

SEAD-45

PROJECT SCOPING PLAN FOR PERFORMING A CERCLA REMEDIAL INVESTIGATION/FEASIBILITY STUDY (RI/FS) AT THE OPEN DETONATION GROUNDS, SENECA ARMY DEPOT ACTIVITY

SEPTEMBER 1995

PROJECT SCOPING PLAN REMEDIAL INVESTIGATION/FEASIBILITY STUDY AT SEAD-45 SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared For:

Seneca Army Depot Activity Romulus, New York

Prepared By:

Parsons Engineering Science, Inc. Prudential Center Boston, Massachusetts

September 1995

TABLE OF CONTENTS

Section

Page

INTR	ODUCT	ION	1-1
1.1	Purpos	e of Report	1-1
1.2	Report	Organization	1-1
1.3	Site Ba	ackground	1-1
SITE	CONDI	ΓΙΟΝS	2-1
2.1	Physic	al Setting	2-1
2.2	Region	al Geological Setting	2-1
2.3	Regional Hydrogeological Setting		2-1
2.4	Results	s of Previous Investigations	2-1
	2.4.1	1979 Study	2-1
	2.4.2	1982 Study	2-1
	2.4.3	1982-1987 Groundwater Sampling	2-5
	2.4.4	1988 Metcalf & Eddy Study	2-5
	2.4.5	1989-1993 Groundwater Sampling	2-5
	2.4.6	1991-1992 Open Burning Grounds Remedial Investigation	2-5
	2.4.7	1993 Expanded Site Inspection	2-5
SCOPING OF THE RI/FS		3-1	
3.1 Conceptual Site Model		3-1	
	3.1.1	Physical Site Characterization	3-1
		3.1.1.1 Local Geology	3-2
		3.1.1.2 Local Hydrology and Hydrogeology	3-4
	3.1.2	Environmental Fate of Constituents at SEAD-45	3-8
		3.1.2.1 Explosive Compounds	3-8
		3.1.2.2 Metals	3-11
		3.1.2.3 Semivolatile Organic Compounds	3-14
	3.1.3	Data Summary and Conclusions	3-15
		3.1.3.1 Soil Data	3-15
		3.1.3.2 Groundwater Data	3-15
		3.1.3.3 Surface Water Data	3-16
		3.1.3.4 Sediment Data	3-17
	1.1 1.2 1.3 SITE 2.1 2.2 2.3 2.4	 Purpos Report SITE CONDI SITE CONDI Physic Region Region Results Results A.1 A.2 A.3 A.4 A.4 A.5 A.4 A.5 A.6 A.7 SCOPING OF Conception A.1.1 A.1.2 	 1.2 Report Organization 1.3 Site Background SITE CONDITIONS 2.1 Physical Setting 2.2 Regional Geological Setting 2.3 Regional Hydrogeological Setting 2.4 Results of Previous Investigations 2.4.1 1979 Study 2.4.2 1982 Study 2.4.3 1982-1987 Groundwater Sampling 2.4.4 1988 Metcalf & Eddy Study 2.4.5 1989-1993 Groundwater Sampling 2.4.6 1991-1992 Open Burning Grounds Remedial Investigation 2.4.7 1993 Expanded Site Inspection SCOPING OF THE RI/FS 3.1 Conceptual Site Model 3.1.1 Physical Site Characterization 3.1.2 Local Hydrology and Hydrogeology 3.1.2 Environmental Fate of Constituents at SEAD-45 3.1.2.1 Explosive Compounds 3.1.2.2 Metals 3.1.2.3 Semivolatile Organic Compounds 3.1.3 Data Summary and Conclusions 3.1.3.1 Soil Data 3.1.3.3 Surface Water Data

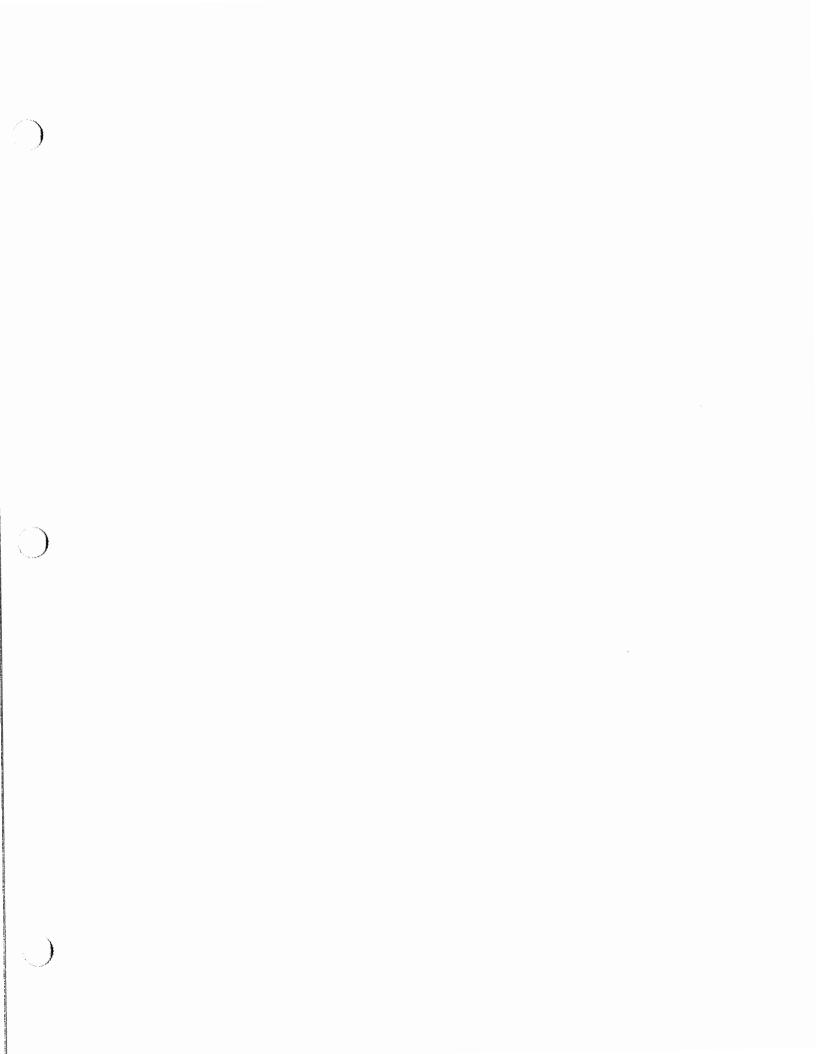
Page 1-1 K:\SENECA\RIFS\SEAD-45\Section,1

TABLE OF CONTENTS (CONT)

Section

1 1 1 1 1

Page 1


	3.2 P	reliminar	ry Identification of Potential Receptors and Exposures Scenarios	3-18
		3.2.1	Potential Source Areas and Release Mechanisms	3-21
		3.2.2	Potential Exposure Pathways and Receptors - Current Uses	3-21
			3.2.2.1 Ingestion and Dermal Exposure Due to Surface	
			Water and Sediment	3-22
			3.2.2.2 Dust Inhalation and Dermal Contact	3-22
			3.2.2.3 Incidental Soil Ingestion and Dermal Contact	3-22
			3.2.2.4 Ingestion of Groundwater	3-23
		3.2.3	Potential Exposure Pathways and Receptors - Future Uses	3-23
	3.3 S	coping o	f Potential Remedial Action Alternatives	3-23
	3.4 P	reliminar	ry Identification of Applicable or	
	Re	elevant a	and Appropriate Requirements (ARARs)	3-24
	3.5 D	Data Qua	lity Objectives (DQOs)	3-24
	3.6 D	Data Gap	s and Data Needs	3-24
4.0	TASK	C PLAN	FOR THE RI	4-1
	4.1	Pre-Fie	eld Activities	4-1
	4.2	Field I	nvestigations	4-1
		4.2.1	Soil Investigation	4-2
			4.2.1.1 Soil Boring Program	4-2
			4.2.1.2 Surface Soil Program	4-5
			4.2.1.3 Soil Sampling Summary	4-7
		4.2.2	Surface Water and Sediment Investigation	4-7
		4.2.3	Groundwater Investigation	4-12
			4.2.3.1 Monitoring Well Installation	4-12
			4.2.3.2 Aquifer Testing	4-13
		4.2.4	Ecological Investigation	4-13
			4.2.4.1 Site Description	4-13
			4.2.4.2 Contaminant-Specific Impact Analysis	4-15
		4.2.5	Analytical Program	4-17
			4.2.5.1 Level II Screening	4-17
			4.2.5.2 Level IV Analyses	4-19
		4.2.6	Surveying	4-20

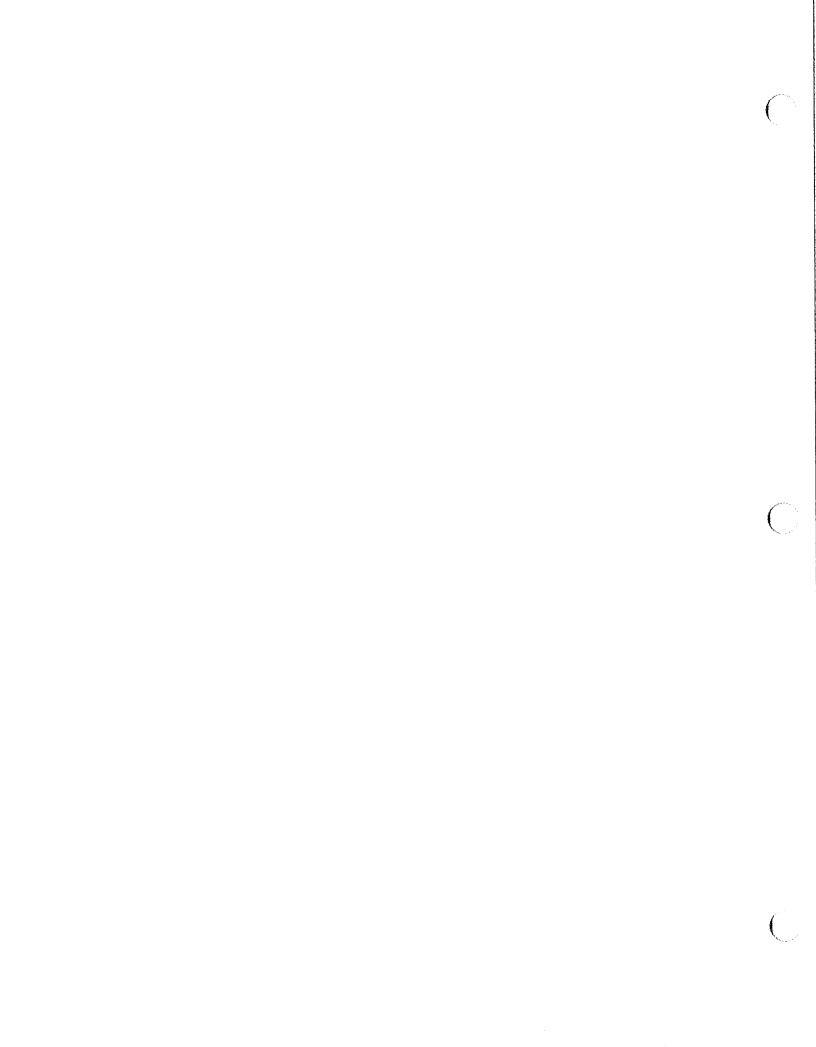
(

TABLE OF CONTENTS (CONT)

<u>Section</u> <u>P</u>		<u>Page</u>		
		4.3	Data Reduction, Assessment and Interpretation	4-22
		4.4	Baseline Risk Assessment	4-22
		4.5	Data Reporting	4-22
		4.6	Task Plan Summary for the RI	4-22
5.0		TASI	K PLAN FOR THE FS	5-1
		5.1	Development of Objectives	5-1
		5.2	Screening of Alternatives	5-1
		5.3	Detailed Analysis of Alternatives	5-1
		5.4	Task Plan Summary for the FS	5-1
	6.0	PLAI	NS AND MANAGEMENT	6-1
		6.1	Scheduling	6-1
		6.2	Staffing	6-1
	7.0	REFI	ERENCES	7-1

Page 1-3 K:\SENECA\RIFS\SEAD-45\Section.1

Ý


.

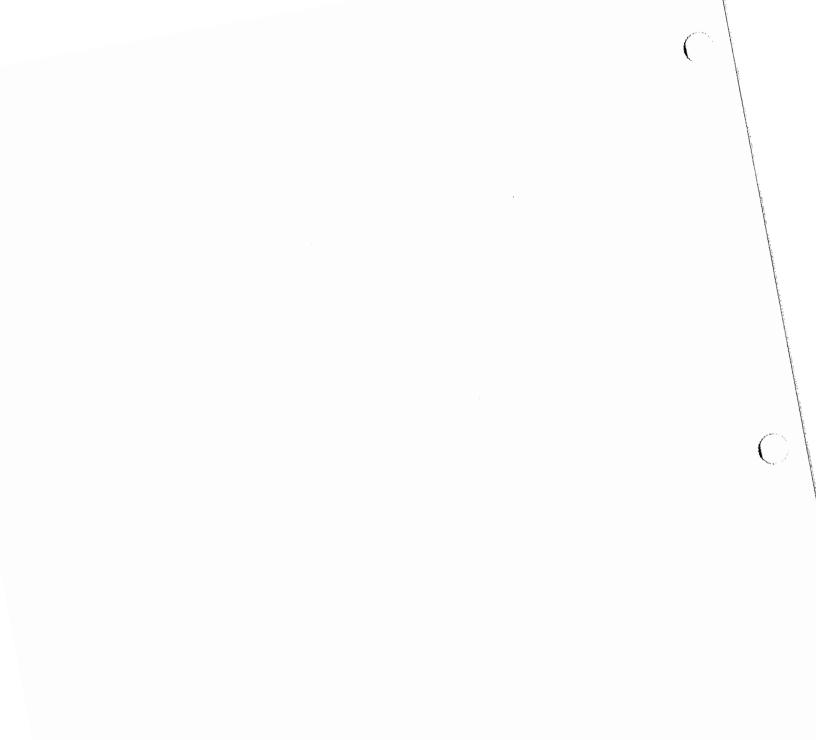
LIST OF TABLES

Table	Title
2-1	1979 Study, Monitoring Well Construction Data
2-2	1979 Study, Water Quality Monitoring Data - Explosives
2-3	1979 Study, Water Quality Monitoring Data - Conventional Pollutants
2-4	1982 Study, Open Detonation Grounds Soil Data
2-5	1982 through 1987 Groundwater Sampling Summary of Groundwater
	Analyses, Wells MW-1 through MW-7
2-6	1988 Metcalf and Eddy Study, Groundwater Analyses Data
2-7	1987 through 1993 Groundwater Sampling, Monitoring Well MW-1
2-8	1987 through 1993 Groundwater Sampling, Monitoring Well MW-2
2-9	1987 through 1993 Groundwater Sampling, Monitoring Well MW-3
2-10	1987 through 1993 Groundwater Sampling, Monitoring Well MW-4
2-11	1987 through 1993 Groundwater Sampling, Monitoring Well MW-5
2-12	Surface Water Analysis Results, OB Grounds Remedial Investigation
2-13	Sediment Analysis Results, OB Grounds Remedial Investigation
2-14	Soil Analysis Results - SEAD-45 Expanded Site Inspection
2-15	Groundwater Analysis Results - SEAD-45 Expanded Site Inspection
2-16	Surface Water Analysis Results - SEAD-45 Expanded Site Inspection
2-17	Sediment Analysis Results - SEAD-45 Expanded Site Inspection
2-18	Expanded Site Inspection Monitoring Well Construction Data
3-1	Expanded Site Inspection Monitoring Well Water Level Summary
3-2	Summary of Fate and Transport Parameters for Selected Organic Compounds
4-1	Summary of Sampling and Analyses

August, 1995

Page 1-4 K:\SENECA\RIFS\SEAD-45\Section.1

DRAFT REPORT

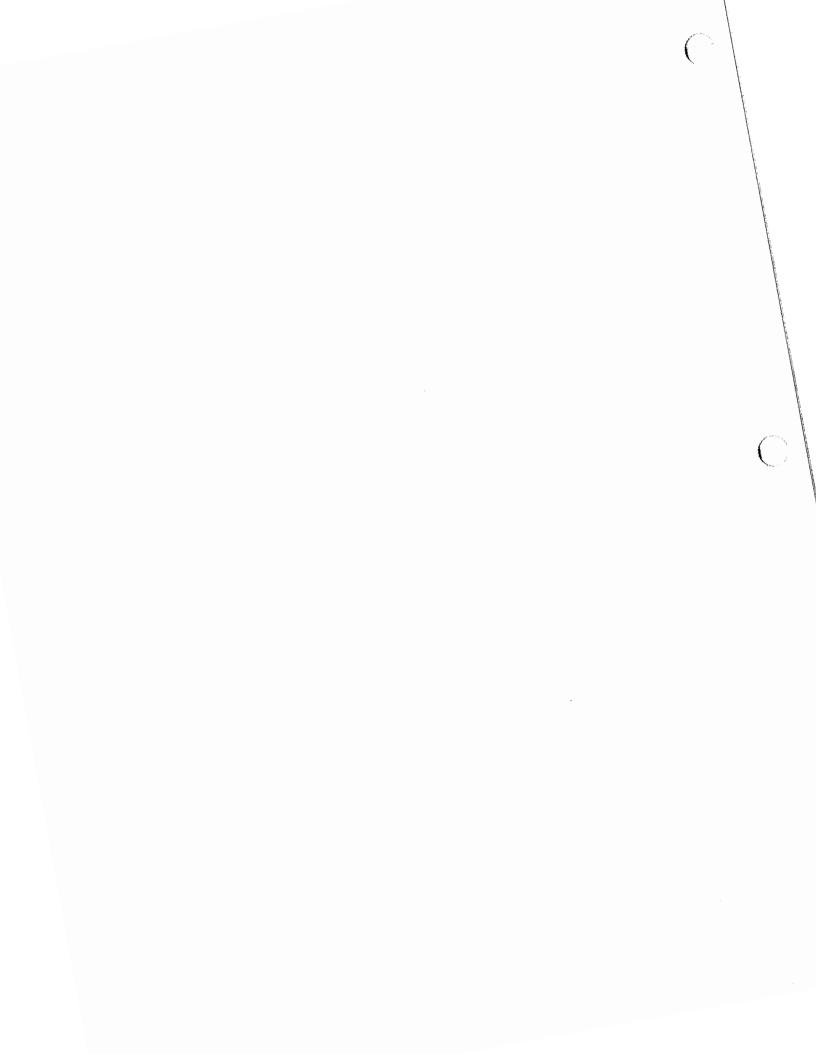

LIST OF FIGURES

<u>Figure</u>	Title
1-1	Seneca Army Depot Activity Map
1-2	Site Plan
2-1	Surface Water and Sediment Sample Locations OB Grounds Remedial
	Investigation
2-2	Expanded Site Inspection Sample Locations
3-1	Location of Reeder Creek
3-2	Surface Water Flow Map
3-3	Groundwater Elevation Map, April 4, 1994
3-4	Exposure Pathway Summary
4-1	Proposed Soil Boring Locations
4-2	Proposed and Existing Monitoring Well and Surface Soil Sample Locations
4-3	Proposed Downwind Surface Soil Sample Locations
4-4	Proposed and Existing On-site Surface Water and Sediment Sample Locations
4-5	Proposed Off-site Surface Water and Sediment Sample Locations
4-6	Criteria for Level II and Level IV Analyses for Soil Boring Samples

,

August, 1995

Page 1-5 K:\SENECA\RIFS\SEAD-45\Section.1


ſ

LIST OF APPENDICES

Appendix A	Field Sampling and Analysis Plan
Appendix B	Health and Safety Plan
Appendix C	Chemical Data Acquisition Plan
Appendix D	United States Department of Interior Fish and Wildlife Services. Endangered and Threatened Species Letter
Appendix E	Response to Review Comments
Appendix F	Scope of Work
Appendix G	Expanded Site Inspection Subsurface Investigations - Soil Boring Logs, Test Pit Logs, and Monitoring Well Installation Diagrams

August, 1995

Page 1-6 K:\SENECA\RIFS\SEAD-45\Section.1

LIST OF ACRONYMS

AA	Atomic absorption
AMC	U.S. Army Material Command
AN	Army-Navy
AOC	Area of Concern
APCS	Air Pollution Control System
AQCR	Genesee-Finger Air Quality Control Region
ARAR	Applicable or Relevant and Appropriate Requirements
ASTM	American Society for Testing and Materials
atm	atmosphere
BCF	Bioconcentration Factor
BOD	Biological Oxygen Demand
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
C	Celsius
CEC	Cation Exchange Capacity
CERCLA	Comprehensive Environmental Response, Compensation and Liability
	Act
CLP	Contract Laboratory Program
cm	Centimeters
cm/sec	Centimeters per second
COD	Chemical Oxygen Demand
Cr	Chromium
CaCO ₃	Calcium Carbonate
CRT	Cathode ray tube
DARCOM	Development and Readiness Command
DERA	Defense Environmental Restoration Account
DO	Dissolved oxygen
DOT	Department of Transportation
DQO	Data Quality Objective
DRMO	Defense, Revitalization and Marketing Office
Eh	Oxidation-Reduction Potential
EM-31	Electromagnetic
EPA	Environmental Protection Agency
ESI	Expanded Site Inspection

August, 1995

Page 1-7 K:\SENECA\RIFS\SEAD-45\Section,1

.

.

DRAFT REPORT

ſ

LIST OF ACRONYMS (CONT.)

FS	Feasibility Study
ft	feet
ft/ft	feet per foot
ft/sec	feet per second
ft/yr	feet per year
GA	Water Classification: The best usage of Class GA waters is as a source
	of potable water supply. Class GA waters are fresh groundwaters
GC	Gas chromatograph
gpm	Gallons per minute
GPR	Ground penetrating radar
GRI	Gas Research Institute
GSSI	Geophysical Survey Systems, Inc.
HSWA	Hazardous and Solid Waste Amendments
IAG	Interagency Agreement
kg	kilogram
k _{obs}	psuedo-first-order rate constant
$\mathbf{K}_{\mathbf{\infty}}$	Organic carbon partition coefficient
K _{ow}	Octanol-water partition coefficient
lb	pound
L/min	Liters per minute
MCL	Maximum Contaminant Level
m	meter
mg	milligram
mg/l	milligram per liter
mg/kg	milligrams per kilogram
MHz	Megahertz
Miniram	Minature Real-Time Aerosol Meter
mL	milliliter
mmhos/m	millimhos per meter
mol	mole
MS	Mass spectrometry
MSL	Mean sea level
mV	millivolts

August, 1995

Page 1-8 K:\SENECA\RIFS\SEAD-45\Section.1

SENECA SEAD-45 RI/FS PROJECT SCOPING PLAN

DRAFT REPORT

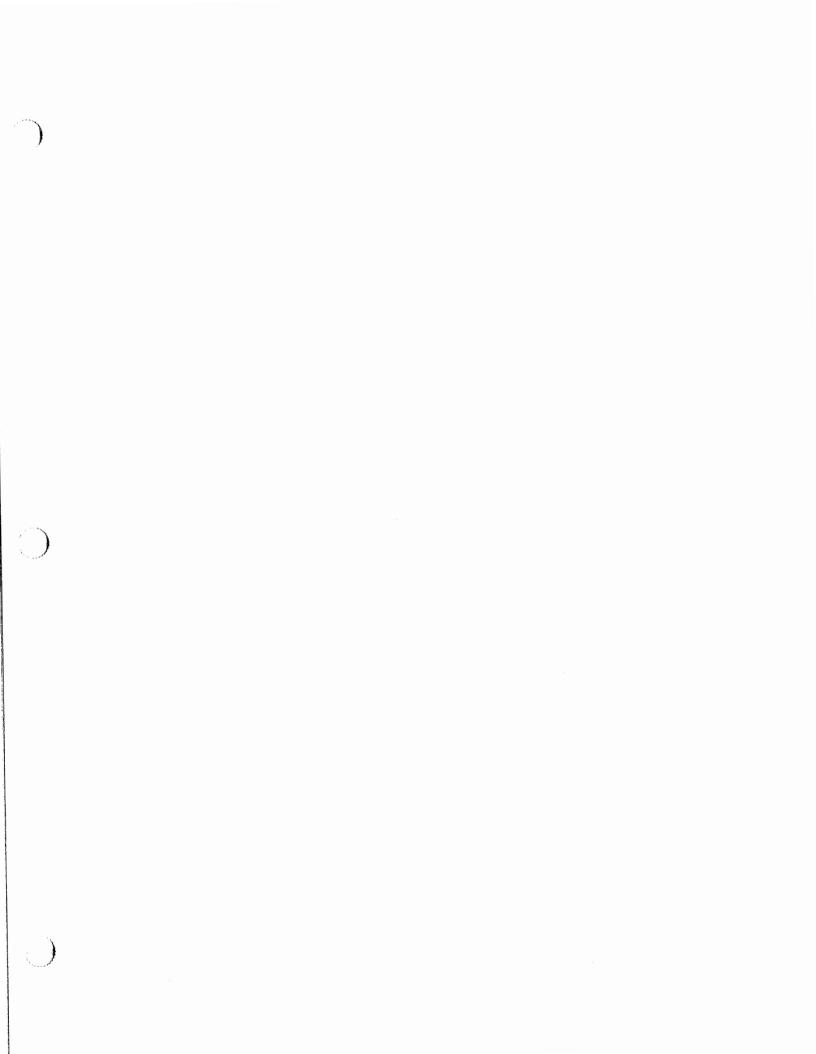
LIST OF ACRONYMS (CONT.)

MW	Monitoring Well
NA	Not analyzed or not available
NBS	National Bureau of Standards
NGVD	National Geologic Vertical Datum
NO ₂ /N	Nitrite-Nitrogen
NO ₃ /N	Nitrate-Nitrogen
NPL	National Priority List
NTU	Nephelometric turbidity units
NYSDEC	New York State Department of Environmental Conservation
OB	Open Burning
OD	Open Detonation
OVM	Organic Vapor Meter
Pb	Lead
РАН	Polynuclear Aromatic Hydrocarbon
Parsons ES	Parsons Engineering Science, Inc.
PCB	Polychlorinated biphenyls
PID	Photoionization detector
ppm	parts per million
ppmv	parts per million per volume
PSCR	Preliminary Site Characterization Report
QA	Quality Assurance
QA/QC	Quality Assurance/Quality Control
QC	Quality Control
RAGS	EPA Risk Assessment Guidance for Superfund
RCRA	Resource Conservation and Recovery Act
RF	Response factor
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RQD	Rock Quality Designation
SB	Soil boring
SCS	Soil Conservation Service
SD	Sediment sample

August, 1995

Page 1-9 K:\SENECA\RIFS\SEAD-45\Section.1

SENECA SEAD-45 RI/FS PROJECT SCOPING PLAN


DRAFT REPORT

LIST OF ACRONYMS (CONT.)

SEAD	Seneca Army Depot (old name)
SEDA	Seneca Army Depot Activity
sec	seconds
SOW	Statement of Work
SS	Soil sample
SVO	Semivolatile Organic Compound
SW	Surface water sample
SWMU	Solid Waste Management Unit
TAGM	Technical and Administrative Guidance Memorandum
TAL	Target analyte list
TCL	Target compound list
TDS	Total dissolved solids
TKN	Total Kjeldah Nitrogen
TOC	Total Organic Carbon
ТОХ	Total Organic Halogens
TRPH	Total Recovered Petroleum Hydrocarbons
TP	Test Pit
UCL	Upper Confidence Level
µg/g	micrograms per gram
µg/kg	micrograms per kilogram
µg/mg	micrograms per milligram
μ g/L	micrograms per liter
USACE	United States Army Corps of Engineers
USAEHA	United States Army Environmental Hygiene Agency
USATHAMA	United States Army Toxic and Hazardous Materials Agency
USCS	Unified Soil Classification System
USDA	United States Department of Agriculture
USGS	United States Geological Survey
VOA	Volatile Organic Analysis
VOC	Volatile Organic Compound
VOST	Volatile Organic Sampling Train
Vs	Volt Second

August, 1995

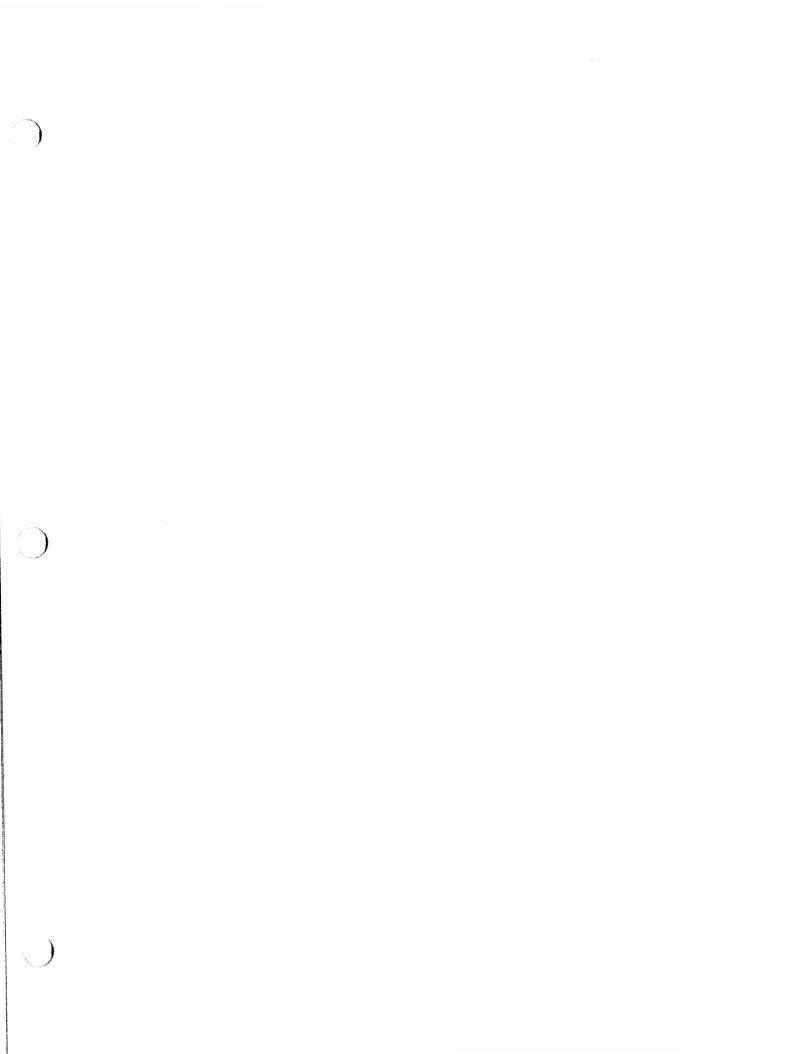
Page 1-10 K:\SENECA\RIFS\SEAD-45\Section, 1

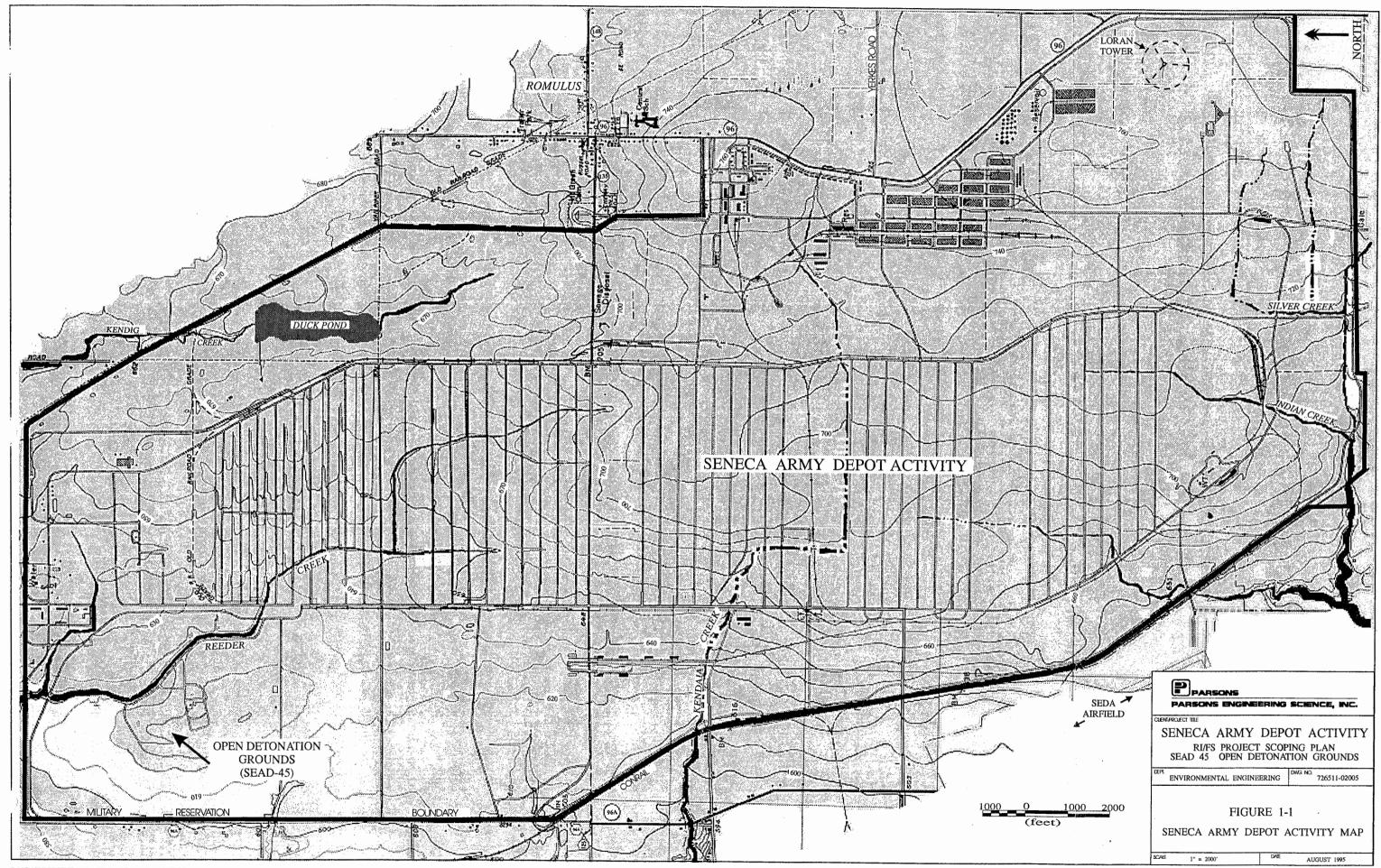
1.0 INTRODUCTION

1.1 PURPOSE OF REPORT

The purpose of this Remedial Investigation/Feasibility Study (RI/FS) Project Scoping Plan is to provide site specific information for the RI/FS project at the SEAD-45 operable unit at the Seneca Army Depot Activity (SEDA) in Romulus, NY. This plan outlines work to be conducted at SEAD-45 based upon recommendations specified in the Draft Final Seven High Priority SWMUs Expanded Site Inspection (ESI) Report (Parsons ES, May 1995).

The Generic Installation RI/FS Workplan that accompanies this document was designed to serve as a foundation for this RI/FS Project Scoping Plan and provides generic information that is applicable to all site activities at SEDA.


This RI/FS Project Scoping Plan is based upon a conceptual site model that identified potential source areas, release mechanisms, and receptor pathways; determined data requirements for an evaluation of risks to human health and the environment; and developed a task plan to address the data requirements that have been identified. Following the completion of the field investigation, the data will be used as the basis of the risk assessment.


1.2 **REPORT ORGANIZATION**

The remaining sections of this report are organized to describe the overall site conditions, provide a scoping of the RI/FS and to provide task plans for the RI and FS. Section 2.0, Site Conditions, presents a description of regional geological and hydrogeological conditions, and the results of previous investigations. Section 3.0, Scoping of the RI/FS, presents the conceptual site model, potential receptors and exposure scenarios, scoping of potential remedial action technologies, preliminary identification of Applicable or Relevant and Appropriate Requirements (ARARs), data quality objectives, and data gaps and needs. The task plans for the RI and FS are discussed in Sections 4.0 and 5.0, respectively. Section 6.0, Plans and Management, discusses scheduling and staffing.

1.3 SITE BACKGROUND

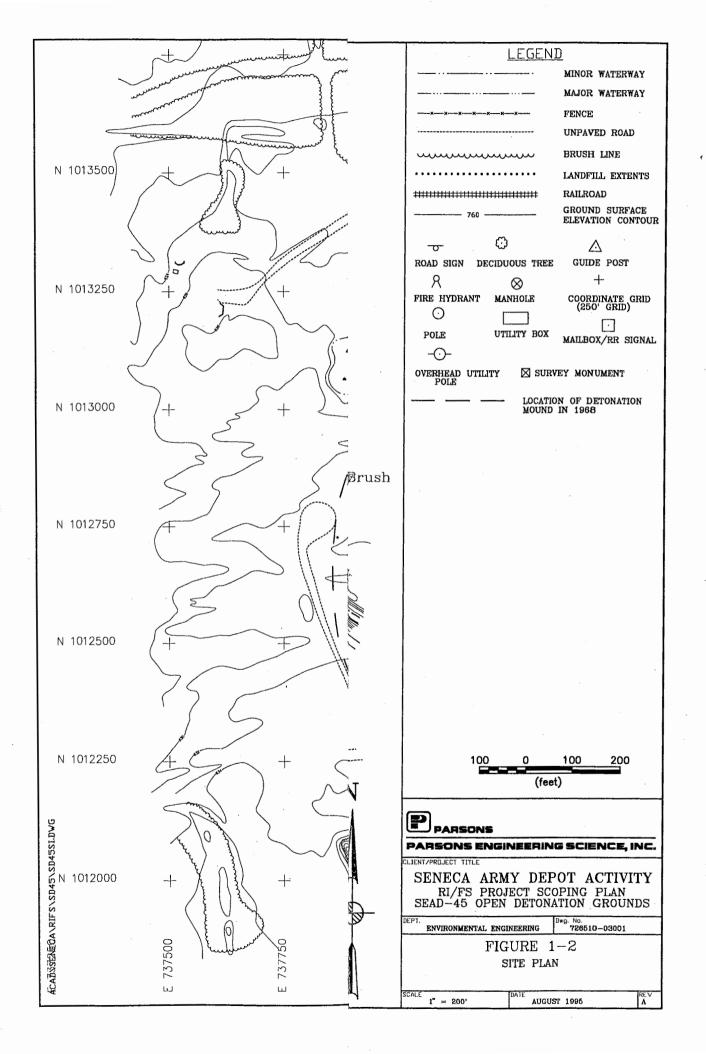
SEAD-45 is the Open Detonation (OD) Grounds at Seneca Army Depot Activity (SEDA) in Romulus, NY, as shown in Figure 1-1. The OD Grounds cover approximately 60 acres and

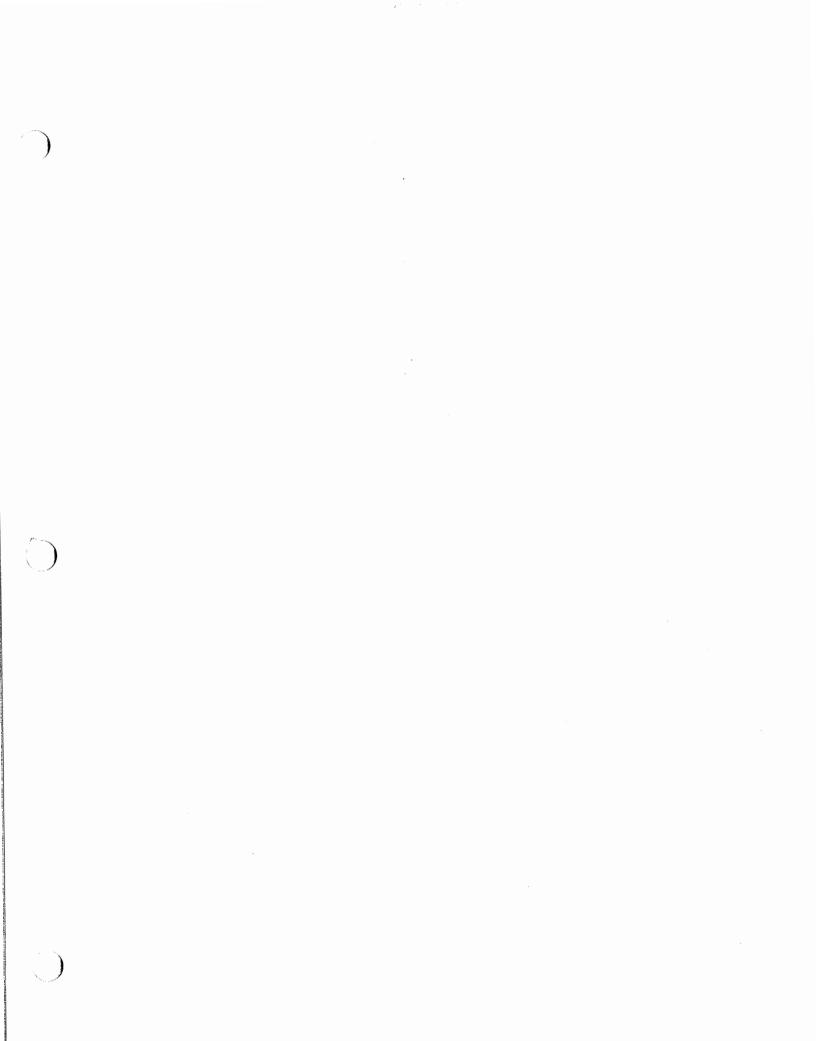
R:\GRAPHICS\SENECA\BASEMAP\FINBASE.CDR(CVM)

. .

.

DRAFT REPORT

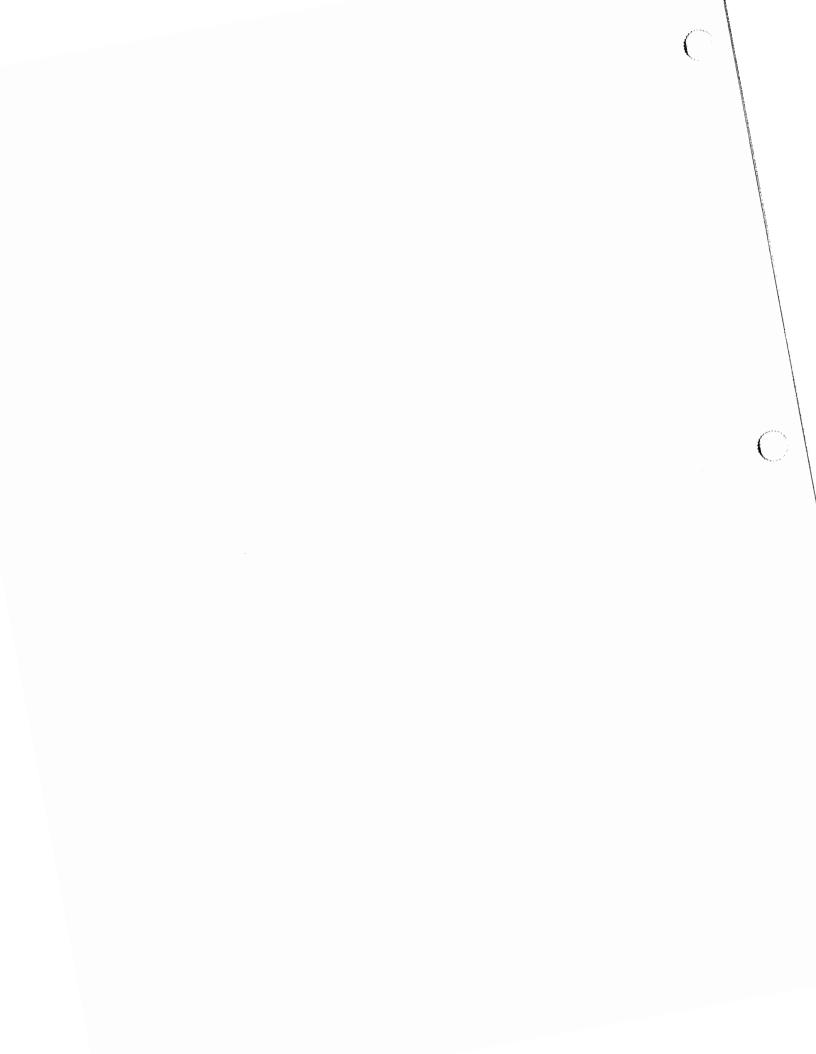

together with the Open Burning (OB) Grounds comprise the 90-acre demolition area at SEDA. Since 1941, the OD Grounds have been used to demolish waste munitions. The main feature of the OD facility is a detonation mound which covers approximately 1.0 acre, as shown in Figure 1-2. The mound is composed of soil from the surrounding area which was moved via bulldozer to create the mound. Aerial photos from 1968 show that the mound was previously located at least 200 feet west of its present location. Waste munitions are placed in a bulldozed hole in the hill with additional demolition material, covered with a minimum of 8 feet of soil, and detonated remotely using blasting caps and primer cord. A Resource Conservation and Recovery Act (RCRA) Subpart X permit application is pending New York State Department of Environmental Conservation (NYSDEC) approval, and the operation of the OD facility is currently under interim status.


In May 1979, the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) began an environmental evaluation of SEDA. This evaluation was undertaken "to assess the environmental quality of SEDA with regard to the use, storage, treatment, and disposal of toxic and hazardous materials" and "define any conditions which may adversely affect the health and welfare or result in environmental degradation" (USATHAMA, 1980). The report concluded that the detonation/burning ground is potentially contaminated with metals and explosives, geological conditions are such that contaminants could migrate in surface or subsurface waters, and further investigation of the area was warranted.

Subsequent to the site assessment, five groundwater monitoring wells (MW-1 through MW-5) were installed. The wells are located at the perimeter of SEAD-45 approximately 400-600 feet to the north, south, east, west, and southwest of the demolition mound. Two rounds of groundwater samples were taken in 1979, in 1982 samples were collected quarterly, and from 1984 through 1987 samples were collected semi-annually.

In response to information acquired as a result of this and other surveys performed at similar installations, U.S. Army Environmental Hygiene Agency (USAEHA) performed a four phased evaluation of the OB/OD Grounds for the U.S. Army Materials Command (USAMC). Phase I involved screening the USAMC installations for potential soil, surface water, and groundwater contamination in and around the OB/OD areas. The Phase II study of the USAEHA Program was conducted in 1982 at the SEDA OB/OD Grounds. During this phase, eight surface soil samples were taken from the detonation mound. The remainder of the Phase II study and the subsequent phased studies focused on the OB Grounds.

C


SENECA SEAD-45 RI/FS PROJECT SCOPING PLAN

In 1988 The OD facility was designated a Solid Waste Management Unit (SWMU), SEAD-45, and was added to SEDA's application for a Part B, RCRA permit. Under the RCRA Hazardous and Solid Waste Amendments of 1984 (HSWA), Part B Permits issued after November 8, 1984, require identification and corrective action at any SWMU located on the installation that is releasing hazardous constituents or hazardous wastes to the environment.

SEAD-45 is classified as a High Priority Area of Concern (AOC) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). In accordance with the decision process outlined in the Interagency Agreement (IAG) between the U.S. Army Corps of Engineers (USACE) the U.S. Environmental Protection Agency (EPA) Region II, and the New York State Department of Environmental Conservation (NYSDEC), an Expanded Site Inspection was performed at SEAD-45 in 1993 and 1994. The draft final ESI Report (Parsons ES, May 1995) indicated a release of metals and nitroaromatic compounds that has primarily impacted surface soil and sediment. A semi-volatile compound release has also impacted surface soil and sediment to a lesser extent. The ESI report also indicated that the presence of metals in the OD mound and drainage ditches of the mound may pose a threat.

As part of the draft final ESI Report, a CERCLA RI/FS was recommended to be performed at SEAD-45. This RI/FS Project Scoping Plan along with the Generic Installation RI/FS Workplan outlines the recommended approach and methodologies for completion of an RI/FS at this site in accordance with EPA CERCLA guidelines.

August, 1995

2.0 <u>SITE CONDITIONS</u>

2.1 PHYSICAL SETTING

The physical setting of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

2.2 REGIONAL GEOLOGICAL SETTING

The geologic setting of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

2.3 REGIONAL HYDROGEOLOGICAL SETTING

The hydrogeology of SEDA is described in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

2.4 **RESULTS OF PREVIOUS INVESTIGATIONS**

2.4.1 <u>1979 Study</u>

In 1979, wells MW-1 through MW-4 and Reeder Creek (both upstream and downstream of the OB/OD Grounds) were sampled twice. Analyses were performed for conventional pollutants and explosives. One explosive compound, 4-amino-2,6-dinitrotoluene, was detected in groundwater from wells MW-1 to MW-4 and from both Reeder Creek sample locations at concentrations of 1.36 to 1.96 ppb. Iron was also found in excess of New York State Groundwater Standards (NYSGWS) in wells MW-1 to MW-4 and in Reeder Creek (upstream) at concentrations of 0.49 to 310 ppm. Monitoring well installation data and analytical results are presented in Tables 2-1, 2-2, and 2-3.

2.4.2 <u>1982 Study</u>

In 1982, the USAEHA analyzed eight soil samples collected from the demolition mound. Analyses were performed for heavy metals and explosives. The analytical results indicated the presence of cadmium in all samples at concentrations of 0.19 to 0.45 ppm which were below the 1.0 ppm Extraction Procedure Toxicity Limit. Explosives were also found in each

August, 1995

Page 2-1 K:\SENECA\RIFS\SEAD-45\Section.2

			MONITORIN	TABL 1979 S G WELL CO		ON DATA ⁽³⁾			
Well No.	Depth	Depth	Soil	Ground	Casing	Screen Setting ⁽²⁾	Ele	vation of Wate	er
	Drilled	to Rock	Туре	Elevation	evation Height		9/7	9/13	10/5
MW-1	13	12	Till	100.0	4.3	7-12	95.9	94.8	95.0
MW-2	7	6.5	Till	85.1	3.7	1-6	82.2	81.4	81.4
MW-3	11	9.5	Till	95.1	5.5	4.5-9.5	93.0	91.3	90.8
MW-4	10	9.5	Till	98.7	3.0	4.5-9.5	92.1	92.4	92.6
MW-5	15	13.5	Till	97.0	-	-	-	-	-

⁽¹⁾ All values reported in feet.

⁽²⁾ Feet below the ground surface

Note: Data obtained from "Report, Munitions Destruct Study, Seneca Army Depot, APAP Study No. D 1031-W" for Department of the Army, New York District, Corps of Engineers by O'Brien & Gere dated November 1979. Year water elevations measured assumed to be 1979.

	· · · · · · · · · · · · · · · · · · ·	WATER QUA	TABLE 2-2 1979 STUDY LLITY MONITORING EXPLOSIVES	g data		
Parameter ⁽¹⁾		Well No	•		Reede	r Creek
	MW- 1	MW-2	MW-3	MW-4	Upstream	Downstream
2,4,6 Trinitrotoluene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
4-amino-2,6- dinitrotoluene ⁽²⁾	1.36	1.66	1.78	1.96	1.87	1.66
2-amino-4,6- dinitrotoluene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3,5-dinitroaniline	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

(1) Values reported in ug/l (ppb)

(2) Cochromatographed, cochromatography is not proof of structure.

Note: Data obtained from "Report, Munitions Destruct Study, Seneca Army Depot, APAP Study No. D 1031-W" for Department of the Army, New York District, Corps of Engineers by O'Brien & Gere dated November 1979. Date sampled not available on original table.

					w										
Well No.	Date	pН	тос	COND	TDS	TIP	TKN	NO ₂	NO ₃	CN	FE	РВ	HG	Al	CI
MW -1	9/7 10/5 10/5*	8.3 8.1	48 3 10	770 700	630 880 -	0.06 - -	1.6 - -	<0.001 - -	0.70 - -	<0.1 - -	2.4 18 <0.01	<0.01 - -	0.79 - -	3.0 - -	9.7
MW-2	9/7 10/5 10/5	8.0 8.2	68 160 8	790 820	570 970 -	0.06 - -	1.6 - -	0.039 - -	<0.01 - -	<0.1 - -	2.6 310. <0.01	<0.01 - -	0.79 - -	22. - -	7.5
MW-3	9/7 10/5 10/5*	7.9 8.6	83 <1 13	790 650 -	630 750 -	0.21 - -	0.30	0.002 - -	<0.01 - -	<0.1 - -	2.1 15. 0.01	<0.01 - -	1. 2 0 - -	16. - -	1.8
MW-4	9/7 10/5 10/5*	8.7	260 21 23	4 1000	470 1100	<0.01 - -	0.30 - -	0.035 - -	<0.01 - -	<0.1 - -	0.09 38. 0.05	<0.01 - -	0.79 - -	0.5 - -	7.0
Reeder Creek (UP)	8/31 10/5		56		660 -	0.52	0.30	<0.001	<0.01	-	0.49 0.12	< 0.01	1.6	3.7	
Reeder Creek (DN)	8/31 10/5		49		630 -	0.10	0.30 -	<0.001	<0.01	-	0.009 0.22	<0.01 -	0.79 -	0.50 -	

* Filtered Samples

Note: 1. 2.

All results except pH and COND are reported as mg/l. HG reported as ug/l. COND reported as umhos/cm.

Data obtained from "Report, Munitions Destruct Study, Seneca Army Depot, APAP Study No. D 1031-W" for Department of the Army, New York District, Corps of Engineers by O'Brien & Gere dated November 1979. Year samples collected assumed to be 1979.

sample. RDX was found at concentrations of 1.4 to 1.7 ppb, Tetryl at 1.6 to 16.3 ppb, 2,4,6-TNT at 2.2 to 61 ppb, and 2,4-DNT 1.1 to 19 ppb. Analytical results are presented in Table 2-4.

2.4.3 <u>1982-1987 Groundwater Sampling</u>

In 1982 through 1987, wells MW-1 through MW-5 were sampled on a quarterly or semiannual basis. No explosives were detected in the wells during that period. Iron was found in excess of NYSGWS in MW-1 at a concentration of 0.44 ppm. Manganese was found in four samples from MW-2 in excess of NYSGWS at concentrations of .070 to .210 ppm. Manganese was also found in four samples from MW-5 in excess of NYSGWS at concentrations of 0.100 to 0.270 ppm. Nitrate was detected in MW-5 in excess of NYSGWS at a concentration of 10 ppm. A summary of the analyses is presented in Table 2-5.

