $L_{2} = C$ GAL = C GAL = C C GAL = C C GAL = C GAL = C C GAL = C C GAL = C C GAL = C C GAL = C C GAL = C C GAL = C C C C C C C C	2.787 End Water 4.2 4.4 4.4 4.4 4.4 4.4 4.4
DATE 6/28 4/1k 5/1k	ACTIVITY SINGLESTANI MINIMUM VO ACTIVITY SUGING 14vol Cont. 2nd Vol. 3rd Vol. 3rd Vol. 3rd Vol. 5ug. # 2 5th vol. (2th vol. (2th vol. (2th vol.	STARTING BELOW S DING WA LUMB TO STARTING HODDEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.44 4.46 4.48 4.46 4.48 4.48	EAL(II) 4,	X (BOF HG (Z D) UMB MOVEL MOVEL 10:15 10:50 11:20 11:20 12:15 12:40 13:05	ELANGDIA 2.95-, 1 = A + B D = 5 X (ELANSED 20 mm 20	M. FACTOR (3),3 CALLONS REMOVED 3 6 6 6 6 6 6 3 7	- WBLL D	CONDUCTIVITY 475 475 475 475 475 475 475 450 450	× 0.3 = (15℃ 14.5℃ 14℃ (4℃	4 5, e) 4, 8 (G. D) 24 (30) coror H.bm. Clearty Clearty Clear Clear	GAL = B $L_{2} = R$ GAL = C GAL = C C GAL = C C C C C C C C	2.787 End Water1 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
DATE 628 41% 51%	ACTIVITY SINGLE STANI MINIMUM VO ACTIVITY SUGING 14 VOL 3rd VOL 3rd VOL 3rd VOL GH VOL GH VOL GH VOL TOTALS/FI RECOVER ODD FAIR	STARTING BELOW S DING WA LUMB TO STARTING HIDDEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.46 4.46 4.46 4.4	EAL(II) 4,	X (BOF 16 (Z 1.UMB MOVEL 10:15 11:20 11:20 11:20 11:50 12:40 12:40 13:05	ELAPSED 20 mm 20 mm	M. FACTOR (3),3 C	- WBLL D - WBL	ам FACTOR) соносститя 475 475 475 450 450 450	× 0.3 = (15°C 14.5°C 14°C 14°C 14°C	4 5, e) 4, B (G. D) 24 (30) 00005 H.bm. Clearty Clearty Clear Clear	GAL = B $L_{2} = C$ GAL = C GAL = C	2.787 End Water1 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
DATE 620 41% 51%	ACTIVITY SINGLE STANI MINIMUM VO ACTIVITY SUIGING IFVOI CONT. 2nd VOI. 3rd VOI. 3rd VOI. 3rd VOI. 5mg # 2 5mg	STARTING HODEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.44 4.46 4.44 4.46 4.44 4.46 4.44 4.46 4.48 4.46 4.48 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40	EAL (II) 4,	X (BOF HG (Z D) UME MOVEL MOVEL 10:50 11:20 11:20 12:15 12:40 13:05	ELAPSED 20 mm 20 mm	M. FACTOR 63),3 C.	- WB(1, D) - WB(1	CONFORCTION CONFORCTION 475 475 475 475 475 475 475 475	x 0.3 = (15°C 14.5°C 14.5°C 15°C 14°C 15°C 14°C	4- 5, 2) 4, 8 (G. D) 24 (30) 00005 H.bm. Clearty Clearty Clear Clear	GAL = B $L_{2} = C$ GAL = C GAL = C	2.787 End Water I 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
DATE 620 41% 5m	ACTIVITY SINGLE STANI MINIMUM VO ACTIVITY SUGING 14vol Cont. 2nd Vol. 3rd Vol. 3rd Vol. 3rd Vol. 3rd Vol. 5ug. # 2 5th vol. (4th vol. Contrals/FI RECOVER 00D FAIR fer tain	STARTING BELOW S DING WA LUMB TO STARTING HODEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.44 4.46 4.48 4.46 4.48 4.48	EAL(II) 4,	X (BOF HG (Z D) UMB MOVEL MOVEL 10:50 11:20 11:20 12:15 12:40 13:05	ELANGDIA 2.95-, 1 = A + B D = 5 X (ELANSED 120 mm 20 mm	M. FACTOR (3),3 CALLONS REMOVED 3 6 6 6 6 6 6 37	- WBLL D	CONDUCTIVITY 475 475 475 475 475 475 475 475	× 0.3 = (15° 15° 15° 15° 14° 15° 14	4 5, e) 4, 8 (G. D) 24 (30) coros H.bm. Clearty Clearty Clearty	GAL = B $L_{2} = R$ GAL = C GALS Turbidity (NTU) 1000 + 212 6.85 2.54 ASTE (ID)	2.787 End Water1 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
DATE 620 440 41% 51%	ACTIVITY SINGLE STANI MINIMUM VO ACTIVITY SUGING 14 vol cont. 2nd vol. 3rd vol. 3rd vol. 3rd vol. 6th vol. 6th vol. TOTALS/FI RECOVER 00D FAIR for tain	STARTING BELOW S DING WA LUMB TO STARTING HIDDEPTH 4.05 4.10 4.44 4.46 4.44 4.46 4.44 4.46 4.48 4.46 4.48 1.44 4.48 1.44 4.48 1.44 4.48 1.48 1	EAL (11) 4,	X (BOF 16 (Z 1.UMB MOVEL MOVEL 11:20 11:20 11:20 12:40	ELAPSED 20 = 5 X (ELAPSED 20 mm 20 mm	M. FACTOR (3),3 C	- WBLI, D 	CONDUCTIVITY 475 475 475 475 475 475 475 475	× 0.3 = (15°C 14°C 14°C 14°C 14°C 14°C 14°C 14°C 14	4 5, e) 4, 8 (G. D) 24 (30) coros H.bm. Clearty Clear Clear Clear	GAL = B $L_{2} = C$ GAL = C GAL = C	2.78 Example 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

H:/ENG/SENECA/15SWMU/FIELDFMS/WELLDEV.WK3

ì

6

	-SCIE	NCE,	INC.	CLIEN	T: Aco	E		WEL	. #: /	1.26477-7	:
PROJECT :		 <	FAD	- 15	SWAD			DATE		6-27-1	14
LOCATION:			SEA	D-6.	1 D	***	· · · · · · · · · · · · · · · · · · ·	PROJE	CT NO. :	7.20.518	
DRILLING MET	HOD (s)	:	HS.	4]		INSPEC	TOR:	# KKS	
PUMP MET	HOD (s)	:	Perish	lic			C	CONTRAC	TOR:		
SURGE MET	HOD (s)	:T	2 f 10-1	Bailer				C	REW:	-	
INSTALLATIO	N DATE					SI	END DEVELO	PMENT D	$\mathbf{ATE:} \underline{-} \mathbf{C}$	6-27-9	4
WATER DEPTI	H (TOC)		3.	72	ft	INSTAL	LED POW DEP	TH(TOC):			
WELL DIA. (ID C	CASING)	:		0"	fl	MEASU	RED POW DEP	ГН(ТОС):		9.22	
BORING DIA	METER:	:	<u> </u>	<u>.</u> 5*	ft	POW	SILT TH AFTER DEVEL	ICKNESS: OPMENT:	<u>C</u>		
DIAMETER	FACT	ORS (GAL/F	·T):			Â	wa	<u></u>		
DIAMETER (IN	D:		3	4	56	7	8 8.50	10	11	12	
GALLONS/FT:	.,	0.163	0.367	0.654	1.02 1.47	2.00	2.61 2.95 3 30	4.08	4.93	5.87	
STANDING WA WATER COL. F SINGLE STANE MINIMUM VOL	TER IN A BELOW S DING WA	ANNUL EAL(R) TER V(BE RE	AR SPA X (BOF DLUME MOVEI	CE = RING DIA = A + B D = 5 X 0	`¥.0 _× 2 IM.FACTOR = C	- WELL D	3 IAM. FACTOR)	X 0.3 = 	3.34 4.25 21.25	GAL. = B GAL. = C GALS.	
	Sive	START	END	ELAPSED	GALLONS			1		str. 1	
ACTIVITY	Depth	TIME	time	TIME	REMOVED	pH	CONDUCTIVITY	TEMP	COLOR	OTHER	
	1:13	1445	1505	20	5				Brown	1000 -	
30192									A 14		
Pump	4.20	1515	1535	20	5	7.20	500	14.1	5.117	100+	
Pump	4.50	1515	1535 1550	20 10	5	7.20	500 500	14.1	5.117	100+ 6.0	
Pump Surge	4.50	1515 1540 1536	1535 1550 1605	20 10 10	5 5	7.20 7.37	500 500	14.1	S. Try	100+ 6.0 1000+	
Pump Pump Surge Pump	4.50	1515 1540 1536 1605	1535 1550 1605 1625	20 10 10 20	5 5 5	7.20	500 500	14.1	Silty Dirk Brown Silty	100+ 6.0 1000+ 100+	
Pump Pump Surge Pump Pump	4.50 4.50 4.7 4.8	1515 1540 1536 1605 1625	1535 1550 1605 1625 1435	20 10 10 20 10	55555	7.20 7.37 7.49 7.38	500 500 500 490	14.1 14.5 13.9 13.6	Silty Dirk Brown Silty Electron	100+ 6.0 1000+ 100+ 23	
Pump Pump Surge Pump Pump	4.20 4.50 4.7 4.7 4.8	1515 15340 1538 1605 1625 1625	1535 1550 1605 1625 1435 1435	20 10 10 20 10	55 5 5 M 5	7.20 7.37 7.49 7.38 7.38	500 500 500 440 500	14.1 14.5 13.9 13.6 13.5	Silty Disk Brown Silty Clear	100+ 6.0 1000+ 100+ 2.3 12	
Pump Pump Surge Pump Pump Iump	4.50 4.50 4.7 4.7 4.8 4.4	1515 1540 1535 1605 1625 1435	1535 1550 1605 1625 1435 1435 1455	20 10 10 20 10 20	555555	7.20 7.37 7.49 7.38 7.30	500 500 500 490 500	14.1 14.5 13.9 13.6 13.5	Silty Dirk Brown Silty Clear	100+ 6.0 1000+ 100+ 2.3 12	
Pump Pump Surge Pump Pump Iump	4.50 4.50 4.7 4.7 4.4	1515 1540 1535 1605 1625 1435	1535 1550 1605 1625 1435 1455	20 10 10 20 10 20	よ 5 5 5 5 5 5 5 5 5 5 5 5 5	7.20 7.37 7.49 7.38 7.30	500 500 500 490 500 Couple	14.1 14.5 13.9 13.6 13.5	Silty Dirk Brown Silty Class	100+ 6.0 1000+ 100+ 2.3 12	
Pump Pump Surge Pump Pump	4.50 4.50 4.7 4.7 4.4	1515 2540 2535 1605 1625 1435	1535 1530 1605 1625 1435 1435	20 10 10 20 10 20	55555	7.20 7.37 7.49 7.38 7.30	500 500 500 490 500 Comple	14.1 14.5 13.9 13.6 13.5	Silty Disk Silty Silty Clar	100+ 6.0 1000+ 100+ 2.3 12	
Pump Pump Surge Pump Pump Iump	4.50 4.50 4.7 4.7 4.4	1515 1540 1536 1605 1625 1625	1535 1530 1605 1625 1435 1435	20 10 10 20 10 20	5 5 5 5 5 5	7.20 7.37 7.49 7.38 7.30	500 500 500 490 500 Comple	14.1 14.5 13.9 13.6 13.5 te	Silty Disk Brown Silty Clear	100+ 6.0 1000+ 100+ 2.3 12	
Pump Pump Surge Pump Pump Pump Totals/FIN COMMENTS:	4.20 4.50 4.7 4.7 4.4 4.4	1515 1540 1535 1605 1625 1625	1535 1530 1605 1625 1435 1435	20 10 10 20 10 20	5 5 5 7 5 35	7.20 7.37 7.49 7.38 7.30	500 500 500 490 500 Comple	14.1 14.5 13.9 13.6 13.5 13.5	Silty Disk Brown Silty Clear	100+ 6.0 1000+ 100+ 2.3 12	

ver. 05-Nov-93

WELLDEV.WK1

Needs nell caps,"