2.4.4 <u>1988 Metcalf & Eddy Study</u>

In 1988, Metcalf and Eddy, Inc. sampled MW-1 through MW-5 as part of an investigation involving the OB Grounds. No explosives were detected. Lead was detected at levels above NYSGWS in each of the five wells; chromium was found in excess of NYSGWS in MW-1, MW-4, and MW-5; cadmium was detected at a level above NYSGWS in MW-4; and selenium was found in excess of NYSGWS in MW-5. A summary of the analyses is presented in Table 2-6.

2.4.5 <u>1989-1993 Groundwater Sampling</u>

The five wells were sampled in March of 1989, then on a semi-annual basis from 1990 to 1992, and then in 1993 the five wells were sampled on a quarterly basis as part of the OB Grounds Quarterly Sampling Program. The complete analyses from March 1989 through April 1993 can be found in Tables 2-7 through 2-11.

2.4.6 <u>1991-1992 Open Burning Grounds Remedial Investigation</u>

As part of the OB Grounds RI, surface water and sediment samples were taken from drainages into Reeder Creek and from Reeder Creek itself. Nine of the samples taken were in areas influenced by the OD Grounds. The locations of these samples are shown in Figure 2-1.

August, 1995

		OPI	EN DETO	198	ABLE 2- 12 STUE IN GRO	Ŷ	SOIL DA	TA						
				EP To:	ricity*						Explosi	ves ^{bc}		
Sample No. and Description	As	Ba	Cđ	Cr	Hg	Pb	Se	Ag	HMX	RDX	Tetryl	2,4,6 -TNT	2,6- DNT	2,4- DNT
4727-001 Demolition Crater No. 2	ND	ND	0.19	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	1.6
-002 Demolition Crater No. 2	ND	ND	0.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9
-003 Demolition Crater No. 4	ND	ND	0.16	ND	ND	ND	ND	ND	ND	1.4	1.6	ND	ND	1.9
-004 Demolition Crater No. 4	ND	ND	0.16	ND	ND	ND	ND	ND	ND	ND	32.0	ND	ND	ND
-005 Demolition Crater No. 6	ND	ND	0.17	ND	ND	ND	ND	ND	ND	1.3	16.3	2.2	ND	ND
-006 Demolition Crater No. 6	ND	ND	0.18	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	1.7
-007 Demolition Crater No. 8	ND	ND	0.17	ND	ND	ND	ND	ND	ND	1.7	ND	1.4	ND	1.1
-008 Demolition Crater No. 8	NĎ	ND	0.45	ND	ND	ND	ND	ND	ND	ND	ND	61	ND	ND

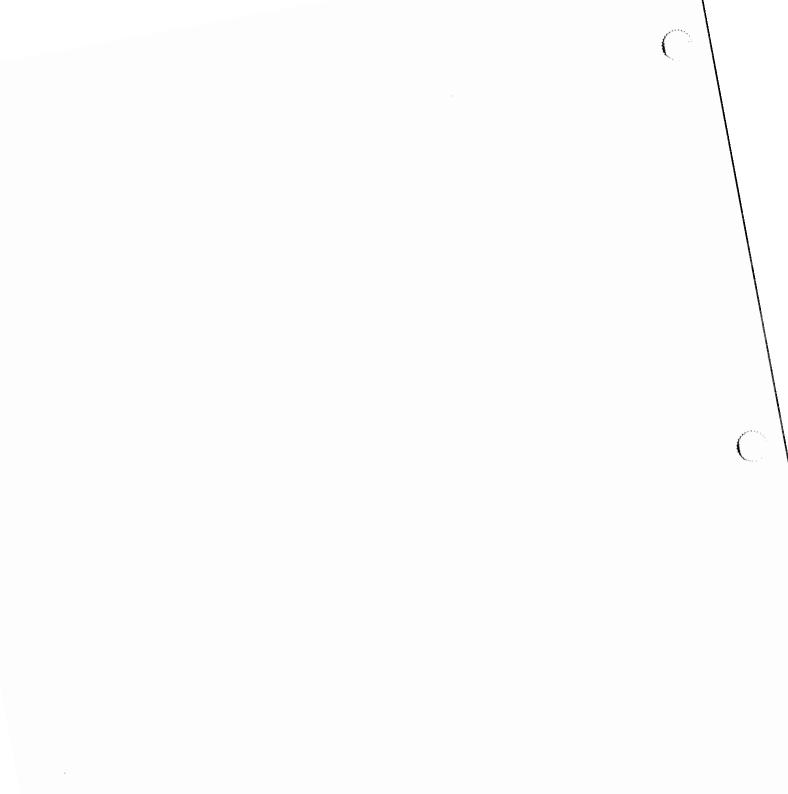
NOTES: ND - Not Detected

a - all units in mg/l

b - all units in ug/g

c - detection limits for all explosives was 1.0 ug/g

Source: Appendix E, Table E-1, Phase 2, Hazardous Waste Management Special Study No. 39-26-0147-83 DARCOM Open Burning/Open Detonation Grounds Evaluation, Seneca Army Depot, Seneca, New York, 2-13 May 1982.


. .

 \bigcirc

.

TABLE 2-5 1982 THROUGH 1987 GROUNDWATER SAMPLING SUMMARY OF GROUNDWATER ANALYSES WELLS MW-1 THROUGH MW-7

Chemical	EPA Maximum Contaminant Level (ug/l)	New York State Groundwater Standard (ug/l)	Method Detection Limit (ug/l)	Concentration Range Detected (ug/l)	Total Number of Samples	Number of Samples Exceeding Detection Limit	Number of Samples Exceeding NYSGWS	Number of Wells Exceeding NYSGWS
Inorganics								
Arsenic	50	25	10	ND	26	0	0	
Barium	1,000	1,000	100	ND	26	0	0	
Cadmium	10	10	5	ND	26	0	0	
Chromium	50	50	10	ND	26	0	0	
Mercury	2	2	0.2	ND	26	0	0	
Lead	50	25	10	ND	26	0	0	
Selenium	10	20	5	ND	26	0	0	
Silver	50	50	10	ND	26	0	0	
Iron	NA	300	2-100	ND-1,020	65	40	3	1
Manganese	NA	300	1-30	ND-320	65	02	17	2,5
Fluoride	4,000	1,500	100	100-300	27	27	0	
Nitrate	10,000ª	10,000	50	ND-10,000	27	23	1	5 _
Explosives								
HDX	NA	(35) ^b	100	ND	46	0	0	
RDX	NA	(35) ^b	30	ND	46	0	0	
Tetryl	NA	(1) ^b	10	ND	46	0	0	
2,4,6-TNT	NA	(1) ^b	1	ND	46	0	0	
2,6-DNT	NA	(1.1) ^c	1	ND	46	0	0	
2,4-DNT	NA	(1)2 ^b	1	ND	46	0	0	
pН	NA	(6.5-8.5) ^d		6.7-8.1 ⁴	300	300	0	

TABLE 2-5 (continued) 1982 THROUGH 1987 GROUNDWATER SAMPLING SUMMARY OF GROUNDWATER ANALYSES WELLS MW-1 THROUGH MW-7

Chemical	EPA Maximum Contaminant Level (ug/l)	New York State Groundwater Standard (ug/l)	Method Detection Limit (ug/l)	Concentration Range Detected (ug/l)	Total Number of Samples	Number of Samples Exceeding Detection Limit	Number of Samples Exceeding NYSGWS	Number of Wells Exceeding NYSGWS
TOC	NA	NA	100	1,000-54,000	340	340	NA	
тох	NA	NA	10	ND-130	335	133	NA	

1

NOTES:

^a Groundwater standard is for nitrate only.
^b Guidelines proposed from "Criteria Development Report for the Closure of Nine Burning Pads" (M&E, October 1989).
^c EPA Water Quality Criteria for 10⁻⁵ risk

^d Units are pH.

NA Not Available

ND Not Detected

Data summarized from the 1987 USAEHA Groundwater Contamination Survey

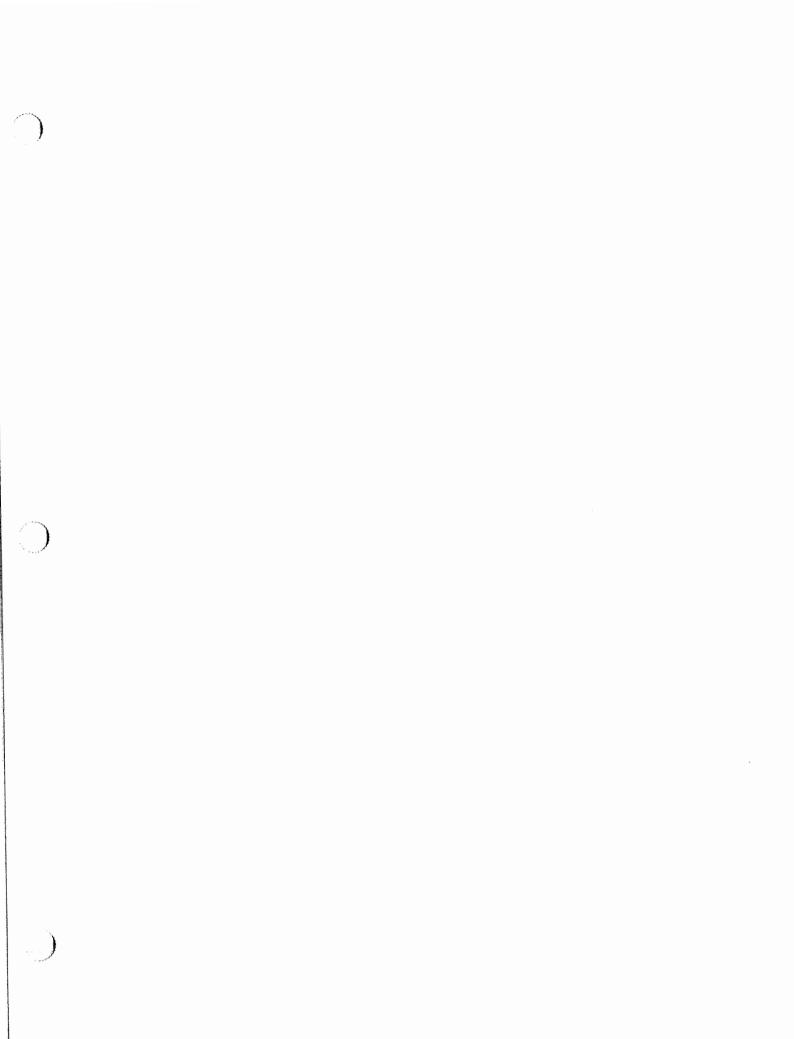

()

TABLE 2-6 1988 METCALF AND EDDY STUDY GROUNDWATER ANALYSIS DATA

ĺ

Chemical	EPA Maximum Contaminant Level (ug/l)	New York State Groundwater Standard (ug/l)	Method Detection Limit (ug/l)	Detection Range Wells 1-6 (ug/l)	No. of Times Greater Than Detected Wells 1-6	Times Detected Greater Than Standards Wells 1-6
Inorganics						
Arsenic	50	25	10	ND - 19.3	1	0
Barium	1000	1000	200	ND - 859	5	0
Cadmium	10	10	5	ND - 18.8	1	1(4)
Chromium	50	50	10	21.5-152	6	3(1,4,5)
Mercury	2	2	0.2	ND - 0.58	2	0
Lead	50	25	5	38.9-206	6	5(1,2,3,4,5)
Selenium	10	50	5	ND - 14.3	2	1(5)
Explosives						
PETN	NA	NA	4.5	ND - 45	2	NA
НМХ	NA(35) ^a	NA	1.3	ND	0	NA
RDX	NA(35) ^a	NA	0.63	ND - 1.84	2	NA
Tetryl	NA(1) ^a	NA	0.66	ND - 0.96	1	NA
2,4,6-TNT	NA(1) ^a	NA	0.78	ND	0	NA
2,6-DNT	NA(1.1)	NA	0.55	ND	0	NA
2,4-DNT	NA	NA	0.6	ND	0	NA

NOTE: ^aProposed Guidelines from Criteria Development Report for the Closure of the Nine Burning Pads (M&E, October 1988)

	TABLE 2-7
1989 THROUGH	1993 GROUNDWATER SAMPLING
	MONITORING WELL MW-1

PARAMETER	UNITS	Mar-89	Mar-90	Sept-90	Mar-91	Sept-91	Jan-9:
METALS							
ALUMINUM	mg/l	-	-	-	-	-	129
ANTIMONY	mg/l	-	-	-	-	-	0.0537
ARSENIC	mg/l	ND	-	-	-	-	0.0044
BARIUM	mg/l	0.09	-	-	-	-	1.05
BERYLLIUM	mg/l	-	-	-	-	-	0.011
CADMIUM	mg/l	0,002	-	-	-	-	0.0089
CALCIUM	mg/l	•	-	-	-	-	600
CHROMIUM	mg/l	ND	-	-	-	-	0.161
COBALT	mg/l	-	-	-	-	-	0.181
COPPER	mg/l	-	-	-	-	-	0.792
IRON	mg/i	0.022	1.5		ND	-	167
LEAD	mg/l	ND	-	-	-	-	0.495
MAGNESIUM	mg/l	-	-	-	-	-	119
MANGANESE	mg/l	-	0.015	-	ND	-	6.71
MERCURY	mg/l	0.002	-	-	-	-	0.0035
NICKEL	mg/l			-	-	-	0.356
POTASSIUM	mg/l	2.7	-	-	-		18.4
SELENIUM	mg/l	ND	-	-		-	0.0126
SILVER	mg/l	ND	*	-	-	-	NE
SODIUM	mg/i	6.7	8.6	-	12.5	-	14
THALLIUM	mg/l	-	-	-	-	-	NE
VANADIUM	mg/l	-	-	-	-	-	0.167
ZINC	mg/i	-	-	-	-	-	6.66
MISCELLANEOUS							
CYANIDE	ug/l	-	-	-	-	-	NE
CHLORIDE	mg/l	8.6	3.4	-	4.3	-	3.7
SULFATE	mg/l	220	280	-	292	-	260
NITRATE	mg/l	-	-		-	-	1.33
NITRITE	mg/l	-	-	-	- 1	-	N
TOX	mg/l	ND	0.04	ND	0.007	-	N
CONDUCTANCE(LAB)	umhos/cm	-	860	1400	845	-	839
CONDUCTANCE(FLD)	umhos/cm	-	-	-	-	-	
PHENOL	mg/l	ND	ND	-	ND	-	
pH (LAB)	Standard	•	-	-	6.6	-	6,98
pH (FLD)	Standard	-	-	-	-	-	
TOC	mg/l	6.1	5	4.7	8.9	-	3,9
TURBIDITY	NTU	-	-	-	-	-	
EXPLOSIVES							
HMX	ug/l	ND	ND	ND	ND	-	N
RDX	ug/i	ND	ND	ND	ND	-	N
TNB 1,3,5	ug/l	-	-	-	-	-	N
DNB 1,3	ug/l	-	-	-	-	-	N
TETRYL	ug/l	ND	ND	ND	ND	-	N
TNT 2,4,6	ug/l	ND	ND	ND	ND	-	N
DNT 4-AMINO-2,6	ug/l	-	-	-	-	-	N
DNT 2-AMINO-4,6	ug/i	-	-	-	-	-	. N
DNT 2,6	ug/l	ND	ND	ND	ND	-	N
DNT 2,4	ug/l	ND	ND	ND	ND		N

. .

TABLE 2-8
1989 THROUGH 1993 GROUNDWATER SAMPLING
MONITORING WELL MW-2

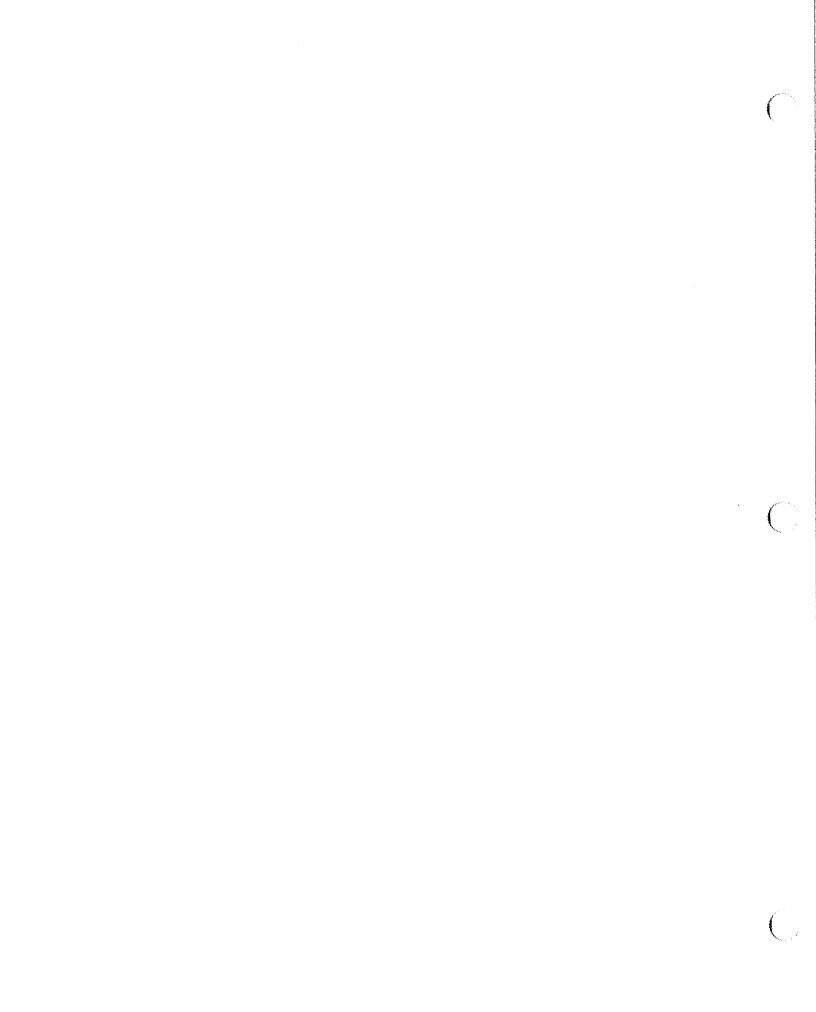
	DATE/						
PARAMETER	UNITS	Mar-89	Mar-90	Sept-90	Mar-91	Sept-91	Jan-93
METALS							
ALUMINUM	mg/l		-	-	-	-	42
ANTIMONY	mg/l	•	-	-	•	-	ND
ARSENIC	mg/l	ND	-	-	-	-	0.0035
BARIUM	mg/l	0.078	-	-		-	0.51
BERYLLIUM	mg/l	-	-	-		-	0.0032
CADMIUM	mg/i	ND	-	-	-	-	0.0034
CALCIUM	mg/l	•	-	-		-	201
CHROMIUM	mg/l	ND	-	-	-	-	0.0609
COBALT	mg/l	-	-	-	-	-	0.0449
COPPER	mg/l	-	-	-	-	-	0.233
IRON	mg/l	0.032	1.4	-	ND	-	67.8
LEAD	mg/l	ND	-	-	-	-	0.116
MAGNESIUM	mg/l		-	-	-	-	34.2
MANGANESE	mg/l	-	0.011	-	ND	-	1.95
MERCURY	.mg/l	0.002	-	-	-	-	0.00099
NICKEL	mg/l	-	-			•	0.146
POTASSIUM	mg/l	0.8	-	-	**	-	7.65
SELENIUM	mg/l	ND	-	-	-	-	0.0041
SILVER	mg/l	ND	-	-	-	-	ND
SODIUM	mg/l	6.8	3.5	-	14.4	-	14.9
THALLIUM	mg/l	-	-	-	-	-	ND
VANADIUM	mg/l	•	-		-	-	0.068
ZINC	mg/l	-		-	-	-	0.45
MISCELLANEOUS						<u> </u>	
CYANIDE	ug/l	-		-	*	-	ND
CHLORIDE	mg/l	6.2	2.6	-	2.6	-	2
SULFATE	mg/l	220	73	-	103	-	97
NITRATE	mg/l	140	-		-	-	0.03
NITRITE	mg/l	-	-	-	-		ND
ΤΟΧ	mg/l	ND	0.05	ND	0.012	-	ND
CONDUCTANCE(LAB)	umhos/cm	•	520	1700	585	-	626
CONDUCTANCE(FLD)	umhos/cm	-	-	-	-	-	-
PHENOL	mg/l	ND -	ND	-	0.003	-	-
pH (LAB)	Standard		-	-	6.8		7.29
pH (FLD)	Standard	-	-	-	-	-	-
TOC	mg/l	4.5	6.4	7.1	250	-	2.2
TURBIDITY	NTU	a		**	-	-	
EXPLOSIVES							
HMX	ug/l	ND	ND	ND	ND		ND
RDX	ug/l	ND	ND	ND	ND	-	ND
TNB 1,3,5	ug/l	-	-	-	-	-	ND
DNB 1,3	ug/l	•	-	-	-	-	ND
TETRYL	ug/l	ND	ND	ND	ND	-	ND
TNT 2,4,6	ug/l	ND	ND	ND	ND	-	ND
DNT 4-AMINO-2,6	ug/l		-	-	-	-	ND
DNT 2-AMINO-4,6	ug/l	-	-	-	-	-	ND
		ND	ND	ND	ND	_	ND
DNT 2,6	ug/l		ND	ND	ND		ND

BERYLLIUM mg/l - <t< th=""><th>Jan-93 0.367 ND ND 0.0468 ND</th></t<>	Jan-93 0.367 ND ND 0.0468 ND
METALS mg/l -	0.367 ND ND 0.0468
ALUMINUM mg/l - <th< th=""><th>ND ND 0.0468</th></th<>	ND ND 0.0468
ANTIMONY mg/l - <th< td=""><td>ND ND 0.0468</td></th<>	ND ND 0.0468
ARSENIC mg/l ND - <th< td=""><td>ND 0.0468</td></th<>	ND 0.0468
BARIUM mg/l 0.058 - <	0.0468
BERYLLIUM mg/l - <t< td=""><td></td></t<>	
CADMIUM mg/l ND - <th< td=""><td>ND</td></th<>	ND
CALCIUM mg/l -	
CHROMIUM mg/l ND - <t< td=""><td>ND</td></t<>	ND
COBALT mg/l -	128
COPPER mg/l -	ND
IRON mg/l 0.043 0.67 - ND - LEAD mg/l ND - 0 - - - 0 - - - 0 - - - 0 - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - - - - - - - - - - - - -	ND
LEAD mg/l ND - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 -<	0.0022
MAGNESIUM mg/l - 0 - - - 0 - - - 0 - - - 0 - - 0 - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - <t< td=""><td>0.462</td></t<>	0.462
MANGANESE mg/l - ND - ND - ND - ND - 0 MERCURY mg/l ND - - - 0 0 NICKEL mg/l 0.9 - - - - 0 POTASSIUM mg/l 0.9 - - - - - SELENIUM mg/l ND - - - - - SILVER mg/l ND - - - - - SODIUM mg/l 3.7 3.4 - 3.5 -	0.0017
MERCURY mg/l ND - - - 0 NICKEL mg/l - - - - - - 0 POTASSIUM mg/l 0.9 - <	25.4
NICKEL mg/l -	0.0248
POTASSIUM mg/l 0.9 -	,00015
SELENIUM mg/l ND - <t< td=""><td>ND</td></t<>	ND
SILVER mg/l ND	0.958
SODIUM mg/l 3.7 3.4 - 3.5 -	0.0012
	ND
THALLIUM mg/l	3.99
	ND
VANADIUM mg/i	ND
	0.0062
MISCELLANEOUS	
CYANIDE ug/l	ND
CHLORIDE mg/l 13 4 - 4.3 -	3.2
SULFATE mg/l 210 100 - 60 -	96
NITRATE mg/l	0.03
NITRITE mg/l	ND
TOX mg/l ND 0.06 ND 9.2 ND	ND
CONDUCTANCE(LAB) umhos/cm - 650 1400 575 838	742
CONDUCTANCE(FLD) umhos/cm	-
PHENOL mg/l ND ND - ND -	-
pH (LAB) Standard 6.8 7.1	7.27
pH (FLD) Standard	-
TOC mg/l 5.6 6.2 5.9 7.3 15.6	3
TURBIDITY NTU	-

. . .

ND HMX RDX ND ND ug/l ND ND ND ND ND ug/l TNB 1,3,5 DNB 1,3 ug/l ----ug/l --_ -. ND ND ND ND ND TETRYL ug/l TNT 2,4,6 ND ND ND ND ND ug/l DNT 4-AMINO-2,6 DNT 2-AMINO-4,6 ug/l ---. * ug/l --. ... ug/l ug/l DNT 2,6 ND ND ND ND ND DNT 2,4 ND ND ND ND ND

ND

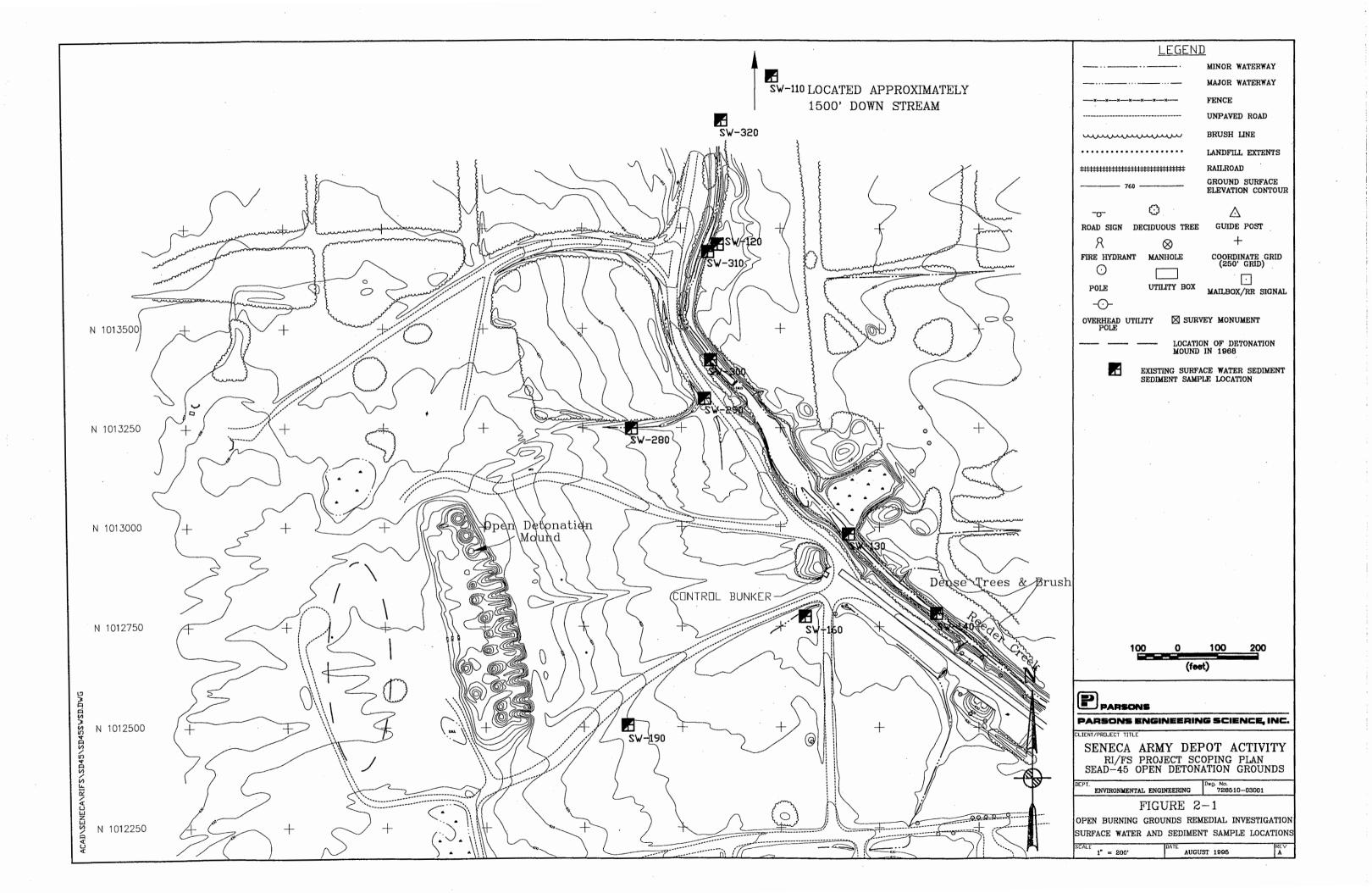

ND

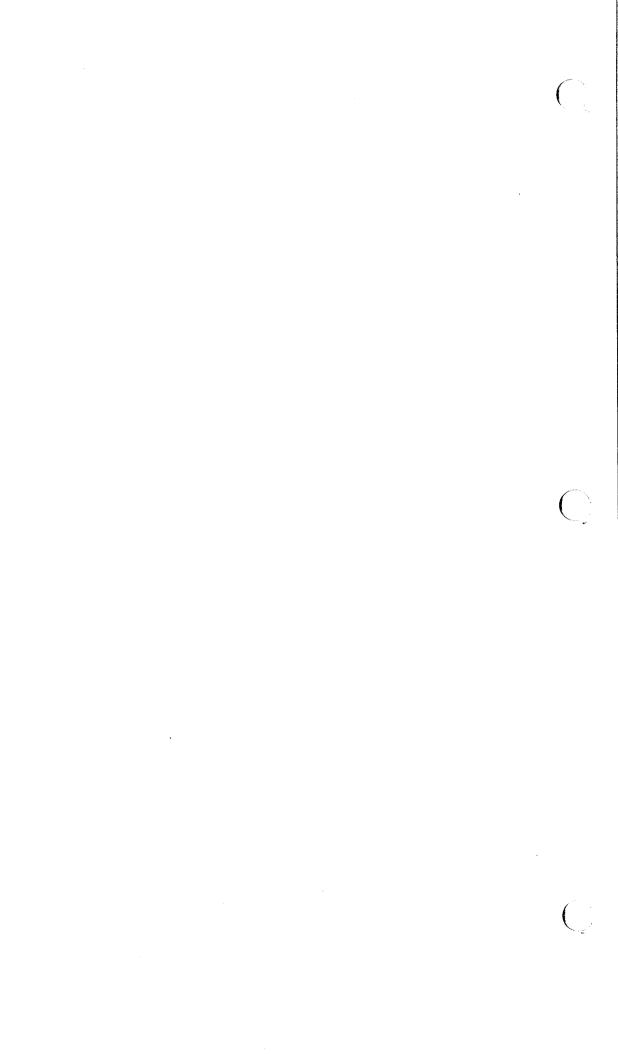
h:\eng\seneca\scoping\sead45\tables\mw-3.wk1

EXPLOSIVES

Page 1 of 1

ND


TABLE 2-10 1989 THROUGH 1993 GROUNDWATER SAMPLING MONITORING WELL MW-4


	DATE/						
PARAMETER	UNITS	Mar-89	Mar-90	Sept-90	Mar-91	Sept-91	Jan-93
METALS							
ALUMINUM	mg/l	-	-	-	-		71.3
ANTIMONY	mg/i	-	-	-	-	-	ND
ARSENIC	mg/i	ND	-	-	-	-	0.004
BARIUM	mg/l	0.072	-	-	-	-	0.721
BERYLLIUM	mg/l	-	-	-	-	-	0.0048
CADMIUM	mg/l	0.001	-	-	-	-	0.0196
CALCIUM	mg/l	-	-	-	-	-	429
CHROMIUM	mg/l	ND	-	-	-	-	0.104
COBALT	mg/l	-	-	-	-	-	0.0617
COPPER	mg/l	-	-	-	-	-	0.505
IRON	mg/l	0.042	4.1	-	ND	-	113
LEAD	mg/l	ND	-	-	-	-	0.12
MAGNESIUM	mg/l	-	•	-	-	-	70.5
MANGANESE	mg/l	-	0.064	-	0.03	-	2.7
MERCURY	mg/l	ND	-	-	-	-	0.0111
NICKEL	mg/l		-	-	-	-	0.186
POTASSIUM	mg/l	4.1	-	-	-	-	13.5
SELENIUM	mg/l	ND	-	-	-	-	0.0039
SILVER	mg/l	ND	-	-	-	-	ND
SODIUM	mg/l	9	16	-	22,3	-	23.3
THALLIUM	mg/l	-	-	-	-	-	ND
VANADIUM	mg/l			-	-	-	0.0985
ZINC	mg/l	-	-	-	-	-	0.817
MISCELLANEOUS							
CYANIDE	ug/l	۳	-	-	-	-	ND
CHLORIDE	mg/i	6.4	3.5	-	4.3	-	2.8
SULFATE	mg/l	130	220	-	232	-	240
NITRATE	mg/l	-	-	-	-	-	0.04
NITRITE	mg/l	-	-	-	-	-	ND
тох	mg/l	0.02	0.02	ND	0.005	-	ND
CONDUCTANCE(LAB)	umhos/cm	-	890	1400	900	-	875
CONDUCTANCE(FLD)	umhos/cm	-			-	-	-
			-	-			
PHENOL	mg/l	ND	ND	-	ND	-	-
		ND	ND		ND 6.6	-	7.17
PHENOL	mg/l	ND - -	ND -				7.17
PHENOL pH (LAB)	mg/l Standard	ND - - 11.3		- - - 9			7.17 3.4
PHENOL pH (LAB) pH (FLD)	mg/l Standard Standard	-	-	-	6.6		•
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY	mg/l Standard Standard mg/l	-	-	-	6.6		•
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES	mg/l Standard Standard mg/l NTU	11.3	- - 5 -	-	6.6		•
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX	mg/l Standard Standard mg/l NTU ug/l	- - - - ND	- - 5 - ND	9 - - ND	6.6 - 3.6 - ND		
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX	mg/l Standard Standard mg/l NTU ug/l ug/l	11.3	- - 5 -	9 -	6.6 - 3.6 -		- 3.4 - ND
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l	- - - - - - - - - - - - - - - - - - -	- - 5 - ND ND ND	9 - - ND ND	6.6 - 3.6 - ND ND ND	-	- 3.4
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5 DNB 1,3	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l ug/l		- 5 - ND ND - -	9 - - ND ND - -	6.6 3.6 ND ND	-	- 3.4 - ND ND ND
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5 DNB 1,3 TETRYL	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l ug/l ug/l	- - - - - - - - ND - - - ND	- 5 - ND ND - - ND	9 	6.6 	-	- 3.4 - - ND ND ND ND
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5 DNB 1,3 TETRYL TNT 2,4,6	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l ug/l ug/l ug/l		- 5 - ND ND - - ND ND ND	9 - ND ND - - ND ND ND	6.6 	- - - - -	- 3.4 - ND ND ND ND ND ND
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5 DNB 1,3 TETRYL TNT 2,4,6 DNT 4-AMINO-2,6	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l ug/l ug/l ug/l ug/l	- - - - - - - - - - - - - - ND ND - - - ND ND	- 5 - ND ND - - ND	9 	6.6 	- - - - -	- 3.4 - ND ND ND ND ND ND
PHENOL pH (LAB) pH (FLD) TOC TURBIDITY EXPLOSIVES HMX RDX TNB 1,3,5 DNB 1,3 TETRYL TNT 2,4,6	mg/l Standard Standard mg/l NTU ug/l ug/l ug/l ug/l ug/l ug/l	- - - - - - - - - - - - ND ND - - - - -	- 5 - ND ND - - ND ND ND	9 - ND ND - - ND ND ND	6.6 	- - - - -	- 3.4 - ND ND ND ND ND ND

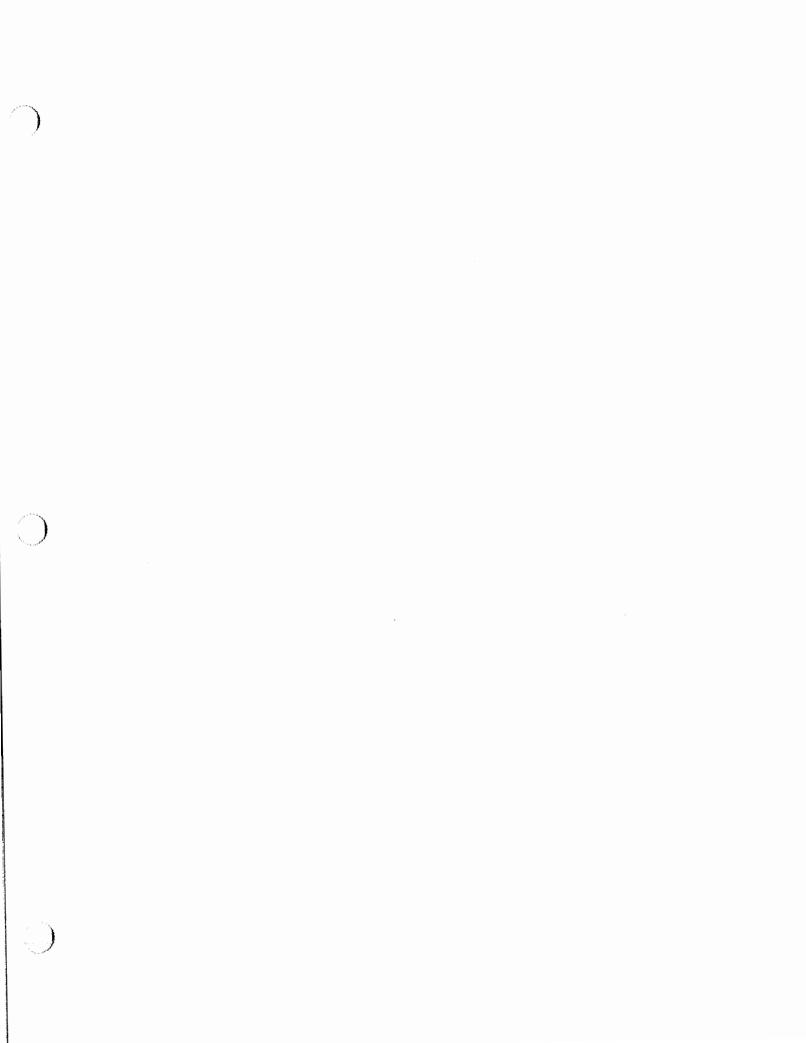
H:eng\seneca\scoping\sead45\tables\mw-4.wk1

1989 THROUGH 1993 GROUNDWATER SAMPLING MONITORING WELL MW-5												
	DATE/											
PARAMETER	UNITS	Mar-89	Mar-90	Sept-90	Mar-91	Sept-91	Jan-93					
METALS												
ALUMINUM	mg/l	-		-	-	-	2.39					
ANTIMONY	mg/l	-	-	-	-	-	ND					
ARSENIC	mg/l	ND	-	-	-	-	ND					
BARIUM	mg/l	0.06					0.0729					
BERYLLIUM	mg/l		-	-	-	-	ND					
CADMIUM	mg/l	ND	_	_	_	_	ND					
CALCIUM	mg/l		······				112					
	-	-	-	-	-	-						
CHROMIUM	mg/l	ND	-	-	-	-	0.0023					
COBALT	mg/l	-	-	-	-	-	ND					
COPPER	mg/l			-	-	-	0.0022					
IRON	mg/l	0.024	0.79	-	ND	-	2.83					
LEAD	mg/l	ND	-	-	-	-	0.0013					
MAGNESIUM	mg/l	-	-				27					
MANGANESE	mg/l		0.028	-	0.02		0.0622					
MERCURY	mg/l	ND	-	-	-	-	ND					
NICKEL	mg/l		-	······································			ND					
POTASSIUM	mg/l	0.8	-	-	-	-	1.1					
SELENIUM	mg/l	ND	_	_	_	_	0.0016					
SILVER	mg/l	ND					ND					
SODIUM		6.9	5.3	-	15.9	-						
	mg/l	0,9	5.5	-	15.9	-	16.6					
THALLIUM	mg/l						ND					
VANADIUM	mg/l	-	-	-	-	-	0.0031					
ZINC	mg/t	-	-	-	-	-	0.0085					
MISCELLANEOUS												
CYANIDE	ug/l	-	-	-	-		ND					
CHLORIDE	mg/l	6.2	2.8	-	3.5	-	2.5					
SULFATE	mg/l	100	70	-	94	-	107					
NITRATE	mg/l						5					
NITRITE	mg/l	_	_	_	_		ND					
TOX	mg/l	ND	0.02	0.02	- ND	-	ND					
	-	ND	0.03	1700								
CONDUCTANCE(LAB)	umhos/cm	-	3500	1700	730	-	767					
CONDUCTANCE(FLD)	umhos/cm	-		-	-	•	-					
PHENOL	mg/l	ND	ND	-	ND	-	-					
pH (LAB)	Standard	-	-	-	6.9	-	7.23					
pH (FLD)	Standard	-	-		-	-	-					
TOC	mg/l	3.5	6.2	4.3	6	-	1.7					
TURBIDITY	NTU			e	-		•					
EXPLOSIVES												
	110/1	ND	ND	ND	ND	-	ND					
HMX	ug/l					-						
RDX	ug/l	ND	ND	ND	ND	-	ND					
TNB 1,3,5	ug/l	·=	-	-		-	ND					
DNB 1,3	ug/l	-	-	-	-	-	ND					
TETRYL	ug/l	ND	ND	ND	ND	-	ND					
TNT 2,4,6	ug/l	ND	ND	ND	ND	-	ND					
DNT 4-AMINO-2,6	ug/l	-	-	-	•	+	ND					
DNT 2-AMINO-4,6	ug/l	-	-	-	-	-	ND					
DNT 2,6	ug/l	ND	ND	ND	ND	-	ND					
DNT 2,4	ug/l	ND	ND	ND	ND	-	ND					

H:eng\seneca\scoping\sead45\tables\mw-5.wk1

The explosive RDX was detected in the surface water samples SW-120 and SW-160DL. RDX was detected in SW-160DL at a concentration of 9.4 ppb. Of the three surface water sample locations in Reeder Creek, only the sample SW-120 contained explosives. A concentration of 0.67 ppb of RDX was detected there. New York State has no established criteria for explosives in Class D surface water.

Based on Class D surface water criteria, the only surface water sample exceeding New York standards for heavy metals was SW-290 with a concentration of 59.8 ppb of copper. In eight of the nine samples, barium was detected, but there is no Class D surface water criteria for barium. The Level IV analyses for the surface water samples are presented in Table 2-12.

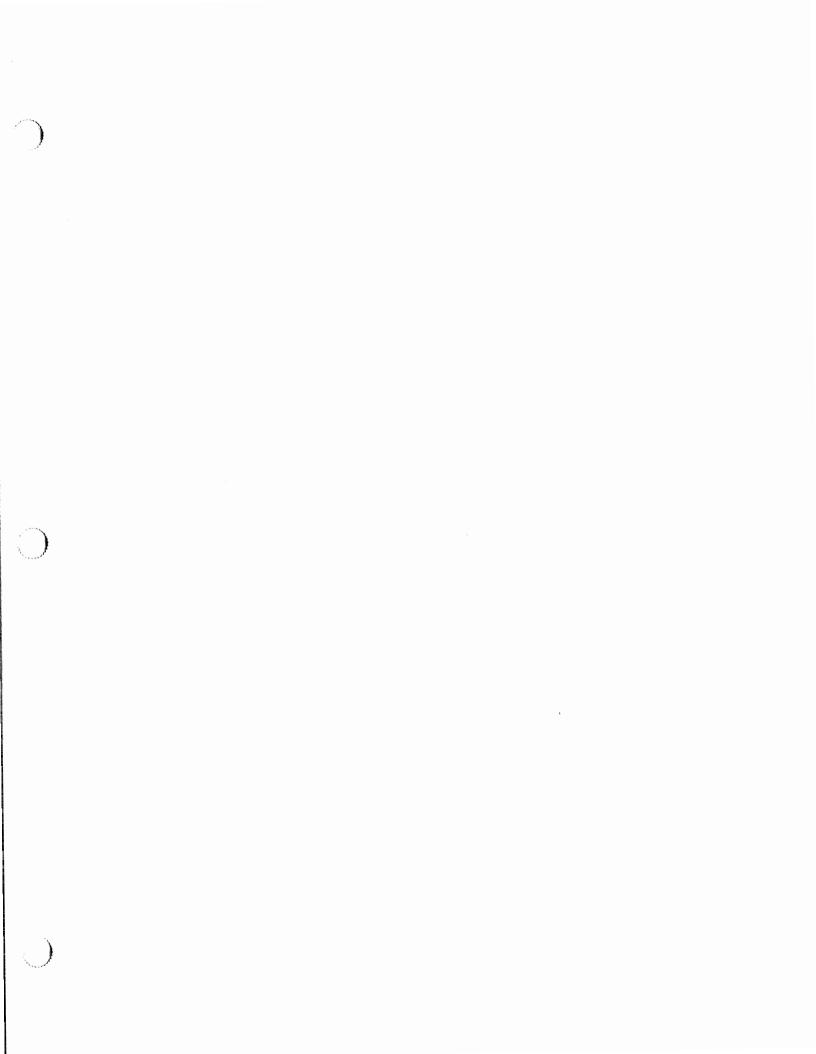

Of the sediment samples taken at the same locations, only SD-190 and SD-290 contained explosives. SD-190 contained all six of the explosives for which the samples were analyzed. RDX had the highest reported sediment concentration of 500 ppb in this sample. The maximum concentration of HMX reported was 130 ppb which was found in the sample SD-290.

Heavy metals exceeding NYSDEC sediment criteria were found at each of the nine sediment locations sampled for the OB RI. The metals found in exceedance were arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Copper and iron exceeded NYSDEC criteria in eight of the nine samples, and lead, nickel, and zinc exceeded NYSDEC criteria in seven of the nine samples. The Level IV analyses for the sediment samples is presented in Table 2-13.

2.4.7 <u>1993 ESI</u>

The ESI conducted at SEAD-45 by Engineering-Science, Inc. in 1993 involved completing 14 test pits in and near the demolition mound; installing four groundwater monitoring wells up and downgradient of the demolition mound; and the collection of surface soil, subsurface soil, surface water, groundwater, and sediment samples. Figure 2-2 shows the locations for all of the test pits and samples collected. The Level IV analyses for the soil, groundwater, surface water and sediment samples can be found in Tables 2-14 through 2-17.

A total of nine surface soil and five subsurface soil samples were collected at SEAD-45. Four surface water and four sediment samples were collected from the drainage swales and low-lying areas at the site, and eight groundwater samples were collected from the newly installed wells, MW45-2 through MW45-4, as well as the pre-existing wells MW-1 through MW-5.


SURFACE WATER ANALYSIS RESULTS

SENECA ARMY DEPOT ACTIVITY OB GROUNDS REMEDIAL INVESTIGATION

VOCs (ng/L) Methylene Chloride Acetone Carbon Disulfide 1,2-Dichloroethane Trichloroethane	FREQUENCY OF DETECTION 3.3% 6.7% 3.3% 3.3% 3.3%	MAXIMUM DETECTED 8 10 3 2 10	NYS STANDARDS (a) - - 0,8 3	REEDER CRI SAMPLES ABOVE NYS	NUMBER OF WETLAND SAMPLES ABOVE NYS STANDARDS 0 NA NA 0 1	WATER SW-110 11/07/91 Reeder Creek 5 U 10 U 5 U 5 U 5 U 5 U	WATER SW-120 111/07/91 Reeder Creek 5 U 10 U 5 U 5 U 5 U 5 U	WATER SW-120 12/12/91 Reeder Creek 5 U 10 5 U 5 U 5 U 5 U 5 U	WATER SW-120 11/12/91 Reeder Creek N N N N N	WATER SW-120 12/12/91 Reeder Creek N N N N N	WATER SW-130 11/07/91 Reeder Creek 5 U 10 U 5 U 5 U 5 U 5 U	(Upstream) WATER SW-196 11/12/91 Reeder Creek 5 U 10 U 5 U 5 U 5 U 5 U
Semivolatiles (ug/L) bis(2-Ethylhexyl)phthalate	3.2%	21	0.6	0	1	10 U	11 U	10 U	N	N	10 U	10 U
Explosives (ug/L) RDX Tetryl	18.8% 3.1%	9,4 0.52	-	NA NA	NA NA	0.12 U 0.12 U	0.67 0.12 U	0.12 U 0.4 U	N N	N N	0.12 U 0.12 U	0.12 U 0.4 U
Metals (ug/L) Aluminum Arsenic Barium Beryllium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium	33.3% 10.0% 86.7% 100.0% 3.3% 56.7% 100.0% 86.7% 10.0% 3.3% 56.7% 50.0% 93.3% 20.0%	5220 3.7 112 1.4 138000 8.6 59.8 2310 10.8 33800 186 0.08 5.6 3800 2.7 59100 39.2	NA 190.0 NA NA 3076.0 34.2 300.0 200.0 NA NA 0.2 3135.0 NA NA NA NA 190.0	NA 0 NA NA 0 0 3 0 NA NA 0 0 NA NA 0 0 0 0 0 0 0 0 0 0 0	NA 0 NA NA 0 1 11 0 NA NA 0 0 NA NA 0 0 0 0 0 0 0 0 0 0 0	109 U 2.8 U 3.5 U 121000 9.6 U 19.7 U 98.4 J 0.7 U 18700 14.6 J 35.2 U 3800 J 1.7 U 26500 30.9 U	3.5 U 114000 9.5 U 19.6 U 670 2.2 J 17300 121 0.08 U 34.9 U 3800 J 1.7 U 24700 30.7 U	102 J 2.9 U J 48.9 J 1.4 J 96000 J 6.1 U J 1.4.4 U J 1.2 U J 1.2 U J 1.2 U J 0.08 U J 0.08 U J 949 J J 21900 J 30.3	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	109 U 2.8 U 52.3 J 3.5 U 100000 9.5 U 19.6 U 236 0.7 U 14400 34.5 0.08 U 35 U 3070 J 1.7 U 24100 30.7 U	1.2 U J 65800 J 6.1 U J 14.4 U J 75.3 J 0.7 U J 8980 J 16.8 R 0.08 U J 15.9 U J 2420 J 1.7 U J 59100 J 39.2 J
Zinc Cyanide	3.3% 6.7%	13.4 14.9	573.0 22.0	0 0	0 0	13.6 U 10 U	15.1 R 10 U	14.1 R 10 U J	N N	N N	13.5 U 10 U	13,4 J 10 J

NOTES: a) Water Quality Regulations for Surface Waters and Groundwaters,. 6 NYCRR Parts 700-705, September 1991, NYSDEC Division of Water; Class D surface water criteria were used. Selected metals values are based on a hardness of 201.

Class D surface water criteria were used. Selected meta b) NA = not applicable c) N = Compound was not analyzed. d) U = Compound was not detected. e) J = The reported value is an estimated concentration. D = The reported value is an estimated concentration. f) R = The data was rejected in the data validation process.

h

SURFACE WATER ANALYSIS RESULTS

SENECA ARMY DEPOT ACTIVITY OB GROUNDS REMEDIAL INVESTIGATION

	FREQUENCY OF DETECTION	MAXIMUM	NYS STANDARDS (a)	REEDER CRI SAMPLES	NUMBER OF WETLAND SAMPLES ABOVE NYS STANDARDS	WATER SW-300 12/08/92 Reeder Creek	WATER SW-310 12/08/92 Reeder Creek	WATER SW-320 12/08/92 Reeder Creek	WATER SW-160 11/12/91 Wetland	WATER SW-160 DL 1114/91 Wetland	WATER SW-290 12/07/92 Wetland
VOCs (ug/L)											
Methylene Chloride	3.3%	8	5	1	0	8 J	10 U	10 U	5 U	N	10 U
Acetone	6.7%	10	-	NA	NA	10 U	10 U	10 U	10 U	N	10 U
Carbon Disulfide	3.3%	3	-	NA	NA	10 U	10 U	10 U	5 U	N	10 U
1,2-Dichloroethane	3.3%	2	0.8	1	0	10 U	10 U	10 U	5 U	N	10 U
Trichloroethene	3.3%	10	3	0	1	10 U	10 U	10 U	5 U	N	10 U
Semivolatiles (ug/L)											
bis(2-Ethylhexyl)phthalate	3.2%	21	0.6	0	1	21 U	10 U	14 U	10 U	N	10 U
Explosives (ug/L)										<u> </u>	
RDX	18.8%	9.4	-	NA	NA	0.21 U	0.15 U	0.14 U	9.4 R		0.24 U
Tetryl	3.1%	0.52	-	NA	NA	0.12 U	0.12 U	0.12 U	0.4 U	2 U R	0.12 U
Metals (ug/L)											
Aluminum	33.3%	5220	NA	NA	NA	126 R	62.6 U	130 R	98.3 U J	N	2100
Arsenic	10.0%	3.7	190.0	0	0	1.2 U	1.2 U	1.2 U	3.7 U J	N	1.2 U
Barium	86.7%	112	NA	NA	NA	51.7 J	47.2 J	51.3 J	68.5 R	N	112 J
Beryllium	10.0%	1.4	NA	NA	NA	0.3 U	0.3 U	0.3 U	1.2 U J	N	0.3 U
Calcium	100.0%	138000	NA	NA	NA.	93800	93100	97800	93300 J	N	138000
Chromium	3.3%	8.6	3076.0	0	0	2 U	2 U	2 U	6.2 U J	N	2 U
Copper	33.3%	59.8	34.2	0	1	1.9 U	1.9 U	1.9 U	14.5 U J	N	59.8
Iron	73.3%	2310	300.0	3	11	276 R	170 R	326 R.	189 J	N	2310
Lead	56.7%	10.8	200.0	0	0	0.9 U	0.9 U	0.89 U	1.4 J	N	10.8
Magnesium	100.0%	33800	NA	NA	NA	15500	15500	16400	9320 J	N	33800
Manganese	86.7%	186	NA	NA	NA	47	32	53	14.9 R	N	186
Mercury	10.0%	0.08	0.2	0	0	0.06 U	0.06 U	0.06 U	0.08 U J	N	0.06 U
Nickel	3.3%	5.6	3135.0	0	0	3.5 U	3.5 U	3.5 U	16 U J	N	5.6 J
Potassium	56.7%	3800	NA	NA	NA.	1890 R	1780 R	1300 R	1860 J	N	2100 R
Selenium	50.0%	2.7	NA	NA	NA	1.2 J	1.6 J	1.4 J	1.7 U J	N	2.7 J
Sodium	93.3%	59100	NA	NA	NA	11900	10300	10600	4170 J	N	7290
Vanadium	20.0%	39.2	190.0	0	0	2.1 U	2.1 U	2.1 U	37.2 J	N	2.1 U
Zinc	3.3%	13.4	573.0	0	0	3 R	3 R	5.3 R	13.5 U J	N	97.4 R
Cyanide	6.7%	14.9	22.0	0	0	14.9	10 U	10 U	10 U	N	10 U

NOTES: a) Water Quality Regulations for Surface Waters and Groundwaters,. 6 NYCRR Parts 700-705, September 1991, NYSDEC Division of Water; Class D surface water criteria were used. Selected metals values are based on a

Class D surface water criteria were used. Selected metals v b) NA = not applicable c) N = Compound was not analyzed. d) U = Compound was not detected. e) J = The reported value is an estimated concentration. f) R = The data was rejected in the data validation process.