· · · · · · · · · · · · · · · · · · ·		W	ELI		PEV	CLUF	TAYYYY	<u>NI KI</u>		<u>VI</u>		
	ENGINEE	RING-SCIE	NCE,	INC.	CLIEN	r: USAG	OE		WELL	·#: /	NW64D-	4
	PROJE LOCAT	CT : TION:	15 SWN SENEC	IU BSI A ARM	(SEAD- Y DBPOT	64D) , Romulus, N	r <u>x</u>		DATE: PROJE	CTNO.:	72051	<u>14</u> 5
	DRILLIN PUN SURC INSTAL	IG METHOD (s) IP METHOD (s) SE METHOD (s) LATION DATE	:/ : :	tsA perist Kflon 6	alhć baile 20/94-		SI	C ART DEVELOP BND DEVELO	INSPEC ONTRAC CI MENT DA PMENT D	TOR: TOR: TOR: REW: ATE: ATE:	ES 6 27 1 6/27	94
	WATER WELL DIA BORIN	DEPTH (TOC) (ID CASING) NG DIAMETER	:	7.9	14 2" 3.5"	ft ft ft	INSTAL MEASU POW	LED POW DEPI RED POW DEPI SILT THI AFTER DEVELC	H(TOC): H(TOC): CKNESS: DPMENT:		9.6 11.22 11.22	מ ה ה נו נו
4.87 - TSP 7.94 - J	DIAM DIAME GALLO	ETER FACT TER (IN): NS/ FT:	ORS (0 (2) (0.163	GAL/F 3 0.367	T): 4 0.654	5 6 1.02 1.47	7 2.00	8 8.5 9 2.61 2.35 3.30	10 4.08	11 4.93	12 5.87	
9.12 - BSC ,72 - Row	STANDI STANDI WATER SINGLE MINIMU	NG VOLUME I (1,22 NG WATER IN COL BELOW 1,22-7,94 = STANDING WA	VSIDE V 7,94 ANNUL SEAL(h) 3,28 XTER V O BE RE	VELL = .) .1(AR SPA X (BO) 3. SLUME CMOVE	WATER 3 CE = 28 (2.9) = A + B D = 5 X + 3	■ COLUMN X N M. FACTOR - 5~, 163).3 ■	VELL DIA - WELL D =	METER FACTO	R = X 0.3 =	,5 2.7 3.2	GAL = A GAL = B GAL = C	
	1									<u> 1 </u>	_060.	
n .		STARTINO	START	END	BLARSED	GALLONS	1	Γ	1	 	Turbidity	Ending
How	DATE ACTIV	STARTINO ITY H20DEPTH	START TIME	end Time	elapsed 17me	GALLONS REMOVED	рң	CONDUCTIVITY	TEMP	COLOR	Turbidity (NTU)	Ending Water Depth
Rote	DATE ACTIV	VITY HZODEPTH Jing, 7,94	START TIME 9:00	end Time 9:25	ELAPSED TIME	GALLONS REMOVED 5	pH	CONDUCTIVITY	TEMP	COLOR	Turbidity (NTU) 1000 t	Ending Water Depth B. 36
How Rate 540 m/m	DATE ACTIV 6/27 SWG 2nd vo	1111 1111 1111 1111 1111 1111 1111 1111 1111	57ART TIME 9:00 9:30	END TIME 9:25 10:05	ELAPSED TIME	aallons removed 5 3, 2	рн 7, 14	соноиститу 500	темр 13°С	cozor	Turbidity (NTU) DC0+ 3.02	Ending Water Depth B. 36 B. 30
How Rate 540 m/ m	DATE ACTIV 6/27 SWA 2nd us 3 rd us	халтно ИТУ наобертн Липд. 7.94 1, 7.97 1, 8,30	57ART TIME 9:00 9:30 10:05	END TIME 9:25 10:05 10:25	PLAPSED TIME	GALLONS REMOVED 5 3, 2 3, 2	рн 7,14 7,14	оонооститу 500 500	томр 13°С 13°С	cocore	Turbidity (NTU) 1000+ 3.02 5.44	Ending Water Depth B. 36 B. 30 B, 3 2
How Rate 540 m/ m	DATE ACTIV 6/27 Sive 2nd vo 3rd vo Smgc	STARTINO H20DEPTH Jing. 7.94 I, 7.97 J. 8.30 8.32	57ART TILLES 9:00 9:30 10:05 10:30	END TIME 9:25 10:05 10:25 10:40	ELAPSED TIME	GALLONS REMOVED 5 3, 2 3, 2 4	рн 7,14 7,14	соноиститу 500 500	темр 13°С 13°С	clean	Turbidity (NTU) 1000+ 3.02 5.44 1000+	Ending Water Depth B. 36 B. 30 B. 32 B. 52
How Rate 540 W/ m	DATE ACTIV 6/27 SWA 2nd vo 3rd vo Smgc 4th vol	STARTINO H20 DEPTH Jing. 7.94 J. 7.97 J. 8.30 8.32 8.38	57ART TIME 9:00 9:30 10:05 10:30 10:41	END TIME 9:25 10:05 10:25 10:25 10:40 11:00	PLAPSED	GALLONS REMOVED 5 3, 2 3, 2 3, 2 4 3, 2	рн 7,14 7,14 7,01	оонооститу 500 500 500	томр 13°С 13°С (3°С	clean Clean	Turbidity (NTU) 1000 + 3.02 5.4% 1000 + 14.44	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42
Haw Rate 540 W/ m	DATE ACTIV 6/27 5000 2rd us 3rd us 5mgc 4/h vol 5/h,	STARTINO H20DEPTH Jing. 7.94 1, 7.97 1, 8,30 8.32 4. 8.38 01. 8.42	57ART TIME 9:20 9:30 10:05 10:30 10:41 11:00	END TIME 9:25 10:05 10:25 10:40 11:00 11:15	PLAPSED TIME	GALLONS REMOVED 5 3, 2 3, 2 4 3, 2 3, 2	рн 7.14 7.14 7.14 7.01 7.09	сонооститу 500 500 500 500	томр 13°С 13°С (3°С 12°С	clean Clean Clean Clean Clean	Turbidity (NTU) 1000+ 3.02 5.4/ 1000+ 4.44 1.41	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42 B. 31
Haw Rate 540 m/ m	DATE ACTIV 6/27 5000 2 nd us 3 nd us 5 mgc 4 th vol 5 th,	STARTINO H20DEPTH Jing. 7.94 I, 7.97 I, 8,30 8,32 I, 8,38 01. 8,42	5TART TUAS 9:00 9:30 10:05 10:30 10:41 11:00	END THE 9:25 10:05 10:25 10:40 11:00 11:15	PLAPSED TIME	GALLONS REMOVED 5 3, 2 3, 2 4 3, 2 3, 2 3, 2	рн 7.14 7.14 7.01 7.09	соноиститу 500 500 500 500	томр 13°С 13°С (3°С 12°С	coecon clean clean clean clean	Turbidity (NTU) 1000+ 3.02 5.4/ 1000+ 4.44 1.41	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42 B. 31
How Rate 540 W/ m	DATE ACTIV 6/27 5000 2nd vo 3rd vo 5mgc 4/h vol 5/h, 	STARTINO HEDDEPTH Jing. 7.94 1, 7.97 1, 8,30 8.32 4, 8.38 01. 8.42 LS/FINAL	START TIME 9:20 9:30 10:05 10:30 10:41 11:00	END THE 9:25 10:05 10:25 10:40 11:15 11:15	PLAPSED 77MB	GALLONS REMOVED 5 3, 2 3, 2 4 3, 2 3, 2 3, 2 3, 2 3, 2	рн 7,14 7,14 7,01 7,09	оонооститу 500 500 500 500	томр 13°С 13°С 13°С 12°С	clean Clean Clean Clean	Turbidity (NTU) 1000 + 3.02 5.44 1000 + 4.44 1.41	Ending Water Depth B. 34 B. 30 B. 32 B. 52 B. 42 B. 31
Haw Rate 540 m/ m	DATE ACTIV 6/27 5000 2 nd vo 3 nd vo 5 mgc 4 th vol 5 th, 5 th, TOTA RECO	STARTINO H20DEPTH Jing. 7.94 I, 7.97 I, 8,30 8,32 I, 8,38 01. 8,42 LS/FINAL VERY	START TUAS 9:00 9:30 10:05 10:30 10:41 11:00	END THE 9:25 10:05 10:25 10:40 11:00 11:15 10:40 11:15	PLAPSED TIME	GALLONS REMOVED 5 3, 2 3, 2 4 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2	рн 7.14 7.14 7.01 7.09	соноиститу 500 500 500 500	темр 13°С 13°С 13°С 12°С	clean clean clean clean	Turbidity (NTU) 1000+ 3.02 5.4/ 1000+ 4.44 1.41	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42 B. 32 B. 32 W)
Haw Rate 540 W/ m	DATE ACTIN 6/27 5000 2nd vo 3rd vo 5mgc 4.th vo 5/th 5/th TOTA RECO (GOOD) F	STARTINO HEDDEFTH Jing. 7.94 1, 7.97 1, 8,30 8.32 4, 8.38 01. 8.42 1. LS/FINAL VERY FAIR POOR	57ART TIME 9:00 9:30 10:05 10:30 10:41 11:00 	END TOME 9:25 10:05 10:25 10:40 11:00 11:15 11:00 11:15 10:40 11:00 11:15 10:05 10:40 11:00 11:15	PLAPSED 77148	GALLONS REMOVED 5 3, 2 3, 2 4 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2	рн 7,14 7,14 7,01 7,01	оонооститу 500 500 500 500 500 1 1 1 1 1 1 1 1 1 1	темр 13°С 13°С 13°С 12°С 12°С 12°С	clean clean clean clean	Turbidity (NTU) 1000+ 3.02 5.44 1000+ 4.44 1.41	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42 B. 32 W)
Haw Rate 540 m/ m	DATE ACTIN 6/27 5000 2 nd vo 3 nd vo 5 mgc 4 th vol 5 th, 5 th, TOTA RECO GOOD F	STARTINO HEADDEPTH Jing. 7.94 I, 7.97 I, 8,30 8,32 I, 8,38 01. 8,42 I, 8,42 I, 8,42 VERY FAIR POOR	start Thes 9:20 9:30 10:05 10:30 10:41 11:00 ** The Despin of	END THE 9:25 10:05 10:25 10:40 11:15 11:15 11:15 11:15 11:15 11:15 11:15 11:15 11:15 11:15 11:15 10:05 10:25 10:40 11:15 10:05 10:25 10:40 11:15 10:05 10:25 10:40 11:15 10:40 11:15	reading 24, mp20	CALLONS REMOVED 5 3, 2 3, 2 3, 2 4 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2 3, 2	рн 7.14 7.14 7.01 7.09 130.0 20.9	CONDUCTIVITY 500 500 500 500 500 1 1 1 1 1 1 1 1 1 1	темт 13°С 13°С 13°С 12°С 12°С	clean clean clean clean clean	Turbidity (NTU) 1000+ 3.02 5.4/ 1000+ 4.44 1.41	Ending Water Depth B. 36 B. 30 B. 32 B. 52 B. 42 B. 32 B. 32 W)

Pg 1 of 3

		1 77	<u>111</u>	<u>, D</u>	<u>DEV</u>	ELOP	ME.	NT KE	SPO.	<u>vi</u>		
ENG	INEERING	}~SCIE	NCE,	INC.	CLIEN	t: USAC	юе	<u></u>	WELL	,#: /	MW64 D-	5
	PROJECT:		15 SWM	IU BSI	(SEAD-	<u>64D)</u>			DATE:	-	-6[27]	94
]	LOCATION	:	SENEC	ARM	y depot,	ROMULUS, N	Y		PROJEC	CLNO!!	120	5 10
ľ	RILLING ME	THOD (s):	;	HSA	· ·				INSPEC	TOR:	ES	
	FUMP ME	THOD (1)		peri	istalbi			C	ONTRAC	TOR:		
	SURGE ME	THOD (s)		ŀŀ	lon buil	ly			CE	XEW <u>:</u>	610210	7
	INSTALLATI	ON DATE:			22/9	4	ST.	ART DEVELOP	MENT DA	ATTC-	6/ J / / GU	I
								BIND DEVELO			Stickup=	1.31
 1	WATER DEPI	TH (TOC):			7.34	£t,	INSTAL	LED POW DEPT	H(TOC)	55°	7.15	n
WE	EL DIA. (ID	CASING):			2"	ft	MEASU	RED POW DEPT	H(TOC):		8.46	fi
	BORING DI	AMETER:			8,5 "	ft		SILTTHI	CKNESS:	P ¹		µ
							FOW A	AFTER DEVELO	PMENI;			······································
	DIAMETE	RFACTO	DRS (C	GAL/F	°T):			_				
	DIAMETER	NY	2	3	4	56	7	8 8.5 9	10	11	12	
	GALLONS/FI		(0.163)	0,367	0,654	1.02 1.47	2.00	2.6 2.95 3.30	4.08	4,93	5.87	
	SINGLE STAP	(8.4 IDING WA	6 - 7, 3 TER VO	34) = DLUMB	. 2	l, 12 ×	(2.95-	(43), 3 =	×0,3 ≃	.94- 1.12	GAL ≖B	•• •
	single stad Minimum Vi	(8,4 IDING WA	6 – 7, 3 TER V() BB RE	34) = DLUME MOVE	$ _{2} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \mathbf{X}$	L FACIOR	(2.95-	iam factor): ///3), 3 =	, , , , , , , , , , , , , , , , , , , 	1.12 5.6	GAL ≖ B CAL ⊨ C GALS,	···
	SINGLE STAP MINIMUM V((8,4 NDING WA	6 - 7, 5 TER V() BE RE	HOVE	$ _{2} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \mathbf{X}$	M.FACIOR , 2 × = C	(2.95-	(43), 3 =	,, ,, ,,	.94- 1.12 5,6	GAL. = B CAL. = C GALS. Turbidby	Ending
DATE	SINGLE STAN MINIMUM VO ACTIVITY	(8.4 IDING WA	G - 7, 3 TER VO DBE RE	END THE	, 2 = A + B D == 5 X ELATSED TM41	M. FACIOR	- WBLL D: (2.95 -	ам. FACIOR) /(43), 3 =	4 0,3 ⇒	.94- 1.12 5.6	GAL. = B CAL. = C GALS, TurbidDy (NTU)	Ending, Water Depth
DATE 6 27	SINGLE STAN MINIMUM VO ACTIVITY SWA2	(8.4 IDING WA	G – 7. : TER VC D BE RE	X (BOX 34) = DLUME MOVE MOVE	$ _{2} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \mathbf{X}^{\dagger}$ $\mathbf{E}_{A} = \mathbf{E}_{A}$	M. FACIOR , 2 × = C C REMOVED	- WBLL D: (2.95 -	ам. FACIOR): /(43), 3 = соносстити	к 0,3 ⊐ 	.94- 1.12 5,6	GAL. = C GALS, Tutbidby (NTU)	Ending Water Depth
DATE 627	SINGLE STAN MINIMUM VO ACTIVITY SUGL	(8.4 IDING WA DLUME TO STARTINO HODGETH	G - T. TER VC D BE RE START TIME SS	х (ВОЛ 34) = DLUME MOVE тыка тыка	, 2 = A + B D == 5 X (ELAYSED TIME	M. FACIOR	wвс. D: (2.95-	CONDUCTIVITY	, с. темр	.94- 1.12 5.6	CAL. = C CAL. = C GALS, Turbidhy (NTU)	Ending Water Depth Ory
DATE 627 6/28	SINGLE STAN MINIMUM VO ACTIVITY SWG2 Swy2 Que	(8.4 IDING WA DLUMB TO FLARTINO HODDERTH 72.3 Y 72.6 2.26	G - T.: TER VC DBE RE START TRAEL	X (BOX 34) = DLUME MOVE THE THE	$ _{2} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ \mathbf{E}_{APSED} \mathbf{T}_{Mel}	M. FACIOR - 1,12 × = C C REMOVED Studing	wыс D: (2.95-	CONDUCTIVITY	темр 5се	.94- 1.12 5,6	GAL = C GAL = C GALS, Turbidby (NTU)	Ending Water Depth Ory
DATE 627 6/28 6/28	SINGLE STAN MINIMUM VO ACTIVITY SWGE SWGE PUNP	(8.4 IDING WA DLUME TO HODGETH 7275 HODGETH 7255 726 726 725 725 725 725 725 725	51 ART 52 ART 52 ART 53 O	2KB 7MOVE 2KB 7MG No+	$ _{2} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \mathbf{X}^{\dagger}$ $\mathbf{E}_{\mathbf{A}\mathbf{F}\mathbf{S}\mathbf{E}\mathbf{D}}$ $\mathbf{T}_{\mathbf{M}\mathbf{S}\mathbf{L}}$ $\mathbf{C}_{\mathbf{T}} \cdot \mathbf{U}_{\mathbf{J}}$	M. FACIOR - 1, 12 × = C C C C C C C C C C C C C	wbii D (2.95- рн учнс- 7.80	ам. FACTOR): 163), 3 = сонологити to surge 825	C,3 = TCMP SCCC note	.94- 1.12 5,6	$GAL = C$ $GALS,$ $Turbidby$ (NTU) 100^{+}	Ending Water Depth Dry Dry
DATE 627 6/28 6/28 6/28	SINGLE STAN MINIMUM VO ACTIVITY SWG2 Swg2 Punp	(8.4 IDING WA DLUMB TO FLUMB T	57.447 57.447 57.447 57.447 13.30 1.330	ZND NOVE	$ _{12}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ \mathbf{E}_{APSED} \mathbf{TMAB} $\mathbf{C}_{1} \cdot \mathbf{U}_{1}$ \mathbf{I}_{0}	M. FACIOR - 1,12 × = C C ROMOVED studing .3	рн (2.95- рн 7.80	ам. FACTORS 163), 3 = соноссичитя to surge 825	TEMP	.94- 1.12 5.6	(AL. = C (AL. = C GALS, Turbidby (NTU)	Ending Water Depth Dry Dry
DATE 6 27 6/28 6/28 6/28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SUNGE SUNGE PUND I SUNGE	(8.4 NDING WA DLUMB TO FLARTING HODGETH 72.34 12-45 226 3.26 12-5 6.88 5.61	6 - 7. TER V() BE RE 57.44T 1948 55 13 3 0 1650	2ND 2ND 2ND 2ND 1340 1940	$ _{12}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ \mathbf{E}_{APSED} \mathbf{TM}_{2} $ _{10}$ \mathbf{Z}_{0}	M. FACIOR - 1.12 × = C .	whit D (2.95- 2.95- 7.80	ам. FACTOR): 163), 3 = соносстити to surge 825		.94- 1.12 5.6 00.08 m.ddy	GAL = C $GALS,$ $Turbidby$ (NTU) $100 +$ $1000 +$	Ending Water Depth Dry Dry 5.64
DATE 6 27 6 28 6 28 6 28 6 28	SINGLE STAN MINIMUM VO ACTIVITY SWGE SWGE PUNP	(8.4 IDING WA DLUME TO HODGETH 7294 726 726 726 726 726 726 726 726 726	6 - 7. TER VC D BE RE START TRACI START 13 3 0 1650	x (BOX 34) = DLUMB MOVE NOVE NOVE 13 40	$ _{2}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \cdot \mathbf{A} + \mathbf{S}$ $\mathbf{E} \cdot \mathbf{A} + \mathbf{E} \cdot \mathbf{A}$	M. FACIOR - 1.12 × = C C C C C C C C C C	wbii D (2.95- (2.95- рн учне- 7.80	ам. FACTOR): 163), 3 = сонолстити to surge 825		. 94- 1.12 5.6 	(SAL. = C CAL. = C GALS, Tutbidby (NTU)	Ending Water Depth Dry Dry 5.64