H:\eng\seneca\scoping\sead45\tables\2-12.wk3

Page 2 of 2

SEDIMENT ANALYSIS RESULTS

SENECA ARMY DEPOT ACTIVITY OB GROUNDS REMEDIAL INVESTIGATION

Space-Space-Space Constrained Solution Solution<	_			NYSDEC SEDIMENT	NUMBER OF SAMPLES ABOVE												
Actes 5.9% 54 - NX 107 N 19 U 10 U		Ō₽		FOR AQUATIC	SEDIMENT												
Calescent 17.0% 20 - NK 27 N 9 0 11 0 9 7 9 7 9 7 9 7 9 7 9 10 7 9 10 7 10 7 10 7 10 7 10 7 9 7 9 7 9 7 10 7 10 7 10 7 10 7 10 7 9 10 10 10 10 00 7 10 7 10 7 10 7 10 7 7 9 10	Acetone			-													
Disklateschen 2.99 18 - K6 6 N 9 9 10 10 10 0 0 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 100 100<				-													
Addatyspend 9.44 359 6.00 3 359 7 359 7 880 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7		2.9%	18	-	NA	6 U	N	9 U	9 U	цΩ	9 T	10 T	10 U	8 U	9 U	7 U	10 U
Diskeryspectraliance 3.1% 12 - NA 800 U 600 U 810 U 3.00 U 700 U 980 U N N 1000 U 1000 U 900 U N 2.4.7 Binktochane 12.5% 1200 U - NA 800 U N 840 U 1000 U 980 U N N N 1000 U 900 U				6(b)													N
2.4.2-bit introduces 3.1% 120 - NA 80.0 0 90.0 1 90.0				-													
2.4.5 1.00 - NA 800 U N 810 T 700 980 V N N 1000 T 900 U 960 V 960 V N N 1000 1000 U 900 U 960 V N N 1000 V 1000 V 1000 V 1000 V 1000 V 1000 V 960 V N	2.6-Dinitrotoluene				NA												
Timematican 15.6% 76 1390 0 800 U N 810 U 3100 U 980 U N N N 1000 U 900 U 960 U 960 U N N N 1000 U 900 U 960 U 960 U 960 U 960 U N	2,4-Dinitrotoluone	12.5%	1600	-	NA		N					N					
Instructions Image: Second Secon													N				960 U
Carbon Carbon Carbon No N																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-									N				
Dyces 12.9% 110 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 1000 U 900 U 960 U Descu(a)intractors 6.3% 6.2 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 900 U 960 U Carysen 6.3% 6.2 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 900 U 960 U Glass 2.1 313 32 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 900 U				1197(c)													
Decomposition 11% -48 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 1000 U 900 U 960 U 960 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 1000 U 900 U 960 U 960 U N				-													
Cacymen 6.3% 6.2 - NA A80 U N 8.10 U 3100 U 790 U 980 U N N 1000 U 1000 U 900 U 900 U 960 U 960 U Betty:///press 3.15% 52 - NA 800 U N 810 U 3100 U 790 U 980 U N N 1000 U 1000 U 900 U 960 U 960 U N N 1000 U 1000 U 900 U 960 U 960 U N N 1000 U 1000 U 900 U 960 U 960 U N N 1000 U 1000 U 900 U 960 U 960 U N N 1000 U 1000 U 900 U 960 U 960 U N					NA								N				
Descriptionscattere 11% 52 - NA 800 U N 810 U 3100 U 790 U 986 U N N 1000 U 1000 U 900 U 960 U 960 U N N N 1000 U 1000 U 900 U 960 U				<u> </u>	NA		Ň					Ň	N				
Percent/Officementations 125 54 - NA 800 T N 810 T 3100 T 790 T 960 T N <th< th=""><th>bis(2-Ethylhexyl)phthalate</th><th></th><th></th><th>1197(c)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	bis(2-Ethylhexyl)phthalate			1197(c)													
Description 3.1% 38 - NA 800 T N 810 T 3100 T 790 T 980 T N N 1000 T 1000 T 1000 T 900 T 960 T 960 T N N 810 T 3100 T 790 T 980 T N N 1000 T 1000 T 1000 T 900 T 960 T 960 T N N 1000 T 1000 T 1000 T 900 T 960 T 960 T N N 310 T 310 T 790 T 980 T N N N N N 1000 T 1000 T 1000 T 990 T 960 T N				-													
Indexed(2,23-cd)pyrene 3.1% 37 - NA 800 U N 810 U 3100 U 790 U 980 U N 1000 U 1000 U 900 U 900 U 960 U Persides/PC8x (g/kg) 9.8% 10 500 6 39 U N 39 U 38 U 38 U 38 U 49 U N 49 U 44 U 47 U A(+2DD 6.3% 13 500 0 39 U N 39 U 38 U 38 U 48 U N N 49 U 44 U 47 U A(2DD 6.5% 130 - NA 1000 U N 120 U 120 U 120 U 120 U N N N 1000 U 1000 U 120 U				•													
4x1_DDE 9x8x 10 500 0 39 U N 39 U 38 U 38 U 38 U 43 U N M 49 U 49 U 49 U 44 U 47 U Explosives (m/kg) 6.3% 13 500 0 39 U N 39 U 38 U 38 U 38 U 43 U N N 49 U 49 U 44 U 47 U Explosives (m/kg) 32% 500 - NA 1000 U N 120 U 120 U 120 U 120 U N N N 49 U 49 U 44 U 47 U Explosives (m/kg) 3.2% 500 - NA 120 U N 120 U 120 U 120 U N N 1000 U N N 1000 U 1000 U 120 U N N 120 U 120 U N N 120 U 120 U N N 120 U 120 U 120 U 120 U 120 U N				-													
CAPEDIT 63% 13 500 0 39 U N 39 U 38 U 43 U N 49 U 49 U 44 U 47 U Exploaives (mg/kg) 65% 130 - NA 1000 U N 120 U 1000 U 120 U 1000 U N N 43 U N N 49 U 44 U 47 U Exploaives (mg/kg) 65% 130 - NA 1000 U N 120 U 1000 U N N 1000 U N N 1000 U N N 120 U 120		9.4%	10	500	6	39 TT	พ	39 П	38 П	38 П	43 Π	N	N	49 Π	49 Π	44 Π	47 П
Inform 65% 130 - NA 1000 U N 120 U 1000 U N N 1000 U N 1000 U N N 1000 U N 120 U 120 U 120 U 120 U N N 120 U 120 U 120 U 120 U N N 120 U 120 U 120 U 120 U N N 120 U 120 U 120 U N N 120 U 120 U 120 U 120 U 120 U N N 120 U																	
2.4.5-Trinitectoluses 3.2% 100 - NA 120 U N 120 U <		6.5%	130	-	NA	1000 U	N	120 T	1000 U	120 U	1000 U	ท	N	1000 U	10 00 T	120 T	1000 T
framino-2-G-Dimitroblemene 3.25% 160 - NA 120 U N 120 U 120 U 120 U N N 120 U 120 U N N 120 U 120 U N N 120 U 120 U <th></th> <th></th> <th></th> <th>-</th> <th>NA</th> <th></th>				-	NA												
2-amino-4,6-Dimiteotolisese 6.5% 180 - NA 120 U N 120 U				-													
2.4Dmittatofone 9.7% 98 - NA 120 U N 120 U 120 U 120 U N 120 U N <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																	
Aluminum 93.8% 25800 - NA 10700 J N 10600 6460 T IS600 N 11900 T 17300 17300 25800 17500 Auminouv 63% 223.3 - NA 10700 T N 80 UR 7500 T 1370 T 1370 T 150 T N 1500 T 8.3 Auminouv 750% 9.5 5 11 74 T N 3.9 R 5 U 3.9 R N 3.4 U R 3.7 U R A8 71 SU R 3.6 71 SU R 1.6 1.5 U R 2.5 Barinan 78.1% 1780 - NA 53.9 I N 3.9 R 5 U R 3.7 U R N 3.4 U R 3.7 U R A8 71 C 51.8 R 1.4 P 1.5 U R 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 </th <th></th> <th></th> <th></th> <th>-</th> <th></th>				-													
Antimony 6.3% 29.3 - NA 6.4 U J N 8 U R 7 J U R N 8.8 U R 13.7 U R 10.7 U R 10.7 U R 10.4 U R 8.3 Arrenic 75.0% 95 5 11 7.4 J N 39 R 5 U R 7 U R N 34 U R 13.7 U R 10.7 U R 15 U R 10.4 U R 8.3 Barrium 75.0% 95 5 11 7.4 J N 39 R 5 U 39 R N 34 U R 3.7 U R 10.7 U R 10.4 U R 8.3 Barrium 75.0% 95 5 11 7.4 J N 39 R 2.0 39 R N 34 U R 3.7 U R 10.7 U R 10.8 71 51 R 2.5 Barrium 78.0 16 - NA 0.68 R N 0.44 R 0.45 U 0.81 R N 0.67 U R 0.94 R 1 11.2 Z 0.9 Cadmium 71.95 (9.7 2.5 <th< th=""><th></th><th>02.896</th><th>25800</th><th>_</th><th>NA</th><th>- 10700 T</th><th>N</th><th>10600</th><th>6450 TT</th><th>15600</th><th>N</th><th>11900 TT</th><th>13700</th><th>17300</th><th>19000</th><th>25800</th><th>17500 T</th></th<>		02.896	25800	_	NA	- 10700 T	N	10600	6450 TT	15600	N	11900 TT	13700	17300	19000	25800	17500 T
Jarnenio 75,0% 9.5 5 11 7.4 J N 3.9 R 5 U 3.9 R N 3.4 U R 3.7 R 4.8 7.1 5.1 R 2.5 Barrian 76,0% 9.55 5 11 7.4 J N 3.9 R 5.0 3.9 R N 3.4 U R 3.7 R 4.8 7.1 5.1 R 2.5 Barrian 68.8% 1.6 - NA 0.68 R N 39.3 R 25.5 R N 36.6 R 47 R 1.8 245 3.85 R 1.4 1.2 R 0.9 Cadvinian 0.01 R N 0.67 U R 0.94 R 1 1.1 1.2 R 0.9 Caderian 71.9% 9.7 2.5 10 2.3 I N 2.70 J 2.4 I 1.4.2 3.3 2 Cadvinian 0.00.76 1.80 9.500																	
Deryfilian 68.3% I.6 - NA 0.68 R N 0.64 R 0.45 U 0.81 R N 0.67 U R 0.94 R 1 1.1 J 1.2 R 0.9 Cadmium 71.9% 9.7 2.5 10 2.3 J N 2.7 J J.8 U 3.4 J N 2.4 J 4.1 4.2 3.3 J 2. Cabrium 100.0% 104000 - NA 24200 J N 27700 311.00 28900 N 28200 17800 9500 12100 24.2 2020 <th>Arsenic</th> <th></th> <th></th> <th>5</th> <th>ц</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>N</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Arsenic			5	ц						N						
Cadmium 71.9% 9.7 2.5 10 2.3 J N 2.7 J 1.8 U 3.4 J N 2.7 U 3.4 J N 2.7 U 3.4 J N 2.7 U 1.8 U 3.4 J N 2.7 U 3.4 J N 2.7 U 3.4 J N 2.0 U 3.3 J 2 Cabrium 100.0% 104000 - NA 24200 J N 2.7 V 3.10 2.0 2010 2020 2020 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0										55.3 R	N						
Calcium 100.0% 104000 - NA 24200 J N 27700 31100 28900 N 28200 17800 9500 12200 2420 2020 Caronium 75.0% 41.8 26 6 21.5 J N 20.2 R 14.4 U 28.1 R N 21.7 U 28.5 R 24.3 Cobait 75.0% 17.8 - NA 10.2 N 8 R S 10.17 U 26.5 R 21.4 10.2 N 10.2 N 10.4 28.1 R N 21.7 U 28.5 35.5 R 24.3 Cobait 75.0% 17.8 - NA 0.2 N 14.4 U 28.1 R N 10.07 R 10.5 R 21.5 35.5 R 24.3 Cobait 75.0% 17.8 8 8 5																	
Cobalt 75.0% 17.8 - NA 10.2 J N 8 R 65 U 11 R N 10 U R 10.8 R 14.6 11 J 11.6 R 10.9					NA		N				N						
				26	6			20.2 R					26.5 R	27.1			
				- 10													
Coppex 93.8% 3790 19 30 49.7 J N 25.3 J 18.7 U 31.6 J N 31.4 U J 32.6 J 88 J 158 J 105 J 84.5 Tran 100.9% 400.9% 24.000 28 24400 J N 27500 24200 N 28500 N 28500 32500 33200 37100 24100				24 000													
Trad 96.9% 7400 27 23 311 J N 28.3 21.0 20.3 N 49.9 J 24.6 66 131 274 36.5					23		N	28.3	21 07	20.3	N	49 <u>9</u> J					36.5 J
Magnesian 100.0% 12000 - NA 6030 J N 5660 3720 7930 N 6260 7020 6260 6270 7010 4690	Magnesium			-													
Manganese 100.0% 1520 428 15 339 J N 540 346 J 596 N 373 J 367 1520 J 362 J 468 383	Manganese																
NA 1010 J N 1020 574 J 1510 N 1120 J 1750 2000 2660 3340 1460					NA	1010 J	N	1030	574 J	1510	N	1120 J	1750	2000	2660	3340	1460 J
Seleniana 43.8% 1.8 - NA 0.22 U J N 0.22 R 0.37 U J 0.16 U R N 0.23 U R 0.29 R 3 U J 0.4 U J 0.22 U R 0.13 U	Selenium	43.8%	1.8	-	NA	0.22 U J	N				N		0.29 R	3 U J	0.4 U J	0.22 U R	0.13 U J
				-													12 U J
					NA NA												43.9 U J 263 J
				- 85													
				- "													0.81 U J

NOTES: a) NYSDEC Sodiment Criteria - 1989. b) NYSDEC 1989 guidelines for total pleanols c) Used NYSDEC 1989 guideline for total pleanols c) Used NYSDEC 1989 guideline for pithalates (bis(2-Ethylhexyf) pithalate. d) NA - not applicable e) N - Compound was not analyzed. f) U - Compound was not detected. g) J - The roperted value is an estimated concentration. h) R - The data was rejected in the data validation process.

ŧ

TABLE 2-13 (continued)

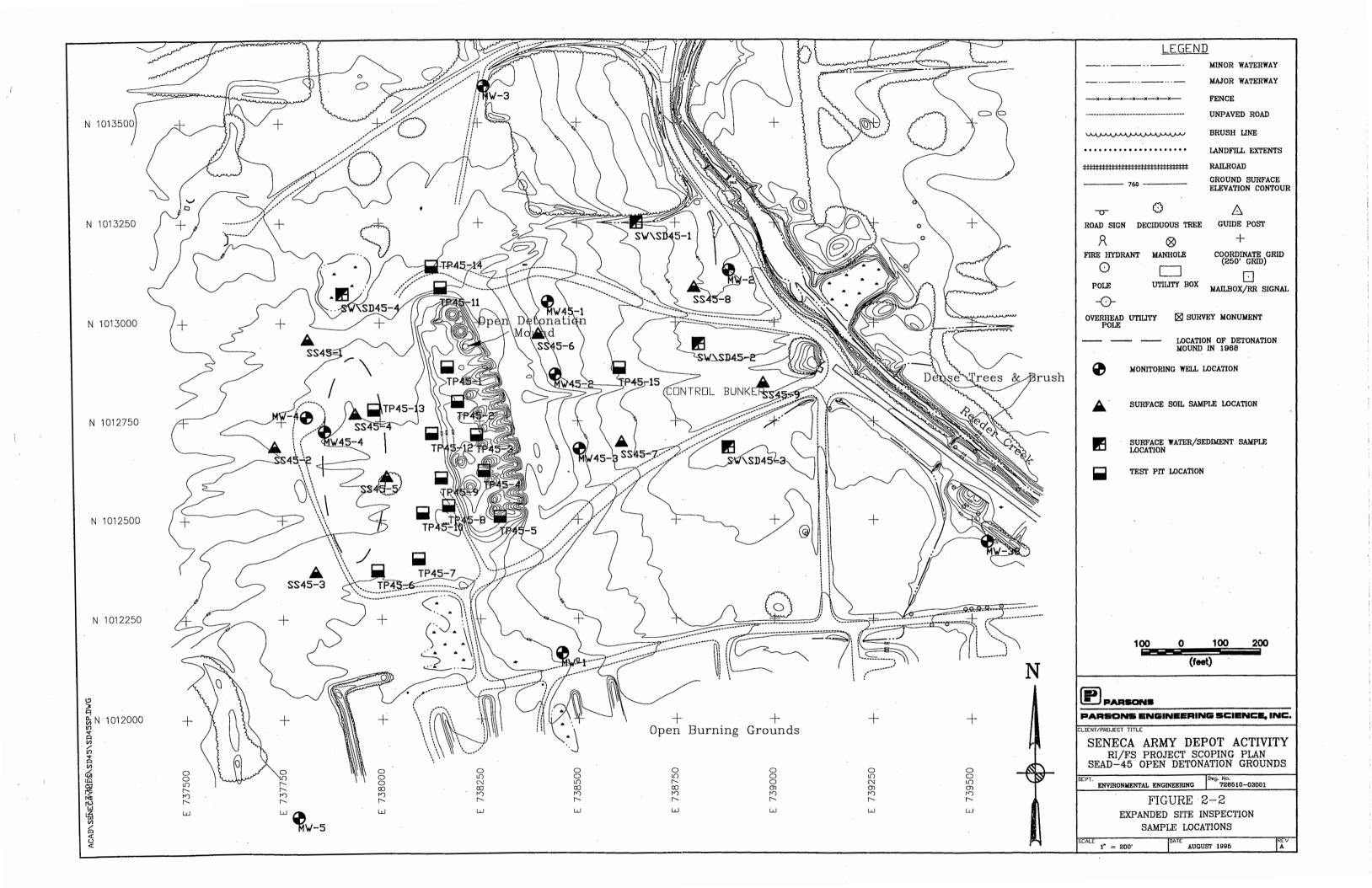
SEDIMENT ANALYSIS RESULTS

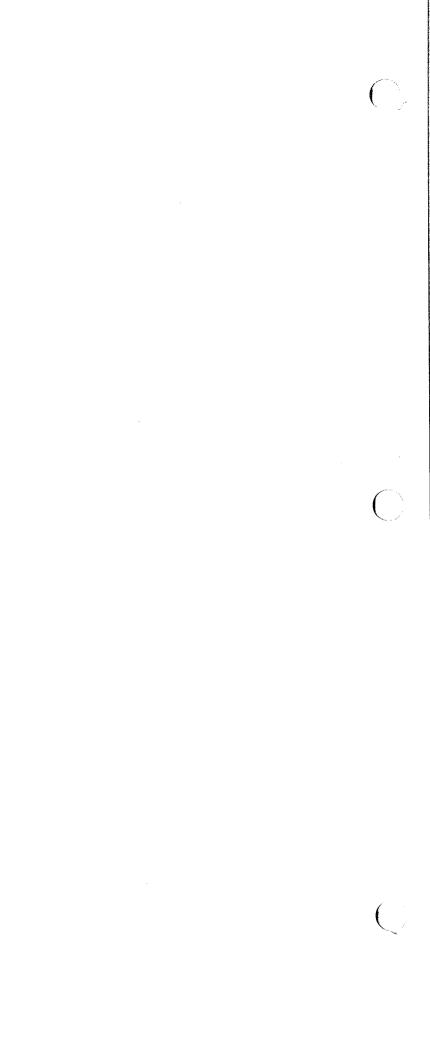
SENECA ARMY DEPOT ACTIVITY OB GROUNDS REMEDIAL INVESTIGATION

			NYSDEC SEDIMENT	NUMBER OF SAMPLES ABOVE										[1	
	FREQUENCY		CRITERIA	NYSDEC												
	OF DEJECTION	MAXIMUM DETECTED	FOR AQUATIC LIFE (a)	CRITERIA	SW-190 11/06/91	SW-191 11/06/91	SW-192 11/13/91	SW-192 11/13/91	SW-193 11/13/91	SW-194 11/13/91	SW-195 11/13/91	SW-196 11/12/91	SW-197 11/15/91	SD-200 12/03/92	SD-200RE 12/03/92	SD-210 12/03/92
VOCs (ng/kg)	5.9%	34		NA	цσ	25 R	28 U	20 U	16 U	14 U	19 U	10 11				10 17
Acetone Carbon Disulfide	5.9%	6	-	NA	6 U	10 U	10 U	10 U	16 U 8 U	7 U	90	12 U 6 U	17 U 8 U	14 U 14 U	N N	13 U 13 U
Chloroform	17.6% 2.9%	20 18	-	NA NA	6 U 6 U	10 U 10 U	10 U 10 U	10 U 10 U	8 ប 8 ប	7 U 7 U	9 U	6 U 6 U	8 U	14 U	N N	13 U
Trichloroethene	2.374	10	-	INA INA		10 0	100	100	00	70	9 U	00	8 U	14 U	м	13 U
Semivolatiles (ug/kg) 4-Methylphonol	9.4%	350	6 (b)	3	740 U	2600 U	1700 T	N	960 T	1000 U	1200 T	780 U	1200 U	470 T	470 U	440
Naphthalene	6.3%	24	•	NA	740 U	2600 U	1700 U	N	960 T	1000 T	1200 U	780 U	1200 T	470 U	470 U	440 U
2-Methyinaphihalene 2,6-Dinitrotoluene	3.1% 3.1%	12 120	-	NA NA	740 U 740 U	2600 U 2600 U	1700 ひ 1700 ひ	N N	960 U 960 U	1000 U 1000 U	1200 U 1200 U	780 U 780 U	1200 U 1200 U	470 U 470 U	470 Ū 470 Ū	440 U 440 U
2.4-Dinitrotoluene	12.5%	1600	-	NA	740 U	2600 U 2600 U	1700 U	N	960 U 960 U	1000 U	1200 U	780 U 780 U	1200 U	4/0 U 130 J	140 J	440 U 440 U
N-Nitrosodiphenylamine (1)	12.5%	120	-	NA	740 U	2600 U	1700 U	N	960 U	1000 U	1200 U	780 U	1200 U	87 J	80 J	440 U
Phonanthrone	15.6%	76	1390	0 NA	740 U	2600 U	1700 U	N	960 U	1000 U	1200 U	780 U	1200 U	470 U	76 J	440 U
Anthracone Carbazole	3.1% 6.7%	т 27	-	NA	740 U N	2600 U N	1700 U N	N N	960 U N	1000 U N	1200 U N	780 U N	1200 U N	470 U 470 U	77 J 27 J	440 U 440 U
Di-n-butylphthalate	18.8%	730	1197(c)	0	740 U	2600 U	1700 0	N	960 U	1000 T	1200 U	780 0	1200 U	730 J	460 J	210 J
Fluoranthene	9.4%	140	-	NA	740 U	2600 T	1700 T	Ň	960 U	1000 U	1200 U	780 U	1200 T	470 U	140 J	440 U
Pyzene Benzo(a)anthracene	12.5% 3.1%	110 48	:	NA NA	100 J 740 U	2600 U 2600 U	1700 U 1700 U	N N	960 U 960 U	1000 ひ 1000 ひ	1200 U 1200 U	780 U 780 U	1200 U 1200 U	470 U 470 U	110 J 48 J	440 U 440 U
Chrysene	6.3%	62	-	NA	740 U	2600 U 2600 U	1700 U	N	960 U 960 U	1000 0	1200 U	780 U 780 U	1200 U	470 U 470 U	62 J	440 U 440 U
bis(2-Ethylhexyl)phthalate	46.9%	96	1197@)	0	740 U	2600 U	1700 U	N	960 T	1000 T	1200 U	780 U	1200 U	54 J	வர	57 J
Benzo(b)fluoranthene	3.1%	52	-	NA	740 U	2600 U	1700 U	N	960 U	1000 T	1200 U	780 U	1200 U	470 U	52 J	440 U
benzo(k)fluoranthene Benzo(z)pyrene	3.1% 3.1%	54 38	:	NA NA	740 U 740 U	2600 U 2600 U	1700 U 1700 U	N N	960 U 960 U	1000 U 1000 U	1200 U 1200 U	780 U 780 U	1200 U 1200 U	470 U 470 U	54 J 38 J	440 U 440 U
Indeno(1,2,3-cd)pyrene	3.1%	37	-	NA	740 U	2600 U	1700 U	Ň	960 U	1000 U	1200 T	780 U	1200 U	470 U	37 J	440 U
Pesticides/PCBs (ug/kg)																
4,4'-DDE 4,4'-DDT	9.4% 6.3%	10 13	500 500	. 0	36 U 36 U	130 U 130 U	80 U 80 U	N N	46 ए 46 ए	51 U 51 U	59 ਹ 59 ਹ	38 U 38 U	57 U 57 U	2.8 J 4.7 U	N N	2.8 J 13
	0.374		500	0	30 0	130.0	80 0	м	400	510	59 0	300	5/0	4.70	м	61
Explosives (ng/kg) HMX	6.5%	130		NA	120 J	120 T	1000 T	N	1000 T	1000 T	1000 T	1000 U	1000 T	120 U	N	120 T
RDX	3.2%	500		NA	500	120 U	120 U	Ň	120 U	120 U	120 U	120 U	120 U	120 U	N	120 U
2,4,6-Trinitrotoluene	3.2%	100	-	NA	100 J	120 U	120 U	N	120 U	120 U	120 U	120 U	120 U	120 U	N	120 T
4-amino-2,6-Dinitrotoluene	3.2%	160 180	-	NA NA	160 180	120 U	120 U	N	120 0	120 U	120 U	120 0	120 U	120 U	N	120 U
2-amino-4,6-Dinitrotoluene 2,4-Dinitrotoluene	6.5% 9.7%	180 98	-	NA NA	98 J	120 U 120 U	120 U 120 U	N N	120 U 120 U	120 U 120 U	120 U 120 U	120 U 120 U	120 U 120 U	120 U 120 U	N N	120 T 93 J
Metals (mg/kg)																
Aluminum	93.8%	25800	-	NA	18700	19100	22900	N	16000	15800	14000	8310	15400	18000	N	14300
Antimony Arsenic	6.3% 75.0%	28.3 9.5		NA 11	9.5 U R 4.9 R	37.3 UR 4.7 R	21.2 U R 7.4	N N	11.8 U R 6	12.9 U R 3.8	14.1 U R 5.7	10.3 U R 4.4	11.4 U R 6.6	28.3 J 5.1	N N	8.8 UJ 4.2
Bariun	78.1%	1780	- 1	NA	183 R	701 R	313	N	106	3.6 196	170	4.4 441	106	1780	N	4.2 373
Beryllium	68.8%	1.6		NA	1 R	2.4 U R	1.6 J	N	0.97 J	0.98 J	1.1 J	0.71 J	1	0.93 J	l N	0.8
Cadmium Calcium	71_9% 100.0%	9.7 104000	25	10 NA	9.7 J 28700	6.3 J 11900	5 10100	N N	2.3 5720	2.8 15100	2.8 3130	2 104000	2 2840	2.3 5640	N	2.6 12300
Calcium Chromium	75.0%	104000	- 26	NA 6	27.4 R	11900 34.6 R	41.8	N N	253	24.6	23.5	104000	2840	30.3	N N	25.2
Cobalt	75.0%	17.8	- 1	NA	12.8 R	21.8 U R	17.7 J	N	16.1	11.3 J	9.5 J	7.5 J	113	143	N	13.6
Copper	93.8%	3790	19	30	416	259	217 J	N	21.2 J	82.4 J	69.4 J	22.4 J	24.4 J	3790	N	301
Iron Lead	100.0% 96.9%	40900 7400	24,000 27	28 23	34300 59.3	31700 463	40900 280	N N	33000 331.9	31100 268	23700 73.6	23900 15.4	28600 31.7	35800 7400	N N	31800 829
Lead Magnesium	100.0%	12000	- 21	NA	7860	8100	9900	Ň	5410	6500	4430	12000	4310	6700	N	5760
Manganese	100.0%	1520	428	15	659	586	439 J	N	555 J	532 J	322 J	468 J	338 J	530	N	598
Mercury	68.8%	2	011	10	2	0.29 R	0.18 J	N	0.04 U	0.54	0.1 J	0.17	0.06 T	0.14	N	0.08 J
Nickel Potassium	75.0% 100.0%	64.4 3530	22	24 NA	39.1 R 2940	56.8 R 3350 J	64.4 3530	N N	40.8 2210	38.2 1980	31.6 1920	23.3 938	30.2 1540	42.2 1990	N N	43 1180
Selenium	43.8%	1.8	-	NA	0.12 U R	0.62 R	0.45 U J	Ň	0.4 U J	0.49 U J	0.57 U J	031 U J	0.35 T J	1.6 J	N	0.74 J
Silver	15.6%	1.9	-	NA	1.8 R	5.6 R	3.4 U	N	1.9 U	2.1 U	2.3 U	1.7 U	1.8 U	0.9 J	N	1.9
Sodium	59.4%	191	-	NA	73 U	285 U	123 0	N	68.5 U	74.5 U	81.7 U	194 U	65.8 U	159 J	N	59.3 J
Vanadium Zinc	75.0% 81_3%	37.9 1200	- 85	NA 19	30.3 R 360	38.1 R 419	37 <u>.9</u> 655	N N	24.6 100	22.6 251	21.9 281	10.9 76	27.2 89	28.7 1200	N N	23 386
Zmc Cyanide	6,3%	0.77		NA	0.67 U	20	13 U	Ň	0.81 U	0.82 U	10 10	0.71 U	0.98 U	0.51 T	N N	386 0.59 U
cymmus .	0.276	0.11	- 1	1A	0.07 0	40	ں جسلا	<u>۴</u>	0.01 0	0.02 0	10	0.71.0	0.30 0	0.10	14	0.39 U

NOTES: a) NYNDEC Solim est Criteria - 1989. b) NYNDEC 1989 guidelines for total phenols c) Used NYNDEC 1989 guideline for phthelates (bis(2-Ethylhexyl) phthelate. c) N= Compound was not analyzed. f) U = Compound was not detoted. g) I = The reported value is an estimated concentration. h) R = The data was rejected in the data validation process.

TABLE 2-13 (continued)


SEDIMENT ANALYSIS RESULTS


SENECA ARMY DEPOT ACTIVITY OB GROUNDS REMEDIAL INVESTIGATION

	FREQUENCY OF DETECTION	MAXIMUM DETECTED	NYSDEC SEDIMENT CRITERIA FOR AQUATIC LIFE (a)	NUMBER OF SAMPLES ABOVE NYSDEC SEDIMENT CRITERIA	SD-220 12/03/92	SD-230 12/03/92	SD-240 12/04/92	SD-250 12/04/92	SD-250 12/07/92	SD-261 12/07/92	SD-261RE 12/07/92	SD-270 12/07/92	SD-280 12/07/92	STD-290 12/07/92	SD-300 12/08/92	SD-310 12/08/92	SD-320 12/08/9
VOCs (ug/kg) Acotone Carbon Disulfide Chloroform Irichloroothene	5.9% 5.9% 17.6% 2.9%	34 6 20 18	•	NA NA NA	14 U 14 U 14 U 14 U	13 U 13 U 13 U 13 U 18	34 2 J 13 U 13 U	13 U 6 J 13 U 13 U	13 U 13 U 13 U 13 U 13 U	13 U 13 U 13 U 13 U 13 U	N N N	14 U 14 U 14 U 14 U	13 U 13 U 13 U 13 U 13 U	14 U 14 U 14 U 14 U	13 U 13 U 13 U 13 U 13 U	11 U 11 U 11 U 11 U 11 U	22 U 13 U 13 U 13 U 13 U
Semivalailet (mg/kg) -Methythout Nuphthalene 2.45Unitotolanene 2.45Unitotolanene 2.45Unitotolanene 2.45Unitotolanene Carbazole Di-a-butythikhalate Fyrane Betzo(alanitazene Caryane betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene betzo(kilonanitazene)	9.4% 63% 3.1% 12.5% 15.5% 3.1% 6.7% 18.8% 9.4% 12.5% 3.1% 6.3% 4.5% 3.1% 3.1% 3.1% 3.1% 3.1%	350 24 120 120 120 70 77 730 120 77 730 120 120 740 88 62 96 52 54 54 53 88 38	6 (b) - - - - - - - - - - - - - - - - - - -	3 NA NA NA NA NA NA NA NA NA NA NA NA	480 U 480 U 120 J 120 J 120 J 226 J 480 U 221 J 25 J 480 U 480 U 480 U 480 U 480 U	450 U 450 U 91 J 450 U 450 U 450 U 450 U 450 U 450 U 450 U	470 U 470 U	00000000000000000000000000000000000000	420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	390 U 390 U	N N N N N N N N N N N N N N N N N N N 	540 U 540 U	410 U 410 U	490 U 490 U	370 U 370 U 12 J 376 U 42 J 100 J 19 J 370 U 370 U	400 U 18 J 400 U 400 U	130 J 24 J 450 U 450 U 450 U 450 U 450 U 450 U 450 U 29 J 21 J 21 J 450 U 18 J 39 J 450 U 450 U 450 U 450 U 450 U
Pesticides/PCBs (ug/kg) 4,4-DDE 4,4-DDT	9.4% 6.3%	10 13	500 500	0	10 23 J	45 U 45 U	4.7 U 4.7 U	4.6 U 4.6 U	43 U 43 U	4.5 U 4.5 U	4.5 U 4.5 U	4.6 U 4.6 U	4.2 U 4.2 U	49 ए 49 ए	3.6 T 3.6 T	4 U 4 U	4.4 U 4.4 U
Explexives (ug/kg) HAX RDX 2,4,6-Trinitrotoluone 4-amino-2,6-Dinitrotoluone 2,4-Dinitrotoluone 2,4-Dinitrotoluone	6.5% 3.2% 3.2% 3.2% 6.5% 9.7%	130 500 100 160 180 98	-	NA NA NA NA NA	120 U 120 U 120 U 120 U 120 U 120 U 86 J	120 U 120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U	א א א א א א א	120 U 120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U	130 120 U 120 U 120 U 120 U 85 J 120 U	120 T 120 T 120 T 120 T 120 T 120 T 120 T	120 U 120 U 120 U 120 U 120 U 120 U	120 U 120 U 120 U 120 U 120 U 120 U 120 U 120 U
Metals (mg/kg) Alminom Animom Arsenice Bariton Beylliom Cadoinn Catoinn Catoinn Catoinn Coronium Cobalt Copoet Iron Lead Magnasoum Macany Nickel Potassion Silvec Solenium Silvec Soliom Vanadiom Zinc Cyanide	93.8% 6.3% 75.9% 78.1% 68.8% 71.9% 75.0% 75.0% 95.8% 96.9% 100.9% 68.8% 75.0% 64.8% 75.0% 64.8% 75.9% 84.3% 63% 63%	25800 28.3 95 1780 1.6 9.7 104000 40900 7400 7400 12000 12000 15200 2.64.4 3530 1.8 1.9 191 37.9 1200 0.77	- 5 - 25 - 26 - 19 - 24,000 - 27 - 428 - 0.11 - 22 	NA NA 11 NA NA NA 10 NA 6 NA 30 28 23 23 23 NA 24 23 NA 15 15 10 24 NA NA NA NA NA NA NA NA NA NA NA NA NA	17500 10 UJ 5 537 1.5 2.3 8690 28.7 13.7 44.5 120 619 619 619 619 619 619 619 619	16000 12 UJ 9.5 135 1.1 0.74 J 4330 22.4 7.7 J 40.5 29600 62.4 4700 196 0.06 J 1840 1.2 J 0.71 U 93.9 J 27.7 86.3 0.66 U	16300 8.2 UJ 4 120 0.82 0.47 U 3030 221 12.5 24.2 28100 38.6 4170 775 0.04 J 228 1229 0.84 J 0.49 U 70.7 J 26.7 71.9 0.7 U	12500 10.8 UJ 2-5 138 0-51 J 0-62 U 5680 18.7 8-6 J 22.9 2500 32.3 410 32.3 410 30.6 J 24.7 1010 0-52 J 0.64 U 55.6 U 22.2 68.9 0.87 U	10600 10.7 UJ 3.4 92.7 0.6.1 U 85500 17.6 9.8 J 25.7 23300 11 10600 1.2 J 0.63 U 1.3 U 1.3 U 1.400 1.2 J 0.63 U 1.9 J 1.72 0.63 U 1.9 J 1.6 U 1.6 U 1.6 U 1.76 1.76 1.76 1.75 1	10500 9.9 UT 21 91 0.5 T 83000 16.8 9.3 19.3 21600 6.6 9830 6.6 9830 410 410 410 1.8 J 1.8 J 1.8 J 1.6 J 6.5 U 1.6 L 6.6 U	N N N N N N N N N N N N N N N N N N N	15900 13.7 UJ 7.2 142 1.1 J 0.78 U 3500 21.5 10.4 J 23.7 29200 22.4 4110 365 0.1 J 1.5 J 0.81 U 75.6 U 36.2 60.2 0.97 U	15900 71 UJ 32 965 0.6 J 0.4 U 34500 256 8.2 31 28600 125 7280 340 0.07 J 357 1390 0.42 U 105 J 232 113 0.7 U	13100 9.7 UJ 21 J 98.5 11 200 21 10.6 88.7 2400 24.1 4920 373 88.7 2490 24.1 4920 373 873 873 1370 0.71 J 13 J 13 J 13 J 13 J 85.5 J 19.9 208 8.5 J	13100 8.1 UJ 7.2 94.8 0.48 J 1.3 18400 24.5 11.2 2380 36600 332 6720 423 1250 1.4 J 0.68 J 1122 J 112 J 0.68 J 112 J 0.5 U	12300 7.6 UJ 5.7 39.5 0.67 0.55 J 30300 22.4 9.9 35.2 33100 34.7 7150 34.7 7150 34.7 7150 34.7 7150 34.7 7150 1070 111 J 0.45 U 112 J 1183 106 0.72 U	7560 7.6 UT 4.5 28.1 J 0.28 J 0.24 U 14300 16.7 6.1 J 23.2 21300 115 3930 274 0.27 28.1 353 J 0.76 J 0.49 J 70.2 J 11.8 68.5 0.88 U

 $\label{eq:NOTES: a) NYSDEC Sodiment Criteria - 1989. \\ b) NYSDEC 1989 gnidelines for total phenols \\ c) Used NYSDEC 1989 gnidelines for total phenols$ c) Used NYSDEC 1989 gnideline for phthalates (bis(2-Ethylhexyl) phthalate.c) NA = not applicablee) N = Compound was not analyzed.f) U = Compound was not detected.g) J = The topoted value is an estimated concentration. $h) R = The data was rejected in the data validation process. \\ \end{tabular}$

····•••••


.

•

SOIL ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID UNITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NO. ABOVE TAGM	SOIL SEAD-45 0-0.2 10/25/93 SS45-1 202506	SOIL SEAD-45 0-0.2 10/25/93 SS45-2 202507	SOIL SEAD-45 0-0.2 10/25/93 SS45-3 202508	SOIL SEAD-45 0-0.2 10/25/93 SS45-4 202509	SOIL SEAD-45 0-0.2 10/25/93 SS45-5 202512	SOIL SEAD-45 0-0.2 10/25/93 SS45-10 202517 SS45-5DUP	SOIL SEAD-45 0-0.2 10/25/93 SS45-6 202511	SOIL SEAD-45 0-0.2 10/25/93 SS45-7 202514	SOIL SEAD-45 0-0.2 10/25/93 SS45-8 202515
VOLATILE ORGANICS Tetrachloroethene	ug/kg	19	35.7%	1400	0	12 U	11 Ư	12 U	11 W	12 U	12 U	11 U	11 U	12 U
HERBICIDES MCPA	ug/kg	9400	14.3%	NA	NA	9400	6300	6000 U	5400 U	5900 U	6000 U	5500 U	5700 U	6300 U
NITROAROMATICS HMX RDX 1,3,5-Trinitrobenzene Tetryi 2,4,6-Trinitrotoluene 4-amino-2,6-Dinitrotoluene 2-amino-4,6-Dinitrotoluene 2,4-Dinitrotoluene	ମସ୍ଟିଏସି ମସ୍ଟିଏସି ମସ୍ଟିଏସି ମସ୍ଟିଏସି ମସ୍ଟିଏସି ମସ୍ଟିଏସି	470 5800 190 330 1400 270 680 190	42.9% 78.6% 42.9% 28.6% 64.3% 7.1% 57.1%	NA NA NA NA NA NA	24 24 24 24 24 24 24 24 24 24 24 24	130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U	130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U 130 U	130 U 100 J 100 J 130 U 96 J 130 U 99 J 130 U	130 U 82 J 100 U 90 J 130 U 130 U 130 U 130 U 130 U 110 J	120 J 280 J 130 UJ 84 J 130 UJ 280 J 150 J	140 J 290 J 130 UJ 130 J 80 J 130 UJ 270 J 140 J	130 U 1800 120 J 330 190 130 U 590 160	130 UJ 83 J 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ	130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ 130 UJ
SEMIVOLATILE ORGANICS Hexachloroethane Naprithalene Acenaphthylene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene Diettylphthalate N-Nitrosofiphenylamine Hexachlorobenzene Phenantitrene Anthracene Di-h-butylphthalate Fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)ruoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(2,3-cd)pyrene Benzo(2,3-cd)pyrene	ពីម្នុង កើរម្ភដំ កើរម្ភដំ កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កិរមិន កំពាំង កិរមិន កិរមិន កិរមិន កិរមិន កំពី កិរមិន កិរមិន កំពិ កំពាំ កិរមិន កិរមិន កំពី កិរមិន កិរមិន កំពី កំពី កំពី កំពី កំពី កំពី កំពី កំពី	1100 30 30 7000 14000 62 46 18 6800 68 6800 68 110 50 68 740 55 58 82 25 22 66	35.7% 28.6% 14.3% 50.0% 57.1% 50.0% 57.1% 50.0% 64.3% 64.3% 50.0% 50.0% 50.0% 50.0% 35.7% 35.7%	NA 13000 41000 NA 7100 50000 * 410 50000 * 8100 50000 * 50000 * 220 400 50000 * 1100 1100 61 3200 50000 *	NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	410 U 410 U	380 U 380 U	400 U 400 U	360 U 360 U	390 U 21 J 30 J 390 U 160 J 390 U 390 U 43 J 18 J 110 J 66 J 100 J 66 J 68 J 740 55 J 58 J 82 J 39 J	390 U 390 U 390 U 390 U 390 U 390 U 390 U 41 J 390 U 31 J 390 U 31 J 390 U 31 J 76 J 32 J 55 J 700 33 J 18 J 44 J 390 U	21 J 360 U 360 U 41 J 830 360 U 110 J 55 J 360 U 900 42 J 79 J 31 J 52 J 360 U 360 U 360 U 360 U 360 U 360 U	380 U 380 U	420 U 420 U 22 J 30 J 420 U 20 J 420 U 420 U 420 U 420 U 420 U 420 U

-

SOIL ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID UNITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NO. ABOVE TAGM	SOIL SEAD-45 0-0.2 10/25/93 SS45-1 202505	SOIL SEAD-45 0-0.2 10/25/93 SS45-2 202507	SOIL SEAD-45 0-0.2 10/25/93 SS45-3 202508	SOIL SEAD-45 0-0.2 10/25/93 SS45-4 202509	SOIL SEAD-45 0-0.2 10/25/93 SS45-5 202512	SOIL SEAD-45 0-0.2 10/25/93 SS45-10 202517 SS45-5DUP	SOIL SEAD-45 0-0.2 10/25/93 SS45-6 202511	SOIL SEAD-45 0-0.2 10/25/93 SS45-7 202514	SOIL SEAD-45 0-0.2 10/25/93 SS45-8 202515
PESTICIDES/PCB Endosulfan I Dieldrin 4,4-DDE 4,4-DDT alpha-Chiordane Aroclor-1254	ug/kg ug/kg ug/kg ug/kg ug/kg	22 32 42 34 2 110	35.7% 23.1% 42.9% 30.8% 23.1% 7.6%	900 44 2100 2100 540 1000(a)	0 0 0 0 0	2.1 U 4.1 U 4.1 U 4.1 U 2.1 U 41 U	2 U 3.8 U 3.8 U 3.8 U 2 U 38 U	2 U 4 U 4 U 2 U 40 U	1.8 U 2.5 J 3.2 J 3.6 U 1.5 J 36 U	1.8 J 3.9 U 3.9 U 3.9 U 2 U 39 U	2 U 3.8 U 3.4 J 3.4 J 1.1 J 110 J	1.8 U 3.2 J 4.2 J 2.8 J 2 J 36 U	1.9 U 3.8 U 3.8 U 3.8 U 1.9 U 38 U	2.1 U 4.1 U 4.1 U 4.1 U 2.1 U 41 U
METALS Auminum Arsenic Barium Berylium Cadmium Calcium Cobait Copper Iron Lead Maganesium Manganese Mercury Nickel Potassium Selenium Selenium Selenium Sodium Vanadium Zinc Cyanide OTHER ANALYSES Nitrate/Nitrite-Nitrogen Total Solids	ng/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	22800 8.2 365 1.1 13.1 147000 87.8 9270 87.8 9270 13800 87.8 9270 13800 87.8 3280 1.1 262.2 418 38 5577 8.3 91.9 91.9	100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	15523 7.5 300 1 1 120725 24 30 25 28986 30 12308 759 0.1 37 1548 2 0.5 114 150 90 NA	15 1 1 12 0 14 0 16 12 0 5 16 8 16 8 16 0 11 1 9 0 9 NA NA	24.1 10.8 79.4 25800 20.4 5530 552 0.43 29.4 R 2310 0.27 U 1.3 UJ 67.1 J	19400 5.5 194 0.77 J 2.4 10300 39.3 24.3 192 75700 15.7 5950 1150 0.63 41.3 R 3140 0.18 U 1.5 UJ 100 J 35.4 122 R 0.57 U 0.38 85.7	18900 5.1 115 0.83 J 1.1 21800 27.4 14.1 55.8 30500 12 6790 627 0.17 40.5 R 2720 0.21 U 2.1 114 J 30.5 115 R 0.58 U	14900 5.1 143 0.63 J 3.9 47000 22.9 12.4 155 26700 34.9 8420 530 0.43 35.2 R 2100 0.23 U 142 J 23.7 208 R 0.54 U 1.34 91.9	2140 0.18 UJ 3.5 J 110 J 27.9	15600 6.4 151 0.7 J 9.5 J 47000 23.8 12.2 405 30400 54.9 7000 54.9 2.1 J 36.4 1980 0.22 UJ 2.7 J 104 J 2.5.8 361 0.67 U 0.06 84.2	15300 5.5 160 0.71 J 8.8 23400 24.2 11.7 491 28100 63.2 6440 6555 2.4 34.2 R 2060 0.18 U 4.3 112 J 27.3 347 R 0.52 U	18000 6.8 163 0.82 J 1.6 J 6930 24.8 13.1 69.8 29900 21.9 5170 1050 0.41 J 35.1 2080 0.22 UJ 1.2 UJ 1.36 J 32.5 1.26 J 69.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	18600 6.4 365 0.69 J 4.8 J 16800 277.2 12.1 293 29400 66.9 6740 489 1.9 J 3.9,4 2530 0.24 UJ 2.3 J 93.5 J 306 0.72 U 0.12 78,7

SOIL ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID UNITS	MAXIMUM	FREQUENCY OF DETECTION	TAGM	NO. ABOVE TAGM	SOIL SEAD-45 0-0.2 10/25/93 SS45-9 202516	SOIL SEAD-45 3 11/08/93 TP45-1 203646-203648	SOIL SEAD-45 3 11/08/93 TP45-11 203656-203658 TP45-1DUP	SOIL SEAD-45 3 11/08/93 TP45-2 203650-203652	SOIL SEAD-45 3 11/08/93 TP45-3 203654	SOIL SEAD-45 3 11/09/93 TP45-4 204026-204028	SOIL SEAD-45 3 11/09/93 TP45-5 204030-204032
VOLATILE ORGANICS Tetrachloroethene	ug/kg	19	35.7%	1400	0	12 U	4 J	6 J	L 8	19	2 J	3 J
HERBICIDES MCPA	ug/kg	9400	14.3%	NA	NA	5900 U	5600 U	5500 U	5800 U	e000 U	6900 U	5600 U
NITROAROMATICS HMX RDX 1,3,5-Trinitrobenzene Tetryl 2,4,6-Trinitrotoluene 4-amino-2,6-Dinitrotoluene 2-amino-4,6-Dinitrotoluene 2,4-Dinitrotoluene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	470 5800 190 3300 1400 270 680 190	42.9% 78.6% 42.9% 64.3% 7.1% 57.1%	NA NA NA NA NA NA	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	130 UJ 5800 J 130 UJ 130 UJ 1400 J 270 J 130 UJ 130 UJ	250 J 2500 J 150 J 130 UJ 330 J 130 UJ 430 J 130 UJ	430 J 1600 J 170 J 130 UJ 340 J 130 UJ 430 J 140 J	470 J 2700 J 190 J 130 UJ 600 J 130 UJ 680 J 190 J	240 J 2500 J 130 UJ 130 UJ 130 UJ 130 UJ 530 J 120 J	350 4300 180 130 U 330 130 U 480 110 J	200 1300 140 180 J 280 130 U 350 90 J
SEMIVOLATILE ORGANICS Hexachtoroethane Naphthalene Acenaphthylene 2,6-Dinitrotoluene 2,4-Dinitrotoluene Diethylpithalate N-Nitrosodiphenylamine Hexachtorobenzene Phenanthrene Anthracene Di-n-butylpithalate Fluoranthene Pyrene Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene	nayka na nayka nayka nayka nayka nayka na	1100 30 700 14000 62 46 18 6800 68 6800 68 110 50 68 55 58 82 55 58 82 52 52 52 52	14.3% 50.0% 64.3% 71.4% 42.9% 64.3% 50.0% 50.0% 35.7% 42.9% 28.6%	NA 13000 41000 NA 7100 50000 * 410 50000 * 8100 50000 * 220 400 50000 * 1100 1100 1100 61 3200 \$	NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	390 U 390 U 27 J 350 J 20 J 390 U 390 U 390 U 390 U	72 J 30 J 19 J 370 U 370 U 370 U 370 U 62 J 46 J 35 J 110 J 32 J 46 J 38 J 28 J 46 J 38 J 46 J 37 J 36 J	68 J 27 J 17 J 190 J 360 U 360 U 360 J 364 J 388 J 360 U 170 J 50 J 30 J 30 J 30 J 30 J 30 J 36 J 26 J 41 J 360 U 360 J	1900 U 1900 U 1900 U 700 J 14000 U 1600 J 1900 U 1900 U	1100 24 J 400 U 84 J 400 U 20 J 52 J 38 J 400 U 27 J 52 J 90 J 22 J 37 J 400 U 24 J 21 J 28 J 21 J 28 J	41 J 30 J 460 U 59 J 35 J 460 U 48 J 444 J 460 U 75 J 68 J 110 J 36 J 310 J 36 J 39 J 34 J 45 J 35 J 35 J 35 J 35 J 36 J 37 J 36 J 37 J 38 J 39 J 36 J 39 J 36 J 37 J 38 J 38 J 39 J 39 J 34 J 35 J 35 J 35 J 36 J 37 J 38 J 39 J 34 J 36 J 37 J 38 J 38 J 39 J 34 J 36 J 37 J 38 J 39 J 34 J 36 J 37 J 36 J 37 J 36 J 37 J 37 J 36 J 37 J	36 J 370 U 370 U 370 U 250 J 42 J 370 U 250 J 42 J 370 U 230 J 58 J 97 J 32 J 47 J 370 U 42 J 42 J 42 J 42 J 42 J 42 J 45 J



SOIL ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

	MATRIX					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
1	LOCATION				i I	SEAD-45	SEAD-45	SEAD-45	SEAD-45	SEAD-45	SEAD-45	SEAD-45
	DEPTH (FEET)					0-0.2	3	3	3	3	3	3
	SAMPLE DATE		FREQUENCY		NO.	10/25/93	11/08/93	11/08/93	11/08/93	11/08/93	11/09/93	11/09/93
	ES ID	1	OF		ABOVE	SS45-9	TP45-1	TP45-11	TP45-2	TP45-3	TP45-4	TP45-5
	LAB ID	MAXIMUM	DETECTION	TAGM	TAGM	202516	203646-203648	203656-203658	203650-203652	203654	204026-204028	204030-204032
COMPOUND	UNITS							TP45-1DUP				
PESTICIDES/PCB												
Endosulfan I	ug/kg	2.2	35.7%	900	0	1 J	1.9 J	2.2 J	1.9 J	1.6 J	2.4 U	1.9 U
Dieldrin	ug/kg	3.2	23.1%	44	0	3.8 U R	3.7 U	3.6 U	3.8 U	4 U	2.4 J	3.7 U
4,4'-DDE	ug/kg	4.2	42.9%	2100	0	3.3 J	3.7 U	3.6 U	3.8 U	4 U	3.2 J	1.9 J
4,4'-DDT	ug/kg	3.4	30.8%	2100	0	3.8 U R	3.7 U	2.3 J	3,8 U	2.9 J	4.6 U	3.7 U
alpha-Chlordane	ug/kg	2	23.1%	540	0	2 U R	1.9 U	1.9 U	20	2 U	2.4 U	1.9 U
Arodor-1254	ug/kg	110	7.6%	1000(a)	0	38 U R	37 U	36 U	38 U	40 U	46 U	37 U
METALS												
Aluminum	mg/kg	22800	100.0%	15523	15	17800	20100	16500	20800	22800	20600	17300
Arsenic	mg/kg	8.2	100.0%	7.5	1	6.1	6.8	6.3	7.1	8.2	6 J	5.1 J
Barium	mg/kg	365	100.0%	300	1	202	208	177	201	248	216	174
Bervilium	mg/kg	1.1	100.0%	1	1 1	0.79 J	0.9 J	0.8	0.91 J	1.1 J	0.94 J	0.8 J
Cadmium	mg/kg	13.1	100.0%	1	12	5.5 J	10.4 J	9.6 J	9.5 J	13.1 J	10,9 R	7.4 R
Calcium	mg/kg	47000	100.0%	120725	Ō	22600	42700	31500	26400	32500	36400	32100
Chromium	mg/kg	39.3	100.0%	24	14	27.4	31.3	25.7	30.1	35.5	32.1	27.6
Cobalt	mg/kg	24.3	100.0%	30	0	15	13.2	13.2	12.8	16.9	15,3	12.1
Copper	mg/kg	1240	100.0%	25	16	267	722	555	561	791	1240 J	449 J
Iron	mg/kg	75700		28986	13	32500	35700	31900	31500	41300	37600	31600
Lead	mg/kg	87.8	100.0%	30	12	77.7	54.1	73.3	69.4	87.8	74.7	61,9
Magnesium	mg/kg	9270	100.0%	12308	ō	7110	7910	7780	7800	9270	8940	7570
Manganese	mg/kg	1380	100.0%	759	5	912	1380	613	605	827	726	600
Mercury	mg/kg	4.3	100.0%	0.1	16	1.9 J	· 3.1 J	1.4 J	3.1 J	4 J	3.6	4.3
Nickel	mg/kg	51	100.0%	37	8	42.5	41.8	39.1	40.5	51	48.3	39.2
Potassium	mg/kg	3280	100.0%	1548	16	2260	3040	1960	3280	3010	2400	1960
Selenium	mg/kg	1.1	0.0%	2		0.24 UJ	0.23 UJ	0.15 UJ	0,16 UJ	0.23 UJ	0.27 UJ	0.2 UJ
Silver	mg/kg	26.2	57.1%	0.5	11	1.3 J	3.2 J	4.7 J	5 J	6.6 J	26.2 J	3.9 J
Sodium	mg/kg	418	100.0%	114	9	93.4 J	141 J	105 J	116 J	135 J	136 J	3.9 J
Vanadium	mg/kg	38	100.0%	150	9	28.9	32.4	26,7	34.4			122 J 27.3
Vanadum Zinc		557	100.0%	90		383	345	360	34.4 390	38 538	32.6 557 J	27.3 333 J
	mg/kg		14.3%		NA	0.7 U	0.7					
Cyanide	mg/kg	8.3	14.3%	NA	NA	0.7 0	0.7	0.54 U	0.55 U	0.55 U	0.62	0.51 U
OTHER ANALYSES												
Nitrate/Nitrite-Nitrogen	mg/kg	28	100.0%	NA	NA	0.55	27	28	19.5	18.8	9.8	13.3
Total Solids	%WW	91.9				85.2	90.3	90.7	86.7	82.9	72.2	89.3
								L				

Notes:

Notes: a) The TAGM value for PCBs is 1000 ug/kg for surface soils and 10,000 ug/kg for subsurface soils. b) *= As per proposed TAGM, total VOCs < 10ppm; total Semi-VOCs <500ppm; individual semi-VOCs < 50 ppm. c) NA = Not Available d) U = Compound was not detected. e) J = the reported value is an estimated concentration. f) R = the data was rejected in the data validating process. g) UJ = the compound was not detected; the associated reporting limit is approximate.