DATE 627 6/28 6/28 6/28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SWG2 SUZZ PUNP 1 SUZZ SUZZ SUZZ	(8.4 IDING WA DLUMB TO FLUMB T	57.44T 57.44T	x (b), = DLUMB MOVE MOVE No+ 13 40	$ _{12}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$	M. FACIOR - 1.12 × = C ROMOVED studing .3 1.3	рн (2.95- рн 7.80	ам. FACTOR): 163), 3 = соноссичитя to surse 825		.94- 1.12 5.6	(SAL. = C (CAL. = C (GALS, Turbidby (NTU) 100 +	Ending Water Depth Ory Dry 5.64
DATE 6 27 6 28 6 28 6 28 6 28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SUNGE SUNGE PUNP 1 SUNGE	(8.4 IDING WA DLUMB TO FLARTING HODGETH 7234 7736 726 726 726 726 726 726 726 726 726	57.44T TER V(DBE RE 57.44T TRAE 55 1330	2ND THE NOVE	$ _{2}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ \mathbf{E}_{APSED} \mathbf{TM}_{2} $ _{2}$ $ _{2}$	M. FACIOR - 1.12 × = C C C C C C C C C C C	wыс. D: (2.95- (2.95- 7.80	ам. FACTOR): 163), 3 = соноиспити to surge 825		.74- 1.12 5.6 00000	(AL. = C GALS, Turbidby (NTU)	Ending Water Depth Dry Dry 5.64
DATE 6 27 6 28 6 28 6 28 7/6	SINGLE STAN MINIMUM VO ACTIVITY Swge Swge Punp 	(8.4 IDING WA DLUME TO HODEFTH 7294 726 726 726 726 726 726 726	52041 52	2ND 7MOVE 2ND 7MOVE 1340	$ _{2}$ $= A + B$ $D = 5 \times 1$ $E(APSED)$ $The d$ $C = 0 \cdot 1$ 10 20	M. FACIOR - 1.12 × = C C C C C C C C C	wвс. D (2.95- 2.95- 7.80	ам. FACTORS 143), 3 = соноосполтя to surge 825		. 94- 1.12 5.6 	(SAL. = C CAL. = C GALS, Tutbidby (NTU)	Ending Water Depth Dry Dry 5.64
DATE 627 6/28 6/28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SWG2 SUNGE PUMP '	(8.4 IDING WA DLUMB TO FLUMB TO HOUGETH 7234 726 1345 6.88 5.61	51.44T 51.44T	x (b), = DLUMB MOVE MOVE No+ 13 40	$ _{12}$ $= A + B$ $D = 5 \times 1$ $ELAPSED$ $That$ $C - \cdot \cdot \cdot \cdot \cdot \cdot$ 10 20	M. FACIOR - 1.12 × = C C ROMOVED Studing .3 .3	рн (2.95- рн 7.80	ам. FACTOR): 143), 3 = сомослити to surse 825		.94- 1.12 5.6 	(SAL. = C CAL. = C GALS, Turbidhy (NTU)	Ending Water Depth Dry Dry 5.64
DATE 627 627 627 628 628 7/6	SINGLE STAN MINIMUM VO ACTIVITY SUNGE SUNGE PUNP '	(8.4 IDING WA DLUMB TO FLARTING HODGETH 7234 726 1226 1226 1226 1226 1226 1226 1226	57.44T TER V(DBE RE 57.44T TBAR 55. 1330 1650	2ND 7MOVE 2ND 7MOVE 1340	$ _{12}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \cdot \mathbf{A} + \mathbf{S} = \mathbf{D}$ $\mathbf{T} \cdot \mathbf{M} = \mathbf{C} \cdot \mathbf{U} \cdot \mathbf{U}$ $\mathbf{C} \cdot \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}$ $\mathbf{T} \cdot \mathbf{M} = \mathbf{U} \cdot \mathbf{U}$	M. FACIOR - 1.12 × = C C C C C C C C C C C	WBL D: (2.95- (2.95- 7.80	ам. FACTORS		. 74- 1.12 5.6 000000	(AL. = C GALS, Turbidby (NTU)	Ending Water Depth Dry Dry 5.64
DATE 6 27 6 28 6 28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SWGE SWGE FUND A SHIGE TOTALS/F	(8.4 IDING WA DLUME TO HODGENTH 7275 1255 6.88 5.61 1005 1005 1255 1255 1255 1255 1255 125	52041 52	x (BOX 34) = DLUMB MOVE NOVE 13 40	$ _{12}$ $= A + B$ $D = 5 \times 1$ $ELAPSED$ $The B$ $C - \cdot \cdot \cdot \cdot \cdot \cdot$ IO 20	M. FACIOR - 1.12 × = C autons ROMOVED stading -3 -3	рн 	Ам. FACTOR): 143), 3 = сомослити to surse 825		. 94- 1.12 5.6 	(SAL. = C CAL. = C GALS, Turbidhy (NTU)	Ending Water Depth Dry Dry 5.60
DATE 627 6/28 6/28 6/28 7/6	SINGLE STAN MINIMUM VO ACTIVITY SWG2 SUZE PUNP ' SHIZE TOTALS/F RECOVER	(8.4 NDING WA DLUMB TO FLUMB TO HOUDERTH 72.34 12.26 12.5 6.88 5.61 INAL	57.4RT TER V(DBE RE 57.4RT TIME 1330	2ND 2ND 2ND 2ND 2ND 2ND 13 40 13 40	$ _{12} = \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ \mathbf{E}_{APSED} \mathbf{TMAE} $\mathbf{C}_{10} \cdot \mathbf{J}$ \mathbf{IO} \mathbf{ZO}	M. FACIOR - 1.12 × = C C REMOVED stading .3 .3	рн (2.95- (2.95- 7.80	AM. FACTORS: (43), 3 =	TEMP SCCE	. 74- 1.12 5.6 m.ddy M.ddy 12/6	(AL. = C (AL. = C GALS, Turbidby (NTU) 100 + 1000 + 100	Ending Water Depth Dry Dry 5.60
DATE 6 27 6 28 6 28 6 28 6 28 7/6	SINGLE STAN MINIMUM VO ACTIVITY Surge Surge Punp 	(8.4 IDING WA DLUMB TO IDING WA DLUMB TO IDING WA IDING IDING WA IDING IDING WA IDING IDING I	57.44T TER V(DBE RE 57.44T TBAR 55 1330 1650	x (b) = DLUMB MOVE NOVE 13 40 1910	$ _{12}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times 1$ $\mathbf{E} \cdot \mathbf{A} + \mathbf{S} = \mathbf{D}$ $\mathbf{T} \cdot \mathbf{M} = \mathbf{C} \cdot \mathbf{U} \cdot \mathbf{U}$ $\mathbf{C} \cdot \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}$ $\mathbf{T} \cdot \mathbf{U} = \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}$	M. FACJOR - 1.12 × = C C C C C C C C C C C	PH (2.95- (2.95- 7.80	ам. FACTOR): //43), 3 = 	$\frac{1}{10000000000000000000000000000000000$. 94- 1.12 5.6 cor.or M.ddy M.ddy 17/6 . 3	(AL. = C GALS, Turbidly (NTU) 100†	Ending Water Depth Dry Dry 5.64
DATE 6 27 6 28 6 28 6 28 7/6 7/6	SINGLE STAN MINIMUM VO ACTIVITY SWGE Swge Punp Garge TOTALS/F RECOVER DOD FAIR	(8.4 IDING WA DLUME TO HODEFTH 729 1226 1226 1226 1226 1226 1226 1226 12	520417 52047 5207 5207	x (BOX 34) = DLUMB XMOVE X X X X X X X X X X X X X X X X X X X	$ _{2}$ $= \mathbf{A} + \mathbf{B}$ $\mathbf{D} = 5 \times \mathbf{C}$ $\mathbf{ELAPSED}$ \mathbf{TMEL} $ _{2}$ $ _{2}$	M. FACIOR - 1.12 × = C C C C C C C C C C C	whit D (2.95- (2.95- 7,80	АМ. FACTOR): //(3), 3 = ///////////////////////////////////	TEMP SCCC TOMP SCCC SCCC TOMP SCCCC SCCC SCCCC SCCC SCCCC SCCC SCCC SCCC SCCCC SCCCC	. 94- 1.12 5.6 coror M.ddy M.ddy 1.12 	(SAL. = C CAL. = C GALS, Turbidity (NTU) 100 + 1000 + 1000 +	Ending Water Depth Dry S. 64

•

. .

Fate too riow for repeatable readings

			AL I	T)FV	FIOP	ME	NT DI	7PA	RT		
RNG	INTERDIN	C VV J	NCE				TAT T?		WELL	#: M	h(l, j/r)	
	PROTECT:		15 CUT		(SEAT)-	INTO D			DATE	//	10040	
	LOCATION	I:	SENEC	AARM	Y DEPOT	ROMULUS. N	Y		PROJE	-/ CT NO. :-	72.0510	3-01
I	DRILLING MI	ETHOD (3)	:				1		INSPEC	TOR: /	!LK	
	PUMP MI	ETHOD (s)	:					C	ONTRAC	TOR:		
•	SURGE MI	BTHOD (s)							C	REW:		
	INSTALLATI	ION DATE	:	·····	<u></u>		ST	ART DEVELOP	MENT DA	118;		
١	WATER DEP	тн (тос)	:	4.	06	ft	INSTAL	LED POW DEPT	H(TOC):			
WE	ELL DIA. (ID	CASING)	:			ft	MEASU	RED POW DEPI	H(TOC):		<u>5.47</u>	
	BORING D	IAMETER	:			ft		SILT THI	CKNESS:	********		
							POWA	AFTER DEVELO	PMBN1;	<u></u>		
]	DIAMETE	R FACT	ORS (GAL/I	FT):	n geologia and an		8.5				
	DIAMETER	IND:	6	3	4	56	7	8 9	10	11	12	
i	GALLONS/FI	Г:	d 19	0.367	0.654	1.02 1.47	2.00	2.61 3.30	4.08	4.93	5.87	
								2.19				
:	STANDING W WATER COL SINGLE STAN	VATER IN . . BELOW S	ANNUI SEAL(II) ATER V	AR SPA) X (BOI OLUME	$CE \doteq$ RING DIA C = A + B	M.FACTOR - Z, 7	WELL DI	(AM. FACTOR)	K 0,3 =	2.0Z 2.42	GAL B GAL C	
:	STANDING W WATER COL SINGLE STAN MINIMUM V(VATER IN . BELOW S NDING WA	ANNUL SEAL(II) ATER V OBB RE	AR SPA) X (BOJ OLUME MOVE	$CE \doteq$ RING DIA C = A + B D = 5 X (M.FACTOR - Z, 7 =	WELL DI	(AM. FACTOR) 3	K 0,3 ≕ 	2.02 2.42 12	$GAL_{*} = B$ $GAL_{*} = C$ $GALS.$	
:	STANDING W WATER COL SINGLE STAN MINIMUM VO	VATER IN . BELOW S NDING WA	ANNUL SEAL(II) ATER V O BE RE	AR SPA) X (BOJ OLUMB MOVE	$ACE \doteq RING DIA$ $C = A + B$ $D = 5XC$ $PUNC$	M.FACTOR - Z, 7 = c -m[]m/N	WELL D	IAM FACTOR)	K 0,3 ≕ 	2.02 2.42 12	GAL. = B GAL. = C GALS.	
: : : :	STANDING W WATER COL SINGLE STAN MINIMUM V(VATER IN BELOW S NDING WA OLUMB TO	ANNUL SEAL(II) ATER V O BE RE	AR SPA) X (BOJ OLUME MOVE	ACE = A + B $RING DIA$ $C = A + B$ $D = 5X$ PUM Tak RUM	LM. FACTOR - 2, 7 = C -m m/	WELL DI	IAM. FACTOR) J	× 0,3 == 	2.02 2.42 12	$GAL_{*} = B$ $GAL_{*} = C$ GALS. Turbidity	E
DATE	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY	VATER IN BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH	ANNUL SEAL(II) SEAL(II) SEAL(II) SEAL(II) SEAL(II) START	AR SPA) X (BOJ OLUME EMOVE END TWE	ACE = A + B $A + B = 5 X + B$ $A = 5 X + B$	M. FACTOR - 2, 7 = C -m m h gallons removed	WELL D	CONDUCTIVITY	К 0,3 = темр	2.02 2.42 12	GAL. = B GAL. = C GALS. Turbidity (NTU)	E Wate
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY DUMP	VATER IN BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (0.06	ANNUL SEAL(II) ATER VI O BE RE START 7145 1535	AR SPA) X (BOJ OLUME AMOVE END TWE	ACE = A + B $RING DIA$ $C = A + B$ $D = 5X$ $PUNP$ $To be a constructed by the second seco$	M. FACTOR - 2, 7 = C -m m/ M M M M M M M M M M	PH 734	ам. Factor) 3	К 0.3 = темр (5.2	2.02 2.42 12	$GAL_{*} = B$ $GAL_{*} = C$ GALS. Turbidity (NTU)	E Wato
DATE 1	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY Dump	VATER IN. A BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (0.06	ANNUL SEAL(II) ATER VO D BB RE	AR SPA) X (BO) OLUME EMOVE	ACE = A + B $A + B$ $D = 5X$ PUM $Total PUM$ $TotaPUM$ $TotaPUM$ $Total PUM$ $Total PUM$ $Total PUM$ $Total P$	M. FACTOR - Z , 7 = C M/ M/N GALONS REMOVED J. 5 (15)	рн 7.36 7.40	САМ. FACTOR) 3 Соноистилту 510 490	К 0,3 = темр (<u>5.2-</u> <u>)4.В</u>	2.02 2.42 12 NUCLAN	GAL. = B GAL. = C GALS. Turbidity (NTU)	E Wate 6
ATE	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY	VATER IN BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (6.06	ANNUL SEAL(II) SEAL(II) SEAL(II) SEAL(II) SEAL(II) SEAL(II) START 1535	AR SPA) X (BOJ OLUME EMOVE:	CE = RING DIA $RING DIA$ $D = 5X$ PUM $Total$ ROM RO	M. FACTOR - 2, 7 = ml/m/ ml/m/ antions REMOVED 1, 5 (15) 1, 7	ун рн 7-34 7-40 7-42	ам. Factor)	к 0.3 = темр (5.2- 14.В 14.В	2.02 2.42 12 Nurky Veryclan Clove	$GAL = B$ $GAL = C$ $GALS$ $Turbidity$ (NTU) $d_{1}(1000f)$	E Wate 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO <u>ACTIVITY</u>	VATER IN. A BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (0.0()	ANNUL SEAL(II) ATER VO D BE RE	AR SPA) X (BO) OLUME EMOVE	CE = RING DIA RING DIA $D = 5XI PUMP THE 300 300 300 300$	M. FACTOR - Z , 7 = C M/ M/N GALLONS REMOVED 1.5 (175) - TS - TS	рн 7-34 7-40 7-42 7-36	ам. FACTOR) 3 	к 0,3 == темр (5.2- ј4.В [4.В .]4.Ц	2.02 2.42 12 NUREN VINCAN CLOUC Sint	GAL = B $GAL = C$ $GALS$ $Turbidity$ (NTU) $du(1000f)$	E Wato 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY	VATER IN BELOW S NDING WA OLUME TO STARTINO H20 DEPTH (J. D()	ANNUL SEAL(II) ATER VI D BB RE	AR SPA) X (BOJ OLUME EMOVE	CE = RING DIA RING DIA $= A + B$ $P = 5X$ P	M. FACTOR - 2. 7 = ml/ml/ antions REMOVED 1.5 (15) 1.75 	рн 7-36 7-40 7-42 7-42 7-42 7-42	СОНРИСТИЛТУ 510 490 500 500 500	к 0.3 = IEMP (5.2- 14.В 14.В .[4.4 .[4.6]	2.02 2.42 12 NUREN NUREN CLOUC Slint CLOUC	GAL = B $GAL = C$ $GALS$ $Turbidity$ (NTU) $du(1000f)$ u	E Wate 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO <u>ACTIVITY</u> <u><u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u></u>	VATER IN	ANNUL SEAL(II) ATER VO D BE RE	AR SPA) X (BOJ OLUME EMOVE:	CE = RING DIA RING DIA $E = A + B$ $D = 5X$ PUM RE 200 300 300 300 500	M. FACTOR - Z, 7 - - - - - - - - - - - - -	рн 7-34 7-40 7-42 7-42 7-42 7-42 7-42 7-42	ам. Factor)	x 0.3 == ITEMP (J2- J4-B 14-B 14-B 14-4 14-B 14-1	2.02 2.42 12 Nurky Virychan Clour Slintt Clour Slintt Clour Murky	GAL = B $GAL = C$ $GALS$ $Turbidity$ (NTU) $du(looot)$ u $iooot$	E Wate 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM V ACTIVITY	VATER IN	ANNUL SEAL(II) ATER VI D BB RE	AR SPA) X (BO) OLUME EMOVE	CE = $RING DIA$ $I = A + B$ $D = 5X$ $PUMP$ $Tome$ 300 300 300 300 500 500	M. FACTOR - Z , 7 = C ml/ml/ amions REMOVED 1.5 (15)(15)(15)(1.	