GROUNDWATER ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

COMPOUND	MATRIX LOCATION SAMPLE DATE ES ID LAB ID UNITS	MAXIMUM	FREQUENCY OF DETECTION	NY AWQS CLASS GA (a)	NO. ABOVE CRITERIA	WATER SEAD-45 02/03/94 MW45-2 210258	WATER SEAD-45 02/03/94 MW45-3 210259	WATER SEAD_45 01/26/94 MW45-4 209413	WATER SEAD-45/OD 02/01/94 MW1 210059	WATER SEAD-45/OD 02/02/94 MW2 210193	WATER SEAD-45/OD 02/01/94 MW3 210060	WATER SEAD-45/OD 02/02/94 MW4 210194	WATER SEAD-45/OD 02/02/94 MW5 210195
VOLATILE ORGANICS													
Tetrachloroethene	ug/L	1	12.5%	5	0	10 U	10 U	10 U	1 J	10 U	10 U	10 U	10 U
NITROAROMATICS HMX 1,3-Dinitrobenzene	ug/L ug/L	0.5 0.067	12.5% 12.5%	NA 5	NA O	0,13 UJ 0.13 UJ	0.13 V 0.13 V	0.13 U 0.13 U	0.5 0.13 U	0.13 U 0.13 U	0.13 U 0.13 U	0.13 U 0.13 U	0.13 U 0.067 J
SEMIVOLATILE ORGANICS	1												
bis(2-Ethylhexyl)phthalate	ug/L	33	50.0%	50	0	23	11 U	11 U	33	11 U	12	11	10 U
METALS													
Aluminum	ug/L	63300	87.5%	NA	NA	42 U	7510	63300	124 J	828	83.5 J	17700	821
Antimony	ug/L	52.1	87.5%	3	7	26.8 J	36.7 J	21.6 UJ	24.3 J	23.1 J	52.1 J	49.6 J	28.1 J
Arsenic	ug/L	9,5	37.5%	25	0	1.4 U	1.8 J	9.5 J	1.4 U	1.4 U	1.4 U	[1.7 J	1.4 U
Barium	ug/L	751	100.0%	1000	0	27.2 J	62,1 J	751	56.5 J	50.8 J	25.5 J	195 J	82.8 J
Beryllium	ug/L	5	37.5%	3	1	0.4 U	0.52 J	5	0.4 U	0.4 U	0.4 U	0.87 J	0.4 U
Cadmium	ug/L	3.8	50.0%	10	0	2.9 J	3.2 J	2.1 U	2.2 J	21 U	2.1 U	3.8 J	210
Calcium	ug/L	660000	100.0%	NA	NA	232000	211000	660000	118000	94600	91700	152000	123000
Chromium	ug/L	106	62.5%	50	1	2.6 U	16.1	106	2.6 U	4.1 J	2.6 U	28.9	2.6 J
Cobalt	ug/L	94.4	50.0%	NA	NA	4.4 U	14.6 J	94.4	4.4 U	5.3 J	4.4 U	11 J	4.4 U
Copper	ug/L	123	62.5%	200	0	3.1 U	11.9 J	123	3.1 U	7.2 J	3.9 J	79.2	3.1 U
Iron	ug/L	113000	100.0%	300	5	48.5 J	14100	113000	207	940	109	27500	1220
Lead	ug/L	75.6	100.0%	25	1	0.71 J	9.5	75.6	0.71 J	0.66 J	0.73 J	15.7	1.1 J
Magnesium	ug/L	77900	100.0%	35000	3	57800	77900	73500	26400	15700	15800	31600	27700
Manganese	ug/L	4640	100.0%	300	4	1400	625	4640	4.4 J	23.7	2.9 J	384	55
Mercury	ug/L	0.29	37.5%	2		0.04 U	0.08 J	0.29	0.04 U	0.04 U	0.04 U	1.8	0.04 U
Nickel	ug/L	209	50.0% 62.5%	NA NA	NA NA	10.2 J 9660	30.7 J 18700	209 13900	4 U 910 U	4 U	4 U	43.9	4 U 907 U
Potassium Selenium	ug/L	18700	62.5% 62.5%			9660 2.5 J	18/00 1.9 J	13900 0.7 U	910 U 0.99 J	1050 J 0.7 U	904 U 0,7 U	6540 1.9 J	907 U 1.5 J
	ug/L	2.5 4.6	62.5% 12.5%	10 50	0	2.5 J 4.2 U	1.9 J 4.2 U	4.2 U	0.99 J 4_2 U	0.7 U 4.2 U	4.2 U		1.5 J 4.2 U
Silver Sodium	ug/L	4.6	12.5%	20000	0	4.2 0	4.2 0	17300	4.2 0	4.2 U 13100	4.2 U 3400 J	4.6 J 15800	4.2 U 16100
Sodium Vanadium	ug/L	40000	100.0% 37.5%	20000 NA	NA	40000 3.7 U	18600 11.7 J	93.1	10000 3.7 U	3.7 U	3400 J 3.7 U	15800 29.7 J	16100 3.7 U
Zinc	ug/L ug/L	93.1	37.5% 100.0%	300	1VA 4	31.6	81.1	321	3.7 U 15.3 J	23	3.7 U	164	24.5
	ug/L	321	100.0%	300	1	31.0	01.1	321	10.0 0	23	14 3	104	24.5
OTHER ANALYSES Nitrate/Nitrite-Nitrogen	mg/L	8.7	100.0%	10	o	0.41	0.12	0.02	1.23	0.06	0.15	0.13	8.7
pH	standard units	7.54				NR	7.5	7.31	7.5	7.49	7.53	7.43	7.54
Specific Conductance	umhos/cm	750				NR	750	600	455	315	340	450	465
Turbidity	NTU	9860				0.4	368	9860	9.4	4.4	3.4	193	107

NOTES:

a) NY State Class GA Groundwater Regulations

a) NA To Let Class GA Globultwater Regulations
b) NA = Not Available
c) U = compound was not detected
d) J = the report value is an estimated concentration
e) UJ = the compound was not detected; the associated reporting limit is approximate
f) R = the data was rejected in the data validating process

H:\ENG\SENECA\SCOPING\SEAD45\TABLES\2-15.WK3

Page 1 of 1

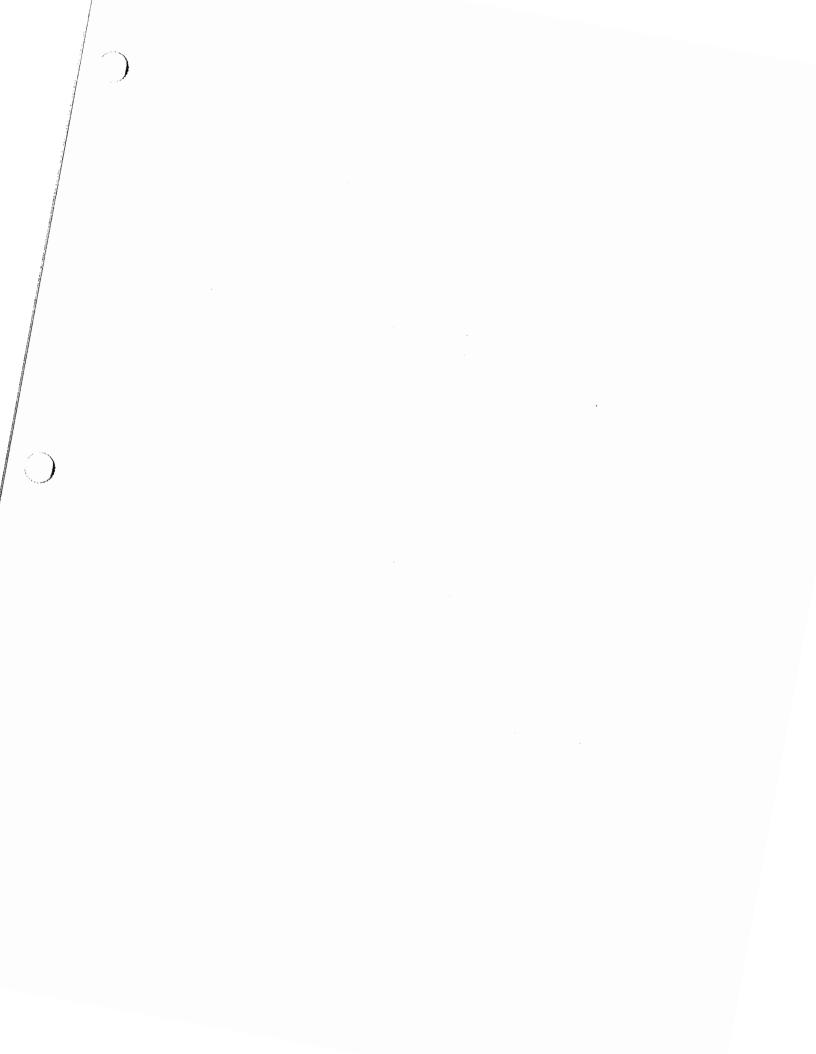
SURFACE WATER ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

	MATRIX							WATER	WATER	WATER	WATER
	LOCATION							SEAD-45	SEAD-45	SEAD-45	SEAD-45
	SAMPLE DATE		FREQUENCY	NYS	EPA	EPA		11/01/93	11/01/93	11/01/93	11/01/93
	ES ID		OF	GUIDELINES	AWQC	AWQC	NO. ABOVE	SW45-1	SW45-2	SW45-3	SW45-4
	LAB ID	MAXIMUM	DETECTION	CLASS D	ACUTE	CHRONIC	CRITERIA	202940	202941	202942	202943
COMPOUND	UNITS			(a)	(b)	(b)					
NITROAROMATICS											
HMX	ug/L	0.49	50.0%	NA	NA	NA	NA	0.13 U	0.45	0.49	0.13 U
RDX	ug/L	2	50.0%	NA	NA	NA	NA	0.24 J	2	0.13 U	0.13 U
METALS											
Aluminum	11-11	37500	100.0%	NA	750	87	4	29000	4370	968	27500
Arsenic	ug/L	2.3	25.0%	360	360	190	4				37500
Barium	ug/L	439	100.0%	NA	NA	NA	NA	204	1.2 U 82.5 J	1.2 U	2.3 J
	ug/L	439	50.0%	NA						33.5 J	439
Beryllium	ug/L				130	5.3	0	1.3 J	0.3 U	0.3 U	1.5 J
Cadmium	ug/L	11.2	25.0%	NA	3.9	1.1	1	3.3 U	3.3 U	3.3 U	11.2
Calcium	ug/L	194000	100.0%	NA	NA	NA	NA	194000	38500	33800	105000
Chromium	ug/L	50.8	75.0%	4270	4270	509	0	45.4	3.4 J	2.5 U	50.8
Cobalt	ug/L	18.2	50.0%	NA	NA	NA	NA	15.2 J	4.9 U	4.9 U	18.2 J
Copper	ug/L	612	100.0%	50	50	30	3	203	119	24.8 J	612
Iron	ug/L	60400	100.0%	300	NA	1000	4	47700 J	5920 J	1270 J	60400 J
Lead	ug/L	68.7	100.0%	330	330.6	12.9	2		10.9	1.9 J	68.7
Magnesium	ug/L	24300	100.0%	NA	NA	NA	NA	24300	4680 J	3280 J	19300
Manganese	ug/L	1250	100.0%	NA	NA	NA	NA	841	56.7	21.1	1250
Mercury	ug/L	3	100.0%	NA	2.4	0.012	4	0.32	0.5	0.18 J	3
Nickel	ug/L	74.2	100.0%	4250	3592.5	399.4	0	72.7	8.1 J	4.2 J	74.2
Potassium	ug/L	9670	100.0%	NA	NA	NA	NA	6650	5020	1530 J	9670
Sodium	ug/L	4340	100.0%	NA	NA	NA	NA	2810 J	899 J	1080 J	4340 J
Vanadium	ug/L	54.9	75.0%	190	NA	NA	0	45.9 J	6.1 J	3.3 U	54.9
Zinc	ug/L	883	100.0%	800	296.8	268.9	1	226	98.9	23.3	883
Cyanide	ug/L	47.7	25.0%	22	22	5.2	1	8,3 U	8.3 U	8.3 U	47.7
OTHER ANALYSES											
Nitrate/Nitrite-Nitrogen	mg/L	1.06	100.0%	NA	NA	NA	NA	0.01	0.03	1.06	0.04

Notes:

a) The New York State Ambient Water Quality Standards and Guidelines for Class "D" Water.
b) EPA Water Quality Criteria Summary (1991), Quality Criteria for Water 1986 Updates # 1 and # 2.

c) Hardness dependent values assume a hardness of 300 mg/l.


d) NA = Not Available

e) U = Compound was not detected.

f) J = the reported value is an estimated concentration.

g) R = the data was rejected in the data validating process.
 h) UJ = the compound was not detected; the associated reporting limit is approximate.

H:\ENG\SENECA\SCOPING\SEAD45\TABLES\2-16.WK3

SEDIMENT ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID		FREQUENCY OF DETECTION	NYSDEC SEDIMENT CRITERIA FOR AQUATIC LIFE	HEALTH	NYSDEC SEDIMENT CRITERIA FOR WILDLIFE	LOT	NO. ABOVE CRITERIA	SOIL SEAD-45 0-0.5 11/01/93 SD45-1 202996	SOIL SEAD-45 0-0.5 11/01/93 SD45-2 202997	SOIL SEAD-45 0-0.5 11/01/93 SD45-3 202998	SOIL SEAD-45 0-0.5 11/01/93 SD45-4 202999
COMPOUND	UNITS			(a)	(a)	(a)	(b)					
NITROAROMATICS RDX Tetryi 2.4,6-Trinitrotoluene 2.amino-4,6-Dinitrotoluene 2,4-Dinitrotoluene	ug/kg ug/kg ug/kg ug/kg ug/kg	210 140 120 260 83	25.0% 25.0% 25.0% 25.0% 25.0%	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	130 U 130 U 130 U 130 U 130 U 130 U	210 140 J 120 J 260 83 J	130 U 130 U 130 U 130 U 130 U 130 U	130 U 130 U 130 U 130 U 130 U 130 U
SEMIVOLATILE ORGANICS Naphthalene Hexachlorobenzene Phenanthrene Di-n-butylphthalate Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	24 40 34 25 60 110 32 50 37 28 37 32 48	25.0% 50.0% 75.0% 25.0% 75.0% 50.0% 50.0% 50.0% 50.0% 50.0% 25.0%	NA 75680 1390 1197(c) NA NA NA NA NA NA NA NA NA	NA 1.5 NA NA 13 13 13 13 13 13 13	NA 120 NA NA NA NA NA NA NA NA NA	22222222222222222222222222222222222222	NA NA NA NA NA NA NA NA NA NA	420 U 420 U	530 U 40 J 25 J 60 J 110 J 32 J 50 J 37 J 37 J 37 J 32 J 48 J	500 U 500 U 24 J 500 U 47 J 59 J 23 J 36 J 28 J 28 J 28 J 500 U 500 U	24 J 30 J 25 J 440 U 31 J 61 J 440 U 20 J 440 U 440 U 440 U 440 U

SEDIMENT ANALYSIS RESULTS SENECA ARMY DEPOT SEAD-45 EXPANDED SITE INSPECTION

COMPOUND	MATRIX LOCATION DEPTH (FEET) SAMPLE DATE ES ID LAB ID UNITS	MAXIMUM	FREQUENCY OF DETECTION	NYSDEC SEDIMENT CRITERIA FOR AQUATIC LIFE (a)	NYSDEC SEDIMENT CRITERIA FOR HUMAN HEALTH (a)	NYSDEC SEDIMENT CRITERIA FOR WILDLIFE (a)	LOT (b)	NO. ABOVE CRITERIA	SOIL SEAD-45 0-0.5 11/01/93 SD45-1 202996	SOIL SEAD-45 0-0.5 11/01/93 SD45-2 202997	SOIL SEAD-45 0-0.5 11/01/93 SD45-3 202998	SOIL SEAD-45 0-0.5 11/01/93 SD45-4 202999
PESTICIDES/PCB												
Endosulfan I	ug/kg	2.7	50.0%	0.3	NA	NA	NA	NA	2.2 U	2.7 J	1.3 J	2.3 U
Dieldrin	ug/kg	7.4	25.0%	195	1.3	7.7	NA	NA	4.2 U	5.3 U	5 U	7.4 J
4,4'-DDE	ug/kg	12	50.0%	500	0.1	10	NA	NA	4.2 U	4.3 J	5 U	12 J
Endrin aldehyde	ug/kg	3.2	25.0%	NA	NA	NA	NA	NA	4.2 U	5.3 U	5 U	3.2 J
alpha-Chlordane	ug/kg	5.7	25.0%	0.06	0.01	0.06	NA	NA	2.2 U	2.7 U	2.6 U	5.7 J
Aroclor-1254	ug/kg	580	50.0%	NA	0.008	195	NA	NA	42 U	74	50 U	580 J
METALS												
Aluminum	mg/kg	35000	100.0%	NA			NA	NA	14400	35000	22300	21100
Arsenic	mg/kg	16.1	100.0%	5			33	0	6,9	4.2	7.3	16.1
Barium	mg/kg	308	100.0%	NA			NA	NA -	85.4	308	187	176
Beryllium	mg/kg	1.4	100.0%	NA			NA	NA	0.62 J	1.4	0.94 J	0.83
Cadmium	mg/kg	25.6	100.0%	0.8			10	2	0.76 J	14.9	5.6	25.6 J
Calcium	mg/kg	84400	100.0%	NA			NA	NA	84400	21700	25100	25100
Chromium	mg/kg	48,4	100.0%	26			111	0	22.5	48.4	31.4	31.8
Cobalt	mg/kg	19.7	100.0%	NA			NA	NA	11.2	19.7	12.9	13.2
Соррег	mg/kg	814	100.0%	19			114	3	63.9	814	323	241
Iron	mg/kg	50500	100.0%	24000			40000	ĭ	25600	50500	32600	33200
Lead	mg/kg	101	100.0%	27			250	i o i	19.8	101	52.8	72.9
Magnesium	mg/kg	10200	100.0%	NA NA			NA	NA	9720	10200	7630	7510
Manganese	mg/kg	935	100.0%	428			1100	l õ l	458	692	616	935
Mercury	mg/kg	5,3	100.0%	0.11			2	3	0.38	5.3	4.4	2.2 J
Nickel	mg/kg	67.7	100.0%	22			90	ŏ	40.1	67.7	41.6	44.6
Potassium	mg/kg	4680	100.0%	NA			NA	NA	2580	4680	3360	2840
Silver	mg/kg	5.8	75.0%	NA			NA	NA	1.3 U	5.8	3.1	2.5 J
Sodium	mg/kg	377	100.0%	NA			NA	NA	208 J	377 J	146 J	130 J
Vanadium	mg/kg	53.7	100.0%	NA			NA	NA	23.9	53.7	37.2	32.9
Zinc	mg/kg	755	100.0%	85			800		104	755	312	329
	mana		100.070	~			000	Ĭ	104		512	523
OTHER ANALYSES										-		
Nitrate/Nitrite-Nitrogen	mg/kg	0.13	100.0%	NA			NA	NA	0.04	0.06	0.13	0.12
Total Solids	%W/W	78.7							78.7	62	66.3	74.1
											00.0	1-7-1

NOTES:

a) NYSDEC Sediment Criteria - 1989.
b) LOT = limit of tolerance; represents point at which significant toxic effects on benthis species occur.
c) Used NYSDEC 1989 guideline for phthalates (bis(2-Ethylhexyl)phthalate.

d) NA = Not Available

g) U = compound was not detected
 f) J = the reported value is an estimated concentration
 g) UJ = the coumpound was not detected; the associated reporting limit is approximate.

H:\ENG\SENECA\SCOP!NG\SEAD45\TABLES\2-17.WK3

In the 14 soil samples collected, 21 semivolatile organic compounds were detected, but only SS45-2 exceeded Technical and Administrative Guidance Manual (TAGM) criteria for one compound. The concentration of benzo(a)pyrene was 82 ppb, which slightly exceeds the TAGM value of 61 ppb.

No explosives were detected in SS45-1, SS45-2, or SS45-8. The remaining soil samples all contained explosives at varying concentrations. A total of eight explosives were detected. RDX and 2,4,6-TNT were detected with the greatest frequency and at the greatest concentrations. SS45-9, collected from a low-lying area between the OD mound and Reeder Creek, contained the highest concentration of RDX (5,800 ppb) and 2,4,6-TNT (1,400 ppb). Aside from SS45-9, the subsurface samples collected from the detonation mound tended to have the greatest concentrations of explosives.

A number of the soil samples collected at SEAD-45 were found to contain various metals at concentrations that exceeded the associated TAGM or site background values. Of the 24 metals reported, 16 of these were found in one or more samples at concentrations above the associated TAGM values. While several of these exceedances were for only 1 or 2 samples, the majority of the TAGM exceedances were more significant. Of particular note are the metals cadmium, chromium, copper, lead, mercury, silver, and zinc where a large percentage of the samples exceeded the criteria value and where the concentrations of the exceedances are generally an order of magnitude or greater above the criteria value.

Fourteen of the 16 soil samples analyzed had cadmium concentrations above the criteria value of 1 ppm. The highest cadmium concentration was identified in sample TP45-3, where 13.1 ppm was reported. This test pit soil sample was collected from the center of the OD mound. This sample also had elevated concentrations of all the other metals of note, and had the highest detected concentrations of lead, nickel, and vanadium, and the second highest detected concentrations of copper and mercury. In all of the soil samples collected, copper and mercury exceeded TAGM criteria. The subsurface samples taken from the mound contained the highest concentrations for both of the metals. In general, the highest concentration (39.3 ppm) was found in the surface soil sample SS45-2, collected west of the OD mound. Even though the highest metals concentrations were in the test pit soil samples, there were

August, 1995

.

TAGM exceedances in the surface soil samples as well. The highest metals concentrations in the surface soil samples were in the samples SS45-5, collected just west of the OD mound, and SS45-6 and SS45-9, collected east of the OD mound.

In the groundwater investigation for the ESI, four new monitoring wells were installed. Well construction details are presented in Table 2-18. One of the wells was dry, so three of the four new wells were sampled as part of the ESI along with the five existing wells.

Tetrachloroethene was detected in MW-1, but not exceeding NYSGWS. Bis(2ethylhexyl)phthalate was detected in three wells MW45-2, MW-3, and MW-4, but all concentrations were below NYSGWS. No other volatile or semivolatile compounds were found in groundwater. The explosives HMX and 1,3-dinitrobenzene were detected in groundwater samples. MW-1 contained 0.5 ppb HMX and MW-5 contained 0.067 ppb 1,3dinitrobenzene. New York State has no groundwater criteria for HMX, and the 5 ppb criteria for 1,3-dinitrobenzene is well above the concentration found in MW-5

Eight metals, beryllium chromium, iron, lead, magnesium, manganese, sodium and zinc were present in one or more of the groundwater samples at concentrations exceeding the NYSGWS. Most of the high concentrations were in well MW45-4, which had a turbidity of 9,860 nephelometric turbidity units (NTU) and are likely the result of suspected silt in the water.

Two explosives, HMX and RDX were detected in three of the surface water samples. SS45-1 contained 0.24 ppb RDX, SS45-2 contained 0.45 ppb HMX and 2 ppb RDX, and SS45-3 contained 0.49 ppb HMX.

Metals were detected in the surface water, with aluminum, cadmium, copper, iron, lead, mercury, zinc and cyanide all present in at least one sample at concentrations exceeding the most stringent Ambient Water Quality Criteria (AWQC). All four surface water samples collected contained aluminum, iron, and mercury exceeding EPA chronic AWQC.

Five explosives were detected in SD45-2 at varying concentrations, the highest being 260 ppb of 2-amino-4,6-dinitrotoluene. No explosives were detected in the remaining three sediment samples. Semivolatile organic compounds, pesticides, and PCBs were detected in three sediment samples, SD45-2, SD45-3, and SD45-4, but detections were primarily at low concentrations. There are no appropriate standards to compare to the detected

.

. .

·

EXPANDED SITE INSPECTION MONITORING WELL CONSTRUCTION DATA

SENECA ARMY DEPOT ACTIVITY SEAD-45

	Well Number	Depth of Well Relative to Ground Surface (ft)	Depth of Well Relative to Top of PVC (ft)	Well Screen Length (ft)	Screened Interval Relative to Ground Surface (ft)	Thickness of Bentonite Seal (ft)	Height of PVC Well Stickup (ft)	Elevation of Top of PVC Well (MSL) (ft)
1	MW45-1	6.0	8.65	2	3.25-5.25	0.8	2.65	625.08
2	MW45-2	10.0	12.41	4	5.33-9.33	1.2	2.41	626.76
2	MW45-3	11.33	14.07	4	6.6-10.6	1.25	2.74	626.45
4	MW45-4	7.0	9.74	2	4.25-6.25	0.5	2.74	633.04

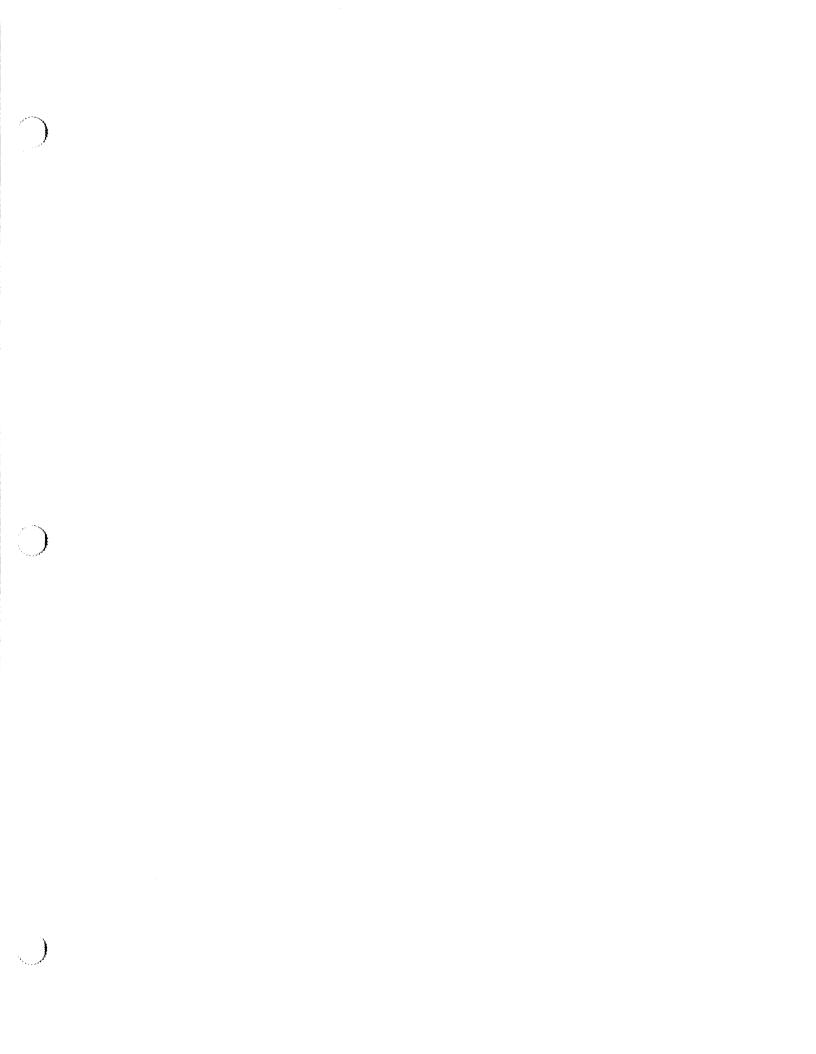
Notes:

1. All wells were installed by Empire Soils Investigations, Inc. under the supervision of Engineering-Science, Inc.

2. Data obtained from Well Development forms and UXB survey summary (3/8/94).

3. All wells were installed in Till/Weathered Shale.

4. All wells were constructed of 2-inch PVC well casing with 0.010 inch PVC well screen.



concentrations because the NYSDEC sediment criteria applies to wetlands that support aquatic life, and there is no aquatic life in the standing water at the OD Grounds. Cadmium, copper, iron, and mercury were also detected in sediment at concentrations exceeding Limit of Tolerance criteria.

A geophysical investigation was conducted across the OD Grounds, including the OD mound, to locate any subsurface features. The test pits excavated in the mound uncovered various components of high explosives and fuzes. The test pits excavated away from the detonation mound located the electrical conduits that served the previous locations of the detonation mound.

August, 1995

Page 2-33 K:\SENECA\RIF\$\SEAD-45\Section.2

3.0 <u>SCOPING OF THE RI/FS</u>

This section describes the current understanding of SEAD-45 based upon the results of the ESI Report. This includes the development of a conceptual model describing all known contaminant sources and receptor pathways based upon actual sampling data. This conceptual model will be used to develop and implement additional studies which may be required to fully assess risks to human health and the environment. Other considerations which are discussed are data quality objectives (DQOs) and potential remedial actions for SEAD-45. These considerations will also be integrated into the scoping process to ensure that adequate data is collected to complete the RI/FS process.

3.1 CONCEPTUAL SITE MODEL

The conceptual site model for SEAD-45 takes into account both site conditions and accepted pollutant behavior to formulate an understanding of the site. These will serve as a basis for determining necessary additional studies for the RI. The model was developed by evaluating the following aspects:

- Historical site usage
- Physical site characteristics: This considers the physical aspects of environmental conditions and the effect these conditions may have on potential pollutant migration. These include soil characteristics, topography, subsurface geology, groundwater characteristics and local terrain.
- **Environmental fate of constituents:** This considers the fate and transport of residual materials in the environment based upon known chemical and physical properties.

3.1.1 <u>Physical Site Characterization</u>

The OD Grounds are located in the northwestern portion of SEDA, as shown in Figure 1-1. It is characterized by an unvegetated, elongate detonation mound that is surrounded by an unvegetated area to the east and lightly vegetated grassland to the west, north and south. The mound is approximately 500 feet long and 14 feet high and contains many smaller excavated areas on its east side, as shown in Figure 1-2. These excavated areas are used to

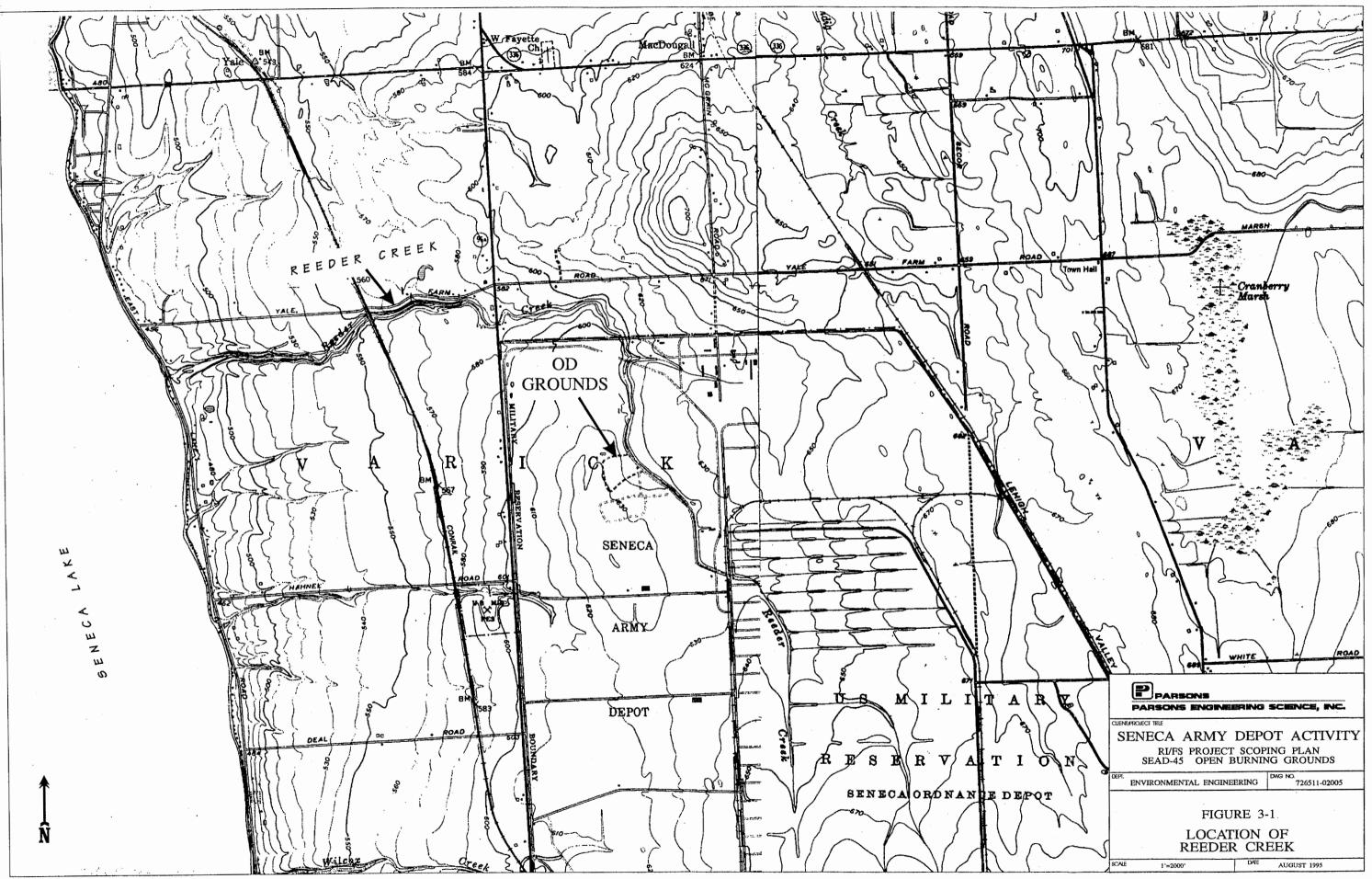
bury the explosives that are destroyed during detonation events. A small soil-covered bunker, from which the detonation events are controlled, is present in the eastern portion of the site near Reeder Creek. Topography on-site slopes to the east.

Approximately 700 feet east of the detonation mound is Reeder Creek, which defines the eastern boundary of the site. Reeder Creek drains to the north-northwest and eventually discharges to Seneca Lake west of the site, as shown in Figure 3-1. At the southern boundary of the site is a crushed shale road which separate the OD Grounds from the OB Grounds. Grassland and low brush are located to the west and north of the site.

Vehicular access to the site is provided via a paved roadway that leads from North South Baseline Road, however, access to the OD Grounds is restricted by a locking gate. In the southeastern portion of the site the paved roadway divides into several dirt roads which provide direct access to the detonation mound. The OD Grounds are not fenced, but access to the site is restricted since it is located within the Ammunition Storage Area.

The SEDA property boundary is approximately 2,000 feet from the OD Grounds. Land use adjacent to the northwestern corner of SEDA is sparse residential areas with some farmland. Records provided by the Town of Varick show that approximately 15 residences adjacent to the northwestern border of SEDA are within 2500 feet of the OD Grounds. These residences all obtain drinking water from private water wells.

3.1.1.1 Local Geology


Based on the results of the drilling program performed during the ESI, till and calcareous black shale (with minor limestone layers) are the two major types of geologic materials present on-site. The till lies stratigraphically above the shale. In most of the overburden soil borings, a very thin soil horizon was observed with till present at most locations within one foot of the ground surface. The depths of the overburden soil borings at this site were up to 11 feet below the ground surface.

The till is dark brown to gray and composed of silt and clay, some fine sand, and some black shale and limestone fragments; however, larger shale fragments (rip-up clasts) were observed at many locations near the till/weathered shale contact. Oxidized areas of till were noted in the upper portion of the till strata.

August, 1995

Page 3-2 K:\SENECA\RIFS\SEAD-45\Section.3

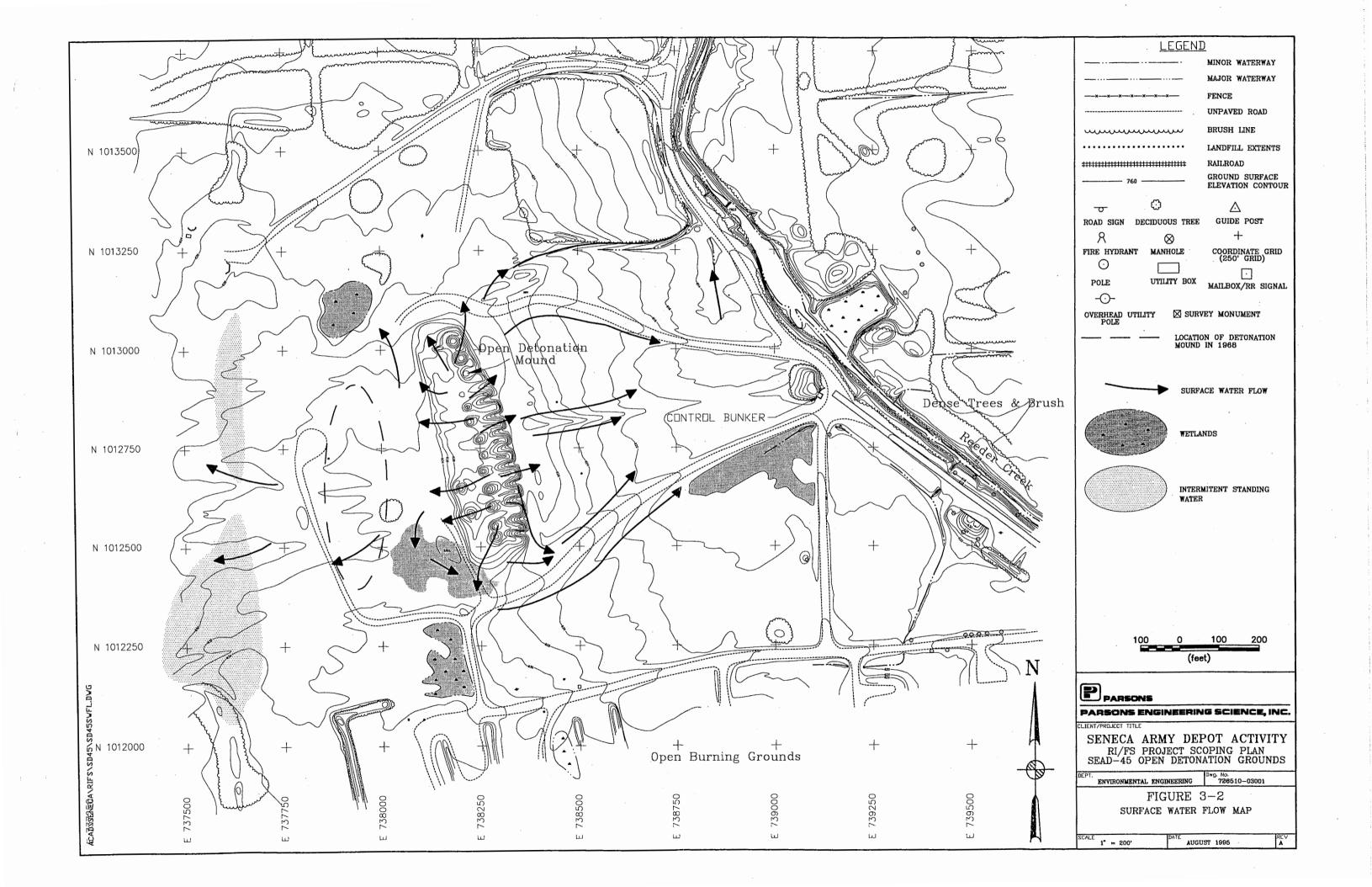
R:\GRAPHICS\SENECA\SEAD-45\SITEMAP.CDR(CVM)

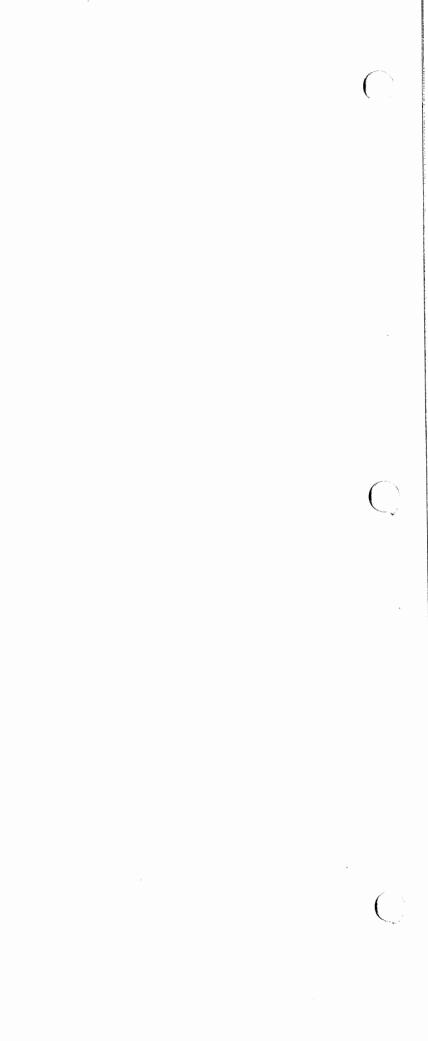
Black calcareous shale was encountered at depths between approximately 4 and 11 feet below the ground surface. The elevations of the competent bedrock determined during the drilling and seismic programs indicate that the shale slopes to the east mimicking the land surface. The upper portion of the competent shale (2 to 3 feet) is weathered.

3.1.1.2 Local Hydrology and Hydrogeology

From the detonation mound, surface water flow is in all directions. In general, the drainage ditches at the site flow from the west to the east, and the culverts and the roads channel the surface water into Reeder Creek. Figure 3-2 shows the suspected surface water flow patterns and flow within drainage ditches at the site.

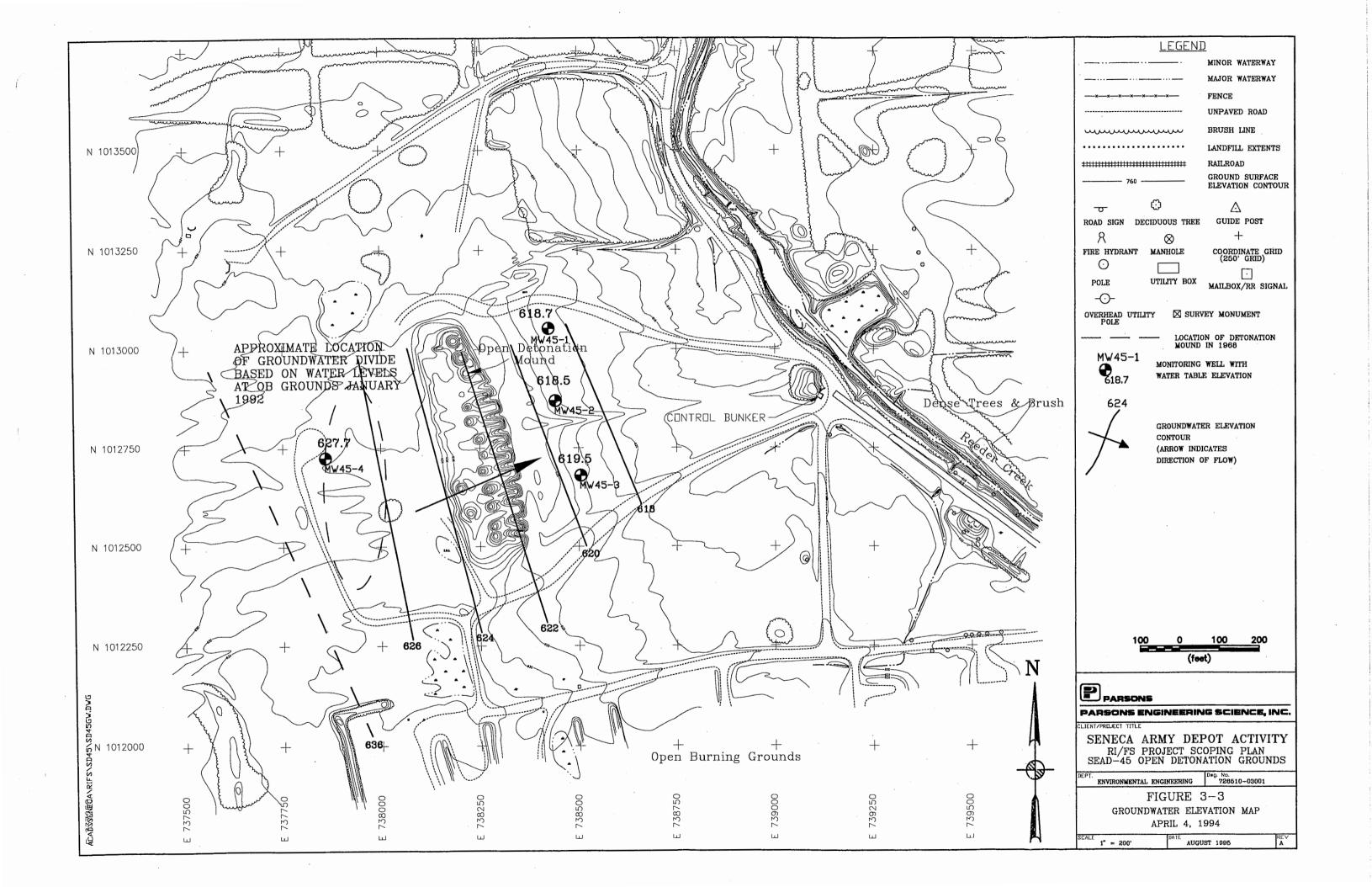
Reeder Creek is a small, second order perennial stream that originates within the SEDA property boundary, as shown in Figure 3-1. Reeder Creek flows in a northwesterly direction past the OB/OD Grounds, turns sharply to the west after leaving the SEDA property, and discharges into Seneca Lake. The normal width of Reeder Creek is 4 to 10 feet, and typical maximum depths range from 1 to 7 inches. Sections of the stream which have been influenced by beaver dams are up to 15 feet wide and 3 feet deep.


The overburden aquifer is unconfined and exists in till and weathered shale immediately overlying the competent bedrock. The primary groundwater flow direction in the till/weathered shale aquifer on the site is to the east based on the groundwater elevations measured in nine monitoring wells on April 4, 1994 (Table 3-1 and Figure 3-3). From groundwater levels measured in monitoring wells at the OB Grounds in January 1992, it is suspected that a north-south trending groundwater divide exists approximately 300 feet to the west of the demolition mound.


On-site hydraulic conductivity determinations were performed by M&E (1989) for monitoring wells MW-8 through MW-17 at the adjacent OB Grounds. These monitoring wells are all screened within the glacial till unit. The data were analyzed according to a procedure described by Hvorslev (1951). The average hydraulic conductivity measured for the ten monitoring wells was 5.0×10^{-1} ft/day (1.8×10^{-4} cm/sec). The hydraulic conductivities ranged from 2.02×10^{-2} ft/day (7.06×10^{-6} cm/sec) to 1.47 ft/day (5.19×10^{-4} cm/sec). These hydraulic conductivity measurements were within an order of magnitude agreement with previous results reported by O'Brien and Gere (1984). O'Brien and Gere determined the average hydraulic conductivity of the till material to be approximately 2.8×10^{-1} ft/day (9.9×10^{-5} cm/sec).

August, 1995

Page 3-4 K:\SENECA\RIFS\SEAD-45\Section.3


TABLE 3-1 MONITORING WELL WATER LEVEL SUMMARY

SENECA ARMY DEPOT ACTIVITY SEAD-45

	TOP OF PVC	WELL DEVELOPMENT			SAMPLING			WATER LEVEL MEASUREMENTS		
MONITORING	CASING		DEPTH TO	GROUNDWATER		DEPTH TO	GROUNDWATER		DEPTH TO	GROUNDWATER
WELL	ELEVATION		GROUNDWATER	ELEVATION		GROUNDWATER	ELEVATION		GROUNDWATER	ELEVATION
NUMBER	(MSL)	DATE	WATER TOC (FT)	(MSL)	DATE	WATER TOC (FT)	(MSL)	DATE	WATER TOC (FT)	(MSL)
MW45-1	625.08	1/17/94	7.87	617.21	3/4/94	7.87	617.21	4/4/94	6.41	618.67
MW45-2	626.76	1/17/94	10.96	615.80	2/2/94	10.76	616.00	4/4/94	8.24	618.52
MW45-3	626.45	1/17/94	9.07	617.38	2/2/94	9.87	616.58	4/4/94	6.97	619.48
MW45-4	633.04	11/12/93	6.64	626.40	1/26/94	7.97	625.07	4/4/94	5.3	627.74
MŴ-1	634.22				2/1/94	8.41	625.81	4/4/94	6.24	627.98
MW-2	NA				2/2/94	6.38		4/4/94	5.75	
MW-3	NA				2/1/94	6.44		4/4/94	6,49	
MW-4	NA				2/1/94	8.3		4/4/94	6.58	
MW-5	637.99				2/1/94	3.36	634.63	4/4/94	2.91	635.08

€

(

•

C

A comparison of the measured values with the typical range of hydraulic conductivities for glacial tills indicates that the glacial till at the site is at the more permeable end of typical glacial till values.

3.1.2 Environmental Fate of Constituents at SEAD-45

The potential contaminants of concern at SEAD-45 are explosive compounds, metals, and SVOCs and their environmental fate is discussed below. The discussion is meant to present general information on the fate of the potential contaminants of concern. Further discussion of these potential contaminants of concern, and all contaminants of concern at SEDA, is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan. A summary of fate and transport characteristics of selected SVOCs is presented in Table 3-2.

3.1.2.1 Explosive Compounds

According to the USATHAMA the major explosive compounds used by the Army are HMX, RDX, TNT, and Tetryl, so these compounds along with their breakdown products are constituents of concern at SEAD-45.

Table 3-2 presents the information which will serve as a basis for understanding the likely environmental fate of explosive compounds at SEDA. Explosive compounds are considered to be semivolatile organic compounds (SVOCs). This is based upon the high molecular weights of these compounds and their low vapor pressures, typical of most SVOCs. The most volatile of the five explosive compounds considered at this site is 2,6-dinitrotoluene (2,6 DNT), with a vapor pressure of 0.018 millimeters mercury (mm Hg). Compared to benzene, a volatile compound, which has a vapor pressure of 95.2 mm Hg it is apparent that volatilization of this compound is expected to be low, especially in soil which has a high clay content. Soil with a high clay content generally has a high, i.e. >50%, ratio of water filled to air filled porosity, therefore, there is a small amount of air space through which vapor can migrate. Compounds such as RDX and HMX have extremely low vapor pressures and would not volatilize through the soil. Consequently, volatilization of RDX and HMX are not expected to represent a significant environmental pathway.