рн 7-36 7-40 7-42 7-42 7-42 7-42 7-42 7-42 7-42 7-42	СОНРИСТИЛТУ 510 490 500 500 500 500 500	x 0.3 = IEMP (5.2 14.B 14.B 14.B 14.B 14.B 14.B 14.J	2.02 2.42 12 12 Nurky KMClau Cloud Slind Cloud Slind Cloud Slind Cloud	GAL = B $GAL = C$ $GALS$ $Turbidity$ (NTU) $du(1000f)$ M $isoch$ $isoch$	E Wate 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY Dump	VATER IN BELOW S NDING WA OLUMB TO H20 DEPTH (6.06	ANNUI SEAL(II) ATER VO D BE RE	AR SPA) X (BOJ OLUME ZMOVE END THE LIGHS	CE = $RING DIA$ $RING DIA$ $D = 5X$ PUM TME 300 300 300 300 500 500 500	M. FACTOR - Z , 7 - - - - - - - - - - - - -	рн <u>7</u> .42 <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u>	СОНРИСТИЛТУ 510 490 500 500 500 500 500 500 500 5	x 0.3 == ITEMP (5.2- J4.B 14.B 14.B 14.B 14.B 14.B 14.1 14.B 14.1 14.1	2.02 2.42 12 12 NUCKY VINCAN CLOUC CLOUC	GAL = B $GAL = C$ $GALS$ $Turbidity$ (NTU) $du(logot)$ u $du(logot)$ u $isoct$ $isoct$ U $du(logot)$	E Wat 6 6 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY Dump	VATER IN. A BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (0.06	ANNUL SEAL(II) ATER VO DBB RE	AR SPA) X (BO) OLUME EMOVE ENO THE INO	CE = $RING DIA$ $P = 5X$ $PUMP$ $RING DIA$	M. FACTOR - Z , 7 - - - - - - - - - - - - -	рн 7.42 7.42 7.42 7.42 7.42 7.42 7.42 7.42	ам. FACTOR) 3	x 0.3 = ITEMP IS-2- I4-B I4-B I4-B I4-B I4-B I4-1 I4-D I4-1 I4-2	2.02 2.42 12 12 Nurky Cloue Slingt Cloue Slingt Cloue Cloue Cloue	GAL = B GAL = C GALS. Turbidity (NTU) $A_{1}(000f)$ $A_{2}(000f)$ $A_{3}(000f)$ $A_{4}($	E Wat 6 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY Dump	VATER IN BELOW S NDING WA OLUMB TO H20 DEPTH (0.06	ANNUI SEAL(II) SEAL(II) SEAL(II) START 1535	AR SPA) X (BOJ OLUME ZMOVE END THE LIGHS	CE = $RING DIA$ $= A + B$ $D = 5X$ PUM Tak 300 300 300 300 500 500 500	M. FACTOR - Z , 7 - - - - - - - - - - - - -	рн <u>7</u> .36 <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u> <u>7.42</u>	СОНРИСТИЛТУ 510 490 500 500 500 500 500 500 500 5	x 0.3 == (5.2- 14.B 14.B 14.B 14.B 14.B 14.1 14.D 14.1 14.2	2.02 2.42 12 12 NUCKY CLOUC Slingt CLOUC Cloud Cloud Cloud Cloud	GAL = B GAL = C GALS. Turbidity (NTU) $d_{1}(1000t)$ $d_{2}(1000t)$ $d_{3}(000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$ $d_{4}(1000t)$	E Wat 6 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO <u>ACTIVITY</u> <u><u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u></u></u>	VATER IN. A BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (0.06	ANNUI SEAL(II) DBE RE	AR SPA) X (BO) OLUME EMOVE ENO THE I/045	CE = $RING DIA$ $P = 5X$ $PUMP$ $Table$ 300 300 300 300 500 500 500	$\frac{M.FACTOR}{Z, 7}$	рн 7-40 7-40 7-42 7-42 7-42 7-42 7-43 7-43 7-43 7-43 7-43 7-43	ам. FACTOR) 3	x 0.3 == ITEMP 15.2- 14.B 14.B 14.B 14.4 14.9 14.1 14.1 14.2	2.02 2.42 12 12 NUCLO CLOUC CLOUC CLOUC CLOUC	GAL = B GAL = C GALS. Turbidity (NTU) $d_{1}(1000f)$ $d_{2}(1000f)$ $d_{3}(1000f)$ $d_{4}(1000f)$ d	E Wat 6 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO ACTIVITY Dump Dump TOTALS/F RECOVER	VATER IN. BELOW S NDING WA OLUMB TO STARTINO H20 DEPTH (6.06 VINAL VINAL	ANNUL SEAL(II) SEAL(II) DBE RE	AR SPA) X (BOJ OLUME END TWE [1045]	CE = RING DIA RING DIA $= A + B$ $P = 5X$ $PUMP$ $Take$ 300	M. FACTOR - Z , \overline{T} Z , \overline{T} Z,	рн 7.36 7.40 7.42 7.42 7.42 7.42 7.42 7.43 7.42 7.42	ам. Factor)	$x 0.3 =$ $TEMP$ $(5 \cdot 2 - 14 \cdot 6)$ $14 \cdot 6$ $14 \cdot 6$ $14 \cdot 6$ $14 \cdot 14$ $14 \cdot 6$ $14 \cdot 14$ $14 \cdot 6$ $14 \cdot 2$ $14 \cdot 6$ $14 \cdot 2$ $14 \cdot 6$	2.02 2.42 12 12 NUCKY VINCAN CLOUC SINA CLOUC CLOUC CLOUC CLOUC	GAL = B GAL = C GALS. Turbidity (NTU) Au(10007) M (1000)	E Wat 6 6 6 6 6 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO <u>ACTIVITY</u> <u><u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u></u></u>	VATER IN. A BELOW S NDING WA OLUMB TO HER DEPTH (0.06 	ANNUL SEAL(II) ATER VO DBE RE 1535	AR SPA) X (BOJ OLUME EMOVE ENO TWE INVE	CE = RING DIA RING DIA $E = A + B$ $D = 5X1$ $PUMP$ $THE 300 300 300 300 300 500 500 500 500 500$	M. FACTOR $-$ Z. $\overline{7}$ = main for the second secon	рн 7-36 7-40 7-42 7-42 7-42 7-42 7-42 7-42 7-42 7-42	ам. Factor)	x 0.3 = $TEMP$ $(5.2-)$ $14.B$ $14.B$ $14.G$ 14.1 14.9 14.1 14.9	2.02 2.42 12 12 NUCKU CLOUC Slint CLOUC CLOUC CLOUC CLOUC CLOUC	GAL = B GAL = C GALS Turbidity (NTU) $d_{1}(1000f)$ $d_{2}(1000f)$ $d_{3}(1000f)$ $d_{4}(1000f)$ $d_$	E Wat 6 6 6 6 6 6 7 6
	STANDING W WATER COL SINGLE STAN MINIMUM VO <u>ACTIVITY</u> <u><u><u><u><u></u></u><u><u><u><u></u></u><u><u><u></u></u><u><u><u></u></u><u><u></u><u><u></u></u><u><u></u></u><u><u></u></u></u></u></u></u></u></u></u></u>	VATER IN. A BELOW S NDING WA OLUMB TO STARTINO HERDEFTH G. DG CINAL CINAL CY POOR	ANNUL SEAL(II) ATER VO DBB RE 1535	AR SPA) X (BO) OLUME EMOVE ENO THE I/045	CE = RING DIA RING DIA $E = A + B$ $D = 5X$ $PUMP$ $Total 200 300 300 300 300 50$	M. FACTOR - Z , \overline{T} = T T T T T T T T	рн 7.40 7.42 7.42 7.42 7.42 7.43 7.43 7.43 7.43 7.43 7.43	ам. Factor)	x 0.3 = TEMP 15.2- 14.B 14.B 14.B 14.4 14.9 14.1 14.9 14.2 14.	2.02 2.42 12 12 NUCKY CLOUC Slingt CLOUC Slingt CLOUC CLOUC CLOUC CLOUC	GAL = B GAL = C GALS. Turbidity (NTU) $A_{1}(000f)$ $A_{2}(000f)$ $A_{3}(000f)$ $A_{4}($	E Watu 6 6 6 6 6 7 6