The potential for explosive compounds to leach to the groundwater is a complicated consideration and influenced by many factors such as solubility, cation exchange capacity, clay content and percolation rate. For this evaluation, solubility has been considered as the most representative parameter for leaching potential. Of the six explosive compounds considered, the most soluble of the explosive compounds are the di- and trinitrotoluenes. Their

TABLE 3 - 2

SUMMARY OF FATE AND TRANSPORT PARAMETERS FOR SELECTED ORGANIC COMPOUNDS

SENECA ARMY DEPOT

COMPOUND	SOLUBILITY	VAPOR PRESSURE (mmHg)	HENRY'S LAW CONSTANT (atm-m ² /mol)	Koc (ml/g)	Kow	HALF - LIFE	BCF
COMPOUND	(mg/l)	(mmrig)	(aun-m/moi)	(m/g)	KOW	(days)	BCF
Semivolatile Organic Compounds							
Phenol	93000	0.341	4.54E-07	1.42E+01	2.88E+01	3-5	1.4-2
2-Methylphenol	25000	0.24	1.50E-06	2.74E+02	8.91E+01	1-3	
4-Methylphenol		0.11	4.43E-07	2.67E+02	8.51E+01	1-3	
2,4-Dimethylphenol	4200	0.0573	2.38E-06	2.22E+02	2.63E+02	1-3	9.5-150
Benzoic Acid	2700			2.48E+02	7.41E+01		
Naphthalene	31.7	0.23	1.15E-03	1.30E+03	2.76E+03	1-110	44-95
2-Methylnaphthalene	25.4	0.0083	5.80E-05	8.50E+03	1.30E+04	1-3	
2-Chloronaphthalene	6.74	0.017	4.27E-04	4.16E+03	1.32E+04		
2,6-Dinitrotoluene	1320	0.018	3.27E-06	9.20E+01	1.00E+02	4	4.6
Acenaphthene	3.42	0.00155	9.20E-05	4.60E+03	1.00E+04		
Dibenzofiran				4.16E+03	1.32E+04		
2,4-Dinitrotoluene	240	0.0051	5.09E-06	4.50E+01	1.00E+02	5	
Diethylphthalate	896	0.0035	1.14E-06	1.42E+02	3.16E+02	1-3	14-117
Fluorene	1.69	0.00071	6.42E-05	7.30E+03	1.58E+04		
N-Nitrosodiphenylamine	113		1.40E-06	6.50E+02	1.35E+03	4	65-217
Hexachlorobenzene	0.006	0.000019	6.81E-04	3.90E+03	1.70E+05		
Phenanthrene	1	0.00021	1.59E-04	1.40E+04	2.88E+04	1-200	
Anthracene	0.045	0.000195	1.02E-03	1.40E+04	2.82E+04		
Di-n-butylphthalate	13	0.00001	2.82E-07	1.70E+05	3.98E+05	1-3	89-1800
Fluoranthene	0.206	0.0177	6.46E-06	3.80E+04	7.94E+04	140-440	
Pyrene	0.132	2.50E-06	5.04E-06	3.80E+04	7.59E+04	9-1900	
Butylbenzylphthalate	2.9	8.60E-06	1.20E-06	2.84E+04	5.89E+04		663
Benzo(a)anthracene	0.0057	1.50E-07	1.16E-06	1.38E+06	3.98E+05	240-680	
Chrysene	0.0018	6.30E-09	1.05E-06	2.00E+05	4.07E+05	160-1900	
Bis(2-Ethylhexyl)phthalate	0.285	2.00E-07	3.61E-07	5.90E+03	9.50E+03	Neg. Deg.	
Di-ni-octylphthalate	3			2.40E+06	1.58E+09		
Benzo(b)fluoranthene	0.014	5.00E-07	1.19E-05	5.50E+05	1.15E+06	360-610	
Benzo(k)fluoranthene	0.0043	5.10E-07	3.94E-05	5.50E+05	1.15E+06	910-1400	
Benzo(a)pyrene	0.0012	0.000568	1.55E-06	5.50E+06	1.15E+06	220-530	
Indeno(1,2,3-cd)pyrene	0.00053	1.00E-10	6.86E-08	1.60E+06	3.16E+06	600-730	
Dibenz(a,h)anthracene	0.0005	5.20E-11	7.33E-08	3.30E+06	6.31E+06	750-940	
Benzo(g,h,i)perylene	0.0007	1.03E-10	5.34E-08	1.60E+06	3.24E+06	590-650	
Explosives							
HMX	66	3.90E-09		5.08E+02	1.30E-01		
RDX	50	4.10E-09	2.00E-05	5.38E+02	7.80E-01		
1,3,5-Trinitrobenzene	35	2.20E-04	1.30E+00	5.20E+02			
1,3-Dinitrobenzene	470			1.50E+02	4.17E+01		
Tetryl							
2,4,6-Trinitrotoluene	130	0.0001	1.37E-06	5.34E+02	1.90E+00		
4-amino-2,6-Dinitrotoluene							
2-amino-4,6-Dinitrotoluene							
2,6-Dinitrotoluene	182	0.018	3.27E-06	2.49E+02	1.00E+02	4	4.6
2,4-Dinitrotohuene	270	0.0051	5.09E-06	2.01E+02	1.00E+02	5	

Notes: Koc = organic carbon partition coefficient Kow = octanol-water partition coefficient BCF = bioconcentration factor

Neg. Dog. = Negligible Biodegradation

Raferances: 1. IRP Toxicology Guide 2. Barics of Pump-and-Irest Ground-Water Remodiation Technology (EPA, 1990). 3. Handbook of Environmental Fate and Exposure Data (Howard, 1989). 4. Soil Chemistry of Hazardour Materials (Dragan, 1988) 5. Hazardour Waste Treatment, Storage, and Disposal Facilities, Air Emissions Models (EPA, 1989).

6. USATHAMA, 1985

7. Values for Koc not found were estimated by: logKoc = 0.544logKow + 1.377 (Dragun, 1988).

solubilities range from approximately 130 mg/l to 270 mg/l. These are similar to thesolubilities of organic hydrocarbons such as toluene, (500 mg/l), or the xylenes, (150 mg/l).

This range of solubilities is considered to represent a moderate degree of leaching potential. Compounds which would represent a high degree of leachibility, i.e., high solubility, would be methylene chloride, (20,000 mg/l), benzene (1,780 mg/l) and TCE, (1,100 mg/l). The solubilities of HMX and RDX are approximately four times less than that for the di- and trinitrotoluenes and therefore represent a smaller potential for leaching.

A review of the melting points of these compounds indicates that explosive compounds are solids at the soil temperatures that are likely at SEDA and therefore would not migrate through soil as separate liquid phases. Instead, as soil moisture interacts with these solid residues a small portion would dissolve or erode away. Complete leaching would require a long interaction period.

Field studies have confirmed the long-term potential for leaching of explosive compounds into the groundwater. An evaluation of the critical parameters affecting the migration of explosive compounds through soil indicated that at a former propellant manufacturing facility, 2,4-DNT leached from soil contaminated with smokeless powder for over 35 years after cessation of operations (USATHAMA, 1985). At another facility, leaching of 2,4-DNT into groundwater from former burning grounds has been documented to occur for as long as 10 years after operations had been discontinued.

Another factor to examine is the tendency of explosive compounds to adsorb to the soil. The compounds considered in this evaluation show K_{∞} values which range from approximately 100 to 500 mL/g. The SEDA site soil has been shown to possess a high percentage of fines including clay, thereby increasing the sorption potential of these compounds to the soil. As shown in Table 3-2, for the range of K_{∞} exhibited by explosive compounds, i.e., 100-500 mL/g, these compounds would be considered intermediately mobile.

Environmental degradation of these parent organic compounds has been shown to occur by various investigators. The information available on this subject is substantial and a detailed discussion is beyond the scope of this document. However, a review of the available information indicates that nitroaromatic compounds and nitroamine compounds are susceptible to environmental transformations. Since some of the byproducts of these transformations may be environmentally persistent, there is a potential for concern.

(

DRAFT REPORT

Much of the available research has been conducted on the environmental transformation of TNT. A summary of the identified breakdown products resulting from environmental degradation of TNT and 2,4-DNT is provided in the Generic Installation RI/FS Workplan. The environmental fate of RDX is less defined than that of the other two compounds previously mentioned. An overview of the expected degradation pathways and the byproducts produced as a result of the environmental degradation of RDX is also provided in the Generic Installation RI/FS Workplan. Clearly, the breakdown byproducts which have been identified are diverse. Analytical methods have only recently been developed which are capable of accurately detecting these compounds. The widespread application of these analytical techniques are greatly limited by the availability of standards which are essential for the analyses. Responding to the need for accurate analytical procedures and recognizing that standards for every breakdown product are not available, USATHAMA has developed Method 8330 (A copy of this method is included in Appendix C). This method is intended for the analysis of explosive compound residues in water, soil and sediment.

3.1.2.2 Metals

In general, metals tend to be persistent and relatively insoluble in the environment. The behavior of metals in soil is unlike organic compounds in many aspects. For example, volatilization of metals from soil is not considered a realistic mechanism for contaminant migration and is not considered here. However, leaching and sorption will be considered.

Leaching of metals from soil is controlled by numerous factors. The most important consideration for leaching of metals is the chemical form of the metal (base metal or cation) present in the soil. The leaching of metals from soil is substantial if the metal exists as a soluble salt. Metallic salts have been identified as a component of such items as tracer ammunition, ignitor compositions, incendiary ammunition, flares, colored smoke and primer explosive compositions. In particular, barium nitrate, lead stearate, lead carbonate, and mercury fulminate are potential metal salts or complexes which are components of ammunition that may have been tested or disposed of at SEDA. During the burning of these materials, a portion of these salts oxidize to their metallic oxide forms. In general, metal oxides are considered less likely to leach metallic ions than metallic salts. Upon contact with surface water or precipitation, the metal salts may be dissolved, increasing their mobility and increasing the potential for leaching to the groundwater.

Metals may also exist in the base metallic form as a component of the projectiles tested or disposed of at SEDA. Bullets are composed mainly of lead, which may contain trace amounts

.

of cadmium and selenium. Metals which exist in base metallic form, bullet or projectile casings for example, will tend to dissolve much more slowly than the metallic salts.

Oxidation and reduction involves the change of the valence state of the metals and has a large influence on the other fate mechanisms. A good example of the variation in contamination fate due to oxidation and reduction changes is iron. Iron (Fe) normally exists in one of two valence states, +2 and +3 [Fe(II) and Fe(III)]. Fe(II) is far more soluble than Fe(III) and therefore has a greater mobility.

Soil pH is often correlated with potential metal migration. If the soil pH is greater than 6.5, most metals are fairly immobile, particularly those normally present as cations. This is because at higher pH values, metals form insoluble carbonate and hydroxide complexes. Metals would be most mobile in highly acidic soil (pH of less than 5).

A RI was performed at the Open Burning (OB) Grounds at SEDA in 1992 for which over 50 surface soil samples and over 300 subsurface soil samples were collected. The pH values of the surface soil samples ranged from 5 to 8.4, and the subsurface soil samples had values ranging from 7 to 9 (Parsons ES, 1994). The soil at the OB Grounds is lithologically similar to the soil at the Munitions Washout Facility, therefore, metals in the soil at the Munitions Washout Facility are expected to be primarily present in insoluble forms. A detailed evaluation of select metals (barium, copper, lead, mercury, and zinc) is given below.

Barium is a highly reactive metal that occurs naturally only in the combined state. Most barium released to the environment from industrial sources is in forms that do not become widely dispersed. Barium in soil may be taken up to a small extent either by vegetation, or transported through soil with infiltration of precipitation. Barium is not very mobile in most soil systems. The higher the level of organic matter, the greater the adsorption. The presence of calcium carbonate will also limit mobility, since barium will form BaCO₃, an insoluble carbonate. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt, or adsorb to suspended particulate matter. Sedimentation of suspended solids removes a large portion of the barium from surface waters. Barium in sediment is found largely in the form of barium sulfate. Bioconcentration in freshwater aquatic organisms is minimal.

Copper is considered to be among the more mobile of the metals in surface environments. Seasonal fluctuations have been observed in surface water copper concentrations, with higher levels in fall and winter, and lower levels in the spring and summer. Copper is not expected

 \bigcirc

SENECA SEAD-45 RI/FS PROJECT SCOPING PLAN

DRAFT REPORT

to volatilize from water. Since copper is an essential nutrient, it is strongly accumulated by all plants and animals, but is probably not biomagnified. The degree of persistence of copper in soil depends on the soil characteristics and the forms of copper present. For example, in soil of low organic content, soluble copper compounds may move into groundwater at a significant rate. On the other hand, the presence of organic complexing agents may restrict movement in soil, and copper may be immobilized in the form of various inorganic complexes. Copper is not expected to volatilize from soil. Several processes determine the fate of copper in aquatic environments, these being: formation of complexes, especially with humic substances; sorption to hydrous metal oxides, clays, and organic materials; and bioaccumulation. Organic complexes of copper are more easily adsorbed on clay and other surfaces than the free form. The aquatic fate of copper is highly dependent on factors such as pH, oxidation-reduction potential, concentration of organic matter, and the presence of other metals. With regard to the latter, it has been demonstrated that co-precipitation of copper with hydrous oxides of iron effectively scavenges copper from solution, although in most surface waters organic materials prevail over inorganic ions in complexing copper.

Lead is extremely persistent in both water and soil. Environmental fate processes may transform one lead compound to another; however, lead is generally present in the +2 oxidation state, and will form lead oxides. It is largely associated with suspended solids and sediment in aquatic systems, and it occurs in relatively immobile forms in soil. Lead which has been released to soil may become airborne as a result of fugitive dust generation.

Elemental mercury is insoluble in water and binds tightly to soil particles giving it a relatively low mobility. Bacterial and fungal organisms in sediment are capable of methylating mercury. Methyl mercury, which is soluble in water, is a mobile substance and can then be ingested or absorbed. Until altered by biological processes, the primary transport method for mercury is the erosion and transportation of soil and sediment (Gough, <u>et al.</u>, 1979). Mercury most likely exists at SEDA in the elemental state as a result of the testing or demolition of munitions containing mercury fuzes. Although a mercury salt, mercury fulminate, was used in the past as a priming explosive, it has not been commonly used since 1925 (Dunstan and Bell, 1972), and its environmental fate will not be considered at the site.

Zinc is stable in dry air, but upon exposure to moist air will form a white coating composed of basic carbonate. Zinc loses electrons (oxidizes) in aqueous environments. In the environment, zinc is found primarily in the +2 oxidation state. Elemental zinc is insoluble; most zinc compounds show negligible solubility as well, with the exception of elements (other than fluoride) from Group VII of the Periodic Table compounded with zinc (i.e., ZnCl₂, ZnI₂)

·

showing a general 4:1 compound to water solubility level. In contaminated waters, zinc often complexes with a variety of organic and inorganic ligands. Therefore, the overall mobility of zinc in an aqueous environment, or through moist-to-wet soil, may be accelerated by compounding/complexing reactions.

Zinc has a tendency to adsorb to soil, sediment and suspended solids in water. Adsorption to sediments and suspended solids is the primary fate for zinc in aqueous environments, and will greatly limit the amount of solubilized zinc. Zinc is an essential element and, therefore, is accumulated by all organisms. Zinc concentrations in air are relatively low except near industrial sources. Volatilization is not an important process from soil or water.

3.1.2.3 Semivolatile Organic Compounds (SVOCs)

Polynuclear aromatic hydrocarbons (PAHs) and explosive compounds are the SVOCs that were detected most frequently in the samples collected for the SEAD-45 ESI. The environmental fate of explosives is discussed in the preceeding section. PAH compounds have a high affinity for organic matter and low water solubility. Water solubility tends to decrease and affinity for organic material tends to increase with increasing molecular weight. When present in soil or sediment, PAHs tend to remain bound to the soil particles and dissolve only slowly into the groundwater or the overlying water column. Because of the high affinity for organic matter, the physical fate of the chemicals is usually controlled by the transport of particles. Thus, soil, sediment and suspended particulate matter (in air) represents important media for the transport of the chemicals. Fate and transport parameters for selected SVOCs are presented in Table 3-2.

Because of their high affinity for organic matter, PAH compounds are readily taken up (bioaccumulated) by living organisms. However, organisms have the potential to metabolize the chemicals and to excrete the polar metabolites. The ability to do this varies among organisms. Fish appear to have well-developed systems for metabolizing the chemicals. The metabolites are excreted. Shellfish (bi-valves) appear to be less able to metabolize the compounds. As a result, while PAH compounds are seldom high in fish tissues, they can be high in shellfish tissues.

Several factors can degrade PAH compounds in the environment. Biodegradation on soil microorganisms is an important process affecting the concentrations of the chemicals in soil, sediment and water. Volatilization may also occur. This mechanism is effective for the

August, 1995

Page 3-14 K:\SENECA\RIFS\SEAD-45\Section.3

lighter molecular weight compounds. However, the volatilization of higher molecular weight PAH compounds occurs slowly.

3.1.3 Data Summary and Conclusions

Characterization studies included geophysical surveys, monitoring well construction and groundwater, soil, surface water and sediment sampling. These efforts have identified the presence of explosive compounds, metals and SVOCs in the surface soil, sediment, surface water, and to a lesser extent, in the groundwater at SEAD-45. This section will summarize the data collected to date and draw conclusions as to the likely environmental impacts these constituents have had to the site.

3.1.3.1 Soil Data

The first soil samples taken from the detonation mound in 1982 detected no metals at concentrations exceeding the Extraction Procedure Toxicity Limits. There were, however, three explosive compounds and the decay product of an explosive compound detected in these samples.

The five subsurface samples taken from the demolition mound during the ESI in 1993 contained high concentrations of explosive compounds and metals, notably cadmium, copper, mercury, and silver. The surface soil samples taken from nine locations at the site also contained high concentrations of explosive compounds, cadmium, copper, and mercury.

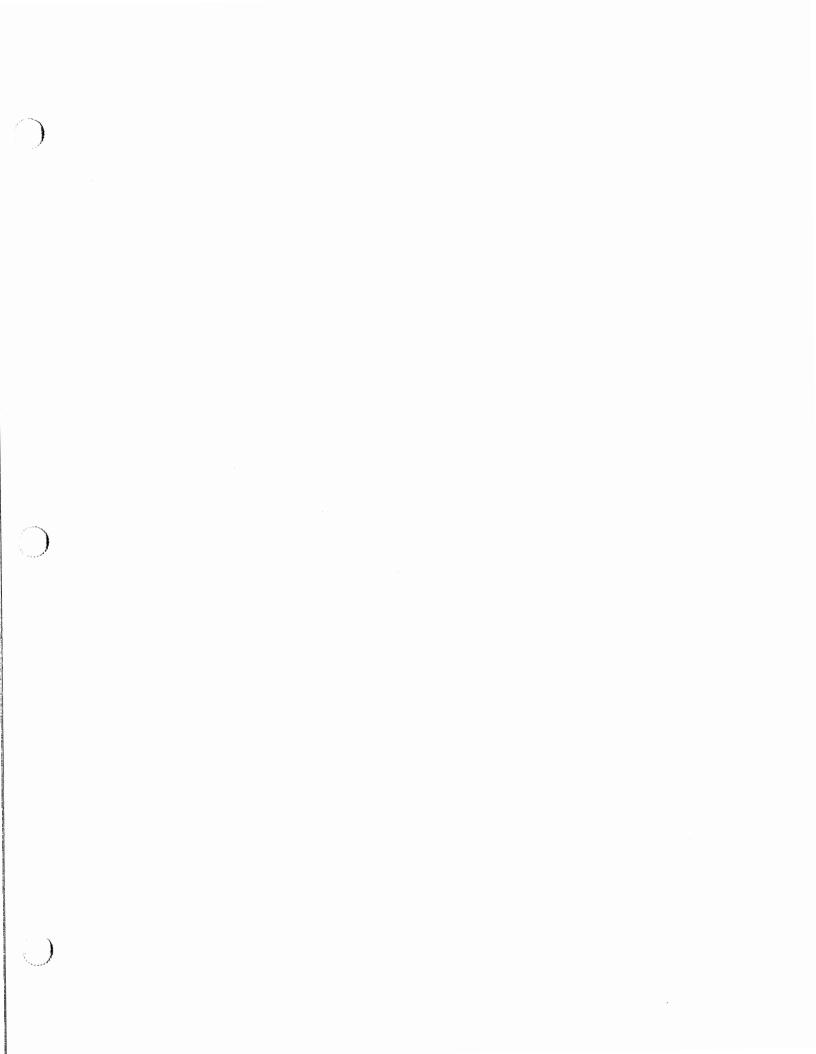
The evaluation of the information collected to date indicates that metals and explosive compounds have been transported away from the demolition mound. Surface water transport may be a significant pathway by which soil is eroded from the demolition mound, and the unvegetated nature of the OD Grounds suggests that wind erosion may also be a pathway by which contaminants are transported from the mound to the surrounding surface soil. No air monitoring has been performed during a detonation event, so air has not been evaluated as a transport pathway. Aside from the samples taken from the test pits at the demolition mound, no subsurface soil sampling was conducted at the site. There is no information, therefore, about the vertical extent of the contamination.

3.1.3.2 Groundwater Data

When originally sampled in 1979, the monitoring wells MW-1 to MW-4 contained iron in

excess of New York State Ground Water Standards (NYSGWS). Each of the monitoring wells, as well as samples taken from Reeder Creek, also contained explosive compounds.

Groundwater sampling conducted from 1982 through 1988 detected no explosive compounds in the monitoring wells, but NYSGWS were exceeded for metals in MW-1 (chromium, iron, lead), MW-2 (manganese, lead), MW-3 (lead), MW-4 (cadmium, chromium, lead), and MW-5 (chromium, manganese, lead, selenium). Verbal communication with USAEHA suggests that the collected groundwater samples were invalid due to high turbidity.


During the Quarterly Sampling Program for the OB Grounds, explosive compounds were detected on two different occasions in MW-4. Groundwater standards were exceeded for metals in MW-1 (iron, mercury), MW-2 (iron, mercury, antimony), MW-3 (iron), MW-4 (iron, magnesium, sodium), and MW-5 (iron). In most of the samples collected in January 1993, various metals, including iron, mercury, and zinc were found exceeding NYSGWS. These samples were extremely turbid, and the validity of the samples is questionable.

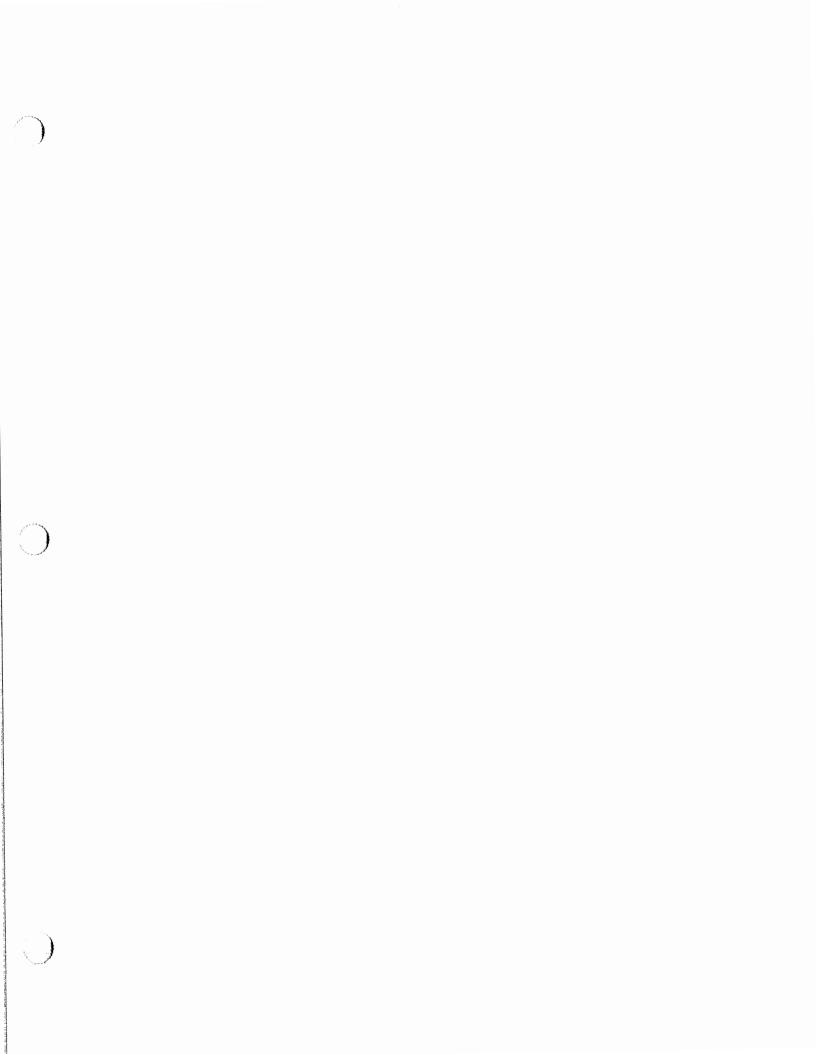
During the groundwater sampling program conducted for the ESI, explosive compounds were detected in MW-1 and MW-5. A variety of metals, particularly antimony, iron and manganese were found to exceed the NYSGWS in each of the eight monitoring wells sampled.

Cadmium, chromium, iron, lead, manganese, mercury, selenium, sodium, and zinc have all been detected in the OD monitoring wells at concentrations exceeding the NYSGWS, but no explosive compounds have been detected at concentrations exceeding the NYSGWS. Since explosive compounds are not naturally occurring compounds it must be concluded that they are the result of demolition activities carried out in the OD Grounds. Monitoring wells MW-1 and MW-5 lie between the detonation ground and the burning pads and could reflect the result of activities conducted at either area, but the remaining six monitoring wells discussed above are primarily influenced by the OD Grounds. This groundwater data suggests that metals and explosive compounds have leached from the demolition mound into the onsite groundwater.

3.1.3.3 Surface Water Data

Surface water sampling that was conducted during the OB RI detected both an explosive compound and metals in areas influenced by runoff from the OD mound. The surface water samples were taken from standing water in an area between the OB Grounds and the OD Grounds, from drainage swales leading from the OD mound into Reeder Creek, and from

Reeder Creek itself. RDX was the only explosive compound found. It was detected in SW-120, collected from Reeder Creek, and SW-160DL, collected from standing water between the OB Grounds and the OD Grounds. New York State has no water quality guideline for RDX in Class D surface water. Various metals were detected, but only SW-290, a sample from a drainage swale leading into Reeder Creek, contained metals (Cu, Fe) in concentrations above New York State guidelines.


Surface water samples taken during the ESI conducted at SEAD-45 detected both explosive compounds and metals as well. The surface water samples were collected from drainage ditches leading from the demolition mound to Reeder Creek and from standing water near the mound. The explosive compounds RDX and HMX were detected in SW45-2, collected from a drainage between the demolition mound and Reeder Creek; RDX was detected from SW45-1, located in the same drainage swale that SW-290 was collected. HMX was detected in SW45-3 collected from standing water between OB and OD where SW-160DL was collected.

Metals including aluminum, cadmium, copper, iron, lead, mercury, and zinc were found in the surface water. Of those, aluminum, iron, and mercury exceeded New York State guidelines in each of the four samples collected, and copper exceeded New York State guidelines in three of the four samples.

Explosive compounds and metals have been detected in standing water near the demolition mound, in water draining from the demolition mound, and in the Reeder Creek, which is the main transport pathway of water from the site. Some of the standing water collected and the water taken from Reeder Creek is in the area influenced by both the OB and the OD Grounds, and contamination could be a result of activities at either area. The surface water data suggests that surface runoff via overland flow is a significant pathway for contaminants to be transported away from the demolition mound and off of the site.

3.1.3.4 Sediment Data

Sediment samples for the OB RI were collected from the same locations as the surface water samples were collected for the OB RI. Two explosive compounds were detected in SD-290, located in a drainage swale leading from the demolition mound into Reeder Creek. HMX was detected at a concentration of 130 ppb, and 2-amino-4,6-dinitrotoluene was detected at a concentration of approximately 85 ppb. No explosive compounds were detected in the surface water collected at that location, but metals exceeding New York State surface water

SENECA SEAD-45 RI/FS PROJECT SCOPING PLAN

guidelines were found there. Six explosive compounds were detected at SD-190, collected in a drainage ditch between the OB and OD Grounds. The explosive compounds detected were HMX (120 ppb), RDX (500 ppb), 2,4,6-trinitrotoluene (100 ppb), 4-amino-2,6dinitrotoluene (160), 2-amino-4,6-dinitrotoluene (180 ppb), and 2,4-dinitrotoluene (98 ppb). This location was dry at the time of sampling, so there is no surface water data from this location.

Metals exceeding NYSDEC sediment criteria were found at each of the nine sediment locations sampled for the OB RI. These metals were arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Copper and iron exceeded NYSDEC criteria in eight of the nine samples, and lead, nickel, and zinc exceeded NYSDEC criteria in seven of the nine samples.

Sediment samples collected during the ESI conducted at SEAD-45 were also collected at the same location as the corresponding surface water sample. Explosive compounds were detected at only one of the sample locations, SD45-2. Five explosive compounds were detected there, RDX (210 ppb), Tetryl (140 ppb), 2,4,6-trinitrotoluene (120 ppb), 2-amino-4,6-dinitrotoluene (260 ppb), and 2,4-dinitrotoluene (83 ppb). The surface water sample at that location also contained explosive compounds.

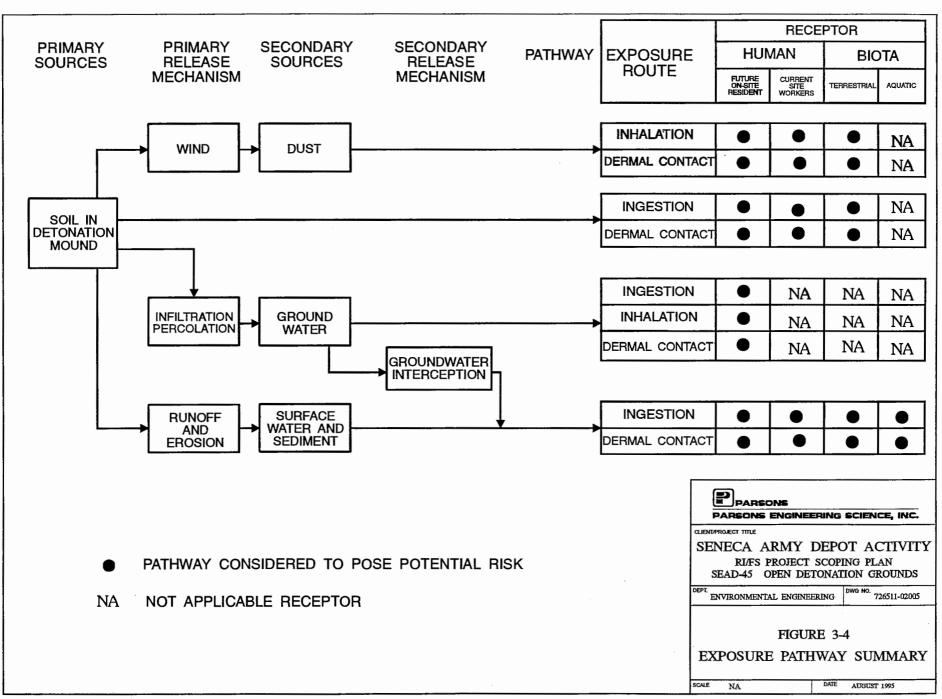
Metals in excess of NYSDEC sediment criteria were detected at three of the four sampling locations. SD45-2, SD45-3, and SD45-4 each contained copper and mercury in excess of NYSDEC criteria SD45-2 also contained cadmium and iron, and SD45-4 also contained cadmium.

The explosive compounds and metals detected in the sediment does not correlate directly with the explosive compounds found in the surface water samples, but the contaminants found in each of the two mediums do suggest that the contaminants are being transported by the surface water and are being deposited in the drainages leading from the demolition mound.

3.2 PRELIMINARY IDENTIFICATION OF POTENTIAL RECEPTORS AND EXPOSURE SCENARIOS

This section will identify the source areas, release mechanisms, potential exposure pathways and the likely human and environmental receptors at the OD Grounds, based upon the results of the conceptual site model, which was described in the previous section.

The complete potential exposure pathways from sources to receptors is shown schematically in Figure 3-4, the Exposure Pathway Model.


Section 3.2 discusses the current understanding of site risks for SEAD-45 based upon the data gathered from the ESI. This information will be used to assess whether sources of contamination, release mechanisms, exposure routes and receptor pathways developed in the conceptual site models for SEAD-45 are valid or if they may be eliminated from further consideration prior to conducting a risk assessment. Additionally, this information will determine what additional data are necessary to develop a better conceptual understanding of the site. This will serve to better determine risks to human health and the environment, define the Applicable or Relevant and Appropriate Requirements (ARARs), and develop appropriate remedial actions.

A conceptual site model was developed for SEAD-45 and was presented in the draft final ESI Report (Parsons ES, May 1995). The model identified potential source areas, release mechanisms, exposure pathways and receptors. It was based upon an understanding of historical usage, physical site characteristics and current site usage. Previous environmental sampling data was available for SEAD-45 prior to the ESI. Using the additional sampling data gathered during the ESI, the conceptual sit model was re-evaluated for SEAD-45. The following sections describe potential source areas, release mechanisms, exposure pathways and receptors for the various media investigated during the ESI.

This is a generic discussion. The future use scenario and the required degree of cleanup will be proposed as part of the feasibility study. The future plans for the site will be taken into account at that time. Currently, the Army has no plans to change the use of this facility or to transfer the ownership. In early July 1995, the Base Realignment and Closure Act (BRAC) Commission voted to recommend closure of SEDA. Until the BRAC Commission recommendations are voted on by the President and the Congress, the installation will remain open.

The President must approve the entire list at which time the list is forwarded to Congress. If Congress approves the recommendations they will become public law on October 1, 1995. If BRAC applies to SEDA, future use of the sites will be determined by the Army. In accordance with BRAC regulations, the Army will perform any additional investigations and remedial actions to assure that any change in intended land use is protective of human health and the environment.

H:\ENG\SENECA\SCOPING\SEAD45\45EXP.CDR

At this time, the specific details for closure procedures, projected timetables of closure, discussion of the Army's future intention for the sites, and a detailed account of notification methods to prospective purchasers are unavailable for inclusion in this Workplan. If it is decided that the base will be closed, then closure procedures will be obtained.

3.2.1 Potential Source Areas and Release Mechanisms

The suspected source area of the metals and explosive compounds at the OD Grounds is the soil that comprises the detonation mound. The mound is composed of soil which is moved via bulldozer before and after each detonation event. This area has been demonstrated to contain various explosive compounds and metals. Other potential source areas are the previous locations of the detonation mound. Air photos from 1968 show the detonation mound located 200 feet west of the present location. The different orientations of the electrical conduits found from the geophysical and test pit investigation for the ESI suggest that the mound may have been located in yet a third position. The continual movement of the soil in the mound due to earth moving activities associated with the detonation events is a mechanism by which the mound may be continually changing position.

The primary release mechanism from the source area is surface water run-off via overland flow and surface soil erosion. Leaching of metals and explosive compounds have been demonstrated by the presence of these contaminants in the groundwater, but the relatively low permeability of the till suggests that the leaching of explosive compounds and metals is not as significant a release mechanism compared to surface water runoff and erosion. The source area is contained primarily in surface soil, but the movement of contaminants with fugitive dust and direct dispersion of dust and/or volatile organic compounds into the air during periodic detonation events may constitute a significant release mechanism. Volatilization of the di- and trinitrotoluene compounds from primary and secondary sources may also constitute a less significant release mechanism.

These sources have the potential to contaminate the groundwater beneath the site, the sediment and surface water of the drainage areas on the OD Grounds, the sediment and surface water of Reeder Creek and the surface soil in and around the OD Grounds.

3.2.2 Potential Exposure Pathways and Receptors - Current Uses

The complete potential exposure pathways from sources to receptors are shown schematically in Figure 3-4. Access to the Open Detonation Grounds is restricted since it is located within

(

the Ammunition Storage Area. Access is further restricted by a locked gate at the entrance to the OB/OD Grounds. There are three primary receptor populations for potential releases of contaminants from the OD Grounds:

- Current site workers and visitors
- Terrestrial biota at or near the OD Grounds
- Aquatic biota in Reeder Creek

The exposure pathways and media of exposure are described below as they may affect the various receptors. The numerical assumptions that will be used in the risk assessment for the current use exposure scenario are listed in Table 4-1 of the Generic Installation RI/FS Workplan.

3.2.2.1 Ingestion and Dermal Exposure Due to Surface Water and Sediment

Surface water run-off flows to the wetlands and drainage swales on-site which discharge to Reeder Creek. Two small wetlands are located east of the detonation mound and one to the northwest of it. Surface soil eroded from the site is deposited as sediment within the on-site drainage swales and wetlands.

Current site workers and visitors could be exposed by way of ingestion or dermal contact to surface water or sediment in the drainage ditches or in Reeder Creek. Terrestrial biota that ingest or come in contact with surface water or sediment in the drainage ditches or Reeder Creek may be exposed. Aquatic biota in the drainage ditches or Reeder Creek may also be exposed.

3.2.2.2 Dust Inhalation and Dermal Contact

Contaminated fugitive dust may be released from the OD Grounds due to high winds, vehicle traffic through the area, or disturbance of the soil during site use. The receptors of fugitive dust releases by way of inhalation and dermal contact are current site workers, visitors and terrestrial biota.

3.2.2.3 Incidental Soil Ingestion and Dermal Contact

Incidental ingestion of, and dermal contact with, impacted soil is a potential exposure pathway for current site workers, visitors and terrestrial biota.

3.2.2.4 Ingestion of Groundwater

The groundwater at the OD Grounds is not used as a drinking water source. It is not anticipated that there will be direct exposure to the groundwater from the site under current uses to current site workers, visitors or terrestrial biota.

3.2.3 Potential Exposure Pathways and Receptors - Future Uses

Under current site conditions, access to the site is limited. While strict land use control can not be ensured in future uses, limitations may be imposed through zoning restrictions or deed restrictions. Potential future uses of the site include light industrial and unrestricted residential or other private development.

For future uses of the Open Detonation Grounds, the receptor population that would differ from the above-mentioned receptors would be on-site residents. For the ingestion of soil, surface water, and sediment and dermal contact with surface water and sediment, the receptors would be primarily children. Dermal contact with soil; ingestion of, inhalation of, and dermal contact with groundwater; and inhalation and dermal contact with fugitive dust are potential exposure pathways for all future on-site residents.

The numerical assumptions that will be used in the risk assessment for the future use exposure scenario are listed in Table 4-1 of the Generic Installation RI/FS Workplan.

3.3 SCOPING OF POTENTIAL REMEDIAL ACTION ALTERNATIVES

A comprehensive list of remedial action alternatives are discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

Based upon sampling data gathered during the ESI, the media of concern at SEAD-45 for protection of human health and the environment and compliance with ARARs are:

- surface soil (0-2 inches) and sediment containing metals and explosive compounds
- groundwater containing metals
- surface water containing metals and explosive compounds

Human health concerns for SEAD-45 would focus primarily on inhalation and dermal contact of surface soil for current site usage. For future site usage, groundwater ingestion would be an additional human health concern as well as compliance with ARARs.

3.4 PRELIMINARY IDENTIFICATION OF APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs)

A comprehensive list of ARARs is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

Identification of ARARs will be performed during the RI/FS process. As additional data are collected regarding the nature and extent of contamination, site specific conditions, and potential use of various remedial technologies, additional ARARs will be selected and existing ARARs will be reviewed for their applicability.

3.5 DATA QUALITY OBJECTIVES (DQOs)

DQOs are discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

Any further investigations conducted at SEAD-45 either as part of this scoping document, or other additional work, will conform with all of the stated DQOs. Additional sampling of groundwater, soil, sediment and surface water will generally require Level IV quality data.

3.6 DATA GAPS AND DATA NEEDS

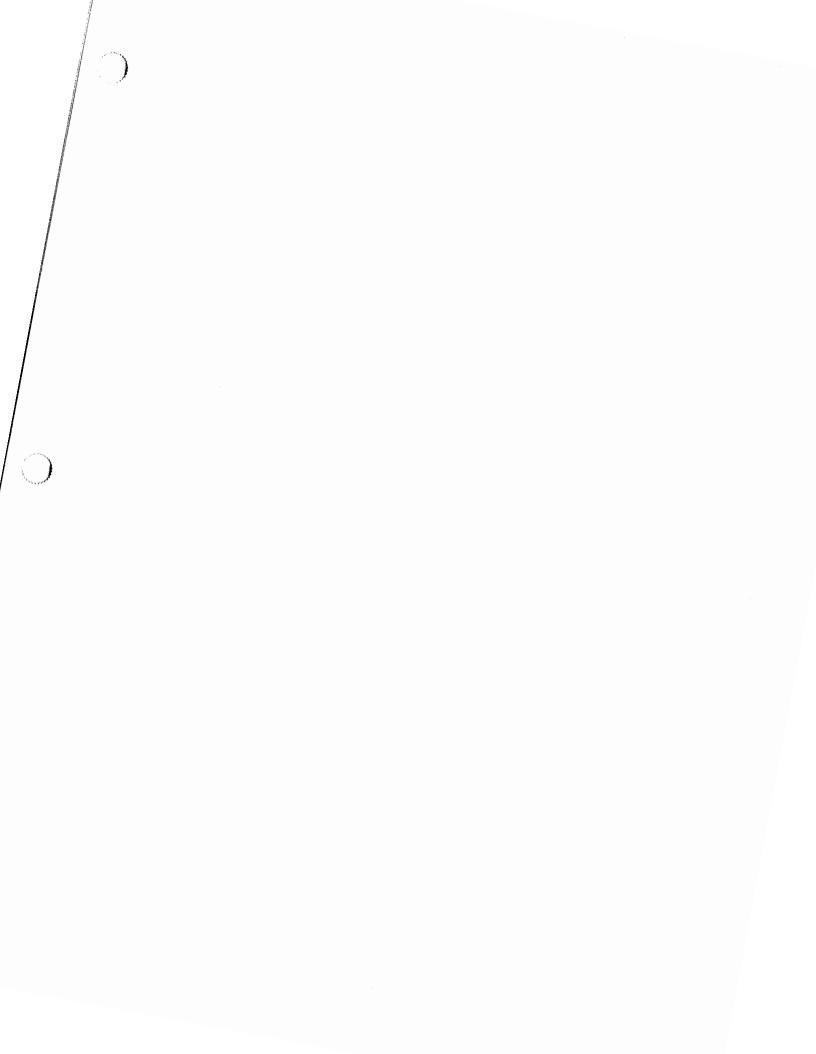
The investigations conducted during the ESI at SEAD-45 were conducted to gain a preliminary understanding of the nature and extent of contamination. These data were to be used to evaluate the potential for risks to human health and the environment. A conceptual site model was also developed identifying potential source area release mechanisms and receptor pathways. The result of the investigations at SEAD-45 were used to refine the conceptual site model and to determine additional data requirements for a complete evaluation of risks to human health and the environment, compliance with ARARs and the development of preliminary remedial action alternatives.

August, 1995

The data gaps and subsequent data needs for SEAD-45 are a direct result of the need to meet the DQOs identified in the Generic Installation RI/FS Workplan. By media, these data needs are:

Groundwater Data

- Verify the results from the monitoring wells already established at the OD site. This will entail the redevelopment and sampling of six existing monitoring wells.
- Install and sample five additional overburden monitoring wells. Collected data will establish contaminant concentrations in the aquifer.
- Establish database to determine compliance with ARARs in clean-up goals.
- In addition to assessing the ground water quality, the hydraulic conductivity of the aquifer will be determined to assess contaminant migration and potential remedial actions.


Surface Water/Sediment Data

- Determine nature and extent of contamination for on-site and off-site surface waters and sediment. Sample collection will include standing water at the OD Grounds, drainages leaving the OD Grounds, Reeder Creek, and smaller creeks to the west of the OD Grounds.
- Establish concentration levels in Reeder Creek, upstream and downstream from the OB/OD site.
- Compare SEAD-45 sediment data to site-wide sediment background data that has been compiled from the ESIs performed at 25 SEADs and RIs completed at the OB Grounds and at the Ash Landfill.
- Establish database for environmental compliance with ARARs or clean-up goals, to perform baseline risk assessment and to develop remedial action alternatives.
- Total Organic Carbon (TOC) and grain size analysis will be performed on sediment samples to assess the sorptive potential of the sediment.

Soil Data

• Determine the nature and extent of contamination across the site. Number and depth of soil borings are more completely described in Section 4, the Task Plan for the RI. There will be 47 soil boring locations across approximately 30-acres of the site at a 200 foot spacing. Collect samples for risk evaluation.

August, 1995

- Compare SEAD-45 soil data to site-wide soil background data that has been compiled from 57 background samples obtained from the ESIs performed at 25 SEADs and RIs completed at the OB Grounds and the Ash Landfill.
- TOC and grain size analysis will be performed at two soil boring locations to assess the sorptive potential of the soil.
- Establish database for environmental compliance with ARARs or clean-up goals, to perform baseline risk assessment and to develop remedial action alternatives.

Ecological Data

- Ecological Assessment to systematically document visual observations discriminating between obviously and potentially impacted and non-impacted areas. This will determine where and if there is a need for further investigation.
- Establish database for environmental compliance with ARARs or clean-up goals, to perform baseline risk assessment and to develop remedial action alternatives.

4.0 TASK PLAN FOR THE REMEDIAL INVESTIGATION (RI)

This section describes the tasks required for completion of the Remedial Investigation (RI) at SEAD-45. These include:

- Pre-field Activities
- Field Investigations
- Data Reduction, Interpretation and Assessment
- Data Reporting
- Task Plan Summary

4.1 PRE-FIELD ACTIVITIES

The pre-field activities will include the following:

- A site inspection to familiarize key project personnel with site conditions and finalize direction and scope of field activities
- A comprehensive review of the Health & Safety Plan with field team members to insure that the hazards that might occur and preventive and protective measures for those are completely understood
- An inspection of all equipment necessary for field activities to insure proper functioning and usage
- A comprehensive review of sampling and work procedures with field team members
- Unexploded ordnance (UXO) clearance

4.2 FIELD INVESTIGATIONS

Five major tasks comprise the field investigation of the RI:

- Soil Investigation
- Surface Water and Sediment Investigation
- Groundwater Investigation
- Ecological Investigation

August, 1995

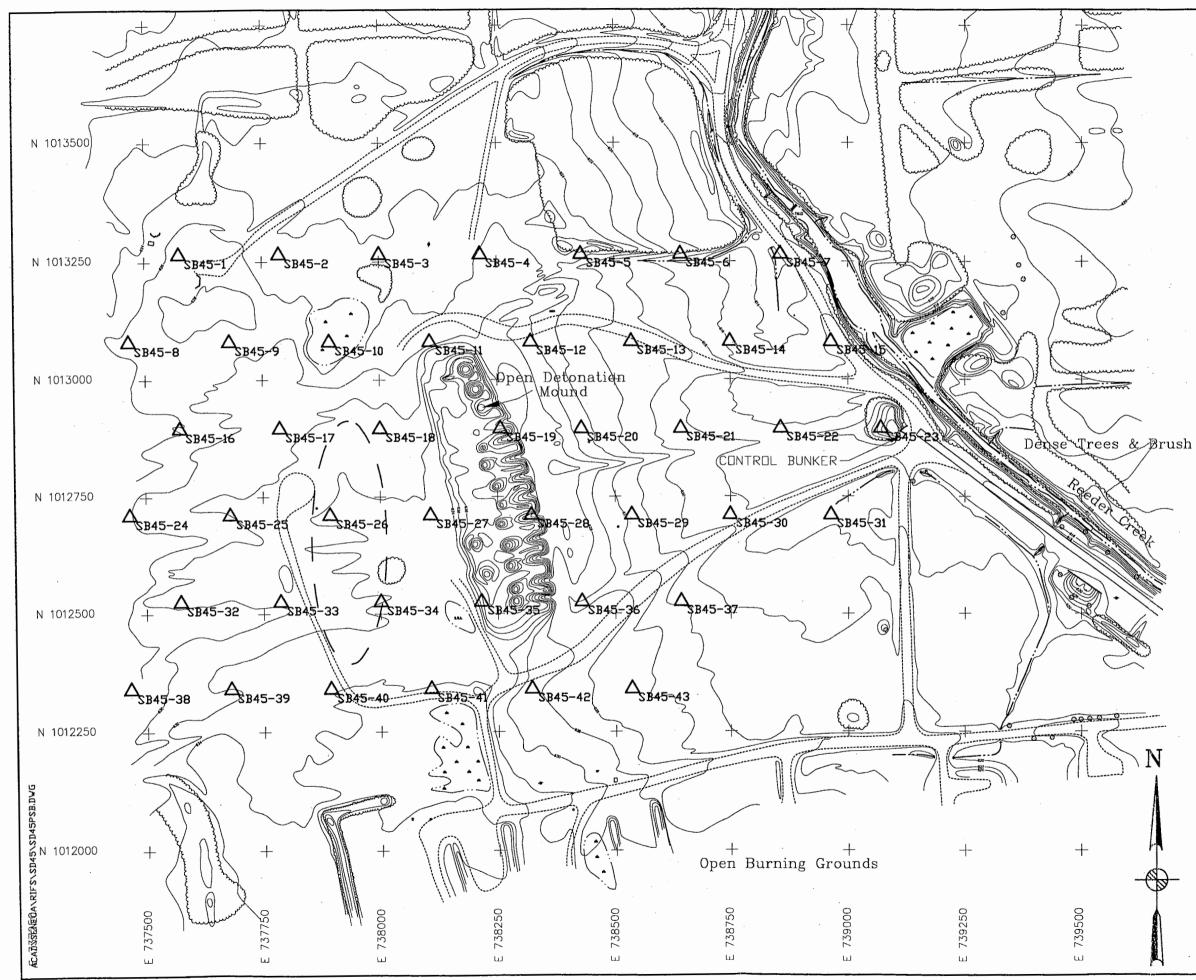
The purpose of the field investigation program is to:

- Determine the nature and extent of contamination across the site
- Determine if the constituents exceed background levels
- Provide a database for the site risk assessment
- Provide a database for the feasibility study

The following sections describe the general scope of work involved in each of these tasks. The data collected during this program will be used to assess these potential exposure pathways.

4.2.1 <u>Soil Investigation</u>

The program will consist of both subsurface and surface soil samples. Subsurface soil samples will be collected from a grid of soil borings across the site. Surface soil samples will be collected from areas where elevated levels of explosives and metals were detected in previous investigations. Additional surface soil samples will be taken within 2000 feet of the OD grounds to evaluate the extent of downwind contamination at the site. Background soil concentrations have been determined in previous investigations performed at SEDA, and those values will be used to compare with the analytical results for soil in this investigation.


4.2.1.1 Soil Boring Program

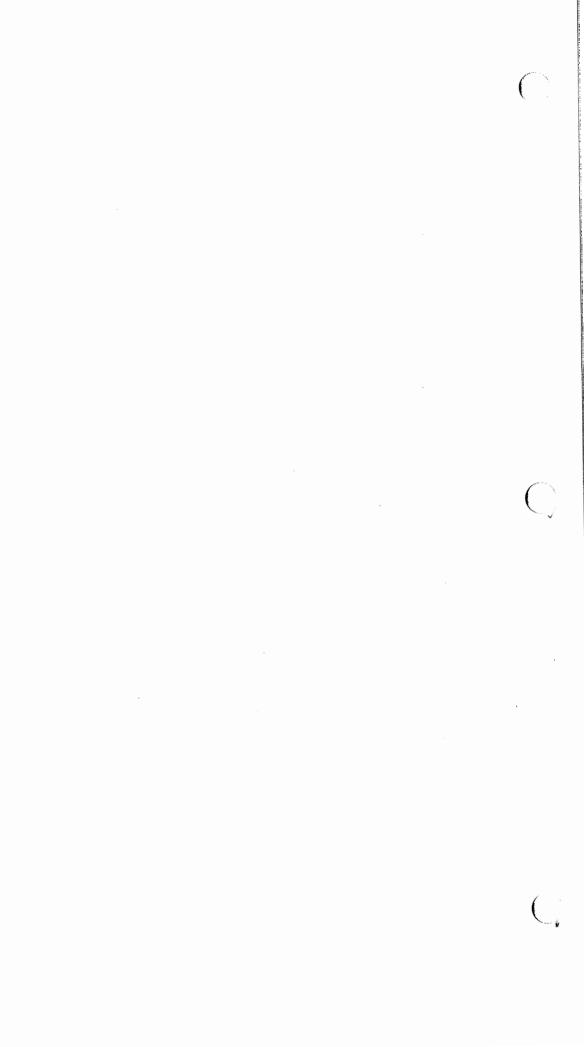
Surface water runoff soil erosion from the detonation mound has been determined to be the primary mode of transport of constituents away from the mound source area. Because precipitation drains off of the mound in all directions, and because no subsurface soil data exists at the OD grounds, a grid of soil borings will be drilled across the OD Grounds, as shown in Figure 4-1. The grid will cover approximately 30 acres. The boundaries of the grid will be Reeder Creek, and approximately 800 feet west, 400 feet north, and 100 feet south of the detonation mound. The grid extends 800 feet west of the detonation mound for two reasons: 1) air photos from 1968 show that the detonation mound was previously located approximately 400 feet to the west of its present location, and 2) current air photos show that soil disturbed by bulldozing activity extends approximately 800 feet from the mound. The grid extends only 100 feet to the south because any soil borings performed further than that would be within the OB Grounds, where a Remedial Investigation has already been performed.

August, 1995

Page 4-2 K:\SENECA\RIFS\SEAD-45\Section.4

.

LEGEND MINOR WATERWAY MAJOR WATERWAY FENCE UNPAVED ROAD BRUSH LINE uuuuuuuuuu LANDFILL EXTENTS ************************* RAILROAD GROUND SURFACE 760 ELEVATION CONTOUR ٢ \triangle -0-ROAD SIGN DECIDUOUS TREE GUIDE POST +Я \otimes FIRE HYDRANT MANHOLE COORDINATE GRID (250' GRID) \odot $\left[\cdot \right]$ POLE UTILITY BOX MAILBOX/RR SIGNAL -------OVERHEAD UTILITY POLE 🛛 SURVEY MONUMENT LOCATION OF DETONATION MOUND IN 1968 Δ PROPOSED SOIL BORING 100 200 (feet) PARSONS PARSONS ENGINEERING SCIENCE, INC. LIENT/PROJECT TITLE SENECA ARMY DEPOT ACTIVITY RI/FS PROJECT SCOPING PLAN SEAD-45 OPEN DETONATION GROUNDS 726510-03001 ENVIRONMENTAL ENGINEERING FIGURE 4-1 PROPOSED SOIL BORING LOCATIONS AUGUST 1995 1" = 200'


. .

.

·

·

.

Because of the suspected wide distribution of impacts to surface soils at the site, the proposed sampling program is designed to evaluate the entire OD Grounds. Sample locations were selected using a random-start equilateral triangular grid method ("Statistical Methods For Evaluating the Attainment of Cleanup Standards, Volume 3: Referenced-Based Standards for Soils and Soil Media," EPA, Policy, Planning and Evaluation, EPA 230-R-94-004). This method provides uniform coverage of the area to be sampled, whereas random sampling can leave subareas that are not sampled. Using the method, a distance of 214 feet between sampling points was determined. After laying out the individual sampling points in the area to be sampled, the resulting grid contains 43 points, as shown in Figure 4-1.

At each soil boring location, a surface soil (0-2") sample will be collected. Because there is no existing subsurface soil data, soil borings will be performed by the continuous split spoon method. Samples will be collected every two feet from the ground surface to the water table and will be sent to the laboratory for Level II screening for metals and explosives. Approximately 215 subsurface soil samples are expected to be collected from the 43 soil borings and submitted to the laboratory for Level II screening. Continuous split spoon sampling will continue for the remainder of the soil boring. The samples below the water table will not be submitted to the laboratory for analyses, with the exception of samples submitted for grain size and total organic carbon (TOC) analysis.

The soil sampling will be performed until split-spoon refusal is encountered. Normally, refusal is defined as when 100 blows to the split spoon using a 140 lb hammer dropped from a height of 30 inches fails to drive the spoon half of a foot into the earth. From previous drilling programs conducted at the site, split-spoon refusal is expected to occur at 10 feet.

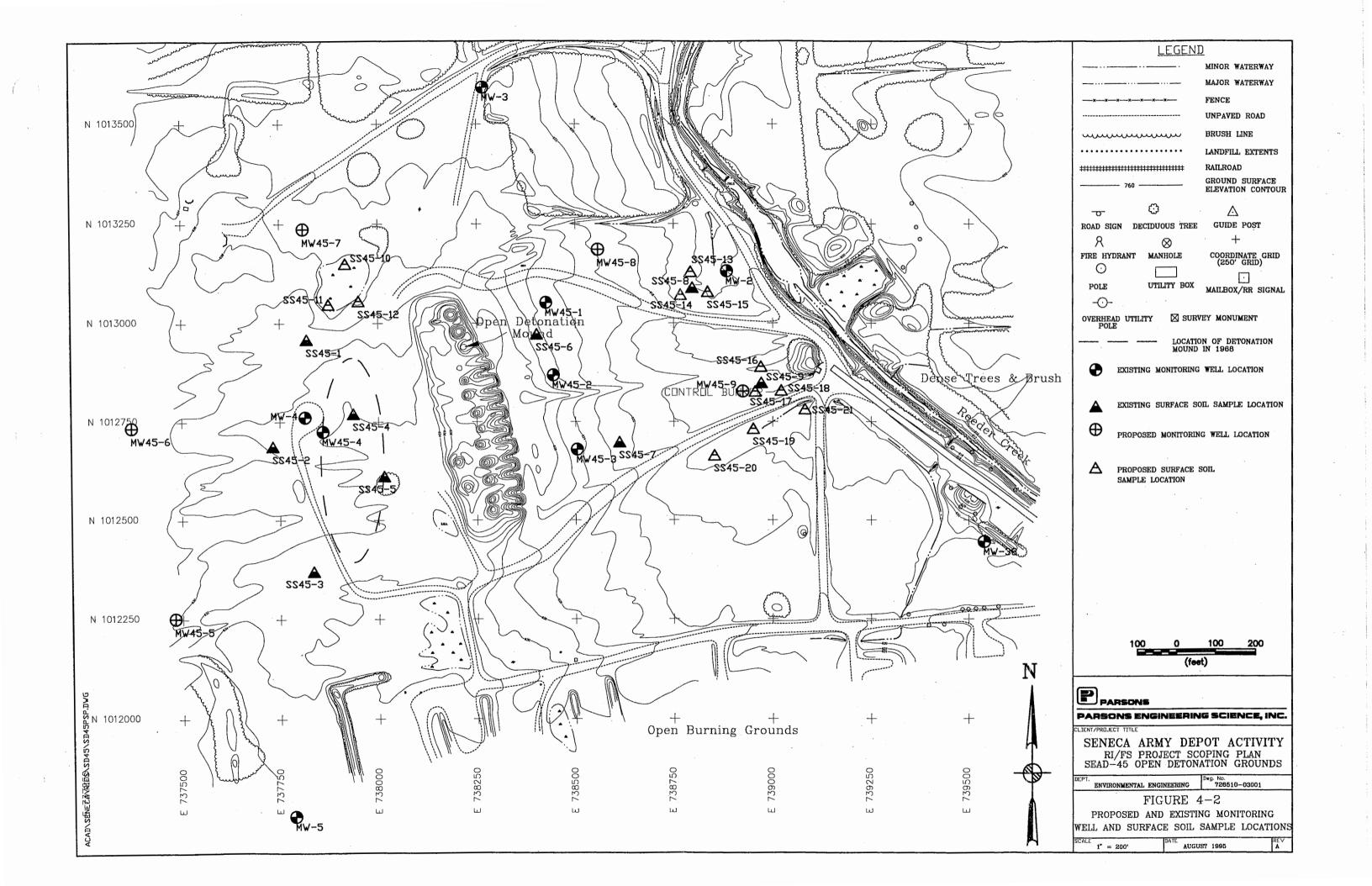
The geologist may decide to continue split-spoon sampling if it is believed that split-spoon refusal at shallow depths is due to a reason other than penetration into weathered or competent shale. However, since UXOs may be encountered at the site, the definition of refusal may be modified. For the safety of the drilling contractor, refusal may be a field decision by the UXO clearance personnel that an object other than bedrock has been encountered. If the soil boring is not stopped due to UXO concerns, the soil boring will continue until auger refusal is reached. Auger refusal for this project is defined in Appendix A, Field Sampling and Analysis Plan. All sampling and drilling will be performed according to the procedures outlined in Appendix A, Field Sampling and Analysis Plan.

August, 1995

Because UXOs are a concern across the entire grid of soil borings, each soil boring location will be cleared for UXOs before drilling and all drilling activities will be continuously monitored by UXO clearance personnel. Because the detonation mound cannot be cleared of UXOs, soil borings located on the detonation mound will be offset to the nearest location off of the mound. The drilling, decontamination, and UXO clearance procedures are described fully in Appendix A, Field Sampling and Analysis Plan.

All subsurface soil samples collected from the 43 soil borings will undergo Level II screening analyses for TNT, mercury and copper. By screening the soil samples to determine which ones contain the highest concentrations of TNT, mercury, and copper, it will not be necessary to perform the Level IV analyses on all of the subsurface sample collected. TNT, mercury and, copper are judged to be good indicator compounds because they were found to be prevalent in earlier soil investigations and at elevated concentrations. Level II screening is being incorporated into this investigation because it will allow a large grid covering the OD grounds to be investigated while keeping the laboratory costs to a minimum. Based upon the Level II data, a select portion of these samples will undergo NYSDEC CLP Level IV analysis. Overall, there will be three complete Level IV analyses per borehole, the surface sample and two subsurface samples. The Level II screening is discussed fully in section 4.2.5.2, Analytical Program, Level II Screening.

In addition, grain size analysis and TOC analysis will be performed at two soil boring locations. At each of the two soil borings selected, three subsurface samples (one near the surface, one below the water table, and one intermediate) will be submitted for these analyses.


All surface soil samples will undergo the Level IV analyses specified in Section 4.2.5.2, Analytical Program, Level IV Analyses. No Level II screening will be performed on the surface soil samples.

4.2.1.2 Surface Soil Program

In addition to the surface soil sample that will be collected at each of the soil boring locations, surface soil samples will be collected in four areas where previous sampling detected elevated levels of metals and explosives. At these four locations, three surface soil samples will be collected at an approximate fifty foot spacing around the previous sample location to determine the extent of the elevated concentrations of contaminants. The proposed surface soil sample locations are shown in Figure 4-2.

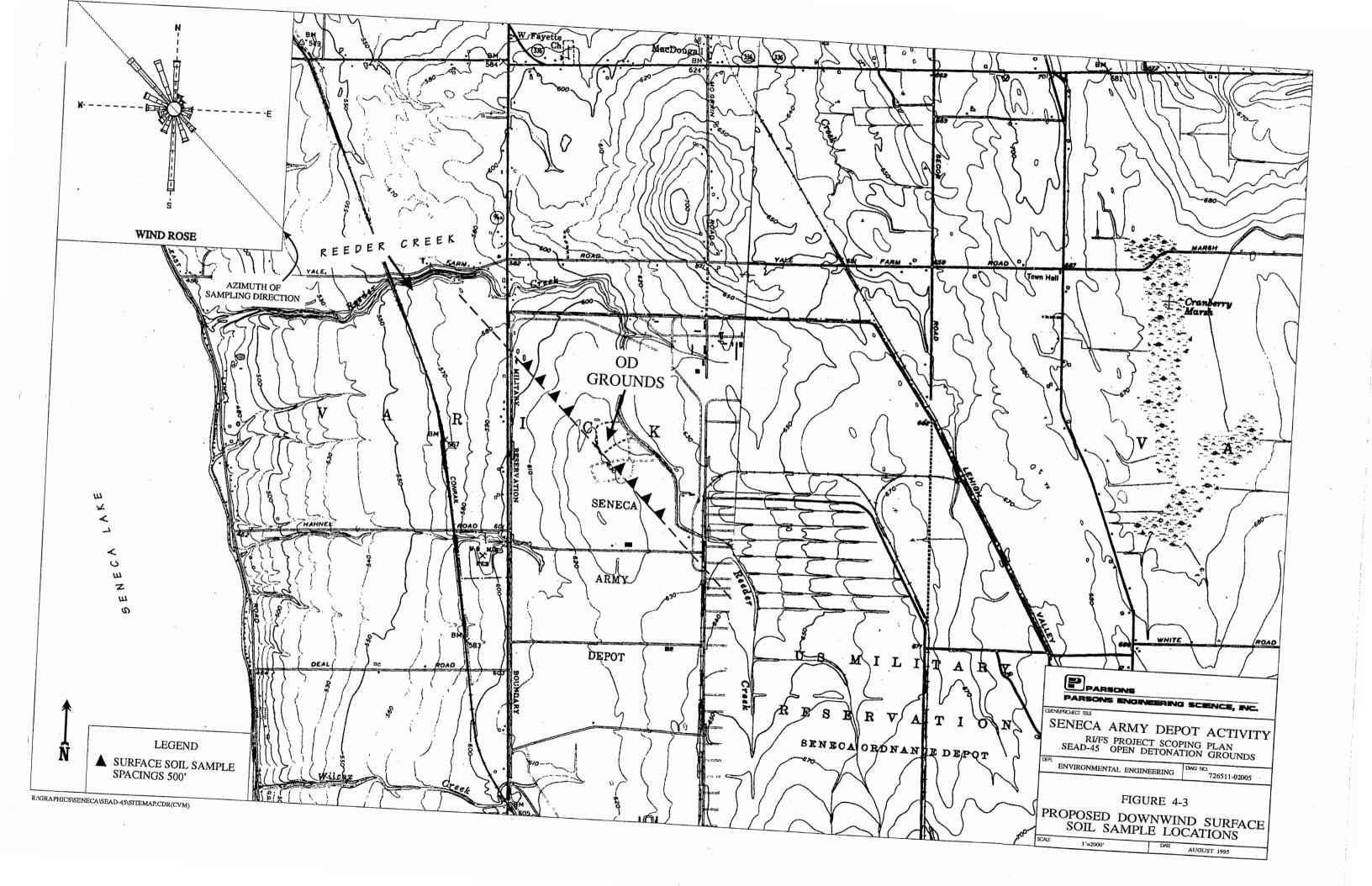
.

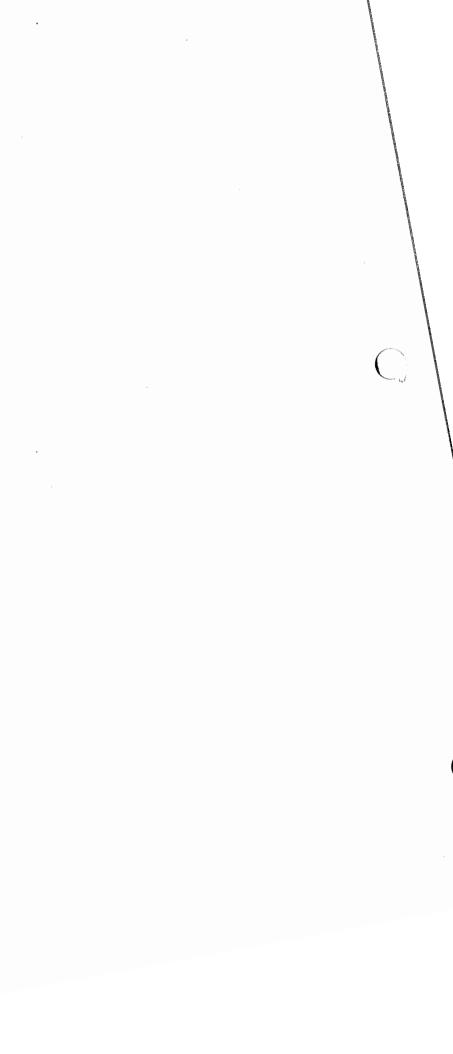
C

. .

Surface samples will also be collected to evaluate the potential for downwind transport of contaminants from the detonation mound. In order to assess wind as a transport and exposure pathway, surface soil samples will be collected 1000, 1500, 2000, and 2500 feet away from the detonation mound in the two primary wind directions. The primary wind directions at SEDA are to the north-northwest and the south-southeast. All of the downwind sample locations along the north-northwest/south-southeast azimuth and the wind rose used to determine the primary wind direction are shown in Figure 4-3. The wind rose data, which is representative of the wind patterns at SEDA, was gathered from the airport in Ithaca, New York.

A total of 12 surface soil samples will be collected at the OD Grounds and a total of 8 surface soil samples will be collected downwind of the OD Grounds. All samples will be collected from 0-2 inches below the surface organic material. Surface soil sample collection procedures are described in Appendix A, Field Sampling and Analysis Plan. The downwind surface soil samples will be tested according to the analyses specified in section 4.2.5.2, Analytical Program, Level IV Analyses. All of the surface soil samples submitted to the laboratory will undergo NYSDEC CLP Level IV analyses. No Level II screening will be performed on surface soil samples.


4.2.1.3 Soil Sampling Summary


One surface soil sample will be collected at each of 43 soil boring locations resulting in 43 surface soil samples. Three surface soil samples will be collected at four locations where high concentrations of contaminants were noted from the results of the ESI sampling, resulting in 12 surface soil samples. Four surface soil samples will be taken from two downwind directions from the detonation mound resulting in 8 surface soil samples. A total of 63 surface soil samples will be submitted to the laboratory to undergo NYSDEC CLP Level IV analyses. Approximately five subsurface soil samples from each of 43 soil borings will be submitted to the laboratory for Level II analysis resulting in approximately 215 Level II analyses. Of those submitted, two subsurface samples from each soil boring will undergo NYSDEC CLP Level IV analysis.

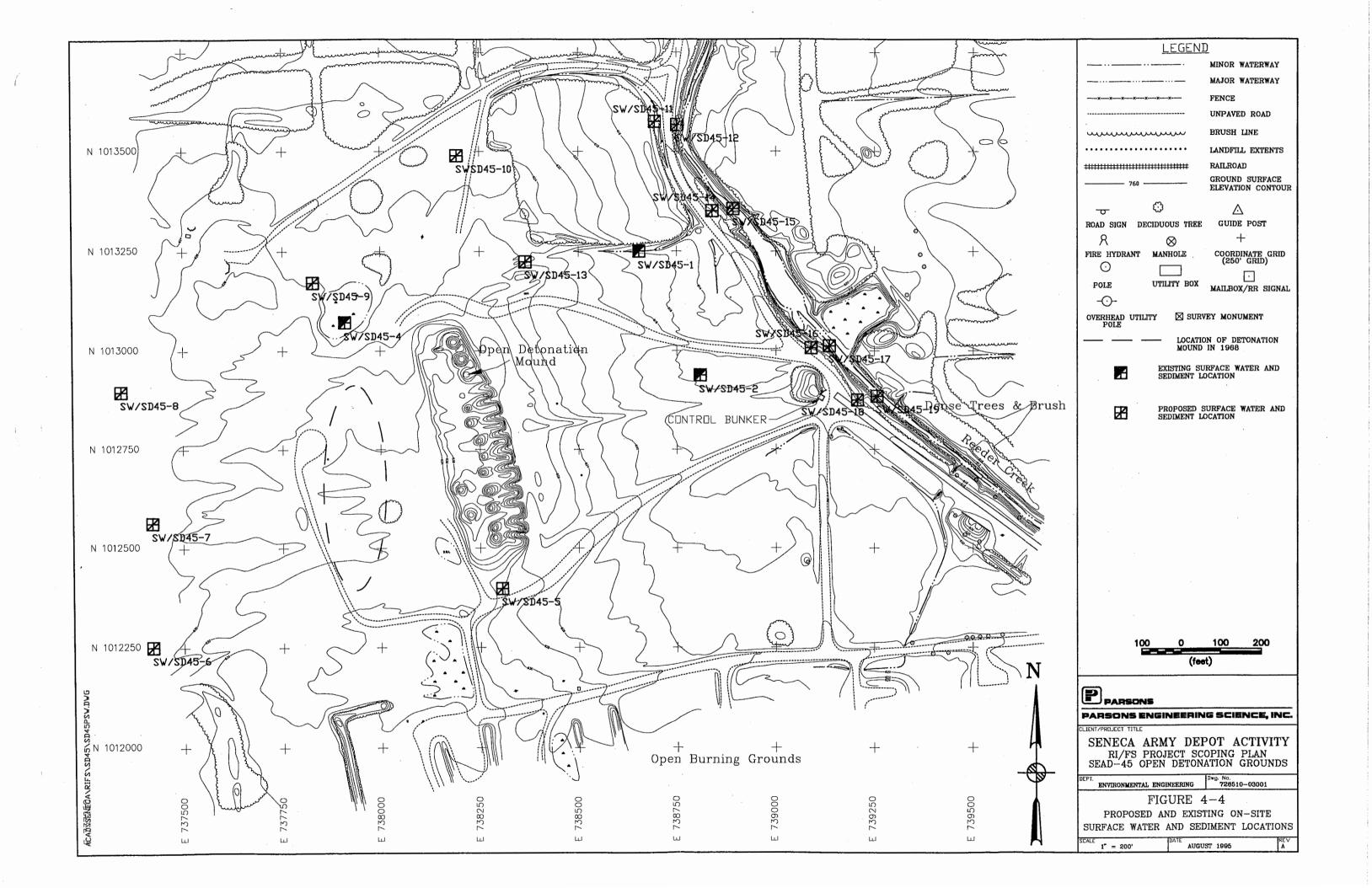
4.2.2 Surface Water and Sediment Investigation

The intent of the surface water and sediment investigation is to determine the nature and extent of impacts to the on-site and off-site surface waters. While sample collection will focus

on standing water near the detonation mound and Reeder Creek, as shown in Figure 4-4, three smaller creeks to the west of the OD Grounds will be sampled as well, as shown in Figure 4-5. Concentrations of constituents in Reeder Creek, upstream of the OD site, will be used as background.

The migration of groundwater toward Reeder Creek has been identified previously by M&E (1989). Streamflow and surface elevation measurements of Reeder Creek were obtained during the OB RI, and the findings supported M&E's conclusion. The relationship between groundwater and surface water is of concern since a groundwater plume, if detected, may be discharging to Reeder Creek. Since an extensive investigation of Reeder Creek was performed for the OB RI, and Reeder Creek is not suspected to have significantly changed since then, no investigation will be performed on Reeder Creek for this RI/FS.

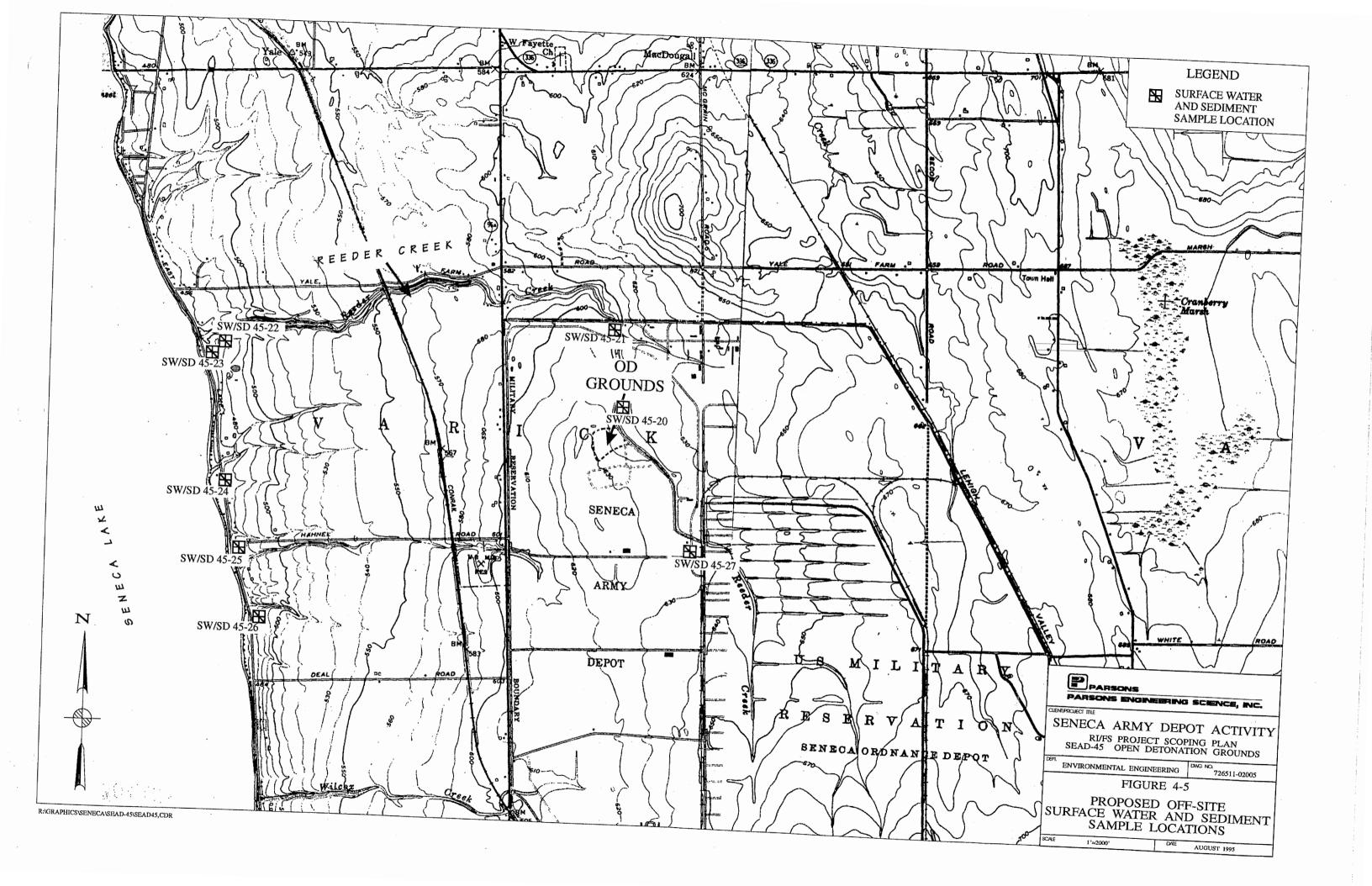
Before the surface water and sediment sampling begins, the freshwater wetlands within the OD Grounds will be surveyed and mapped at a scale of 1 inch = 200 feet using the 1987 Corps of Engineers Wetland Delineation Manual. The surface water and sediment sampling plan may be modified if the wetland information indicates that sampling would be more effective in different locations.


A total of 23 surface water and sediment samples will be collected at the locations shown in Figures 4-4 and 4-5. Seven on-site surface water samples will be collected around the demolition mound at SEAD-45. Four samples will be collected from the west bank of Reeder Creek where drainage swales from the OD grounds discharge to Reeder Creek, and 4 more samples will be collected from Reeder Creek adjacent to these locations. Four samples from Reeder Creek will also be collected downstream of the OD grounds; two at the mouth of the creek near the discharge to Seneca Lake, 1 at the SEDA property boundary, and 1 at the culvert that restricts the creek's flow approximately 2000 feet downstream of the OD Grounds. Additionally, 3 samples will be taken from smaller streams discharging into Seneca Lake directly west of the OD grounds. Finally, 1 upstream sample will be taken where Reeder Creek enters the OD grounds.

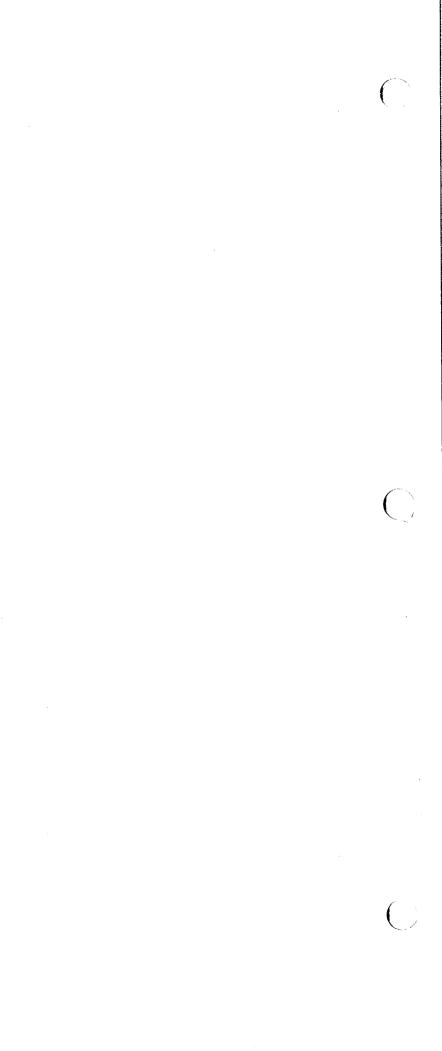
At each sampling location, a surface water and a sediment sample will be collected. The surface water and sediment sampling procedures are described in Appendix A, Field Sample and Analysis. The surface water and sediment will be tested according to the analyses described in section 4.2.5.2, Analytical Program, Level IV Analyses. Each sediment sample will also undergo grain size analysis.

August, 1995

Page 4-9 K:\SENECA\RIFS\SEAD-45\Section.4



`


·

.

.

·

4.2.3 <u>Groundwater Investigation</u>

4.2.3.1 Monitoring Well Installation

Although 9 monitoring wells exist and have been previously sampled at the OD grounds, the lateral extent of potential pollutant migration from the detonation mound has not been fully characterized. In addition, water levels measured in the area for the OB Grounds RI indicate that a groundwater divide may exist to the west of the OD mound, as shown in Figure 3-3, and the potential for constituents to leach from the surface soil and migrate westward has not been investigated.

Consequently, the goals of the proposed groundwater investigation are to:

- Verify the data from previous groundwater sampling
- Evaluate the lateral extent groundwater impacts
- Gather additional potentiometric data to confirm groundwater flow direction and determine hydraulic conductivity
- Determine whether a groundwater divide exists to the west of the OD mound

To accomplish those goals, 5 additional overburden monitoring wells will be installed at various locations around the demolition mound. The investigation will include the redevelopment and sampling of 7 of the 9 existing monitoring wells as well as the 5 proposed monitoring wells. The two existing monitoring wells that will not be sampled are MW45-1 and MW-4. MW45-1 will not be sampled because it is a dry well. MW-4 is located only 50 feet from MW45-4, so of those two monitoring wells, only MW45-4 will be sampled. The locations of the existing and proposed monitoring wells are shown in Figure 4-2.

Monitoring well installation and development procedures for overburden monitoring wells are described in Appendix A, Field Sampling and Analysis Plan. All monitoring wells will be properly developed prior to sampling. Two separate rounds of groundwater sampling will be performed approximately 3 to 4 months apart. Groundwater sampling procedures are described in Appendix A, Field Sampling and Analysis Plan. The groundwater samples will be tested according to the analyses described in section 4.2.5.2, Analytical Program, Level IV Analyses.

August, 1995

Page 4-12 K:\SENECA\RIFS\SEAD-45\Section,4

.

4.2.3.2 Aquifer Testing

Aquifer testing will be performed at the 12 monitoring wells. In-situ hydraulic conductivity tests will be performed on the seven monitoring wells using either a rising or falling head test. Three rounds of water levels will be measured at each of the monitoring wells at SEAD-45 to further define the existing data on groundwater flow at the site. Water levels will also be measured at the monitoring wells at the adjacent OB grounds to obtain a more complete map of groundwater elevations. The first round of groundwater levels will be measured at the time that the monitoring wells are developed, the second round will be measured at the time of the first round of groundwater sampling, and the third round of groundwater levels will be measured at the time of the second round of groundwater sampling. Procedures for in-situ conductivity tests and water level measurements are outlined in Appendix A, Field Sampling and Analysis Plan.

4.2.4 <u>Ecological Investigation</u>

The following procedure for the ecological investigation was developed from the New York State Department of Environmental Conservation (NYSDEC) Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (1994). The purpose of the ecological investigation is to determine if aquatic and terrestrial resources have been affected by a release of contaminants from the site. The investigation will be completed in two parts. The first part will be the site description, which will involve the accumulation of data describing the physical characteristics of the site, as well as the identification of aquatic and terrestrial resources present or expected to be present at the site. The second part will be the contaminant-specific impact analysis, which involves the determination of whether the identified aquatic and terrestrial resources have been impacted by contaminants that have been released at the site. The second part of the ecological investigation is dependent upon the chemical analyses of the samples collected for the RI, described in Sections 4.2.1 through 4.2.3.

4.2.4.1 Site Description

The purpose of the site description is to determine whether aquatic and terrestrial resources are present at the site and if they were present at the site prior to contaminant introduction; and if they were present prior to contaminant introduction, to provide the appropriate information to design a remedial investigation of the resources. The information to be

gathered includes site maps, descriptions of aquatic and terrestrial resources at the site, the assessment of the value of the aquatic and terrestrial resources, and the appropriate contaminant-specific and site-specific regulatory criteria applicable to the remediation of the identified aquatic and terrestrial resources.

A topographic map showing the site and documented aquatic and terrestrial resources within a two mile radius from the site will be obtained. The aquatic and terrestrial resources of concern are Significant Habitats as defined by the New York State Natural Heritage Program; habitats supporting endangered, threatened or rare species or species of concern; regulated wetlands; wild and scenic rivers; significant coastal zones; streams; lakes; and other major resources.

A map showing the major vegetative communities within a half mile radius of the site will be developed. The major vegetative communities will include wetlands, aquatic habitats, NYSDEC Significant Habitats, and areas of special concern. These covertypes will be identified using the NYSDEC Natural Heritage Program descriptions and classifications of natural communities.

To describe the covertypes at the site, the abundance, distribution, and density of the typical vegetative species will be identified. To describe the aquatic habitats at the site, the abundance and distribution of aquatic vegetation will be identified. The physical characteristics of the aquatic habitats will also be described and will include parameters such as the water chemistry, water temperature, dissolved oxygen content, depth, sediment chemistry, discharge, flow rate, gradient, stream-bed morphology, and stream classification.

The aquatic and terrestrial species that are expected to be associated with each covertype and aquatic habitat will be determined. In particular, endangered, threatened and rare species, as well as species of concern, will be identified. Alterations in biota, such as reduced vegetation growth or quality will be described. Alterations in, or absence of, the expected distribution or assemblages of wildlife will be described.

A qualitative assessment will be conducted evaluating the ability of the area within a half mile of the site to provide a habitat for aquatic and terrestrial species. The factors that will be considered will include the species' food requirements and the seasonal cover, bedding sites, breeding sites and roosting sites that the habitats provide.

.

. .

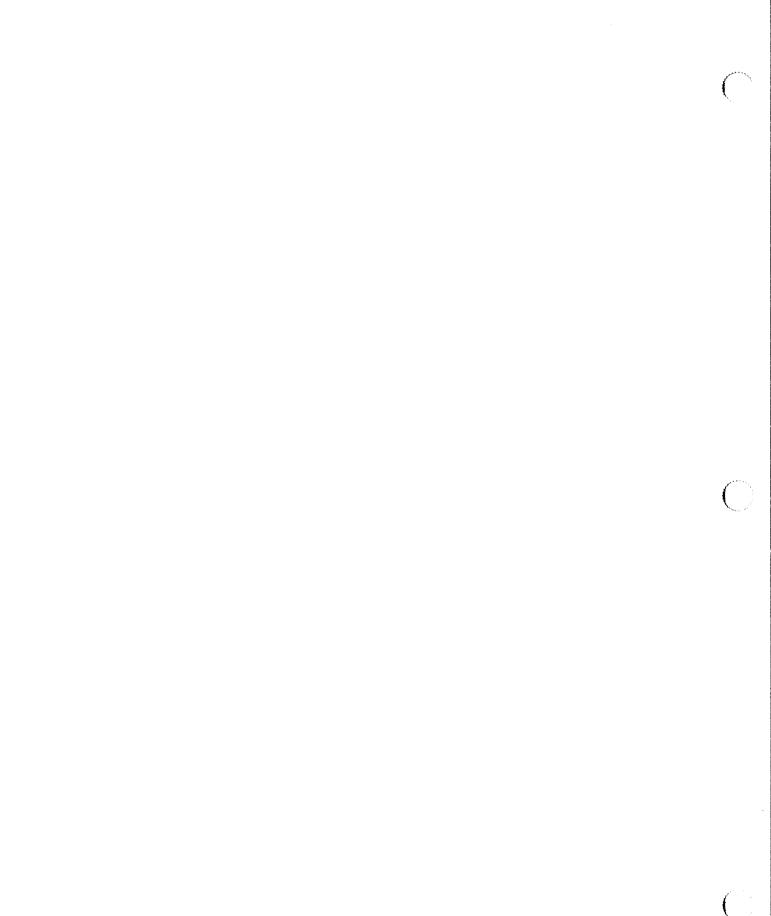
The current and potential use of the aquatic and terrestrial resources of the site by humans will be assessed. Included with the assessment of the site, the area within a half mile of the site, documented resources within two miles of the site, and documented resources downstream of the site that are potentially affected by contaminants will also be assessed. Human use of the resources that will be considered will be activities such as hunting, fishing, wildlife observation, scientific studies, agriculture, forestry, and other recreational and economic activities.

The appropriate regulatory criteria will be identified for the remediation of aquatic and terrestrial resources and will include both site-specific and contaminant-specific criteria.

4.2.4.2 Contaminant-Specific Impact Analysis

Information from the site description developed in Section 4.2.4.1 and from the characterization of the contaminants at the site developed from the results of the RI will be used to assess the impacts of contaminants on aquatic and terrestrial resources. The impact analysis will involve three steps, each using progressively more specific information and fewer conservative assumptions and will depend upon the conclusion reached at the previous step regarding the degree of impact. If minimal impact can be demonstrated at a specific step, additional steps will not be conducted.

Pathway Analysis


A pathway analysis will be performed identifying aquatic and terrestrial resources, contaminants of concern and potential pathways of contaminant migration and exposure. After performing the pathway analysis, if no significant resources or potential pathways are present, or if results from field studies show that contaminants have not migrated to a resource along a potential pathway, the impact on aquatic and terrestrial resources will be considered to be minimal and additional impact analyses will not be performed.

Criteria-Specific Analysis

Presuming that the presence of contaminated resources and pathways of migration of siterelated contaminants has been established, the contaminant levels identified in the field investigation will be compared with available numerical criteria or criteria developed according to methods established as part of the criteria. If contaminant levels are below criteria, the

August, 1995

Page 4-15 K:\SENECA\RIFS\SEAD-45\Section.4

impact on resources will be considered to be minimal and additional impact analyses will not be performed. If numerical criteria are exceeded or if they do not exist and cannot be developed, an analysis of the toxicological effects will be performed.

Analysis of Toxicological Effects

The analysis of toxicological effects is based on the assumption that the presence of contaminated resources and pathways of migration of site-related contaminants has been established. The purpose of the analysis of toxicological effects is to assess the degree to which contaminants have affected the productivity of a population, a community, or an ecosystem and the diversity of species assemblages, species communities or an entire ecosystem through direct toxicological and indirect ecological effects.

A number of approaches are available to conduct an analysis of toxicological effects. One or more of the four following approaches will be used to assess the toxicological effects.

- Indicator Species Analysis-A toxicological analysis for a indicator species will be used if the ecology of the resource and the exposure scenarios are simple. This approach assumes that exposure to contaminants is continuous throughout the entire life cycle and does not vary among individuals.
- **Population Analysis-**A population level analysis is relevant to and will be used for the evaluation of chronic toxicological effects of contaminants to an entire population or to the acute toxicological effect of contaminant exposure limited to specific classes of organisms within a population.
- **Community Analysis-** A community with highly interdependent species including highly specialized predators, highly competitive species, or communities whose composition and diversity is dependent on a key-stone species, will be analyzed for alternations in diversity due to contaminant exposure.
- Ecosystem Analysis–If contaminants are expected to uniformly affect physiological processes that are associated with energy transformation within a specific trophic level, an analysis of the effects of contaminant exposure on trophic structure and trophic function within an ecosystem will be performed. Bioconcentration, bioaccumulation, biomagnification, etc., are concepts that may be used to evaluate the potential effects of contaminant transfer on trophic dynamics.

.

·

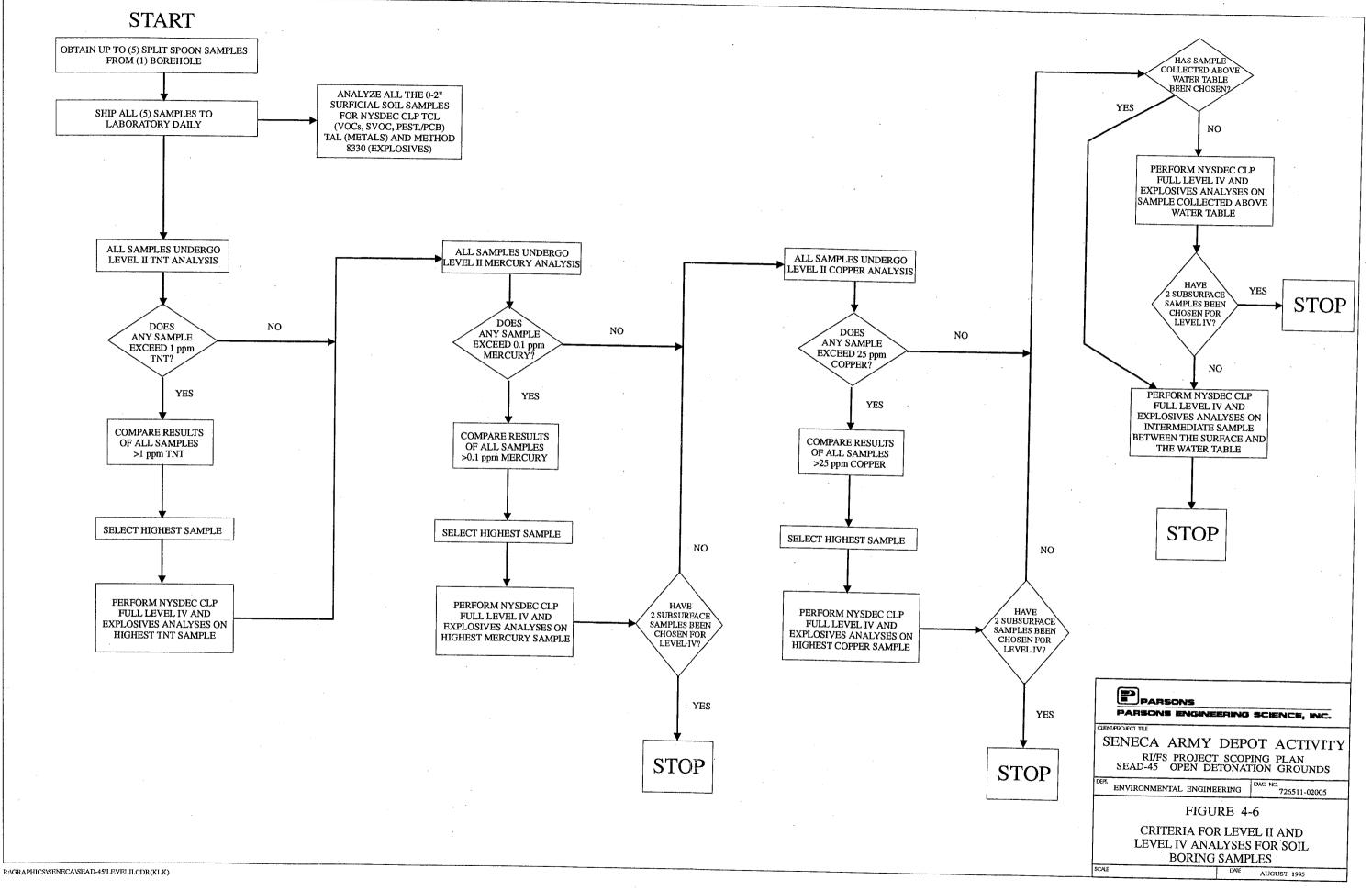
·

.

4.2.5 <u>Analytical Program</u>

4.2.5.1 Level II Screening

Level II screening analyses for TNT, mercury and copper will be performed in the laboratory on all subsurface samples collected from the 43 soil borings that are proposed to be performed at the OD Grounds. Level II screening is being incorporated into this investigation because it will allow a large grid covering the OD grounds to be investigated while keeping the laboratory costs to a minimum. By screening the soil samples to determine which ones contain the highest concentrations of TNT, mercury, and copper, it will not be necessary to perform the Level IV analyses on all of the subsurface sample collected. The Level IV analyses can be performed on the samples identified by the screening as having the highest concentrations of explosive compounds and metals impacts. In addition to using the Level II screening data to select the subsurface samples that will undergo the Level IV analyses, the Level II screening data will be used to evaluate the extent of vertical and horizontal impacts at the site.


TNT was the explosive compound that was most frequently detected in the samples collected during the ESI, and mercury and copper were the most frequently detected metals at high concentrations. Each of the subsurface samples will be undergo Level II screening for these three constituents. Approximately five subsurface soil samples will be collected from each of the soil borings. Based on the results of the screening analyses for TNT, mercury and copper, two of the five subsurface soil samples will be selected from each soil boring to undergo the full Level IV NYSDEC CLP analyses that are specified in Section 4.2.5.2. The order in which the Level II screening analyses will be performed on each sample and the criteria by which the samples will be selected for the Level IV analyses are presented in the flow chart in Figure 4-6.

Approximately 215 subsurface samples will be collected from the 43 soil borings that will be performed at the OD Grounds. Level IV quality data is required to perform the baseline risk assessment and to demonstrate compliance with ARARs, but to perform the Level IV NYSDEC CLP analyses on each of these samples would be cost and time prohibitive. By performing the Level II screening analyses for the constituents that were determined to be indicators for explosive compounds and metals, the Level IV analyses can be performed on the areas with the greatest explosives and metals impacts.

August, 1995

Page 4-17 K:\SENECA\RIFS\SEAD-45\Section.4

 \bigcirc The Level IV analyses will meet the requirements of the baseline risk assessment and will be used to demonstrate compliance with ARARs. It will also be used to verify the Level II data for the samples that did undergo the Level IV analyses and will be used to evaluate the Level II data from the samples that did not undergo the Level IV analyses. After being compared to the Level IV quality data, the Level II quality data may be used to evaluate the vertical and horizontal extent of impacts.

The Level II method for the analyses of copper and mercury will be the same procedure as the Level IV analyses which are described in Appendix C, Chemical Data Acquisition Plan. The difference between the Level II method and the Level IV method is that the Level IV analysis will be supported by a more stringent Quality Assurance data package. The method detection limits are 0.1 ppm for copper and .02 ppm for mercury. Explosive compounds will be screened according to the USATHMA method for TNT in soil. The detection limit is 0.5 ppm. This method has been found to have a good recovery (80-100%) for moderately contaminated soil. A detailed description of this method is presented in Appendix C, Chemical Data Acquisition Plan.

In summary, all subsurface soil samples collected will undergo Level II screening for TNT, mercury and copper. Based on the results of the screening analyses, two subsurface soil samples from each borehole will undergo Level IV NYSDEC CLP analysis. The Level IV analyses will meet the data requirements of the risk assessment and will be used to demonstrate compliance with ARARs. Relationships between Level II results and the Level IV results will be evaluated to verify the Level II analyses.

4.2.5.2 Level IV Analyses

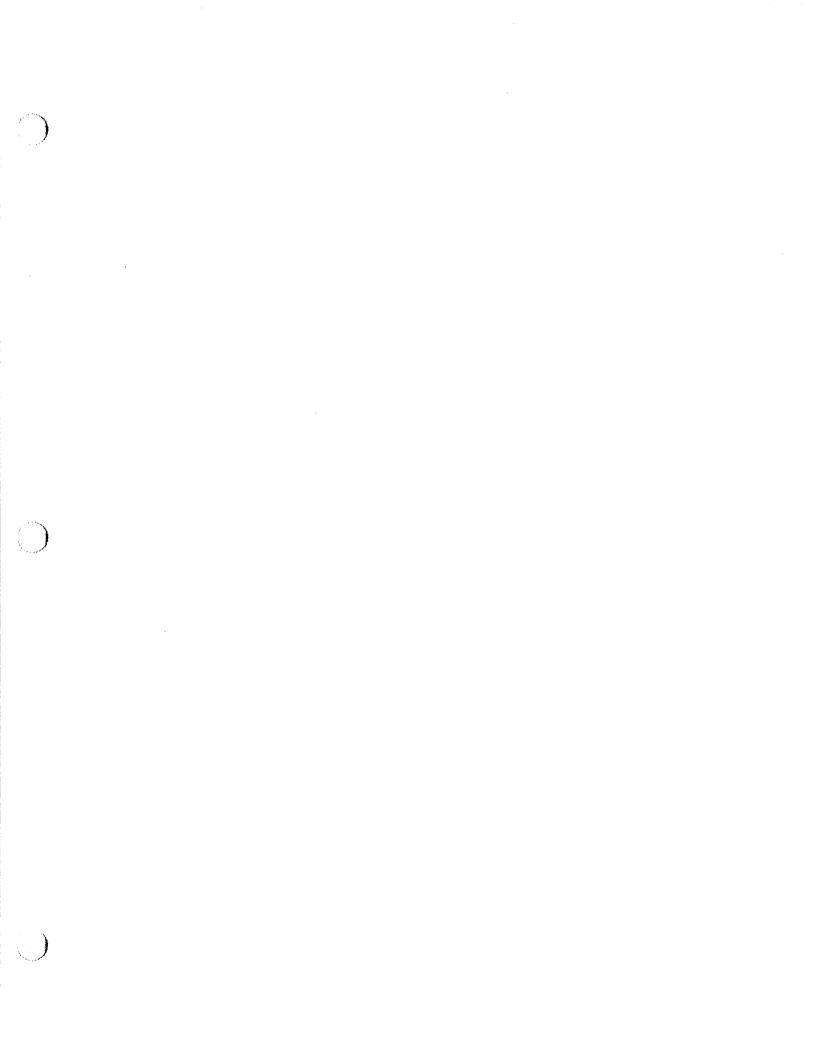
A total of 149 soil samples, 23 surface water and sediment samples and 24 groundwater samples (two rounds of samples from 11 monitoring wells) will be collected at SEAD-45 for Level IV chemical testing. All of these samples will be analyzed for the following: Target Compound List (TCL) VOCs (EPA Method 524.2 on groundwater only), TCL SVOCs and Target Analyte List (TAL) metals according to the NYSDEC CLP Statement of Work, explosive compounds by EPA Method 8330, and nitrate nitrogen by EPA Method 352.1. Additional analyses for specific media are given below.

Six (6) subsurface soil samples from two soil borings will also be analyzed for total organic carbon by EPA Method 415.1 and grain size distribution (including the silt and clay size fraction) by ASTM Method D:422-63.

The 23 surface water samples will also be analyzed for hardness by EPA Method 130.2, pH by EPA Method 150.1 and total organic carbon by EPA Method 415.1.

The 23 sediment samples will also be analyzed for total organic carbon by EPA Method 415.1 and grain size distribution (including the silt and clay size fraction) by ASTM Method D:422-63.

The 22 groundwater samples will be analyzed for volatile organic compounds by EPA Method 524.2.


A detailed description of these methods, as well as lists of individual compounds included in each of the analyses is presented in Appendix C, Chemical Data Acquisition Plan. Analyses for all media to be sampled are summarized in Table 4-1.

4.2.6 <u>Surveying</u>

Surveying will be performed at the OD grounds for the following purposes:

- Locate all the environmental sampling points
- Map the direction and compute the velocity of groundwater movement
- Serve as the basis for volume estimates of impacted soil and sediment which may require a remedial action
- Map the extent of any impacted groundwater above established ARAR limits

The location, identification, coordinates and elevations of all the control points recovered and/or established at the site and all of the locations of the soil borings, monitoring wells (new and existing), surface soil samples, surface water samples, and sediment samples will be plotted on the site base map to show their location with respect to surface features within the project area.

Table 4-1

Summary of Sampling and Analyses Seneca Army Depot Activity SEAD-45

	Screen		OCs	SVOCs	Pest/PCBs	Explosives	Metals	Nitrate Nitrogen	Grain Size*	pН	Hardness	TOC
MEDIA	Level li	Method 524.2	TCL NYSDEC CLP	TCL NYSDEC CLP	TCL NYSDEC CLP	Method 8330	TAL NYSDEC CLP	Method 352.1	ASTM or Similar Method	Method 150.1	Method 130.2	Method 415.1
Soil Surface Subsurface	0 215	0 0	63 86	63 86	63 86	63 86	63 86	63 86	0	0	0 0	0 6
Groundwater	0	24	0	24	24	24	24	24	0	0	0	0
Surface water	0	0	23	23	23	23	23	23	0	23	23	23
Sediment	0	0	23	23	23	23	23	23	23	0	0	23

Notes:

Grain size analysis includes determination of the grains size distribution within the silt and clay size fraction.
 QA/QC sampling requirements are described in Section 5.3 of Appendix C of the Generic Installation RI/FS Workplan.

•

na de la constanción de la constanción

Site surveys will be performed in accordance with good land surveying practices and will conform to all pertinent state laws and regulations governing land surveying. The surveyor shall be licensed and registered in New York. A detailed discussion of the site field survey requirements is presented in Appendix A, Field Sampling and Analysis Plan.

4.3 DATA REDUCTION, ASSESSMENT AND INTERPRETATION

Data Reduction, assessment, and interpretation is discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

4.4 BASELINE RISK ASSESSMENT

The baseline risk assessment is discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

4.5 DATA REPORTING

Data reporting is discussed in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

4.6 TASK PLAN SUMMARY FOR THE RI

General information about the Task Plan Summary is given in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

A detailed Task Plan Summary that indicates the number and type of samples to be collected at SEAD-45 is provided in Table 4-1.

····

(

5.0 TASK PLAN FOR THE FEASIBILITY STUDY

The task plan for the Feasibility Study is given in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.1 DEVELOPMENT OF OBJECTIVES

A discussion of the development of objectives for the FS is given in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.2 SCREENING OF ALTERNATIVES

A discussion of the screening of alternatives for the FS is given in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.3 DETAILED ANALYSIS OF ALTERNATIVES

A discussion of the detailed analysis of alternatives for the FS is given in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

5.4 TASK PLAN SUMMARY FOR THE FS

The task plan summary for the FS is given in the Generic Installation RI/FS workplan that serves as a supplement to this RI/FS Project Scoping Plan.

Page 5-1 K:\SENECA\RIF\$\SEAD-45\Section.5

6.0 PLANS AND MANAGEMENT

The purpose of this Workplan is to present and describe the activities that will be required for the site Remedial Investigation/Feasibility Study at SEAD-45. The Field Sampling and Analysis Plan (Appendix A), details procedures which will be used during the field activities. Included in this plan are procedures for sampling soil, sediments, surface water, fish, shellfish and groundwater. Also included in this plan are procedures for developing and installing monitoring wells, measuring water levels and packaging and shipment of samples.

The Health and Safety Plan (Appendix B) details procedures to be followed during field activities to protect personnel involved in the field program.

The Chemical Data Acquisition Plan (Appendix C) describes the procedures to be implemented to assure the collection of valid data. It also describes the laboratory and field analytical procedures which will be utilized during the RI.

6.1 SCHEDULING

The proposed schedule for performing the RI/FS to be conducted at SEAD-45 is presented in Figures 6-1 and 6-2. Figure 6-1 contains the schedule for the work to be conducted in the field. This schedule assumes that each phase of the field work will be completed before performing the next phase. Figure 6-2 contains the schedule for the reports to be drafted and submitted based on the results of the field investigations.

6.2 STAFFING

A discussion of the staffing for the RI/FS to be conducted at SEAD-45 is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan.

.

Table 6-1 SEAD-45 RI Field Investigation Schedule Seneca Army Depot Activity

Page 1 of 1								9/14/1995
					1997			
	February	March	April	May	June	July	August	September
Mark Sample Locations	2/4 2/3							
Surface Water/Sediment Sampling and Rumoff Delineation	2/10 2/5						·	
Ecological Investigation	2/22 A A 2/17	3/3	4/2 A 31					
Surface Soil Sampling	2/19 A A 2/11							
Soil Borings	2/20	3/21						
Monitoring Well Installation and Development		3/26 3/22 3/3	4/5 A 31					
Groundwater Sampling			4/19 A 4/14				8/23 & & 8/18	
Water Level Measurements		3/3					▲ 8∕18	
Aquifer Testing			4/22 4/20 4/20					
Sample Analysis	2/6	3/28	4/25 A A 4/15				8/29 & & 8/19	
Data Validation		3/3	A 31	5/5 A			Ś	9/4 2/3
Surveying		3/3	4/4 A 31					
Field Activity Reports	↓ 2/7	↓ 3/7	¥ 4/4	5/2			¥ 8/21	₽ /18
Field Sampling Letter Report								
Task Length		▼ Comments Due		Parsons I Deliverab	ES 10 Data			

.

.

C

C

Table 6-2 SEAD-45 RI/FS Schedule: Risk Assessment and Reports Seneca Army Depot Activity

age 1 of 1	1997 1998 199														1000	9/13/1995																
	F	M	A	м	M J J			S	O N		D	J	F	M	A	M	19	98 J	A	S	0	N	D	J	F	M	A	1999 M	J	J	A	S
Preliminary Site Characterization Summary			A	141		- 7/. 30	A 31	6	0			<u> </u>	-	m			3								-				<u> </u>			
Baseline Risk Assessment					6	7/. 30	31																									
Preparation of RI Report													2/3	Dr 3/.	aft 28	5/12	Draft Final 6/11	Final ♥ 7/11														
Preparation of FS Report																				9/8	Draft 10/9	117	Drat Fina 4 12/2	nt al Fina 23 1/2:	2							
Post FS Support																									1 2/2	Praft P 2 3/2	RAP				Draf	RC /3
Monthly Reports	₽7	₿/7	4/4 :	5/2 5/	30 6/2	7 7/24	8/21	9/19	₽ 10/16	11/13	2/11	1/9	₽ 2/6	₿/6	/3 5	1 5/2	9 6/2	6 7/23	8/20	9/17	10/15	1/12	2/10	₽ 1/8	2/5	3/5 4	2 4/	30 5/2	8 6/2	5 7/22	8 /19	9/1
Quarterly Reports		3/	31		6/	30		9/.	k 30		12	31		3/	31		6/.	30		9/	80		12	31		3/	/31		6/	30		
Task Length					▼ c	Comme	nts Du	ie							Par De	rsons l liveral	ES ble Du	ie ie											_			

7.0 <u>REFERENCES</u>

- Arthur D. Little, Inc., 1987. <u>The Installation Restoration Program Toxicology Guide</u>, Volume III.
- Dragun, James, 1988. <u>The Soil Chemistry of Hazardous Materials</u>, The Hazardous Materials Control Research Institute.
- Dunstan and Bell, 1972. <u>Chemical Technology: An Encyclopedic Treatment</u>, Volume IV, Petroleum and Organic Chemicals.
- Gas Research Institute, 1988, Management of Manufactured Gas Plant Sites, Volume III, Risk Assessment, GRI-87/0260.3.
- Gough, L.P., Shacklette, H.T., and Case, A.A., 1979, Element Concentrations Toxic to Plants, Animals, and Man, Geological Survey Bulletin 1466, U.S. Geological Survey. Washington, D.C.
- Howard, P.H., 1991, <u>Handbook of Environmental Fate and Exposure Data for Organic</u> <u>Chemicals</u>, Volumes II, III, and IV, Lewis Publishers, Michigan.
- New York State, Official Compilation of Codes, Rules and Regulations, Title 10, Chapter 1, Part 5, June 1995.
- New York State Department of Environmental Conservation, 1994, Technical and Administrative Guidance Memorandum (TAGM): Determination of Soil Cleanup Objectives and Cleanup Levels (HWR-4046).
- New York State Department of Environmental Conservation, November 1993, Technical Guidance for Screening Contaminated Sediments.
- New York State Department of Environmental Conservation, 1994, Technical and Administrative Guidance Memorandum (TAGM): Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites.
- New York State Department of Environmental Conservation, 1991b, Division of Water Technical and Operational Guidance Series (1.1.1). Ambient Water Quality

REFERENCES (Continued)

Standards and Guidance Values, November 15, 1991.

- New York State Department of Environmental Conservation, 1989a, Clean-up Criteria for Aquatic Sediments, Department of Environmental Conservation, Albany, New York.
- New York State Department of Transportation Quadrangle for Romulus, New York and Geneva South, New York, 1978.
- New York State, Division Technical and Administrative Guidance Memorandum (TAGM): Guidelines for Remedial Investigation/Feasibility Studies, March 1989 (HWR-4025).
- Parsons Engineering Science, Inc., May 1995, Draft Final Report, Expanded Site Inspections of Seven High Priority Solid Waste Management Units.
- Parsons Engineering Science, Inc., September 1994, Remedial Investigation Report at the Open Burning Grounds.
- Parsons Engineering Science, Inc., September 1994, Solid Waste Management Unit Classification Report.
- U.S. Army Environmental Hygiene Agency (USAEHA), 1987, "Evaluation of Solid Waste Management Units, Seneca Army Depot, Romulus, New York, Interim Final Report, Groundwater Contamination Survey, No. 38-26-0868-88."
- U.S. Army Toxic and Hazardous Materials Agency, (USATHAMA), Installation Assessment of Seneca Army Depot, Report No. 157, AMXTH-IR-A-157, January 1980.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1985, Evaluation of Critical Parameters Affecting Contaminant Migration through Soils, Report No. AMXTH-TE-CR-85030, July 1985.
- U.S. Environmental Protection Agency, 1994, Water Quality Criteria Summary. Office of Science and Technology. Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), Interim Final, "Guidance for Conducting

 \bigcirc

 \bigcirc

. .

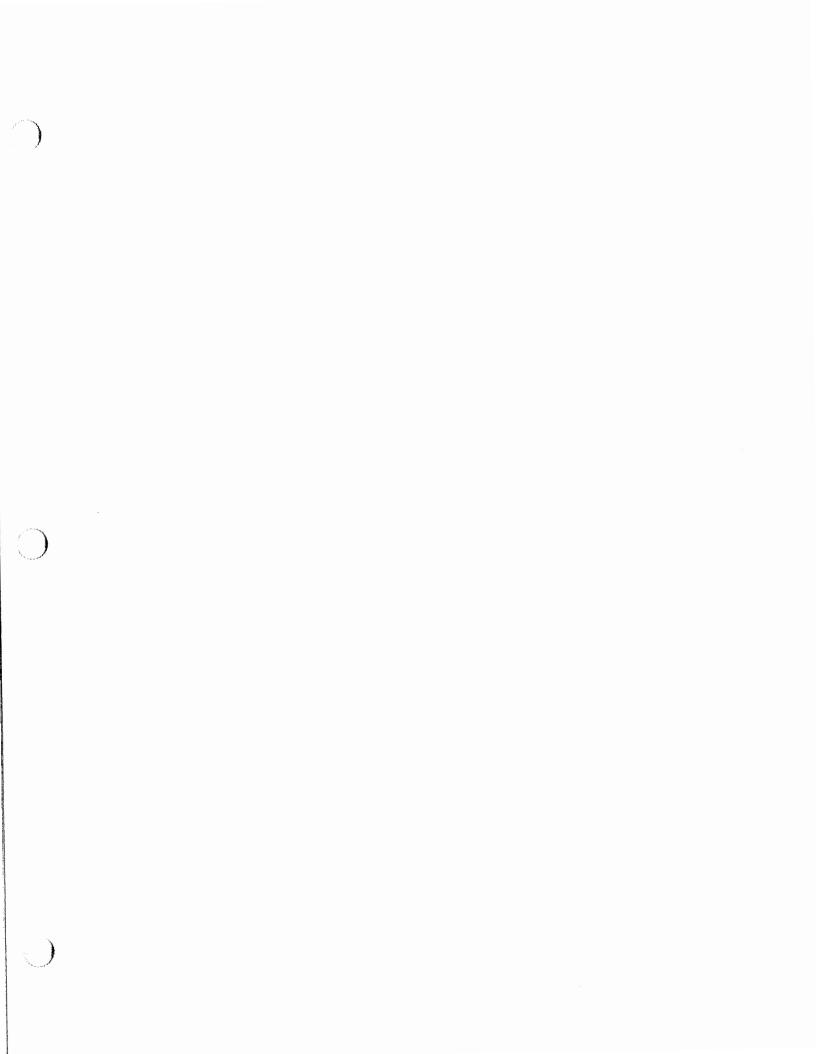
.

REFERENCES (Continued)

Remedial Investigations and Feasibility Studies Under CERCLA," OSWER Directive 9355.3-01, Office of Emergency and Remedial Response, October, 1988.

- U.S. Environmental Protection Agency, 1994, "Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume 3: Reference Based Standards for Soils and Soil Media," EPA Policy, Planning, and Evaluation, EPA 230-R-94-004.
- U.S. Geological Survey Quadrangle Maps, Towns of Ovid and Dresden, New York, 1970.

APPENDIX A


•

FIELD SAMPLING AND ANALYSIS PLAN

.

 \bigcirc

Appendix A information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

APPENDIX B

HEALTH AND SAFETY PLAN

 \mathbf{O}

0

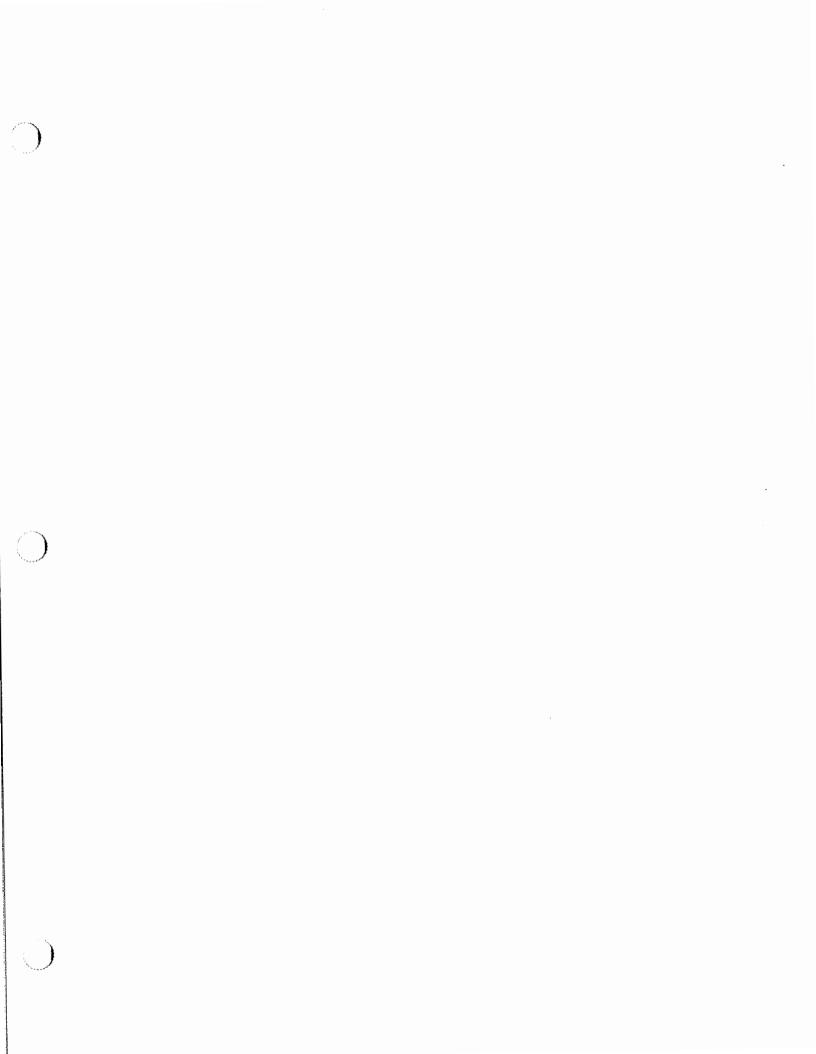
Appendix B information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

APPENDIX C

ľ

CHEMICAL DATA ACQUISITION PLAN

Appendix C information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan


)

)

APPENDIX D

UNITED STATES DEPARTMENT OF INTERIOR FISH AND WILDLIFE SERVICES ENDANGERED AND THREATENED SPECIES LETTER

Appendix D information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

APPENDIX E

RESPONSE TO REVIEW COMMENTS

(

COMMENTS AND RECOMMENDATIONS PRE-DRAFT PROJECT SCOPING PLAN REMEDIAL INVESTIGATION FEASIBILITY STUDY OPEN DETONATION GROUND (SEAD-45) SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK FEBRUARY 1995

Comment #1 Page 3-7, Section 3, Figure 3-3, K. Butoryak - Groundwater Elevation Map.

Although the legend states that an arrow indicates direction of groundwater flow, no arrow is depicted on the map.

Recommendation: Please correct this discrepancy.

Response #1 Agreed. The arrow indicating the direction of groundwater flow has been added to Figure 3-3.

Comment #2 Page 3-10, Section 3.1.2.1,K. Butoryak - Explosives.

The document states that "explosives are solids at room temperature and therefore would not migrate through soil as separate liquid phases." The relevance of room temperature in this environment is questionable. The next sentence then seems to contradict this sentence by stating that "as precipitation interacts with these solid residues, a small portion would dissolve or erode away." Additionally, if these solid residues are below ground surface, use of the term "precipitation" to describe soil moisture is also questionable.

<u>Recommendation</u>: A more accurate statement could be made by substituting an estimated maximum or average soil temperature in this region. Also, please resolve the contradiction between these two sentences, and substitute the term "soil moisture" for the term "precipitation."

Response #2 Agreed. The paragraph has been changed as follows:

"A review of the melting points of these compounds indicates that explosive compounds are solids at the soil temperatures that are likely at SEDA and therefore would not migrate through soil as separate liquid phases. Instead, as soil moisture interacts with these solid residues a small portion would dissolve or erode away. Complete leaching would require a long interaction period."

Comment #3 Page 3-20, Section 3.2.2, K. Hoddinott - Potential Exposure Pathways and Receptors.

This discussion should include the numerical assumptions of the exposure

	scenarios. This comment also applies to Section 3.2.3.
Response #3	<u>Recommendation</u> : Include a table or discussion outlining the numerical assumptions associated with the current and future exposure scenarios. Agreed. Table 4-1 in the Generic Installation RI/FS Workplan, which includes the numerical assumption for exposure scenarios, has been referenced in Section 3.2.2 and 3.2.3.
Comment #4	Page 3-21, Section 3.2.2.3, K. Hoddinott and K. Russell - Soil Ingestion and Dermal Contact.
	The reasoning the "adults do not normally eat soil" is not sufficient to discount the soil ingestion pathway. The soil ingestion pathway is calculated for incidental soil ingestion, not for people eating soil.
	<u>Recommendation</u> : Rewrite this section to find another reason for discounting this pathway or add the pathway to the analysis.
Response #4	Agreed. The section has been rewritten as follows:
	"Incidental ingestion of, and dermal contact with, impacted soil is a potential exposure pathway for current site workers, visitors and terrestrial biota."
Comment #5	Page 3-22, Section 3.3, K. Russell - Scoping of Potential Remedial Action Alternatives.
	Only surface soil, sediment, and groundwater are mentioned as media of concern. Surface water is not mentioned in this section even though it is mentioned throughout the document as containing high levels of contaminants and 23 new samples will be collected.
	Recommendation: Add surface water as "c" the third media of concern.
Response #5	Agreed. Surface water has been added to section 3.3 as a third media of concern.
Comment #6	Page 3-23, Section 3.6, K. Hoddinott - Data Gaps and Data Needs.
	The data needs for the soil and sediment must include an adequate determination of the background concentrations, with a statistical comparison with the site data.
	<u>Recommendation</u> : Include an adequate determination of the background levels of chemicals in the soil and sediments.
Response #6	Agreed. Site-wide soil background data has been compiled from 57 background samples obtained from the ESIs performed at 25 SEADs, and Remedial Investigations at the OB Grounds and the Ash Landfill. These data

2

.

were used to evaluate whether contaminants were present at the 25 SEADs where ESIs were performed and will be used to evaluate RI data from SEAD-45. This information has been added to the soil data needs in Section 3.6.

Comment #7 Page 4-11, Section 4.2.3.1,K. Butoryak - Monitoring Well Installation. This paragraph states that six additional overburden wells will be installed, while only five additional wells are proposed on pages 3-24 and 4-12. Additionally, Figure 4-1 depicts only five proposed monitoring well sites.

Recommendations: Please correct the discrepancy.

Response #7 Agreed. Only five wells are proposed to be installed, and all references to the number of proposed wells have been changed to indicate this.

Comment #8 Page 4-11, Section 4.2.3.1,K. Butoryak - Monitoring Well Installation.

The paragraph states "Although MW-5 has been sampled in the past...it will not be sampled for this RI/FS because one of the new wells will provide coverage of the same area." Why is a new well being installed if the area is already covered? It is also unclear from Figure 4-1 which one of the new wells will provide coverage for this area.

<u>Recommendation</u>: Provide a justification for installing a new well in an area that is already covered. Substitute the proposed well number for the expression "one of the new wells." Reconsider the decision to not sample MW-5, if MW45-5 is the well that is proposed to cover the same area.

Response #8 Agreed. MW-5 will be sampled as part of this Remedial Investigation.

Comment #9 Page 4-18, Table 4-1, K. Russell.

Table 4-1 is a blank page.

<u>Recommendation</u>: Add the table or remove the references to it in Sections 4.2.5.2 and 4.6.

Response #9 Agreed. Table 4-1 has been added.

K. Healy

Comment #1 Table 4.1. Part 1: Apparently Table 4.1 was omitted. Please include.

Part 2: Also, recommend including references (Table and associated text) to the number and type of QA/QC samples envisioned.

Response #1 Part 1: Agreed. Table 4-1 has been added.

Part 2: Agreed. The frequency at which QA/QC samples will be collected is

described in Section 5.3 of Appendix C within the Generic Installation RI/FS Workplan. These samples will be collected in accordance with NYSDEC/EPA and USACE guidance. A footnote has been added to Table 4-1 indicating this.

S. Bradley

- Comment #1 Section 1.1, p. 1-1. Please define the purpose of this document as it is not the same as the RI/FS workplan. The purpose statement should define how this scoping document ties into the overall program.
- **Response #1** Agreed. Section 1.1 has been changed to the following:

"The purpose of this Remedial Investigation/Feasibility Study (RI/FS) Project Scoping Plan is to provide site specific information for the RI/FS project at the SEAD-45 operable unit at the Seneca Army Depot Activity (SEDA) in Romulus, NY. This plan outlines work to be conducted at SEAD-45 based upon recommendations specified in the Draft Final Seven High Priority SWMUs Expanded Site Inspection (ESI) Report (Parsons ES, May 1995).

The Generic Installation RI/FS Workplan that accompanies this document was designed to serve as a foundation for this RI/FS Project Scoping Plan and provides generic information that is applicable to all site activities at SEDA.

This RI/FS Project Scoping Plan is based upon a conceptual site model that identified potential source areas, release mechanisms, and receptor pathways; determined data requirements for an evaluation of risks to human health and the environment; and developed a task plan to address the data requirements that have been identified. Following the completion of the field investigation, the data will be used as the basis of the risk assessment."

Comment #2 Section 1.2, p. 1-1. Please replace the reference to the Generic workplan with a brief overview of the report organization.

Response #2 Agreed. Section 1.2 has been changed to the following:

"The remaining sections of this report are organized to describe the overall site conditions, provide a scoping of the RI/FS and to provide task plans for the RI and FS. Section 2.0, Site Conditions, presents a description of regional geological and hydrogeological conditions, and the results of previous investigations. Section 3.0, Scoping of the RI/FS, presents the conceptual site model, potential receptors and exposure scenarios, scoping of potential remedial action technologies, preliminary identification of Applicable or Relevant and Appropriate Requirements (ARARs), data quality objectives, and data gaps and needs. The task plans for the RI and FS are discussed in Sections 4.0 and 5.0, respectively. Section 6.0, Plans and Management, discusses scheduling and staffing."

Comment #3

Section 3.1.2, p. 3-8. Part 1: In first sentence, please use term "Potential

. .

Contaminants of Concern" and indicate in parenthesis that the Generic workplan addresses all PCOC's, site-wide, as "constituents of concern".

Part 2: This entire section on fate of constituents is too detailed for a scoping document and should be summarized. The details should go in the RI/FS report itself.

Response #3 Part 1: Agreed. The paragraph has been changed as follows:

"The potential contaminants of concern at SEAD-45 are explosive compounds, metals, and SVOCs and their environmental fate is discussed below. The discussion is meant to present general information on the fate of the potential contaminants of concern. Further discussion of these potential contaminants of concern, and all contaminants of concern at SEDA, is presented in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan. A summary of fate and transport characteristics of selected SVOCs is presented in Table 3-2.

Part 2: This section on environmental fate of constituents has not been changed. This information, along with environmental fate information on any constituents of concern identified during the RI, will be included in the RI/FS report."

- **Comment #4** Section 3.2, p. 3-17. Retitle as "Preliminary Identification of Potential Receptors and Exposure Scenarios". This section is too detailed for scoping purposes and should be summarized.
- **Response #4** Agreed. Section 3.2 has been retitled and summarized.
- Comment #5 Figure 3-2. Include surface water elevation in Reeder Creek.
- Response #5 Disagree. Because the surface water elevation of Reeder Creek varies with the location and time of year, it will not be included in Figure 3-2. Stream elevations were measured as part of a physical characterization of Reeder Creek that was performed for the Open Burning Grounds RI. These surface elevation measurements, along with the rest of the data gathered in the physical characterization, will be included in the final Open Detonation Grounds RI Report.
- Comment #6 Section 4.2.5.4, p. 4-15. Statement in 5th line that Level II and Level IV differ only by documentation is true but misleading. The documentation differs because surrogate analyses requirements are more demanding for metals under Level IV.

Response #6 Agreed. The statement has been changed as follows:

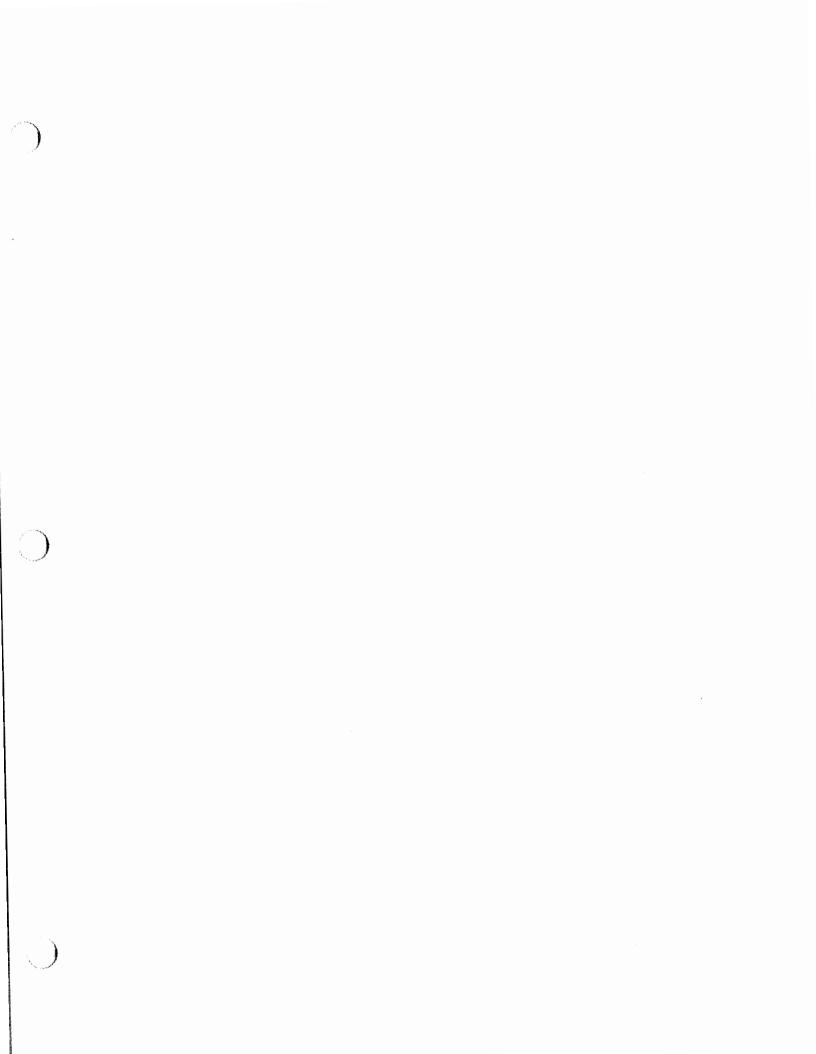
"The Level II method for the analysis of copper and mercury will be the same procedure as the Level IV analysis which is described in Appendix C,

 \bigcirc

 \mathbb{C}

Chemical Data Acquisition Plan. The difference between the Level II method and the Level IV method is that the Level IV analyses are supported by a more stringent Quality Assurance data package."

B. Chaffin


- Comment #1 Section 4.2.2.1. The section on soil sampling and boring is not safe due to the expected presence of UXO. A surface clearance is not sufficient. A driller probably will not be able to distinguish an UXO before it may detonate. An UXO team with magnetometer should be available to check borehole for UXO at periodic depths. Attached to comments is an OEW Generic SOW which should be incorporated into site safety and health plan. Section 7 pertains to soil sampling and well drilling.
- Response #1 Agreed. The OEW Generic SOW is part of the Generic Installation RI/FS Workplan Health and Safety Plan. These procedures have been incorporated into all of the activities that will be conducted at the site.

To clarify the procedures that will be followed during drilling operations, Section 4.2.2.1has been changed as follows:

"Since UXOs may be encountered at the site, the definition of refusal may be modified. For the safety of the drilling contractor, refusal may be a field decision by the UXO clearance personnel that an object other than bedrock has been encountered. If the soil boring is not stopped due to UXO concerns, the soil boring will continue until auger refusal is reached. Auger refusal for this project is defined in Appendix A, Field Sampling and Analysis Plan.

Because UXOs are a concern across the entire grid of soil borings, each soil boring location will be cleared for UXOs before drilling and all drilling activities will be continuously monitored by UXO clearance personnel. Because the detonation mound cannot be cleared of UXOs, soil borings located on the detonation mound will be offset to the nearest location off of the mound. The drilling, decontamination, and UXO clearance procedures are described fully in Appendix A, Field Sampling and Analysis Plan."

- Comment #2 General. A generic health and safety plan has been approved for SEAD. The generic plan is intended to be updated and made specific for a particular site and scope of work. The generic plan must be made into a site safety and health plan with specific hazards of the site incorporated into the plan.
- **Response #2** Disagree. The health and safety procedures contained in the Generic Installation RI/FS Workplan Health and Safety Plan addresses all of the hazardous that are expected to be encountered at SEAD-45.

- .- APPENDIX F

ť

SCOPE OF WORK

Appendix F information is contained in the Generic Installation RI/FS Workplan that serves as a supplement to this RI/FS Project Scoping Plan

í

C Ċ

APPENDIX G

EXPANDED SITE INSPECTION SUBSURFACE INVESTIGATIONS

- Boring Logs
- Test Pit Logs

- 5

11.

• Monitoring Well Installation Diagrams

. . . .

.

ی در بر بر 5.

BORING LOGS

. .,

.

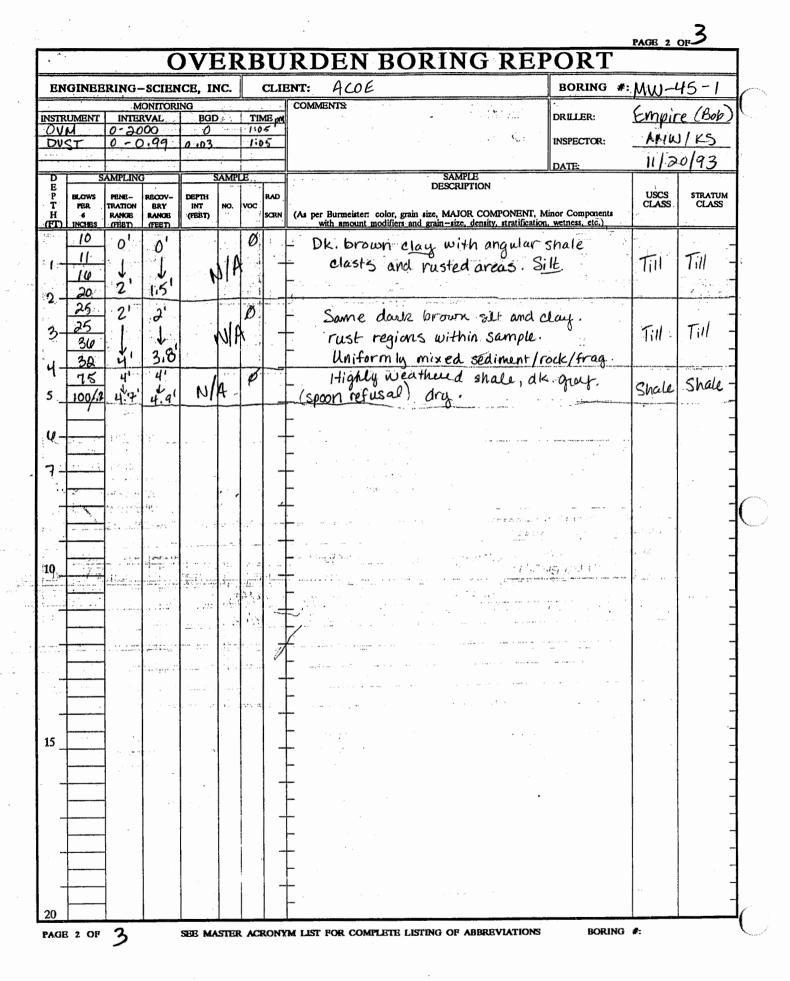
Ne de la compansión de la - 10-

•

PAGE 1 OF **OVERBURDEN BORING REPORT** BORING NO .: MW-45-1 ENGINEERING-SCIENCE, INC. CLIENT: ACOÉ 10 SWHUL PROJECT : SEAD - 45 LOCATION: JOB NO. : 720477-0100 EST. GROUND ELEV .: 622.794 DRILLING SUMMARY: START DATE: 11/20/93 11/21/93 DRILLING HOLE DEPTH ; SAMPLER HAMMER FINISH DATE: ENGINEERING-Science METHOD WTRALL CONTRACTOR: DIA. INT. SIZE TYPE TYPE 81/z" 8" x 2' HSA SS 140 / 30" EMPIRE SOL HMR DRILLER: Ks/Aw INSPECTOR: CHECKED BY: CHECK DATE: DRILLING ACRONYMS: HSA HOLLOW-STEM AUGERS HMR HAMMER SS SPLIT SPOON DW DRIVE-AND-WASH SHR SAFETY HAMMER CS CONTINUOUS SAMPLING MRSLC MUD-ROTARY SOIL-CORING HHR HYDRAULIC HAMMER 51 5 FT INTERVAL SAMPLING CASING ADVANCER DOWN-HOLE HAMMER NS CA DHR NO SAMPLING SPC SPIN CASING WL WIRE-LINE ST SHELBY TUBE 3 INCH SPLIT SPOON 35 MONITORING EQUPMENT SUMMARY INSTRUMENT DETECTOR RANGE BACKGROUND CALIBRATION TYPE TYPE/ENERGY READING TIME DATE TIME DATE WEATHER 11/20/93 1:00 m OVM PID 0-2000 Cold (30 0 0-0.99 0.03 DUST 1:00 pm 11/20/93 MONITORING ACRONYMS DGRT PID PHOTO - IONIZATION DETECTOR BGD BACKGROUND DRAEGER TUBES FID FLAME - IONIZATION DETECTOR СРМ COUNTS PER MINUTE PPB PARTS PER BILLION GEIGER MUELLER DETECTOR PPM PARTS PER MILLION MDL. METHOD DETECTION LIMIT GMD SCT SCINTILLATION DETECTOR RAD RADIATION DATE/PENDING COMMENTS: OTHER REPORTS N/A WELL DEVELOPMENT SURVEYOR CORELOG WELL INSTALLATION DETAILS HYDRAULIC TESTING

alan sa ang kanang na kanang kanan Kanang kanang

an a ta salan in ta anima a sala a

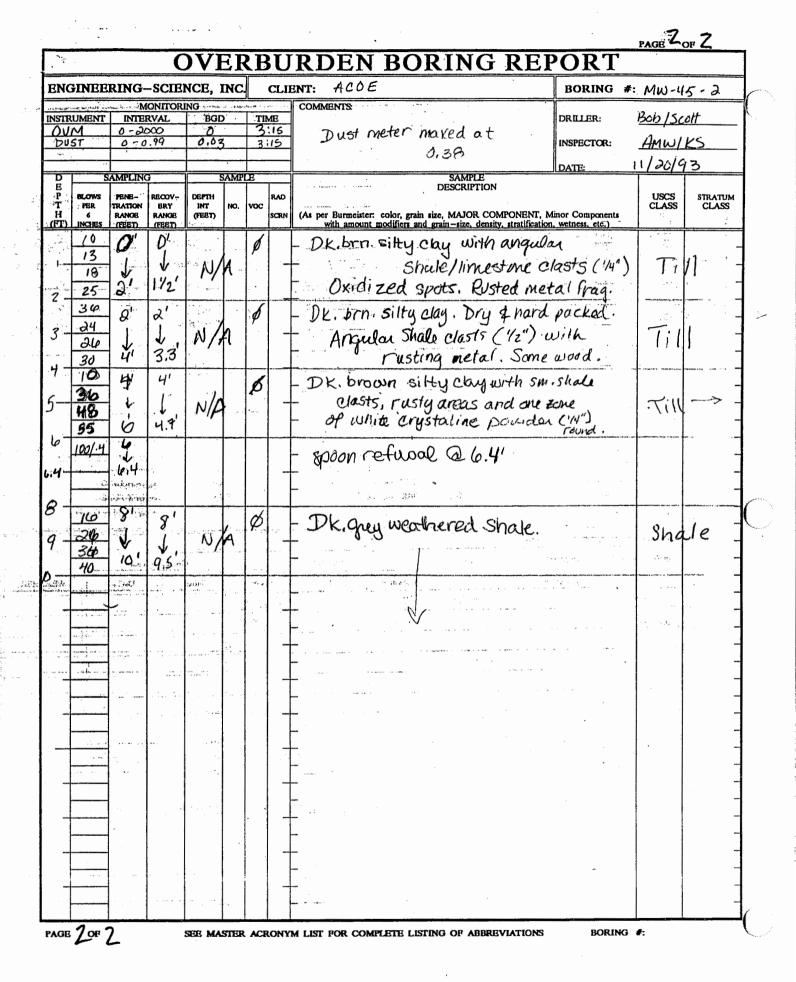

PAGE 1 OF 3

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

GEOPHYSICAL LOGGING

BORING NO. :

OBBORP1.WK1


	· · · · ·	999 (1999) 1899 (1999) 1999 (1	······	αμαλιγ, γιγο του 9-400 Τ. Τ. Τ. Τ. Τ.	• • • • • • • • • • • • • • • • • • •			PAGE 1 OF	2
ENGIN						RING	REPO		
ENGI	NEEKI	NG-SCIENC	E, INC. CL	IENT:	ACOE		BORI	NG NO.:	NW45-2
PROJEC	СГ:		10 Swn	nu				_ • • • •	
LOCAT	ION:	· · · · · · · · · · · · · · · · · · ·	SEAD	45			JOB NO.:	72047	7-0100/
				·····	terina in the		EST. GROU	IND ELEV .:	624.1elel
RILLING	SUMMA	RY:		<u></u>			START DA	TE:	11/20/93
DRILLING	HOLE	DEPTH	SAMPL	£R		HAMMER	FINISH DA	TE:	11/21/93
METHOD	DIA	INT.	\$1ZE	TYPE	TYPE	WT/FALL	CONTRAC	TOR:	Empire
HSA	81/2*		3"x2'	55	HMR	140/30"	DRILLER:		John W
· .							INSPECTO		JC/KS
	<u> </u>					+	CHECKED		
		<u></u>					CHECK D	ATE:	
		······			•				
		PMENT SUMMARY	1				· · · · · · · · · · · · · · · · · · ·		T
INSTRUI		DETECTOR TYPE/ENERGY	RANGE	READING	BACKGROU	DATE	TIME	DATE	WEATHER
OVM		TITEREROT	0 - 2000	O	1515	11/20/93	I IMIE	DAIL	WEATHER .
Dist	, ,			0.03	1515	11/20/93			
								······································	· · · · · · · · · · · · · · · · · · ·
		,						1	
	H OTO - IC	ONYMS ONIZATION DETEC ONIZATION DETEC	TOR C	срм с	ACKGROUND COUNTS PER M		ррв р	RAEGER TUB	ION
		UELLER DETECTOR			ARTS PER MIL	LION	MDL N	ETHOD DETE	JTION LIMIT
COMMEN	178.		and the second	ý	OTHER REI		DATEPENDING		

PAGE 1 OF Z

() c

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

BORING NO. :

	· · · · ·	- x *					PAGE 1 OF	2
	OVE	ERBUR	DEN	I BOF	RING I	REPO	RT	•
ENGINEER	ING-SCIENCE	E, INC. CLII	ent: S	EAD A	LOE	BORI	NG NO.: M	w45-{3
PROJECT :		EAD IC	SWM	1U SE	4D45		يحمد .).
LOCATION :	the second s	11145-3				JOB NO.:	7	20477-01001
- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	nymeric i za st			1.	P	EST. GRO	UND ELEV .:	623.991
DRILLING SUMM	ARY:					START D	ATE	11/21/93
DRILLING HOLE	DBPTH	SAMPLER			HANMER	FINISH D	ATE:	11/22/93
METHOD DIA.	1NT	\$12B	TYPE	TYPE	WTFALL	CONTRAC	CTOR: EA	GINEERING-SE
45A 8'6'	" Z' IN tervals	3"×24" 5	PLIT SHOW	HAMMER	40%/30	DRILLER	: ··· E	MPIRE Soils
						INSPECTO	DR:	WC/AS
						CHECKEL	D BY:	/
						CHECK D	DATE:	
	. * .	•••••••		. *				
W DRIVE- RSLC MUD-RO A CASING	/-STEM AUGERS AND-WASH DTARY SOIL-CORING ADVANCER SING	HMR SHR HHR DHR WL	HAMMER SAFETY HA HYDRAULK DOWN-HO WIRE-LINE	C HAMMER LE HAMMER		CS SI NS ST	SPLIT SPOON CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO	MPLING
DW DRIVE-A ARSLC MUD-R A CASING PC SPIN CA	AND-WASH DTARY SOIL-CORING ADVANCER	SHR HHR DHR WL	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE	C HAMMER LE HAMMER	GROUND	CS SI NS ST	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE	MPLING
DW DRIVE-A ARSLC MUD-R A CASING PC SPIN CA	AND-WASH DTARY SOIL-CORING ADVANCER SING	SHR HHR DHR WL	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE	C HAMMER LE HAMMER		CS 51 NS 55 35	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE	MPLING
DW DRIVE- ARSLC MUD-RO CA CASING FC SPIN CA CASING FC SPIN CA CASING EC	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY	SHR HHR DHR WL NO Rent	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE	C HAMMER LE HAMMER 2		CS 51 NS 55 35	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO	MPLING
DW DRIVE- MRSLC MUD-RC CA CASING SPC SPIN CA MONITORING EC INSTRUMENT	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY	SHR HHR DHR WL NO Rent	SAFETY HA HYDRAULE DOWN-HO WIRE-LINE	C HAMMER LE HAMMER LE HAMMER LE HAMMER BACKGROUT	1D	CS 51 NS 5T 3S CALLE	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION	IMPLING DN
DW DRIVE- ARSLC MUD-RO CA CASING FC SPIN CA MONITORING EC INSTRUMENT TYPE	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY	SHR HHR DHR WL MO Rent RANGE	SAFETY HA HYDRAULE DOWN-HO WIRE-LINE	C HAMMER LE HAMMER COVE BACK BACKGROUI TIME	1D	CS 51 NS 5T 3S CALLE TIME	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION	MPLING ON WEATHER
W DRIVE- ARSLC MUD-RO A CASING PC SPIN CA MONITORING EC INSTRUMENT TYPE OVM-SEOC	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY 10.0 2%615 CS-137-81 Drst com/62	SHR HHR DHR WL NO ReAL RANGE	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE	C HAMMER LE HAMMER BACKGROUT TIME 3:30	ND DATE 11/21/93 11/21/93 11/21/93	CS SI NS ST 3S CALLE TIME B;30 ^{AH} FACTOR	CONTINUOUS SAI 5 FT INTERVAL SAN NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPON BRATION DATE 11/21/93	WEATHER OVERATO COLD
DW DRIVE- ARSLC MUD-RG A CASING PC SPIN CA AONITORING EC INSTRUMENT TYPE OVM-SEOG RAD190B PDM-3 OVM-580B	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPEAENERGY 10.0	SHR HHR DHR WL NO Rent RANGE O-2,000 O2,000	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE DUNGS AG READING READING SACREAN 10-18-19 J.05	C HAMMER LE HAMMER BACKGROUT TIME 3-30 // // // 0900	DATE 11/21/93 11/21/93 11/21/93 11/22/93	CS SI NS ST 3S CALLE TIME B;30 ^{AH} FACTOR	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/2//23 PY CALIBURE	WEATHER OVERATO OVERATO OVERATO COLD) 4
DW DRIVE- ARSLC MUD-RO CA CASING FC SPIN CA MONITORING EC INSTRUMENT TYPE OVM-SBOG RAD 1908 PDM-3 OVM-5806 VICTOREEN-1908	AND-WASH DTARY SOIL-CORING ADVANCER SING NUPMENT SUMMARY DETECTOR TYPE/ENERGY $C \leq -137 \cdot 8_1$ $C \leq -137 \cdot 8_1$ D = T = Com/eR $H = C = -137 \cdot 8_1$ $C \leq -137 \cdot $	SHR HHR DHR WL NO Rent RANGE O - 2,000 O - 100 O - 100	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE DUNGS AG READING READING SACREAN 10-18-19 J.05	C HAMMER LE HAMMER BACKGROUT TIME 3-30 // // 0900	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALLE TIME B;30 ^{AH} FACTOR	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/2//23 PY CALIBURE	WEATHER OVERCAST) " SUMMY COL, MUL
W DRIVE- RSLC MUD-RG A CASING PC SPIN CA CONITORING EC INSTRUMENT TYPE OVM - 580E POm - 3 OVM - 580E	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPEAENERGY 10.0	SHR HHR DHR WL \mathcal{NO} ReAL RANGE $\mathcal{O} = 2,000$ f $\mathcal{O} = 100$ $\mathcal{O} = 2,000$ ff $\mathcal{O} = 2,000$ ff	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE DUNGS AG READING READING SACREAN 10-18-19 J.05	C HAMMER LE HAMMER BACKGROUT TIME 3-30 // // // 0900	DATE 11/21/93 11/21/93 11/21/93 11/22/93	CS SI NS ST 3S CALLE TIME B;30 ^{AH} FACTOR	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/2//23 PY CALIBURE	WEATHER OVERCHST COLD) 4 SUMMY
DW DRIVE- ARSLC MUD-RG ARSLC MUD-RG ACASING PC SPIN CA ACASING PC SPIN CA ACASING A	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY B 10.0 2% 616 CS-137-81 DIST CONVER MINDON CS-1376 S PUST CONVER WINDON RONYMS	SHR HHR DHR WL NO Rent RANGE O - 2,000 O - 100 O - 100 O - 100 O - 100	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE WW65 AB READING BRACKAN JO-78-9 J-05	C HAMMER LE HAMMER BACKGROUT TIME 3-30 " " 0900 "	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALIE TIME B:30 ^{ML} FACTOM 2-B	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/21/23 CY CALIBRAN 4G CAL	WEATHER OVERCAST COLD) 4 SUMMY COL, MUL
DW DRIVE- ARSLC MUD-RG ARSLC MUD-RG ACASING PC SPIN CA ACASING PC SPIN CA ACASING A	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY 10.0.0.0000 C = -137.0000 10.0.00000 C = -137.00000 10.00000000000000000000000000000000000	SHR HHR DHR WL NO Rent RANGE O - 2,000 O - 100 O - 1000 O - 10000 O - 10000 O - 10000 O - 10	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING READING BACKCOM JO-78-9 J-05	C HAMMER LE HAMMER BACKGROUT TIME 3-30 // // 0900	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93 11/22/93	CS SI NS ST SS CALIE THME B:30 ^{ML} FACTOM Z-B DORT	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/2//23 PY CALIBURE	WEATHER OVERCAST COLUMNY COLUMNY M
DW DRIVE- ARSLC MUD-RG ARSLC MUD-RG ACASING PC SPIN CA ACASING PC SPIN CA ACASING MONITORING EC INSTRUMENT TYPE OVM - SBOE PDM - 3 OVM - 5806 VICTOREN-1906 PDM - 3 MONITORING AC ID PHOTO- ID FLAME	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPE/ENERGY B 10.0 2% 616 CS-137-81 DIST CONVER MINDON CS-1376 S PUST CONVER WINDON RONYMS	SHR HHR DHR WL NO Rent RANGE O-2,000 O-100 O-100 O-100 O-100 O-100 O-100 O-2,000 fP	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING READING BACKCOM 10-18-9 4.05	C HAMMER LE HAMMER BACKGROUN TIME 3-30 " " O900 " " ACKGROUND	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALIE TIME B:30 ^{MY} FACTOR Z-B DORT PPB	CONTINUOUS SAI 5 FT INTERVALS/ NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPO BRATION DATE 11/21/23 CALIBRAN TG CAL.	WEATHER OVERCAST OVERCAST) 4) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (M) (S) (S
DW DRIVE- ARSLC MUD-RO ARSLC MUD-RO ARSLC MUD-RO ARSLC SPIN CA MONITORING EC INSTRUMENT TYPE OVM - SEOE RAD 190B PDM - 3 OVM - 580B VICTOREEN-IND $PDM - 3MONITORING ACPDM - 3MONITORING ACPDM - 3MONITORING ACPDM - 3MONITORING ACPDM - 3MONITORING AC$	AND-WASH DTARY SOIL-CORING ADVANCER SING NUPMENT SUMMARY DETECTOR TYPEAENERGY DETECTOR TYPEAENERGY IO. p. e. //o.lb $C \le -1.37 - B_1$ Drst convice $F. //o.lbC \le -1.37 - B_1Drst conviceF. //o.lbF. //o.lbC \le -1.37 - B_1Drst conviceF. //o.lbF. //o.lb$	SHR HHR DHR WL NO Rent RANGE O-2,000 O-2,0	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING READING SACREAN 10-18 M 2.05	C HAMMER LE HAMMER LE HAMMER BACKGROUN TIME 3-30 "" " 0900 " " ACKGROUND COUNTS PER MI	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALIE TIME B:30 ^{MY} FACTOR Z-B DORT PPB	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPON BRATION DATE 11/21/23 CALIBRAN FG CAL. DRAEGER TUBES PARTS PER BILLIO	WEATHER OVERCAST OVERCAST) " SUMMY COOL, MUL *
W DRIVE- RESLC MUD-RE A CASING PC SPIN CA CONITORING EC INSTRUMENT TYPE OVM-SEOE RAD1908 PDM-3 OVM-5808 VICTOREEN-ISOE VICTOREEN-ISOE NCTOREEN-ISOE MONITORING AC ID PHOTO- ID FLAME MD GEIGER CT SCINTEL	AND-WASH DTARY SOIL-CORING ADVANCER SING NUPMENT SUMMARY DETECTOR TYPEAENERGY DETECTOR TYPEAENERGY IO. P. C. Hold CS-137-By DEST CONTER WINDON RONYMS IONIZATION DETECTOR ATION DETECTOR	SHR HHR DHR WL AO ReAL RANGE $O - 2,000 fPO - 100O - 100O$	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING READING SACREAN 10-18 M 2.05	C HAMMER LE HAMMER LE HAMMER BACKGROUN TIME 3-30 " " O900 " " ACKGROUND COUNTS PER MIL ACKGROUND COUNTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALIE TIME B:30 ^{MY} FACTOR Z-B DORT PPB	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPON BRATION DATE 11/21/23 PY CALIBRE TG CAL. DRAEGER TUBES PARTS PER BILLIO METHOD DETEC	WEATHER OVERCAST COLLAN SDNNY
DW DRIVE- ARSLC MUD-RG ARSLC MUD-RG ACASING PC SPIN CA ACASING PC SPIN CA ACASING PC SPIN CA ACASING ACASING PC SPIN CA ACASING ACASI	AND-WASH DTARY SOIL-CORING ADVANCER SING UPMENT SUMMARY DETECTOR TYPEAENERGY IO.p.e.//o.b $C \leq -137-B_1$ Drst com/fee $VIPDENERGYIO.p.e.//o.bC \leq -137-B_1Drst com/fee VIPDENERGYIO.p.e.//o.bC \leq -137-B_1Drst com/fee VIPDENERGYIO.p.e.//o.bC \leq -137-B_1Drst com/fee VIPDENERGYIO.p.e.//o.bIO.p.e.//o.bIO.p.e.//o.bIO.p.e.//o.bIO.f e.//o.bIO.f e.//o.bIO.f$	SHR HHR DHR WL NO Rent RANGE 0-2,0000000000	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING BACKER JO-78-M JO	C HAMMER LE HAMMER LE HAMMER BACKGROUN TIME 3.30 " " O900 " " ACKGROUND COUNTS PER MIL AACKGROUND COUNTS PER MIL	ND DATE 11/21/93 11/21/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93 11/22/93	CS SI NS ST 3S CALIE THME B:30 ^{ML} FACTOM Z-B DORT PPB MDL	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPON BRATION DATE 11/21/23 PY CALIBRE TG CAL. DRAEGER TUBES PARTS PER BILLIO METHOD DETEC	WEATHER OVERCAST COLLAN SON TION LIMIT
DW DRIVE- MRSLC MUD-RG CA CASING PC SPIN CA MONITORING EC INSTRUMENT TYPE OVM-SEOG RAD1908 PDM-3 OVM-5808 VICTOREEN-1900 PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-3 MONITORING AC PDM-7 TO FLAME SMD GEIGER COMMENTS: M DOWN TO DRILLERS	AND-WASH DTARY SOIL-CORING ADVANCER SING NUPMENT SUMMARY DETECTOR TYPEAENERGY DETECTOR TYPEAENERGY IO. P. C. Hold CS-137-By DEST CONTER WINDON RONYMS IONIZATION DETECTOR ATION DETECTOR	SHR HHR DHR WL \mathcal{NO} Rent RANGE $\mathcal{O}-2,000$ $\mathcal{O}-400$ $\mathcal{O}-400$ $\mathcal{O}-99$ $\mathcal{O}-2,000$ $\mathcal{O}-999$ $\mathcal{O}-2,000$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$ $\mathcal{O}-9999$	SAFETY HA HYDRAULK DOWN-HO WIRE-LINE READING BACKEN 10-78-9 C-05 M D E Speconing Speconing	C HAMMER LE HAMMER LE HAMMER BACKGROUN TIME 3-30 " " O900 " " ACKGROUND COUNTS PER MIL ACKGROUND COUNTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL AACTS PER MIL	ND DATE 11/21/93 11/21/93 11/22/93	CS SI NS ST 3S CALIE THME B:30 ^{ML} FACTOM Z-B DORT PPB MDL	CONTINUOUS SAI 5 FT INTERVAL SA NO SAMPLING SHELBY TUBE 3 INCH SPLIT SPON BRATION DATE 11/21/23 PY CALIBRE TG CAL. DRAEGER TUBES PARTS PER BILLIO METHOD DETEC	WEATHER OVERCAST OVERCAST OVERCAST OVERCAST OVERCAST COL MILL M

. '

• .

- j-

Ì

.

. . .

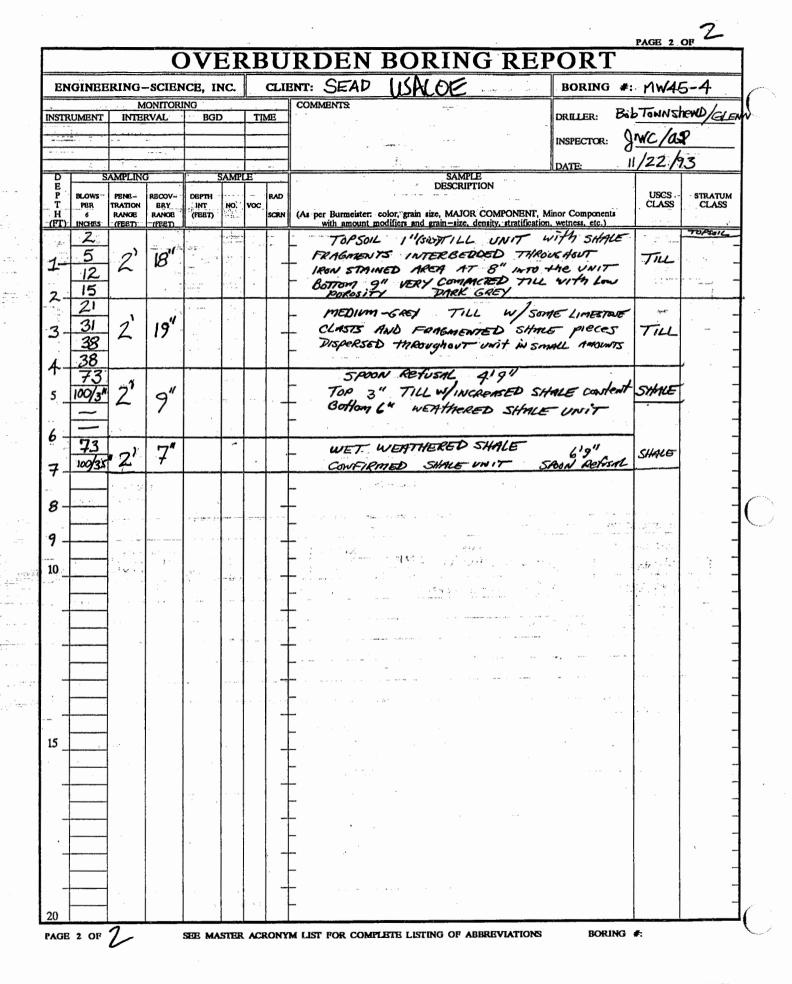
PAGE 1 OF Z

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

	EN	GINEE	RING-	-SCIEN	CE, II	٩C.		CLI	BNT: SEAD USACOE BORING #: MW	45-3
	OVN	UMENT 1580B	INTEL 0-	10' 10'	NG BGI		TII 3:3	VIE 0:4:20 1.	10" LIMESTONE UNIT At 3'6" INSPECTOR: JWC	Nannon/Bob C. /AS
	D		AMPLINC			SAMP	E		DATE: 1//2.1/93)
	E P T H	BLOWS PER 6 INCHES	PENE- TRATION RANGE (FEED	RECOV- BRY RANGE (FEST)	DEPTH INT (FBBT)	NO.	voc	RAD SCRN	DESCRIPTION USCS (As per Burmeister: color, grain size, MAJOR COMPONENT, Minor Components with amount modifiers and grain-size. density, stratification, wetness, etc.)	
	- 21 21 21	9 16 20	2'	21"	2'		Þ	660	- DARK FILL LAYER WITH SMALL (SILTY) - INTERBEDDED SHALE FRAGMENTS - Some LARGE ROCK PIECES (LIMESTORE)	-
	2 - 3 -	20 20 30 32	2'	19"	4		ø	BGD	- TOP 9" INTERBEDDED SHALE FRAGMENTS	LIMESAN LIMESTOM
	4-5_	36 119 34 36 58	2	16"	6'	-	Ø.	B40	- WELL DISPERSED SHALE LAYERS	SHALE
	6 - 7 -	74 65 85 56	2	22"	8'	-	¢.	GGD	- FRAGMENTED SHALE UNITS WITHWWEATHERED - SHALE LAYER CLASTIC TILL REACHES SHILL TILL EVIDENT DARK GREY	
• • •	8 - 9 - 10	14 50 80 77	2'	24"	10'		ø	89	UNIT VERY HOMOGENERUS VERY REGULAR Harveyhout	
		14 25 100/1"	12	11	ļļ.	_	ø	вер	SPOON REFUSAL @ 11'1" LIMESTONE CLASTS DARK TILL with SAMD DARK SILTY FINE SAND - SHALE At Bottom (" (WET ZONE)	
									AUGER Refusal At 1114"	
	 15							-		
								-		
								-		-
	-		- - 	-				-		

		OVF	RBUR	DEN	I BOR	ING	REPO	PAGE 1 OF	2
ENGI	NEERI	NG-SCIENCE			EAD				1845-4
PROJE LOCA		_SE	AD 10 S D SWMU	SWMU		IGATION	<u>і</u> јов но.	:	720477-0100
DRILLIN	g summai	R¥:			-		START I	DUND ELEV.:	630.896
DRJLLINO	HOLE	DEPTH	SAMPLER			HAMMER	FINISH I		11/22/23
METHOD	DIA	INT.	\$128 -	TYPE	TYPE	WT/FALL	CONTRA	CTOR:	WGINEED K-SCA
HSA	8'6"	2' INTERVALS	24"x 3" 6	5)	HAMMER	14016/30	" DRILLER		MPIRE SOL
							INSPECT		WC/AN
					* · _		CHECKE	D BY:	
							CHECK	DATE:	
			· · · · · · · · · · · · · · · · · · ·		and a second s				
	RING EQU	PMENT SUMMARY	RANGE	1	BACKGROU		35	3 INCH SPLIT SP	
1	YPE	TYPE/ENERGY	KANOE	READING	T	- DATE	TIME	DATE	WEATHER
	580B	10. 1 ev/Bulb	0-2,000 AP						
	EEN 190					· .			
	2 M-3	DUST COUNTER							
Pid Fid GMD SCT	FLAME - I GEIGER M SCINTILLA	ONYMS ONIZATION DETECT ONIZATION DETECT IUELLER DETECTOR TION DETECTOR	or cpr	M S	BACKGROUND COUNTS PER MIL PARTS PER MILI RADIATION OTHER REP	LION	DGRT PPB MDL DATE/PENDIN	DRAEGER TUE PARTS PER BILL METHOD DETR	LION
	SW	mv-45 Z	BackGREWD	WELL	WELL DEVELOP				

.


.

ang sa sa sa sa Sa Sa Ng sa

.

()

·,-

OBBORP2.WK1

TEST PIT LOGS

. ...

.t.) ::

•

.

·····

And a first of the second s • • • • 7 -----

:----8

, ·· • • • • •

and the second 1:2277 :

э.

l				TEST	PIT REPO	RT		PAGE OF	
EN(JINRE	RING-SCIE		CLIENT:			TEST PIT #: TP45		
PROJE		561		WMN ES			JOB NUMB		
LOCAT	TION:				erm	EST. GROL			
TEST P	IT DAT	A				•	INSPECTOR		
LEN	OTH	WIDTH	DEPTH		XCAVATION/SHORING METHOD		START DA	TE: G	
5	1	31	31	Anci	Khee / no shoring	· · · · · · · · · · · · · · · · · · ·	COMPLETI		
							DATE CHE		
MONT		DATA		DAGMOD OF DED		COMMENT		· · · · ·	
	INSTRU		P II)	BACKGROUND	TIME/DATE		2. n		
Vic	Lier-	190		U				• •	
							the state of the s	· · ·	
		•					ang bi si	and the second s	
						TOTAL SAN			
SCALE (FT)	VOC/ RAD.	SAM NUMBER	PLE DEPTH RANGE	STRATA SCHEMATIC	DESCRIPTION O (BURMEISTER M			REMA	
		······································							
-									
	-			•					
						••			
1					•				
				.•			•		
								· .	
-									
		:			· · · ·		· .		
				• .					
 									
-									
			•				-		
				,					
	1	-				-			
¹ 3	ali	TP45-1	2 N.	e Alexandre de la composición de la compo	N 11 I		· · · ·	Phite #	
	0/0	TPYSHARP	34		Dry-silt-clay	/		full f	
-									
L!		1145-11			medium brow	っ			
		11/3/42			Sine order	4161			
		1300 · (315 (194	5-11)						
┣-╹┦		· (315 UP					ı		
		1		1	1				
		,							

SHE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

TEST PIT #: TP45-1

(

Í,

TSTPIT.WK1

٠.

بالمعاد المحادية فالراب	
A second s	
 A state of the second seco	

,

· · ,

n i Stanto

		,	· · · · ·	TECT	PIT REPORT		PAGE OF
RNG	INREI	RING-SCIE	NCE	CLIENT:	MALE	TEST PU	#: 1045-2
OJE	-		SEAD 1	0 SWMU	ESE	JOB NUMBE	R:
CAT	ION:		SWMN	45 - E	berm	EST. GROUN	
_	T DAT	The second s				CONTRACTO	DR:
LENK		WIDTH 31	DEPTH	Back	the / nu sharing method	START DAT	N DATE: 17/
						DATE CHECKED B	
		DATA				IENTS:	
	INSTRU (/	MENT	PID	BACKGROUND	TIME/DATE		
Vi	eture.	<u> </u>		Û	1		
· · ·		· · · · ·				······································	•
					TOTAL	SAMPLES:	
LE	VOC/	SAM		STRATA	DESCRIPTION OF MATERI	ALS	
	RAD.	MUMPER	DEPTH BANGE	SCHEMATIC	BURMEISTER METHODOL		REMARKS
							•
ŀ							
1							· _ •
	1						
					· · · · · · · · · · · · · · · · · · ·		
							· · ·
			х.				
2							
ľ							
	.						
						:	
3 (0/0	TP45-2	3ft		Purk - brown - clay	ev	Cilua.
	70	11.50	2.11		Purk - brown - clay few swight rucks	./	(hote #1
		11/8/93			Some ordnance		
		1330			Some or sprance		
4					· .		
				•			
			•				•••

ver. 1/ 15-Oct-93

_							PAGE OF
		•			PIT REPORT		
ENC	JINEE	RING-SCIE	NCE, INC.	CLIENT:	USACE		Г#: ТР45-3
ROJE			AD 10	SWMU	ESE	JOB NUMBI	
OCAT	ION:		wmn 4	<u>5 - Ber</u>	m.	EST. GROU	-
TEST P	IT DA	ГА				CONTRACT	
_	OTH	WIDTH	DEPTH	E	XCAVATION/SHORING METHOD	START DAT	
5		31	31		hackhae / ine shering	COMPLETIC	
						CHECKED B	
			1	<u> </u>		DATE CHEC	
MONIT	INSTRU	DATA	DETECTOR	BACKGROUND	TIME/DATE		t p
	<u>OUA</u>		PIN	U	TIME DATE		
Viet	- UUA	9 190		0			
							2
						SAMPLES:	
	VOC/	SAM		STRATA	DESCRIPTION OF MATERI		DEMADER
<u>en </u>	RAD.	NUMBER	DEPTH BANGE	SCHEMATIC	BURMEISTER METHODOL	NI)	REMARKS
.							
	,						
				•• •			
1							
					•		
			•				
	1. 1. 1 . 1						
			· · · · ·			5	
2							
·							
.			÷.,			`	
				·			
							-
	1/.	TP45.3	2 61		Durk brown - clay		Phile #3
	J/0		3 Ft		WALL OF OUT OF OUT		the so
		1415			muist, clumpy some ordnamice		•
		1/8/43					
		70/13			sume ordnance		
					c		
.							
4				-			
					· · · ·		
.							
			•				
-							
- 1							
. 1							

. . .

ſ

۰.

· .

(

Annual A

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

TEST PIT #: TP45-3

· · · ·

PAGE OF REPORT TEST PIT USACOE TEST ENGINEERING-SCIENCE, INC. CLIENT: PT #: 45-4 Berm Excavation MONITORING DATA TIME/DATE INSTRUMENT PLU DATE START: OGOU DATE FINISH: OVM 9/93 110 0900 icheen INSPECTOR: ЛM CONTRACTOR: UXP a second to SCALE VOC/ SAMPLE DESCRIPTION OF MATERIALS STRATA BURMEISTER METHODOLOGY) REMARKS (FT) RAD. NUMBER DEPTH RANGE SCHEMATIC Brown clay and silt East side is maist and very clayer. Rest is dry. We foreign material Photo # 8 TP45-4 11/4/43 3 feet ofi Rinsate sample 3 1245 TEST PIT #: TP45-4 SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

.

ver. 1/ 15-Oct-93

TSTPITP2.WK1

PAGE OH REPORT TEST PIT USALOE CLIENT: TEST PIT #: TP45-5 ENGINEERING-SCIENCE, INC. BUM EXCAVATION MONITORING DATA 11/9/93 DATE START: INSTRUMENT DETECTOR III TIME/DATE 0 0400 DATE FINISH: OVM V. 190 Ū (1960 11/4/97 cloreen INSPECTOR: CONTRACTOR: UYB SCALE VOC/ STRATA DESCRIPTION OF MATERIALS SAMPLE; SCHEMATIC (BURMEISTER METHODOLOGY) (TT) RAD. REMARKS NUMBER DEPTH RANGE 4. - *** 14 1.1 2 2 3 Darik brown dry cluy, silt no forage material hote # 9 TP45-5 0/0 3feet ч 1/9/193 1315 TEST PIT #: SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS TP 45-5

ver. 1/ 15-Oct-93

TSTPITP2.WK1

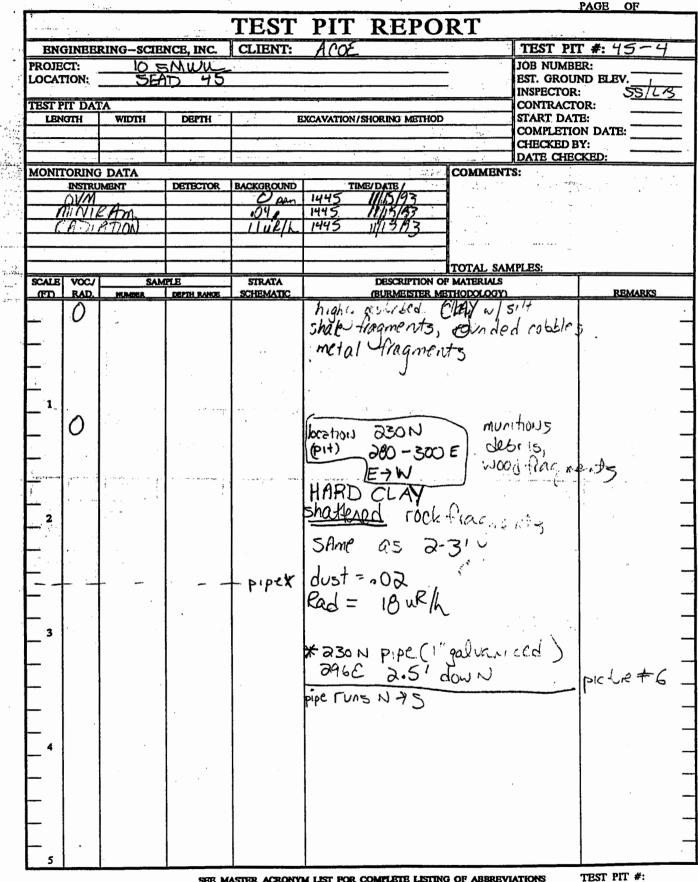
,								PAGE OF	
			•	TEST	PIT REPO	RT		* *	
- EN	GINEE	RING-SCIE	NCE, INC.	CLIENT:	US ACOE	•	TEST PI	r #: TP45-	1.
ROJI	CT:	Seneca		out			JOB NUMBE		<u> </u>
OCA'	TION:	Sead -	15				EST. GROU		
EST 1	PIT DA	ТА					INSPECTOR		<u> </u>
LEN	HTO H	WIDTH	DEPTH	E	XCAVATION/SHORING METHOD		START DAT	E: 11/15/	3
6		1.5'	3.5		<u> </u>		COMPLETIO CHECKED B		3
					14 Mar 14		DATE CHEC		
IONI		G DATA			an and a second s	COMMENT	S:		
OV		JMENT	PID	BACKGROUND	TIME/DATE			• -	
DU	51.	1.0:Can		0	1200 1115/13				
60	7 611	ΰN)		5 up/L	100 11 7 193				
					and a second				
<u>.</u>						TOTAL SAM	PLES:	• •	
CALE (FT)	VOC/ RAD	SAN NUMBER	PLE DEPTH RANGE	STRATA SCHEMATIC	DESCRIPTION OF (BURMEISTER ME			REMARKS	
	6		0-1'		Burn Pit			NDWINKS_	_
-	0				20mil ordances				6
-					nile				-
-					nails osh (black) CLAT sand Silt	· 4 a	. 1		
- '					CIAYERASIT	rad=0			
						1:157-00)4		
- ^	0		1-2		nais				
- '					hae		, · ·		
					small anns rem	in te let	0-50-1		
	•	-			CLAY SAND ENT				
_	· ·						·		
	1				black ash			:	_
2					white 51205				
	Ó					rad=	10	0	
		•	-		more same	rad= dust=	. 04	Picture	_
				1.1		- 1.		# 10	
-	0				- burn pit ends o		·		
-1	<u> </u>				ratural materi	u begu	ns		
3				ve	mute of same - burn pit ends a natural maxerin ry stiff CLAY	-			_
									_
					1				
-					3.5' -tal depth				
·					•				
. 4						•			
		·							
-									
								. ,	
5									

ver. 1/ 15--Oct-93

TSTPIT.WK1

 \bigcirc

(


		,							• •	· · · · · · · · · · · · · · · · · · ·	
			· <u> </u>	·····	TEOT	DITT				PAGE OF	_
-							REPO				
	ENC PROJE		RING-SCIEL		CLIENT:	ACDE			JOB NUMBI	Г #:7°45-с	2
	LOCAT		10 SMU	ATT 4	5		····		EST. GROU		<u> </u>
	-	TO 15 47						-	INSPECTOR	SS727	
	LEN	TT DAT	WIDTH	DEPTH ,	E	XCAVATION/S	HORING METHOD		CONTRACT		193
	4		21	1.5					COMPLETIC	N DATE: 11/15	ŤŦ
					· · · · · · · · · · · · · · · · · · ·	· · · · · ·			CHECKED B DATE_CHEC		<u> </u>
	MONI		DATA			· ·		COMMENTS	:		•
		INSTRU		DETECTOR	BACKGROUND	1330	E/DATE , 1//15/95				
		Min	an		.04	19.90	n	4			
Carvo		Kania	hun		10 uR/h	1230	1			· · · · · · ·	
								1 - A.C.		547 · · ·	
							·	TOTAL SAM	PLES:		
	SCALE	VOC/ RAD.	SAM	PLE DEPTH RANGE	STRATA SCHEMATIC		DESCRIPTION OF			REMARKS	
		Ő		0-1'		Cilled.	n/water		04=de		
ł	i	U,		01				. <i>F</i>	04=dus D= Radidt	0	: -
	·					CLAY	silt sand			un.	-
						DiDes	at 6" es W lelectri		1		
	_ 1					Ktep los	~ L. lelectu	cal wires	E		
[1				alter de la terra de la composición de	elala G					-
			n ang ang ang ang ang ang ang ang ang an			Siver T	agments.	some u		pictre#9	-
··			4	· .		÷	•			pictor 1	-
-			a part da cara da	enter professione				· ·	<u> </u>		-
							, <u> </u>	1. 1. 3			-
				·		1.5 : =	end of	test pit		•	
	2		· · · ·			Scholit	ion wire (No Se 1	eaded)		
						INRE	1			5.0 s	-
	-					uro too	k 2 pic	hres)	•		
-		· .		. 1 ⁵ 1							-
		•		3						-	-
	_										-
	3	•				-	-		· ·	•	
						**		•			
	— ·										-
ŀ											-
	_				1	4.1				•	-
											-
· [4									-	
ľ	_			4 C							-
ŀ	- 1							,			-
ŀ											-
ļ						a la la s	d. m.n		\a		-
						A ordan	to rain,	⇒ +• *	J		-
ľ						dusf +	radiation	metris			•
· · · · ·	-	<u> </u>			<u></u>		OMPLETE LISTING			TEST PIT #:	

ver. 1/ 15-Oct-93

۰.

PAGE_OF TEST PIT REPORT CLIENT: ACOE TEST PIT #: 719 75-ENGINEERING-SCIENCE, INC. JOB NUMBER: PROJECT: 10 5MWU EST. GROUND ELEV. LOCATION: INSPECTOR: TEST PIT DATA CONTRACTOR: START DATE: LENGTH WIDTH DEPTH EXCAVATION/SHORING METHOD a' 2.5' COMPLETION DATE: 201 CHECKED BY: DATE CHECKED: MONITORING DATA COMMENTS: INSTRUMENT DETECTOR BACKGROUND TIME/ DATE A ... 11/15/9 11/15/9 11/15/93 1.300 0.... Minia 04 1300 10 adiatio. TOTAL SAMPLES DESCRIPTION OF MATERIALS SCALE VOC/ STRATA SAMPLE BURMEISTER METHODOLOGY) SCHEMATIC REMARKS RAD. (FT) NUMBER DEPTH RANGE AY , 5 hale tragments 0-1 0 metal fragments wire J stel Rod fuzes munitions debris Y DISTURBED Shitt CLATTER 17 \mathcal{O} glacial till shaktagmen From de d robble s picture # Still disturbed VERY COMPACT 8 2 DuR/h=radiator end of pit 1" pipe -galvanizer * NOTES E to W trench 3 160N DOSE 300E based on geophysical grid 160N, 205E = Pipe location Frences N-5 TEST PIT #: 45-3 SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

ver. 1/ 15-Oct-93

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

EN	GINEE	UNG-SCIE	NCE. INC.	CLIENT: ;	PIT REPO		TEST PI	т #: 45-2	
	CT:	10 Smil					JOB NUMB		
	TION:	SEI		5		-	EST. GROU	ND ELEV.	
CODE							INSPECTOR		5
_	OTH	A WIDTH	DEPTH		XCAVATION/SHORING METHOD		CONTRACT		_
	31	1.5'	1.5'					ON DATE: 11/15	p3 1
							CHECKED B	BY:	
		DATE		<u> </u>		10010 (TINT	DATE CHE	CKED:	
AUNI	INSTRU		DETECTOR	BACKGROUND	TIME/DATE	COMMENT	2:		
	OVM			0	1420 11/15/43		** **		
·· ·	MINI	eAn		.04	1	: .:			
	RADI	ATION		<u> </u>	4	· · ·	. · · ·		
						1	÷	÷	,
	÷.,					TOTAL SAM	IPLES:	.·	
CALE		SAM		STRATA	DESCRIPTION O		· .		
(TT)	RAD.	NUMBER	DEPTH RANGE	SCHEMATIC	BURMEISTER M	THODOLOGY		REMARKS	
_ ·	0				CLAY , indeep			1. 1. 1	
				1 1	pipe at 6 goes	EtoW		photo ## +	
					Galvanized U			•	
_					pit 230 E loca 140 → 148 N		· .		
_					100a 170 -7 170 N	•			
1					metal fragments				
				· .	alimment oxide - 2	st white			-
-					und fragmente	radio	10 U≥ 10	•	-
					netal fragments alimnian oxide - il wood fragments wire	dust	-04		_
		· .							
-				:	PIPE - HON DOE				
			7		JUE				_
2					Front E -	γV			
						-		• •	
-									-
-									
_									·
									-1
- 3									
_									
-				1					
-					-				-
_									
4									
-									-
-									
									_
-			;						
-									
-5								TEST PIT #:45	

.

.

·							PAGE OF
				TEST	PIT REPO	RT	
ENG	INEER	RING-SCIE		CLIENT:	SEAD	TEST	T PIT #: TP45
PROJEC		SENE	CA 751	WMU INVE	stigAtion		UMBER: 7204 ROUND ELEV.
· · ·						INSPEC	TOR: Qu
TEST PI	T DAT	A WIDTH			XCAVATION/SHORING METHOD		ACTOR:
5		Z.51	DEPTH 2		ACKHOE	COMPL	ETION DATE:
		an Villegene e					CHECKED:
MONIT	ORING	DATA				COMMENTS:	
		SBOB	DETECTOR	BACKGROUND	TIME/DATE 9:30 AM		
C		3800	10.00	- P	1.50		
:	4						
						. .	
		· · · · · · · · · · · · · · · · · · ·				TOTAL SAMPLES:	NO SAMPLES
SCALE (FT)	VOC/ RAD	SAM	DEPTH RANGE	STRATA SCHEMATIC	DESCRIPTION O (BURMEISTER M		REMARKS
	1						
			- ·	200 1 10	FILL U	NII	
					FRAGMENT	T OF	
-					FRAGINENT	A.D. Ammo	
				· · · · · · · · · · · · · · · · · · ·	SHRAPNAL	AND AMIN	
- 1	-			-	ROUNDS		
					LIGHT BROWN	-GEN TIL	L
			~		L tori Dion		
						\wedge	A Geophy ANOMI
			an an ionadalan aktisiktari i un				Ano.
2			:		O		
	9				Bottom O	- TEST AT	
-							
						•	:
3		angen in dangen bestamme	nanga Minis manjamu n			, , , , , , , , , , , , , , , , , , , 	
	·		$(2^{n+1})^{n+1}$				
→				· · ·			
<u> -</u>							
	9						
1 1							

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

TSTPIT.WK1

.

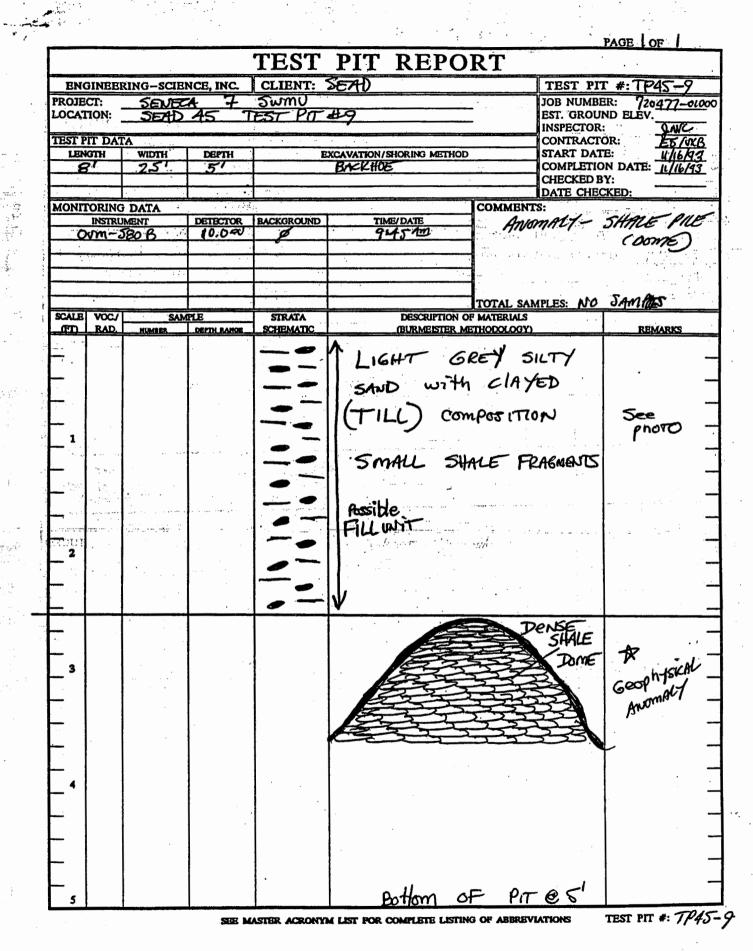
PAGE 1 OF Z TEST PIT REPORT ENGINEERING-SCIENCE, INC. CLIENT: SEAD TEST PIT #: TP45 7 SWMU INVESTIGATION JOB NUMBER: PROJECT: AD 20477-0100 LOCATION: EST. GROUND E INSPECTOR: CONTRACTOR: TEST PIT DATA EXCAVATION/SHORING METHOD START DATE: WIDTH DEPTH LENGTH 10' Z.5-3' ママス BACKHOE COMPLETION DATE CHECKED BY: DATE CHECKED COMMENTS: MONITORING DATA ANOMALT - METRY Deblis DETECTOR BACKGROUND TIME/DATE INSTRUMENT 10.0.20 10:50 AM OVM-580B 10:50 AM RADIATION TOTAL SAMPLES: NO SAMPLES DESCRIPTION OF MATERIALS SCALE VOC/ STRATA SAMPLE SCHEMATIC BURMEISTER METHODOLOGY REMARKS (PT) RAD. DEPTH RANCE NUMBER TOPSOIL Light BROWN - GREY SILTY SAND COMPACT SOIL LAYER FILL UNIT WOOD FRAGMENTS See METAL Debeis, Ammo photo Rounds, fuses Geophysical ANOMAL TILL TEST PIT #: 7745 SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

				•			• •		PAGE ZOF
						REPC	DRT		· · ·
			BNCE, INC.	CLIENT: 2	SEAD			TEST PIT	#: TP 45
MONIT	ORING		DETECTOR	BACKGROUND		TIME/DATE		DATE START:	1/16/
	,	1<	AB	NE ON	I BAL	E1		DATE FINISH:	
		15	10					INSPECTOR: CONTRACTOR:	- UNC
			*		· · · · · · · · · · · · · · · · · · ·				
SCALE	VOC/ RAD.		MPLE	SIRATA SCHEMATIC		DESCRIPTION C	F MATERIAL	S IV)	REMAR
		MUMBER	DEPTH RANOB			(BURNESDIEN M	CINCLAR		
		·				TILL			
				4		11LL			
·			· · · ·		•		• • •	- · .	
6			-						• .
		· .						. · · · ·	
						NICE	CLA	Y UNIT	See
						•.			See photo
-		4 4,1			•		•.		
-7			.*		-				
 -			•						
- 1					· · · · · · · · · · · · · · · · · · ·	ottom o		Por I'z"	
 -					1 5	DIMI O		<u>111 97</u>	
	- 1. - 1.		-						
-8		·					•		
									1
							ι.		
 _	·	•				· .			
– ľ	1		١	•				• • •	
-			-					-	
 -		-							
-		•							
<u> </u>		•							
		•							
						-			
								VIATIONS	

...

()

TSTPITP2.WK1


PAGE / OF Z PIT REPORT SENECA ARMY DEPOT ENGINEERING-SCIENCE, INC. CLIENT: TEST PIT #: TPAG-8 PROJECT: SENEZA 10 SWMU INVESTIGATION JOB NUMBER: 7204 010 LOCATION: SEAD 4 EST. GROUND FLEV INSPECTOR: TEST PIT DATA CONTRACTOR: EXCAVATION/SHORING METHOD START DATE: LENGTH WIDTH DEPTH 31 7'8" BACK HOE COMPLETION DATE: CHECKED BY: DATE CHECKED COMMENTS: MONITORING DATA PURPOSE TO DENTIFY TIME/DATE INSTRUMENT DETECTOR BACKGROUND OVM-580B 100 0 GEOPHYSICAL ANOMALIES 9:05 11 3.43 4/ RADIATION TOTAL SAMPLES: No SAMPLES SCALE VOCI SAMPLE STRATA DESCRIPTION OF MATERIALS RAD. BURMEISTER METHODOLOGY) REMARKS (FT) DEPTH RANGE SCHEMATIC TOPSOIL (DISTURBED) FILL MATERIAL MED. BROWN-GREY 1 SILT GOOD INDICATION OF 2 A BORN PIT wood PAHette DeBeis metal Debeis 3 NAILS WIRE-TUBING TEST PIT #: 7745-8 SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

PAGEZ OF 2 TEST PIT REPORT ENGINEERING-SCIENCE, INC. CLIENT: SENECA ALMY DEPOT TEST PIT #: -8 MONITORING DATA DATE START: INSTRUMENT BACKGROUND TIME/DATE DETECTOR DATE FINISH: NC INSPECTOR: CONTRACTOR: ESIVE ٩. SCALE VOC/ STRATA DESCRIPTION OF MATERIALS SAMPLE BURMEISTER METHODOLOGY) (FT) RAD. WINDER SCHEMATIC REMARKS DEPTH RANGE metal Debeis @ 5'6" GROUNDWATER 07 7 BOTTOM OF PT 7'8" 8 9 ю TP45-8 SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS TEST PIT #:

PAGE OF PIT REPORT TEST ACO CLIENT: TEST ENGINEERING-SCIENCE, INC. **PT'** 105mm/u MONITORING DATA INSTRUMENT BACKGROUND DATE START: DETECTOR TIME/DATE DATE FINISH: 11/15/93 QVN 1400 MINI KAN 1600 INSPECTOR: Kaninhal 1600 10 CONTRACTOR: ÷. SCALE VOC. STRATA DESCRIPTION OF MATERIALS SAMPLE F., BURMEISTER METHODOLOGY REMARK (FT) RAD SCHEMATIC DEPTH RANG NUMBE pieces of wood dust= 0 O Radiations 15 CLAY stale fragments disturbed_most more compact than above Vew still CLAY 0 with shattered wood, notal, iock tragments metal-rused as above 1-2' S 0 debristo 4-4 O50. tech end of pit -5 TEST PIT #: SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS

ver. 1/ 15-Oct-93

TSTPITP2.WK1

EN	GINEE	RING-SCIE	NCE, INC.	TEST CLIENT:	PIT REPO		PIT #: TP45-10
PROJE	CT:	SEAD	A 7.	SWMU	PIT #10	JOB NU EST. GR INSPECT	OUND ELEV.
	PIT DA IGTH 3 ⁷	TA WIDTH 2.51	DEPTH 164	E	BACK HOE	COMPLE CHECKE	DATE: <u>M/16/93</u> TION DATE: <u>11/16/93</u> D BY:
	INSTRU	J DATA JMENT -SBOB	DETECTOR IQDEV	BACKGROUND	TIME/DATE	COMMENTS	HECKED: 3 ⁴ pipe was terminiated p (T
						TOTAL SAMPLES: N	lo samples
SCALE	VOC/ RAD.	SAN	APLE DEPTH BANGE	STRATA SCHEMATIC		OF MATERIALS	REMARKS
1				::::::::::::::::::::::::::::::::::::::	TOPSOIL- Light Brow COARSE SAND	N-GREY MCD-	•
_					Ð		See photo & Geoph/sick Anomaly
_ 2					Βοττδη	of Pit	
3							
						- 	
_1		-		•			

• •

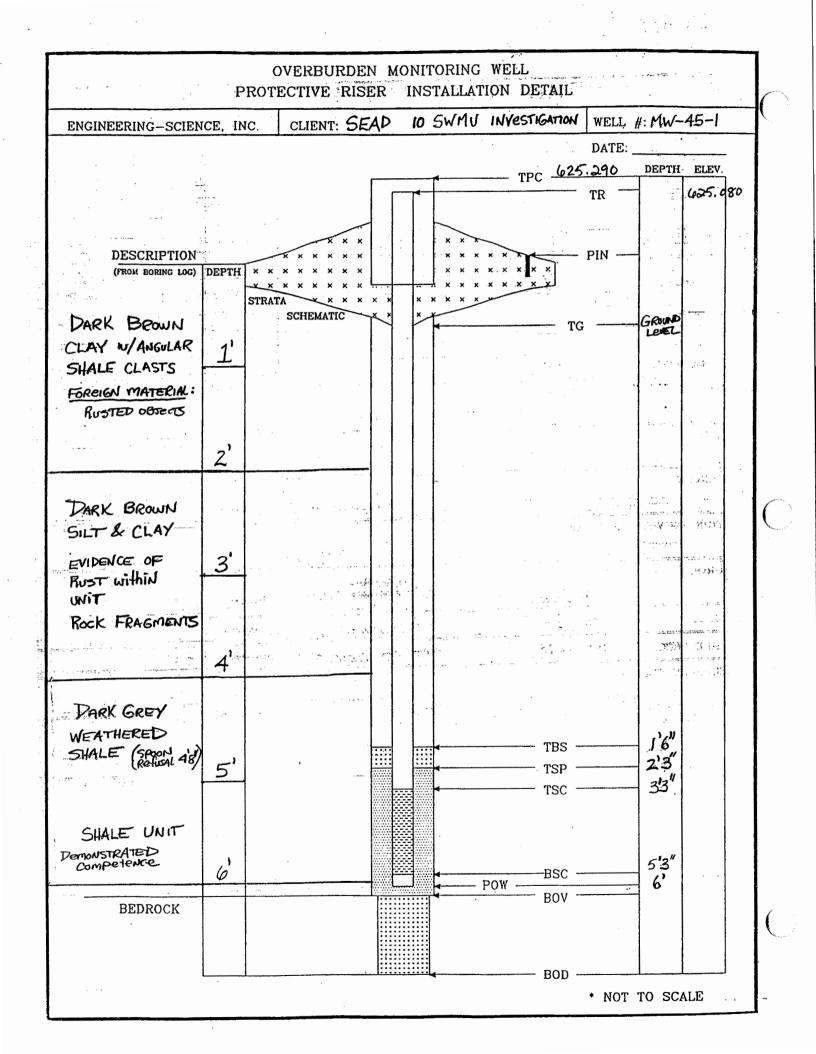
(

.

MONITORING WELL INSTALLATION DIAGRAMS

·

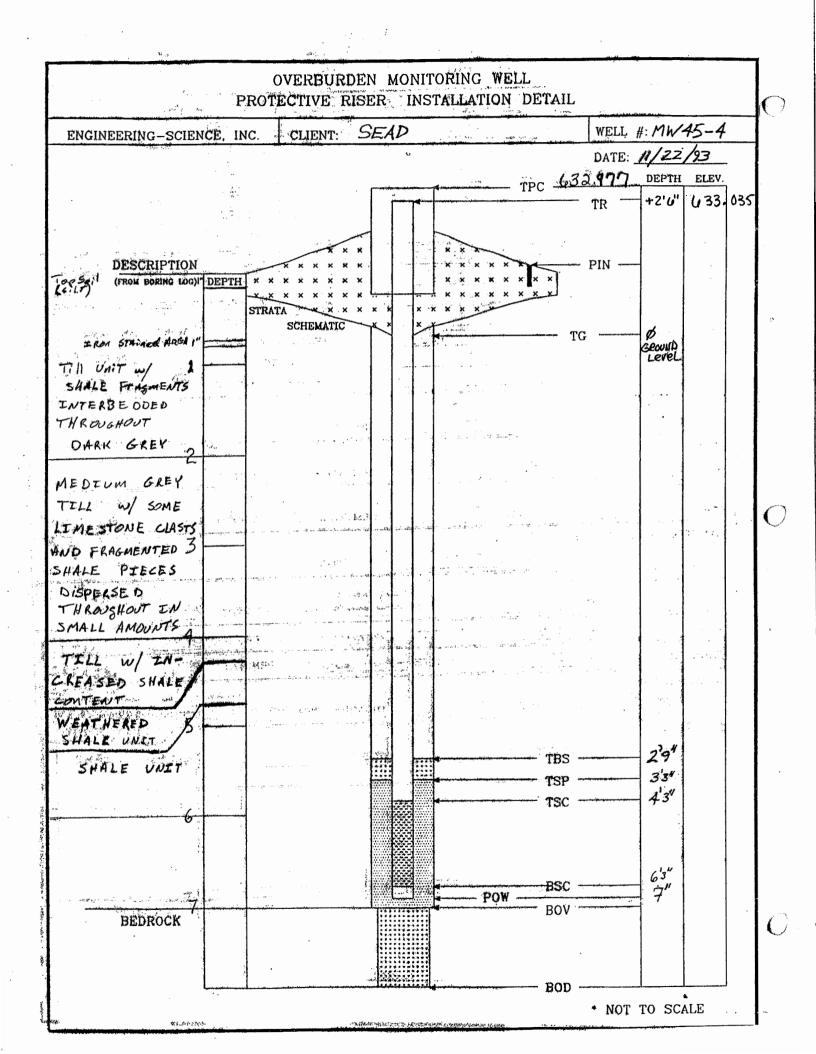
· ·


	ETION	REPORT		ING WELL ATION DETAIL LETION
ENGINEERING-SCI	ENCE, INC.	CLIENT: A	COE	WELL #: MW-45-1
PROJECT: 10	SUINU		P	ROJECT NO: 720477-01001
)-45		1	INSPECTOR: KS/AW
- ··· · ···	an a contra constant		CE	IECKED BY:
DRILLING CONTRACTOR	: Empire	1		POW DEPTH: 4.0'
DRILLER	BOB / 5	icott	IN	ISTALLATION STARTED: 11/20/9
DRILLING COMPLETED	11/20/9	3	INST	ALLATION COMPLETED: 11/21/23
BORING DEPTH	1: (p.0'		SURFA	ACE COMPLETION DATE: 11/21/93
DRILLING METHOD(S)	HSA	······································	COMPLETIC	ON CONTRACTOR/CREW: Empire
BORING DIAMETER(S)	81/21	f	BEDRO	OCK CONFIRMED (Y/N?) Y
ASSOCIATED SWMU/AOC	: SEAD-4	5	ESTIMATED	GROUND ELEVATION: 622.794
PROTECTIVE SURFACE	CASING: DIAMETER:	4 "	LENGTH:	
RISER: <u>TR:</u> SCREEN: TSC: <i>3</i> , 25		PVC-40 PKC-40	DIAMETER: \mathcal{L}'' DIAMETER: \mathcal{L}''	LENGTH:
POINT OF WELL: (SILT SUI TYPE: <u>PYC poin</u>		5, <u>2</u> 5	POW: 6.0	
GROUT: TG:	Ground	TYPE:	Quikhete Bentonite SLARRI	LENGTH: _/,5'
SEAL: TBS:	1.5'	TYPE:	bentinite pellets	LENGTH: 0,75'
SAND PACK: TSP:	2,25		#3 and #1	
SURFACE COLLAR: TYPE: <u>Cement</u>	RADIUS:	2'×2'	THICKNESS CENTER:	
DEPTH 1:	DEPTH 2:	:	DEPTH 3:	DEPTH 4:
COMMENTS:				
				Υ
				••
				CED TO GROUND SURFACE

and the second second second second second

ALC: N. FURS

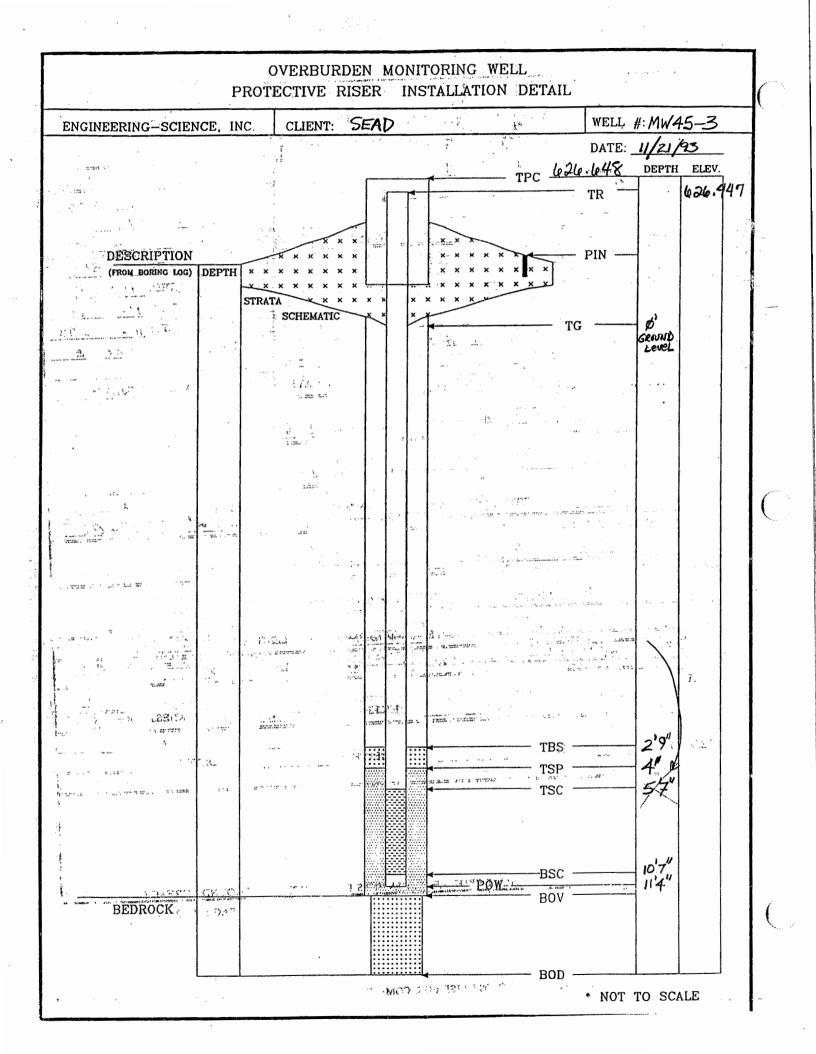
.


-.`

د. مەمەلە ھەرەپ بەرەپ بەرەپ ئىلەرە ئىلەرە ھەرەپ يەرەپ يەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ يېلەرەپ بەرەپ ب	PAGE 1 OF 2
OVERBURDEN M	
COMPLETION REPORT &	INSTALLATION DETAIL
	SER COMPLETION
ENGINEERING-SCIENCE, INC. CLIENT:	WELL #: MW-45-2
PROJECT: SEAD WELL INSTALLATION 10 SWM	
LOCATION: SEAD-45	INSPECTOR: JWC/QL
	CHECKED BY:
DRILLING CONTRACTOR: EMPIRE SOILS	POW DEPTH: 10'
DRILLER: JOHN WARNER	INSTALLATION STARTED: 11/20/93
DRILLING COMPLETED: 11/21/93	INSTALLATION COMPLETED: 11/21/93
BORING DEPTH: 10'	SURFACE GOMPLETION DATE: 11/21/93
DRILLING METHOD(S): Hollow STEM AUGER	COMPLETION CONTRACTOR/CREW: EMPIRE JW/86
BORING DIAMETER(S): 8'6"	BEDROCK CONFIRMED (Y/N?)
ASSOCIATED SWMU/AOC: SWMU-45	ESTIMATED GROUND ELEVATION: 624.666
PROTECTIVE SURFACE CASING:	
	LENGTH: 44"
RISER: TR: +Z'6" TYPE: PVC	DIAMETER: <u>2"</u> LENGTH: <u>4</u> '4"
SCREEN: TSC: 4'4" TYPE: 10-SLOT	DIAMETER: $2''$ LENGTH: $5'$ SLOT 0.01" SIZE: 44
POINT OF WELL: (SILT SUMP) 10' TYPE: BSC:9'4."	Pow: 10
GROUT: GROWND QUI TG: Ø (Level) TYPE: CI	KRETE W/BENTONTILE SLOCKY LENGTH: 2,0
seal: TBS: <u>2'</u> Type: <u>Be</u>	NTONITE LENGTH: 1 2"
SAND PACK: TSP: <u>3'Z"</u> TYPE: <u>#</u>	3 # # 1 LENGTH: 12" 6'-10"
surface collar: type: <u>Cement</u> radius: <u>1</u> ' t	HICKNESS CENTER: $\underline{1'9''}$ THICKNESS EDGE: $\underline{4''}$
CENTRALIZER DEPTHS DEPTH 1: DEPTH 2:	DEPTH 3: DEPTH 4:
COMMENTS: SLIGHT PROBLEM WHEN AUGER Device became JAMMED	FLIGHTS WERE RAISED. MEASUREMENT
-Screen is 4.0' in length. PVC section	N' 50'!
* ALL DEPTH MEASUR	EMENTS REFERENCED TO GROUND SURFACE
SEE PAGE 2 FOR SCHEMATIC	PAGE 1 OF 2

: * 9.4. s

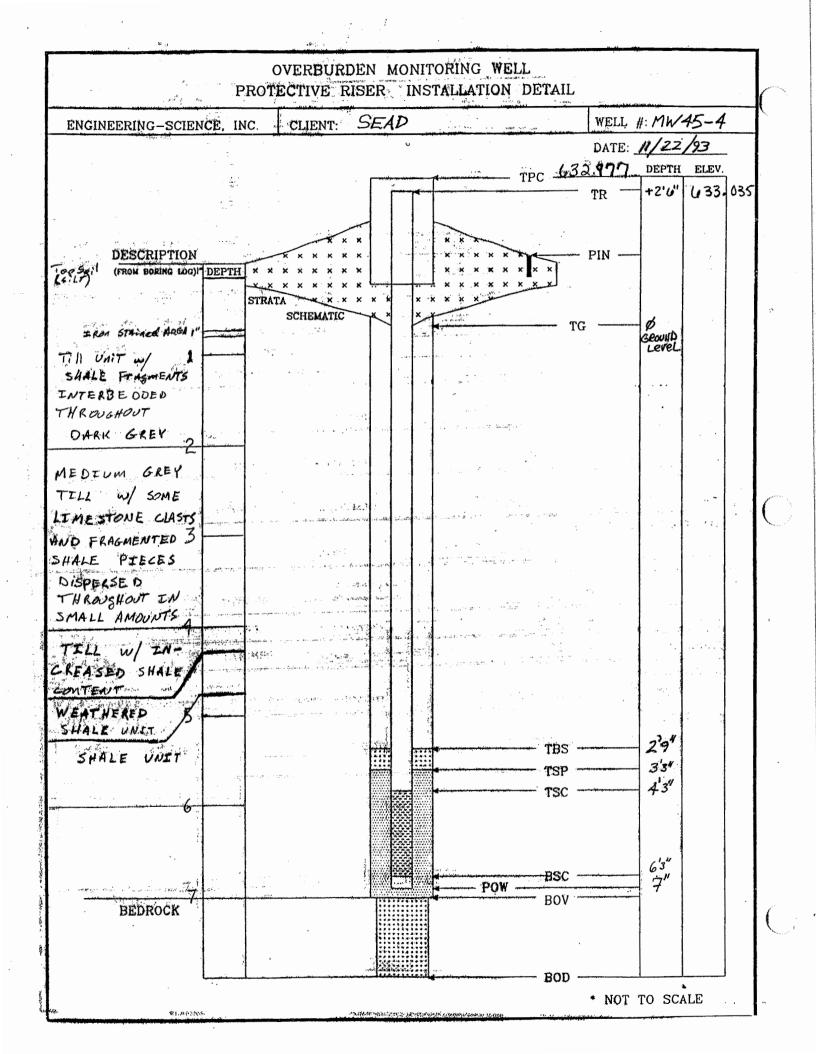
e a configuration en el


	· · · ·		PAGE 1 OF 2
	,	MONITORING	
COMPLET		& INSTALLAT	
	PROTECTIVE	RISER COMPLETIO	
ENGINEERING-SCIENCE	, INC. CLIENT:		WELL #: MW45-3
PROJECT: SEAD	1	PROJECT	NO:
LOCATION: SEAD	45	- INSPEC	ror:
	·	CHECKED	DBY:
DRILLING CONTRACTOR: E	mpire		POW DEPTH: ///33
DRILLER: /	ohn W.	INSTALL	ATION STARTED: 11/2/18
DRILLING COMPLETED:	11/24/93	INSTALLATI	ON COMPLETED: 11/22/93
BORING DEPTH:		SURFACE CON	MPLETION DATE:
DRILLING METHOD(S):	HSA	COMPLETION CON	TRACTOR/CREW: Empire
BORING DIAMETER(S):	842*	•	NFIRMED (Y/N?)
ASSOCIATED SWMU/AOC:	<u>45</u>	ESTIMATED GROU	IND ELEVATION: 623,991
PROTECTIVE SURFACE CASING	}:		
DIAM	ETER: <u>4"x 4" 5kc/</u>	LENGTH:	•
RISER:	dan selatan dari dari dari dari dari dari dari dari		
TR:	TYPE: PVC-40	DIAMETER: 2" LENC	TH:
SCREEN:			SLOT
	TYPE: PYC 40	DIAMETER: $\underline{\mathcal{Z}'}$ LENC	
	<u></u>		
POINT OF WELL: (SILT SUMP) TYPE: <u>PVC_P_mf</u>	BSC: 10'7"	POW: <u>//' 4 *</u>	
	BSC. <u>10 4</u>	<u> </u>	
GROUT:	/	A LIT THE	
TG: (12)	und TYPE:	Coment-bentonite LENGI	H: <u>d-9</u>
SEAL: TBS: _2'	<u>-9"</u> TYPE:	LENGT	H: <u>/'-3"</u>
SAND PACK: TSP: 4	• Түре:	#3 and #1 LENGT	H: <u>7'-4"</u>
SURFACE COLLAR:			ου το
	ADIUS: <u>2'×2'</u>	THICKNESS CENTER: //	THICKNESS EDGE:
CENTRALIZER DEPTHS	·		
DEPTH 1: DE	SPTH 2:	DEPTH 3:	DEPTH 4:
		• •	· the state of the
COMMENTS:			
Note: Screen is	achieny 4.0; PV	C Section is 5.0'!	1 - N - 1 1125
-			2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ана стала стал Стала стала стал		
	* ALL DEPTH MEA	SUREMENTS REFERENCED TO	GROUND SURFACE
SEE PAGE 2 FOR SCHEMATIC			PAGE 1 OF 2

Consider a second state

. . . .

.


OBSUDT.WK1

OVERBURD	EN MONITO	RING WELL	
COMPLETION RE		LLATION DETAIL	
ENGINEERING-SCIENCE, INC. CLIE		WELL #: MW 45	-4
PROJECT: 10 Swmy		PROJECT NO: 720477 - 010	
LOCATION: SEAD -45		INSPECTOR: JWC/AS	
	1	CHECKED BY:	
DRILLING CONTRACTOR: EMPIRE 5	ett.s	POW DEPTH: 7.0'	
DRILLER: BOB / GIEN		INSTALLATION STARTED: _// -22-	93
DRILLING COMPLETED: 11 - 22 - 93		NSTALLATION COMPLETED: 11-22-	
BORING DEPTH: 7.0'		IRFACE COMPLETION DATE:	
DRILLING METHOD(S): Hollow STEM		ETION CONTRACTOR/CREW: FMALL	
BORING DIAMETER(S): 8 1/2"		DROCK CONFIRMED (Y/N?)	
ASSOCIATED SWMU/AOC: SEAD 45		TED GROUND ELEVATION: 630.89	6
PROTECTIVE SURFACE CASING:	nen en en de la complete de la comp La complete de la comp		
DIAMETER: 4"	LENGTH: 2	' 6"	
RISER:			
TR: TYPE: PV2	DIAMETED 2	" LENGTH: 2'6"	•
	DIAMETER.		
CREEN:		" LENGTH: 2' SIZE: 0	
тsc: <u>4'3"</u> түре: <u>Р</u> V с	DIAMETER:	<u>LENGTH:</u> SIZE: <u>0</u>	.01
POINT OF WELL: (SILT SUMP) TYPE: $PV \subseteq BSC: 6'3$	" POW:	<u>'00''</u>	
TG: <u>0.0'</u>	QUERRETE TYPE: BENTONITE SLUTY	/ LENGTH: <u>2' 4"</u>	
BAL: TBS: <u>2'9</u> *	TYPE: BENTONITE	LENGTH: 06	
AND PACK: TSP: 3'3"	TYPE: + B, #1 SAND	LENGTH: 3'9"	i i i i i i i i i i i i i i i i i i i
URFACE COLLAR: ROIK RETE - TYPE: BE UTONITE SLARY RADIUS: /	THICKNESS CENT	TER: <u>2'9"</u> THICKNESS EDGE: 4	1''
ENTRALIZER DEPTHS			h de la composition de La composition de la c
DEPTH 1: DEPTH 2:	DEPTH 3:	DEPTH 4:	
	ne		
COMMENTS:			
· · ·			
	THE ALL AND THE AL	ENCED TO CROUND SUBSACE	
• ALL D	PIN MEASUKEMENTS KEFER	PAGE 1 OF 2 Hand	
SEE FAUE & FUK SCHEMATIC		TAGE I OF 2	
· · · ·		· · ·	

1

- A - N -