MW1040-5

	·						ł)3			
		WE		DEV	ELOP	ME	NT RI	EPO	RT		
	ENGINEERING	-SCIEN	ICE, INC.	CLIEN	T: USAG	COE		WELI	#: MI	NG4D-	-5
	PROJECT : LOCATION:	<u>1</u> <u>5</u>	15 SWMU ES ENECA ARN	I (SEAD- AY DEPOT	(4D) , ROMUKUS, N	īΥ		DATE: PROJE	CTNO. :	7-10	-94
	DRILLING ME PUMP ME SURGE ME INSTALLATIO	THOD (s):_ THOD (s):_ THOD (s):_ DN DATE:_				ST	C ART DEVELOP END DEVELO	INSPEC ONTRAC C MENT D PMENT I	TOR: X TOR: REW; ATB: DATE:	IL K	
	WATER DEPT WELL DIA. (ID BORING DL	H (TOC): CASING): AMETER:	_(6.	23	ft ft	INSTAL MEASU POW J	LED POW DEPI RED POW DEPI SILT THI AFTER DEVELC	H(TOC): H(TOC): CKNESS: DPMENT;			ft ft ft ft
·	DIAMETER DIAMETER (1) GALLONS/ FT:	R FACTO	DRS (GAL) 2 3 0.163 0.367	FT): 4 0.654	5 6 1.02 1.47	7 2.00	8 9 2.61 3.30	10 4.08	11 4.93	12 5.87	
	STANDING VO STANDING WA WATER COL SINGLE STAN MINIMUM VO	DLUME INS ATER IN A BELOW SE DING WAT	SIDE WELL NNULAR SP EAL(fi) X (BC TER VOLUM BE REMOVI	= WATEF ACE ≈ DRING DIA B = A + B BD = 5X	C	VELL DIA - WELL D	METER FACTO	R = X 0.3 =		GAL. = A GAL. = B GAL. = C GALS.	
20m(lmin/2 600 m/min 600m/min 600m/min	DATE ACTIVITY 7/10 SUMP 7/10 pump 7/10 pump 7/10 pump 7/10 pump	STARTINO H20 DEPTH 6 - 2.3 6 - 64 6 - 64 6 - 66	START END TUME TUME (600 161) 1610 163 1635 165	ELAPSED TIME / // 5 25 5 20	CALLONS REMOVED 125 215 25 3.0	рн (6.84 7.22	сонристилти 475 470	TEMP 13.6 13.3	coror prom cloudy sl. cloud sl. cloud	Turbidity (NTU) Jeller (1 Y	Ending Water Depth (0-64 5.0) (0-66 7.1
	TOTALS/F										
•	GOOD FAIR	Y POOR					INVESTIGAT DATE VOLUME DRUM #	10N DEI 17-10-9 18:25 1040-	TYED W	ASTE (ID	w)

٩.

,

APPENDIX D

FIELD SAMPLING AND ANALYSIS PLAN

Appendix D information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

APPENDIX E

HEALTH AND SAFETY PLAN

.

Appendix E information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

1

,

APPENDIX F

CHEMICAL DATA AQUISITION PLAN

T

Appendix F information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

;

:

APPENDIX G

UNITED STATES DEPARTMENT OF INTERIOR FISH AND WILDLIFE SERVICES ENDANGERED AND THREATENED SPECIES LETTER

Appendix G information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

APPENDIX H

•

RESPONSE TO REVIEW COMMENTS

i
APPENDIX I

SCOPE OF WORK

Appendix I information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan