U.S. ARMY ENGINEER DIVISION HUNTSVILLE, ALABAMA # **FINAL** INVESTIGATION OF ENVIRONMENTAL BASELINE SURVEY NON-EVALUATED SITES SEAD-199A, SEAD-122(A,B,C,D,E), AND SEAD-123(A,B,C,D,E,F) SEAD-46, SEAD-68, AND SEAD-120(A,B,C,D,E,F,G,H,I,J) SEAD-121(A,B,C,D,E,F,G,H,I,) SENECA ARMY DEPOT ACTIVITY CONTRACT # DACA87-95-D-0031 DELIVERY ORDER #0010 FEBRUARY 1999 # Investigation of # Environmental Baseline Survey Non-Evaluated Sites SEAD-119 (A), SEAD-122 (A,B,C,D,E), SEAD-123 (A,B,C,D,E,F), SEAD-46, SEAD-68, SEAD-120 (A,B,C,D,E,F,G,H,I,J), and SEAD-121 (A,B,C,D,E,F,G,H,I) at Seneca Army Depot Activity Romulus, New York 01454 FEBRUARY, 1999 Prepared for: Department of the Army Huntsville Division Corps of Engineers Huntsville, Alabama 35807 Prepared by: Parsons Engineering Science, Inc. 30 Dan Road Canton, Massachusetts 02021 # **Table of Contents** | Section | | Title | Page | |---------|-----|---|------| | 1.0 | | Introduction | 1 | | | 1.1 | Seneca Army Depot Activity | 1 | | | 1.2 | BRAC and Environmental Baseline Survey | 1 | | | 1.3 | Technical Approach for Investigation of Non-Evaluated EBS Sites | 1 | | | 1.4 | Field Investigation Methods | 4 | | 2.0 | | SEAD 119A - Building 2049 Sewage Spill | 5 | | | 2.1 | Site Information | 5 | | | 2.2 | Investigation Summary | 5 | | 3.0 | | SEAD 122A - Skeet/Trap Range | 5 | | | 3.1 | Site Information | 5 | | | 3.2 | Investigation Summary | 6 | | 4.0 | | SEAD 122B - Building 2302 Small Arms Range | 6 | | | 4.1 | Site Information | 6 | | | 4.2 | Investigation Summary | 7 | | 5.0 | | SEAD 122C - Near Building 2311 Conex with Unknown Contents | 7 | | | 5.1 | Site Information | 7 | | | 5.2 | Investigation Summary | 8 | | 6.0 | | SEAD 122D - Hot Pad Spill | 8 | | | 6.1 | Site Information | 8 | | | 6.2 | Investigation Summary | 8 | | 7.0 | | SEAD 122E - Deicing Planes | 9 | | | 7.1 | Site Information | 9 | | | 7.2 | Investigation Summary | 9 | | 8.0 | | SEAD 123A - Building 744 Indoor Firing Range | 11 | ii | | 8.1 | Site Information | 11 | |------|------|---|----| | | 8.2 | Investigation Summary | 11 | | 9.0 | | SEAD 123B - Building 716 and 717 Petroleum Releases | 12 | | | 9.1 | Site Information | 12 | | | 9.2 | Investigation Summary | 12 | | 10.0 | | SEAD 123C - Building 747 Hazardous Materials Spills | 13 | | | 10.1 | Site Information | 13 | | | 10.2 | Investigation Summary | 13 | | 11.0 | | SEAD 123D - Area West of Building 715 | 14 | | | 11.1 | Site Information | 14 | | | 11.2 | Investigation Summary | 14 | | 12.0 | | SEAD 123E - Rumored DDT Burial at Ice Rink | 16 | | | 12.1 | Site Information | 16 | | | 12.2 | Investigation Summary | 16 | | 13.0 | | SEAD 123F - Mound North of Post 3 | 17 | | | 13.1 | Site Information | 17 | | | 13.2 | Investigation Summary | 17 | | 14.0 | | SEAD 46 - Small Arms Range | 18 | | | 14.1 | Site Information | 18 | | 15.0 | | SEAD 68 - Old Pest Control Shop (Building S-335) | 19 | | | 15.1 | Site Information | 19 | | | 15.2 | Investigation Summary | 19 | | 16.0 | | SEAD 120A - 50 Area Dumping Areas | 20 | | | 16.1 | Site Information | 20 | | | 16.2 | Investigation Summary | 21 | | 17.0 | | SEAD 120B - Ovid Road Small Arms Range | 23 | iii | | 17.1 | Site Information | 23 | |------|------|---|----| | | 17.2 | Investigation Summary | 23 | | 18.0 | | SEAD 120C - Building 813-817 Paints and Solvents Disposal Areas | 24 | | | 18.1 | Site Information | 24 | | | 18.2 | Investigation Summary | 25 | | 19.0 | | SEAD 120D - MP Refueling Island in the Q | 25 | | | 19.1 | Site Information | 25 | | | 19.2 | Investigation Summary | 25 | | 20.0 | | SEAD 120E - Near Building 2131, Possible DDT Disposal | 26 | | | 20.1 | Site Information | 26 | | | 20.2 | Investigation Summary | 27 | | 21.0 | | SEAD 120F - Munitions Burial Sites, South End of the Main Depot | 28 | | | 21.1 | Site Information | 28 | | | 21.2 | Investigation Summary | 28 | | 22.0 | | SEAD 120G - Mounds at the Duck Pond | 29 | | | 22.1 | Site Information | 29 | | | 22.2 | Investigation Summary | 30 | | 23.0 | | SEAD 120H - Building 810 | 31 | | | 23.1 | Site Information | 31 | | | 23.2 | Investigation Summary | 31 | | 24.0 | | SEAD 120I - Building 819, A010 and A0102 | 31 | | | 24.1 | Site Information | 31 | | | 24.2 | Investigation Summary | 31 | | 25.0 | | SEAD 120J - Farmer's Dump | 32 | | | 25.1 | Site Information | 32 | | | 25.2 | Investigation Summary | 32 | | | | | | | 26.0 | | SEAD 121A - USCG Halon Discharge | 33 | |------|------|--|----| | | 26.1 | Site Information | 33 | | 27.0 | | SEAD 121B - Building 325 PCB Oil Spill | 34 | | | 27.1 | Site Information | 34 | | | 27.2 | Investigation Summary | 34 | | 28.0 | | SEAD 121C - DRMO Yard | 35 | | | 28.1 | Site Information | 35 | | | 28.2 | Investigation Summary | 36 | | 29.0 | | SEAD 121D - Building 306 and 308 Hazardous Materials Release | 38 | | | 29.1 | Site Information | 38 | | | 29.2 | Investigation Summary | 38 | | 30.0 | | SEAD 121E - Building 127 UST Petroleium Release | 40 | | | 30.1 | Site Information | 40 | | | 30.2 | Investigation Summary | 40 | | 31.0 | | SEAD 121F - Building 135 Stained Soil | 42 | | | 31.1 | Site Information | 42 | | | 31.2 | Investigation Summary | 42 | | 32.0 | | SEAD 121G - Rumored Coal Ash Disposal Area | 43 | | | 32.1 | Site Information | 43 | | | 32.2 | Investigation Summary | 43 | | 33.0 | | SEAD 121H - Rumored Coal Disposal Area | 46 | | | 33.1 | Site Information | 46 | | | 33.2 | Investigation Summary | 46 | | 34.0 | | SEAD 121I - Rumored Cosmoline Oil Disposal Areas | 47 | | | 34.1 | Site Information | 47 | | | 34.2 | Investigation Summary | 47 | References 49 ### **List of Tables** (Tables are included at the end of the text) | <u>Title</u> | |--| | Non-Evaluated EBS Sites (in body of text) | | Sample Collection Information, SEAD-122A - Skeet/Trap Range | | 122A - Lead in Soil vs TAGMs | | 122A - Lead in Soil vs PRG-REC | | Sample Collection Information, SEAD-122B - Building 2302 Small Arms Range | | 122B - Metals in Soil vs TAGMs | | 122B - Metals in Soil vs PRG-REC | | Sample Collection Information, SEAD-122D - Hot Pad Spill | | 122D - Volatiles in Soil vs TAGMs | | 122D - Volatiles in Soil vs PRG-REC | | 122D - Semivolatiles and TPH in Soil vs TAGMs | | 122D - Semivolatiles and TPH in Soil vs PRG-REC | | Sample Collection Information, SEAD-122E - Deicing Planes | | 122E - Semivolatiles in Soil vs TAGMs | | 122E - Semivolatiles in Soil vs PRG-REC | | 122E - Semivolatiles in Groundwater vs GA Standards | | 122E - Semivolatiles in Groundwater vs DW | | Sample Collection information, SEAD-123B - Building 716 and 717 Petroleum Releases | | 123B - Volatiles in Soil vs TAGMs | | 123B - Volatiles in Soil vs PRG-RES | | 123B - Semivolatiles and TPH in Soil vs TAGMs | | 123B - Semivolatiles and TPH in Soil vs PRG-RES | | 123B - Volatile Organics in Sediment vs NYS Criteria | | | | 9-7 | 123B - Semivolailes in Sediment vs NYS Criteria | |------|---| | 11-1 | Sample Collection Information, SEAD-123D - Area West of Building 715 | | 11-2 | 123D - Volatiles in Soil vs TAGMs | | 11-3 | 123D - Volatiles in Soil vs PRG-RES | | 11-4 | 123D - Semivolatiles and TPH in Soil vs TAGMs | | 11-5 | 123D - Semivolatiles and TPH in Soil vs PRG-RES | | 11-6 | 123D - Metals in Soil vs TAGMs | | 11-7 | 123D - Metals in Soil vs PRG-RES | | 11-8 | 123D - Pesticides/PCBs in Soil vs TAGMs | | 11-9 | 123D - Pesticides/PCBs in Soil vs PRG-RES | | 13-1 | Sample Collection Information, SEAD-123F - Mound North of Post 3 | | 13-2 | 123F - Volatiles in Soil vs TAGMs | | 13-3 | 123F - Volatiles in Soil vs PRG-RES | | 13-4 | 123F - Semivolatiles/TPH in Soil vs TAGMs | | 13-5 | 123F - Semivolatiles/TPH in Soil vs PRG-RES | | 13-6 | 123F - Metals in Soil vs TAGMs | | 13-7 | 123F - Metals in Soil vs PRG-RES | | 13-8 | 123F - Pesticides/PCBs in Soil vs TAGMs | | 13-9 | 123F - Pesticides/PCBs in Soil vs PRG-RES | | 15-1 | Sample Collection Information, SEAD-68- Old Pest Control Shop (Bldg. S-335) | | 15-2 | 68 - Volatiles in Soil vs TAGMs | | 15-3 | 68 - Volatiles in Soil vs PRG-IND | | 15-4 | 68 - Semivolatiles in Soil vs TAGMs | | 15-5 | 68- Semivolatiles in Soil vs PRG-IND | | 15-6 | 68 - Pesticides in Soil vs TAGMs | | 15-7 | 68 - Pesticides in Soil vs PRG-IND | | 15-8 | 68 - Herbicides and Arsenic in Soil vs TAGMs | |-------|---| | 15-9 | 68 - Herbicides and Arsenic in Soil vs PRG-IND | | 16-1 | Sample Collection Information, SEAD-120A - 50 Area Dumping Areas | | 16-2 | 120A - Volatiles in Soil vs TAGMs | | 16-3 | 120A - Volatiles in Soil vs PRG-REC | | 16-4 | 120A - Semivolatiles and TPH in Soil vs TAGMs | | 16-5 | 120A - Semivolatiles and TPH in Soil vs PRG-REC | | 16-6 | 120A - Metals in Soil vs TAGMs | | 16-7 | 120A - Metals in Soil vs PRG-REC | | 16-8 | 120A - Pesticides/PCBs in Soil vs TAGMs | | 16-9 | 120A - Pesticides/PCBs in Soil vs PRG-REC | | 16-10 | 120A - Herbicides in Soil vs TAGMs | | 16-11 | 120A - Herbicides in Soil vs PRG-REC | | 17-1 | Sample Collection Information, SEAD-120B - Ovid Road Small Arms Range | | 17-2 | 120B - Explosives in Soil vs TAGMs | | 17-3 | 120B - Explosives in Soil vs PRG-REC | | 17-4 | 120B - Semivolatiles in Soil vs TAGMs | | 17-5 | 120B - Semivolatiles in Soil vs PRG-REC | | 17-6 | 120B - Metals in Soil vs TAGMs | | 17-7 | 120B - Metals in Soil vs PRG-REC | | 19-1 | Sample Collection Information, SEAD-120D - MP Refueling Island in the Q | | 19-2 | 120D - Volatiles in Soil vs TAGMs | | 19-3 | 120D - Volatiles in Soil vs PRG-REC | | 19-4 | 120D - Semivolatiles and TPH in Soil vs TAGMs | | 19-5 | 120D - Semivolatiles and TPH in Soil vs PRG-REC | |
20-1 | Sample Collection information, SEAD-120E - Near Building 2131, Possible DDT Disposal | |-------|--| | 20-2 | 120E - Pesticides in Soil vs TAGMs | | 20-3 | 120E - Pesticides in Soil vs PRG-REC | | 20-4 | 120E - Pesticides in Sediment vs NYS Criteria | | 22-1 | Sample Collection Information, SEAD-120G - Mounds at the Duck Pond | | 22-2 | 120G - Volatiles in Soil vs TAGMs | | 22-3 | 120G - Volatiles in Soil vs PRG-REC | | 22-4 | 120G - Semivolatiles and TPH in Soil vs TAGMs | | 22-5 | 120G - Semivolatiles and TPH in Soil vs PRG-REC | | 22-6 | 120G - Metals in Soil vs TAGMs | | 22-7 | 120G - Metals in Soil vs PRG-REC | | 22-8 | 120G - Pesticides/PCBs in Soil vs TAGMs | | 22-9 | 120G - Pesticides/PCBs in Soil vs PRG-REC | | 25-1 | Sample Collection Information, SEAD-120J - Farmer's Dump | | 25-2 | 120J - Volatiles in Soil vs TAGMs | | 25-3 | 120J - Volatiles in Soil vs PRG-REC | | 25-4 | 120J - Semivolatiles and TPH in Soil vs TAGMs | | 25-5 | 120J - Semivolatiles and TPH in Soil vs PRG-REC | | 25-6 | 120J - Metals in Soil vs TAGMs | | 25-7 | 120J - Metals in Soil vs PRG-REC | | 25-8 | 120J - Pesticides/PCBs in Soil vs TAGMs | | 25-9 | 120J - Pesticides/PCBs in Soil vs PRG-REC | | 25-10 | 120J - Herbicides in Soil vs TAGMs | | 25-11 | 120J - Herbicides in Soil vs PRG-REC | | 27-1 | Sample Collection Information, SEAD-121B - Building 325 PCB Oil Spill | | 27-2 | SEAD-121B - Volatiles in Soil vs NYTAGM | |-------|---| | 27-3 | SEAD-121B - Volatiles in Soil vs PRG-IND | | 27-4 | SEAD-121B - Semivolatiles and TPH in Soil vs NYTAGM | | 27-5 | SEAD-121B - Semivolatiles and TPH in Soil vs PRG-IND | | 27-6 | SEAD-121B - PCBs in Soil vs NYTAGM | | 27-7 | SEAD-121B - PCBs in Soil vs PRG-IND | | 28-1 | Sample Collection Information, SEAD-121C - DRMO Yard | | 28-2 | SEAD-121C - Volatiles in Soil vs NYTAGM | | 28-3 | SEAD-121C - Volatiles in Soil vs PRG-IND | | 28-4 | SEAD-121C - Semivolatiles and TPH in Soil vs NYTAGM | | 28-5 | SEAD-121C - Semivolatiles and TPH in Soil vs PRG-IND | | 28-6 | SEAD-121C - Pesticides/PCBs in Soil vs NYTAGM | | 28-7 | SEAD-121C - Pesticides/PCBs in Soil vs PRG-IND | | 28-8 | SEAD-121C - Metals in Soil vs NYTAGM | | 28-9 | SEAD-121C - Metals in Soil vs PRG-IND | | 28-10 | SEAD-121C -Volatiles in Groundwater vs NY Class GA | | 28-11 | SEAD-121C -Volatiles in Groundwater vs Drinking Water Standards | | 28-12 | SEAD-121C - Semivolatiles and TPH in Groundwater vs NY Class GA | | 28-13 | SEAD-121C - Semivolatiles and TPH in Groundwater vs Drinking Water Standards | | 28-14 | SEAD-121C -Pesticides/PCBs in Groundwater vs NY Class GA | | 28-15 | SEAD-121C -Pesticides/PCBs in Groundwater vs Drinking Water Standards | | 28-16 | SEAD-121C -Metals in Groundwater vs NY Class GA | | 28-17 | SEAD-121C -Metals in Groundwater vs Drinking Water Standards | | 29-1 | Sample Collection Information, SEAD-121D - Building 306 and 308 Hazardous Materials Release | | 29-2 | SEAD-121D - Volatiles in Soil vs NYTAGM | | 29-3 | SEAD-121D - Volatiles in Soil vs PRG-IND | |------|---| | 29-4 | SEAD-121D - Semivolatiles and TPH in Soil vs NYTAGM | | 29-5 | SEAD-121D - Semivolatiles and TPH in Soil vs PRG-IND | | 30-1 | Sample Collection Information, SEAD-121E - Building 127 UST Petroleum Release | | 30-2 | SEAD-121E - Volatiles in Soil vs NYTAGM | | 30-3 | SEAD-121E - Volatiles in Soil vs PRG-IND | | 30-4 | SEAD-121E - Semivolatiles, Lead, and TPH in Soil vs NYTAGM | | 30-5 | SEAD-121E - Semivolatiles, Lead, and TPH in Soil vs PRG-IND | | 31-1 | Sample Collection Information, SEAD-121F - Building 135 Stained Soil | | 31-2 | SEAD-121F - Volatiles in Soil vs NYTAGM | | 31-3 | SEAD-121F - Volatiles in Soil Vs PRG-IND | | 31-4 | SEAD-121F - Semivolatiles, Lead, and TPH in Soil vs NYTAGM | | 31-5 | SEAD-121F - Semivolatiles, Lead, and TPH in Soil vs PRG-IND | | 32-1 | Sample Collection Information, SEAD-121G - Rumored Coal Ash Disposal Area | | 32-2 | SEAD-121G - Semivolatiles in Soil vs NYTAGM | | 32-3 | SEAD-121G - Semivolatiles in Soil vs PRG-RES | | 32-4 | SEAD-121G - Metals in Soil vs NYTAGM | | 32-5 | SEAD-121G - Metals in Soil vs PRG-RES | | 33-1 | Sample Collection Information, SEAD-121H - Rumored Coal Disposal Area | | 33-2 | SEAD-121H - Semivolatiles in Soil vs NYTAGM | | 33-3 | SEAD-121H - Semivolatiles in Soil vs PRG-IND | | 33-4 | SEAD-121H - Metals in Soil vs NYTAGM | | 33-5 | SEAD-121H - Metals in Soil vs PRG-IND | | 34-1 | Sample Collection Information, SEAD-121I - Rumored Cosmoline Disposal Areas | | 34-2 | SEAD-121I - Semivolatiles and TPH in Soil vs TAGMs | |------|---| | 34-3 | SEAD-121I - Semivolatiles and TPH in Soil vs PRG-IND | | 34-4 | SEAD-1211 - Semivolatiles and TPH in Sediment vs NYS Criteria | # **List of Figures** (Figures are included at the end of the text) | Number | <u>Title</u> | |--------|---| | 1-1 | Location of 12 Priority Non-Evaluated Sites | | 1-2 | Location of 12 Moderate Non-Evaluated Sites | | 1-3 | Location of 9 Low Priority Non-Evaluated Sites | | 1-4 | Decision Criteria Remediation Flow Chart | | 2-1 | Buildings and Sanitary Sewers Near SEAD-119A | | 3-1 | Site Features and Sample Locations at EBS Site 122A, Skeet/Trap Range | | 4-1 | Site Features and Sample Locations at EBS Site 122B, Bldg. 2302 Small Arms Range | | 5-1 | Site Features at EBS Site 122C, Near Bldg. 2311 Conex with Unknown Contents | | 6-1 | Site Features and Sample Locations at EBS Site 122D, Hot Pad Spill | | 7-1 | Site Features and Sample Locations at EBS Site 122E, Deicing Planes | | 8-1 | Site Features at EBS Site 123A, Indoor Firing Range | | 9-1 | Site Features and Sample Locations at EBS Site 123B, Bldg. 716 and 717 Petroleum Releases | | 10-1 | Site Features at EBS Site 123C, Bldg. 747 HM Spill | | 11-1 | Site Features and Sample Locations at EBS Site 123D, Area West of Bldg. 715 | | 12-1 | Site Features and Location of Geophysical Grid at EBS Site 123E, Rumored DDT Burial at Ice Rink | | 12-2 | Apparent Ground Conductivity at EBS Site 123E Rumored DDT Burial at Ice Rink | | 12-3 | In-Phase Response at EBS Site 123E Rumored DDT Burial at Ice Rink | | 13-1 | Site Features, Sample Locations and Geophysical Grid at EBS Site 123F, Area North of Post 3 | | 13-2 | Apparent Ground Conductivity at EBS Site 123F Area North of Post 3 | | 13-3 | In-Phase Response at EBS Site 123F Area North of Post 3 | | 14-1 | Site Features at EBS Site SEAD-46, Small Arms Range | | | | | 15-1 | Site Features and Sample Locations at EBS Site SEAD-68, Old Pest Control Shop (Building S-335) | |------|---| | 16-1 | Site Features, Sample Locations, and Geophysical Grids at EBS Site 120A, 50 Area Dumping Areas | | 16-2 | Apparent Ground Conductivity at EBS Site 120A, Areas 1 and 2, 50 Area Dumping Areas | | 16-3 | In-Phase Response at EBS Site 120A, Areas 1 and 2, 50 Area Dumping Areas | | 16-4 | Apparent Ground Conductivity at EBS Site 120A, Areas 3 and 4, 50 Area Dumping Areas | | 16-5 | In-Phase Response at EBS Site 120A, Areas 3 and 4, 50 Area Dumping Areas | | 16-6 | Apparent Ground Conductivity at EBS Site 120A, Area 5, 50 Area Dumping Areas | | 16-7 | In-Phase Response at EBS Site 120A, Area 5, 50 Area Dumping Areas | | 16-8 | Apparent Ground Conductivity at EBS Site 120A, Area 6, 50 Area Dumping Areas | | 16-9 | In-Phase Response at EBS Site 120A, Area 6, 50 Area Dumping Areas | | 17-1 | Site Features and Sample locations at EBS Site 120B, Ovid Road Small Arms Range | | 18-1 | Site Features at EBS Site 120C, Building 813-817 Paints and Solvent Disposal Area | | 19-1 | Site Features and Sample Locations at EBS Site 120D, MP Refueling Island in the $\ensuremath{\mathrm{Q}}$ | | 20-1 | Site Features, Sample Locations, and Geophysical Grid at EBS Site 120E, Near Building 2131, Possible DDT Disposal | | 20-2 | Apparent Ground Conductivity at EBS Site 120E, Near Building 2131, Possible DDT Disposal | | 20-3 | In-Phase Response at EBS Site 120E, Near Building 2131, Possible DDT Disposal | | 21-1 | Site Features and Geophysical Grid at EBS Site 120F, Munitions Burial Sites, South End of the Main Depot | | 21-2 | Apparent Ground Conductivity at EBS Site 120F; Munitions Burial Sites, South End of the Main Depot | | 21-3 | In-Phase Response at EBS Site 120F, Munitions Burial Sites, South End of the Main Depot | |------|---| | 22-1 | Site Features and Sample Locations at EBS Site 120G, Mounds at the Duck Pond | | 23-1 | Site Features at EBS Site 120H, Building 810 | | 24-1 | Site Features at EBS Site 120I, Building 819, A0101 and A0102 | | 25-1 | Site Features and Sample Locations at EBS Site 120J, Farmer's Dump | | 26-1 | Site Features at EBS Site SEAD-121A, USCG Halon Discharge | | 27-1 | Site Features and Sample Locations at EBS Site SEAD-121B, Building 325 PCB Oil Spill | | 28-1 | Site Features and Sample Locations at EBS Site 121C, DRMO Yard | | 29-1 | Site Features and Sample locations at EBS Site 121D, Building 306 and 308 Hazardous Materials Release | | 30-1 | Site Features and Sample Locations at EBS Site 121E, Building 127 UST Petroleum Release | | 31-1 | Site Features and Sample Locations at EBS Site 121F, Building 135 Stained Soil | | 32-1 | Site Features, Sample Locations, and Geophysical Grid at EBS Site 121G,
Rumored Coal Ash Disposal Area | | 32-2 | Apparent Ground Conductivity at EBS Site 121G, Rumored Coal Ash Disposal Area | | 32-3 | In-Phase Response at EBS Site 121G, Rumored Coal Ash Disposal Area | | 33-1 |
Site Features and Sample Locations at EBS Site 121H, Rumored Coal Disposal Area | | 34-1 | Site Features and Sample Locations at EBS Site 121I, Rumored Cosmoline Oil Disposal Areas | | | | ### **Appendices** # Letter Description - A Soil Boring Logs - B Test Pit Logs - C Well Construction Diagrams - D Geophysical Data - SEAD-123E - SEAD-123F - E Chemical Analyses Data Qualifiers and QC Samples # Investigation of Environmental Baseline Survey Non-Evaluated Sites Acronym List AOC Area Of Concern BRAC Base Realignment and Closure Commission CRDL Contract Required Detection Limit DRMO Defense reutilization and Marketing Office EBS Environmental Baseline Survey CERCLA Comprehensive Environmental Response, Compensation, and Liability Act EM Electromagnetic FOST/FOSL Finding of Suitability to Transfer/Finding of Suitability to Lease LRA Land Reuse Authority MP Military Police NYSDEC New York State OVM Organic Vapor Meter PAOC Possible Area of Concern PRG Preliminary Remediation Goal SCG Soil Cleanup Guidance SEAD Seneca Army Depot SEDA Seneca Army Depot Activity SMWU Solid Waste Management Unit STARS Spill Technology and Remediation Service TAGM Technical Administrative Guidance Memorandum UST Underground Storage Tank UXO Unexploded Ordinance XRF X-ray Fluorescence #### 1.0 INTRODUCTION #### 1.1 Seneca Army Depot Activity Seneca Army Depot Activity (SEDA) is a U.S. Army facility located in Seneca County, New York. The Depot occupies approximately 10,600 acres. It is bounded on the east by Route 96 and on the west by Route 96A. Most of the surrounding land is used for farming. Construction at SEDA began in 1941. Its mission included reception, storage, and distribution of ammunition and explosives, GSA and strategic materials and Office of Civil Defense engineering equipment. It also included providing receipt, storage and issue of items that supported special weapons activity and performance of depot-level maintenance, demilitarization and surveillance on conventional ammunition and special weapons. #### 1.2 BRAC and Environmental Baseline Survey SEDA was included on the Federal Facilities National Priorities List on July 13, 1989. In March 1995, the Base Realignment and Closure Commission (BRAC) submitted its recommendation that SEAD be selected for closure. This recommendation was subsequently approved in 1996. The Base Realignment and Closure Act requires environmental issues to be investigated, pursuant to CERCLA. An Environmental Baseline Survey Report (Woodward Clyde, 1996a) was prepared for SEDA. The EBS classified discrete areas of real property associated with the Depot, which are subject to transfer or lease, into standard environmental condition of property types. The determination that a specific property is environmentally suitable for transfer or lease is established under the FOST/FOSL guidance. As part of continuing work after the completion of the EBS, additional sampling and analyses was necessary at selected non-evaluated sites at SEDA to determine their environmental condition. Most of the non-evaluated sites were initially identified in the EBS, however, some sites were added to the list to be evaluated because of rumor or speculation that a release(s) had occurred. The Land Reuse Authority (LRA) identified "SEAD" areas 119, 122, and 123 as priority status, "SEAD" areas 46, 68, and 120 as moderate priority status, and "SEAD" area 121 as low priority status, based on the need for transfer or lease of each area. Most of the "SEAD" area designations are actually composed of several individuals sites, which are designated by sequential letters of the alphabet (e.g., SEAD-122A, -122B, -122C, -122D, and -122E). The 33 Non-Evaluated EBS sites, whose locations within the Depot are shown on Figures 1-1 through 1-3, are listed in Table 1-1 (on the following page). #### 1.3 Technical Approach for Investigation of Non-Evaluated EBS Sites The process by which the sites within these three areas were investigated is diagrammed in the Seneca Army Depot Decision Criteria Flow Chart (Figure 1-4). This flow chart provides the overall guidance for investigating and remediating sites at SEDA. The limited sampling and analyses was designed to provide initial data so that an impact analysis could be performed. The impact analysis involved a comparison to applicable NYSDEC standard/criteria or guidance (SCG) (Soil: TAGMs; Groundwater: GA; Sediment: Benthic Aquatic Life/Human Health). If the SCGs were exceeded, then a comparison to Preliminary Remediation Goals (PRG)s was performed. The type of PRG values used was based on the intended use of the property, which was established in the EBS. At SEAD-122 (A,B,C,D,E) and SEAD-120 (A,B,C,D,E,F,G,H,I,J), "Recreational PRGs" were used. At SEAD-123 (A,B,C,D,E,F) and SEAD-121G, "Residential PRGs" were used. At SEAD-121 (B,C,D,E,F,H), "Industrial PRGs" were used. Note that no samples were collected at SEAD-119, SEAD-46, or SEAD-121A. Drinking Water (DW) PRGs were used for groundwater. The samples were collected in source areas that were believed to have been most impacted (i.e., had the highest chemical concentrations) compared to other locations within the site. The evaluation at each site included collecting a limited amount of soil, sediment and/or groundwater data, as appropriate, to provide a basis of determining if the site has been environmentally impacted. Since many of these sites involved rumors, with no analytical data to support further evaluation, limited, but representative, data collection was deemed appropriate at these sites. Table 1-1 Non-Evaluated EBS Sites | Number | SEAD Area
Designation | Description | EBS Site Number | |--------|--------------------------|---|------------------------| | 1 | SEAD 119A | Building 2409 Sewage Spill | 54(6)HR(P) | | 2 | SEAD 122A | Skeet/Trap Range | 115Q-X | | 3 | SEAD 122B | Building 2302 Small Arms
Range | 114Q-X | | 4 | SEAD 122C | Near Building 2311 Conex with
Unknown Contents | 107(7) | | 5 | SEAD 122D | Hot Pad Spill | 56(6)PR | | 6 | SEAD 122E | Deicing Planes | 6(2)PS, 7(2)PS, 8(2)PS | | 7 | SEAD 123A | Building 744 Indoor Firing
Range | 125Q-X | | 8 | SEAD 123B | Building 716 and 717 Petroleum
Releases | 102(6)PS/PR(P) | | 9 | SEAD 123C | Building 747 HM Spills | 100(6)PS/PR/HS/HR | | 10 | SEAD 123D | Area West of Building 715 | 113(7) | | 11 | SEAD 123E | Rumored DDT Burial at Ice
Rink | Rumor | | 12 | SEAD 123F | Mound North of Post 3 | Rumor | | 13 | SEAD 46 | Small Arms Range | 122Q-X | |----|-----------|--|------------------------------------| | 14 | SEAD 68 | Old Pest Control Shop (Building S-335) | 108(7)HS(P)/HR(P) | | 15 | SEAD 120A | 50 Area Dumping Areas | 56(6)PS/PR/HR | | 16 | SEAD 120B | Ovid Road Small Arms Range | 119Q-X | | 17 | SEAD 120C | Building 813-817 Paints and
Solvents Disposal Areas | 98(6)PS/HS/HR | | 18 | SEAD 120D | MP Refueling Island in the Q | 99(6)PS/HR | | 19 | SEAD120E | Near Building 2131, Possible
DDT Disposal | 106(6)HR | | 20 | SEAD 120F | Munitions Burial Sites, South
End of the Main Depot | 117Q-X | | 21 | SEAD 120G | Mounds at the Duck Pond | 109(7), 110(7), 111(7), and 112(7) | | 22 | SEAD 120H | Building 810 | 98(6)PS/HS/HR | | 23 | SEAD 120I | Building 819, A0101, and A0102 | 98(6)PS/HS/HR | | 24 | SEAD 120J | Farmer's Dump | Rumor | | 25 | SEAD 121A | USCG Halon Discharge | 44(3)HR | | 26 | SEAD 121B | Building 325 PCB Oil Spill | | | 27 | SEAD 121C | DRMO Yard | | | 28 | SEAD 121D | Building 306 and 308 Hazardous
Materials Release | | | 29 | SEAD 121E | Building 127 UST Petroleum
Release | | | 30 | SEAD 121F | Building 135 Stained Oil | | | 31 | SEAD 121G | Rumored Coal Ash Disposal
Area | | | 32 | SEAD 121H | Rumored Coal Disposal Area | | |----|-----------|--|--| | 33 | SEAD 121I | Rumored Cosmoline Oil
Disposal Area | | Possible outcomes of the limited sampling and analyses program Impact Analysis, as indicated on Figure 1-4, are as follows: - 1. Concentrations of constituents of concern are below the NYSDEC SCG (e.g., TAGMs), suggesting that the site has not affected the environment. The site will be designated as a "no further action" site with no reuse restrictions. - 2. Concentrations of constituents of concern were above NYSDEC SCG (e.g., TAGMs), therefore, comparisons to PRGs are necessary. If concentrations are less than PRGs, but greater than TAGMs then additional sampling (possibly via an ESI) will be performed. If the concentrations exceed the PRGs, then a Hot Spot Analysis will be performed; this analysis will likely include additional sampling as well. In addition, where the significance of the environmental impact is not definitive based strictly on the analytical data comparisons, professional judgment will be used to develop the final recommendations. Thus, in some instances slight exceedance of a TAGM does not automatically result in a recommendation for further investigation at the site. The sections that describe the sites provide a summary of the investigation fieldwork and analytical results for each of the 33 Non-Evaluated EBS sites. The tables and figures are presented at the end of the text sections for clarity. Note that the analytical data tables present comparisons to both SCGs (e.g., TAGMs) and PRGs, where applicable. The results of these comparisons are presented in "bold and shade" format (i.e., the exceedences are bolded and shaded in the tables). #### 1.4 Field Investigation Methods The field investigations were performed using the methods outlined in the Generic Installation Remedial Investigation/Feasibility Study Work Plan (Parsons, 1995). Specific notes regarding selected field investigation methods/procedures, which are not specifically covered in the Generic Workplan, are presented below. The temporary wells were installed according to the permanent
unconfined well installation methods outlined the Generic Workplan, except that no permanent surface completion was performed. The wells were decommissioned shortly after the groundwater sampling was performed using the "Casing Pulling" method outlined in "Groundwater Monitoring Well Decommissioning Procedures" (NYSDEC, 1996). Immediately after installation, the wells were purged of at least one borehole volume. On the following day, ground water samples were collected after at least one well casing volume had been purged from the well. The analytical data included in this report has not been validated, but it will be validated in the near future, and the results/recommendations updated appropriately. #### 2.0 SEAD-119A - Building 2409 Sewage Spill #### 2.1 Site Information This parcel is associated with a lift station located by Building 2409, which is a former pump house presently used for dry storage (Figure 2-1). A raw sewage release was observed on the east side of this building during the 1995 EBS visual inspection. The pump station receives wastes from multiple sources. #### 2.2 Summary of Investigation No field sampling was performed at the site, because it was not considered necessary. Instead a review of the sewers systems specifications and sources was performed to demonstrate that there are no likely sources of hazardous substances that discharge waste into the lift (pump) station near Building 2409. According to a General Sanitary Sewer Map of the Seneca Army Depot, there are nine buildings located along the small looping section of sanitary sewer pipe near Colonel Drive. The sanitary sewer pipe on Colonel Drive is the sole source for sewage discharge to the pump station near Building 2409 (Figure 2-1). The nine buildings include houses, garages and a dry storage area, and there is no reason to suspect that hazardous substances were discharged from them; there was no industrial use in this area. The building uses are as follows: - Family Housing: 2401, 2403, 2404, 2406, and 2408 - Family Housing Garages (no sewer connection): S2402, S-2405, and S-2407 - Dry Storage Area (former pump house): 2409 The sewage from the residential houses is collected in 6-inch polyvinyl chloride (PVC) and bituminous non-perforated fiber pipe. Sewage waste collected at the pump station is pumped in a 1 1/2-inch PVC force main over Kendaia Creek and along East Lake Road, and eventually it discharges to the Seneca County District No. 1 Treatment Plant to the south. Recommendation: Based on the additional information presented above, SEAD-119A should not be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site. #### 3.0 SEAD-122A - Skeet/Trap Range #### 3.1 Site Information This parcel is associated with a former trap/skeet range located to the east of Building 2301 at the Airfield (Figure 3-1). This area was identified in a visual inspection and interview during the 1995 EBS. The purpose of the investigation was to determine if surface soils have been impacted by the activities at the skeet shooting range. The constituent of concern is lead in soil. #### 3.2 Summary of Investigation The skeet shooting area is behind brick farm house near the entrance to the air field (Figure 3-1). The entrance to skeet range is through a 4 foot high chain-link fence. A network of narrow asphalt walkways lead to five shooting stations that face an open field. A building that was used to launch clay pigeons is located approximately 25 feet north of the shooting stations. Two 20-foot tall buildings on either side of the shooting stations are used for launching targets. An area of clay target fragments and slightly stressed vegetation was observed approximately 200 feet downrange from the shooting stations, which indicated that this was the downrange distance where many of clay targets were hit by the shot. A total of five surface soil samples were collected at downrange locations at the skeet/trap shooting range (Figure 3-1). The samples were collected at distances of 125 feet, 175 feet, 200 feet, 250 feet and 300 feet from the shooting stations; the 200-foot sample was in the area that contained a concentration of clay target fragments. The rationale for selecting the sample locations is provided in Table 3-1. The results of the laboratory analyses are presented in Tables 3-2 and 3-3. These results were compared to the NYSDEC TAGM for lead. The results of the comparisons are given below. #### Comparison to TAGM: • Three of the five samples had concentrations that exceed the NYSDEC TAGM for lead, which is 24.4 mg/Kg, however many of these concentrations only slightly exceeded the TAGM and are likely due to natural variation in the concentration in the soil. These samples had lead concentrations that were less than two times the TAGM. The highest concentration (143 mg/Kg), which was found in the 250-foot downrange sample (SS122A-4), is approximately six times greater than the TAGM. #### Comparison to Recreational PRG: No Recreational PRG has been established for lead, although the site maximum value of 143 mg/Kg) is significantly below the agreed upon screening level of 400 mg/Kg for residential land use established by the EPA memorandum, "Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities" (9355.4-12, EPA/540/F-94/043, PB94-963282, August 1994). Recommendation: Based on professional judgment it is recommended that final actions for SEAD-122A, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 4.0 SEAD-122B - Building 2302 Small Arms Range #### 4.1 Site Information This parcel is associated with a firing range located in the area to the east of Building 2302 at the Airfield. This area was identified in a visual inspection and interview during the 1995 EBS. The purpose of the investigation was to determine if surface soils have been impacted by the activities at the small arms firing range. The constituents of concern are metals in soil. #### 4.2 Investigation Summary The site is comprised of a two adjacent small arms ranges (Range 1 and Range 2) (Figure 4-1). Range 1 has a concrete platform with 22 numbered shooting stations and a roof. A 3-sided berm, composed of dirt, encompasses the downrange area, which has rows of target mounting frames. The sides of the berm extend to the front edge of the shooting platform. Range 2 has only two shooting stations and it is smaller than Range 1. Its downrange area is also enclosed by a 3-sided berm. The shooting lanes are enclosed by concrete piping to prevent shooting above the berm (i.e., backstop). A total of five surface soil samples were collected at downrange locations at the small arms range (Figure 4-1). The samples were collected at locations immediately downrange and in locations that were believed to be impact points for the shots. The rationale for selecting the sample locations is provided in Table 4-1. The results of the laboratory analyses are presented in Tables 4-2 and 4-3. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: • Seven metals exceeded their respective TAGMs, however, some exceedences were more significant than others. Copper and lead were the only metals that were found at concentrations that exceeded their TAGMs in all five samples. The maximum concentrations of these metals exceeded their TAGMs by 15 times and 1,962 times, respectively. Less prevalent metals included silver, arsenic and antimony, which were found to exceed their TAGMs in two to three samples. Lastly, four metals (chromium, cyanide, magnesium, and zinc) exceeded their TAGMs in only one sample, and the exceedences were between 1.1 times and 3 times). #### Comparison to Recreational PRGs: - Only one metal exceeded its Recreational PRG. The metal was arsenic and it exceeded its PRG by 2.5 times. None of the other metals concentrations exceeded their respective Recreational PRG values. - There is no Recreational PRG for lead, although in four of the five samples lead exceeded the agreed upon screening level of 400 mg/Kg for residential land use. Recommendation: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from metals (particularly copper, lead, antimony, and arsenic) at SEAD-122D, the Small Arms Range. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment. #### 5.0 SEAD-122C - Near Building 2311 Conex with Unknown Contents #### 5.1 Site Information This parcel is associated with a vented conex near Building 2311 (Figure 5-1). This conex was observed during the 1995 EBS visual inspection, however, the contents of this conex was unknown at the time and, therefore, an accurate category designation could not be determined. #### 5.2 Investigation Summary No field sampling was performed at the site, because it was not considered necessary. Instead a visual site inspection of the interior of the conex was performed to determine if there are likely sources of hazardous substances within the conex. The inspection of the interior of the six foot by ten foot conex, which is vented at the top, revealed that it contained shooting targets (e.g., human profiles and bulls eyes) for use at the Small Arms Range. It also contained 30 to 40 sheets of plywood of various sizes for making targets. No containers were observed within the conex. No evidence of oil or hazardous materials storage or spills were observed. Reading of organic vapors using an OVM were at background concentrations
within the conex during the inspection. <u>Recommendation</u>: Based on the additional information presented above, SEAD-122C should not be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site. #### 6.0 SEAD-122D - Hot Pad Spill #### 6.1 Site Information This parcel is the site of a JP-4 spill that occurred in 1990 and was revealed during an interview (Figure 6-1). The incident occurred on the "hot pad" located about 880 feet west of Building 2312. The spill involved more than 50 gallons of fuel, which ran off the pad into the grass. No records indicate that the spill was cleaned up. The purpose of the investigation was to determine if surface soils on the perimeter of the pad have been impacted by the JP-4 fuel oil spill. The constituents of concern are volatile organics, semivolatile organics, and TPH in soil. #### 6.2 Investigation Summary This area is comprised of an approximately 600-foot by 60-foot rectangular concrete pad located at the southern end of the SEDA airfield. The pad is bounded on the north, east and south by grass; an small asphalt roadway connects to the southern end of the pad. On the west side is a 400-foot by 400-foot grassy area with a central drainage area. Asphalt taxiways on the northern and southern sides of this square grassy area provide access to the refueling pad from the runway. A total of four soil samples were collected from two soil borings at the Hot Pad Spill area (Figure 6-1). The soil borings were located in low areas on the downgradient (western) side of the concrete pad, which are likely to receive run-off if a spill occurred while a plane was being refueled on the concrete pad. The rationale for selecting the two sample locations is provided in Table 6-1. The results of the laboratory analyses are presented in Tables 6-2 through 6-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - None of the volatile compounds exceeded their respective TAGMs. Acetone and toluene were detected in a few of the samples but at concentrations well below their TAGMs. - None of the semivolatile organic compounds exceeded their TAGMs. The semivolatile compounds found included mostly phthalates, which were found in all of the samples, and eight PAH compounds, which were found in only one sample (SB122D-2). - Sample SB122D-2 also contained a TPH concentration of 108 mg/Kg, but there is no TAGM for TPH. No TPH were found in the other samples. #### Comparison to Recreational PRGs: • None of the concentrations of volatile organics, semivolatile organics, exceeded their respective Recreational PRGs. <u>Recommendation</u>: Based on professional judgment, it is recommended that final actions for SEAD-122D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 7.0 SEAD-122E - Deicing Planes #### 7.1 Site Information This parcel is associated with the deicing of planes at three separate aircraft refueling areas in the airfield (Figure 7-1). Two of the refueling areas area located near the ends (west side) of the northwest- southeast runway (the are both labeled "aircraft refueling"), and the third is located at the end of a short taxi way west of the central portion of the runway (it is labeled "aircraft parking and refueling"). The purpose of the investigation was to determine if soils or groundwater on the perimeter of the three pads have been impacted by the deicing fluids used on the planes. The constituents of concern are semivolatile organics and principal components of deicing fluids (alcohols/glycols, i.e., ethylene glycol, propylene glycol, total unknown alkanes) in soil and groundwater. #### 7.2 Investigation Summary This area is comprised of a three separate aircraft refueling/deicing areas. The areas are located along the length of the airfield. For ease of reference, these asphalt aircraft refueling platforms will be referred to as North, South, and Central, based on their relative position in the airfield (Figure 7-1). Two soil samples were collected from a soil boring performed at the edge of each of the three aircraft/deicing areas (Figure 7-1). Each soil boring was located in the lowest area on the edge of the asphalt pad, which was likely to have received run-off during the aircraft deicing activities. The rationale for selecting the boring locations is provided in Table 7-1. Also, a temporary monitoring well was installed in each of the three borings so that a groundwater sample could be collected. The results of the laboratory analyses are presented in Tables 7-2 through 7-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs and GA Standards: - Seven semivolatile organic compounds exceeded their respective TAGMs in soil. These semivolatile compounds included mostly PAHs and one phthalate compound. Most of these exceedences occurred in the surface soil samples at the south area (SB122E-1) and the central area (SB122E-2), however, at the latter area, the number and magnitude of the exceedences in the surface soil sample were greater for all compounds. The greatest magnitude of TAGM exceedences were for benzo(a)pyrene (138 times) and dibenz(a,h)anthracene (136 times), which were at the central area. Only one semivolatile organic compound exceeded its TAGM at the north area (SB122E-3), but the exceedences in the two samples were only 1.1 and 1.6 times the TAGM. - No propylene glycol or ethylene glycol was detected in the soil samples collected at this site. In soil, the estimated total concentration of unknown alkanes (≈TPH) was greatest in the surface soil sample (SB122E-2) from the central area. There is no TAGM for total alkanes in soil. - There were five semivolatile organic compounds detected in groundwater and they were found predominantly in the central area (MW122E-2); the other two areas contained only an estimated concentration of one phthalate compound. All of the their concentrations, however, were below established NYSDEC GA groundwater standards. - No propylene glycol or ethylene glycol was detected in the groundwater samples collected at this site. In groundwater, the estimated total concentration of unknown alkanes (≈TPH) was greatest in MW122E-3, which is at the north area. There is no NYSDEC GA groundwater standard for total alkanes in groundwater. #### Comparison to Recreational PRGs and Drinking Water PRGs: • In soil, none of the concentrations of semivolatile organics or glycols exceeded established Recreational PRGs. • In groundwater, one semivolatile organic compounds (hexachlorobutadiene) was found at an estimated concentration that was 2.2 times the Drinking Water PRG. Recommendation: As indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling to determine the extent of the impacts from semivolatile organic compounds (particularly PAHs) at the south and central pad areas at SEAD-122E. No further investigation of the north area is recommended. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment at this site. #### 8.0 SEAD-123A - Indoor Firing Range #### 8.1 Site Information This parcel is associated with Building 744 (Figure 8-1). Building 744 was a physical activities center or health club facility. Interviews conducted during the 1995 EBS revealed that a shooting range existed in the basement of the facility. These interviews also reported that the shooting range was dismantled, but no records could be found documenting the cleaning process. #### 8.2 Investigation Summary No field sampling was performed at the site, because it was not considered necessary. Instead the results of an inspection and field screening program will be used to demonstrate the environmental condition of the Indoor Firing Range at Building 744. The Firing Range at Building 744 was decommissioned in 1992, when the military ceased using the north area of the Depot for army residences and as an administration area. After the firing range was decommissioned, a visual inspection and an XRF survey for lead impacts was performed by SEDA environmental staff. The XRF detector used was a model MAP 3 spectrum analyzer manufactured by Scitec Corporation. The results of the inspection and survey described below were provide by the SEDA environmental staff. The visual inspection was conducted starting at the bullet backstop and working back to the firing line area. The air duct for both the bullet trap area and the shooting line area were inspected. No visual evidence of lead was observed. The area behind the bullet trap was inspected. In this location, small amount of bullet fragments were observed. Also, bullet fragments were observed on the metal backstop. The XRF survey consisted of field screening of many areas and surfaces within the decommissioned range. The surfaces/areas that were screened with the XRF detector were as follows: the bullet backstop, front surfaces and backside or underneath, wall, floor and ceiling of area directly adjacent to backstop, walls, floor and ceiling at random distances from backstop to the firing line area, the duct work exiting from the backstop and the duct work exiting from the firing line area. All results showed low or no lead with the exception of the area behind the backstop where there was visual evidence of bullet fragments. These screening results from this area (i.e., the bullet fragments) showed levels of lead between 19,304 ppm and 34,646 ppm. <u>Recommendation</u>: Based on the additional information presented above, the small area of bullet
fragments behind the backstop (which was visible in the inspection) should be removed. Following the removal, the area behind the backstop should be resurveyed with the XRF detector to ensure that the lead has been removed. Upon completing this action, SEAD-123A should not be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site. #### 9.0 SEAD-123B - Building 716 and 717 Petroleum Releases #### 9.1 Site Information This parcel is associated with Buildings 716 and 717 (Figure 9-1). Specifically, this is a 40,600-gallon fuel oil above ground storage tank (SRN 188) that has been in service since 1956 and an associated fueling area. There has been no record of leaking or spilling of petroleum product at this location. However, based on a 1995 EBS visual inspection, the area directly around the fueling station exhibited staining. Also, during this inspection, water was observed to be flowing over the above ground storage tank containment berm into an adjacent drainage ditch. This particular tank has been out of service and empty since 1989. The berm drain has been kept open since that time. A visual inspection conducted by the Seneca army Depot Activity Environmental Department staff on April 24, 1996 revealed only small puddles of water inside of the berm. The purpose of the investigation was to determine if soil in the immediate vicinity of the fueling station, and sediment in the nearby drainage ditch, have been impacted by petroleum products. The constituents of concern are volatile organics, semivolatile organics and TPH in soil and sediment. #### 9.2 Investigation Summary The site is comprised of an approximately 240-foot by 140-foot rectangular area that is enclosed by a chain-link fence (Figure 9-1). In the east-central portion of this area there is an inactive 40,600-gallon above ground storage tank (Tank 188) within a containment berm. An outfall pipe leads from a drain in the floor of the bermed area around the tank to a drainage ditch, which is adjacent to the southern perimeter fence. The ditch directs flow to the west. There is also a centrally located shed and fuel off-loading/filling area, which is accessible by a gate on the west side of the site. An overhead transfer pipe extends from Tank 188, past the shed, and it ends at the edge of the asphalt immediately west of the shed. The field program included three soil borings from which two soil samples were collected from each boring, three surface soil samples, and two sediment samples (Figure 9-1). The soil borings and surface soil samples were collected from within the fenced area around the above ground tank. The sediment samples were collected in two locations, one at the outfall pipe from Tank 188 and one immediately downgradient from this area. The rationale for these sample locations is provided in Table 9-1. The results of the laboratory analyses are presented in Tables 9-2 through 9-7. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: • No volatile organic compounds were exceeded their respective TAGMs in surface and subsurface soil samples. - No semivolatile organic compounds exceeded their respective TAGMs in surface or subsurface soil. The semivolatile compounds detected were mostly PAHs with some phthalate compounds. - TPH were found in five out of the six surface soil samples, but not in the subsurface soil samples. The maximum TPH concentration was in surface soil sample SS123B-1 (2,880 mg/Kg). The next highest concentration was 179 mg/Kg in the surface soil samples SB123B-1. The other three TPH concentrations were less than 100 mg/Kg. There is no TAGM for TPH. - No volatile organic compounds in the samples exceeded established New York State sediment criteria. One volatile organic compound (acetone) was found in both of the sediment samples. The detected concentrations were near the method detection limit. - No semivolatile organic compounds exceeded established New York State sediment criteria. Semivolatile organic compounds were found in both sediment samples, although the numbers of compounds and their concentrations were higher in the sample beneath the outfall pipe (SD123B-1) than in the downstream sample (SD123B-2). The compounds detected were mostly PAHs, with a few phthalates. - No TPH were found in either of the two sediment samples collected in the drainage ditch. #### Comparison to Residential PRGs: None of the concentrations of volatile organics or semivolatile organics exceeded their respective PRGs in the soil samples. Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-123B, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 10.0 SEAD-123C - Building 747 HM Spill #### 10.1 Site Information This parcel is associated with Building 747 (Figure 10-1). A visual inspection was attempted at this building; however, access to the building and the surrounding areas was denied. The tank list shows that there is a 4,000 gallon fuel oil underground storage tank (SRN 44) associated with this building that has been in service since 1982. No release has been documented for this tank. An interview conducted during the mid-EBS meeting in January 1996 revealed that this building was been used for storage of battery acids and paints and that releases of petroleum product and solvents have occurred. No sampling was performed at this site during the field program. The site was addressed in a Underground Storage Tank Closure Report prepared for Seneca Army Depot by Environmental Products and Services (1998). The pertinent findings of this report are described below. #### 10.2 Investigation Summary The 4,000-gallon fiberglass underground fuel oil storage tank near Building 747 was removed as part of the closure of seven other tanks at SEDA. During the closure, six soil samples were collected from the floor and walls of the tank pit excavation. Analytical results of these soil samples showed that no volatile organics or semivolatile organics were detected in the samples. Analytical results of a ground water sample collected from a monitoring well installed in the center of the excavation pit showed that 12 target analytes were detected. Five of these compounds were found at concentrations above guidance values set forth in NYSDEC STARS Memo #1. These five compounds, and their concentrations, are as follows: n-butylbenzene (9.3 ppb, naphthalene (43.0 ppb and 21 ppb), 1,2,4-trimethylbenzene (34.3 ppb), 1,3,5-trimethylbenzene (11.0 ppb), and total xylenes (14.5 ppb). Also, the concentrations of three of these compounds (total xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) are above their respective NYSDEC GA standards of 5 ppb. According to a February 11, 1998 letter from NYSDEC, the status of the site (Spill No. 9712298 - Building 747) is that "groundwater contamination above STARS criteria" exists at the site. Furthermore, NYSDEC's status letter "requests that the tank pit well be resampled in May 1998 and ground water analyzed using Method 8021." They note that "further work, if any, will be determined upon receipt of the analytical results." Recommendation: As indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that an additional groundwater sample be collected from the tank pit well at SEAD-123C and analyzed using methods specified by NYSDEC. The results should be submitted to NYSDEC and, after they have reviewed the results, a request of the status of the site should be made by SEDA. #### 11.0 SEAD-123D - Area West of Building 715 #### 11.1 Site Information This parcel is associated with open land north of Building 715 (Figure 11-1). A visual inspection of this area during the 1995 EBS revealed several suspected mounding areas and a rusty drum protruding from a mound of soil. No evidence of soil staining or groundwater contamination could be determined from the visual inspection. During the 1995 EBS, interviewees were asked if they had any knowledge of this area, but no one had any information. The purpose of the investigation was to determine if the soils in the mounds or debris areas have been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil. #### 11.2 Investigation Summary The site is comprised of a 4.6-acre triangular shaped area that is mostly wooded (Figure 11-1). Six locations within the area showed signs of disturbance. The disturbed areas consisted of either low mounds of dirt and/or surface debris consisting of construction material or rusted drum fragments. A detailed visual inspection of the area west of Building 715 was performed and all of the mounds within this area were identified. Five areas/mounds that were considered most likely to have been impacted based on visual inspection were identified in the area. Five test pits were excavated, one at each of the five areas/mounds, and two soil samples were collected from each pit (Figure 11-1). The rationale for the test pit sample locations is provided in Table 11-1. The results of the laboratory analyses are presented in Tables 11-2 through 11-9. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - Two volatile organic compounds (acetone and methyl ethyl ketone) were found in the soils at the site. Acetone was found in six of the samples at concentrations below the TAGM (between 10 µg/Kg and 17 µg/Kg), however, in one sample it was found at 660 µg/Kg, which is 3.3 times the TAGM. Methyl ethyl ketone was
found in only one sample at a concentration below the TAGM. It is likely that these compounds are laboratory artifacts and are not believed to be indicative of the true soil chemistry at SEAD-123D. - No semivolatile organic compounds were found at concentrations that were above their respective TAGM values. The semivolatile organic compounds were mostly PAHs with a few phthalate compounds. - TPH were found in soil samples at three of the five test pits excavated. At TP123D-2 and TP123D-3 TPH concentrations were between 22.1 mg/Kg and 39.4 mg/Kg only in near surface (0.5 foot depth) soil samples. At TP124D-4, the TPH concentrations of 115 mg/Kg and 221 mg/Kg were found in samples collected from 0.5-foot and 1.0-foot depths, respectively. There is no TAGM for TPH. - Four metals were found in the soil samples at concentrations that were slightly above their respective TAGM values, however, these exceedences were only 1.1 to 1.8 times greater than the TAGMs for these metals. The relatively low magnitude of the exceedences suggests that they are likely to result because of natural variability in the metals concentrations in the soil, and not from impacts from on-site activities. Specifically, the metals that exceeded the TAGMs, and the magnitude of their exceedences (shown in parentheses), are as follows: lead (1.1 1.4 times); manganese (1.8 times); mercury (1.3 times); and zinc (1.5 times). - No pesticides or PCBs were found at concentrations that exceeded TAGM values. The two pesticides that were found (4,4-DDE and 4,4-DDT) were detected at concentrations well below their respective TAGM values (two of the detections were estimated, because they were below the contract required detection limit). #### Comparison to Residential PRGs: - None of the concentrations of volatile organics, semivolatile organics, or pesticides/PCBs exceeded established PRGs in the soil samples. - Three metals; Arsenic, Beryllium and Iron were detected at levels above their respective PRG, but were below their TAGM values. • There is no Residential PRG value for lead, although the site maximum value of 31.4 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use. Recommendation: Based on professional judgment it is recommended that final actions for SEAD-123D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 12.0 SEAD-123E - Rumored DDT Burial at Ice Rink #### 12.1 Site Information This parcel is associated with an area that was rumored to have been used for the burial of empty DDT cans. The purpose of this investigation was to perform an EM 31 Survey within the area. Upon completion of the survey, the data was reduced and likely EM anomalies (i.e., targets) identified. #### 12.2 Investigation Summary The site is comprised of an approximately 300-foot by 200-foot area that contains an rectangular depression in the ground surface that is used seasonally for an ice skating rink; the rink is surrounded by grassy areas (Figure 12-1). A fenced water tower is on the west side of the area and fenced tennis courts exist on the east side. An EM-31 survey was performed over a 300-foot by 240-foot area that encompassed the former ice rink. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was itself referenced to local anthropogenic features (such as corners in fences, building corners, etc.). Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 12-2 and Figure 12-3. Figure 12-2 shows the measured apparent ground conductivity and Figure 12-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the anomalous features observed in the EM data. A prominent EM anomaly is visible in both the apparent ground conductivity data and in the inphase response data in the south central portion of the surveyed area, immediately south of the former ice rink. This area is presumably associated with the suspected buried DDT drums. Although this location is not below the former ice rink, the lack of an EM anomaly beneath the rink and the size and amplitude of the EM anomaly immediately south of the rink indicate that the suspected burial location is indeed south of the rink and that no burial occurred beneath the rink itself. Two additional EM anomalies are prevalent along the western and eastern boundaries of the surveyed area, and both are associated with chain-link fencing. <u>Recommendation</u>: Based on the results of the geophysical survey, it is recommended that the geophysical anomaly south of the ice skating area at SEAD-123E be investigated, and the environmental impact from the anomaly be determined. This is in accordance with the actions defined by Decision No. D in the Decision Criteria Flowchart. #### 13.0 SEAD-123F - Mound North of Post 3 #### 13.1 Site Information This parcel is associated with a reported mound in an area north of the Post 3, in the Administration area (Figure 13-1). The purpose of the investigation was to determine if soil in a mound north of Post 3 has been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil. An EM-31 geophysical survey was also performed. #### 13.2 Investigation Summary The site consists of a gradually sloping mound that is approximately 200-feet long, 100 feet wide and 4.5 feet high (Figure 13-1). The mound is located in the northwest corner of a grassy field adjacent to the parking lot at Building 750. both the mound and the field are regularly mowed by SEDA maintenance staff. A detailed visual inspection of the area north of Post 3 was performed and the mound was identified. A test pit was excavated and two soil samples were collected from the pit (Figure 13-1). The test pit was excavated at the north end of the mound where there were signs of past excavating activities and stressed vegetation. The rationale for the sample locations is provided in Table 13-1. In addition, a geophysical survey was performed at TP123F-1 to determine if there were any anomalies in the mound. An EM-31 survey was performed over a 400-foot by 200-foot area that encompassed the soil mound near Post 3. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was itself referenced to local anthropogenic features (such as corners in fences, building corners, etc.) and to the staked boundaries of test pit TP123-F, which was excavated into the soil mound. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 13-2 and Figure 13-3. Figure 13-2 shows the measured apparent ground conductivity and Figure 13-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the anomalous features observed in the EM data. No EM anomalies were observed that could be associated with buried metallic objects. A large amplitude anomaly is visible in both the apparent ground conductivity and the in-phase response data along the western boundary of the surveyed area, and is associated with a chain link fence. Intermittent medium amplitude anomalies are also observed along the northern boundary of the surveyed area, and these too are associated with chain link fencing. A low amplitude apparent ground conductivity is visible over the area of the soil mound, but is a product of the EM-31 instrument being slightly higher above the local terrain while it was carried over this portion of the survey area. Since the EM-31's apparent ground conductivity response is proportional to the instrument's elevation above the local terrain, an increase in the instrument's height above the local terrain will result in a slightly reduced apparent ground conductivity measurement. (The EM-31 instrument is factory calibrated to measure apparent ground conductivity in a homogeneous space one meter below the instrument; by increasing the amount of open space below the instrument decreases the absolute conductivity of the space below the instrument that is being surveyed.) The results of the laboratory analyses are presented in Tables 13-2 through 13-9. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below. ## Comparison to TAGMs: - No volatile organic compounds were found at concentrations that exceeded their respective TAGMs. Only one compound (acetone) was found in one sample; it was found at an estimated concentration below the CRDL. - No semivolatile organic compounds were found at concentrations that exceeded their respective TAGMs. The semivolatiles were mostly PAHs, although one phthalate compound was found. All of the compounds found were detected at estimated concentrations. - No TPH were detected in the soil samples. - No metals were found at levels that exceeded their respective TAGMs. - No pesticides or PCBs were detected in any of the soil samples. ####
Comparison to Residential PRGs: None of the concentrations of volatile organics, semivolatile organics, or pesticides/PCBs exceeded established Residential PRGs in the soil samples. Only two metals (arsenic and beryllium) exceeded their respective Residential PRGs. The exceedences were 8.6 times and 11.4 times for arsenic and 2.1 times and 1.7 times for beryllium. Recommendation: Based on professional judgment it is recommended that final actions for SEAD-123F, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. ## 14.0 SEAD-46 - Small Arms Range #### 14.1 Site Information This parcel is associated with a small arms range that was used for testing firing tracers and 3-1/2-inch rockets. This area corresponds to one of the previously identified SWMUs (SEAD-46) (Figure 14-1). This site was originally included in the list of moderate EBS sites, but work at this site was postponed because of specific UXO concerns. ## 15.0 SEAD-68 - Old Pest Control Shop (Building S-335) #### 15.1 Site Information This parcel is associated with the reported former pest control shop in Building S-335. This site is one of the previously recognized SWMUs (SEAD-68) (Figure 15-1). No documented or visual evidence of a release has been discovered. However, NYSDEC has classified this area as an Area of Concern (AOC) and the Seneca Army Depot Activity agrees. The purpose of the investigation was to determine if surface and subsurface soils around the Old Pest Control Shop have been impacted by the activities at the shop. The constituents of concern are volatile organics, semivolatile organics, pesticides (including organophosphorous pesticides), herbicides, and arsenic in soil. ## 15.2 Summary of Investigation This area is comprised of a 100-foot by 40-foot single story wooden building, the Old Pesticide Control Shop, which is located on the corner of Avenue C and 3rd Street (Figure 15-1). The building is surrounded on the west, north and east sides by narrow grassy areas. There are doors located on these three sides of the building. A large garage (bay) door entrance is on the southern end of the building. Beyond the grassy areas to the north and east is an asphalt and gravel (i.e., crushed shale) area that is used for vehicle parking and staging. A 50-foot concrete driveway extends from the bay door to the intersection of Avenue C and 3rd Street. Surface soil sampling and soil borings were performed at this site. A total of five surface soil samples were collected near doorways on the outside of the building (Figure 15-1). Three of the samples were collected near three doors on the west, north, and east sides of the building. The other two samples were collected from locations to the northwest and southeast of the large garage door. Two soil borings were performed on either side of the large garage door, beyond the surface soil sample locations mentioned above (Figure 15-1). The borings were in grassy areas that are likely disposal areas because of the good infiltration in the areas and because these areas are near drainage ditches. The rationale for selecting the sample locations is provided in Table 15-1. The results of the laboratory analyses are presented in Tables 15-2 through 15-9. These results were compared to the NYSDEC TAGMs and the Industrial PRGs. The results of the comparisons are given below. #### Comparison to TAGM: Six volatile organic compounds were found in the soil at SEAD-68, however, their concentrations were all below their respective TAGMs. The two most frequently occurring compounds were acetone and toluene, which were present in a majority of the samples. These two compounds are common laboratory contaminants. The other compounds (benzene, chloroform, total xylenes, and trichloroethene) were found at estimated concentrations between 2 ug/Kg and 5 ug/Kg only in the two subsurface soil samples. - The semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however, five phthalates were also found in the soil samples. Four of the PAH compounds exceeded their respective TAGMs in the surface soil samples collected immediately around Building S-335; one exceedence (1.2 times the TAGM) was found in the surface soil sample at SB68-2. The maximum exceedences for the PAHs were as follows: benzo(a)anthracene (4.1 times); benzo(b)pyrene (12.6 times); chrysene (2.5 times); and dibenz(a,h)anthracene (16 times). - Six pesticide compounds were found in the soils at SEAD-68. They were found in all samples except for those collected at SB68-1. One of the compounds detected, 4,4'-DDT, was found at a concentration (4,000 ug/Kg) that was 2 times its TAGM in surface soil sample SS68-4, which is located outside a door on the northwest side of Building S-335. Also, three other compounds were found at their highest concentrations in this sample. The other compounds found in the samples collected on-site were 4,4'-DDE, alpha-chlordane, endrine ketone, gamma-chlordane, heptachlor epoxide. - Two herbicide compounds (2,4,5-T and 2,4-DB) were found in one soil sample, SS68-4, which was collected outside the door on the northwestern side of the building. Both of these concentrations were well below their respective TAGMs. - The concentrations of arsenic in were below the TAGM in all of the samples, except for one (SS68-4). In this sample the TAGM was exceedence was relatively low (1.3 times). #### Comparison to Industrial PRGs: • No Industrial PRGs were exceeded in the soil samples for the volatiles, semivolatiles, pesticides, and herbicides analyses. Arsenic exceeded the Industrial PRG in all but one of the soil samples, however, the exceedences were generally low, between 1.02 times and 3.0 times the PRG. In more than half the samples the arsenic exceedences were less than 2 times the PRG. The maximum exceedence (3.0 times) was in the surface soil sample SS68-4. <u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from pesticides (particularly 4-4'-DDT) on the southwest side of the building at SEAD-68. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment. #### 16.0 SEAD-120A - 50 Area Dumping Areas #### 16.1 Site Information This parcel is associated with dumping areas that are reported to exist in the "50 Area" west of Seneca Road and south of Indian Creek Road (Figure 16-1). Two of the dumping areas were observed to contain concrete blocks and fill dirt. One had steel drums and one is believed to be a former railroad dump containing railroad ties and scrap metal. The purpose of the investigation was to determine if subsurface soils have been impacted by the dumping that occurred in this area (the locations of these samples were not based upon the results of the geophysical survey). A geophysical investigation was used to identify other areas where material may have been buried. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, pesticides/PCBs, and herbicides in soil. ## 16.2 Investigation Summary The site is comprised of an irregularly shaped area located in the southwestern corner of the Depot (Figure 16-1). It is comprised of mostly wooded land and low brush areas, and within these areas are railroad tracks, a dirt road, open areas and soil/debris mounds. Most of the woodlands are located in the central and southwestern portions of the site, and the remaining areas are dominated by low brush. A railroad line passes through the southern portion of the site and extends north through the north-central portion of the site; a dirt road parallels the railroad tracks that pass through the southern portion of the site. Several conspicuous, open areas are located on the eastern and western sides of the railroad tracks (in the western portion of the site), where they begin to head due north toward Indian Creek Road. The areas are generally lower in elevation than the surrounding terrain near the roadway and railroad tracks, and they are characterized by uneven ground. In addition, soil/debris mounds were identified along the perimeter of the site, near roads or railroad tracks. No roads that would provide access to interior locations of the site were identified during the inspection. EM-31 geophysical surveys were performed to identify locations where oil or hazardous materials may have been buried. The geophysical surveys were performed in six different areas within site 120A. These locations were chosen because they are suspected staging areas or conspicuous open areas where access is provided to them by nearby roads and/or railroad tracks. These locations were identified based on a review of aerial photographs, site inspection information, and discussions with SEDA environmental personnel. Areas 1 and 2 are to the west and east of the railroad tracks, respectively, where the tracks begin to head due north toward Indian Creek Road. Areas 3 and 4 are located east of the railroad tracks, to the south and north, respectively, of the small pond that was associated with the munitions washout facility (SEAD-4). Area 5 is located near Seneca Road west of igloo E0801. The last area (Area 6) is located west of Silver Creek, approximately 500 feet south of igloo E0806. An EM-31 survey was performed in the six different areas as previously described. All of these areas are believed to have been the most likely to have been used for disposal purposes, if disposal actions have actually occurred in SEAD-120A. The EM-31 survey was performed at each location by collecting EM measurements every one second along parallel survey lines. These lines were spaced 20 feet apart. The
local survey grid that was established at each location was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after each survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 16-2 through 16-9. Figures 16-2, 16-4, 16-6 and 16-8 show the measured apparent ground conductivity at the various survey locations, and Figures 16-3, 16-5, 16-7 and 16-9 show the measured in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data. No EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data at any of the six areas surveyed. At each surveyed area, the apparent ground conductivity and in-phase response data are interpreted to be representative of natural site conditions. There are no indications that disposal of metallic debris has occurred at any of the six areas, nor is there any indication of soils with increased or decreased apparent ground conductivities that may have been caused by leaching or run-off from disposal materials. A total of five test pits were performed within the site and two soil samples were collected at each test pit (Figure 16-1). The samples were collected at the locations of soil/debris mounds near roads and railroad tracks, which are areas that would allow easy access for dumping; these locations were not based on the results of the geophysical survey, which investigated material that may have been buried. The mounds that were investigated were those that were the most easily accessed and had signs that they contained debris (anything other than topsoil). The degree of accessibility, as well as the relative amount and type of debris in the mound, were the main criteria for choosing the mounds to be investigated. The rationale for selecting the sample locations is provided in Table 16-1. The results of the laboratory analyses are presented in Tables 16-2 through 16-11. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - No volatile organic compounds were found at concentrations above their respective TAGMs. The volatiles that were found included acetone, chloroform, methylene chloride, and toluene, most of which were found at estimated concentrations in the samples - The semivolatile organic compounds detected in the soils on-site were mostly PAHs and phthalates, however, none of these compounds were found at concentrations above their respective TAGMs. The concentrations for all of the semivolatile compounds were estimated. The PAHs, which comprised the majority of the compounds detected, were found mostly at TP120A-2 and TP120A-5. - No TPH were found at concentrations above the detection limit at four of the five test pit locations; at one test pit location, TP120A-2, no TPH sample was collected due to an oversight in the field. No TAGM has been established for TPH. - Five metals exceeded their respective TAGMs, however, these exceedences were mostly in the two samples collected at TP120A-2. The metals that exceeded the TAGMs were chromium (1.05 times), copper (1.7 times), iron (1.2 times), lead (2.8 times), and thallium (2.4 times). The magnitude of these metals exceedences suggests that they may be due to the natural variability of the concentrations of these metals in the soil. - Four pesticide compounds were found at two test pit locations at SEAD-120A, however, the detected concentrations were well below their respective TAGMs. Estimated concentrations of 4,4'-DDT were found at TP120A-3 and TP120A-5. The subsurface soil sample at TP120A-5 also contained the compounds alpha-BHC, Delta-BHC, and Gamma-BHC (Lindane). No PCBs were detected in the samples. No herbicides were detected in the soil samples collected from the test pits in the mounds. Comparison to Recreational PRGs: - No Recreational PRGs were exceeded in the soil samples analyzed for volatile organics, semivolatile organics, metals, pesticides/PCBs, and herbicides. - There is no Recreational PRG value for lead, although the site maximum of 68.3 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use. Recommendation: Based on professional judgment it is recommended, as outlined under Decision No. B in the Decision Criteria Flowchart, that the final actions at SEAD-120A include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. ## 17.0 SEAD-120B - Ovid Road Small Arms Range #### 17.1 Site Information This parcel is associated with the location of a small arms range. Interviews during the 1995 EBS indicated that this area had been used a small arms range. During the EBS fieldwork, a visual inspection of the area revealed a 250-foot-long arcuate berm with a dirt track road leading to it (Figure 17-1). The purpose of the investigation was to determine if subsurface soils in the former small arms range have been impacted by the activities at the range. The constituents of concern are semivolatiles, metals, and explosives in soil. ## 17.2 Investigation Summary The site is comprised of a 200-foot long arcuate soil berm that opens to the southwest (Figure 17-1). There is an approximately 290-foot dirt road that leads from the patrol road to the base of the berm, which is covered with brush and vines. At the base of the berm, beneath the brush, there are three steel posts that are believed to be the supports for target mounting frames. Three buried 4-inch diameter clay pipes (which protruded a few inches above the ground surface) were also found at the base of the berm. Because these locations correspond with the identified target backstop locations, they may have been used as removable target post receptacles. A total of six soil samples were collected at locations behind each of the target locations within the berm (Figure 17-1). The samples were collected at locations immediately behind the target posts; these locations are believed to be impact points for the shots. The impact points were verified by the presence of bullets, mostly copper jacketed 0.45 and 0.38 caliber, which are typically used with sidearms. There was also evidence of more recent activity at this site because two plastic ammo boxes and a 6-foot belt of live 5.56 NATO blank rifle rounds were found in front of the berm. Manufacturer markings and a lack of corrosion on these materials Buildings 816 and 817 were associated with a classified mission. The majority of Building 816 was not available for inspection during the EBS. Interview with a radiation protection officer revealed that a potential release of radionuclides occurred within the area of these buildings. Two radiation screening rooms, both with venting leading directly outside the buildings, were also observed. Aerial photograph analysis during the 1995 EBS also revealed disturbed ground directly west of Building 816. A visual inspection of this area during the 1995 EBS confirmed that the area was disturbed. Interviews and records searches did not confirm or deny that burial activities had occurred in this area. ## 18.2 Investigation Summary No sampling was conducted at this site (Buildings 813-817) because it is being investigated under the SEAD-12 RI/FS program. #### 19.0 SEAD-120D - MP Refueling Island in the Q #### 19.1 Site Information This parcel is associated with a former Military Police (MP) refueling station located northwest of Building 810 (Figure 19-1). According to the EBS report, two above ground storage tanks (SRNs 50 and 51), which date to 1963, are presently located behind Building 810. Both of these tanks had a 550-gallon capacity and were used to store fuel oil. A visual inspection during the 1995 EBS did not reveal any staining or stressed vegetation. However, interviews with base personnel during the EBS revealed that the MPs fueled their vehicles in this area on daily basis. Interviewees were certain that they had witnessed frequent spilling of petroleum products. According to SEDA personnel interviewed for this investigation of the moderate EBS sites, the MP refueling island is located approximately 250 feet northwest of Building 810 and, thus, the two above ground fuel oil storage tanks (SRNs 50 and 51) behind Building 810, which were mentioned in the EBS report, were not part of the MP refueling island. According to SEDA personnel, these two tanks are currently located behind Building 810, but they are scheduled to be removed later in 1998. The purpose of the investigation was to determine if soils near the refueling island have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics and TPH in soil. #### 19.2 Investigation Summary This site is comprised of a 100-foot by 50-foot former pumping island located at the intersection of the "Q" Partrol Road and Service Road #1, approximately 250 feet northwest of Building 810 (Figure 19-1). A 2,000-gallon gasoline underground storage tank and pumping station were located on this island to provide MPs with fuel for their vehicles if an extended "Q" area lock-up occurred. The underground storage tank and pump were removed in approximately 1988. The island is presently covered with low grass, low brush and gravel. Two surface soil samples were collected from locations on the island (Figure 19-1). Also, one soil boring was performed on the western (downgradient) portion of the island; the groundwater flow direction is expected to be to the west based on the westwards slope of the ground surface in the area of the refueling island.
The rationale for selecting the surface soil and soil boring locations is provided in Table 19-1. The results of the laboratory analyses are presented in Tables 19-2 through 19-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - Two volatile organic compounds, acetone and toluene, were detected in the soil samples. However, none of the concentrations of these volatiles were found above their respective TAGMs; while acetone did exceed the TAGM in one sample, its concentration in the duplicate sample was well below the TAGM. Both acetone and toluene are potential laboratory contaminants. - The semivolatile organic compounds detected in the samples included mostly PAHs and three phthalate compounds. Two of the PAHs, benzo(a)pyrene and dibenz(a)anthracene, exceeded their respective TAGMs in soil. The exceedences for these compounds were found in both surface soil samples, however, only dibenz(a,h)anthracene exceeded the TAGM in the surface soil sample taken at the soil boring. The magnitudes of the two PAH exceedences were generally between 1.2 and 1.6 times in the samples, however, in the surface soil sample at SS120D-2 the exceedences were 3.3 times and 6.6 times the TAGM. - TPH were found in the two surface soil samples and the surface sample collected at the soil boring; TPH was not found in the subsurface sample at the soil boring. The concentrations detected ranged from 43.6 mg/Kg to 181 mg/Kg. There is no TAGM for TPH. ## Comparison to Recreational PRGs: • None of the concentrations of volatile organics and semivolatile organics exceeded established Recreational PRGs. Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. ## 20.0 SEAD-120E - Near Building 2131, Possible DDT Disposal ## 20.1 Site Information This parcel is associated with debris east of Booster Station 2131 and a possible DDT disposal area (Figure 20-1). This area corresponds with one of the previously identified SWMUs (SEAD-58). An ESI conducted by Engineering Science, Inc. indicates that the soils, groundwater, and surface water have not been impacted by any of the constituents for which analyses were conducted. The sediment in the drainage swales in the area is the only medium that has been impacted by releases of PAHs. The purpose of the investigation was to use geophysics to locate an area that is the possible DDT disposal area and to determine if soil in this area has been impacted by pesticides. In addition, impacts to sediment in nearby drainage ditches were investigated. The constituents of concern are pesticides in soil and sediment. ## 20.2 Investigation Summary This site is associated with Booster Station 2131, which is near the western boundary of the Depot (Figure 20-1). A visual inspection of the area verified the debris pile to the east of the building, which was described in the EBS report. The pile consisted of gravel and construction debris. Many underground utilities are located in the area immediately surrounding the building. A mowed area, which has traces of construction debris (e.g., scrap piping, lumber, concrete fragments) on the ground surface, extends approximately 50 feet north of the access road to Building 2131. The mowed area is bordered on the north side by a drainage ditch that is next to thick woods. The drainage ditch appeared to collect water from areas near Building 2131 and discharge it both to the east, toward a small brook, and to the west, toward another ditch along West Patrol Road. Surface water in the ditch along West patrol Road appeared to flow south along the road and discharge into Kendaia Creek. An EM-31 survey was performed over an area approximately 200 feet long by 200 feet wide, located in the area surrounding Building 2131. This area is suspected to have been the site of DDT disposal. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 20-2 and 20-3. Figure 20-2 shows the measured apparent ground conductivity and Figure 20-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data. No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data that could be associated with disposal locations. A linear anomaly of high apparent ground conductivity and high in-phase response measurements is visible from the eastern wall of Building 2131 to the eastern boundary of the surveyed area. This anomaly is presumably associated with buried utilities, which are known to be present in the area of this feature. Variations in both the apparent ground conductivity and the in-phase response measurements observed in the vicinity of Building 2131 are caused by the building itself. Two additional anomalies, both in the southwestern portion of the surveyed area, are associated with anthropogenic features observed during the survey (a Kendaia Creek overpass for West Patrol Road and the SEDA property fence). No anomalies were observed that could be associated with the burial of metallic debris or the disposal of DDT. Two soil samples were collected from a soil boring performed at a location north of Building 2131. The soil boring location was chosen because it was the only place where a small magnetic anomaly was found during a sweep of the open area north of the building using a Fisher TW6 hand-held metal detector. The instrument was set at maximum sensitivity and registered a small needle deflection in this location. The presence of the small anomaly, which was location in an open grassy area that would have been easily accessible for digging, suggested that this location was the best candidate for potential burial of the DDT, given that no significant anomalies were found in the EM-31 survey. The potential that the DDT burial occurred in the immediate vicinity of the building and to the east of the building is low because of the buried utilities. In addition, three sediment samples were collected in the drainage ditches that surround the soil boring (Figure 20-1). The rationale for selecting the boring and sediment sample locations is provided in Table 20-1. The results of the laboratory analyses are presented in Tables 20-2 through 20-4. These results were compared to NYSDEC TAGMs and NYS sediment criteria; no PRGs have been established for sediment. The results of the comparisons are given below. Comparison to Soil TAGMs and Sediment Criteria: - No pesticide compounds were found at concentrations above their respective TAGMs. However, four compounds (4,4'-DDT, alpha-chlordane, endosulfan II, and heptachlor expoxide) were found in the surface soil sample SB120E-1 at estimated concentrations that were well below the TAGMs. - No pesticide compounds were found at concentrations above their respective NYS sediment criteria, however, three compounds (4,4'-DDD, 4,4'-DDE, and 4,4'-DDT) were detected, mostly at estimated concentrations. Comparison to Recreational PRGs: - None of the concentrations of pesticides found in the soil exceeded the Recreational PRGs. - No Recreational PRGs have been established for sediment. Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120E, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 21.0 SEAD-120F - Munitions Burial Sites, South End of the Main Depot #### 21.1 Site Information This parcel is associated with an area that is suspected to be an ammunition burial/disposal area. Interviews conducted during the 1995 EBS identified that burial of ammunitions took place in this general location (Figure 21-1). The purpose of the investigation was to use geophysics to identify potential munitions burial sites in the south end of the Main Depot. No sampling or analyses were proposed at the site or in the nearby areas (i.e., Silver Creek) for this field investigation because the potential munitions burial sites have not yet been identified by the geophysical survey. ## 21.2 Investigation Summary The site is located in the southern portion of the Depot (Figure 21-1). The site is comprised of an approximately 1,300-foot by 600-foot rectangular area that trends southeast-northwest in an area of dense brush and other vegetation. This open area is bounded on the north by storage igloos, on the east by Sliver Creek, to the south by railroad tracks, and to the west by the Munitions Washout Facility (SEAD-4). The field program consisted of an EM-31 geophysical survey of the rectangular area (approximately 600 feet by 1,400 feet) located to the east of the former munitions washout building (Figure 21-1). This area is suspected to have been the site of munitions burials. The EM-31 survey was performed by collecting EM measurements every one second along parallel, northeast-southwest oriented survey lines. These lines were spaced
20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 21-2 and 21-3. Figure 21-2 shows the measured apparent ground conductivity and Figure 21-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data. No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data. Three areas with slightly increased apparent ground conductivity were identified, one in the northwestern corner of the surveyed area, one in the eastern-central portion of the surveyed area, and one in the southern corner of the surveyed area. There are no associated anomalies visible in the in-phase data for any of these areas, and these slight increases in the measured apparent ground conductivity are interpreted to be caused by an increase in the overburden thickness and/or by an increase in the soil moisture content. No anomalies were observed that could be associated with the burial of metal cased munitions. Recommendation: Based on the results of the geophysical survey, it is recommended that final actions for SEAD-120F, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. #### 22.0 SEAD-120G - Mounds at the Duck Ponds #### 22.1 Site Information This parcel is associated with several areas of mounds located at the Duck Ponds area (Figure 22-1). One area [109(7))] consists of earthen mounds that may be related to a small arms range that was reported in this area. It could not be determined if these mounds were in fact the location of a small arms range that was reported in an interview during the 1995 EBS. Therefore, an accurate designation of this area could not be determined in the EBS. The other three areas [110 (7), 111(7), and 112(7)] are suspected mounds in the Duck Ponds Area that were observed during the 1995 EBS. The contents of these mounds could not be determined during the EBS. The purpose of the investigation was to determine if soils in the mounds at the Duck Ponds Area have been impacted by contaminants. Because there are numerous mounds at the Duck Ponds, the approach was to investigate 5 representative mounds, based on the potential for impacts given the observed surface indicators (i.e., debris and stressed vegetation), and secondly based on the geographic distribution within the Duck Ponds Area. Three of these mounds (mentioned above) were previously identified in the EBS report. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil. ## 22.2 Investigation Summary The site is comprised of a large area surrounding the Duck Ponds, which extends to the west to the Ammo Area perimeter. Throughout this area are numerous earthen mounds and berms ranging from minor ground disturbances to a pile of soil 30-feet high. According to SEDA personnel, these mounds were made during an extensive history of road building, land clearing and other excavation activities at the Depot over the past 45 years; included in this was the construction of the Duck Ponds. In interviews, SEDA personnel described a standard practice of skimming and stockpiling topsoil into mounds for future use during road and facility construction. Material excavated from the Duck Ponds was deposited to form some of the mounds in the area. In addition, staging areas were formed along East Patrol Road by grading the land surface, which formed berms on the flanks of the staging areas. The field program included five test pits in five separate mounds. Two soil samples were collected from each pit (Figure 22-1). Three of the mounds chosen for test pitting were identified in the EBS report (and noted above), and the other two mounds/disturbed areas were identified during the site inspection. These two mounds/areas were chosen to be investigated because they were in areas of the site that would provide good geographic coverage of the Duck Ponds area, considering that no other mounds in the Duck Ponds area showed significantly greater evidence for impacts based on surface observations. All five of the mounds investigated are well distributed throughout the Duck Ponds Area. The rationale for choosing these sample locations is provided in Table 22-1. No mounds were left uninvestigated that showed a greater potential for having impacts (based on observation of the surface of the mounds) so that better geographic coverage could be obtained. Geographic coverage was considered only after determining that there were no mounds believed to be more impacted than others, based on the types of surface debris noted of the presence of stressed vegetation. The results of the laboratory analyses are presented in Tables 22-2 through 22-9. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - No volatile organic compounds were exceeded their respective TAGMs in the soil samples. - No semivolatile organic compounds exceeded their respective TAGMs in surface or subsurface soil. The semivolatile compounds detected were mostly PAHs (nearly all at estimated concentrations). Also, several phthalate compounds were found in many of the samples (again, mostly at estimated concentrations). - TPH concentrations were below the detection limit in all samples, with the exception of one sample. This sample had a concentration that was near the detection limit for the method. There is no TAGM for TPH. - Five metals exceeded their respective TAGMs, however, the magnitudes of these exceedences were relatively low. The exceedences for the metals (aluminum, arsenic, lead, manganese, and thallium) were generally less than two times their respective TAGMs. The magnitude of these metals exceedences suggests that they may be due to natural variability of the concentrations of these metals in the soil. - No pesticides or PCBs were detected in the soil samples collected at the mounds. Comparison to Recreational PRGs: - None of the concentrations of volatile organics, semivolatile organics, metals or pesticides and PCBs exceeded their respective Recreational PRGs in the soil samples. - There is no Recreational PRG for lead, although the site maximum of 38 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use. Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120G, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. ## 23.0 SEAD-120H - Building 810 #### 23.1 Site Information Building 810 was not inspected during the 1995 EBS because access to the entire site was denied based on the classified mission of the building (Figure 23-1). ## 23.2 Investigation Summary No sampling was performed at this site because it is being investigated under the SEAD-12 RI/FS program. ## 24.0 SEAD-120I - Building 819, A0101 and A0102 #### 24.1 Site Information During the EBS, a visual inspection of Building 819 was performed, but its mission could not be described (Figure 24-1). A visual inspection was attempted of the ammunition storage igloos A0101 and A0102 and the surrounding area, however, access to this area was denied based on the classified mission of the area. #### 24.2 Investigation Summary No sampling was performed at this site. Building 819 is being investigated under the SEAD-12 RI/FS program. Igloos A0101 and A0102 are not currently included in the SEAD-12 RI/FS Workplan, but they will be added to the work to be conducted at SEAD-12. #### 25.0 SEAD-120J - Farmer's Dump #### 25.1 Site Information This parcel is associated with a location that was reported to have been used for dumping by a local farmer (Figure 25-1). The dumping location was reported to be west of the main Depot along Kendaia Creek. The purpose of the investigation was to determine if surface soils within the Farmer's Dump have been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, pesticides/PCBs, and herbicides in surface soil. ## 25.2 Investigation Summary The site is located on the north side of Kendaia Creek, approximately 1,800 feet west of Route 96A (Figure 25-1). It is characterized by a dumping area along an approximately 400-foot long section of an escarpment along Kendaia Creek; the dumping area was clearly apparent using visual observation. The debris in the dumping area, however, was generally concentrated in two areas, which are marked by an "x" on Figure 25-1. The dumping in the western location spans approximately 80 feet of a 28-foot-high wooded ravine along Kendaia Creek. The extent of the dumping in the eastern location was smaller. In these two locations, the debris consists of scattered bottles, cans, broken tools, construction debris, and animal carcasses (i.e., pig body parts). With the exception of some soda cans and the pig carcasses, the rest of the debris appeared to have been dumped at these locations at least several years ago; the pig carcasses are believed to have been dumped more recently based on the strong odor in the air. These dumping
locations appear to have been chosen because the ravine is steeper and wider in these areas than in the surrounding areas, which allowed more debris to be dumped. Five surface soil samples were collected from locations immediately downgradient of the dumping areas along the escarpment (Figure 25-1). The areas were chosen because they were locations where there was significantly more debris compared to other areas, and because the contents of the debris indicated that there was a potential for a release of oil or hazardous materials. The rationale for the sample locations is provided in Table 25-1. The results of the laboratory analyses are presented in Tables 25-2 through 25-11. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below. ## Comparison to TAGMs: No volatile organic compounds were found at concentrations that exceeded their respective TAGMs. Only two compounds (acetone and toluene) were found in the samples. Acetone was found in one sample, but it was also found in the laboratory blank sample. Toluene was found at estimated concentrations in all of the samples. These two compounds are likely to be laboratory contaminants. - No semivolatile organic compounds were found at concentrations that exceeded their respective TAGMs. The semivolatiles were mostly PAHs, although two phthalate compounds were found. All of the compounds found were detected at estimated concentrations. - TPH were found in three of the four samples at concentrations that were between 23.7 mg/Kg and 71.4 mg/Kg. The one sample that did not contain detectable concentrations of TPH was SS120J-3. No TAGM has been established for TPH. - Three metals were found at concentrations that exceeded their respective TAGMs. Among these, lead was found to exceed the TAGM in all four samples. Its TAGM exceedences ranged between 1.2 times and 5.9 times. The two other metals, copper and zinc, exceeded their TAGMs in only one sample (SS120J-3), and the exceedences were approximately 2 times the TAGM. - None of the pesticides detected on the site were found at concentrations above their respective TAGMs. The pesticide compound 4,4'-DDT was detected in two of the soil samples (SS120J-2 and SS120J-3) at estimated concentrations that were well below the TAGM. The compound 4,4'-DDE was found in only one sample (SS120J-3), also at an estimated concentration that was well below the TAGM. - No herbicides were found at concentrations above the detection limits. #### Comparison to Recreational PRGs: - None of the concentrations of volatile organics, semivolatile organics, metals, pesticides and PCBs, or herbicides exceeded established Recreational PRGs in the soil samples. - There is no Recreational PRG for lead, although the site maximum value of 144 mg/Kg is below the agreed upon screening level of 400 mg/Kg for residential land use. Recommendation: Based on professional judgment it is recommended that final actions for SEAD-120J, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. In addition, any future use of this site should consider the presence of the trash and animal carcasses (i.e., odor nuisance). #### 26.0 SEAD-121A - USCG HALON DISCHARGE ## 26.1 SITE INFORMATION This parcel is the LORAN-C building (Figure 26-1). Interviews revealed that in 1995 there was a 100-pound accidental release of halon in the control room of this building. The control room was evacuated and ventilated, and the released materials were cleaned up. No other actions were taken. No field work tasks were performed at this site. #### 27.0 SEAD-121B - BUILDING 325 PCB OIL SPILL #### 27.1 SITE INFORMATION This parcel is an area to the north of Building 325 where PCBs were reported to have been spilled (Figure 27-1). An interview revealed that 55 gallons of PCB oil were dumped in this location, but the time period is uncertain. It was reported that there was no cleanup of this release, and there is no record that this spill was ever reported to NYSDEC. The purpose of the investigation was to determine if surface and subsurface soils around Building 325 have been impacted by the spill of PCBs. The constituents of concern are volatile organics, semivolatile organics, TPH, and PCBs. #### 27.2 SUMMARY OF INVESTIGATION A visual inspection was conducted at the north side of the warehouse Building 325. On the north side, there is a concrete loading ramp leading from where the trucks park on 4th Street to the concrete loading platform along the side of Building 325. The area west of the loading ramp, between 4th Street and the platform, is mostly gravel with some vegetation. The area east of the ramp slopes down to a shallow drainage area next to railroad tracks running north/south. There were no signs of staining or stressed vegetation. Samples were collected in low spots and drainage areas in the proximity of the ramp, which were the most likely locations for accidental spills to have occurred. Surface soil sampling and one soil boring were performed at this site. A total of three surface soil samples were collected from areas which may have been impacted by the release of PCBs. (Figure 27-1). Two of the samples were collected from drainage ditches located downgradient from Building 325. The third surface soil sample was collected next to the steps of the loading ramp at Building 325. The soil boring was performed in a potential run-off area next to the loading ramp to Building 325. The rationale for selecting the sample locations is provided in Table 27-1. The results of the laboratory analyses are presented in Tables 27-2 through 27-7. These results were compared to the NYSDEC TAGMs and the Industrial PRGs. The results of the comparisons are given below. ## Comparison to TAGM: - Two volatile organic compounds were found in the soil at SEAD-121B, however, their concentrations were all below their respective TAGMs. The two compounds were acetone and toluene. These two compounds are common laboratory contaminants. Toluene was detected in all of the soil samples. - The semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however, one phthalate was also found in the soil samples. Seven of the PAH compounds exceeded their respective TAGMs in the soil samples collected from the site. The maximum exceedences for the PAHs were as follows: dibenz(a,h)anthracene (150 times); benzo(b)pyrene (149 times); benzo(a)anthracene (42 times); chrysene (30 times); benzo(b)fluoranthene (9 times); benzo(k)fluoranthene (8.8 times); and indeno(1,2,3-cd)pyrene (2 times). - One PCB compound was found in the soils at SEAD-121B, however the concentration was below the TAGM. - TPH were found in three soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 109 mg/kg to 1360 mg/kg. No TAGM has been established for TPH. ## Comparison to Industrial PRGs: • No Industrial PRGs were exceeded in the soil samples for the volatiles and PCBs analyses. The semivolatile, benzo(a)pyrene, exceeded the Industrial PRG in three of the soil samples and the exceedences were between 1.9 times and 11.0 times the PRG. Benzo(a)anthracene, Benzo(b)fluoranthene, and Dibenzo(a,h)anthracene were found in one sample, SS121B-3 (0 to 0.2 feet) above the PRG. <u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil sampling be performed to determine the extent of the impacts from semivolatiles at SEAD-121B. The results of this investigation indicate that a release has occurred at the site as evidenced by the presence of PAHs. ## 28.0 SEAD-121C - DRMO YARD #### 28.1 SITE INFORMATION This parcel is associated with the DRMO yard to the west of Building 360 (Figure 28-1). Interviews revealed that hazardous materials such as solvents and PCB oil have been dumped in this area. The purpose of the investigation was to determine if surface and subsurface soils as well as groundwater have been impacted by the dumping that occurred in this area (the locations of these samples were not based upon the results of the geophysical survey). The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs. #### 28.2 INVESTIGATION SUMMARY The site is comprised of a triangularly shaped gravel lot located in the eastern portion of the Depot (Figure 28-1). Building 360 and the entrance gate are located on the eastern side of the area. Building T-355 is located in the central part of the yard and is used for storage. The south and northwest perimeters are fenced with adjacent drainage ditches outside the fences. The surface is graded to allow surface water to drain toward the ditches. Interviews with Depot personnel and review of aerial photographs indicate a history of rapid turnaround of material and vehicles stored in this area. At the time of this investigation, vehicles including military trailers, trucks, and heavy equipment were parked along the south and northwest fences and in the central area. A 70-foot by 20-foot concrete barrier containment area was located at the southwest corner of the site and was filled with material scraped from the north end of the yard. This material consisted of dirt and gravel with scrap metal, wood debris, ordnance components, batteries, tiles, oil filters, auto parts, paint cans, and other debris. Several days later this debris was returned to the north side of the yard. Aerial photographs show that this area was used for the storage of old tires. Storage cells made of concrete blocks were located in the northeastern portion of the site. A total of four surface soil samples, four soil borings, and two monitoring wells were performed in areas that were
suspected to be impacted (Figure 28-1). The surface soil samples were collected at locations downgradient of parking and storage areas and near the storage cells. One soil boring was performed along the northwest fence where surface water flows into a drainage ditch. The second soil boring was located near the storage cells and the third soil boring was located in the south west corner of Building T-355 where the spills may have occurred. The fourth soil boring was performed downgradient of the parking/storage area in the south west corner of the site. One monitoring well was located downgradient of surface water drainage and the containment area in the southwestern corner of the site. The second monitoring well was located downgradient of Building T-355 and the parking area. The rationale for selecting the sample locations is provided in Table 28-1. The results of the laboratory analyses are presented in Tables 28-2 through 28-17. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below. ## Comparison to TAGMs and GA Standards: - No volatile organic compounds were found at concentrations above their respective TAGMs. The volatiles that were found included acetone, benzene, chloroform, and toluene. - The semivolatile organic compounds detected in the soils on-site were mostly PAHs and phthalates. Four of these compounds were found at concentrations above their respective TAGMs. The maximum concentration of Dibenz(a,h)anthracene was detected at 10.7 times the TAGM and the maximum concentration of Benzo(a)pyrene was detected at 6 times the TAGM. Benzo(a)anthracene and chrysene were detected slightly above their respective TAGMs. - TPH were found in 12 soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 18.5 mg/kg to 482 mg/kg. No TAGM has been established for TPH. - Thirteen pesticide/PCB compounds were found in the soil samples at SEAD-121C, however, the detected concentrations were below their respective TAGMs. - Thirteen metals exceeded their respective TAGMs in the soil samples. Exceedences were found in all the soil samples except SB121C-1 (0 to 0.2 feet) and SB121C-1 (2.5 to 3 feet). One exceedence was detected in the samples SB121C-3 (0 to 0.2 feet), SB121C-3 (2.5 to 3 feet), and SB121C-4 (0 to 0.2 feet). The maximum concentration of copper was detected at 295 times the TAGM and the maximum concentration of lead was detected at 216.4 times the TAGM. - Five volatile organic compounds were found in the groundwater at SEAD-121C, however, their concentrations were all below their respective NYSDEC GA groundwater standards. - There were eight semivolatile organic compounds detected in groundwater, however, all of their concentrations were below established NYSDEC GA groundwater standards. - TPH was not detected in the groundwater samples. - Nineteen pesticides were detected in the groundwater. No PCBs were detected. Seven pesticides were detected at concentrations above their respective NYSDEC GA groundwater standards. The maximum concentration of 4,4-DDD was 9 times the GA standard, the maximum concentration of Endrin was 7.1 times the GA standard, and the maximum concentration of 4,4-DDT was 5.6 times the GA standard. - Three metals were detected in the groundwater at concentrations exceeding their respective NYSDEC GA standards. The metals are iron, manganese, and sodium. #### Comparison to Industrial PRGs: - In soil, the Industrial PRG for arsenic was the only PRG exceeded in the soil samples analyzed for volatile organics, semivolatile organics, metals, and pesticides/PCBs. Exceedences of arsenic were found in all the soil samples except SB121C-3 (0 to 0.2 feet) and SB121C-4 (0 to 0.2 feet). The concentrations for arsenic exceeded the PRG between 1.1 and 2.0 times. There is no Industrial PRG for lead, although three samples exceed the agreed upon screening value of 400 mg/Kg for residential land use. The maximum value was 12.7 times the screening level. - In groundwater, one volatile organic compound (Chlorodibromomethane) and one semivolatile organic compound (hexachlorobutadiene) were found at concentrations that exceeded the Drinking Water PRG. Six pesticides (4,4-DDD, 4,4-DDE, 4,4-DT, Dieldrin, Heptachlor, and Heptachlor epoxide) were found at concentrations exceeding their respective Drinking Water PRG. Five metals (arsenic, barium, cadmium, chromium, and manganese) exceeded their respective Drinking Water PRGs. Recommendation: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil and groundwater sampling be performed to determine the extent of the impacts from semivolatiles, pesticides, and metals at SEAD-121C. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment. #### 29.0 SEAD-121D - BUILDING 306 AND 308 HAZARDOUS MATERIALS RELEASE #### 29.1 SITE INFORMATION This parcel is associated with Building 306, an inspector's workshop, and Building 308, a boiler house (Figure 29-1). Records indicate that a 1,000-gallon fuel oil under ground storage tank (SRN 20) is located at Building 308. This tank has been in service since 1942. Interviews conducted during the 1995 EBS revealed that petroleum has been released in the area of Building 306. The interviews also revealed that paints and solvents have been stored in this building and may have been released. The purpose of the investigation was to determine if surface and subsurface soils in the areas associated with Building 306 and Building 308 have been impacted. The constituents of concern are volatile organics, semivolatiles, and TPH. ## 29.2 INVESTIGATION SUMMARY A visual inspection was conducted to identify sample locations. Building 308 is a small boiler plant located in the north west corner of the SEAD boundary. SEAD personnel provided information to locate the site of a removed UST on the north side of the building. Building 306 is 155 feet long (north to south) with loading bays and platforms on the east and west sides. The building is 55 feet wide with a door on the north end. There are asphalt parking and loading areas (approximately 0.5 acre) on the east, north, and west sides of the building with a gravel railroad loading area off the south west corner of the building. Recent rains showed runoff to be in a westerly direction from these loading areas. Surface and subsurface samples were collected off the edge of the asphalt in areas of stressed vegetation and low spots. No signs of staining were observed. A total of three soil borings and two surface soil samples were performed at locations near the buildings suspected of being spill locations (Figure 29-1). Two soil borings were located downgradient of Building 306 in areas rumored to be spill locations and having stressed vegetation based on the visual inspection. One soil boring (SB121D-3) was conducted approximately 30 feet west of the former UST in a small surface depression. Two surface soil samples were collected near Building 306 in areas of stressed vegetation. The rationale for selecting the sample locations is provided in Table 29-1. The results of the laboratory analyses are presented in Tables 29-2 through 29-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - Five volatile organic compounds were found in the soil at SEAD-121D, however, their concentrations were all below their respective TAGMs. The five compounds were acetone, chloroform, methlene chloride, toluene, and xylene. - Semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however five phthalate compounds were also found in the samples. Four of the detected concentrations were above the TAGMs. The compounds Dibenz(a,h)anthracene (26.4 times), Benzo(a)pyrene (14.6 times), Benzo(a)anthracene (3.7 times), and Chrysene (2.5 times), and were detected above their respective TAGM values. TPH were found in five soil samples at concentrations above the detection limits. Concentrations of TPH ranged from 25.3 mg/kg to 359 mg/kg. No TAGM has been established for TPH. #### Comparison to Industrial PRGs: No Industrial PRGs were exceeded in the soil samples analyzed for volatile organics. One semivolatile organic compound, Benzo(a)pyrene was detected at a concentration 1.1 times the Industrial PRG. <u>Recommendation</u>: Based on professional judgment, and as outlined under Decision No. B in the Decision Criteria Flowchart, it is recommended that no further action be taken at this site. ## 30.0 SEAD-121E - BUILDING 127 UST PETROLEUM RELEASE #### 30.1 SITE INFORMATION This parcel is associated with an underground storage tank and stained mound located near Building 127 (Figure 30-1). The tank (SRN 177) has a 12,000 gallon capacity and is used to store diesel fuel. It has been in service since 1985. A visual inspection of this tank during the 1995 EBS documented some discoloration of the concrete at the base of the pump. The visual inspection also noted an earthen mound with oil or hydraulic fluid staining to the southwest of Building 127. The purpose of the investigation was to determine if surface and subsurface soils near the underground storage tank have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics, lead, and TPH in soil. #### 30.2 INVESTIGATION SUMMARY The site is located near the locomotive garage bay on the eastern portion of the Depot. (Figure 30-1). A small unnumbered building is located between the UST and the railroad tracks. The site is mostly paved with asphalt, with the exception of the area directly above the UST, the track bed, and a parking area in the southwestern portion of the site. This parking area is for tanker trucks that transport fuel from the UST to other locations on the Depot. The only signs of spills were
small stains in the parking area. A total of four soil samples were collected from two soil borings located near the UST. One soil boring was located north of the UST and the second soil boring was located to the west. The rationale for selecting the sample locations is provided in Table 30-1. The results of the laboratory analyses are presented in Tables 30-2 and 30-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below. ## Comparison to TAGMs: - Five volatile organic compounds were detected in the soil at SEAD-121E, however, only one compound, acetone, was detected at a concentration above the TAGM. The exceedence was 2 times the TAGM value in SB121E-3 (5.1 to 5.5 feet). - The semivolatile organic compounds found in the soil samples at SEAD-121E consisted mostly of PAHs, however six phthalate compounds were also found in the soil sample SB121E-2 (5.1 to 5.5 feet). Six of the detected concentrations were above the TAGMs primarily in the soil sample SB121E-1 (0 to 0.7 feet). The maximum concentrations of Dibenz(a,h)anthracene was detected at 63.6 times the TAGM; the maximum concentration of Benzo(a)pyrene was 59 times the TAGM; and the maximum concentration of Benzo(a)anthracene was 17.4 times the TAGM. - Lead was detected in all four soil samples. The maximum concentration of lead exceeded the TAGM by 3.8 times. - TPH were found in three soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 172 mg/kg to 3780 mg/kg. No TAGM has been established for TPH. #### Comparison to Industrial PRGs: - No Industrial PRGs were exceeded in the soil samples analyzed for volatile organic compounds. The Industrial PRGs for Benzo(a)pryrene and Dibenz(a,h)anthracene were exceeded in one sample, SB121E-1(0 to 0.7 feet). - There is no Industrial PRG for lead, although the site maximum value of 92.5 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use. <u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from semivolatile organic compounds and lead at SEAD- 121E. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment. #### 31.0 SEAD-121F - BUILDING 135 STAINED SOIL #### 31.1 SITE INFORMATION This parcel is associated with Building 135 (Figure 31-1). This building has been used for vehicle storage over the last 25 years. A visual inspection during the 1995 EBS documented that the dirt floor was extensively stained with oil, fuel, and hydraulic fluid. An interview for the 1995 EBS revealed that this building had been used for acid storage. This interview also documented the release of acids in the building. The purpose of the investigation was to determine if surface soils within and immediately around the building have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics, TPH, and lead in soil. ## 31.2 INVESTIGATION SUMMARY This site is comprised of Building 135, which is an open garage type building with a gravel floor. Visual inspection of the building indicated that the gravel floor had extensive staining. Several pieces of equipment such as tractors, a lawn mower, a large generator, and various types of heavy machinery on pallets were stored in the building (Figure 31-1). Sorbent pillows, pallets of silica, construction materials, and hay were also stored in the building. Three surface soil samples were collected from locations inside the building near areas of the most severe surface soil staining (Figure 31-1). The rationale for selecting the surface soil and soil boring locations is provided in Table 31-1. The results of the laboratory analyses are presented in Tables 31-2 through 31-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below. ## Comparison to TAGMs: Two volatile organic compounds, acetone and toluene, were detected in the soil samples. However, none of the concentrations of these volatiles were found above their respective TAGMs. Both acetone and toluene are potential laboratory contaminants. - The semivolatile organic compounds detected in the samples included mostly PAHs and five phthalate compounds. Two of the PAHs, benzo(a)pyrene and dibenz(a)anthracene, exceeded their respective TAGMs in soil. The magnitudes of the two PAH exceedences were between 1.2 and 1.6 times in the samples. - TPH were found in three soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 290 mg/kg to 419 mg/kg. No TAGM has been established for TPH. - Lead was detected at concentrations that exceeded the TAGM in one soil sample. The maximum concentration of lead was detected at 1.3 times the TAGM. #### Comparison to Industrial PRGs: - None of the concentrations of volatile organics and semivolatile organics exceeded established Industrial PRGs. - There is no Industrial PRG for lead, although the site maximum value of 31.8 mg/Kg is significantly below the agreed upon screening value of 400 mg/Kg for residential land use. <u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. B in the Decision Criteria Flowchart, it is recommend that no further action be taken at this site. ## 32.0 SEAD-121G - RUMORED COAL ASH DISPOSAL AREA ## 32.1 SITE INFORMATION This parcel is associated with an area south of Building 123 that was rumored to have been used for coal ash disposal (Figure 32-1). The purpose of the investigation was to determine the location of the coal ash disposal areas reported to be south of Building 123 in an area that is now utilized partially as a playground and to determine if soil in this area has been impacted by coal ash. In addition, geophysics were used to determine the location of any anomalies to be investigated. The constituents of concern are semivolatiles and metals in soil. #### 32.2 INVESTIGATION SUMMARY This site is the playground on the eastern portion of the Depot in the Administrative Area (Figure 32-1). SEDA personnel indicated that areas directly under the playground equipment (jungle gym and slide) were the location of the coal ash disposal areas. Sand had been placed underneath the equipment. Ash was visible in the ruts of the drill rig. Based upon the soil sampling, the disposal of ash took place over a period of time. Ash appeared in veins in the split spoon samples from approximately 0.5 inches to one foot. An EM-31 survey was performed over those areas of SEAD-121G that were accessible. These included a 400 foot by 500 foot area located east of Administration Avenue and south of South Avenue, and a 350 foot by 400 foot area south of the maintenance area parking pad (Figure 32-2). The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 32-2 and 32-3. Figure 32-2 shows the measured apparent ground conductivity and Figure 32-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data. Several localized, high amplitude anomalies are visible in the apparent ground conductivity data and the in-phase response data in the northwest portion of the site (the area of the playground). These are all associated with metallic objects in the playground. Though not all of these localized anomalies occur immediately adjacent to a mapped metallic object (each "X" in the figures represents the location of a metallic surface object), most of the surface objects are large in size (only the center of the objects are mapped), and some objects were not mapped because they did not obstruct a survey line. A large area, low amplitude anomaly is observed in the apparent ground conductivity data in the central and south-central portion of the playground area (Figure 32-3). This anomaly is interpreted as an area having a slightly different near-surface soil make-up. Possible causes of this anomaly include elevated soil moisture content (the survey was performed in early spring, and groundwater may have been pooled in a topological low area), or the presence of slightly conductive material. The slightly conductive material could be a concentration of soils with naturally occurring high conductivity, or it could be due to buried coal ash. Since it is possible for the coal ash to have high concentrations of inorganic elements, and/or for the porosity of the coal ash to be such that it will have a higher moisture content, there is a good probability that this anomaly is associated with the disposed coal ash. There is no evidence of this large area, low amplitude anomaly in the in-phase data. This is to be expected as the in-phase response is very sensitive to smaller objects with high metal content and is typically insensitive to broad, low-level apparent ground conductivity anomalies. No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data in the southeastern portion of the site. A linear anomaly of high apparent ground conductivity and high in-phase response measurements is visible along the northern boundary of the this area, and is associated with anthropogenic features. A single,
localized, small amplitude anomaly is visible near the center of the northern boundary of this area, and is presumably associated with a small buried metallic object. This anomaly is expected to be shallow (due to its small area extent) and small (due to its low amplitude). This anomaly is interpreted to be an object that is smaller than a 55 gallon drum. Four soil samples were collected from two soil borings performed on the eastern edge and in the center of the rumored ash disposal area. The locations were recommended by SEDA personnel (Figure 32-1). The rationale for selecting the soil boring locations is provided in Table 32-1. The results of the laboratory analyses are presented in Tables 32-2 through 32-5. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - The semivolatile organic compounds detected in the soils were mostly PAHs and four phthalates. Six of these compounds were found at concentrations above their respective TAGMs. Most of the exceedences were found in soil sample SB121G-2(0 to 0.2 feet). The maximum concentration of Diben(a,h)anthrancene was 30.7 times the TAGM and the maximum concentration of Benzo(a)pyrene was 24.6 times the TAGM. - Lead and thallium were found at concentrations above their respective TAGMs. The maximum concentration of both lead and thallium was 1.9 times the respective TAGM. #### Comparison to Residential PRGs: - None of the concentrations of semivolatile organic compounds and metals found in the soil exceeded the Residential PRGs. - There is no Residential PRG for lead, although the site maximum value of 45.9 mg/Kg is significantly below the agreed upon screening value of 400 mg/Kg for residential land use. <u>Recommendation</u>: Based on professional judgment, it is recommended that no further action be taken for SEAD-121G, as outlined under Decision No. B in the Decision Criteria Flowchart. ## 33.0 SEAD-121H - RUMORED COAL DISPOSAL AREA #### 33.1 SITE INFORMATION This parcel is associated with an area near Building S-131 where coal was stored (Figure 33-1). The purpose of the investigation was to identify the location of the coal storage areas and to determine if subsurface soils in the area have been impacted by contaminants. The constituents of concern are semivolatile organics and metals. #### 33.2 INVESTIGATION SUMMARY SEDA personnel indicated that the site is located in the eastern portion of the Depot (Figure 33-1). The site is comprised of a salt storage dome located northeast of Building 128. The dome was filled with salt and sampling was restricted to the outside perimeter of the structure. Visual inspection of the site did not indicate any signs of coal. Soil samples were collected on opposite sides of the dome. A total of four soil samples were collected from two soil borings at locations on the northeastern and southern perimeter of the storage dome. The rationale for selecting the sample locations is provided in Table 33-1. The results of the laboratory analyses are presented in Tables 33-2 through 33-4. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below. #### Comparison to TAGMs: - The semivolatile organic compounds found in the soil samples consisted mostly of PAHs however four phthalates were also found in the samples. None of the detected concentrations were above the TAGMs. - Two metals, calcium and sodium, exceeded their respective TAGMs. Calcium exceeded the TAGM in two sample locations. Sodium exceeded in all the sample locations. Comparison to Industrial PRGs: • No Industrial PRGs were exceeded in the soil samples analyzed for semivolatile organics. The maximum concentration of arsenic was 1.1 times the Industrial PRG. <u>Recommendation</u>: Based on professional judgment, it is recommended that no further action be taken for SEAD-121H, as outlined under Decision No. B in the Decision Criteria Flowchart. ## 34.0 SEAD-121I - RUMORED COSMOLINE OIL DISPOSAL AREA #### 34.1 SITE INFORMATION This parcel is associated with four rectangular grassy areas between two rows of warehouse buildings between Avenues C and D (Figure 34-1). It was reported that upon receipt of machinery that was packed in Cosmoline (oil), the oil from the packing was dumped in the rectangular grassy areas outside of the warehouses between Avenues C and D and 3rd Street and 7th Street. Also, some of this oil may have been washed down storm drains in this area. The purpose of the investigation was to determine if soils in the four areas have been impacted by contaminants and if sediment from two storm drains that are located in areas which may have received sediment (run-off) from any of these areas have also been impacted. The constituents of concern are semivolatile organics and TPH. #### 34.2 INVESTIGATION SUMMARY The sampling locations were based on possible loading and unloading sites near adjacent warehouses. The field program included the collection of four surface soil samples and two sediment samples. One surface soil sample was collected from depressed areas in each of the four rectangular areas. One sediment sample was collected from a drainage culvert downgradient of the materials staging area between Building 343 and Building 331. The second sediment sample was collected from a drainage culvert downgradient of the staging area between Building 329 and 341. The rationale for choosing these sample locations is provided in Table 34-1. The results of the laboratory analyses are presented in Tables 34-2 and 34-7. These results were compared to NYSDEC TAGMs, NYS sediment criteria, and Industrial PRGs. No PRGs have been established for sediment. The results of the comparisons are given below. Comparison to Soil TAGMs and Sediment Criteria: - The semivolatile compounds detected were mostly PAHs and one phthalate. Seven semivolatile organic compounds exceeded their respective TAGMs in the soil samples. The maximum concentration of Dibenz(a,h)anthracene was 328.6 times the TAGM; the maximum concentration of Benzo(a)pyrene was 213 times the TAGM; and the maximum concentration of Benzo(a)anthracene was 58 times the TAGM. - TPH were found in three soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 43.9 mg/kg to 452 mg/kg. There is no TAGM for TPH. - Six semivolatile organic compounds were found at concentrations above their respective NYS sediment criteria. The maximum concentration of Chrysene was 19.2 times the NYS criteria; the maximum concentration of Benzo(k)fluoranthene was 17.7 times the NYS criteria; and the maximum concentration of Benzo(b)fluoranthene was 16.9 times the criteria. - TPH were found in both the sediment samples. The concentrations ranged from 136 mg/kg to 370 mg/kg. There is no NYS sediment criteria for TPH. ## Comparison to Industrial PRGs: - Five of the concentrations of semivolatile organics exceeded their respective Industrial PRGs in the soil samples. Benzo(a)pyrene was detected at concentrations exceeding the Industrial PRG in all four soil samples. The remaining semivolatile organic compounds exceedences were found in one soil sample, SS121I-2. - No Industrial PRGs have been established for sediment. <u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil sampling be performed to determine the extent of the impacts from semivolatiles. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment. ## References - Environmental Products & Services, January 1998, Underground Storage Tank Closure Report. - NYSDEC, 1996, Groundwater Monitoring Well Decommissioning Procedures, Division of Environmental Remediation (May 1995, revised October 1996). - NYSDEC February 11, 1998 letter to Seneca Army Depot regarding Spill No. 9709544 Building 732, Spill No. 9712296 Building 816, Spill No. 9712297 Building 812, and Spill No. 9712298 Building 747. - Parsons ES, 1995, Generic Installation Remedial Investigation/Feasibility Study (RI/FS) Workplan for Seneca Army Depot Activity. - Woodward Clyde Federal Services, 1996a, U.S. Army Base Realignment and Closure Program, Environmental Baseline Survey Report, Seneca Army Depot Activity, New York, Draft Final. - Woodward Clyde Federal Services, 1996b, U.S. Army Base Realignment and Closure Program, Sampling and Analysis Recommendations, Seneca Army Depot, New York # **TABLES** # SEAD-122A # Skeet/Trap Range Table 3-1 # Sample Collection Information SEAD-122A - Skeet/Trap Range # 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | | | QC | RATIONALE FOR SAMPLE | | | | | | |-----------------|----------|-------|--------|--------|----------------------|------|--|--|--|--| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | | | | SURFACE
SOIL | SS122A-1 | EB130 | 3/8/98 | 0.0 | 0.2 | SA | Immediate downrange location at 125 ft. If short range target was launched it would be left of center to avoid hitting target launch site. | | | | | SURFACE
SOIL | SS122A-2 | EB131 | 3/8/98 | 0.0 | 0.2 | SA | Moderate downrange location at 175 ft. Likely location for lead pellet shot at low flying targets. | | | | | SURFACE
SOIL | SS122A-3 | EB132 | 3/8/98 | 0.0 | 0.2 | SA | Location downrange at 200 ft. It was chosen due to presence of clay target fragments and slightly stressed vegetation. | | | | | SURFACE
SOIL | SS122A-4 | EB133 | 3/8/98 | 0.0 | 0.2 | SA | Location is 250 ft downrange and is likely lead pellet landing area. | | | | | SURFACE
SOIL | SS122A-5 | EB134 | 3/8/98 | 0.0 | 0.2 | SA | Location is 300 ft downrange and is likely lead pellet landing area. | | | | Notes: SA = Sample Table 3-2 122A - Lead in Soil vs
TAGMS Non-Evaluated EBS Sites | SITE: LOC ID: DESCRIPTION: SAMP ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE: | | | FREQUENCY
OF
DETECTION | TAGM | PRG | ABOVE | OF | NUMBER
OF
ANALYSES | 8-N | -1 | SEAD-1
SS1224
Skeet/T
Range
EB131
SA | -2 | SEAD-12
SS122A-
Skeet/Tra
Range
EB132
SA
SOIL
8-Ma | 3
ap
0
0.2 | SEAD-12
SS122A-Skeet/Tra
Range
EB133
SA | 0
0.2 | SEAD-1
SS122A
Skeet/Ti
Range
EB134
SA
SOIL
8-M | -5 | |--|-------|----------|------------------------------|--------|---------|-------|--------|--------------------------|--------|--------|---|--------|---|---------------------|---|----------|---|------| | PARAMETER | UNIT | IN OTHER | DETECTION | 17.00 | | | 52.201 | | VALUE | Q | | Aluminum | MG/KG | | | 19520 | 1053000 | | | | VALUE. | Q | VALUE. | · · | VALUE | Q | AVEOR | Q | AVEOL | Q | | Antimony | MG/KG | | | 6 | 421 | | | | | | | | | | | | | | | Arsenic | MG/KG | | | 8.9 | 46 | | | | | | | | | | | | | | | Barium | MG/KG | | | 300 | 73702 | | | | | | | | | | | | | | | Beryllium | MG/KG | | | 1.13 | 16 | | | | | | | | | | | | | | | Cadmium | MG/KG | | | 2.46 | 526 | | | | | | | | | | | | | | | Calcium | MG/KG | | | 125300 | | | | | | | | | | | | | | | | Chromium | MG/KG | | | 30 | 1052885 | | | | | | | | | | | | | | | Cobalt | MG/KG | | | 30 | 63173 | | | | | | | | | | | | | | | Copper | MG/KG | | | 33 | 42115 | | | | | | | | | | | | | | | Cyanide | MG/KG | | | 0.35 | | | | | | | | | | | | | | | | Iron | MG/KG | | | 37410 | 315865 | | | | | | | | | | | | | | | Lead | MG/KG | 134 | 100.00% | 24.4 | | 3 | 5 | | 5 | 37.7 * | | 24.2 * | | 22.7 * | 102.000 | 134 - | 1000 | 41.2 | | Magnesium | MG/KG | | | 21700 | | | | | | | | | | | | | | | | Manganese | MG/KG | | | 1100 | 24216 | | | | | | | | | | | | | | | Mercury | MG/KG | | | 0.1 | 316 | | | | | | | | | | | | | | | Nickel | MG/KG | | | 50 | 21058 | | | | | | | | | | | | | | | Potassium | MG/KG | | | 2623 | | | | | | | | | | | | | | | | Selenium | MG/KG | | | 2 | 5264 | | | | | | | | | | | | | | | Silver | MG/KG | | | 0.8 | 5264 | | | | | | | | | | | | | | | Sodium | MG/KG | | | 188 | | | | | | | | | | | | | | | | Thallium | MG/KG | | | 0.855 | 84 | | | | | | | | | | | | | | | Vanadium | MG/KG | | | 150 | 7370 | | | | | | | | | | | | | | | Zinc | MG/KG | | | 115 | 315865 | | | | | | | | | | | | | | #### Table 3-3 122A - Lead in Soil vs PRG-RECs Non-Evaluated EBS Sites | SITE
LOC ID
DESCRIPTION | | | | | | | | | SEAD-
SS122
Skeet/I | A-1 | SS122A | SEAD-122A
SS122A-2
Skeet/Trap
Range | | SEAD-122A
SS122A-3
Skeet/Trap
Range | | SEAD-122A
SS122A-4
Skeet/Trap
Range | | 22A
-5
ap | |-------------------------------|----------------|---------|-----------|---------------|--------------|--------|---------|---------|---------------------------|-------|----------|--|----------|--|----------|--|----------|-----------------| | SAMPID | | | | | | | | | EB130 | | EB131 | | EB132 | | EB133 | | EB134 | | | QC CODE | | | | | | | | | SA | | | SAMP DETH TOP | | | | | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0.2 | | 0 2 | | 0 2 | | 0.2 | | 0 2 | | MATRIX. | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 8-Mar-98 | | | | | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSE | | | | | | | | | | | | PARAMETER | UNIT | | | TAGM | | | | | VALUE | Q | | Aluminum | MG/KG | | | 19520 | 1053000 | | | | | | | | | | | | | | | Antimony | MG/KG | | | 6 | 421 | | | | | | | | | | | | | | | Arsenic | MG/KG | | | 8 9 | 46 | | | | | | | | | | | | | | | Barium | MG/KG | | | 300 | 73702 | | | | | | | | | | | | | | | Beryllium | MG/KG | | | 1 13 | 16 | | | | | | | | | | | | | | | Cadmium | MG/KG | | | 2 46 | 526 | | | | | | | | | | | | | | | Calcium | MG/KG | | | 125300 | | | | | | | | | | | | | | | | Chromium | MG/KG | | | 30 | 1052885 | | | | | | | | | | | | | | | Cobalt | MG/KG | | | 30 | 63173 | | | | | | | | | | | | | | | Copper | MG/KG | | | 33 | 42115 | | | | | | | | | | | | | | | Cyanide | MG/KG | | | 0.35 | | | | | | | | | | | | | | | | Iron | MG/KG | | | 37410 | 315865 | | | | - | 377 * | | 242 * | | 22 7 * | | 134 * | | 41.2 * | | Lead | MG/KG | 134 | 100 00% | 24 4 | | 0 | | | 5 | 3// | | 24 2 | | 221 | | 134 | | 41.2 | | Magnesium | MG/KG | | | 21700
1100 | 0.4046 | | | | | | | | | | | | | | | Manganese | MG/KG | | | 0.1 | 24216
316 | | | | | | | | | | | | | | | Mercury | MG/KG
MG/KG | | | 50 | 21058 | | | | | | | | | | | | | | | Nickel | MG/KG | | | 2623 | | | | | | | | | | | | | | | | Potassium
Selenium | MG/KG | | | 2023 | | | | | | | | | | | | | | | | Silver | MG/KG | | | 08 | | | | | | | | | | | | | | | | Sodium | MG/KG | | | 188 | | | | | | | | | | | | | | | | Thallium | MG/KG | | | 0 855 | | | | | | | | | | | | | | | | Vanadium | MG/KG | | | 150 | 7370 | | | | | | | | | | | | | | | Zinc | MG/KG | | | 115 | | | | | | | | | | | | | | | ## SEAD-122B # Building 2302 Small Arms Range Table 4-1 ## Sample Collection Information SEAD-122B - Building 2302 Small Arms Range ## 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP (feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |-----------------|----------------|--------------|----------------|------------|------------------|------------|---| | SURFACE
SOIL | SS122B-1 | EB125 | 3/8/98 | 0.0 | 0.2 | SA | Range 1:Immediate downrange location two feet in front concrete pad at shooting lane #10. This is a likely location for firearm discharge | | SURFACE
SOIL | SS122B-2 | EB126 | 3/9/98 | 0.0 | 0.2 | SA | Range 1: Downrange berm location 187 feet in front of shooting concrete pad at lane #4 This is an impact point for bullets. | | SURFACE
SOIL | SS122B-3 | EB127 | 3/8/98 | 0.0 | 0.2 | SA | Range 1: Downrange berm location 187 feet in front of shooting concrete pad at lane #12. This is an impact point for bullets. | | SURFACE
SOIL | SS122B-4 | EB128 | 3/8/98 | 0.0 | 0.2 | SA | Range 2 : Downrange berm location at left shooting lane. Impact area for bullets. | | SURFACE
SOIL | SS122B-5 | EB129 | 3/8/98 | 0.0 | 0.2 | SA . | Range 2 : Downrange berm location at right shooting lane. Impact area for bullets. | | SURFACE
SOIL | SS122B-2 | EB015 | 3/9/98 | 0.0 | 0.2 | DU | Not Applicable | | WATER | SS122B-1 | EB018 | 3/9/98 | 0.0 | 0.0 | RB | Not Applicable | Notes. SA = Sample DU = Duplicate RB = Rinse Blank Table 4-2 122B - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
LOC ID: | | | | | | | | | SEAD-122B
SS122B-1 | SEAD-122B
SS122B-2 | SEAD-122B
SS122B-3 | SEAD-122B
SS122B-4 | SEAD-122B
SS122B-5 | SEAD-122B
SS122B-2 | |--------------------|-------|------------|-----------|----------|---------|---------|---------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---| | DESCRIPTION: | | | | | | | | | Bldg. 2302 | | | | | | | | | | | Small Arms | | | | | | | | | | | Range | Range | Range | Range | Range | Range | | SAMP ID: | | | | | | | | | EB125 | EB126 | EB127 | EB128 | EB129 | EB015 | | QC CODE: | | | | | | | | | SA | SA | SA |
SA | SA | DU | | SAMP, DETH TOP. | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | , | | | | | | | | 02 | 02 | 0 2 | 0.2 | 0.2 | 0.2 | | MATRIX. | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 8-Mar-98 | 9-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 9-Mar-98 | | ONIN DATE | | MAXIMU | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | 3-14141-50 | 0-Mai-30 | 0-Mai-30 | 0-Mai-30 | 3-Mai-30 | | PARAMETER | UNIT | Ten Othero | BETCOTION | 17.0111 | | 1710111 | 02.20.0 | 7114121020 | VALUE Q | | Aluminum | MG/KG | 6910.0 | 100.00% | 19520 | 1053000 | 0 | 6 | 6 | | 4550 | 4270 | 2660 | 4320 | 4720 | | Antimony | MG/KG | 393.0 | | 6 | 421 | 3 | 6 | | 3 3.2 B* | 24.1 | 226 * | 3.5 B* | 3.6 B* | 393 - | | Arsenic | MG/KG | 117.0 | | 8.9 | 46 | 2 | 6 | | 5 3.6 N° | 84 N° | 39.6 N° | 2.3 N° | 3.6 N* | 117 N° | | Barium | MG/KG | 107.0 | | 300 | 73702 | 0 | 6 | | | 25 B | 25.5 B | 13.6 B | | | | Beryllium | MG/KG | 02 | | 1.13 | 16 | 0 | 6 | | 6 0.2 B | 0.11 B | 0.09 B | 0.04 B | 25.9 B
0.06 B | 25.2 B | | Cadmium | MG/KG | 1.1 | 33 33% | 2.46 | 526 | 0 | 2 | | 6 1.1 | 0.06 U | 0.09 B | | | 0.12 B | | Calcium | MG/KG | 54800.0 | 100.00% | 125300 | 526 | 0 | 6 | | 5 54800 | 31100 | 37000 | 0.06 U
26000 | 0.07 U | 0.18 B | | | MG/KG | | 100.00% | | 1052885 | 4 | 6 | | 6 11.4 * | 8.4 * | | | 22400 | 34600 | | Chromium
Cobalt | MG/KG | 69.8 | 100.00% | 30
30 | 63173 | 0 | 6 | | 6 66 B | | 9.4 * | 3.1 * | 4.6 * | 69.8 | | | | | | | | 6 | 6 | | | 4.2 B | 4 B | 2.3 B | 2.9 B | 4.1 B | | Copper | MG/KG | 380 0 | 100.00% | 33 | 42115 | 6 | 6 | | 6 81.3 N | 121 N* | 380 N* | N. | 156 N* | N. | | Cyanide | MG/KG | 8.0 | | 0.35 | | 1 | 1 | (| | 0.6 U | 0.61 U | 0.57 U | 0.62 U | 0.6 U | | tron | MG/KG | 12900.0 | 100.00% | 37410 | 315865 | 0 | 6 | | 6 12900 | 8740 | 8550 | 4940 | 6430 | 8970 | | Lead | MG/KG | 42900.0 | 100.00% | 24 4 | | 6 | 6 | (| e.w.e. | 4260 * | 30700 * | . 669 | at. Affile. | CASE OF THE PARTY | | Magnesium | MG/KG | 15100.0 | 100.00% | 21700 | | 0 | 6 | | 6 15100 | 10700 | 11300 | 6340 | 8690 | 10300 | | Manganese | MG/KG | 379.0 | | 1100 | 24216 | 0 | 6 | | 6 379 | 332 | 306 | 231 | 353 | 290 | | Mercury | MG/KG | 0.0 | | 0.1 | 316 | 0 | 0 | • | 6 0 05 U | 0.04 U | 0.05 U | 0.05 U | 0.06 U | 0.05 U | | Nickel | MG/KG | 15.3 | 100.00% | 50 | 21058 | 0 | 6 | | 6 15.3 | 7.3 B | 8.4 B | 4.1 B | 5.5 B | 8.6 B | | Potassium | MG/KG | 1180.0 | | 2623 | | 0 | 6 | | 6 1180 | 975 B | 799 B | 506 B | 634 B | 989 B | | Selenium | MG/KG | 0.0 | | 2 | 5264 | 0 | 0 | (| 6 0,95 U | 0.93 U | 1 U | 1 U | 1.1 U | 1 U | | Silver | MG/KG | 1.4 | 33.33% | 0.8 | 5264 | 2 | 2 | (| 6 0.42 U | 0.41 U | 6.92 B | 0.45 U | 0.47 U | 1.4 B | | Sodium | MG/KG | 0.0 | | 188 | | 0 | 0 | (| 6 122 U | 120 U | 133 U | 131 U | 136 U | 134 U | | Thallium | MG/KG | 0.0 | | 0.855 | 84 | 0 | 0 | | 6 1.3 U | 1.2 U | 1.4 U | 1.4 U | 1.4 U | 139 U | | Vanadium | MG/KG | 12.0 | | 150 | 7370 | 0 | 6 | (| 6 12 | 9.7 B | 7.7 B | 5.1 B | 6.7 B | 8.8 B | | Zinc | MG/KG | 96.5 | 100.00% | 115 | 315865 | 0 | 6 | (| 55,9 * | 48.9 * | 96.5 * | 34 ° | 445 * | 70 * | Table 4-3 122B - Metals in Soil vs PRG-RECs Non-Evaluated EBS Sites | SITE
LOC ID
DESCRIPTION | | | | | | | | | SEAD-122B
SS122B-1
Bidg 2302
Small Arms
Range | SEAD-122B
SS122B-2
Bldg 2302
Small Arms
Range | SEAD-122B
SS122B-3
Bldg 2302
Small Arms
Range | SEAD-122B
SS122B-4
Bldg. 2302
Small Arms
Range | SEAD-122B
SS122B-5
Bidg, 2302
Small Arms
Range | SEAD-122B
SS122B-2
Bldg 2302
Small Arms
Range | |-------------------------------|-------|---------|----------|--------|---------|--------|---------|----------|---|---|---|--|--|---| | SAMP ID | | | | | | | | | EB125 | EB126 | EB127 | EB128 | EB129 | EB015 | | QC CODE | | | | | | | | | SA | SA | SA | SA SA | SA | DU | | SAMP DETH TOP | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0.2 | 0 2 | 0.2 | 0.2 | 0.2 | 0.2 | | MATRIX | | | REQUENCY | | | NUMBER | NUMBER | NUMBER | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP. DATE: | | | OF | | | ABOVE | OF | OF | 8-Mar-98 | 9-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 9-Mar-98 | | | | AXIMU [| DETECTIO | TAGM | PRG | TAGM | | ANALYSES | | 0 14101 00 | 0 14101 00 | 0-14161-30 | 0-14141-20 | 5-19121-50 | | PARAMETER | UNIT | | | | | | 02.20.0 | | VALUE Q | | Aluminum | MG/KG | 6910 | 100 00% | 19520 | 1053000 | 0 | ' 6 | 6 | 6910 | 4550 | 4270 | 2660 | 4320 | 4720 | | Antimony | MG/KG | 393 | 200 00% | 6 | 421 | ō | | 3 | 3 2 B* | 24 1 * | 226 * | 3.5 B* | 3.6 B* | 393 * | | Arsenic | MG/KG | 117 | 100.00% | 8 9 | 46 | 1 | 6 | 6 | 36 N* | 8 4 N* | 39.6 N° | 2.3 N° | 3.6 N* | 117 N° | | Barium | MG/KG | 107 | 100 00% | 300 | 73702 | 0 | 6 | 6 | 107 | 25 B | 25 5 B | 13.6 B | 25.9 B | 25.2 B | | Beryllium | MG/KG | 0.2 | 100.00% | 1 13 | 16 | 0 | 6 | 6 | 0 2 B | 0 11 B | 0 09 B | 0.04 B | 0 06 B | 0 12 B | | Cadmium | MG/KG | 11 | 33.33% | 2.46 | 526 | 0 | 2 | 6 | 1.1 | 0 06 U | 0 07 U | 0.06 U | 0.07 U | 0 18 B | | Calcium | MG/KG | 54800 | 100 00% | 125300 | | 0 | 6 | 6 | 54800 | 31100 | 37000 | 26000 | 22400 | 34600 | | Chromium | MG/KG | 69 8 | 100 00% | 30 | 1052885 | 0 | 6 | 6 | 11.4 * | 84 * | 94 * | 3,1 * | 4.6 * | 69.8 * | | Cobalt | MG/KG | 6.6 | 100.00% | 30 | 63173 | 0 | 6 | 6 | 6.6 B | 4 2 B | 4 B | 2.3 B | 2.9 B | 4 1 B | | Copper | MG/KG | 380 | 100 00% | 33 | 42115 | 0 | 6 | 6 | 81 3 N° | 121 N* | 380 N* | 144 N* | 156 N* | 239 N* | | Cyanide | MG/KG | 0 75 | 16 67% | 0 35 | | 0 | 1 | 6 | 0 75 | 06 U | 0.61 U | 0.57 U | 0.62 U | 06 U | | Iron | MG/KG | 12900 | 100.00% | 37410 | 315865 | 0 | 6 | 6 | 12900 | 8740 | 8550 | 4940 | 6430 | 8970 | | Lead | MG/KG | 42900 | 100 00% | 24 4 | | 0 | 6 | 6 | 52 5 * | 4260 * | 30700 * | 690 * | 1060 * | 42900 ° | | Magnesium | MG/KG | 15100 | 100 00% | 21700 | | 0 | 6 | 6 | 15100 | 10700 | 11300 | 6340 | 8690 | 10300 | | Manganese | MG/KG | 379 | 100.00% | 1100 | 24216 | 0 | 6 | 6 | 379 | 332 | 306 | 231 | 353 | 290 | | Mercury | MG/KG | 0 | 0 00% | 0.1 | 316 | 0 | 0 | 6 | 0 05 U | 0 04 U | 0.05 U | 0.05 U | 0 06 U | 0.05 U | | Nickel | MG/KG | 15.3 | 100.00% | 50 | 21058 | 0 | 6 | 6 | 15 3 | 73 B | 8.4 B | 4.1 B | 5.5 B | 86 B | | Potassium | MG/KG | 1180 | 100.00% | 2623 | | 0 | 6 | 6 | 1180 | 975 B | 799 B | 506 B | 634 B | 989 B | | Selenium | MG/KG | 0 | 0 00% | 2 | 5264 | 0 | 0 | 6 | 0 95 U | 0 93 U | 1 U | 1 U | 1.1 U | 1 U | | Silver | MG/KG | 1 4 | 33.33% | 8.0 | 5264 | 0 | 2 | 6 | 0.42 U | 0 41 U | 0.92 B | 0.45 U | 0.47 U | 1.4 B | | Sodium | MG/KG | 0 | 0 00% | 188 | | 0 | 0 | 6 | 122 U | 120 U | 133 U | 131 U | 136 U | 134 U | | Thallium | MG/KG | 0 | 0.00% | 0.855 | 84 | 0 | 0 | - | 13 U | 1.2 U | 14 U | 1.4 U | 1.4 U | 139 U | | Vanadium | MG/KG | 12 | 100 00% | 150 | 7370 | 0 | 6 | 6 | 12 | 97 B | 77 B | 5.1 B | 6.7 B | 8.8 B | | Zinc | MG/KG | 96 5 | 100 00% | 115 | 315865 | 0 | 6 | 6 | 55 9 * | 48.9 * | 96 5 * | 34 * | 44 5 * | 70 * | ## SEAD-122D # Hot Pad Spill Table 6-1 ## Sample Collection Information SEAD-122D - Hot Pad Spill # 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM (feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |--------|----------------|--------------|----------------|---------------|---------------|------------|---| | SOIL | SB122D-1 | EB201 | 3/5/98 | 0.0 | 0.2 | SA | Location is a potential run-off area while plane was being refueled. Surface soil sample. | | SOIL | SB122D-1 | EB202 | 3/5/98 | 6.0 | 8.0 | SA | Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils. | | SOIL | SB122D-2 | EB203 | 3/5/98 | 0.0 | 0.2 | SA | Location is a potential run-off area (low spot) while plane was being refueled. Stressed vegetation was also noted at this location. Surface soil sample. | | SOIL | SB122D-2 | EB204 | 3/5/98 | 8.0 | 10.0 | SA | Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because of a 0.2 ppm PID reading in the saturated zone. | Notes: SA = Sample ### Table 6-2 122D - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | REQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-1:
Hot Pad
SB122D
EB201
SA | Spill | SEAD-12
Hot Pad S
SB122D-
EB202
SA
SOIL
5-Mai | Spill
1
6
8 | SEAD-12:
Hot Pad S
SB122D-2
EB203
SA
SOIL
5-Ma | 5pill
?
0
0 2 | SEAD-1:
Hot Pad
SB122D
EB204
SA | 8
10 | |---|-------|--------|----------------|------|------------|-----------------|--------------|--------------|---|--------|---|----------------------|--|------------------------|---|---------| | Origin Britis | | MAXIMU | DETECTIO | TAGM | PRG | TAGM | DETECTS | ANALYSES | 3-14 | 141-50 | J-IVI di | 1-90 | 3-Ma | 1-90 | 5-Mi | lar-98 | | PARAMETER | UNIT | | | | | | | | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | |
1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 36850962 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 Ū | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0.00% | 600 | 3439423 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0.00% | | 1206815 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 105288462 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0 | 0.00% | 400 | 114647 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 105288462 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 1011595 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Acetone | UG/KG | 34 | 50.00% | 200 | 105288462 | 0 | 2 | 4 | 1 | 12 U | | 34 | | 13 U | | 18 | | Benzene | UG/KG | 0 | 0 00% | 60 | 2372016 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Bromodichloromethane | UG/KG | 0 | 0,00% | | 1109491 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Bromoform | UG/KG | 0 | 0.00% | | 8707400 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 105288462 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Carbon tetrachlonde | UG/KG | 0 | | 600 | 529142 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Chlorobenzene | UG/KG | 0 | | 1700 | 21057692 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Chlorodibromomethane | UG/KĢ | 0 | 0.00% | | 818910 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 421153846 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Chloroform | UG/KG | 0 | 0.00% | 300 | 10528846 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Ethyl benzene | UG/KG | 0 | | 5500 | 105288462 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 1505625 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Melhyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl chloride | UG/KG | 0 | 0.00% | | 5291420 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 84230769 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 9171795 | 0 | 0 | 4 | \$ | 12 U | | 11 U | | 13 U | | 11 U | | Styrene | UG/KG | 0 | 0.00% | | | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Tetrachloroethene | UG/KG | 0 | 0.00% | 1400 | 1322855 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Toluene | UG/KG | 10 | 75 00% | 1500 | 210576923 | 0 | 3 | 4 | \$ | 3 J | | 3 J | | 13 U | | 10 J | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | 2105769000 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Trichloroethene | UG/KG | 0 | | 700 | 6253497 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 36204 | 0 | 0 | 4 | 1 | 12 U | | 11 U | | 13 U | | 11 U | Table 6-3 122D - Volatiles in Soil vs PRG-RECs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-12
Hot Pad (
SB122D-
EB201
SA
SOIL | Spill | SEAD-12
Hot Pad
SB122D-
EB202
SA
SOIL
5-M | Spill | SEAD-12:
Hot Pad \$
SB122D-7
EB203
SA
SOIL
5-Mi | Bpill | SEAD-12
Hot Pad
SB122D
EB204
SA
SOIL | Spill | |---|-------|--------|-----------------|------|------------|-----------------|--------------|--------------|--|--------|---|-------|---|-------|---|-------| | | | MAXIMU | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | | | | | | | | | PARAMETER | UNIT | | | | | | | | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 36850962 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 3439423 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0 00% | | 1206815 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 105288462 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 114647 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 105288462 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | 1.2-Dichloropropane | UG/KG | 0 | 0 00% | | 1011595 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Acetone | UG/KG | 34 | 50 00% | 200 | 105288462 | 0 | . 2 | | 4 | 12 U | | 34 | | 13 U | | 18 | | Benzene | UG/KG | 0 | 0 00% | 60 | 2372016 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 1109491 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Bromoform | UG/KG | 0 | 0 00% | | 8707400 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 105288462 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 529142 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Chlorobenzene | UG/KG | 0 | 0.00% | 1700 | 21057692 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 818910 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 421153846 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Chloroform | UG/KG | 0 | 0 00% | 300 | 10528846 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 105288462 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 1505625 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 5291420 | 0 | 0 | | 4 | 12 U ' | | 11 U | | 13 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 84230769 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 9171795 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Styrene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Tetrachloroethene | UG/KG | 0 | 0.00% | 1400 | 1322855 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Toluene | UG/KG | 10 | 75.00% | 1500 | 210576923 | 0 | 3 | | 4 | 3 J | | 3 J | | 13 U | | 10 J | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | 2105769000 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 6253497 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 36204 | 0 | 0 | | 4 | 12 U | | 11 U | | 13 U | | 11 U | Table 6-4 122D - Semivolatiles/TPH in Soit vs TAGMs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT. | | | | | | | | | SEAD-122D
Hot Pad Spill
SB122D-1
EB201
SA | | SEAD-12
Hot Pad S
SB122D-
EB202
SA | Spill | SEAD-12
Hot Pad
SB122D
EB203
SA | Spill | SEAD-
Hot Pa
SB122
EB204
SA | d Spill
D-2 | |--|----------------|---------|-------------------------|--------------|---------------------|-----------------|--------------|--------------|---|---------|--|---------------|---|---------------|---|----------------| | MATRIX
SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SOIL
5-Mar-98 | | SOIL
5-Ma | r-98 | SOIL
5-Ma | ar-98 | SOIL
5- | Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | _ | | _ | | _ | | | | 1.2.4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 10528846 | 0 | 0 | | 4 77 | Q
11 | VALUE | Q
74 U | VALUE | Q
69 U | VALUE | ≣ Q
73 U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 94759615 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 1,3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 93706731 | 0 | 0 | | 4 77 | U | | 74 U | | 69 U | | 73 U | | 1.4-Dichlorobenzene | UG/KG | 0 | 0 00% | 8500 | 2866186 | 0 | 0 | | 4 77 | U | | 74 U | | 69 U | | 73 U | | 2.4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 105288462 | 0 | 0 | | 4 190 | | | 180 U | | 170 U | | 180 U | | 2.4.6-Trichlorophenol | UG/KG | 0 | 0 00% | 400 | 6253497 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 2,4-Dichlorophenol 2,4-Dimethylphenol | UG/KG
UG/KG | 0 | 0 00%
0 0 0 % | 400 | 3158654
21057692 | 0 | 0 | | 4 77
4
77 | | | 74 U
74 U | | 69 U | | 73 U
73 U | | 2,4-Dinitrophenol | UG/KG | o | 0 00% | 200 | 2105769 | 0 | 0 | | 4 190 | | | 180 U | | 170 U | | 180 U | | 2,4-Dinitrotoluene | UG/KG | ō | 0 00% | 200 | 2105769 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 2,6-Dinitrotoluene | UG/KG | 0 | 0 00% | 1000 | 1052885 | 0 | 0 | | 4 77 | U | | 74 U | | 69 U | | 73 U | | 2-Chloronaphthalene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 77 | U | | 74 U | | 69 U | | 73 U | | 2-Chlorophenol | UG/KG | 0 | 0 00% | 800 | 5264423 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 2-Methylnaphthalene | UG/KG | 0 | 0 00% | 36400 | | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 2-Methylphenol 2-Nitroaniline | UG/KG
UG/KG | 0 | 0.00% | 100
430 | 52644231
63173 | 0 | 0 | | 4 77
4 190 | | | 74 U
180 U | | 69 U
170 U | | 73 U
180 U | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | 03173 | 0 | 0 | | 4 190 | | | 74 U | | 69 U | | 73 U | | 3,3'-Dichlorobenzidine | UG/KG | 0 | 0.00% | 000 | 152863 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 3-Nitroaniline | UG/KG | 0 | 0 00% | 500 | 3158654 | 0 | 0 | | 4 190 | | | 180 U | | 170 U | | 180 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 190 | U | | 180 U | | 170 U | | 180 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 61067308 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | 4-Chloroaniline | UG/KG
UG/KG | 0 | 0.00% | 220 | 4211539 | 0 | 0 | | 4 77
4 77 | _ | | 74 U
74 U | | 69 U
69 U | | 73 U | | 4-Chlorophenyl phenyl ether
4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U
73 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | 300 | 3158654 | 0 | 0 | | 4 190 | | | 180 U | | 170 U | | 180 U | | 4-Nrrophenol | UG/KG | 0 | 0.00% | 100 | 63173077 | 0 | 0 | | 4 190 | | | 180 U | | 170 U | | 180 U | | Acenaphthene | UG/KG | 0 | 0.00% | 50000 | | 0 | 0 | | 4 77 | _ | | 74 U | | 69 U | | 73 U | | Acenaphthylene | UG/KG | 0 | 0 00% | 41000 | | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Anthracene | UG/KG | 0 | 0.00% | 50000 | 315865385 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Benzo(a)anthracene Benzo(a)pyrene | UG/KG
UG/KG | 0 | 0.00%
25.00% | 224
61 | 94231
9423 | 0 | 0 | | 4 77
4 77 | | | 74 U
74 U | | 69 U
6 J | | 73 U
73 U | | Benzo[b]fluoranthene | UG/KG | 7 2 | 25,00% | 1100 | 94231 | 0 | i | | 4 77 | | | 74 U | | 7.2 J | | 73 U | | Benzo(ghi]perylene | UG/KG | 7.7 | 25.00% | 50000 | 0.40. | 0 | 1 | | 4 77 | | | 74 U | | 7.7 J | | 73 U | | Benzo[k]fluoranthene | UG/KG | 4 7 | 25 00% | 1100 | 942308 | 0 | 1 | | 4 77 | U | | 74 U | | 4.7 J | | 73 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Bis(2-Chloroethyf)ether | UG/KG | 0 | 0 00% | | 62535 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Bis(2-Chloroisopropyl)ether | UG/KG
UG/KG | 0
16 | 0 00%
50.00% | 50000 | 982692
4913462 | 0 | 0 | | 4 77 | | | 74 U
74 U | | 69 U
69 U | | 73 U
14 J | | Bis(2-Ethylhexyl)phthalate
Butylbenzylphthalate | UG/KG | 5 9 | 25 00% | 50000 | 210576923 | 0 | 2 | | 4 16
4 77 | | | 59 J | | 69 U | | 73 U | | Carbazole | UG/KG | 0 | 0 00% | 00000 | 3439423 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Chrysene | UG/KG | 5.7 | 25.00% | 400 | 9423077 | 0 | 1 | | 4 77 | | | 74 U | | 5.7 J | | 73 U | | Dr-n-bulylphthalate | UG/KG | 4 5 | 25.00% | 8100 | | 0 | 1 | | 4 77 | U | | 74 U | | 69 U | | 4.5 J | | Di-n-octylphthalate | UG/KG | 140 | 50 00% | 50000 | 21057692 | 0 | 2 | | 4 77 | | | 74 U | | 140 | | 11 J | | Dibenz[a,h]anthracene | UG/KG | 0 | 0 00% | 14 | 9423 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Dibenzofuran
Diethyl phthalate | UG/KG
UG/KG | 0
17 | 0 00%
100 00% | 6200
7100 | 9827
842307692 | 0 | 0 | | 4 77
4 11 | | | 74 U
17 JB | | 69 U
9 JB | | 73 U
13 JB | | Dimethylphthalate | UG/KG | 0 | 0 00% | 2000 | 10530000000 | 0 | 0 | | | | | 74 U | | 69 U | | 73 U | | Ethylene Glycol | MG/KG | 0 | 0.00% | 2000 | 2106000000 | 0 | 0 | | 4 | • | | , , , | | | | | | Fluoranthene | UG/KG | 4.4 | 25 00% | 50000 | 42115385 | 0 | 1 | | 4 77 | U | | 74 U | | 4.4 J | | 73 U | | Fluorene | UG/KG | 0 | 0 00% | 50000 | 42115385 | 0 | 0 | | 4 77 | | | 74 U | | 69 U | | 73 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 42993 | 0 | 0 | | | | | 74 U | | 69 U | | 73 U | | Hexachlorobutadiene | UG/KG | 0 | 0 00% | | 210577 | 0 | 0 | | | | | 74 U | | 69 U | | 73 U | | Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | 0.00%
0.00% | | 7370192
1052885 | 0 | 0 | | 4 77
4 77 | | | 74 U
74 U | | 69 U
69 U | | 73 U
73 U | | Hexachloroethane
Indeno[1,2,3-cd]pyrene | UG/KG
UG/KG | 66 | 25.00% | 3200 | 94231 | 0 | 1 | | | | | 74 U | | 6.6 J | | 73 U | | Isophorone | UG/KG | 0 | 0.00% | 4400 | 54631 | 0 | o | | | | | 74 U | | 69 U | | 73 U | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 14038462 | 0 | 0 | | | | | 74 U | | 69 U | | 73 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 10000 | 0 | 0 | | 4 77 | U | | 74 U | | 69 U | | 73 U | Table 6-4 122D - Semivolatiles/TPH in Soil vs TAGMs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID: SAMP ID QC CODE | | | | | | | | | SEAD-12
Hot Pad S
SB122D-
EB201
SA | Spill | SEAD-12
Hot Pad S
SB122D-1
EB202
SA | Spill | SEAD-122
Hot Pad S
S8122D-2
E8203
SA | pill | SEAD-12
Hot Pad S
SB122D-
EB204
SA | Spill | |--|-------|---------|-----------|-------|-----------|--------|---------|----------|--|--------|---|--------|--|-------|--|--------| | SAMP DETH TOP | | | | | | | | | | 0 | | 6 | | 0 | | 8 | | SAMP DEPTH BOT | | | | | | | | | | 0 2 | | 8 | | 0 2 | | 10 | | MATRIX | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 5-Ma | r-98 | 5-Ma | r-98 | 5-Mar | -98 | 5-Ma | ar-98 | | | | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | | | | | | | | | PARAMETER | UNIT | | | | | | | | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | Naphthalone | UG/KG | 0 | 0 00% | 13000 | 42115385 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 526442 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 573237 | 0 | 0 | | 4 | 190 U | | 180 U | | 170 U | | 180 U | | Phenanthrene | UG/KG | 4 3 | 25 00% | 50000 | | 0 | 1 | | 4 | 77 U | | 74 U | | 4.3 J | | 73 U | | Phenol | UG/KG | 0 | 0 00% | 30 | 631730769 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Propylene Glycol | MG/KG | 0 | 0 00% | | | 0 | 0 | | 4 | | | | | | | | | Pyrene | UG/KG | 4 4 | 25 00% | 50000 | 31586538 | 0 | 1 | | 4 | 77 U | | 74 U | | 44 J | | 73 U | | TPH | MG/KG | 188 | 25 00% | | | 0 | 1 | | 4 | 16 5 U | | 17 4 U | | 188 | | 17 1 U | | Alkanes - Unknown (Iotal) | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | | | | | | | | ### Table 6-5 122D - Semivolatiles/TPH in Soil vs PRG-RECs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SEAD-122I
Hot Pad Sp
SB122D-1
EB201
SA | | SEAD-12
Hot Pad :
SB122D-
EB202
SA | Spill | SEAD-1
Hot Pad
SB122D
EB203
SA | Spill | SEAD-1:
Hot Pad
SB122D
EB204
SA | Spill | |---|----------------|--------|-----------------|-------|---------------------|---------------|---------------|----------------|--|--------------|--|--------------|--|---------------|---|---------------| | SAMP DATE | | MAXIMU | OF
DETECTION | TAGM | PRG | ABOVE
TAGM | OF
DETECTS | OF
ANALYSES | 5-Mar- | 98 | | ar-98 | | far-98 | | lar-98 | | PARAMETER | UNIT | | 00.00 | | | | 00.00.0 | | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 10528846 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | 1,2-Dichlorobenzene | UG/KG | 0 | | 7900 | 94759615 | 0 | 0 | 4 | | 77 U | | 74 U | | 69 U | | 73 U | | 1,3-Dichlorobenzene | UG/KG | 0 | | 1600 | 93706731 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 1.4-Dichlorobenzene | UG/KG | 0 | | 8500 | 2866186 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2,4,5-Trichlorophenol | UG/KG
UG/KG | 0 | | 100 | 105288462 | 0 | 0 | • | | 90 U | | 180 U | | 170 U | | 180 U | | 2,4,6-Trichlorophenol | UG/KG | 0 | | 400 | 6253497 | 0 | 0 | : | | 77 U
77 U | | 74 U | | 69 U | | 73 U | | 2,4-Dichlorophenol 2,4-Dimethylphenol | UG/KG | 0 | | 400 | 3158654
21057692 | 0 | 0 | | | 77 U | | 74 U
74 U | | 69 U | | 73 U | | 2,4-Dinitrophenol | UG/KG | 0 | | 200 | 21057692 | 0 | 0 | | | 90 U | | 180 U | | 69 U
170 U | | 73 U
180 U | | 2,4-Dinitrotoluene | UG/KG | 0 | | 200 | 2105769 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2,6-Dinitrotoluene | UG/KG | ő | | 1000 | 1052885 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2-Chloronaphthalene | UG/KG | 0 | | 1000 | 7002000 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2-Chlorophenol | UG/KG | 0 | | 800 | 5264423 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2-Methylnaphthalene | UG/KG | 0 | | 36400 | | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2-Methylphenol | UG/KG | 0 | | 100 | 52644231 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 63173 | 0 | 0 | | 4 1 | 90 U | | 180 U | | 170 U | | 180
U | | 2-Nitrophenol | UG/KG | 0 | | 330 | | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | 3.3 -Dichlorobenzidine | UG/KG | 0 | | | 152863 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | 3-Nitroaniline | UG/KG | 0 | | 500 | 3158654 | 0 | 0 | | 4 1 | 90 U | | 180 U | | 170 U | | 180 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0 00 10 | | | 0 | 0 | | | 90 U | | 180 U | | 170 U | | 180 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | | | 61067308 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | | 240 | 4044530 | 0 | 0 | • | | 77 U | | 74 U | | 69 U | | 73 U | | 4-Chloroaniline
4-Chlorophenyl phenyl ether | UG/KG
UG/KG | 0 | | 220 | 4211539 | 0 | 0
0 | | | 77 U
77 U | | 74 U
74 U | | 69 U | | 73 U | | 4-Methylphenol | UG/KG | 0 | | 900 | | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U
73 U | | 4-Nitroaniline | UG/KG | 0 | | 300 | 3158654 | 0 | 0 | | | 90 U | | 180 U | | 170 U | | 180 U | | 4-Nitrophenol | UG/KG | 0 | | 100 | 63173077 | 0 | ō | | | 90 U | | 180 U | | 170 U | | 180 U | | Acenaphthene | UG/KG | 0 | | 50000 | | 0 | ō | | | 77 U | | 74 U | | 69 U | | 73 U | | Acenaphthylene | UG/KG | 0 | | 41000 | | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Anthracene | UG/KG | 0 | 0 00% | 50000 | 315865385 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Benzo[a]anthracene | UG/KG | 0 | 0.00% | 224 | 94231 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Benzo[a]pyrene | UG/KG | 6 | 20.00.0 | 61 | 9423 | 0 | 1 | | | 77 U | | 74 U | | 6 J | | 73 U | | Benzo[b]fluoranthene | UG/KG | 7.2 | | 1100 | 94231 | 0 | 1 | | | 77 U | | 74 U | | 7.2 J | | 73 U | | Benzo[ghi]perylene | UG/KG | 7 7 | | 50000 | | 0 | 1 | | | 77 U | | 74 U | | 7.7 J | | 73 U | | Benzo[k]fluoranthene | UG/KG | 4.7 | | 1100 | 942308 | 0 | 1 | | | 77 U | | 74 U | | 4.7 J | | 73 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | | | ***** | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Bis(2-Chloroethyl)ether | UG/KG
UG/KG | 0 | | | 62535
982692 | 0 | 0 | | | 77 U
77 U | | 74 U
74 U | | 69 U
69 U | | 73 U
73 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG | 16 | | 50000 | 4913462 | 0 | 2 | | | 16 J | | 74 U | | 69 U | | 14 J | | Butylbenzylphthalate | UG/KG | 5 9 | | 50000 | 210576923 | 0 | 1 | | • | 77 U | | 5.9 J | | 69 U | | 73 U | | Carbazole | UG/KG | 0 | | 30000 | 3439423 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Chrysene | UG/KG | 5 7 | | 400 | 9423077 | 0 | 1 | | | 77 U | | 74 U | | 5.7 J | | 73 U | | Di-n-butylphthalate | UG/KG | 4 5 | | 8100 | | 0 | 1 | | | 77 U | | 74 U | | 69 U | | 4.5 J | | Di-n-octylphthalate | UG/KG | 140 | 50 00% | 50000 | 21057692 | 0 | 2 | | 4 | 77 U | | 74 U | | 140 | | 11 J | | Dibenz[a,h]anthracene | UG/KG | 0 | 0.00% | 14 | 9423 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Dibenzofuran | UG/KG | 0 | 0.00% | 6200 | 9827 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Diethyl phlhalate | UG/KG | 17 | | 7100 | 842307692 | 0 | 4 | | | 11 JB | | 17 JB | | 9 JB | | 13 JB | | Dimethylphthalate | UG/KG | 0 | | 2000 | 10530000000 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | Ethylene Glycol | MG/KG | 0 | | | 2106000000 | 0 | 0 | | • | | | | | | | | | Fluoranthene | UG/KG | 4 4 | | 50000 | 42115385 | 0 | 1 | | | 77 U | | 74 U | | 4 4 J | | 73 U | | Fluorene | UG/KG | 0 | | 50000 | 42115385
42993 | 0 | 0 | | | 77 U
77 U | | 74 U | | 69 U | | 73 U | | Hexachlorobenzene | UG/KG | | 0.00.0 | 410 | | 0 | 0 | , | | 77 U | | 74 U | | 69 U | | 73 U | | Hexachlorobutadiene
Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | | | 210577
7370192 | 0 | 0 | | • | 77 U | | 74 U
74 U | | 69 U
69 U | | 73 U
73 U | | Hexachlorocyclopentagiene Hexachloroethane | UG/KG | 0 | | | 1052885 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | | UG/KG | 66 | | 3200 | 94231 | 0 | 1 | | | 77 U | | 74 U | | 6.6 J | | 73 U | | Indeno[1,2,3-cd]pyrene
Isophorone | UG/KG | 0 | | 4400 | 54231 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | N-Nitrosodiphenylamine | UG/KG | 0 | | 4400 | 14038462 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | N-Nitrosodipropylamine | UG/KG | 0 | | | 10000 | 0 | 0 | | | 77 U | | 74 U | | 69 U | | 73 U | | | | · | | | | - | • | | | | | | | - | | | Table 6-5 122D - Semivolatiles/TPH in Soil vs PRG-RECs Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | MAXIMU | FREQUENCY
OF
DETECTION | TAGM | PRG | NUMBER
ABOVE
TAGM | NUMBER
OF
DETECTS | NUMBER
OF
ANALYSES | SEAD-12
Hot Pad 3
SB122D-
EB201
SA
SOIL
5-Ma | Spill | SEAD-122
Hot Pad S
SB122D-1
EB202
SA
SOIL
5-Ma | pilt
6
8 | SEAD-122D
Hot Pad Sp
SB122D-2
EB203
SA
(SOIL
5-Mar- | 0
0
0 2 | SEAD-12
Hot Pad
SB122D-
EB204
SA
SOIL
5-M | Spill | |---|-------|--------|------------------------------|-------|-----------|-------------------------|-------------------------|--------------------------|--|--------------|--|----------------|---|---------------|---|--------| | PARAMETER | UNIT | | | | | | | | VALUE | Q | VALUÉ | Q | VALUE | Q | VALUE | Q | | Naphthalenc | UG/KG | 0 | 0 00% | 13000 | 42115385 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 526442 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Pentachlorophenoi | UG/KG | 0 | 0.00% | 1000 | 573237 | 0 | 0 | | 4 | 190 U | | 180 U | | 70 U | | 180 U | | Phenanthrene | UG/KG | 4 3 | 25.00% | 50000 | | 0 | 1 | | 4 | 7 7 U | | 74 U | 4 | 1.3 J | | 73 U | | Phenol | UG/KG | 0 | 0 00% | 30 | 631730769 | 0 | 0 | | 4 | 77 U | | 74 U | | 69 U | | 73 U | | Propylene Glycol | MG/KG | 0 | 0 00% | | | 0 | 0 | | 4 | | | | | | | | | Pyrone | UG/KG | 4 4 | 25 00% | 50000 | 31586538 | 0 | 1 | | 4 | 77 U | | 74 U | 4 | 44 J | | 73 ∪ | | TPH | MG/KG | | | | | | | | | 16 5 U | | 174 U | 1 | 08 | | 17 1 U | | Alkanes - Unknown (total) | UG/KG | | | | | | | | | | | | | | | | # SEAD-122E # **Deicing Planes** Table 7-1 ## Sample Collection Information SEAD-122E - Deicing Planes ## 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |-----------------|----------------|--------------|----------------|---------------|------------------|------------|---| | SOIL | SB122E-1 | EB205 | 3/6/98 | 0.0 | 0.2 | SA | South Pad: Location is a potential run-off area (i.e., low spot) on SW corner of asphalt deicing pad. Surface soil sample. | | SOIL | SB122E-1 | EB207 | 3/6/98 | 6.0 | 7.5 | SA | Same location ID as above. Approx. mid-depth
(near water table) sample chosen in bore hole
because no VOC hits or other indications of
impacts to soils. | | SOIL | SB122E-2 | EB208 | 3/6/98 | 0.0 | 0.2 | SA | Center Pad: Location is a potential run-off area (i.e., low spot) on the NW corner of asphalt deicing pad. Surface soil sample. | | SOIL | SB122E-2 | EB209 | 3/6/98 | 2.0 | 2.3 | SA | Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils. | | SOIL | SB122E-3 | EB210 | 3/6/98 | 0.0 | 0.2 | SA | North pad: Location is a potential run-off area (i.e., low spot) on west side of asphalt deicing pad. Surface soil sample. | | SOIL | SB122E-3 | EB211 | 3/6/98 | 2.0 | 2.5 | SA | Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils. | | GROUND
WATER | MW122E-1 | EB122 | 3/8/98 | 9.5 | 9.5 | SA | Location is a potential run-off area (i.e., low
spot) on SW corner of asphalt deicing pad.
Installed in same boring as SB122E-1 above. | | GROUND
WATER | MW122E-2 | EB123 | 3/8/98 | 9.0 | 9.0 | SA | Location is a potential run-off area (i.e., low spot) on NW corner of asphalt deicing pad. Installed in same boring as SB122E-2 above. | Table 7-1 ## Sample Collection Information SEAD-122E - Deicing Planes ## 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |-----------------|-------------|--------------|----------------|---------------|------------------|------------|---| | GROUND
WATER | MW122E-3 | EB124 | 3/8/98 | 8.5 | 8.5 | SA | Location is a potential run-off area (i.e., low spot) on west side of asphalt deicing pad. Installed in same boring as SB122E-3 above. | | WATER | SB122E | EB004 | 3/6/98 | 0.0 | 0.0 | RB | Not Applicable | | SOIL | SB122E | EB005 | 3/6/98 | 0.0 | 0.2 | DÜ | Not Applicable | | WATER | MW122E-1 | EB010 | 3/8/98 | 0.0 | 0.0 | RB | Not Applicable | | WATER | MW122E-1 | EB011 | 3/8/98 | 9.5 | 9.5 | DU | Not Applicable | Notes: SA - Sample DU = Duplicate RB = Rinsc Blank Table 7-2 122E - Semivolatiles in Soil vs TAGMs Non-Evaluated EBS Sites | | | | | | | | | | 00.0 | | | | | | | | | |-------------------------------------|----------------|---------------|------------------|----------------|-----------------|--------|---------|----------|-------------------------|------|-----------------------------|-------------------------|------|----------------------------
----------------------------|----------------------------|----------------------------| | SITE
DESCRIPTION | | | | | | | | | SEAD-122
Descing Pla | | SEAD-122E
Deicing Planes | SEAD-122E | | SEAD-122E | SEAD-122E | SEAD-122E | SEAD-122E | | LOC ID | | | | | | | | | SB122E-1 | | SB122E-1 | Delcing Pla
SB122E-1 | nes | Deicing Planes
SB122E-2 | Deicing Planes
SB122E-2 | Deicing Planes
SB122E-3 | Deicing Planes
SB122E-3 | | SAMP ID | | | | | | | | | EB005 | | EB205 | EB207 | | | | | | | QC CODE | | | | | | | | | DU | | SA | SA SA | | EB208
SA | E8209 | EB210 | E8211 | | | | | | | | | | | DU | | | | | 40.4 | | SA | SA | | SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | , | 0 | 0 | | 6 | 0 | 2 | 0 | 2 | | MATRIX | | | | | | | | | SOIL | 02 | 0 2
SOIL | SOIL 7 | 5 | 0.2 | 23 | 02 | 2.5 | | SAMP DATE | | | REQUENCY | | | NUMBER | NUMBER | NUMBER | 6-Mar- | 09 | 6-Mar-98 | SOIL
6-Mar-9 | 0 | SOIL
6-Mar-98 | SOIL
6-Mar-98 | SOIL
6-Mar-98 | SOIL | | SAMP DATE | | , | OF | | | ABOVE | OF | OF | 0-Mar- | 90 | 0-Mat-30 | 0-M91-8 | 8 | 0-Mat-ag | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | | PARAMETER | LINIT | MAXIMU | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | 0 | VALUE O | VALUE | 0 | VALUE O | VALUE Q | VALUE Q | . VALUE O | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 10528846 | 0 | 0 | | 7 | _ | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 94759615 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 1.3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 93706731 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 1.4-Dichlorobenzene | UG/KG | 0 | 0 00% | 8500 | 2866186 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0 00% | 100 | 105288462 | 0 | 0 | | 7 | | 370 U | | 0 U | 7300 U | 170 U | 190 U | 190 U | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0 00% | 100 | 6253497 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 11 | 71 U | 77 U | 80 U | | 2,4-Dichlorophenol | UG/KG | 0 | 0 00% | 400 | 3158654 | . 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2,4-Dimethylphenol | UG/KG | 0 | 0 00% | 400 | 21057692 | . 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2,4-Dinitrophenol | UG/KG | 0 | 0 00% | 200 | 2105769 | 0 | 0 | | 7 | | 370 U | | o U | 7300 U | 170 U | 190 U | _ 190 U | | 2.4-Dintrotoluene | UG/KG | 0 | 0 00% | 200 | 2105769 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | . 80 U | | 2,6-Dintrotoluene | UG/KG | o | 0 00% | 1000 | 1052885 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2-Chloronaphthalene | UG/KG | 0 | 0 00% | 1000 | 1032003 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2-Chlorophenol | UG/KG | 0 | 0 00% | 800 | 5264423 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2-Methylnaphthalene | UG/KG | 0 | 0 00% | 36400 | 0204420 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2-Methylphenol | UG/KG | 0 | 0 00% | 100 | 52644231 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 2-Methylphenol
2-Nitroaniline | UG/KG | 0 | 0 00% | 430 | 63173 | 0 | 0 | | 7 | | 370 U | | 0 0 | 7300 U | 170 U | 190 U | | | | UG/KG | 0 | 0 00% | | 031/3 | , 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 100 0 | 190 U | | 2-Nitrophenol | UG/KG | 0 | 0 00% | 330 | 152863 | , 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 3,3"-Dichlorobenzidme 3-Nitroanilme | UG/KG | 0 | 0 00% | 500 | 3158654 | 0 | 0 | | 7 | | 370 U | | OU | 7300 U | 170 U | 190 U | 80 U
190 U | | | UG/KG | 0 | 0 00% | 500 | 3130034 | 0 | 0 | | 7 | | 370 U | | 0 U | 7300 U | 170 U | 190 U | 190 U | | 4,6-Dintro-2-methylphenol | UG/KG | 0 | 0 00% | | 61067308 | 0 | 0 | | 7 | | 150 U | | 1 11 | 3000 U | 71 U | 77 U | | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0 00% | 240 | 01007300 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U
80 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0 00% | 220 | 4211539 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 4-Chloroaniline | | 0 | 0.00% | 220 | 4211539 | 0 | 0 | | 7 | | 150 U | | 1 0 | 3000 U | 71 U | 77 11 | | | 4-Chloropheny! pheny! ether | UG/KG | | | 200 | | 0 | 0 | | 7 | | 150 U | | | 0000 | ,,, | | 80 U | | 4-Methylphenol | UG/KG | 0 | 0 00% | 900 | 3158654 | - | 0 | | 7 | | 370 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | 400 | | 0 | | | 7 | | 370 U | | 0 0 | 7300 U | 170 U | 190 U | 190 U | | 4-Nitrophenol | UG/KG | 0 | 0.00% | 100
50000 | 63173077 | 0 | 0 | | 7 | | 10 J | | 1 U | 340 J | 71 U | 190 U
77 U | 190 U | | Acenaphthene | UG/KG | 340 | 28 57% | 00000 | | 0 | 0 | | 7 | | 150 U | | 1 0 | | | | 80 U | | Acenaphthylene | UG/KG
UG/KG | 0 890 | 0.00%
57 14% | 41000
50000 | 315865385 | 0 | 4 | | 7 | | 37 J | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Anthracene | | 000 | | | | - | - | | 7 | | | | | | | | | | Benzo[a]enthracene | UG/KG | 6600 | 71 43% | 224 | 94231 | 2 | 5 | | 7 | | 276 | | 1 U | 5,600 | 40 J | 43 J | 31 J | | Benzo[a]pyrene | UG/KG | 11000 | 71 43%
71 43% | 1100 | 9423
94231 | 2 | 5 | | 7 | | 370 | | 1 0 | 11000 | 49 J
56 J | 61 J
86 | 41 J | | Benzo[b]fluoranthene | UG/KG | | | 50000 | 94231 | 0 | 5 | | 7 | | 250 | | 1 U | 5500 | 41 J | 52 J | 52 J
30 J | | Benzo[ghr]perylene | UG/KG | 5500 | 71 43% | | 0.40200 | 1 | 5 | | 7 | | 300 | | | | 41 J
76 | 52 J
61 J | | | Benzo(k)fluoranthene | UG/KG | 11000 | 71 43% | 1100 | 942308 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 61 J
80 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0 00 10 | | 62535 | 0 | 0 | | 7 | | 150 U | | 1 0 | 3000 U | 71 U | 77 U | 80 U | | Bis(2-Chloroethyl)ether | UG/KG
UG/KG | 0 | 0 00% | | 982692 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | | | Bis(2-Chlorosopropyl)ether | UG/KG | 11 | 71 43% | 50000 | 4913462 | 0 | 5 | | 7 | | 11 J | | 6 J | 3000 U | 10 J | 5,3 J | 80 U
68 J | | Bis(2-Ethylhexyl)phthalate | | | | | 210576923 | 0 | 1 | | 7 | | 150 U | | 8 JB | 3000 U | 71 U | 77 U | 80 U | | Butyfbenzylphthalate | UG/KG | 5 8 | 14.29% | 50000 | 3439423 | 0 | 5 | | 7 | | 64 J | | 1 U | 2000 J | 23 J | 14 J | 82 J | | Carbazole | UG/KG
UG/KG | 2000
10000 | 71 43%
71 43% | 400 | 9423077 | 2 | 5 | | 7 | | 7810 | | 1 0 | 2000 3 | 63 J | 76 J | 64 J | | Chrysene | UG/KG | 0000 | 0 00% | 8100 | 9423077 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Di-n-butylphthalate | | | | | 21057692 | 0 | 1 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 64.1 | 80 U | | Di-n-octylphthalate | UG/KG
UG/KG | 6 4 | 14 29%
71 43% | 50000
14 | 9423 | 5 | 5 | | 7 | | 1100, 1 | | 1 U | 3000 O | 16 J | San San J | J. Santal J | | Dibenz(a,h)anthracene | UG/KG | 240 | 28 57% | 6200 | 9827 | 0 | 2 | | 7 | | 83 J | | 1 U | 240 J | 71 U | 77 U | U 08 | | Dibenzofuran | | | | 7100 | 842307692 | 0 | 5 | | 7 | | 18 J | | F 91 | 3000 U | 14 JB | 8 J | 19 J | | Diethyl phthalate | UG/KG
UG/KG | 36 | 71 43% | 2000 | 10530000000 | 0 | 0 | | 7 | | 15 J | | 1 U | 3000 U | 71 U | 77 U | 80 N | | Dimethylphthalate | MG/KG | 0 | 0 00% | 2000 | 2106000000 | 0 | 0 | | 7 | 58 U | 59 U | | 1 0 | 69 U | 57 U | 58 U | 62 U | | Ethylene Glycol | | | | 50000 | 42115385 | 0 | 6 | | 7 | 36 0 | 800 | | 6.1 | 22000 | 130 | 150 | 120 | | Fluoranthene | UG/KG | 22000 | 85 71% | | | 0 | 2 | | 7 | | 16 J | - | 6 J | 22000
440 J | 71 U | 77 U | 80 U | | Fluorene | UG/KG | 440 | 28.57% | 50000 | 42115385 | 0 | 2 | | 7 | | 16 J
150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 42993
210577 | 0 | 0 | | 7 | | 150 U | | 1 0 | 3000 U | 71 U | 77 U | 80 U | | Hexachlorobutadiene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 7 | | 150 U | | 1 0 | 3000 U | 71 U | 77 U | 80 U | | Hexachlorocyclopentadiene | UG/KG | _ | 0 00% | | 7370192 | 0 | 0 | | 7 | | 150 U | | 1 0 | | 71 U | 77 U | | | Hexachloroethane | UG/KG | 0 | 0 00% | 3200 | 1052885 | 0 | 5 | | 7 | | 240 | | 1 0 | 3000 U | 36 J | 45 J | 80 U
29 J | | Indeno[1,2,3-cd]pyrene | UG/KG | 5300 | 71 43% | | 94231 | 0 | 0 | | 7 | | 150 U | | 1 0 | 3000 U | 71 U | 77 U | 80 U | | Isophorone | UG/KG | 0 | 0 00% | 4400 | 14030400 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 14038462 | | | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | 40000 | 10000 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Naphthalene | UG/KG | 0 | 0 00% | 13000 | 42115385 | | | | | | | | | | | | | | Nitrobenzane | UG/KG | 0 | 0.00% | 200 | 526442 | 0 | 0 | | 7 | | 150 U
370 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 573237 | 0 | 0 | | 7 | | 0.00 | *** | | 7300 U | 170 U | 190 U | 190 U | | Phenanthrene | UG/KG | 10000 | 71.43% | 50000 | | 0 | 5 | | 7 | | 380 | | 1 U | 10000 | 66 J | 77 | 55 J | | Phenol | UG/KG | 0 | 0 00% | 30 | 631730769 | 0 | 0 | | 7 | | 150 U | | 1 U | 3000 U | 71 U | 77 U | 80 U | | Propylene Glycol | MG/KG | 0 | 0 00% | | | 0 | 0 | | | 58 U | 59 U | | 1 U | 69 U | 57 U | 58 U | 62 U | | Pyrene | UG/KG | 18000 | 71.43% | 50000 | 31586538 | 0 | 5 | | 7 | | 530 | 7 | 1 U | 18000 | 100 | 110 | 91 | | TPH | MG/KG | 5.00 | | | | | Alkanes - Unknown (total) | UG/KG | | | | | | | | | | 2550 | 3 | 6 | 3200 | 1189 | 1321 | 198 | Table 7-3 122E Semivolatiles in Soll vs PRG-RECs Non-Evaluated EBS Sites | 2 1 1 1 1 1 2 2 2 2 | SHI
DESCRIPTION | | | | | | | | | Derci | D 1221
ing Planes | | ng Planes | SEAD-I
Descing | Planes | SLAD-
Determ | Planes | SI-AD-12
Descring 1 | Planes | SFAD-12
Deicing F | lanes | | ng Planes |
---|-----------------------|-------|----------|-------------|---------|------------|-----|---------|---------|--------|----------------------|------|-----------|-------------------|--------|-----------------|---------|------------------------|--------|----------------------|-------|------|-----------| | Part | | | | | | | | | | | | | | | 1 | | 2 | | 2 | | 3 | | | | Second column | 1.0 | Section Sect | | | | | | | | | | | () | | 0 | | fs | | () | | 2 | | () | | 2 | | Part | | | | | | | | | | | | | 0.2 | | 7.5 | | (+ 2 | | 2 3 | | D 2 | | 2.5 | | 1 1 1 1 1 2 2 2 2 2 | | | | | | | | | | | | | Mar-08 | | ar 98 | | 4.ir-98 | | lar-98 | | r-9X | | -Mar-98 | | 1 1 1 1 1 2 2 2 2 2 | | | | | | | | DEFICES | ANALYSI | LS VAL | td O | VAI1 | | VALUE | | VALUE | | VALUE | | VALUE | | VALU | | | Section Sect | | | | | | | | 4 | | 7 | | | | | | | | | | | | | 80-17 | | 1. Machine Michael | | | | | | | | | 1 | - | | | | | | | | | | | | | | | 1 | | | | | | | | | | 7 | | | | | | | | | | | | | 80 () | | 2.1 A Lingshelped | | UG/KG | 1) | 0.00% | 100 | 105288462 | () | | n | 7 | | | 370 (1 | | 170 11 | | | | | | | | 190 U | | 2 Manuelpine | | | () | | | | 0 | | n | 7 | | | | | | | 3000 [] | | 71 TJ | | 77 U | | 80 11 | | 1 Househout 1545 10 | | | | | 400 | | | , | 1 | 7 | | | | | | | | | | | | | 11 08 | | 1 | | | | | 2000 | | | | 0 | | | | | | | | | | | | | | 80 U | | 2- Manufactione Market 10 10 | | | | | 200 | | .,, | | | | | | | | | | | | | | | | | | Second content | | | | | 1000 | | | | | | | | | | | | | | | | | | 80 U | | Second Control Contr | | | | | , | | 0 | | D | 7 | | | | | | | | | | | | | 80 U | | Secondary Control Co | 2-Chlorophenol | UG/KG | (1 | O DO% | 800 | 5264423 | 0 | | D | 7 | | | Iso ti | | 71 17 | | 3000 U | | 71 U | | | | 80 (1 | | Secondarian Cickid 0 000 | | | | | | | | | ,, | | | | | | | | 3000 U | | 71 () | | 77 U | | 80 E1 | | Control Cont | 80.11 | | Control Cont | | | | | | 63[73 | | | | | | | | | | | | | | | | | | | March Marc | | | | | 330 | 152863 | | | | 7 | | | | | | | | | | | | | | | 4. Homels-and-hybrid EGAC, | | | | | 500 | | | | | 7 | | | | | | | | | | | | | 190 () | | 4-Chime-marked plane 154CeC 0 0.005 20 221 211 50 0 7 19 19 19 19 77 19 19 | | | | | | | (1) | | 13 | 7 | | | 370 11 | | | | | | | | | | 190 U | | 4-Champelment (10KK) 0 0 00% 20 29 11/19/ 0 0 0 7 1 10 11 10 100 1 71 U 77 U 77 U | | | | | | 61067308 | () | | 13 | 7 | | | | | | | | | | | | | 80 U | | Second personage of classes Control Cont | | | | | | | | | | 7 | | | | | | | | | | | | | 80 U | | Marked M | | | | | 220 | 4211539 | | | | | | | | | | | | | . , | | | | 11 08 | | Abstrace 157KG 0 | | | | | 900 | | | | | , | | | | | | | | | | | | | | | A-temple Corner | | | | | 7.11 | 3158654 | | | | | | | | | | | | | | | | | 190 U | | Allersense Kicker | | | | | 100 | | n | | D | 7 | | | | | | | 7300 U | | | | | | 190 U | | Markene NCKK 690 71 590 59 54 51 50 50 5 51 51 51 50 50 | | | | | | | | | 2 | 7 | | | | | | | | | | | | | 80 U | | Restrict plumbared UCKG 640 71 40% 224 9.211 0 5 7 200 71 11 8600 40 1 64 1 14 14 15 15 15 15 15 | | | | | | | | | 1) | | | | | | | | | | | | | | 80 U | | Blood playerse UCKG 1000 71 475 100 04211 0 0.5 7 7 7 7 7 7 7 7 7 | | | | | | | | | 4 | 7 | | | | | | | | | | | | | 80 () | | Bestero B | | | | | | | | | ς. | 7 | | | | | | | | | | | | | | | Benefishershere 156KG 1960 71 44% 45000 5 7 450 6 1970 71 44% 1970 72 1970 71 45% 1970 72 1970 71 | | | | | | | | | 5 | 7 | | | | | | | | | | | | | 52 J | | Beg Chloresches Chloresc | | UG/KG | 5500 | | 50000 | | 0 | | 5 | 7 | | | | | | | | | | | 52 J | | 30 1 | | Boly Colhenembly Debre 16/KG 0 0.00% 6.25% 0 0 7 150 1 10 10 17 10 100 1 17 10 10 | Benzo k fluoranthene | UG/KG | | | 1100 | 942308 | | | 5 | | | | | | | | | | | | | | 6 J | | He-Q-2-1 Merosephished HGAG 10 10 10 10 10 11 10 10 11 10 10 11 10 | | | | | | | | | D | | | | | | | | | | | | | | 80 U | | Hard-Part Hard | | | | | | | | | | 7 | | | | | | | | | | | | | 80 U | | Housebox-phintalate UGARG VAR 14 29% S0000 21077073 0 1 7 150 1 58 JB 3000 1 71 U 77 U 30 Carbarole UGARG | | | | | Samo
| | | | 5 | 7 | | | | | | | | | | | | | | | Carbonic UC/KG 2000 7 1 48% 400 921077 0 5 7 480 71 U 2000 J 23 J 14 J 8.2 Clavene UC/KG 100 0 7 4 400 921077 0 5 7 480 71 U 10000 63 J 76 J 64 Dr. n.burk.phihalate UC/KG 6 0 0.00% 810 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 4 14 29% 6000 2105/092 0 1 7 150 U 71 U 3000 U 71 U 600 U 71 U 600 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 1 14 0 14 14 14 14 14 14 14 14 15 U 71 U 3000 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 1 14 0 14 14 14 14 14 14 14 14 14 14 14 14 14 | | | | | | | | | i | | | | | | | | | | | | | | 80 U | | Description | | | 2000 | 71 43% | | 3439423 | 0 | | 5 | 7 | | | 64 J | | 71 U | | 2000 J | | 23 J | | 14 J | | 8 2 J | | Do note by bubbalise | | | | | | 9423077 | | | 5 | 7 | | | | | | | | | | | | | 64 J | | District | | | | | | | | | n) | 7 | | | | | | | | | | | | | 11 08 | | Declar plate | | | | | | | | | l
e | | | | | | | | | | | | | | | | Deside Publish Publi | | | | | | | | | , | 7 | | | | | | | | | | | | | 80 U | | Dimensis plantalate | | | | | | | D | | 5 | 7 | | | | | | | | | | | | | 19 3 | | Harmithene | | UG/KG | 0 | | 2000 | | | | n | 7 | | | | | | | | | | | | | 80 17 | | Hexachloroshure | | | | -9 1111 111 | | | | | 0 | 7 | 58 U | | | | | | | | | | | | 62 U | | Hexakhrorheavene | | | | | | | | | | 7 | | | | | | | | | | | | | | | Hexablorobundence KGKG 0 0.00% 210577 0 0 7 150 1 71 U 3000 U 71 U 77 U 80 Hexablorobundence KGKG 0 0.00% 77010/2 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Hexablorobundence KGKG 0 0.00% 0. | | | | | | | | | - | | | | | | | | | | | | | | | | Hexablorox Corporatione | | | | | 4117 | | | | | 7 | | | | | | | | | | | | | 80 U | | Hexal bitrochance | | | | 0.00% | | | 0 | | 0 | 7 | | | 150 11 | | 71 [] | | 3000 TJ | | 71 U | | 77 U | | 80 (1 | | Nephrone UCKG 0 0.00% 4400 0 0 0 7 150 U 71 U 1000 U 71 U 77 U 80 | | UG/KG | 0 | 0.00% | | 1052885 | 0 | | D | 7 | | | 150 11 | | 71 U | | | | | | | | RO U | | N-Nirrosulphens lumine UGAG 0 0.00% 14038462 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 NAtirnosulphens lumine UGAG 0 0.00% 10000 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Naphthalene UGAG 0 0.00% 200 \$2115385 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 170 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 170 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 Nirrosulphens UGAG 0 0.00% 200 Nirrosulphens UGAG 10000 71 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 55 Nirrosulphens UGAG 0 0.00% 20 Nirrosulph | Indeno[12,3-cd]pyrene | | | | | 94231 | 0 | | 5 | 7 | | | | | | | | | | | | | 29 J | | N-Nurrosulprops lumine UG/KG 0 0 049% 1000 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Naphthalene UG/KG 0 0 00% 200 \$2.6412 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nitrobenene UG/KG 0 0 00% 200 \$2.6412 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Penashbrophenal UG/KG 0 0 00% 1000 571277 0 0 0 7 150 U 71 U 3000 U 71 U 100 U 170 U 190 U 190 Penashbrophenal UG/KG 0 0 00% 1000 571277 0 0 5 7 370 U 170 U 3700 U 170 U 190 19 | | | | | 4400 | | 0 | | | 7 | | | | | | | | | | | | | | | Naphthalene UGAG 0 0.00% 13000 42115385 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 U 170 U 77 U 80 U 170 U 170 U 190 U 190 Pentachforphend UGAG 0 0.00% 200 576412 0 0 7 150 U 71 U 3000 U 71 U 190 | | | | | | | ., | | | 7 | | | 1 11 11 | | | | | | | | | | 80 U | | Nurrehenzene UG/KG 0 0.00% 200 52/6442 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Pentachlorophenol UG/KG 0 0.00% 1000 57\277 0 0 0 7 370 U 170 U 7300 U 170 U 190 | | | | | 13000 | | ., | | | 7 | | | | | | | | | | | | | 80 U | | Pentachlorophenol UGKG 0 0 000% 1000 57\\277 0 0 0 7 370 U 170 U 730 U 170 U 190 | 80 U | | Phononthrene UGAG 10000 71 41% 60000 0 5 7 380 71 U 10000 66 I 77 55. Phonol UGAG 0 0.00% 3U 631740769 0 0 7 150 U 71 U 3000 T 71 U 77 U 80 Propslenc Giscol MGAG 0 0.00% 0 0 7 58 U 59 U 61 U 60 U 57 U 58 U 62 U Props Circol UGAG 18000 71 43% 50000 31586538 0 5 7 530 71 U 18000 100 110 91 TPH MGAG | | UG/KG | 0 | 0.00% | 1000 | | | | | | | | | | | | | | | | | | 190-13 | | Props lenc Giscol MG/KG 0 0.00% 0 0 7 \$8.U 59.U 61.U 60.U 57.U 58.U 62.
Ps renc UG/KG 18000 71.4 % 50000 31586538 0 5 7 530 71.U 18000 100 110 91
TPH MG/KG | Phenanthrene | | | | | | | | , | | | | | | | | | | | | | | 55 1 | | Pyrric UKUKG 18000 71 41% 50000 31 586538 0 5 7 530 71 U 18000 100 110 91 TPH MG/KG | | | | | 3() | 63 [730769 | | | | | | | | | | | | | | | | | 80 U | | TPII MC/KG | | | | | \$rava- | 21586576 | | | 5 | | 'N () | | | | | | | | | | | | | | | t, touc | DONE | (M(X H) | 71 4 5% | -(R#R) | 11,780,718 | 0 | | - | , | | | . 117 | | 71 0 | | 140007 | | 11/1/2 | | .10 | | 1 | | | וויוד | MG/KG | 2550 | | 36 | | 3200 | | 1189 | | 1321 | | 198 | Table 7-4 122E Semivolatiles and Glycols in Groundwater vs GA Standards Non-Evaluated EBS Sites | | | | 9 | = = | = : | == | = : | = = | = : | = = | =: | = = | | : 5 | == | :== | === | | £ | D D | | == | : = | D : | == | 12 | == | | = E | = = | = = | == | == | : 5 | == | == | 2: | == | = : | = = | = | = = | | == | == | 5 E | | = - | |--|---|------------------------------------|---------------------------------------|---------------------------------------|-------------------|--|-----------------------|---|-------------------|--|---------------------|---|---|---------------|---|---------------------------|----------------------------|-------------------------------------|------------------------------|----------------|---------------|---------------|------------|--------------------|--|--------------------|----------------------|------------------------|-----------------------------|---|-----------|--------------------------------|---------------------|--------------|-------------------|------------------|--------------|-------------------------------|---------------------|--|------------------------|--|------------------------|-------------|-----------------------------------|--------------|-------------------|-------------------------------------| | SFAD-1221:
Deteng Planes
MW122F-3
FB12d | 2.8 | DWATER
8-Mar 98 | | | _ | 7 < | | | 2.5 | | = : | | | , - | | 2 \$ | | | _ | 2 5 | 2.5 | | | - | | _ | | - | - ; | 0.21 | | | | | | 05. | | | | | _ | | _ | | 2.5 | | 50 | 7 | | SFAID-L
Deter
MW1221
FB124 | Ş, | GROUN | VALIG | <u>~</u> | 27 | GROUNDWATTR
8-Mar-98 | | = = | - | 2 4 10 | = : | = = | 2 4 U | | 5 | | 100 | | 1 0 | 2.5 U | | | n I | 2.5 10 | 2.5 U | | = = | | | - | | | 1 70 | - C | | | | | | . 05 | 0.26 J | | 0.11 | | _ | | - | | 25 U | 0 16 1 | 105 | 0.21
0 51 J | | SEAD-122b
Descing Planes
MW1221-2
FB123 | ź | GROUND | VALUE | limes | 9 9 | WALFR
8-Mar 98 | o: | = = | = : | 3 4 11 | = : | = = | 2 5 13 | = = | = : | | 11.0 | - | 11 11 | 25 U | 2 2 | | Δ. | 25 10 | 2 5 11 | 2 2 | 2 2 | = : | | 2 | = = | = | _ S | ¥ = - | _ : | = = | = = | | = = | ; ;;
- ;; | = = | = = | D : | = = | - | | 5 | 2 2 | | | | - | | SEAD-1223
Deceme Planes
WW1221 1
13011 | | GROBINDWALFR
8-Mar ^o | MALIF | á | 4 8
- × | VATER
8-Mar 98 | 0 | = = | <u>=</u> : | 25.11 | =: | = = | 2 5 11 | = = | = = | = = | = | = | 1 1 2 | 2 4 10 | = = | == | = : | 2.5 U | 2.5 U | === | == | = : | == | 11 | = = | ; D | = : | 11.11 | 2 : | | D : | | = = | 20 05 | 2 : | = = | 2 . | == | 0 | == | <u> </u> | == | 25 U | = = | 50 (1 | 123 | | SI AD-122F
Detering Planes
AIW1221-1
118122 | 2 T T S S T S S S S S S S S S S
S S S S | ROUNDWA. | VALUE | <u> </u> | , | × | VALYSIS V | | | | | ÷ ↔ | → · | | | | -, - | | | - | | | - | | - | 7 - | | 7 | T T | = | 7 1 | | ÷ • | + + | · | . 4 | | * ** | 47 - | * ** | 4 4 | 4 4 | 4 | - 4 | 7 | | - | 7 - | | Ç 7 | ** | 7 | | | | | | 989 | 00.0 | 8 8 | 0.00 | 000 | 0.00 | 90 00 | 80 0 | 000 | 900 | 000 | 900 | 000 | 000 | 000 | 00.0 | 8 8 | 000 | 9 9 | 000 | 000 | G 0 | 00.0 | 9 9 | 900 | 000 | 900 | 0000 | 600 | 900 | 0.08 | 6 6 | 000 | 00 1 | 8 6 | 1.00 | 000 | 000 | 000 | 0.00 | 900 | 000 | ê 8 | 000 | 8 | | | | NUMBER | DE 11 C ES | | | 8 8 | 9 3 | 8 8 | â | £ £ | 000 | | 900 | : 2 | 0, 5 | 0.00 | 5 5 | 0.00 | 10 | 9 9 | 1000 | 9.5 | 000 | 000 | 9 0 0 | 0.00 | 800 | 000 | 000 | 880 | 000 | 2 2 | 990 | 900 | 0.00 | 9 9 | 0, | 900 | 0. | 8 8 | 0.00 | 989 | | 9. 9. | 800 | 999 | 0.00 | 900 | | | | MINI R | LYGM | 3 3 | Ξ | 3 3 | = 3 | ĒĞ | ě | ĕĕ | ŏ | ēē | ē 3 | ě | 00.0 | ō | 000 | Ē | ū | 9 8 | ā | 980 | 3 3 | ā | 5 5 | č | 2 2 | ē | ě ě | ěě | ž: | ēē | 2 3 | ēē | 3 3 | 3 2 | ā | ēē | ā | ĒĒ | ā | ēē | ē | 5 5 | ēĕ | ēē | ā | ē | | | | ž | | | _ | | | | | | | _ | | | | | _ | | | - | _ | | _ | | ~ ~ | | | _ | | _ | | , | _ | _ | | | ٠. | ~ _ | | <i>c</i> .c | ~ | | , | <u>~ -</u> | | _ | | | | | | | GWAITR | 7.897 | 2 18 4 | 7.50 HQ | 600 | 02 U/01 | 73 00 | 77 08
76 05 03 | 07.000 | 7 | 200 | , | | | 2117 00 | 146 00 | | 109 50 | 2190.00 | | 10950 00 | | 000 | | 0.17 | 10.0 | 52 | 7100 00 | 3.16 | vo i | 730.00 | 146.00 | 29200 00 | 7300000 | 0.000 | 00 | 0.14 | 0 0 | 0.0 | 13.73 | - | 1460 00 | 95.0 | 31900.08 | | 1095 (M) | | | | | DRINKIN | ′ : | v I | | | ~ | | , , | | | ., | | | ·/ | | ,, | | | | | | | 10 | | | | | 7 | | 95 | | | | | | 51.0 | | | | | | | _ | _ | | | | | | | CLASS GA | - | , | - | ٥ | | | | | | | | | | | | | | II NC Y | DITTECTION NYSCLASSICA DRINKING WATER | 0.000 | "OO O | 0.0075 | 0.00% | 0.00% | 0.00% | 0 (K)";
(1 (K)"; | 5,0000 | 0.000 | 0.00% | 0.00% | 0.000% | 9,0000 | 0.000% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 93000 | 0.00% | 0.00% | 0.00% | 0.000% | 0 000 | 00.00% | 0.000% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 25 00% | 0.00% | 25 (X1% | 0.00% | 0.00% | 0.00% | 0.00% | 0.000% | 0.00% | 25 00% | 0.00% | 25 00% | | | | I RITOTII NOY | | | 0 | c = | 0 : | | 0 | | 0 0 | | 0 0 | | c c | . 0 | 00 | | 0 | 0 0 | c | 0 0 | | 0 | 0 0 | . c | 0 0 | | = / | 7 0 | c : | | c 6 | | c : | = = | 0.26 | c = | 11 0 | c = | . = | 5 5 | | 0 0 | 2 2 | 0.16 | : 0 | 0.23 | | | | | MAXIMU | С | | - | | | | | | | 0 | | 9 | | | | | INI | 35 | E-0.7 | 55 | No. | 1881 | DCM | 55E | TIGAL
TIGAL | 100 | 1163 | 150
0.00 | 550 | tie. | 15h | 555 | LC/J | 555 | tien. | UGA. | HCM | tic.il | 555 | HCJ. | 525 | Tich
Tich | DCM | near. | t)CM | 100 | NGA
11CA | E LOI | HC5 | NG./ | 11031 | 55.5 | LC:VI | 500 | [10] | HC5/I | 150 | DOM: | 100 | ESSE
ESSE | MC./I | 1621 | | | 10 | | | nzene
ene | che | cne | enol | loi
loi | _ | נו ט | ene | lene | | | zdine | thylphenol | hend other | ribiletooi | heavl other | | | | | ne | hene | 20 | hene | Nether
Dether | ropy1)ether | Johilialate
Jate | | de | alc. | ar che | | <u>.</u> | | 200 | iche | pentadiene | wrene | | lamine | | - | | | an (total) | | SHII
DI SCRIPTION
TOC ID
SAMP ID | SAMP DEPTEROR | MATHELY
SAMIP DATE | PVRAMI II R | J. Dickhorobences | 13 Du Minobenzeue | 1.1 Prehlorobenzene
2.1 5. Tre filorophenol | 2.4.6 Irachlorophenol | 2 4-Direftorophenol
2 4-Dimethy fiberial | 2.4 Dimitroplicad | 2.4 Durtrotolucue
2.6 Durtrotolucue | 2 Chloronaphthatene | 2 - Methylmethyl
2 - Methylmaphthalene | 2-Methylphenol | 2 Nitrophenol | 3.3. On biorobenzidine
3. Nationalises | to-Dinitro 2-methylphenol | 4 Bromophenyl phenyl ether | Characteristine | 4-C blorophens! phens! ether | 4-Methylphenol | 4-Nitrophenol | Accumplishene | Anthra ene | Benzofalanthracene | Benzolufpyrene
Benzolbillnoranthene | Benzolghilperstene | Renzofkjilioranthene | Bed2-CirloroethyDether | Be-(2 Chlororsopropyl)ether | Bas(2-1-thy lbesy Upbil
Buty Ibenzy Iphthalate | Carbazole | Chrysene
Din-butylphthalaic | Di-n-octylphthalate | Dibenzofuran | Diethyl phthalate | Filiviene Giyeol | Fluoranthene | Fluorene
Hexachlorobenzene | Heyachlorobutadiene | Hevachloric velopentadiene
Hevachloriethane | Indeno(1.2.3-ed/pyrene | Feaphurone
M. Mitrogradinham lumana | N-Natrosadipropylamine | Nuphthalone | Nitrobenzene
Pentachlorophennl | Phenanthrene | Propy lene Glycol | Pyrene
Alkanes - Unknown (total) | | E E S S | 3 % % | NA
AN | 7. | : 5 | - | | 7 | 4 7 | | 4 5 | 5 5 | 7 Z | 2-M | Z | - 2 | ÷ | <u>=</u> : | 7 | + | 2 Z | ž | 7 . | April | Ben. | <u> </u> | Pen | Hell
Hell | Z |]F-(| But 1 | 3 | žá | ā | Dik | Die | ΞÉ | Ħ. | E E | He | 5 5 | Inch | Feel | Z | ž | Z Z | Phenuni | Prof | ŽŽ | ebssvw - 122E GA Table 7-5 122E - Semivolatiles and Glycols in Groundwater vs DW Standards Non Evaluated EBS Sites | SITH DESCRIPTION TOTAL SAMP ID | | | | | | | | | SI AD-1221 Decume Plantes MW1221-1 F13122 | SI AD-1221-
Derent Planes
AW1221-1
(1001) | SI AD-1221 Det one Planes MW1221-2 ER123 | SFAD 1221
Determe Planes
MW/221 3
FH124 | | |--|------------------|----------|------------------------|---------------|------------|----------|----------|----------------|---|--|--|--|--| | SAMP DEPHEROL | | | | | | | | | 8.8
8.8
8.8
8.8 | 0 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | 2.7 | 2.8 | | | SAMP DAD | | Ξ | I'RI QUI NCY | | | NUMBER R | NUMBER N | NIMBIR | N NLa 98 | S-Mai 98 | S-Mar-98 | 8-Mar-18 | | | | | AXIMIT D | NYS CLASS GA | DRINKINGWALLR | | | <u>×</u> | <u>x</u> | VALUE 0 | VALUE Q | VALUE | O WIWA | | | 1.2.4 Inchlorobenzene
1.2.Du blembenzene | 116.7 | = = | 0.00% | ٠. ا | [2] ed | 0.00 | 00.00 | | = = | = = | = = | = = | | | | 1167 | = | | | 32 18 40 | 000 | 0.00 | - | = = | Ξ | == | | | | 1 I-Du hlorobenzene
2 I S. Leo blorombood | Tie.7 | 0 0 | | 1.1 | 2 80 | 0.00 | 000 | | === ; | 1 [] | 0 1 | 10 | | | ž % | 1671 | = = | 0.00% | | 26.0 | 000 | 000 | - +- | 2 . | 367 | 1.1 | | | | | 116.7 | С | 200.0 | | 05 601 | 000 | 00 0 | • | 10 | = : | | 1 10 | | | 2.4-Dimethylphenol
2.4-Dimethylphenol | 11671. | c : | 0.00% | ., | 730.00 | 0 00 | (10.0) | ÷ : | 1 2 2 2 | = - 2 | 1111 | 11 1 1 | | | | 1167 | : : | 9,000 | ** | 00 1 | 0.00 | 600 | , - | 0.1 | | 0.1 | 11.1 | | | 2 6-Dinitrateluene | 1107 | = : | 0 (20%) | ., | 1/1 5(1) | 000 | 000 | - 4 | 0 : | = = | 0.1 | = : | | | | 55 | 2 0 | 0.00% | | 182 50 | 000 | 800 | 4 41 | 2 2 | | 2 2 | 2 2 - | | | 2-Methy happithulene | 1107 | c : | 0.00% | ** | | 00.0 | 000 | | | = : | | 2: | | | | IKM
IKM | 0 0 | 0.00% | , | 55 0 | 0000 | 0000 | 7 7 | | 2 4 11 | 2 5 13 | 25 (1) | | | | 1/:71 | 0 | D (N)** | | | (6.0) | 0.00 | 7 | = : | 2 | <u> </u> | n : | | | 3.3 Dachlarobenzahne | . LICAL
LICAL | c c | 0.00% | | 100 50 | 680 | 800 | 7 7 | 1 1 2 | = = ; (| 1 2 4 | 1111 | | | | N:3/1 | . 0 | O DOP" | • * | | 0.00 | 00.0 | - | 25.0 | 25 U | 25 U | 25 (1) | | | ē | Licin
Licin | c : | C) (MPG) | | 2117 00 | 0.00 | 000 | | = = | = : | = : | = : | | | 4-Chloroundine | 1007 | = 0 | 0.00% | ., | 146 00 | 0.000 | 00 0 | . 47 | | | 3 2 | = = | | | | 1303/1 | О | () (N)"% | | | DO 0 | 11 (30) | 7 | 11 12 | 2.1 | 1.1 | = | | | 4 Methylphenol | 17.7 | 0 0 | 71 (X).// | ·/· ·/ | 100 \$0 | 000 | (X) U | - - | 11 | 11 1 | 1 1 1 | 11 10 | | | 4-Nirophenol | (363) | 0 | 0.00% | | 2190.00 | 000 | 000 | 7 77 | 25.0 | 2 5 11 | 2 4 11 | 250 | | | Acenaphthene | 1/011 | c | 0.00% | | | 000 | 00.0 | | = : | = : | 2 | 0.1 | | | Acenaphtiviene | NO.1 | c : | 0.00% | | 1005001 | 000 | 000 | 7 9 | = = | 2 - | = = | = = | | | Nenzulajanthracene | 551 | | , (N) % | | | 900 | 000 | - | = = | 2 2 | | 3 5 | | | Benzalallyvene | Dest. | С | 6) DQP4 | Ξ. | 00 00 | 00 0 | 0.00 | - | 2 . | 0.1 | 2 : | 2 : | | | Benzolbiliumanhene
Benzolehilmen lene | 11CM | c c | 0 N/% | | 0.02 | 200 | 000 | 7 | | | 0 1 | = = | | | Renzo(k)flunranthene | U:0:1 | С | 0.00% | | 71.0 | 0.00 | 0.10 | 7 | 1.0 | 0.1 | 0- | ======================================= | | | Brs(2-Chlornethovy)methane | 11637 | 0 0 | 0.00% | | 100 | 0000 | 000 | ~ ~ | 111 | | | D | | | Big. Chlororopropylether | UCM | | 5,400 O | | 0.26 | 0.00 | (X) (I) | - | 11 | = = | 9 - | 2 | | | Bi-(2-1 th/thex/l)phthalute | 1767 | 1.2 | 100 00% | d> | 100 | 000 | 4 (K) | 4. | 12 h | 8f 6l 0 | 0 61 JB | 0.21 JB | | | Huty Benzy Iphiladake
Carbazole | IKM. | cc | 0.00% | | 37.5 | 000 | 0.00 | 7 17 | == | 2 2 | 0 | | | | Chrysene | T(571) | С | 0 (K)% | | 1 58 | 0000 | 0.00 | 4 | = : | 2 | 2 : | 0.1 | | | Don butylphthalate | V:31 | 00 | 0 (87% | ς, | 730.00 | 900 | 0000 | 7 0 | = = | = = | = = | | | | Dibenzju Manthracene | 100 | : с | 50000 | | | 0.00 | 00.0 | - 4 | = = | = = | 0 | 0 | | | Dibenzolum | TIGAL. | 0 0 | %IN 0 | | 146.00 | 8 8 | 900 | ₹ ₹ | = = | = = | 11 | D = - | | | Dimethy Inhibitate | HGZ. | | 0.00°s | | 10,5006,00 | 0000 | 000 | | 2 1 | 0 - 0 | | 2 11 | | | I thelene Glycol | MCJ | 0 | 0.00% | | 73000 00 | 00 0 | 00 0 | 4 | 0.05 | Sn tJ | 1) 05 | 0.00 | | | Inoranthene | 107 | 0.26 | 25 00% | | 1.160.00 | 900 | (8) (| 7 7 | = = | = = | 0.26 J | | | | Finorene
Hexachlorobenzene | 1631 | 0 | | 0.15 | 100 | 000 | 0000 | 4 | == | = = | = | | | | Hexachlorobutadiene | I/O/I | 0.11 | 25 (X)% | | 110 | 1 00 | 00 | 77 | = : | 0 : | (10) | D 1 | | | Hexachlorocyclopentadiene | 000 | c 0 | 0.00% | | >10 | 000 | 0000 | गण | | | | | | | nevacinjornemane
Indenol 1.2 3
collevrene | UGAL. | С | 0.00% | | 0.02 | 000 | 000 | 4 | | = = | 2 - | 11 | | | Lephornic | 116.7 | 0 | () ()() _m , | | | 0 (8) | 00.0 | ÷ | | = - | D I | 1.1 | | | N-Nitrosodiphenylamine | 1067 | c : | (1 (H)" 5 | | 11.72 | 000 | 000 | - | | = = | 0 = - | = = | | | N-Mitrosodipropytamine
Nachthalene | 500 | o = | * | | 1460.00 | 000 | 900 | . 4 | - | 2 - | | 2 2 | | | Nitrohenzene | 11637 | = | %00.0 | | 110 | 00.0 | 0.00 | 4 | - | n - | ΩΙ | 1.11 | | | Pentuchlorophenul | Ltc.yl | 0 | %(00) () | _ | 0.56 | 00.0 | 000 | 7 1 | 2.5 | 2 4 () | 250 | 250 | | | Phenasthrene | 11G/L | 9 0 | 25 DO% | - | 21900 00 | 000 | (X) () | 7 47 | | | n - | 0 0 | | | Propytene Giveni | MKVI. | 0 | 0 DXP% | | | 0.00 | 0.00 | 47 | 50 U | (1 0) | 11 05 | 00 03 | | | Pyrene
Alkanes Toknova (total) | UCAL. | 021 | 2< 100% | | 1095.00 | 0.00 | 1 (30) | 4 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 | 0.23 J
0.51 J | 1 0 | | | Alkibics thanner trent | 147.1 | | | | | | | | ! | | | | | ebssvw - 122E DW ## SEAD-123B # **Building 716 and 717 Petroleum Releases** Table 9-1 ### Sample Collection Information SEAD-123B - Building 716 and 717 Petroleum Releases 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |-----------------|----------|--------|---------|--------|--------|------|---| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SURFACE
SOIL | SS123B-1 | EB139 | 3/9/98 | 0.0 | 0.2 | SA | Location is next to building beneath "T" junction of
3-in steel pipe that runs from the pump house to
the filling station Nearby valves showed signs of
past leakage | | SURFACE
SOIL | SS123B-2 | EB140 | 3/9/98 | 0.0 | 0.2 | SA | Location is on south side of asphalt entrance way i
low area that is downgradient of filling station
Downgradient location based on surface water flow
patterns established by using a bucket filled with
water | | SURFACE
SOIL | SS123B-3 | EB141 | 3/9/98 | 0.0 | 0.2 | SA | Location is 20 ft south of the filling station area in an area that showed signs of stressed vegetation | | SOIL | SB123B-1 | EB242 | 3/11/98 | 0.0 | 0.2 | SA | Location is on south side of asphalt entrance way i
low area that is downgradient of filling station
Downgradient location based on surface water flow
patterns established by using a bucket filled with
water | | SOIL | SB123B-1 | EB245 | 3/11/98 | 2.6 | 2.9 | SA | Same location ID as above Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils | | SOIL | SB123B-2 | EB246 | 3/11/98 | 0.0 | 0.2 | , SA | Location is on south side of asphalt entrance way i low area that is downgradient of filling station. Downgradient location based on surface water flow patterns established by using a bucket filled with water | | SOIL | SB123B-2 | EB243 | 3/11/98 | 3.2 | 3.5 | SA | Same location ID as above Approx mid-depth sample chosen in bore hole (near water table) because no VOC hits or other indications of impacts to soils. | Table 9-1 ## Sample Collection Information SEAD-123B - Building 716 and 717 Petroleum Releases ### 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |----------|--|--|--|---|--|---| | ID | ID I | DATE | (feet) | (feet) | CODE | LOCATION | | SB123B-3 | EB244 | 3/11/98 | 0.0 | 0.2 | SA | Location is a potential run-off area (i.e., low spot)
north of the filling station. Pooled water nearby
Surface soil sample | | SB123B-3 | EB247 | 3/11/98 | 2.6 | 2.9 | SA | Same location ID as above Approx mid-depth (near water table) sample chosen in bore hole hecause no VOC hits or other indications of impacts to soils | | SD123B-1 | FB137 . | 3/9/98 | 0.0 | 0.2 | SA | l ocation in drainage ditch 1 ft downsteam of outfall pipe from Tank 188 | | SD123B-2 | EB138 | 3/9/98 | 0.0 | 0.2 | SA | Location in drainage ditch 11 ft downsteam of outfall pipe from Tank 188 | | SS123B-1 | EB016 | 3/9/98 | 0.0 | 0.2 | DU | Not Applicable | | SS123B-1 | EB017 | 3/9/98 | 0.0 | 0.0 | RB | Not Applicable | | | SB123B-3
SB123B-3
SD123B-1
SD123B-2
SS123B-1 | ID ID SB123B-3 EB244 SB123B-3 EB247 SD123B-1 EB137 SD123B-2 EB138 SS123B-1 EB016 | ID ID DATE SB123B-3 EB244 3/11/98 SB123B-3 EB247 3/11/98 SD123B-1 FB137 3/9/98 SD123B-2 EB138 3/9/98 SS123B-1 EB016 3/9/98 | ID ID DATE (feet) SB123B-3 EB244 3/11/98 0.0 SB123B-3 EB247 3/11/98 2.6 SD123B-1 FB137 3/9/98 0.0 SD123B-2 EB138 3/9/98 0.0 SS123B-1 EB016 3/9/98 0.0 | ID ID DATE (feet) (feet) SB123B-3 EB244 3/11/98 0.0 0.2 SB123B-3 EB247 3/11/98 2.6 2.9 SD123B-1 FB137 3/9/98 0.0 0.2 SD123B-2 EB138 3/9/98 0.0 0.2 SS123B-1 EB016 3/9/98 0.0 0.2 | ID ID DATE (feet) CODE SB123B-3 EB244 3/11/98 0.0 0.2 SA SB123B-3 EB247 3/11/98 2.6 2.9 SA SD123B-1 EB137 3/9/98 0.0 0.2 SA SD123B-2 EB138 3/9/98 0.0 0.2 SA SS123B-1 EB016 3/9/98 0.0 0.2 DU | Notes SA Sample DU - Duplicate RB - Rinse Blank ### Table 9-2 123B · Volatiles in Soils vs TAGMs Non-Evaluated EBS Sites | LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DETH TOP SAMP DETH TOP SAMP DEATH SOT | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBFR
OF | SEAD-1:
Bldg 71i
and 717
Petroleu
Release
SB123B
EB242
SA
SOIL
11-Ma | 6 m
s
-1
0 | BI
ar
Pr
Ri
SI
EI | EAD-123B
ldg 716
nd 717
etroleum
eleases
B123B 1
B245
A 2 6
2 9 | 9 | Bild
and
Pel
Rei
SB
EB
SA | C | 0 0 2 | Bidg
and 7
Petro
Relea
SB12
EB24
SA | 17
eum
ses
3B-2 | SEAD-12
Bidg 716
717
Petroleur
Releases
SB123B-
EB244
SA | 6 and
7
3
0
0 2 | Bldg
and
Petr
Rele
SB1
EB2
SA | 2 6
2 9 | SEAD-
Bldg 7
and 71
Petrole
Releas
SS123
EB016
DU | 716
7
7
8 um
ses
8-1
0 | SEAD-1.
Bidg 71
and 717
Petroleu
Release
SS123B
EB139
SA
SOIL
9 Mi | im | |---|----------------|-------|-----------------|-------------|-----------------|-----------------|--------------|--------------|---|---------------------|----------------------------------|---|-----|---|-----|-------|---|--------------------------|---|-----------------------------|---|--------------|--|--|---|--------------| | PARAMETER | UNIT | AXIMU | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | V | ALUE | Q | VA. | LUE | Q | VALU | E Q | VALUE | Q | VAL | UE Q | VALUE | . 0 | VALUE | Q | | 1.1.Trichloroethane | UG/KG | 0 | | 800 | 2737500 | 0 | 0 | 10 | | 11 11 | | | 2 U | *** | | 14 U | VACO | 11 U | VALUE | 12 U | VAL | 12 U | VALUE | 13 U | VALUE | 13 U | | 1, 1, 2.2-Tetrachloroethane | UG/KG | 0 | | 600 | 31938 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0 00% | | 11206 | 0 | 0 | 10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1,1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 7821429 | 0 | 0 | 10 | 0 | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 1065 | 0 | 0 | 10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1,2 Dichloroethane | UG/KG | 0 | | 100 | 7821429 | 0 | 0 |
10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1.2 Oichloroethene (total) | UG/KG | 0 | | | | 0 | - | 10 | | 11 U | | | 2 U | | | 14 U | | ‡1 U | | 12 U | | 12 U | | 13 U | | 13 U | | 1,2-Dichloropropane | UG/KG | 0 | | | 9393 | 0 | | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Acetone | UG/KG | 140 | | 200 | 7821429 | 0 | 3 | 10 | | 11 U | | | 7 J | | | 40 | | 11 U | | 12 U | | 12 U | | 13 U | | 6 J | | Benzene | UG/KG | 0 | | 60 | 22026 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Bromodichloromethane | UG/KG | 0 | | | 10302 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Bromoform | UG/KG | 0 | | | 80854 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Carbon disulfide | UG/KG | 0 | | 2700 | 7821429 | 0 | 0 | 10 | - | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Carbon tetrachloride
Chlorobenzene | UG/KG
UG/KG | 0 | | 600
1700 | 4913
1564286 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Chlorodenzene | UG/KG | 0 | | 1700 | 7604 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Chloroethane | UG/KG | 0 | | 1900 | 31285714 | 0 | _ | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Chloroform | UG/KG | 0 | | 300 | 104713 | 0 | | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U
12 U | | 12 U
12 U | | 13 U | | 13 U
13 U | | Cis 1,3-Dichloropropene | UG/KG | 0 | | 300 | 104713 | 0 | | 1(| | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Ethyl benzene | UG/KG | 0 | | 5500 | 7821429 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methyl bromide | UG/KG | 0 | | 0000 | 111846 | 0 | 0 | 10 | - | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methyl butyl ketone | UG/KG | 0 | | | | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methyl chloride | UG/KG | 0 | | | 49135 | 0 | 0 | 10 | 5 | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methyl ethyl ketone | UG/KG | 0 | 0 00% | 300 | | 0 | 0 | 10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methyl sobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 6257143 | 0 | 0 | 10 | 3 | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Methylene chloride | UG/KG | 0 | 0 00% | 100 | 85167 | 0 | 0 | 10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Styrene | UG/KG | 0 | | | | 0 | 0 | 10 |) | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Tetrachloroethene | UG/KG | 10 | | 1400 | 12284 | О | 1 | 10 | | 11 U | | | J | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Toluene | UG/KG | 14 | | 1500 | 15642857 | 0 | 6 | 10 | | ВJ | | | 5 U | | | 14 U | | 3 J | | 3 J | | 12 U | | 13 U | | 3 J | | Total Xylenes | UG/KG | 0 | | 1200 | | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | | | | 0 | 0 | 10 | | 11 U | | | 5 N | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Trichloroethene | UG/KG | 0 | | 700 | 58068 | 0 | 0 | 10 | | 11 U | | | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | | Vmyl chloride | UG/KG | 0 | 0 00% | 200 | 336 | 0 | 0 | 10 | 3 | 11 U | | 12 | 2 U | | | 14 U | | 11 U | | 12 U | | 12 U | | 13 U | | 13 U | Table 9 2 123B Volatiles in Soils vs TAGMs Non Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DETH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NLIMBER
OF | NUMBER
OF | SEAD-1238
Bldg 716
and 717
Petroleum
Releases
SS1238-2
EB140
SA
0 0 2
SOIL
9-Mar 98 | | SOIL
9-Mar- | 0 2 98 | |---|----------------|-------|-----------------|--------------|----------|-----------------|---------------|--------------|---|---|----------------|--------| | PARAMETER | UNIT | AXIMU | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSÉS | VALUE | Q | VALUE | Q | | 1 1 1 Trichforgethane | UG/KG | 0 | 0 00% | 800 | 2737500 | 0 | 0 | 10 | 11 | U | | 12 U | | 1 1 2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 31938 | 0 | 0 | 10 | 11 | U | | 12 U | | 1.1,2-Trichloroethane | UG/KG | 0 | 0 00% | | 11206 | 0 | 0 | 10 | 11 | U | | 12 U | | 1 1 Dichloroethane | UG/KG | 0 | 0 00% | 200 | 7821429 | 0 | 0 | 10 | 11 | | | 12 U | | 1 1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 1065 | 0 | 0 | 10 | 11 | | | 12 U | | 1 2-Dichlorgethane | UG/KG | 0 | 0 00% | 100 | 7821429 | 0 | 0 | 10 | 11 | | | 12 U | | 1,2-Dichlornethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | 11 | - | | 12 U | | 1,2-Dichloroprnpane | UG/KG | 0 | 0 00% | | 9393 | 0 | 0 | 10 | 11 | | | 12 U | | Acetone | UG/KG | 140 | 30 00% | 200 | 7821429 | 0 | 3 | 10 | 11 | | | 12 U | | Benzene | UG/KG | 0 | 0 00% | 60 | 22026 | 0 | 0 | 10 | 11 | | | 12 U | | Brornodichloromethane | UG/KG | 0 | 0 00% | | 10302 | 0 | 0 | 10 | 11 | | | 12 U | | Bromoform | UG/KG | 0 | 0 00% | | 80854 | 0 | 0 | 10 | 11 | | | 12 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 7821429 | 0 | 0 | 10 | 11 | | | 12 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 4913 | 0 | 0 | 10 | 11 | | | 12 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 1564286 | 0 | 0 | 10 | 11 | - | | 12 U | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 7604 | 0 | 0 | 10 | 11 | | | 12 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 31285714 | 0 | 0 | 10 | 11 | | | 12 U | | Chlaroform | UG/KG | 0 | 0 00% | 300 | 104713 | 0 | 0 | 10 | 11 | | | 12 U | | Cis 1 3 Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | 11 | | | 12 U | | Ethyl benzene | U G /KG | 0 | 0 00% | 5500 | 7821429 | 0 | 0 | 10 | 11 | | | 12 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 111846 | 0 | 0 | 10 | 11 | | | 12 U | | Methyl bulyl ketone | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | 11 | | | 12 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 49135 | 0 | 0 | 10 | 11 | | | 12 U | | Methyl ethyl ketone | UG/KG | 0 | 0 00% | 300 | 0053440 | 0 | 0 | 10 | 11 | | | 12 U | | Methyl isobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 6257143 | 0 | 0 | 10 | 11 | | | 12 U | | Methylene chloride | UG/KG
UG/KG | 0 | 0 00% | 100 | 85167 | 0 | 0 | 10 | 11 | | | 12 U | | Styrene
Tetrachloroethene | UG/KG | 10 | 10 00% | 1400 | 12284 | 0 | 1 | 10 | 11 | | | 12 U | | Toluene | UG/KG | 14 | 60 00% | | | 0 | 6 | 10 | 11 | U | | 12 U | | Total Xylenes | UG/KG | 14 | 0.00% | 1500
1200 | 15642857 | 0 | 0 | 10
10 | 14 | | | 3 J | | Trans-1.3-Dichloropropene | UG/KG | 0 | 0.00% | 1200 | | 0 | 0 | 10 | 11 | | | 12 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 58068 | 0 | 0 | 10 | 11 | | | 12 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 336 | 0 | 0 | 10 | | | | 12 U | | enier change | JUNG | U | 0 00% | 200 | 336 | U | 0 | 10 | 11 | U | | 12 U | ### Table 9-3 123B - Volatiles in Soils vs PRG-RES Non-Evaluated EBS Sites | SITE
DESIGRIPTION
LOC ID
SAMP ID
QC CODE
SAMP DETHIOP | | | | | | | | | SEAD-123B
Bidg 716
and 717
Petroleum
Releases
SB123B-1
EB242
SA | | SEAD-123B
Bldg 716
and 717
Petroleum
Releases
SB123B 1
EB245
SA | SEAD-123B
Bldg 716
and 717
Petroleum
Releases
SB123B-2
EB246
SA | 0 | SEAD-123B
Bldg 716
and 717
Petroleum
Releases
SB123B-2
EB243
SA | | 0 | | n
3 | | 0 | SEAD-12
Bldg 716
and 717
Petroleur
Releases
SS123B-
ER139
SA | 6
m
s
-1 | |--|----------------|---------|-----------|------|----------------|--------|---------|----------|--|-----|--|--|------------|--|------------------|--------------|----------------|--------------|-----------------|-----|---|-------------------| | SAMP DEPTH BOT
MATRIX | | | | | | | | | 0 2
SOIL | | 2 9
SOIL | 0.2 | 2 | 3.5 | 0 | 2 | | 29 | 0 | 2 | | 0.2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 11 Mar-98 | | 11-Mar 98 | SOIL
11 Mar 98 | 8 | SOIL
11 Mar 98 | SOIL
11-Mar-9 | 10 | SOIL
11-Mai | . 00 | SOIL
9-Mar-9 | .0 | SOIL
9-Ma | . 09 | | SMAIL (SM) E | | , | OF | | | ABOVE | OF | OF | I I MAIN 30 | | TINIAI 30 | II Mai 30 | | II Mai 30 | II-Mar-s | 10 | 11-Mai | -96 | 9-Mar-s | В | a-ma | 1-40 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | a ' | VALUE Q | VALUE | Q | VALUE Q | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1 1 1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 2737500 | 0 | 0 | | 11 | | 12 U | 14 | 4 U | 11 U | 1 | 12 U | | 12 U | 1 | 3 U | | 13 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 31938 | 0 | 0 | | 11 | | 12 U | | 4 U | 11 U | 1 | 12 U | | 12 U | 1 | 3 U | | 13 U | | 1 1,2 Trichloroethane | UG/KG | 0 | 0 00% | | 11206 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | 1,1 Dichloroethane | UG/KG | 0 | 0 00% | 200 | 7821429 | 0 | 0 | | | - | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | 1 1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 1065 | 0 | 0 | |
 | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | 1.2 Dichloroethane | UG/KG | 0 | 0.00% | 100 | 7821429 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 9393 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Acetone | UG/KG | 140 | 30 00% | 200 | 7821429 | 0 | - | | | | 7 J | 140 | | 11 U | | 12 U | | 12 U | | 3 U | | 6 J | | Benzene | UG/KG | 0 | 0 00% | 60 | 22026 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Bromodichloromethane
Bromoform | UG/KG
UG/KG | 0 | 0 00% | | 10302
80854 | 0 | 0 | | 11 | | 12 U
12 U | | 4 U
4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Carbon disulfide | UG/KG
UG/KG | 0 | 0 00% | 2700 | 7821429 | 0 | 0 | | | | 12 U | | 4 U | 11 U
11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Carbon disunde
Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 4913 | 0 | 0 | | | | 12 U | | 4 U | 17 U | | 12 U | | 12 U | | 3 U | | 13 U | | Carbon terrachioride
Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 1564286 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U
12 U | | 12 U | | 3 U | | 13 U | | Chlorodenzene | UG/KG | 0 | 0 00% | 1700 | 7604 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U
12 U | | 3 U | | 13 U
13 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 31285714 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Chloroform | UG/KG | 0 | 0 00% | 300 | 104713 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 00% | 300 | 104711 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 7821429 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methyl bromide | UG/KG | 0 | 0 00% | 3300 | 111846 | 0 | o o | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methyl butyl ketone | UG/KG | o o | 0 00% | | 1110411 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 49135 | 0 | Ö | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methyl ethyl ketone | UG/KG | 0 | 0 00% | 300 | | 0 | C | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methyl isobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 6257143 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 85167 | 0 | 0 | 10 | 11 | U | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Styrene | UG/KG | 0 | 0.00% | | | 0 | 0 | 10 | 11 | ป | 12 U | 14 | 4 U | 11 U | | 12 U | | 12 U | 1 | 3 U | | 13 U | | Tetrachloroethene | UG/KG | 10 | 10 00% | 1400 | 12284 | 0 | 1 | 10 | 11 | U | 10 J | 14 | 4 U | 11 U | | 12 U | | 12 U | 1 | 3 U | | 13 U | | Toluene | UG/KG | 14 | 60 00% | 1500 | 15642857 | 0 | 6 | 10 | 8 | J | 12 U | 14 | 4 U | 3 J | | 3 J | | 12 U | 1 | 3 U | | 3 J | | Total Xylenes | UG/KG | 0 | 0 00% | 1200 | | 0 | 0 | 10 | 11 | U | 12 U | 14 | 4 U | 11 U | 1 | 12 U | | 12 U | 1 | 3 U | | 13 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | 11 | U | 12 U | 14 | 4 U | 11 U | 1 | 12 U | | 12 U | 1 | 3 U | | 13 U | | Trichloroethene | UG/KG | 0 | 0 00% | 700 | 58068 | 0 | 0 | | | | 12 U | | 4 U | 11 U | | 12 U | | 12 U | | 3 U | | 13 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 336 | 0 | 0 | 10 | 11 | U | 12 U | 14 | 4 U | 11 U | 1 | 12 U | | 12 U | 1 | 3 U | | 13 U | Table 9 3 123B · Volatiles in Soils vs PRG-RES Non-Evaluated EBS Sites | aute. | | | | | | | | | SEAD-123 | n D | SEAD 1 | าวอ | |--|----------------|---------|-----------------|--------------|-------------------|--------|---------|----------|-----------|------|----------|--------------| | DESCRIPTION | | | | | | | | | Bldg 716 | nen | 8ldg 71 | | | DESCRIPTION | | | | | | | | | and 717 | | and 717 | 0 | | | | | | | | | | | Petroleum | | Petroleu | m | | | | | | | | | | | Releases | | Reicase | | | LOC ID | | | | | | | | | SS1238-2 | , | SS123B | | | SAMP ID | | | | | | | | | EB140 | | EB141 | 5 | | QC CODE | | | | | | | | | SA | | SA | | | SAMP DETH TOP | | | | | | | | | 13/1 | 0 | J. | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0.2 | | 0.2 | | MATRIX | | | | | | | | | SOIL | 0.8 | SOIL | 0.2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMPER | NUMBER | 9-Mar | .98 | 9 Ma | ar. 98 | | JAME DATE | | | OF | | | ABOVE | OF | QF | | ,,, | | | | PAPAMETER | UNIT | MAXIMUM | DETECTION. | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1.1.1 Trichloroethane | UG/KG | 0 | 0.00% | 800 | 2737500 | 0 | () | 10 | | 11 U | | 12 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 31938 | 0 | 0 | 10 | | 11 U | | 12 U | | 1, 1, 2- Trichloroethane | UG/KG | 0 | 0 00% | | 11206 | 0 | 0 | 10 | | 11 U | | 12 U | | 1 1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 7821429 | 0 | 0 | 10 | | 11 U | | 12 U | | 1.1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 1065 | 0 | 0 | 10 | | 11 U | | 12 U | | 1.2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 7821429 | 0 | 0 | 10 | | 11 U | | 12 U | | 1.2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | | 11 U | | 12 U | | 1.2 Dichloropropane | UG/KG | 0 | 0 00% | | 9393 | 0 | 0 | 10 | | 11 U | | 12 U | | Acetone | UG/KG | 140 | 30 00% | 200 | 7821429 | 0 | 3 | 10 | | 11 U | | 12 U | | Benzene | UG/KG | 0 | 0 00% | 60 | 22026 | 0 | 0 | 10 | | 11 U | | 12 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 10302 | 0 | 0 | 10 | | 11 U | | 12 U | | Bromoform | UG/KG | 0 | 0 00% | | 80854 | 0 | 0 | 10 | | 11 U | | 12 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 7821429 | 0 | 0 | 10 | | 11 U | | 12 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 4913 | 0 | 0 | 10 | | 11 U | | 12 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 1564286 | 0 | 0 | 10 | | 11 U | | 12 U | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 7604 | 0 | 0 | 10 | | 11 U | | 12 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 31285714 | 0 | 0 | 10 | | 11 U | | 12 U | | Chloroform | UG/KG | 0 | 0 00% | 300 | 104713 | 0 | 0 | 10 | | 11 U | | 12 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | | 11 U | | 12 U | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 7821429 | 0 | 0 | 10 | | 11 U | | 12 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 111846 | 0 | 0 | 10 | | 11 U | | 12 U | | Methyl butyl ketone | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 | | 11 U | | 12 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 49135 | 0 | 0 | 10 | | 11 U | | 12 U | | Methyl ethyl ketone | UG/KG | 0 | 0 00% | 300 | | 0 | 0 | 10 | | 11 U | | 12 U
12 U | | Methyl isobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 6257143 | 0 | 0 | 10 | | 11 U | | 12 U | | Methylene chloride | UG/KG | 0 | 0 00% | 100 | 85167 | 0 | 0 | 10 | | 11 U | | 12 U | | Styrene | UG/KG | 0 | 0 00% | 4 400 | 40004 | 0 | 1 | 10 | | 11 U | | 12 U | | Tetrachloroethene | UG/KG | 10 | 10 00% | 1400
1500 | 12284
15642857 | 0 | 6 | 10 | | 14 | | 3 J | | Toluene | UG/KG
UG/KG | 14
0 | 60 00%
0 00% | 1200 | 13042857 | 0 | 0 | 10 | | 11 U | | 12 U | | Total Xylenes | UG/KG | 0 | 0 00% | 1200 | | 0 | 0 | 10 | | 11 U | | 12 U | | Trans-1,3-Dichloropropene
Trichloroethene | UG/KG | 0 | 0 00% | 700 | 58068 | 0 | 0 | 10 | | 11 U | | 12 U | | | UG/KG | 0 | 0 00% | 200 | 336 | 0 | 0 | 10 | | 11 U | | 12 U | | Vinyl chloride | JONG | 0 | 0 00% | 200 | 3 10 | 0 | 0 | 10 | | | | .2 0 | ### Table 9-4 1238 - Semivolatiles/TPH in Soll vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123B
Bldg 716 and
717
Petroleum | SEAD-123
Bldg 716 :
717
Petroleum | | SEAD-123
Bldg 716
717 Petro
Releases | and | SEAD-12
Bldg 716
717 Patro
Releases | and
leum | SEAD 12
Bldg 716
717
Petroleur | 6 and | SEAD-1
Bidg 7°
717
Petrolei | 16 and | SEAD-1238
Bidg 716 a
717
Petroleum | | SEAD-123B
Bidg 716 and
717 Petroleu
Releases | |--|----------------|-----------|------------------|---------------|------------------------|-----------------|---------|----------------|---|--|----------------|---|----------------|--|----------------|---|----------------|--------------------------------------|----------------|---|----------------|---| | LOC ID | | | | | | | | | Releases
5B123B 1 | Releases
SB1238 1 | | S8123B-2 | , | SB123B- | 2 | Release:
SB123B- | | Release
SB1238 | | Releases
SS123B-1 | | SS1238-1 | | SAMP ID
QC CODE | | | | | | | | | E8242 | E8245 | | EB246 | | EB243 | | EB244 | -3 | EB247 | | EB016 | | EB139 | | SAMP DETH TOP | | | | | | | | | SA
0 | SA | 26 | SA | 0 | SA | 32 | SA | 0 | SA | 26 | DU | 0 | SA 0 | | SAMP DEPTH BOT
MATRIX | | | | | | | | | 0 2
SOIL | SOIL | 29 | SON | 0.2 | SOIL | 35 | | 02 | | 29 | | 0 2 | 0 2 | | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER | NUMBER | 11 Mar 98 | 11-Mar | 98 | 11-Ma | ır-98 | | ar-98 | SOIL
11-M | ar-98 | SOIL
11-8 | Aar-98 | SOIL
9-Mar- | 98 | SOIL
9-Mar-98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG | TAGM | DETECTS | OF
ANALYSES | | VALUE | Q | VALUE | Q | VALUE | ۵ | VALUE | Q | VALUE | Q | VALUÉ | Q | VALUE | | 1.2-Dichlorobenzene 1.2-Dichlorobenzene | UG/KG
UG/KG | 0 | 0 00% | 3400
7900 | 782143
7039286 | 0 | 0 | | | | 73 U | | 82 U | | 75 U
75 U | | 71 U
71 U | | 85 U
85 U | | 100 U | 3900 | | 1 3-Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 |
6961071 | 0 | ō | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U
100 U | 3900
3900 | | 1 4-Dichlorobenzene
2,4 5-Trichlorophenol | UG/KG
UG/KG | 0 | 0 00% | 8500
100 | 26615
7821429 | 0 | 0 | | | | 73 U
180 U | | 82 U
200 U | | 75 U | | 71 U | | 85 U | 38 | 100 U | 3900 | | 2.4 5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 7821429
58068 | . 0 | 0 | | | | 73 U | | 82 U | | 180 U
75 U | | 170 U
71 U | | 200 U
85 U | | 100 U | 9400
3900 | | 2 4-Dichlaraphenal | UG/KG | 0 | 0.00% | 400 | 234643 | 0 | 0 | | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900 | | 2.4-Dimethylphenol
2.4-Dinitrophenol | UG/KG
UG/KG | 0 | 0.00% | 200 | 1564286
156429 | 0 | 0 | | | | 73 U
180 U | | 82 U
200 U | | 75 U
180 U | | 71 U
170 U | | 85 U
200 U | | 900 U
900 U | 3900
9400 | | 2 4-Dinitrotoluene | UG/KG | ō | 0 00% | | 156429 | ō | ō | ,,, | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 900 U | 3900 | | 2,6-Dinitratoluene | UG/KG | 0 | 0.00% | 1000 | 78214 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 300 U | 3900 | | 2 Chloronaphthalene
2 Chlorophenol | UG/KG
UG/KG | 0 | 0 00% | 800 | 391071 | 0 | 0 | | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U
71 U | | 85 U
85 U | | 300 U
300 U | 3900
3900 | | 2-Methylnaphthalene | UG/KG | 49 | 20 00% | 36400 | | 0 | 2 | 10 | 45 J | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 300 U | 3900 | | 2-Methylphenol
2 Netrosoline | UG/KG
UG/KG | 0 | 0.00% | 100
430 | 3910714
4693 | 0 | 0 | | | | 73 U
180 U | | 82 U
200 U | | 75 U | | 71 U | | 85 U | | 300 U | 3900 | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | 4921 | 0 | 0 | | | | 73 U | | 82 U | | 180 U
75 U | | 170 U | | 200 U
85 U | | 100 U
100 U | 9400
3900 | | 3 3 - Dichlorobenzidine | UG/KG | 0 | 0 00% | | 1419 | 0 | 0 | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 300 U | 3900 | | 3-Nitroaniline
4 6-Dinitro-2-methylphenol | UG/KG
UG/KG | 0 | 0.00% | 500 | 234643 | 0 | 0 | | | | 180 U
180 U | | 200 U
200 U | | 180 U
180 U | | 170 U
170 U | | 200 U
200 U | | 100 U
100 U | 9400
9400 | | 4-Bromophenyl phenyl ether | UG/KG | ō | 0.00% | | 4536429 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900 | | 4-Chloro-3-methylphenol | UG/KG
UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 300 U | 3900 | | 4-Chloroaniline 4-Chlorophenyl phenyl ether | UG/KG
UG/KG | 0 | 0 00% | 220 | 312857 | 0 | 0 | | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U | | 85 U
85 U | | 300 U
300 U | 3900
3900 | | 4-Methylphenol | UG/KG | 0 | 0 00% | 900 | | 0 | ō | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 900 U | 3900 | | 4-Nitroaniline
4-Nitrophenol | UG/KG
UG/KG | 0 | 0.00% | 100 | 234643
4692857 | 0 | 0 | | | | 180 U
180 U | | 200 U
200 U | | 180 U
180 U | | 170 U | | 200 U | | 100 U | 9400 | | Acenaphthene | UG/KG | 0 | 0.00% | 50000 | 4092837 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 170 U
71 U | | 200 U
85 U | | 300 U
300 U | 9400
3900 | | Acenaphthylene | UG/KG | 0 | 0.00% | 41000 | | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 300 U | 3900 | | Anthracene
Benzo[a]anthracene | UG/KG
UG/KG | 0
18 | 0 00%
40 00% | 50000
224 | 23464286
875 | 0 | 0 | 10
10 | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U
18 J | | 85 U | | 300 U
300 U | 3900
3900 | | Benzo[a]pyrene | UG/KG | 19 | 40 00% | 61 | 88 | 0 | 4 | | 97 J | | 38 J | | 82 U | | 7 J | | 19 J | | 85 U | | 800 U | 3900 | | Benzo(b)fluoranthene | UG/KG
UG/KG | 29
18 | 71 43% | 1100
50000 | 875 | 0 | 5 | 7 | 20 01 | | 43 J | | 82 U | | 75 U | | 29 J | | 85 U | | 100 U | 3900 | | Benzo(gh/)perylene
Benzo(k)fluoranthene | UG/KG | 23 | 40 00%
20 00% | 1100 | 8750 | 0 | 2 | 10
10 | | | 73 U
5 4 J | | 82 U
82 U | | 99 J
75 U | | 18 J
23 J | | 85 U
85 U | | 100 U | 3900
3900 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0 00% | | | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 00 U | 3900 | | Bis(2-Chloroethyl)ether
Bis(2-Chloroisopropyl)ether | UG/KG
UG/KG | 0 | 0 00% | | 581
9125 | 0 | 0 | | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U
71 U | | 85 U
85 U | | 100 U | 3900
3900 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 68 | 87 50% | 50000 | 45625 | ō | 7 | 8 | | | 94 J | | 82 U | | 12 J | | 14 J | | 31 J | | X00 U | 3900 | | Butylbenzylphthalate | UG/KG | 13 | 60 00% | 50000 | 15642857 | 0 | 6 | | 72 U | | 75 JB | | 97 JB | | 96 JB | | 13 JB | | 10 JB | 38 | 00 U | 3900 | | Carbazole
Chrysene | UG/KG
UG/KG | 7 5
26 | 10 00%
80 00% | 400 | 31938
87500 | 0 | 1 6 | 10 | | | 73 U | | 82 U
82 U | | 75 U
4.8 J | | 75 J
26 J | | 85 U
85 U | | 1000 U | 3900
3900 | | Di-n-butylphthalate | UG/KG | 0 | 0.00% | 8100 | | 0 | ō | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900 | | Di-n-octylphthalate | UG/KG
UG/KG | 9.5 | 20 00% | 50000
14 | 1564286 | 0 | 2 | | | | 5 2 J | | 82 U | | 75 U | | 71 U | | 85 บ
85 ป | | 100 U | 3900 | | Dibenz[a,h]anthracene
Dibenzofuran | UG/KG | 13 | 20 00%
0 00% | 6200 | 312857 | 0 | 0 | 10 | | | 73 U
73 U | | 82 U
82 U | | 10 J
75 U | | 13 J
71 U | | 85 U | | 100 U
100 U | 3900
3900 | | Diethyl phthalate | UG/KG | 44 | | 7100 | 62571429 | 0 | 7 | 9 | 98 JB | | 44 JB | | 24 JB | | 29 JB | | 76 JB | | 12 JB | 38 | 100 U | 3900 | | Dimethylphthalate
Ethylene Giycol | UG/KG
MG/KG | 0 | 0.00% | 2000 | 782142857
156428571 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 100 U | 3900 | | Fluoranthene | UG/KG | 43 | 50 00% | 50000 | 3128571 | 0 | 5 | 10 | 18 J | | 63 J | | 82 U | | 75 U | | 43 J | | 85 U | 38 | 100 U | 3900 | | Fluorene | UG/KG | 0 | 0 00% | 50000 | 3128571 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900 | | Hexachlorobenzene
Hexachlorobutadiene | UG/KG
UG/KG | 0 | 0.00% | 410 | 399
8189 | 0 | 0 | | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U
71 U | | 85 U
85 U | | 100 U
100 U | 3900
3900 | | Hexachlorocyclopentadiene | UG/KG | 0 | 0 00% | | 547500 | 0 | 0 | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 100 U | 3900 | | Hexachloroethane | UG/KG | 0 | 0 00% | 2000 | 45625
875 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900 | | Indeno[1,2 3-cd]pyrene
Isophorone | UG/KG
UG/KG | 16 | 40 00%
0 00% | 3200
4400 | 6/5 | 0 | 0 | | | | 73 U | | 82 U
82 U | | 92 J
75 U | | 16 J
71 U | | 85 U
85 U | | 100 U
100 U | 3900
3900 | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 130357 | 0 | 0 | 10 | 72 U | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | 38 | 00 U | 3900 | | N-Nitrosodipropylamine
Naphthalene | UG/KG
UG/KG | 0 | 0.00% | 13000 | 3128571 | 0 | 0 | | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 71 U
71 U | | 85 U
85 U | | 100 U | 3900
3900 | | Naphthalene
Nitrobenzene | UG/KG
UG/KG | 0 | 0.00% | 200 | 31285/1 | 0 | 0 | | | | 73 U | | 82 U | | 75 U | | 71 U | | 85 U | | 100 U | 3900
3900 | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 5323 | 0 | 0 | | 170 U | | 180 U | | 200 U | | 180 U | | 170 U | | 200 U | 93 | 00 U | 9400 | | Phenanthrene
Phenol | UG/KG
UG/KG | 44 | 40 00% | 50000
30 | 46928571 | 0 | 4 | 10 | | | 73 U
73 U | | 82 U
82 U | | 75 U
75 U | | 25 J
71 U | | 85 U
85 U | | 00 U
00 U | 3900
3900 | | Propylene Glycal | MG/KG | 0 | 0.00% | ~ | 10000071 | 0 | ō | | | | .50 | | 52 U | | 150 | | 77 0 | | ω (| 30 | ~~ 0 | 3500 | | Pyrene | UG/KG | 790 | 70 00% | 50000 | 2346429 | 0 | 7 | 10 | 26 J | | 55 J | | 82 U | | 75 U | | 47 J | | 85 U | 4 | 40 J | 790 | | ТРН | MG/KG | | | | | | | | 179 | 1 | 68 U | | 158 U | | 15 1 U | | 68 | | 21 5 U | 16 | 50 | 2880 | # Table 9-4 123B Semivolatiles/TPH in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123B
Bldg 716 and
717
Petroleum | SEAD-123B
Bidg 716 and
717
Petroleum | |---|-----------------------|--------------|--------------------|---------------|----------------------|-----------|---------|--------------------|---|---| | | | | | | | | | | Reinases | Releases | | LOC ID
SAMP ID | | | | | | | | | SS123B-2 | SS123B-3 | | QC CODE | | | | | | | | | FB140
SA | EB141
SA | | SAMP DETH TOP | | | | | | | | | 0 | 0 | | SAMP DEPTH BOT
MATRIX | | | | | | | | | 0.2 | 0.2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL
9-Mar 98 | SOIL
9 Mar-98 | | | | | OF | | | AROVE | OF | QF | | | | PARAMETER 1 2 4-Trichlorobenzene | UNIT
UG/K G | MAXIMUM
0 | DETECTION
0 00% | TAGM
3400 | PRG
782143 | TAGM
0 | DÉTECTS | ANALYSES Q
10 U | VALUE Q
74 U | VALUE Q
80 U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 7039286 | 0 | 0 | | 74 U | 90 U | | 1,3 Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 | 6961071 | 0 | D | | 74 U | 80 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 26615 | 0 | 0 | | 74 U | BO U | | 2 4 5 Trichlorophenol
2 4 6-Trichlorophenol | UG/KG
UG/KG | 0 | 0 00% | 100 | 7821429
58068 | 0 | 0 | | 180 U
74 U | 190 U
80 U | | 2.4-Dichlorophenol | UG/KG | 0 | 0 00% | 400 | 234643 | 0 | 0 | | 74 U | 80 U | | 2 4-Dimethylphenol | UG/KG | 0 | 0 00% | | 1564286 | 0 | 0 | | 74 U | 80 U | | 2.4 Dinitrophenol | UG/KG
UG/KG | 0 | 0 00% | 200 | 156429 | 0 | 0 | | 180 U | 190 U | | 2,4-Dinitrotoluene 2.6-Dinitrotoluene | UG/KG
UG/KG | 0 | 0 00% | 1000 | 156429
78214 | 0 | 0 | | 74 U
74 U | 80 U
80 U | | 2-Chloronaphthalene | UG/KG | 0 | 0 00% | | | 0 | 0 | 10 U | 74
U | 80 U | | 2 Chlorophenol | UG/KG | 0 | 0 00% | 800 | 391071 | 0 | 0 | | 74 U | 80 U | | 2-Methylnaphthalene
2-Methylphenol | UG/KG
UG/KG | 49 | 20 00% | 36400
100 | 3910714 | 0 | 2 | | 49 J
74 U | 80 U
80 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 4693 | 0 | 0 | 10 U | 180 U | 190 U | | 2-Nitrophenol | UG/KG | 0 | 0 00% | 330 | | 0 | 0 | 10 U | 74 U | 80 U | | 3 3 - Dichlorobenzidine 3 Nitroaniline | UG/KG
UG/KG | 0 | 0 00% | 500 | 1419
234643 | 0 | 0 | | 74 U
180 U | 80 U
190 U | | 4 6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | 500 | 234643 | 0 | 0 | | 180 U | 190 U | | 4 Bromophenyl phenyl ether | UG/KG | ō | 0 00% | | 4536429 | 0 | 0 | 10 U | 74 U | 80 U | | 4-Chloro-3-methylphanal | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | 74 U | 80 U | | 4-Chlorophenyl phenyl ether | UG/KG
UG/KG | 0 | 0 00% | 220 | 312857 | 0 | 0 | | 74 U
74 U | 80 U
80 U | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | 74 U | U 08 | | 4 Nitroaniline | UG/KG | 0 | 0 00% | | 234643 | 0 | 0 | | 180 U | 190 U | | 4-Nitrophenol | UG/KG
UG/KG | 0 | 0.00% | 100
50000 | 4692857 | 0 | 0 | | 180 U
74 U | 190 U
80 U | | Acenaphthene
Acenaphthylene | UG/KG
UG/KG | 0 | 0 00% | 41000 | | 0 | 0 | | 74 U | 80 U | | Anthracene | UG/KG | 0 | 0 00% | 50000 | 23464286 | 0 | 0 | 10 U | 74 U | 80 U | | Benzo[a]anthracene | UG/KG | 18 | 40 00% | 224 | 875 | 0 | 4 | 10 U | 49 J | 5 4 J | | Benzo(a)pyrene
Benzo(b)ffuoranthene | UG/KG
UG/KG | 19
29 | 40 00%
71 43% | 61
1100 | 88
875 | 0 | 5 | | 74 U
12 JY | 80 U
12 JY | | Benzo(ghi)perylene | UG/KG | 18 | 40 00% | 50000 | 0,, | 0 | 4 | | 12 J | 80 U | | Benzo(k)fluoranthene | UG/KG | 23 | 20 00% | 1100 | 8750 | 0 | 2 | | 74 U | 80 U | | Bis(2 Chloroethoxy)methane
Bis(2-Chloroethyl)ether | UG/KG | 0 | 0 00%
0 00% | | 581 | 0 | 0 | | 74 Ư
74 U | 80 U
80 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0 00% | | 9125 | 0 | 0 | | 74 U | 80 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 68 | 67 50% | 50000 | 45625 | 0 | 7 | 8 U | 14 BJ | 11 BJ | | Butylbenzylphthalate | UG/KG | 13
7.5 | 60 00% | 50000 | 15642857 | 0 | 6 | 10 U | 5 4 J
74 U | 80 U | | Carbazole
Chrysene | UG/KG
UG/KG | 7 5
26 | 10 00%
60 00% | 400 | 31938
87500 | 0 | 6 | | 74 U
12 J | 80 U
97 J | | Di-n-butylphthalate | UG/KG | 0 | 0 00% | 8100 | | 0 | 0 | 10 U | 74 U | 80 U | | Di-n-or-tylphthalate | UG/KG | 9.5 | 20 00% | 50000 | 1564286 | 0 | 2 | 10 U
10 U | 74 U
74 U | 80 U | | Dibenz(a,h)anthracene
Dibenzofuran | UG/KG
UG/KG | 13 | 20 00% | 14
6200 | 312857 | 0 | 0 | | 74 U
74 U | 80 U
80 U | | Diethyl phthalate | UG/KG | 44 | 77 78% | 7100 | 62571429 | ō | 7 | 9 U | 8 3 BJ | 80 U | | Dimethylphthalate | UG/KG | 0 | 0 00% | 2000 | 782142857 | 0 | 0 | | 74 U | 80 U | | Ethylene Glycol
Fluoranthene | MG/KG
UG/KG | 0
43 | 0 00%
50 00% | 50000 | 156428571
3128571 | 0 | 0 | | 11 .3 | 12 J | | Fluorene | UG/KG | 0 | 0.00% | 50000 | 3128571 | 0 | 0 | 10 U | 74 U | 80 U | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 399 | 0 | 0 | | 74 U | 80 U | | Hexachlorobutadiena
Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | 0 00% | | 8189
547500 | 0 | 0 | | 74 U
74 U | 80 U
80 U | | Hexachlorocyclopentadiene
Hexachloroethane | UG/KG | 0 | 0.00% | | 45625 | 0 | 0 | | 74 U | 80 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 16 | 40 00% | 3200 | 875 | 0 | 4 | 10 U | 8 5 J | 80 U | | Isophorone | UG/KG
UG/KG | 0 | 0.00% | 4400 | 130357 | 0 | 0 | | 74 U
74 LI | 80 U
80 U | | N-Nitrosodipheriylamine
N-Nitrosodipropylamine | UG/KG
UG/KG | 0 | 0.00% | | 130357 | 0 | 0 | | 74 U | 80 U | | Naphthalene | UG/KG | 0 | 0 00% | 13000 | 3128571 | 0 | 0 | 10 U | 74 U | 80 U | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 39107 | 0 | 0 | | 74 U | 80 U | | Pentachlorophenol Phenanthrene | UG/KG
UG/KG | 0 | 0 00% | 1000
50000 | 5323 | 0 | 0 | 10 U
10 U | 180 U
10 J | 190 U
12 J | | Phenol Phenol | UG/KG | 0 | 0 00% | 30 | 46928571 | 0 | 0 | | 74 U | 80 U | | Propylene Glycol | MG/KG | 0 | 0.00% | | | 0 | 0 | 10 | | | | Pyrene | UG/KG | 790 | 70 00% | 50000 | 2346429 | 0 | 7 | 10 J | 11 J | 14 J | | ТРН | MG/KG | | | | | | | | 83 9 | 35 | ### Table 9-5 1238 Semivolatiles/TPH in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-1 | | SEAD 1238 | SEAD-123B | SEAD-123B | SEAD-123B | SEAD-123B | SEAD-123B | SEAD 123B | |--|-------|---------|------------------|----------------|-----------|--------|---------|----------|----------|---------------|---------------|---------------|--------------|--------------|---------------|------------------|------------------| | DECCRIPTION | | | | | | | | | Bldg 71 | 16 and | Bldg 715 and | Bldg 716 and | Bldg 716 an | Bldg 716 and | Bldg 716 and | Bldg 716 and | Bldg 716 an | | | | | | | | | | | 717 | | 717 | 717 | 717 | 717 | 717 | 717 | 717 | | | | | | | | | | | Petroles | | Petroleum | | | | | | | | | | Release | rs | Releases | LOC ID | | | | | | | | | 5B123B | 3 1 | SB123B 1 | SB123B-2 | SB123B-2 | SB1238-3 | SB123B-3 | SS123B-1 | SS123B-1 | | SAMP 1D | | | | | | | | | EB242 | | EB245 | E8246 | EB743 | EB244 | EB247 | EB016 | EB139 | | QC CODE | | | | | | | | | SΑ | | SA | SA | SA | SA | SA | DU | SA | | SAMP DETH TOP | | | | | | | | | | 0 | 26 | 0 | 3.2 | 0 | 26 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0.2 | 29 | 0.2 | 3.5 | 0.2 | 29 | 0.2 | 0.2 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | SOIL | SOIL | SQIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 11 N | Mar-98 | 11-Mar-98 | 11 Mar-98 | 11-Mar 98 | 11-Mar-98 | 11-Mar-98 | 9-Mar-98 | 9 Mar 98 | | | | | QF | | | ABOVE | OF | OF | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSE5 | VALUE | | VALUE 0 | VALUE 0 | VALUE Q | | 1 2 4-Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 782143 | 0 | 0 | 1 | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 1 2 Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 7039286 | 0 | 0 | | | 72 U | 73 U | 82 U | 75 ⊍ | 71 U | 85 U | 3800 U | 3900 U | | 1 3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 6961071 | 0 | 0 | 1 | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 1 4-Dichlorobenzene | UG/KG | 0 | 0 00% | 8500 | 26615 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 4 5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 7821429 | 0 | 0 | | 0 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 2 4 6-Trichlorophenol | UG/KG | 0 | 0 00% | | 58069 | 0 | 0 | | | 72 U | 73 U | 87 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 4 Dichlarophenol | UG/KG | 0 | | 400 | 734643 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 4-Dimethylphenol | UG/KG | 0 | 0 00% | | 1564286 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 4 Dinitrophenol | UG/KG | 0 | | 200 | 156429 | 0 | 0 | | 0 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 2.4 Dinitrotoluene | UG/KG | 0 | 0 00% | | 156429 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 7.5 Dinitrotoluene | UG/KG | 0 | | 1000 | 78214 | 0 | 0 | | 0 | 72 tJ | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2-Chloronaphthalene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2-Chlorophenal | UG/KG | 0 | 0.00% | 800 | 391071 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 Methylnaphthalene | UG/KG | 4 9 | | 36400 | | 0 | 2 | | 0 | 45 J | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | ? Methylphenol | ng/kg | 0 | 0 00% | 100 | 3910714 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 2 Nitroaniine | UG/KG | 0 | 0 00% | 430 | 4693 | 0 | 0 | | 10 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 2 Nitraphenol | UG/KG | 0 | 0 00% | 330 | | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 3 3 -Dichlorobenzidine | UG/KG | 0 | 0 00% | | 1419 | 0 | 0 | | 0 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 3 Nitroantine | UG/KG | 0 | | 500 | 234643 | 0 | 0 | | 10 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 4 6-Dinitra-2-methylphenal | UG/KG | 0 | | | | 0 | 0 | | 0 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 4-Bramophenyl phenyl ether | UG/KG | 0 | 0.00% | | 4536429 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | 4 Chlara-3-methylphenol | UG/KG | 0 | 0 00% | 240 | | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U
71 U | 85 U
85 U | 3800 U | 3900 U
3900 U | | 4 Chloroaniline | UG/KG | 0 | 0.40.0 | 220 | 317857 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | | | 3800 U | | | 4-Chiorophenyl phenyl ether | UG/KG | 0 | | | | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U
75 U | 71 U
71 U | 85 U | 3800 U | 3900 U
3900 U | | 4-Methylphenol | UG/KG | 0 | | 900 | | 0 | 0 | | 10
10 | 72 U
170 U | 73 U
180 U | 82 U
200 U | 180 U | 170 U | 85 U
200 U | 3800 U
9300 U | 9400 U | | 4-Nitroaniline | UG/KG | 0 | | | 234643 | 0 | 0 | | - | | | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | 4 Nitrophenol | UG/KG | 0 | | 100 | 4692857 | 0 | 0 | | 10 | 170 U | 180 U | 82 U | 75 U | 71 U | 200 U | 3800 U | 3900 U | | Acenaphthene | UG/KG | 0 | | 50000 | | | - | | 10
10 | 72 U
72 U | 73 U
73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Acenaphthylene | UG/KG | 0 | | 41000
50000 | 23464286 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Anthracene | UG/KG | 0 | | | 23464286 | 0 | 0 | | 10 | 87 J | 73 U | 82 U | 75 U | 18 J | 85 U | 3800 U | 3900 U | | Benzo(a)anthracene | UG/KG | 18 | 40 00%
40 00% | 224
61 | 88 | 0 | 4 | | 10 | 97 J | 38 J | 82 U | 73 0 | 19 J | 85 U | 3800 U | 3900 U | |
Benzo(a)pyrene | UG/KG | 19 | 71 43% | 1100 | 875 | 0 | 4 | , | 7 | 23 JY | 43 J | 82 U | 75 U | 29 J | 85 U | 3800 U | 3900 U | | Benzo(b)fluoranthene | UG/KG | 18 | | 50000 | 6/3 | 0 | 4 | | 0 | 12 J | 73 U | 82 U | 99 J | 18 J | 85 U | 3800 U | 3900 U | | Benzo(ghi)perylene
Benzo(kiffuoranthene | UG/KG | 23 | | 1100 | 8750 | 0 | 2 | | 10 | 72 U | 54 J | 82 U | 75 U | 23 J | 85 U | 3800 U | 3900 U | | Bis(2-Chloroethoxy)methane | UG/KG | 23 | | 1100 | 0730 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | | | 581 | o | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Bis(2 Chloroisopropyl)ether | UG/KG | 0 | | | 9125 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 68 | | 50000 | 45625 | 0 | 7 | | В | 68 J | 9 4 J | 82 U | 12 J | 14 J | 31 J | 3800 U | 3900 U | | Butylbenzylphthalate | UG/KG | 13 | | 50000 | 15642857 | 0 | 6 | 1 | 10 | 72 U | 7.5 JB | 9.7 JB | 9 6 JB | 13 JB | 10 JB | 3800 U | 3900 U | | Carbazole | UG/KG | 7.5 | | | 31938 | 0 | 1 | 1 | 10 | 72 U | 73 U | 82 U | 75 U | 75 J | 85 U | 3800 U | 3900 U | | Chrysene | UG/KG | 26 | | 400 | 87500 | 0 | 6 | 1 | 10 | 12 J | 37 J | 82 U | 48 J | 26 J | 85 U | 3800 U | 3900 U | | Di-n-butylphthalate | UG/KG | 0 | | 8100 | | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 t/ | 3900 U | | Di-n-octylphthalate | UG/KG | 9 5 | | 50000 | 1564286 | 0 | 2 | | 10 | 95 J | 5 2 J | 82 U | 75 U | 71 U | 85 U | 3800 ↓ | 3900 U | | Dibenz(a,h)anthracene | UG/KG | 13 | | 14 | | 0 | 2 | 1 | 10 | 72 U | 73 U | 82 U | 10 J | 13 J | 85 U | 3800 U | 3900 U | | Dibenzofuran | UG/KG | 0 | 0.00% | 6200 | 312857 | 0 | 0 | 1 | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Diethyl phthalate | UG/KG | 44 | | 7100 | 62571429 | 0 | 7 | | 9 | 98 JB | 44 JB | 24 JB | 29 JB | 7 6 JB | 12 JB | 3800 U | 3900 U | | Dimethylphthalate | UG/KG | ٥ | 0 00% | 2000 | 782142857 | 0 | 0 | 1 | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 ∪ | 3900 U | | Ethylene Glycol | MG/KG | 0 | 0 00% | | 156428571 | o | 0 | 1 | 10 | | | | | | | | | | Fluoranthene | UG/KG | 43 | 50 00% | 50000 | 3128571 | 0 | 5 | 1 | 10 | 18 J | 63 J | 82 U | 75 U | 43 J | 85 U | 3800 U | 3900 U | | Fluorene | UG/KG | 0 | | 50000 | 3178571 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 ∪ | 3900 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 399 | 0 | 0 | 1 | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Hexachlorobutadione | UG/KG | 0 | | | 6189 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Hexachlorocyclopentadiene | UG/KG | ٥ | | | 547500 | 0 | | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Hexachloroethane | UG/KG | 0 | | | 45625 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Indeno[1 2,3-cd]pyrene | UG/KG | 16 | | 3200 | 875 | 0 | 4 | | 10 | 81 J | 73 U | 82 U | 9 2 J | 16 J | 85 U | 3800 U | 3900 U | | Isophorone | UG/KG | 0 | | 4400 | | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | N-Nitrosodiphenylamine | UG/KG | 0 | | | 130357 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | N-Nitrosodipropylamine | UG/KG | 0 | | | | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 7t U | 85 U | 3800 U | 3900 U | | Naphthalene | UG/KG | 0 | | 13000 | 3128571 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Nitrobanzane | UG/KG | 0 | | 200 | 39107 | 0 | 0 | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Pentachlorophenol | UG/KG | 0 | | 1000 | 5323 | 0 | 0 | | 10 | 170 U | 180 U | 200 U | 180 U | 170 U | 200 U | 9300 U | 9400 U | | Phenanthrene | UG/KG | 44 | | 50000 | | 0 | | | 10 | 44 J | 73 U | 82 U | 75 U | 25 J | 85 U | 3800 U | 3900 U | | Phenol | UG/KG | 0 | | 30 | 46928571 | 0 | | | 10 | 72 U | 73 U | 82 U | 75 U | 71 U | 85 U | 3800 U | 3900 U | | Propylane Glycol | MG/KG | 0 | | | | 0 | 0 | | 10 | | | na · · | 25 | 47 J | 85 U | 440 J | 790 J | | Pyrene | UG/KG | 790 | 70 00% | 50000 | 2346429 | 0 | 7 | 1 | 10 | 26 J | 55 J | 82 U | 75 U | 47 J | 85 U | 440 J | /90 J | | *** | | | | | | | | | | 179 | 16.8 U | 15.8 U | 15 1 U | 68 | 21 5 U | 1850 | 2680 | | TPH | MG/KG | | | | | | | | | 31.8 | 10 8 U | 15.6 U | 15 1 0 | bd | 2150 | 1030 | 2000 | ### Table 9-5 123B - Semivolatiles/TPH in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD 123B | SEAD-123B | |-----------------------------|----------------|---------|-----------|-------|-----------|--------|---------|----------|--------------|---------------| | DESCRIPTION | | | | | | | | | Bidg 716 and | Bldg 716 and | | DESCRIPTION | | | | | | | | | 717 | 717 Petroleum | Petroleum | Releases | | | | | | | | | | | Releases | | | LOC 1D | | | | | | | | | SS123B-2 | SS123B-3 | | SAMP ID | | | | | | | | | EB140 | EB141 | | QC CODE | | | | | | | | | SA | SA | | SAMP DETH TOP | | | | | | | | | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0.2 | 0.2 | | | | | | | | | | | | | | MATRIX | | | | | | | | | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 9 Mar-98 | 9 Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | VALUE Q | | 1 2 4 Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 782143 | 0 | 0 | 10 | 74 U | 80 U | | 1 2-Dichlarobenzene | UG/KG | 0 | 0 00% | 7900 | 7039286 | 0 | 0 | 10 | 74 U | 80 U | | 1 3-Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 | 6961071 | 0 | 0 | 10 | 74 U | 80 U | | 1 4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 26615 | 0 | 0 | 10 | 74 U | 80 U | | 2 4.5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 7821429 | 0 | 0 | 10 | 180 U | 190 U | | 2,4 5-Trichlorophenol | UG/KG | 0 | | | 58068 | 0 | 0 | 10 | | 80 U | | 2 4 Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 234643 | 0 | 0 | 10 | | 80 U | | | UG/KG | 0 | | 400 | 1564286 | 0 | 0 | 10 | | 80 U | | 2.4 Dimethylphenol | UG/KG | 0 | 0.00% | 200 | 156429 | 0 | 0 | 10 | | | | 2 4 Dinitrophenol | | | | 200 | | | | | | 190 ປ | | 2 4-Dinitrotoluene | UG/KG | 0 | 0 00% | | 156429 | 0 | 0 | 10 | | 80 U | | 2 6-Dinitrotniuene | UG/KG | 0 | 0 00% | 1000 | 78214 | 0 | 0 | 10 | | 80 U | | 2 Chloronaphthalene | UG/KG | 0 | | | | 0 | 0 | 10 | | 80 U | | 2-Chlorophenal | UG/KG | 0 | 0 00% | 800 | 391071 | 0 | 0 | 10 | | 80 U | | 2-Methylnaphthalene | UG/KG | 49 | 20 00% | 36400 | | 0 | 2 | 10 | 49 J | 80 17 | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100 | 3910714 | 0 | D | 10 | 74 U | 80 U | | 2 Nitroandine | UG/KG | 0 | | 430 | 4693 | 0 | 0 | 10 | 180 U | 190 U | | 2-Nitrophenol | UG/KG | o | | 330 | | 0 | 0 | 10 | | 80 U | | 3.3 -Dichlorobenzidine | UG/KG | 0 | 0.00% | 330 | 1419 | 0 | 0 | 10 | | 80 U | | 3-Nitroaniline | UG/KG | 0 | | 500 | 234643 | 0 | 0 | 10 | | 190 U | | | UG/KG
UG/KG | 0 | 0.00% | 500 | 234643 | 0 | 0 | 10 | | 190 U | | 4.6-Dinitro-2-methylphenol | | | | | | | | | | | | 4-Bramophenyl phenyl ether | UG/KG | 0 | | | 4536429 | D | 0 | 10 | | 80 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0 00% | 240 | | D | D | 10 | | 80 U | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 312857 | D | D | 10 | | 80 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | D | 0 | 10 | | 80 U | | 4-Methylphenol | UG/KG | 0 | 0 00% | 900 | | 0 | 0 | 10 | 74 U | 80 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 234643 | 0 | 0 | 10 | 180 U | 190 U | | 4-Nitrophenal | UG/KG | 0 | 0.00% | 100 | 4692857 | 0 | 0 | 10 | 180 U | 190 U | | Acenaphthene | UG/KG | 0 | 0.00% | 50000 | | 0 | D | 10 | | 80 U | | Acenaphthylene | UG/KG | 0 | | 41000 | | 0 | 0 | 10 | | 80 U | | Anthracene | UG/KG | ō | 0.00% | 50000 | 23464286 | 0 | n | 10 | | 80 U | | Benzolalanthracene | UG/KG | 18 | | 224 | 875 | 0 | 4 | 10 | | 54 J | | and the first of the second | | | 40 00% | 61 | 88 | 0 | 4 | 10 | | 80 U | | Benzo[a]pyrene | UG/KG | 19 | | | | | | | | | | Benzo[b]fluoranthene | UG/KG | 29 | 71 43% | 1100 | 875 | D | 5 | 7 | | | | Benzo(ghi)perylene | UG/KG | 18 | | 50000 | | D | 4 | 10 | | 80 U | | Benzo[k]fluoranthene | UG/KG | 23 | 20 00% | 1100 | 8750 | .D | 5 | 10 | | 80 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | | | | 0 | 0 | 10 | | 80 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0 00% | | 581 | 0 | 0 | 10 | 74 U | 80 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0 00% | | 9125 | 0 | 0 | 10 | 74 () | 80 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 68 | 87 50% | 50000 | 45625 | 0 | 7 | Ε | 14 BJ | 11 BJ | | Butylbenzylphthalate | UG/KG | 13 | 60 00% | 50000 | 15642857 | 0 | 6 | 10 | 54 J | 80 U | | Carbazole | UG/KG | 7.5 | 10 00% | | 31938 | 0 | 1 | 10 | 74 U | 80 U | | Chrysene | UG/KG | 26 | | 400 | 87500 | 0 | 6 | 10 | 12 J | 9.7 J | | Di-n-butylphthalate | UG/KG | 0 | 0.00% | 8100 | 0.000 | 0 | n | 10 | | 80 U | | Di-n octylohthalate | UG/KG | 9.5 | | 50000 | 1564286 | 0 | 2 | 10 | | 80 U | | Dibenz(a h)anthracene | UG/KG | 13 | | 14 | 150~200 | n | 2 | 10 | | 80 U | | Dibenzofuran | UG/KG | 0 | | 6200 | 312857 | 0 | 0 | 10 | | 80 U | | | | | | | | | 7 | 10 | | | | Diethyl phthalate | UG/KG | 44 | | 7100 | 62571429 | 0 | | | | | | Dimethylphthalate | UG/KG | 0 | | 2000 | 782142857 | 0 | 0 | 10 | | 80 U | | Ethylene Glycol | MG/KG | 0 | | | 156428571 | 0 | 0 | 10 | | | | Fluoranthene | UG/KG | 43 | 50 00% | 50000 | 3128571 | 0 | 5 | 10 | | 12 J | | Fluorene | UG/KG | 0 | | 50000 | 3128571 | D | 0 | 10 | | 80 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 399 | 0 | 0 | 10 | | 80 U | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | | 8189 | 0 | 0 | 10 | 74 U | 80 U | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 547500 | 0 | 0 | 10 | 74 U | 80 U | | Hexachloroethane | UG/KG | 0 | 0.00% | | 45625 | 0 | 0 | 10 | 74 U | 80 1) | | Indeno[1 2,3-cd]pyrene | UG/KG | 16 | | 3200 | 875 | D | 4 | 10 | | 80 U | |
Isophorone | UG/KG | 0 | | 4400 | 2.0 | 0 | 0 | 10 | | 80 U | | N-Nitrosodiphenylamine | UG/KG | 0 | | 50 | 130357 | 0 | 0 | 10 | | 80 U | | | UG/KG
UG/KG | 0 | 0.00% | | .50557 | 0 | 0 | 10 | | 80 U | | N Nitrosodipropylamine | 0.01 | | | 40000 | 943067 | | 0 | | | 80 U | | Naphthalene | UG/KG | 0 | | 13000 | 3128571 | 0 | | 10 | | | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 39107 | 0 | 0 | 10 | | 80 U | | Pentachlorophenol | UG/KG | 0 | | 1000 | 5323 | 0 | 0 | 10 | | 190 U | | Phenanthrene | UG/KG | 44 | 40 00% | 50000 | | 0 | 4 | 10 | | 12 J | | Phenol | UG/KG | 0 | 0 00% | 30 | 46928571 | 0 | 0 | 10 | | 80 U | | Propylene Glycol | MG/KG | 0 | 0.00% | | | 0 | 0 | 10 | | | | Pyrene | UG/KG | 790 | 70 00% | 50000 | 2346429 | 0 | 7 | 10 | 11 J | 14 J | | | | | | - | | | | | | | | TPH | MG/KG | | | | | | | | 83 9 | 35 | | | | | | | | | | | | - | | | | | | | | | | | | | Table 9-6 123B - Volatile Organics in Sediment vs Criteria Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | SEAD-123
Bidg. 716
717 Petrol
Releases | and | SEAD-12
Bldg. 716
717
Petroleun
Releases | and
n | |---------------------------------------|----------------|--------|-----------|----------|--------|--------|----------|---|--------------|--|--------------| | LOC ID:
SAMP ID | | | | | | | | SD123B-1
EB137 | | SD123B-:
EB138 | 2 | | QC CODE: | | | | | | | | SA | 0 | ŞA | 0 | | SAMP. DETH TOP.
SAMP. DEPTH BOT | | | | | | | | | 0.2 | | 0
0.2 | | MATRIX: | | | | | | | | SEDIMEN | | SEDIMEN | | | SAMP. DATE | | | FREQUENCY | | NUMBER | NUMBER | NUMBER | | ar-98 | | ar-98 | | O/ IIII : O/ II E | | | OF | | ABOVE | OF | OF | | | 0 1110 | | | PARAMETER | UNIT | MAXIMU | DETECTION | CRITERIA | TAGM | DETECT | ANALYSES | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | | 20 U | | 15 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0.00% | 300 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | | 20 U | | 15 U | | 1,1-Dichloroethane | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | 1,1-Dichloroethene | UG/KG | 0 | | 20 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | 1,2-Dichloroethane | UG/KG | 0 | | 700 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | 1,2-Dichloropropane | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Acetone | UG/KG | 28 | | | 0 | 2 | 2 | | 28 | | 15 J | | Benzene | UG/KG | 0 | | 600 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | Bromodichloromethane | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Bromoform | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Carbon disulfide | UG/KG | 0 | | 000 (0) | 0 | 0 | 2 | | 20 U | | 15 U | | Carbon tetrachloride | UG/KG | 0 | | 600 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | Chlorobenzene | UG/KG | 0 | | 3500 (1) | 0 | 0 | 2 | | 20 U | | 15 U
15 U | | Chlorodibromomethane | UG/KG | 0 | | | 0 | 0 | 2 2 | | 20 U
20 U | | 15 U | | Chloroethane | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Chloroform | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Cis-1,3-Dichloropropene | UG/KG
UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Ethyl benzene | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Methyl bromide
Methyl butyl ketone | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Methyl chloride | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Methyl ethyl ketone | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Methyl isobutyl ketone | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Methylene chloride | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Styrene | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Tetrachloroethene | UG/KG | 0 | | 800 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | Toluene | UG/KG | 0 | | (-/ | 0 | 0 | 2 | | 20 U | | 15 U | | Total Xylenes | UG/KG | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Trans-1,3-Dichloropropene | | 0 | | | 0 | 0 | 2 | | 20 U | | 15 U | | Trichloroethene | UG/KG | 0 | | 2000 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | Vinyl chloride | UG/KG | 0 | | 70 (2) | 0 | 0 | 2 | | 20 U | | 15 U | | , | | | /0 | (-) | | | | | | | | SOURCE: (1) NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA (2) NYS HUMAN HEALTH BIOACCUMULATION CRITERIA Table 9.7 1238: Semivolatiles in Sediment vs Criteria Non-Ezaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | SEAD-123B
Bldg 716 and | SEAD-123B
Bldg 716 and | |---|----------------|----------|-------------------|------------|--------------|----------|-------------|---------------------------|---------------------------| | | | | | | | | | 717 Petroleum
Releases | 717 Petroleum
Releases | | | | | | | | | | 0040004 | 554000 0 | | LOC IO
SAMP ID | | | | | | | | SD123B-1
EB137 | \$D123B-2
EB138 | | OC CODE | | | | | | | | SA | SA | | SAMP DETH TOP | | | | | | | | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | 0.2 | 0 2 | | MATRIX | | | | | | | | SEDIMENT | SEDIMENT | | SAMP DATE | | | FREQUENCY | | BMUN
JORA | ER NUMBE | R NUMBER | 9 Mar-98 | 9-Mar-98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | CRITERIA | TAGI | | IS ANALYSES | VALUE 0 | VALUE Q | | 1 2 4-Trichlorobenzene | UG/KG | 0 | 0.00% | CKITCKIA | 0 | 0 | 2 | 130 U | 97 U | | 1 2-Dichlorobenzene | UG/KG | 0 | 0 00% | 12000 (1) | 0 | 0 | 2 | 130 U | 97 U | | 1 3 Dichlorobenzene | UG/KG | 0 | 0 00% | 12000 (1) | | 0 | 2 | 130 U | 97 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0 00% | 12000 (1) | | 0 | 2 | 130 U | 97 U | | 2.4 5-Trichlorophenol | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 U
130 U | 240 U
97 U | | 2,4,6-Trichlorophenal
2,4-Dichlorophenal | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 2.4-Dimethylphenal | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | 2 4-Dinitrophenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 U | 240 U | | 2 4-Dinitrataluene | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | 2,6-Dinitrataluene | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | 2-Chloronaphthalene | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 2-Chlorophenol 2-Methylnaphthalene | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U
130 U | 97 U
97 U | | 2-Methylphenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 330 U | 240 U | | 2-Nitrophenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 3.3 -Dichlorobenzidine | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 3-Nitroanikne | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 ∪ | 240 U | | 4,6-Dinitro-2-methylphenol | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 U
130 U | 240 U
97 U | | 4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | 4-Chloroaniline | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 4-Chlorophanyl phenyl ather | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 4-Methylphenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | 4-Nitroaniline | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 U | 240 U | | 4-Nitrophenol | UG/KG
UG/KG | 0 | 0 00% | 140000 (1 | 0 | 0 | 2 | 330 U
130 U | 240 U
97 U | | Acenaphthene
Acenaphthylene | HG/KG | 0 | 0.00% | 140000 (1) | , 0 | 0 | 2 | 130 U | 97 1 | | Anthracene | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Benzo(a)anthracene | UG/KG | 9 2 | 50 00% | 1300 (2 | | 1 | 2 | 9 2 J | 97 U | | Benzo[a]pyrene | UG/KG | 13 | 50 00% | 1300 (2 | | 1 | 2 | 13 J
21 J | 97 U
97 U | | Benzo(b)fluoranthene
Benzo(ghi)perylene | UG/KG
UG/KG | 21
14 | 50 00%
50 00% | 1300 (2 | 0 | 1 | 2 | 21 J
14 J | 97 U | | Benzo(k)fluoranthene | UG/KG | 14 | 50 00% | 1300 (2 | | 1 | 2 | 14 J | 97 U | | Bis(2 Chloroethoxy)methane | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Brs(2-Chloroethyl)ether | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Bis(2 Chloroisopropyl)ather | UG/KG
UG/KG | 0
16 | 0 00%
200 00% | 200000 (1 | 0 | 0 2 | 2 | 130 U
16 BJ | 97 U
15 JB | | Bis(2-Ethylhexyl)phthalate
Butylbenzylphthalate | UG/KG | 16 | 200 00%
50 00% | 200000 (1 |) 0 | 1 | 2 | 11 J | 97 U | | Carbazole | UG/KG | 0 | 0 00% | | 0 | ò | 2 | 130 U | 97 U | | Chrysene | UG/KG | 16 | 100 00% | 1300 (2 | | 2 | 2 | 16 J | 67 J | | Di-n-buty!phthalate | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | Di-n-octylphthalate | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Dibenz(a,h)anthracene | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U
130 U | 97 U
97 U | | Dibenzofuran
Diethyl phthalate | UG/KG | 32 | 200 00% | | 0 | 2 | 1 | 32 BJ | 15 JB | | Dimethylphthalate | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Fluoranthene | UG/KG | 21 | 100 00% | 1020000 (1 | | 2 | 2 | 21 J | 89 J | | Fluorene | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 150 (2 | 0 | 0 | 2 | 130 U
130 U | 97 U
97 U | | Hexachlorobutadiene
Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Hexachlorocyclopeniagiene
Hexachloroethane | UG/KG | 0 | 0.00% | | 0 | 0 | 2 | 130 U | 97 U | | Indeno[1,2 3-cd]pyrene | UG/KG | 13 | 50 00% | 1300 (2 | | 1 | 2 | 13 J | 97 Ų | | Isophorone | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | N Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U
130 U | 97 U
97 U | | N-Nitrosodipropylamine
Naphthalene | UG/KG
UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Naphthalene | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 tJ | | Pentachlorophenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 330 U | 240 U | | Phenanthrene | UG/KG | 9 | 100 00% | 120000 (1 | | 2 | 2 | 9 J | 5 J | | Phenol | UG/KG | 0 | 0 00% | | 0 | 0 | 2 | 130 U | 97 U | | Pyrene
TPH | UG/KG
MG/KG | 16 | 100 00% | | 0 | 2 | 2 | 16 J
33 2 U | 97 J
27 9 U | | 100 | MOING | | | | | | | 55 , 5 | 2. 0 0 | SOURCE ⁽¹⁾ NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY
CRITERIA (2) NYS HUMAN HEALTH BIOACCUMULATION CRITERIA ## SEAD-123D # Area West of Building 715 Table 11-1 ## Sample Collection Information SEAD-123D - Area West of Building 715 ## 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|---------|--| | SOIL | TP123D-1 | EB108 | 3/5/98 | 0.5 | 0.5 | SA | Located in small mound 2 ft to 2.5 ft tall with a diameter of 6 ft. The mound had no vegetation on it, with a depression in the center. Near surface sample. | | SOIL | TP123D-1 | EB109 | 3/5/98 | 1.0 | 1.0 | SA | Same location ID as above. Approx. mid-point sample chosen because no VOC hits or indications of impact to soils. | | SOIL | TP123D-2 | EB106 | 3/5/98 | 0.5 | 0.5 | SA | Located on the ground surface where a drum fragment was protruding from the ground; the location was not a mound. Near surface sample from under drum fragment. | | SOIL | TP123D-2 | EB107 | 3/5/98 | 1.5 | 1.5 | SA | Same location ID as above. Sample was taken 1.0 ft. below drum fragment. There were no VOC hits or other indications of impact to soils. | | SOIL | TP123D-3 | EB102 | 3/4/98 | 0.5 | 0.5 | SA | Located in 3 ft high mound, by 7 ft wide and 20 ft long. No vegetation was observed on the mound. Mound is in location that has very easy access from road for dumping. Near surface sample. | | SOIL | TP123D-3 | EB103 | 3/4/98 | 2.0 | 2.0 | SA | Same location ID as above. Approx. mid-depth sample taken because no VOC hits or other indications of impact to soils. | | SOIL | TP123D-4 | EB104 | 3/5/98 | 0.5 | 0.5 | SA | Located in 3 ft high mound with 8 ft diameter. Debris (e.g., steel pipes, cable, sections of culvert) was observed on the surface of the mound. Near surface sample taken. | | SOIL | TP123D-4 | EB105 | 3/5/98 | 1.0 | 1.0 | SA | Same location ID as above. Sample taken below piece of cable and wire. There were no VOC hits or indications of impact to soils. | Table 11-1 ## Sample Collection Information SEAD-123D - Area West of Building 715 ## 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|---------|---| | SOIL | TP123D-5 | EB100 | 3/4/98 | 1.5 | 1.5 | SA | Located in the center of a mound where evidence of debris (e.g., wire) were observed protruding from the ground surface. Near surface sample. | | SOIL | TP123D-5 | EB101 | 3/4/98 | 4.1 | 4.1 | SA | Same location ID as above. Approx. mid-point sample chosen because of no VOC hits or indications of impact to soils. | | SOIL | TP123D-3 | EB001 | 3/4/98 | 0.5 | 0.5 | DU | Not Applicable | | WATER | TP123D-1 | EB002 | 3/5/98 | 0.0 | 0.0 | RB | Not Applicable | Notes: SA · Sample DU - Duplicate RB = Rinse Blank ### Table 11-2 123D - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SHI
DESCRIPTION | | | | SIAD-123D
Vica West of
Bldg-715 | | SEAD-123D
Aren West of
Bldg 718 | SLAD 123D
Area West of
Bldg 715 | SI AD-123
Aren West
of Bldg.
715 | SEAD-123D
Aren West of
Bldg 715 | | SEAD-123D
Area West of
Bldg 745 | | SUAD-123D
Area West of
Bldg 715 | | SEAD-123D
Area West of
Bldg 715 | | | | | | | |-----------------------------|-------|---------|-----------------------|---------------------------------------|----------|---------------------------------------|---------------------------------------|---|---------------------------------------|----------|---------------------------------------|-------------------|---------------------------------------|-------------------|---------------------------------------|------------------|------------|-------------------|------|-----------------|-------| | LOCAD
SAMPAD
OC. CODE | | | | | | | | | 1P123D-1
1B108 | | 1P123D-1
1B109 | FP123D-2
FB106 | IP123D-2
LB107 | TP123D-3
FB001 | | P123D-3
-B102 | | IP123D-3
FB103 | | IP123D
FB104 | 4 | | SAMP DETILIOP | | | | | | | | | SA | | SA | SA | SA | DO | .5 | šΛ | | SA | | SA | | | SAMP DEPTIEBOT | | | | | | | | | | 0.5 | | 0.5 | 1.5 | 0.5 | | 0.5 | | | 2 | | () 5 | | MATRIX | | | | | | | | | | 0.5 | 1 | 0.5 | 1.5 | 0.4 | | 0.5 | | | 2 | | 0.5 | | SAMP DATI | | | TREQUENCY | | | NUMBI R | NUMBER | NUMBI R | SOIL | | SOII | SOII | SOIL | SOIL. | .5 | OII | | SOII | | SOH | | | VAISH 15444 | | , | Ol | | | ABOVI | | | `.p | Mar - 98 | 5-Mar-98 | 5-Mar 98 | 5-Mar-98 | 4-Mar-98 | | 4-Mar-98 | | 4-Mar-9 | 8 | 5-Ma | ar-98 | | PARAMETER | UNIT | MAXIMUM | | TAGM | PRG | | OJ. | ()} | | | | | | | | | | | | | | | 1.1. Frieddotoethane | UG/KG | 0.0 | 0.00% | 800 | 2717500 | LAGM | DITICIS | ANALYSIS | | | VALUE Q | VALUE Q | VALUI Q | | | | U | VALUE | Q | WILVE | Q. | | 1.1.2.2- Jetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 31938 | | | 11 | | 12. 0 | 12 () | 15.11 | 12 U | 16 | | 13 | | | 3 () | | 14 U | | 1,1,2-Trichloroethane | UG/kG | 0.0 | | (101) | | 0 | 0 | 11 | | 12 U | 12 11 | 15 U | 12 U | 16 | | 13 | | 1 | 3 () | | 14 U | | 1.1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 11200 | 0 | 0 | | | 12 U | 12 11 | 15 11 | 12 U | 16 | | 13 | U | 1 | 3 U | | 14 17 | | 1.1-Dichloroethene | UG/KG | 0.0 | 0.00% | 200
400 | 7821429 | 0 | 0 | | | 12 11 | 12 (1 | 15 U | 12 U | 16 | | 13 | | | T U | | 14 U | | 1.2-Dichloroethane | UG/kG | | | | | 0 | 0 | | | 12.0 | 12 ti | 15.47 | 12 U | 16 | | 13 | U | 1 | 3 [] | | 14 17 | | | | 0.0 | 0.00% | 100 | 7821429 | (1) | 0 | | | 12 1) | 12 11 | 15 U | 12 17 | 16 | O. | 13 | Į) | 1 | 3 () | | 14 11 | | 1.2-Drchloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | | 12 11 | 12 17 | 15.41 | 12 U | 16 | U | 13 | U | 1 | 3 U | | [4 U | | 1 2-Dichloropropane | UG/KG | 0.0 | 0.00% | | 9393 | 0 | 0 | | | 12 U | 12 11 | 15 U | 12 U | 16 | t? | 13 | U | | 3 () | | 14 17 | | Acetone | UG/KG | 660.0 | 54 550% | 200 | 7821429 | 1 | 6 | 11 | | 12 () | 12 11 | 660 I | 10 3 | 1.1 | J | 17 | | 1 | 2 J | | 14 11 | | Benzene | UG/KG | 0.0 | 0.00% | (4) | 22026 | () | 0 | | | 12/10 | 12 11 | 15 0 | 12 U | 16 | U | 13 | U | 1 | 3 () | | 14 U | | Bromodichloromethane | UG/KG | 0.0 | D 00% | | 10302 | 0 | 0 | | | 12 0 | 12 11 | 15 (1) | 12 T) | 16 | D. | 13 | U | 3 | 3 11 | | 14 U | | Bromolonn | UG/KG | 0.0 | 0.00% | | 80854 | () | Ð | | | 12 (1) | 12 11 | 15.10 | 12 17 | 16 | U | 13 | U | 1 | 3 U | | 14 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 7821429 | - 11 | D | | | 12/11 | 12 tl | 15 17 | 12 tJ | 16 | U | [3 | 1 1 | 1 | 3 (1 | | 14 U | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 6(8) | 4913 | 0 | D | | | 12/1/ | 12 11 | 15 U | 12 U | 16 | U | 13 | U | 1 | 3 U | | 14 U | | Chlorohenzene | UG/KG | 0.0 | 0.0055 | 1700 | 1564286 | n | Ð | | | 12 U | 12 11 | 15 U | 12 17 | 16 | U | [3 | U | i | 3 11 | | 14 U | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 7604 | 0 | D | 3.1 | | 12 () | 12 U | 12.41 | 12 U | 16 | () | [3 | U | i | 3 U | | 14 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 31285714 | n | Ð | 11 | | 12 U | 12 [] | 15 U | 12 U | 16 | U | 13 | U | i | 3 U | | 14 11 | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 104713 | 0 | () | 11 | | 12 17 | 12 17 | 15 U | 12 U | 16 | U | 13 | U | i | 3 U | | 14 U | | Cis-L3-Dichloroptopene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | l | 12 U | 12 17 | 15 () | 12 TI | 16 | U | 13 | U | 1 | 3 U | | 14 U | | 1 thy 1 benzene | UG/KG | 0.0 | 0.00% | 5500 | 7821429 | 0 | 13 | - 11 | | 12.11 | 12 U | 15 U | 12 U | 16 | U | 1.3 | ŧ1 | 1 | 3.11 | | 14 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 111846 | 0 | () | - 11 | | 12 11 | 12 U | 15 () | 12 U | 16 | t i | 13 | U | i | 3 U | | 14 U | | Methyl hulyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | - 11 | | 12/11 | 12 U | 15 U | 12 U | 16 | [J | 13 | U | | 3 U | | 14 U | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 49135 | 0 | 0 | H | | 12 17 | 12 17 | 15 11 | 12 U | 16 | U | 13 | t1 | 1 | 3 U | | 14 U | | Methyl ethyl ketone | UG/KG | 58.0 | 9.09% | 3(X) | | 0 | - 1 | 11 | | 12 U | 12 1/ | 58 | 12 U | 16 | l t | 13 | U | 1 | 3.17 | | 14 () | | Methyl (sobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 6257143 | () | 0 | - 11 | | 12 U | 12 U | 15 U | 12 U | 16 | U | 13 | U | ı | 3 () | | 14 12 | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 85167 | 0 | 0 | 11 | | 12 () | 12 U | 15 U | 12 U | 16 | U | 13 | U | i | 3 U | | 14 17 | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | | 12 U | 12 17 | 15-17 | 12 11 | 16 | 11 | 13 | U | 1 | 3 () | | 14 17 | | Tetrachloroethene | UGÆG | 0.0 | 0.00% | 1400 | 12284 | O | 0 | 11 | | 12 U | 12.11 | 15 U | 12 17 | 16 | [] | 13 | U | | 3 () | | 14 U | | Inluenc | PG/KG | 0.0 | 0.00% | 15(10) | 15642857 | G | 0 | 11 | l | 12 17 | 12 17 | 15 U | 12 U | 16 | U | 13 | | | 3 U | | [4 U | | Intal Xvienes | UG/KG | 0.0 | 0.00% | 1200 | | Ω | 0 | 11 | ! | 12 U | 12 t7 | 15 U | 12 17 | 16 | | 13 | | | 3 1) | | 14 U | | Trans-1.3-Dichloropropene | UG/KG | 0.0 | () (K) ⁴ % | | | 0 | 0 | 13 | 1 | 12 U | 12 U | 15 U | 12 U | 16 | | 11 | | | 3 U | | 14 U | | Trichloroethene | UG/KG | 0.0 | (1.00% | 700 | 58068 | (1 | 0 | 11 | | 12 U | 12 11 | 15.0 | 12 U | 16 | | 13 | | | 3 () | | 14 U | | Vinyl chloride | UG/KG | 0.0 | () (ዚምሬ | 200 | 336 | (1 | 0 | 11 | | 12.11 | 12 11 | 15 (1) | 12 13 | 16 | | 13 | | | 3 U | | 14 11 | Table 11-2 123D Volatiles in Soil vs TAGMs Non-Evaluated EBS
Sites | 1230
Estat | ÷ = | - | 1 M.n. 98 | 0° =
= | 1 - | 13 11 | | = = | 13 11 | 13 | 13 (1 | 13 12 | 13 [] | 13.11 | 13 13 | 13.17 | 13.11 | 13 13 | 11 11 | = = | = = | 13.01 | 11 11 | 11 11 | 11 11 | 13.13 | 13 11 | 13.11 | 13 | 13.11 | 13 11 | 11 11 | 13 11 | 13.13 | 3 11 | 13 11 | |--|--|------------------|-------------------|---------------------------------|----------------------------|-------------------------|---------------------|--------------------|--------------------|----------------------------|---------------------|---------|---------|----------------------|-----------|------------------|----------------------|---------------|----------------------|--------------|------------|-------------------------|---------------|----------------|---------------------|----------------|---------------------|-----------------------|--------------------|----------|-------------------|-----------|---------------|----------------------------|-----------------|--------------| | SFAD-123D
Area West of
Bilde 215 | F123058
UBf01
SA | Soll | ~ | VALIS | SLAD 123
Vies West
of Bide | 18100
5.0
5.1 | ;
=
=
; | Man ak | 0 5117 | 13 61 | | 13 41 | 13 (1 | 13 = | 13 6 | 17.1 | 4 | 11.1 | 11 13 | 13 61 | 13.11 | וזנו | 13 (1 | 13 13 | 11 11 | 13 17 | 2 5 | 1 | 13.11 | 13 13 | 12 51 | 13 61 | 13.0 | 11 11 | 13 11 | 13.13 | 13 11 | 11 11 | 13 13 | 11 11 | חוו | | SLAB-123D
Mea West of
Bible 218 | F1230 1 | SOIL | 2-Mar-98 | VALUE O | 11.11 | 13 17 | 13.13 | 11 | 13.12 | 13.17 | 13 43 | 13.61 | 13.11 | 13.41 | 13.0 | 13.11 | 13 11 | 13 11 | 11 (1 | 13.11 | 111 | 11 11 | 11 11 | | 13.6 | 13 (1 | 13.1 | 13 11 | 11 11 | 13 13 | 11 11 | 13.13 | 13 (1 | 13.61 | 13 11 | 11 (1 | | | | | NIMIN R | ANALYSIS VALUE | = | = | = | = | = | = | Ξ | = | | *** | Ξ | = | Ē | = | = | = | = | Ξ | = | Ξ | Ξ | - | = | = | = | = | Ξ | Ξ | = | Ξ | = | = | | | | | NUMBUR
Of | DE 11.C TS | σ | c | = | = | 0 | = | c | ٤ | C | G | С | \$ | \$ | \$ | = | c | 0 | 0 | c | c | 0 | 0 | - | c | 0 | 0 | 0 | 0 | ۵ | - | _ | ď | | | | | NI-MBI R | I NeM 0 | | | | 0 | ٥ | G | 2 | - | Ġ | G | C) | \$ | £ | \$ | ٥ | С | С | 0 | 0 | С | O | 0 | 0 | Q | С | 0 | | u | C | 0 | 0 | С | | | | | | PRG. | 31038 | 11206 | 0C11c8c | tou! | 7821429 | | 1616 | 7821129 | 22026 | 10302 | SDS | 7821129 | 1013 | 1564286 | Traba | 31285714 | 101713 | | 7821429 | 111846 | | 10116 | | 6257143 | 85167 | | 12284 | 15642847 | | | \$8008 | 116 | | | | | | 1ACiM
800 | COD | | 200 | 900 | 100 | | | 2130 | (Ju) | | | 2700 | (90) | 17(9) | | (K)(1 | ()()() | | 5500 | | | | 300 | 0001 | (K)) | | 14(%) | 1300 | 1200 | | 700 | 200 | | | | | FRI QUI NCY
Of | MAXIMUM DITECTION
0.0 0.00 | 4,000 | 0.00% | 0.00% | 0.00% | 0 (Ky"'' | 0.00% | ORY | 44 5500 | D DO" | 0.00% | O DO% | 0.00% | 2000 | 0.00% | 0 00°4 | 0.000% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 5,600 6 | 0.00% | 0.000% | 0.00% | %(00.0) | % (O O) % | O 000" | 5,000 0 | 0.00% | 0.00% | | | | | | MAXINIUM | 0.0 | 0.0 | 00 | 00 | 00 | U U | 00 | II (IV) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 9 | 0.0 | 0 | 0.0 | 0 | 00 | 0.0 | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 | 0.0 | 0.0 | 0.0 | | | | | | TORG | DG/NG | (TC)/NC) | HG/KG | HGANG | LCARG | DG/KG | UCARG | PG/KG | UCAC | UGAKG | DC/AC | DG/PG | UCASG | UGARG | OGWG | UGAG | TGAKG | UGAG | UGAKG | UCAS | UGAG | UGARG | UGAG | DGARG | DCAC | 1367/563 | UGARG | DG/KG | 1107/03 | DCARG | UGAKG | DC/AG | | SH11
DISCRIPTION | FOCID
SAMP ID
QC CODE
SAMP DI HEIOP | SAMP DEFITIOR | SAMP DAII | PARAMITTER
111 Pachdonethane | 1.1.2.2. Letrachloroethane | 1.1.2 - Frachiornethanc | 1.1 Dichlorivethane | 1 I-Dichloriethene | 1 2-Dichloroethane | 1.2-Dichloroethene (10fal) | 1.2 Dichloropropane | Acctone | Benzene | Bromodichloromethine | Bremeferm | Carbon disuffide | Carbon tetrachlorale | Chlorobenzene | Chlorodibromomethane | Chloroethane | Chloroform | Cis.1 3.Dalbloropropene | Ethyl benzene | Methyl brounde | Methyl butyl ketone | Methy chloride | Methyl ethyl ketone | Methyl pobutyl ketone | Methylene chloride | Styrche | Tetrachloroethene | Lotuene | fotal Xylenes | Irans-1, 3-Dichloropropene | Tric Morocthene | Vinctablende | Ebs-123v xfs 123D-TAGM #### Table 11-3 123D - Volatiles in Soll vs PRG-RES Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD 1 | | SEAD 12 | | SEAD-12 | | SEAD 123 | | SEAD-12 | | SEAD-12 | | SEAD-123 | 3D | SEAD-123D | SEAD-123D | |----------------------------|-------|-----------|----------|------|----------|--------|---------|-------------|-----------------|---------|-----------------|------|----------|-------|----------|--------------|----------|--------------|----------|------|----------|--------------|--------------|--------------| | DESCRIPTION | | | | | | | | | Area We | | Area Wes | | Area We | | Area Wes | | Area We | | Area Wes | | Area Wes | | Area West of | Area West of | | LOC ID | | | | | | | | | Rldg 71 | | Bldg 715 6ldg 715 | | SAMP ID | | | | | | | | | TP1230
EB108 | 1-1 | TF123D
EB109 | 7 | TP123D- | 2 | TP123D-2 | 2 | TP123D- | 3 | TP123D-3 | 3 | TP123D-3 | 3 | TP123D-4 | TP123D-4 | | OC CODE | | | | | | | | | SA | | | | EB106 | | EB107 | | E9001 | | EB102 | | EB103 | | EB104 | EB105 | | SAMP DETH TOP | | | | | | | | | SA | 0.5 | SA | | SA | | SA | | DU | | SA | | SA | | SA | SA | | SAMP DEPTH BOT | | | | | | | | | | 05 | | 1 | | 0.5 | | 15 | | 0.5 | | 0.5 | | 2 | 0.5 | 1 | | MATRIX | | | | | | | | | SOIL | 0.5 | | 1 | | 0.5 | | 1.5 | | 0.5 | | 05 | | 2 | 0.5 | 1 | | SAMP DATE | | - | REQUENCY | | | NUM8ER | NUMBER | NUMBER | | 1ar-98 | SOIL
5 Ma | 00 | SOIL | SOIL | | SAMI. DATE | | | OF | | | ABOVE | OF | OF | n-W | 121-315 | 5 Ma | 1.98 | 5-M: | ar 98 | 5 Mar | r-98 | 4-Ma | r-98 | 4-Ma | r-98 | 4-Ma | r-98 | 5-Mar-98 | 5-Mar-98 | | PARAMETER | UNIT | MAXIMUM D | | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | 0 | VALUE | 0 | VALUE | Q | VALUE | 0 | VALUE | | | _ | | _ | | | | 1.1.1-Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 2737500 | 0 | DETECTO | MINNE T-SES | | 12 U | AWFOL | 12 U | VALUE | 15 U | VALUE | | VALUE | Q | VALUE | Q | VALUE | Q | VALUE Q | VALUE | | 1 1 2 2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 31938 | 0 | 0 | 1. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1 1 2-Trichloroethane | UG/KG | 0.0 | 0.00% | 600 | 11206 | 0 | 0 | 1. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1 1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 7821429 | 0 | 0 | 1 | | 12 U | | 12 U | | 15 U | | 12 U
12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1.1-Dichlornethene | UG/KG | 00 | 0.00% | 400 | 1065 | 0 | 0 | 1 | | 12 U | | 12 U | | 15 U | | | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1.2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 7821429 | 0 | 0 | 1. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1.2-Dichloroethene (total) | UG/KG | 00 | 0.00% | 100 | 7021423 | 0 | | 1. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | 1 2-Dichloropropane | UG/KG | 00 | 0.00% | | 9393 | 0 | 0 | 1. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Acetone | UG/KG | 660 0 | 54 55% | 200 | 7821429 | 0 | | | | 12 U | | 12 U | | 660 E | | 12 U | | 16 U
11 J | | 13 U | | 13 U | 14 U | 13 | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 22026 | 0 | 0 | | | 12 U | | 12 U | | 15 U | | 12 U | | | | 17 | | 12 J | 14 U | 13 | | Bromodichloromethane | UG/KG | 00 | 0.00% | 00 | 10302 | 0 | 0 | 1 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U
16 U | | 13 U | | 13 U | 14 U | 13 | | Bromoform | UG/KG | 00 | 0.00% | | 60854 | 0 | 0 | 5. | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U
13 U | 14 U | 13 | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 7821429 | 0 | n n | 1: | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Carbon tetrachloride | UG/KG | 00 | 0.00% | 600 | 4913 | ő | n | 1 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13
13 | | Chlorobenzene | UG/KG | 00 | 0 00% | 1700 | 1564286 | 0 | n | , | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 7604 | o | n | 11 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13
13 | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 31285714 | 0 | n | 1 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 104713 | 0 | 0 | 1. | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Cis 1 3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 1 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 7821429 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 111846 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methyl butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 49135 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methyl ethyl ketone | UG/KG | 58 0 | 9 09% | 300 | | 0 | 1 | 11 | 1 | 12 U | | 12 U | | 58 | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methyl isobutyl ketone | UG/KG | 0.0 | 0 00% | 1000 | 6257143 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 85167 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 |
1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 12284 | 0 | 0 | 11 | t | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Toluens | UG/KG | 0.0 | 0.00% | 1500 | 15642857 | 0 | 0 | 13 | F | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | | 0 | 0 | 11 | f | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Trans 1 3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | ī | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Trichlorosthene | UG/KG | 0.0 | 0.00% | 700 | 58068 | 0 | 0 | 11 | | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | | Vinyl chlaride | UG/KG | 0.0 | 0.00% | 200 | 336 | 0 | 0 | 11 | 1 | 12 U | | 12 U | | 15 U | | 12 U | | 16 U | | 13 U | | 13 U | 14 U | 13 | #### Table 11-3 123D Volatiles in Soll vs PRG-RES Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-123D | SEAD 123D | |----------------------------|-------|---------|-----------|------|----------|--------|---------|------------|--------------|--------------| | DESCRIPTION | | | | | | | | | Area West of | Area West of | | THE TOTAL PROPERTY. | | | | | | | | | Bldg 715 | Bldg 715 | | LOC ID | | | | | | | | | TP123D-5 | TP123D-5 | | SAMP ID | | | | | | | | | EB100 | FB101 | | OC CODE | | | | | | | | | SA | SA | | SAMP DETH TOP | | | | | | | | | 1.5 | 4.1 | | SAMP DEPTH BOT | | | | | | | | | 1.5 | 4.1 | | MATRIX | | | | | | | | | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 4 Mar 98 | 4 Mar-98 | | SAME DATE | | | OF | | | ABOVE | OF | OF | 4 MAT 10 | 4 MAL-383 | | PARAMETER | UNIT | MAXIMUM | DETLCTION | TAGM | PRG | TAGM | DETECTS | ANALYSES Q | VALUE Q | VALUF Q | | 1 1 1 Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 2737500 | 0 | 0 | 11 U | 13 U | 13 U | | 1 1 2 2 Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 31938 | 0 | 0 | 11 U | 13 U | 13 U | | 1 1 2 Trichloroethane | UG/KG | 0.0 | 0.00% | 0.0 | 11206 | 0 | 0 | 11 U | 13 U | 13 U | | 1.1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 7821429 | 0 | 0 | 11 U | 13 U | 13 U | | 1.1 Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 1065 | 0 | 0 | 11 U | 13 U | 13 U | | 1.2 Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 7821429 | 0 | 0 | 11 U | 13 U | 13 U | | 1.2 Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | 1027120 | 0 | 0 | 11 U | 13 U | 13 U | | 1.2 Dichloropropane | UG/KG | 0.0 | 0.00% | | 9393 | 0 | 0 | 11 U | 13 U | 13 U | | Acetone | UG/KG | 660 0 | 54 55% | 200 | 7821429 | 0 | 6 | 11 U | 16 | 13 U | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 22026 | 0 | 0 | 11 U | 13 U | 13 U | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 10302 | 0 | 0 | 11 U | 13 U | 13 U | | Bromoform | UG/KG | 0.0 | 0.00% | | 80854 | 0 | 0 | 11 U | 13 U | 13 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 7821429 | 0 | 0 | 11 U | 13 U | 13 U | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 4913 | 0 | 0 | 11 U | 13 U | 13 U | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 1564286 | 0 | 0 | 11 U | 13 U | 13 U | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 7604 | 0 | 0 | 11 U | 13 U | 13 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 31285714 | 0 | 0 | 11 U | 13 U | 13 U | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 104713 | 0 | 0 | 11 U | 13 U | 13 U | | Cis-1.3 Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | 13 U | 13 U | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 7821429 | 0 | 0 | tt U | 13 U | 13 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 111846 | 0 | 0 | 11 U | 13 U | 13 U | | Methyl butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | 13 U | 13 U | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 49135 | 0 | 0 | 11 U | 13 U | 13 U | | Methyl ethyl ketone | UG/KG | 58 0 | 9 09% | 300 | | 0 | 1 | 11 U | 13 U | 13 ປ | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 6257143 | 0 | 0 | 11 U | 13 U | 13 U | | Mathylene chloride | UG/KG | 0.0 | 0.00% | 100 | 85167 | 0 | 0 | 11 U | 13 U | 13 U | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | 13 U | 13 U | | Tetrachloroethene | UG/KG | 0.0 | D 00% | 1400 | 12284 | 0 | 0 | 11 U | 13 U | 13 U | | Toluene | UG/KG | 0.0 | 0.00% | 1500 | 15642857 | 0 | 0 | 11 U | 13 U | 13 U | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | | 0 | 0 | 11 U | 13 U | 13 U | | Trans 1 3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | 13 U | 13 U | | Trichloroethene | UG/KG | 0.0 | 0.00% | 700 | 58068 | 0 | 0 | 11 U | 13 U | 13 U | | Vinyl chloride | UG/KG | 0.0 | 0 00% | 200 | 336 | 0 | 0 | 11 U | 13 U | 13 U | #### Table 11-4 123D - Semivolatiles/TPH in Solls vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123D
Area West of
Bldg 715 | | SEAD-123D
Area West of
Bldg 715 |---|----------------|---------------|-------------------|----------------|-----------------------|--------|---------------|----------------|---------------------------------------|----|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| LOC ID
SAMP ID
QC CODE | | | | | | | | | TP123D-1
EB108
SA | | TP123D-1
EB109
SA | TP123D-2
EB106
SA | TP123D-2
E8107
SA | TP123D-3
EB001
DU | TP123D-3
EB102
SA | TP123D-3
EB103
SA | TP123D-4
EB104
SA | | SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | 0.5
0.5 | | 1 | 05
05 | 1.5
1.5 | 0 5
0 5 | 0 5
0 5 | 2 2 | 0.5
0.5 | | MATRIX
SAMP DATE | | • | REQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL
5-Mar-98 | | SOIL
5-Mar-98 | SOIL
5 Mar-98 | SOIL
5-Mar-98 | SOIL
4-Mar-98 | SDIL
4-Mar-98 | SOIL
4-Mar-98 | SQIL
5-Mar-98 | | PARAMETER | UNIT | | OF | TAGM | PRG | ABOVE | QF
DETFCTS | OF
ANALYSES | | 0 | VALUE Q | | | | | | | | 1,2.4 Trichlorobenzene | UG/KG | MAXIMUM I | DETECTION
0 0% | 3400 | 782143 | IAGM | 0 0 | ANALTSES | | | B1 U | VALUE Q
88 U | VALUE Q
83 U | VALUE Q
88 U | VALUE Q
89 U | VALUE Q
88 U | VALUE
97 | | 1,2-Dichlorobenzene | UG/KG | 0.0 | 0.0% | 7900 | 7039286 | (| | 1 | | | 81 U | 8B U | 83 U | 88 U | 89 U | 88 U | 97 | | 1 3-Dichlorobenzene
1 4-Dichlorobenzene | UG/KG
UG/KG | 00 | 0 0%
0 0% | 1600
8500 | 6961071
26615 | (| | 1 | | | 81 U
81 U | 88 U
88 U | 83 U
83 U | 88 U
88 U | 89 U
89 U | 88 U
88 U | 97
97 | | 2 4.5-Trichlorophenol | UG/KG | 00 | 0.0% | 100 | 7821429 | , | - | i | | | 200 U | 210 U | 200 U | 210 U | 220 U | 210 U | 240 | | 2 4 6 Trichlorophenal | UG/KG | 0.0 | 0.0% | | 58068 | (| 0 | 1 | | | B1 1J | 86 U | 83 U | 88 U | 89 U | 88 U | 97 | | 2 4-Dichlarophenol | UG/KG | 0.0 | 0 0% | 400 | 234643 | (| | 1 | | | Bt U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 2 4-Dimethylphenol 2 4-Dinitrophenol | UG/KG
UG/KG | 00 | 0 0% | 200 | 1564286
156429 | (| - | 1 | | - | 81 U
200 U | 88 U
210 U | 83 U
200 U | 88 U
210 U | 89 U
220 U | 88 U
210 U | 97
240 | | 2 4-Dinitrophenol | UG/KG | 00 | 0.0% | 200 | 156429 | , | | 1 | | | 200 U | 210 U | 200 U | 210 U | 220 U
89 U | 210 U
RA U | 240
97 | | 2 5-Dinitrotoluene | UG/KG | 0.0 | 0.0% | 1000 | 78214 | | 0 | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 2-Chloronaphthalene | UG/KG | 0.0 | 0.0% | | | | | 1 | | | 81 U | 68 U | 83 U | 88 U | 89 U | 88 U | 97 | | 2 Chlorophenol | UG/KG
UG/KG | 00 | 0 0%
9 1% | 800
36400 | 391071 | (| | 1 | | | 81 U
81 U | 68 U
68 U | 83 U
83 U | 88 U
88 U | 89 U ' | 88 U | 97 | | 2 Methylnaphthalene
2-Methylphenol | UG/KG | 54 | 0.0% | 100 | 3910714 | | 0 | | | | 81 U | 88 U | 83 U | 88 U | 89 U
89 U | 17 88
17 88 | 5 4
97 | | 2-Nitroanline | UG/KG | 0.0 | 0.0% | 430 | 4693 | | | 1 | 1 200 | | 200 U | 210 U | 200 U | 210 U | 220 U | 210 U | 240 | | 2 Nitrophenol | UG/KG | 0.0 | 0.0% | 330 | | (| | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 3 3 -Dichtorobenzidine 3-Nitroamline | UG/KG
UG/KG | 00 | 0.0% | 500 | 1419
234643 | (| | 1 | | | 81 U
200 U | 88 U
210 U | 83 U
200 U | 88 U
210 U | 89 U
220 U | 88 U
210 U | 97
240 | | 3-Niπoaniine
4 6-Dinitro-2-methylphenol | UG/KG | 00 | 0.0% | 900 | 234543 | , | | 1 | | | 200 U | 210 U | 200 U | 210 U | 220 U | 210 U | 240 | | 4 Bromophenyl phenyl ether | UG/KG | 00 | 0.0% | | 4536429 | | 0 | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 4-Chloro-3-methylphenol | UG/KG | 0.0 | 0.0% | 240 | | | | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 4-Chloroaniline | UG/KG
UG/KG | 0.0 | 0.0% | 220 | 312857 | | | 1 | | | 81 U
81 U | 88 U
88 U | 83 U
83 U | 88 U
88 U | 89 U
89 U | 88 U
88 U | 97
97 | | 4-Chlorophenyl phenyl ether 4-Methylphenol | UG/KG | 00 | 0.0% | 900 | | , | | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 4-Nitroaniline | UG/KG | 0.0 | 0.0% | | 234643 | (| | 1 | 1 200 | U | 200 U | 210 U | 200 U | 210 U | 220 U | 210 U | 240 | | 4 Nitrophenol | UG/KG | 00 | 0.0% | 100 | 4692857 | (| | 1 | | | 200 U | 210 U | 200 U | 210 U | 220 U | 210 U | 240 | | Acenaphthene
Acenaphthylene | UG/KG | 00 | 0.0% | 50000
41000 | | (| | 1 | | | 81 U
81 U | 88 U
88 U | 83 U
83 U | 88 U
88 U | 89 U
89 U | 88 U
88 U | 97
97 | | Anthracene | UG/KG | 00 | 0.0% | 50000 | 23464286 | · | | , | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Benzo[a]anthracene | UG/KG | 120 | 36 4% | 224 | 875 | | | 1 | 1 96 | 1 | 81 U | 88 U | 83 U | 47 J | 89 U | 88 U | 12 | | Benzo[a]pyrene | UG/KG | 27 0 | 63 6% | 61 | 88 | (| | 1 | | | 49 J | 88 U | 83 U |
52 J | 48 J | 88 U | 27 | | Benzo(b)fluoranthene
Benzo(gh)perylene | UG/KG
UG/KG | 35 0
26 0 | 100 0%
45 5% | 1100
50000 | 875 | (| | 1 | 0 12
1 86 | | 57 J
65 J | 85 J
88 U | 83 U
83 U | 94 J
88 U | 51 J
48 J | 6.3 J
88 U | 35
26 | | Benzo[k]/fluoranthene | UG/KG | 31 0 | 72 7% | 1100 | 8750 | | | 1 | | | 45 J | 88 U | 83 U | 59 J | 67 J | 5 2 J | 31 | | 8is(2-Chloroethoxy)methane | UG/KG | 0.0 | 0.0% | | | | | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | 8is(2-Chloroethyf)ether | UG/KG | 00 | 0.0% | | 581
9125 | | | 1 | | | 81 U
81 U | 88 U
88 U | 83 U
83 U | . 88 U
88 U | 89 U
89 U | 88 U
88 U | 97
97 | | 8is(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG
UG/KG | 28 0 | 63.6% | 50000 | 45625 | , | | 1 | | | 95 J | 88 U | 83 U | 13 J | 89 U | 12 J | 28 | | Butylbenzylphthalate | UG/KG | 8 1 | 18 2% | 50000 | 15642857 | · | | 1 | | | 81 U | 88 U | 83 U | 88 U | 8 1 JB | 88 U | 97 | | Carbazole | UG/KG | 0.0 | 0.0% | | 31938 | (| | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Chrysene
Di-n-butylphthalate | UG/KG
UG/KG | 25 0
9 8 | 72 7%
18 2% | 400
8100 | 87500 | (| | 1 | | | 81 U
81 U | 88 U
88 U | 83 U
83 U | 8 J
5 7 J | 6 J | 6 4 J
88 U | 25
9.8 | | Di-n-octylphthalate | UG/KG | 00 | 0.0% | 50000 | 1564286 | , | | | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Dibenz(a,h)anthracene | UG/KG | 14 0 | 18 2% | 14 | | | 2 | 1 | 1 82 | U | 63 J | 88 U | 83 U | 88 U | 89 U | 88 U | 14 | | Dibenzofuran | UG/KG | 0.0 | 0.0% | 6200 | 312857 | (| | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Diethyl phthalate Dimethylphthalate | UG/KG
UG/KG | 25 0 | 100 0% | 7100
2000 | 62571429
782142857 | | | 1 | | JB | 9 1 JB
81 U | U 88
U 88 | 8 2 BJ
83 U | 25 JB
88 U | 14 JB
89 U | 17 JB
88 U | 9 9
97 | | Ethylene Glycol | MG/KG | 00 | 0.0% | 2000 | 156428571 | | | 1 | | | 01 0 | 00 0 | 55 6 | w 0 | | 00 0 | 37 | | Fluoranthene | UG/KG | 26 0 | 81 8% | 50000 | 3128571 | | 9 | 1 | | | 81 U | 58 J | 83 U | 11 J | 87 J | 86 J | 26 | | Fluorene | UG/KG | 0.0 | 0.0% | 50000 | 3128571
399 | | | | 1 82 | | 81 U | 88 U | 83 U
83 U | 88 U
88 U | U 98
U 98 | 88 U
88 U | 97
97 | | Hexachlorobenzene
Hexachlorobutadiene | UG/KG
UG/KG | 00 | 0.0% | 410 | 399
8189 | | | 1 | | | 81 U
81 U | 88 U
88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Hexachlorocyclopentadiene | UG/KG | 00 | 0.0% | | 547500 | | | | 1 82 | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Hexachloroethane | UG/KG | . 00 | 0.0% | | 45625 | | 0 | | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Indeno[1,2 3-cd]pyrene | UG/KG | 20.0 | 72 7%
0 0% | 3200
4400 | 875 | | | 1 | | | 6.5 J
81 U | 88 U
88 U | 83 U
83 U | L 9 9 | 4.8 J
89 U | 88 U
88 U | 20
97 | | Isophorone
N-Nitrosodiphenylamine | UG/KG
UG/KG | 00 | 0.0% | 4400 | 130357 | | | 1 | | | 81 U
81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | N-Nitrosodipropylamine | UG/KG | 00 | 0.0% | | .55557 | | | i | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Naphthalene | UG/KG | 0.0 | 0 0% | 13000 | 3128571 | (| | 1 | | | 81 U | 88 U | 83 U | 88 U | 89 U | 88 U | 97 | | Nitrobenzene | UG/KG | 0.0 | 0.0% | 200 | 39107 | (| - | 1 1 | | | 81 U
200 U | 88 U
210 U | 83 U
200 U | 88 U
210 U | 89 U
220 U | 88 U
210 U | 97
240 | | Pentachlorophenol Phenanthrene | UG/KG
UG/KG | 0 0
17 0 | 0 0%
54 5% | 1000
50000 | 5323 | (| - | 1 | | | 200 U
81 U | 210 U
88 U | 200 U
83 U | 210 U | 220 U | 210 U
4.8 J | 240
17 | | Phenol | UG/KG | 00 | 0.0% | 30 | 46928571 | · | | 1 | | | 81 U | 88 U | 63 U | 88 U | 89 U | 88 U | 97 | | Propytene Glycol | MG/KG | 0.0 | 0.0% | | | | | 1 | | | | | | | | | | | Pyrene | UG/KG
MG/KG | 30 0
221 0 | 81 8%
45 5% | 50000 | 2346429 | | | 1 | | | 81 U
18 9 U | 5 4 J
34 8 | 83 U
19 U | 10 J
22 1 | 8 2 J
39 4 | 73 J
21 U | 30
115 | | irn | MG/KG | 2210 | 40 0% | | | , | | ' | . 103 | - | 10 9 0 | 3-0 | 19 0 | 24 1 | 30 4 | 2, 0 | 113 | Ebs-123s xis | SITE
DESCRIPTION | | | | | | | | | SEAD-123D
Area West of
Bldg 715 | SEAD 123D
Area West of
Bidg 715 | SEAD-123D
Area West of
Bidg 715 | |--|----------------|--------------|-----------------|--------------|-----------------------|--------|---------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------| | LOG ID
SAMP ID | | | | | | | | | TP123D 4
EB105 | TP123D-5
EB100 | TP1230-5
E8101 | | QC CODE
SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | SA 1 | SA
15
15 | SA 41 | | MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL
5 Mar-98 | SOIL
4-Mar-98 | SOIL
4 Mar 98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG | ABOVE | OF
DETECTS | OF
ANALYSES Q | VALUE Q | VALUE Q | VALUE, Q | | 1 7 4 Trichlorobenzene | UG/KG | 0.0 | 0.0% | 3400 | 782143 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | 1,2 Dichlorobenzene | UG/KG | 0.0 | 0.0% | 7900 | 7039286 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | 1 3-Dichlorobenzene
1 4-Dichlorobenzene | UG/KG
UG/KG | 00 | 0.0% | 1600
8500 | 6961071
26615 | | 0 0 | 11 U | BI U | 84 U | 86 U | | 2.4.5 Trichlorophenal | UG/KG | 0.0 | 0.0% | 100 | 7821429 | | 0 0 | 11 U | 81 U
200 U | 84 U
200 U | 86 U
210 U | | 2 4 6 Trichlorophenal | UG/KG | 0.0 | 0.0% | | 58068 | | 0 0 | | 81 U | 84 U | 86 U | | 2.4-Dichlorophenol | UG/KG | 0.0 | 0.0% | 400 | 234643 | | O D | 11 U | 81 tJ | 84 U | 86 U | | 2.4 Dimethylphenol | UG/KG | 0.0 | 0.0% | 200 | 1564286 | | 0 0 | 11 U | B1 U | 84 U | 86 U | | 2,4-Dinitrophenol
2,4-Dinitrotoluene | UG/KG
UG/KG | 00 | 0 0%
0 0% | 200 | 156429
156429 | | 0 0 | 11 U
11 U | 200 U
81 U | 200 ป
84 ป | 210 U
86 U | | 2 6-Dinkrotoluene | UG/KG | 0.0 | 0.0% | 1000 | 78214 | | 0 0 | 11 U | B1 U | 84 U | 86 U | | 2 Chloronaphthalene | UG/KG | 0.0 | 0.0% | | | | 0 0 | 11 U | 81 U | 84 U | 86 U | | 2 Chlorophenol | UG/KG | 0.0 | 0.0% | 800 | 391071 | | 0 0 | 11 U | 61 U | 84 U | 86 U | | 2 Methylnaphthalene | UG/KG | 5 4 | 91% | 36400 | | | 0 1 | 11 J | 81 U | 84 U | 86 U | | 2-Methylphenol
2-Nitroaniline | UG/KG
UG/KG | 00 | 0.0% | 100
430 | 3910714
4693 | | 0 0 | 11 U
11 U | 81 U
200 U | 84 U
200 U | 86 U
210 U | | 2-Nitrophenol | UG/KG | 0.0 | 0.0% | 330 | 407.1 | | 0 0 | | 81 U | 84 U | 86 U | | 3.3 -Dichlorobenzidine | UG/KG | 0.0 | 0.0% | | 1419 | | 0 0 | 11 U | 81 U | B4 U | 86 U | | 3-Nitroaniline | UG/KG | 0.0 | 0.0% | 500 | 234643 | | 0 0 | 11 U | 200 U | 200 U | 210 U | | 4 6-Dinitro-2 methylphenol | UG/KG
UG/KG | 00 | 0.0% | | 4536429 | | 0 0 | 11 U | 200 U | 200 U | 210 U | | 4-Bromophenyl phenyl ether
4 Chloro-3-methylphenol | UG/KG | 00 | 0.0% | 240 | 4236429 | | 0 0 | | 81 U
81 U | 84 U
84 U | บ 88
บ 88 | | 4-Chloroaniline | UG/KG | 0.0 | 0.0% | 220 | 312857 | | 0 0 | | 81 U | 84 U | 86 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0.0 | 0.0% | | | | 0 0 | 11 U | 81 U | 84 U | 86 U | | 4-Methylphenol | UG/KG | 0.0 | 0.0% | 900 | | | 0 0 | 11 U | 81 U | 84 U | 86 U | | 4-Nitroaniline
4-Nitrophenol | UG/KG | 00 | 0.0% | 100 | 234643
4692857 | | 0 0 | 11 U | 200 U
200 U | 200 U
200 U | 210 U
210 U | | Acenaphthene | UG/KG | 00 | 00% | 50000 | 4032037 | | 0 0 | | 81 U | 84 U | 86 U | | Acenaphthylene | UG/KG | 0.0 | 0.0% | 41000 | | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Anthracene | UG/KG | 0.0 | 0.0% | 50000 | 23464286 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Benzo(a)anthracene | UG/KG
UG/KG | 12 0
27 0 | 36.4%
63.6% | 224
61 | 875
88 | | 0 4 | 11 J
11 J | 95 J
13 J | 84 U
84 U | 86 U | | Benzo(a)pyrene
Benzo(b)fluoranthene | UG/KG | 350 | 100.0% | 1100 | 875 | | 0 10 | | 13 J | 10 JY | 45 J
88 J | | Benzo(ghi)perylene | UG/KG | 26 0 | 45.5% | 50000 | | | 0 5 | 11 J | 15 J | 84 U | 86 U | | Banzo(k)fluoranthene | UG/KG | 31 0 | 72 7% | 1100 | 8750 | | 0 8 | 11 J | 13 J | 84 U | 45 J | | Bis(2-Chloroethoxy)methane | UG/KG
UG/KG | 00 | 0.0% | | 581 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Bis(2-Chloroethyl)ether
Bis(2-Chloroisopropyl)ether | UG/KG | 00 | 0.0% | | 9125 | | 0 0 | 11 U
11 U | 81 U
81 U | 84 U
84 U | 86 U
86 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 28 0 | 63.6% | 50000 | 45625 | | 0 7 | 11 J | 81 U | 72 J | 73 J | | Butylbenzylphthafate | UG/KG | 8 1 | 18 2% | 50000 | 15642857 | | 0 2 | 11 U | 81 U | 84 U | 5 4 JB | | Carbazole | UG/KG | 0.0 | 0 0% | | 31938 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Chrysene
Di-n-butylphthalate | UG/KG
UG/KG | 25 0
9 8 | 72 7%
18 2% | 400
8100 | 87500 | | 0 6 | 11 J
11 J | 15 J
81 U | 5 1 J
84 U | 69 J
86 U | | Di-n-octylphthalate | UG/KG | 0.0 | 0.0% | 50000 | 1564286 | | 0 0 | 11 U | 81 U | 84 U
84 U | 86 U | | Dibenz[a h]anthracene | UG/KG | 14 0 | 18 2% | 14 | | | 0 2 | 11 J | 81 U | 84 U | 86 U | | Dibenzofuran | UG/KG | 0.0 | 0.0% | 6200 | 312857 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Diethyl phthalate
Dimethylphthalate | UG/KG
UG/KG | 25 0
0 0 | 100 0% | 7100
2000 | 62571429
782142857 | | 0 10 | 10 JB
11 U | 57 JB
81 U | 17 JB
84 II | 18 JB
86 U | | Ethylene Glycol | MG/KG | 0.0 | 0.0% | 2000 | 156428571 | | 0 0 | 11 | 81 U | 84 0 | 86 0 | | Fluoranthene | UG/KG | 26.0 | 81 8% | 50000 | 3128571 | | 0 9 | 11 J | 20 J | 71 J | 82 J | | Fluorene | UG/KG | 0.0 | 0 0% | 50000 | 3128571 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Hexachlorobenzene | UG/KG | 0.0 | 0.0% | 410 | 399 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Hexachlorobutadiene
Hexachlorocyclopentadiene | UG/KG
UG/KG | 00 | 0.0% | | 8189
547500 | | 0 0 | 11 U
11 U | 81 ป
81 ป | 84 U
84 U | 86 U
86 U | | Hexachloroethane | UG/KG | 00 |
0.0% | | 45625 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Indeno[1 2,3-cd]pyrene | UG/KG | 20 0 | 72 7% | 3200 | 875 | | 0 8 | 11 J | 15 J | 5 J | 5 4 J | | Isophorone | UG/KG | 0.0 | 0.0% | 4400 | | | 0 0 | 11 U | 81 U | 84 U | 86 U | | N-Nitrosodiphenylamine | UG/KG | 0.0 | 0 0% | | 130357 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | N-Nitrosodipropylamine
Naphthalene | UG/KG | 0.0 | 0.0% | 13000 | 3128571 | | 0 0 | 11 U
11 U | 81 U
81 ป | 84 U
84 U | 86 U
86 U | | Naphthalene | UG/KG | 0.0 | 0.0% | 200 | 39107 | | 0 0 | 11 U | 81 U | 84 U | 86 U | | Pentachlorophenol | UG/KG | 00 | 0 0% | 1000 | 5323 | | 0 0 | 11 U | 200 U | 200 U | 210 U | | Phenanthrene | UG/KG | 170 | 54 5% | 50000 | | | 0 6 | 11 J | 14 J | 84 U | 46 J | | Phenol | UG/KG | 0.0 | 0.0% | 30 | 46928571 | | 0 0 | 11 U
11 | 81 U | 84 U | 86 U | | Propylene Glycol
Pyrene | MG/KG
UG/KG | 00
300 | 0.0%
81.8% | 50000 | 2346429 | | 0 0 | 11
11 J | 22 J | 66 J | 66 J | | TPH | MG/KG | 221 0 | 45 5% | JANAN | Exames | | 0 5 | 11 | 221 | 163 U | 197 U | Ebs-123s xfs #### Table 11-5 123D - Semivolatiles/TPH in Solls vs PRG-RES Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD 123D
Area West of
Bidg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bidg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bidg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bidg 715 | |--|--|--|--|--|---|--|--|---|--|---|---|---|---|---|--|--| | LOCID SAMPID OC CODE SAMP DETHIOP SAMP DEPTH BOT MATRIX | | | | | | | | | TP123D 1
FB108
SA
0 5
0 5 | TP123D-1
EB:09
SA 1
1 | TP123D-2
EB106
SA
0 5
0 5 | TP123D 2
EB107
SA 15 | TP123D-3
EB001
DU 0 5
0 5 | TP123D-3
EB102
SA 05
05 | TP123D-3
EB103
SA 2
SOIL | TP123D-4
EB104
SA 0 5
0 5 | | SAMP DATE | | FR | EQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5-Mar-98 | 5-Mar-98 | 5-Mar-98 | 4-Mar-98 | 4-Mar-98 | 4-Mar-98 | 5-Mar-98 | | 1.2.4-Trichforobenzene 1.2-Dichforobenzene 1.3-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforophenol 1.4-Dichforophenol 1.4-Dichforophenol 1.4-Dimethylphenol 1.4 | UNIT UG/KG | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | OF | TAGM 3400 7500 1600 8500 100 400 200 1000 800 36400 100 430 500 100 430 500 500 100 100 100 100 100 100 100 10 | PRG 782143 703926 6961071 26615 7821429 58066 234643 1564296 1564296 78214 3910714 4633 4613 4536429 312857 | ABOVE LAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DETECTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ANALYSES 11 11 11 11 11 11 11 11 11 11 11 11 11 | 82 U
82 U
82 U
82 U
82 U
82 U
82 U
82 U | VALUE 0 81 U 81 U 81 U 81 U 200 U 81 U 81 U 200 U 81 | VALUE 0 88 U 88 U 88 U 210 U 210 U 210 U 210 U 210 U 88 U 88 U 210 U 210 U 210 U 88 8 | VALUE 0 83 U | VALUE 88 U 8 | VALUE Q 89 U 89 U 89 U 89 U 220 U 89 | VALUE | VALUE 97 U 97 U 97 U 97 U 240 U 97 9 | | Anthracene Benzo(a)anthracene Benzo(a)ayrene Benzo(b)fluoranthene Benzo(gh)perylene Benzo(k)fluoranthene | UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG | 0 0
0 0
12 0
27 0
35 0
26 0
31 0 | 0 00%
0 00%
36 36%
63 64%
100 00%
45 45%
72 73%
0 00% | 41000
50000
224
61
1100
50000
1100 | 23464286
875
88
875
875 | 0 | 0
4
7
10
5 | 11
11
11
10
11
11 | 82 U
82 U
96 J
11 J
12 J
86 J
13 J
82 U | 81 U
81 U
49 J
57 J
65 J
45 J
81 U | 88 U
88 U
86 U
85 J
86 U
88 U | 83 U
83 U
83 U
83 U
83 U
83 U
83 U | 88 U
88 U
47 J
52 J
94 J
88 U
59 J | 89 U
89 U
89 U
48 J
51 J
46 J
67 J
89 U | 88 U
88 U
88 U
63 J
88 U
52 J
88 U | 97 U
97 U
12 J
27 J
35 J
26 J
31 J
97 U | | Bis(2-Chloroethyl)ether Bis(2-Chloroespropyl)ether Bis(2-Chloroespropyl)ether Bis(2-Chloroespropyl)ethel Bis(2-Chloroespropyl)ethelate Butylbenzylphthalate Carbazole Chrysene Di-n-butylphthalate | UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG | 0 0
0 0
28 0
6 1
0 0
25 0
9 8 | 0 00%
0 00%
63 64%
18 18%
0 00%
72 73%
18 18%
0 00% | 50000
50000
400
8100
50000 | 581
9125
45625
15642857
31938
87500 | 0 | 0
7
2
0
8 | 11
11
11
11
11
11
11
11 | 82 U
82 U
91 J
82 U
82 U
13 J
82 U | 81 U
81 U
95 J
81 U
81 U
81 U
81 U | 88 U
88 U
88 U
88 U
88 U
68 U
68 U | 83 U
83 U
83 U
83 U
83 U
83 U
83 U | 88 U
88 U
13 J
88 U
68 U
8 J
57 J
68 U | 89 U
89 U
89 U
89 U
69 U
69 U
89 U
89 U | 88 U
88 U
12 J
88 U
88 U
88 U
88 U | 97 U
97 U
28 J
97 U
97 U
25 J
98 J
97 U | | Dibenzofuran
Diethyl phthalate
Dimethyl phthalate
Ethylene Glycol
Fluoranthene | UG/KG
UG/KG
UG/KG
UG/KG
MG/KG
UG/KG | 14 0
0 0
25 0
0 0
0 0
26 0 | 18 18%
0 00%
100 00%
0 00%
0 00%
81 82% | 14
6200
7100
2000 | 312857
62571429
782142857
156428571
3128571 | 0 0 0 | 2
0
10
0
0 | 11
10
10
11
11
11 | 82 U
13 JB
82 U
24 J | 63 J
81 U
91 JB
81 U
81 U | 88 U
88 U
88 U
88 U | 83 U
83 U
82 BJ
83 U
83 U | 88 U
88 U
25 JB
88 U
11 J | 89 U
89 U
14 JB
89 U
8 7 J | 88 U
88 U
17 JB
88 U
86 J | 14 J
97 U
99 JB
97 U
26 J | | Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno[1 2,3-cd]pyrene | UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG | 00
00
00
00
00
20 0 | 0 00%
0 00%
0 00%
0 00%
72 73%
0 00% | 50000
410
3200
4400 | 3128571
399
8189
547500
45625
875 | 0 0 0 | 0
0
0
0
8 | 11
11
11
11
11
11 | 82 U
8 7 J | 81 U
81 U
81 U
81 U
81 U
85 J
81 U | 88 U
88 U
88 U
88 U
88 U
88 U | 83 U
83 U
83 U
83 U
83 U
83 U | 88 U
88 U
88 U
86 J
88 U | 69 U
69 U
69 U
69 U
48 J
89 U | 88 U
88 U
88 U
88 U
88 U
88 U | 97 U
97 U
97 U
97
U
97 U
20 J
97 U | | N-Nitrosodiphenylamine N-Nitrosodipropylamine Naphthalene Nitrobenzene Pentachloriphenol Phenanthrene | UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG | 0 0
0 0
0 0
0 0
17 0 | 0 00%
0 00%
0 00%
0 00%
0 00%
54 55%
0 00% | 13000
200
1000
50000 | 130357
3128571
39107
5323
46928571 | 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 11
11
11
11
11
11
11
11 | 82 U
82 U
82 U | 81 U
81 U
81 U
81 U
200 U
81 U | 88 U
88 U
88 U
88 U
210 U
88 U | 83 U
83 U
83 U
83 U
200 U
83 U
83 U | 88 U
88 U
88 U
210 U
71 J
88 U | 89 U
89 U
89 U
89 U
220 U
89 U
89 U | 88 U
88 U
88 U
210 U
4.8 J
88 U | 97 U
97 U
97 U
97 U
240 U
17 J
97 U | | Propylene Glycol
Pyrene | MG/KG
UG/KG
MG/KG | 0 0
30 0
221 0 | 0 00%
81 82%
45 45% | 50000 | 2346429 | 0 | 9 | 11 | 18 J
18 3 U | 81 U
189 U | 5 4 J
34 8 | 83 U
19 U | 10 J
22 1 | 8 2 J
39 4 | 7 3 J
21 U | 30 J
115 | #### Table 11-5 123D - Semivolatiles/TPH in Soils vs PRG-RES Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD 123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-1230
Area West of
Bldg 715 | |--|----------------|--------------|-------------------|----------------|----------------------|--------|---------|----------|---------------------------------------|---------------------------------------|---------------------------------------| | LOC ID
SAMP ID | | | | | | | | | TP123D-4
EB105 | TP123D-5
EB100 | TP123D-5
EB101 | | QC CODE
SAME DETH TOP | | | | | | | | | SA 1 | SA 1.5 | SA 4.1 | | SAMP DEPTH BOT | | | | | | | | | 1 | 1.5 | 4.1 | | MATRIX | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL
S Mar 98 | SOIL
4 Mar 98 | SOIL
4 Mar-98 | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 1 100 | 4 860 30 | 4 Mar-30 | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | IAC-M | DETECTS | ANALYSES | | VALUE Q | | | 1 2 4-Trichlorobenzene | UG/KG | 0.0 | 0 00% | 3400
7900 | 782143
7039286 | 0 | 0 | | 81 U | 84 V
84 V | | | 1 2-Dichlorobenzene 1 3-Dichlorobenzene | UG/KG
UG/KG | 00 | 0 00% | 1600 | 6961071 | 0 | 0 | | 81 U | 84 U | | | 1 4-Dichlorobenzene | UG/KG | 00 | 0 00% | 8500 | 26615 | 0 | 0 | | 81 U | 84 U | 86 U | | 2 4.5-Trichlorophenol | UG/KG | 0.0 | 0.00% | 100 | 7821429 | 0 | 0 | | 200 U | 200 U | | | 2 4 6-Trichlorophenol | UG/KG | 0.0 | 0 00% | 400 | 58068
234643 | 0 | 0 | | 81 U
81 U | 84 U
84 U | | | 2 4-Dichlorophenol
2 4-Dimethylphenol | UG/KG
UG/KG | 00 | 0 00% | 400 | 1564286 | 0 | 0 | | 81 U | B4 (| | | 2 4-Dinitrophenol | UG/KG | 0.0 | 0 00% | 200 | 156479 | 0 | 0 | | 200 U | 200 U | | | 2 4-Dinitrotoluene | UG/KG | 0.0 | 0 00% | | 156429 | 0 | 0 | | 81 U | 84 (| | | 2 5-Dinitrotoluene | UG/KG | 0.0 | 0 00% | 1000 | 78214 | 0 | 0 | | 81 U | 84 U
84 U | | | 2-Chloronaphthalene
2-Chlorophenol | UG/KG | 0.0 | 0 00% | 800 | 391071 | 0 | 0 | | 81 U | 84 L | | | 2-Methylnaphthalene | UG/KG | 54 | 9 09% | 36400 | 331011 | 0 | 1 | | 81 U | 84 L | | | 2-Methylphenoi | UG/KG | 0.0 | 0 00% | 100 | 3910714 | 0 | 0 | | 81 U | 84 L | | | 2-Nitroandine | UG/KG | 0.0 | 0.00% | 430 | 4693 | 0 | 0 | | 200 U | 200 L | | | 2-Nitrophenol | UG/KG
UG/KG | 00 | 0 00% | 330 | 1419 | 0 | 0 | | 81 U
81 U | 84 L
84 L | | | 3,3 -Dichlorobenzidine 3-Nitroanikne | UG/KG | 0.0 | 0 00% | 500 | 234643 | 0 | 0 | | 200 U | 200 t | | | 4 6-Dinitro 2-methylpheno? | UG/KG | 0.0 | 0 00% | | | 0 | 0 | | 200 U | 200 t | | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0 00% | | 4535429 | 0 | 0 | | 81 U | 84 L | | | 4-Chioro 3-methylphenol | UG/KG | 0.0 | | 240 | 849857 | 0 | 0 | | 81 U
81 U | 84 L
84 L | | | 4-Chloroaniline 4 Chlorophenyl phenyl ether | UG/KG
UG/KG | 0.0 | 0 00% | 220 | 312857 | 0 | 0 | | 81 U | 84 L | | | 4 Methylphenol | UG/KG | 00 | 0.00% | 900 | | 0 | o | | 81 U | 84 L | | | 4-Nitroaniline | UG/KG | 0.0 | 0 00% | | 234643 | 0 | 0 | | 200 U | 200 L | | | 4-Nitrophenol | UG/KG | 0.0 | | 100 | 4692857 | 0 | 0 | | 200 U | 200 L | | | Acenaphthene | UG/KG | 00 | 0 00% | 50000
41000 | | 0 | 0 | | 81 U | 84 t.
84 t. | | | Acenaphthylene
Anthracene | UG/KG
UG/KG | 00 | 0.00% | 50000 | 23464286 | 0 | 0 | | 81 U | 84 (| | | Benzo(a)anthracene | UG/KG | 120 | 36 36% | 224 | 875 | 0 | 4 | | 95 J | 84 L | | | Benzo(a)pyrene | UG/KG | 27 0 | | 61 | 88 | 0 | 7 | | 13 J | 84 L | | | Benzo(b)fluoranthene | UG/KG
UG/KG | 35 0
26 0 | 100 00%
45 45% | 1100
50000 | 875 | 0 | 10 | | 13 J
15 J | 10 J
84 L | | | Senzo[ghi]perylene
Benzo[k]fluoranthene | UG/KG | 26 U | 72 73% | 1100 | 8750 | 0 | 8 | | 13 J | 84 (| | | Bis(2 Chloroethoxy)methane | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | B1 U | 84 (| | | Bis(2-Chloroethyl)ether | UG/KG | 0.0 | 0 00% | | 581 | 0 | 0 | | B1 U | 84 1 | | | Bis(2 Chloroisopropyl)ether | UG/KG | 0.0 | 0 00% | 50000 | 9125
45625 | 0 | 0 7 | | 81 U
81 U | 84 U | | | Bis(2-Ethylhexyl)phthalate
Butylbenzylphthalate | UG/KG
UG/KG | 28 0
8 1 | 63 64%
18 18% | 50000 | 15642857 | 0 | 2 | | 81 U | 84 (| | | Carbazole | UG/KG | 00 | 0.00% | 30000 | 31938 | o | 0 | | 81 U | 84 (| | | Chrysene | UG/KG | 25 0 | 72 73% | 400 | 87500 | 0 | 8 | | 15 J | 51 3 | | | Di-n-butylphthalate | UG/KG | 98 | 18 18% | B100 | 1564286 | 0 | 2 | | 81 U
81 U | 84 L
84 L | | | Di-n-octylphthalate
Dibenz(a.hlanthracene | UG/KG
UG/KG | 0 0
14 0 | | 50000 | 1564286 | 0 | 2 | | B1 U | | | | Dibenzofuran | UG/KG | 00 | 0 00% | 6200 | 312857 | 0 | C | 11 | 81 U | 84 L | | | Diethyl phthalate | UG/KG | 25 0 | | 7100 | 62571429 | 0 | 10 | | | | | | Dimethylphthalate | UG/KG | 0.0 | | 2000 | 782142857 | 0 | 0 | | 81 U | 84 (| J 86 U | | Ethylene Glycol
Fluoranthene | MG/KG
UG/KG | 00
260 | 0 00%
81 82% | 50000 | 156428571
3128571 | 0 | 9 | | 20 J | 71. | 82 J | | Fluorene | UG/KG | 00 | 0 00% | 50000 | 3128571 | 0 | 0 | 11 | 81 U | 84 L | | | Hexachlorobenzene | UG/KG | 00 | | 410 | 399 | 0 | 0 | | 81 U | | | | Hexachforobutadiene | UG/KG | 0.0 | | | 8189
547500 | 0 | 0 | | 81 U | | | | Hexachlorocyclopentadiene | UG/KG
UG/KG | 0.0 | 0 00% | | 547500
45625 | 0 | 0 | | 81 U | 84 (| | | Hexachloroethane
Indeno(1,2 3-cd)pyrene | UG/KG | 20.0 | 72 73% | 3200 | 875 | 0 | 8 | 11 | 15 J | 5 . | 5 4 J | | Isophorone | UG/KG | 0.0 | 0.00% | 4400 | | 0 | 0 | | | 84 U | | | N-Nitrosodiphenylamine | UG/KG | 0.0 | 0.00% | | 130357 | 0 | 0 | | 81 U
81 U | 84 L
84 L | | | N-Nitrosodipropylamine | UG/KG
UG/KG | 0.0 | 0 00% | 13000 | 3128571 | 0 | 0 | | 81 U | | | | Naphthalene
Nitrobenzene | UG/KG
UG/KG | 00 | | 200 | 39107 | 0 | ď | | 81 U | 84 (|) 86 U | | Pentachlorophenol | UG/KG | 00 | 0 00% | 1000 | 5323 | 0 | C | | 200 U | | | | Phenanthrene | UG/KG | 17 0 | 54 55% | 50000 | .ar | 0 | 6 | | 14 J | 84 L
84 L | | | Phenol | UG/KG | 0.0 | | 30 | 46928571 | 0 | 0 | | 81 U | B4 (| , 86 U | | Propylena Glycol
Pyrana | MG/KG
UG/KG | 0 0
30 0 | 81 82% | 50000 | 2348429 | 0 | 9 | | 22 J | 66. | | | TPH | MG/KG | 221 0 | 45 45% | | | 0 | 5 | 11 | 221 | 163 (| J 197 U | Table 11-6 123D - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 11 54.7 41.5 B 61 4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 11.3 0 14854851 0 11 11 0 34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 1 0.00% 2 46 39 107143 0 0 0 11 0 0.7 U 0.07 U 0.08 U 0.07 U 0.07 U 0.07 U Calcium MG/KG 14100 100 00% 12530 0 11 11 11 2350 1710 1410 236 B 1120 B 1290 Chosalt MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 26 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4693 0 11 11 11 167 15 13 26 18.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17.1 Cyande MG/KG 3140 100.00% 374 2344 0 11 11 12 2000 23500 150 3120 2400 Lead MG/KG 3140 100.00% 374 2 3464 0 11 11 11 20200 23500 150 3120 2400 24100 | SITE
DESCRIPTION | | | | | | | | • | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg. 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 |
--|---------------------|-------|---------|-----------|--------|------------|--------|---------|----------|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------| | SAMP ID OC CODE | LOC ID | | | | | | | | | TP123D-1 | TP123D-1 | TP123D-2 | TP123D-2 | TP123D-3 | TP123D-3 | | SAMP DETHTOP SAMP. DETHTOP SAMP. DETHTOP SAMP. DETECTION MATRIX SAMP. DETECTION DETAILS SA | SAMP ID. | | | | | | | | | EB108 | EB109 | EB106 | EB107 | EB001 | | | SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE SAMP_DAT | QC CODE | | | | | | | | | SA | SA | SA | SA | DU | SA | | SAMP DATE FREQUENCY OF NUMBER ABOVE FREQUENCY OF NUMBER ABOVE OF OF NUMBER OF OF OF NUMBER OF | SAMP DETH TOP | | | | | | | | | 0.5 | 1 | 0.5 | 1.5 | 0.5 | 0.5 | | SAMP DATE FREQUENCY OF | SAMP, DEPTH BOT | Г | | | | | | | | 0.5 | 1 | | | | | | SAMP DATE FREQUENCY OF | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | PARAMETER UNIT MAXIMUM DETECTION TAGM PRG TAGM DETECTS ANALYSES VALUE Q | SAMP DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5-Mar-98 | 5-Mar-98 | | | | | Aluminum MG/KG 16500 100 00% 19520 78214 286 0 11 11 12300 11300 11100 16500 14400 16600 14400 Antimony MG/KG 0 0 0.00% 6 31 285714 0 0 0 11 0.84 UN 0.8 UN 0.9 UN 0.9 UN 0.81 UN 0.8 UN 0.82 UN Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 54.7 41.5 B 61.4 57.2 101 86.3 Beryllium MG/KG 0.51 100 00% 1.13 0 14854651 0 11 11 0.34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 0.00% 2.46 39 107143 0 0 11 11 0.7 U 0.07 | | | | OF | | | ABOVE | OF | OF | | | | | | | | Alumnum MG/KG 1650 100 00% 1952 78214 286 0 11 11 11 12300 11300 11100 16500 14400 16000 Antimony MG/KG 0 0 0,00% 6 31 285714 0 0 0 11 11 0 84 UN 0.8 UN 0.9 UN 0.9 UN 0.8 | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Arsenic MG/KG 54 100 00% 8.9 0 42583333 0 11 11 4.4 3.6 3.4 54 4.7 3.9 Barum MG/KG 126 100 00% 300 5475 0 11 11 54.7 41.5 B 61.4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 1.13 0 14854651 0 11 11 0.34 B 0.34 B 0.24 B 0.23 B 0.51 B 0.34 B 0.34 B 0.34 B 0.25 B 0.51 B 0.34 0. | Aluminum | MG/KG | 16500 | 100 00% | 19520 | 78214.286 | 0 | 11 | 11 | 12300 | 11300 | 11100 | 16500 | | | | Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 11 54.7 41.5 B 61 4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 11.3 0 14854851 0 11 11 0 34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 1 0.00% 2 46 39 107143 0 0 0 11 0 0.7 U 0.07 U 0.08 U 0.07 U 0.07 U 0.07 U Calcium MG/KG 14100 100 00% 12530 0 11 11 11 2350 1710 1410 236 B 1120 B 1290 Chosalt MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 26 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4693 0 11 11 11 167 15 13 26 18.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17.1 Cyande MG/KG 3140 100.00% 374 2344 0 11 11 12 2000 23500 150 3120 2400 Lead MG/KG 3140 100.00% 374 2 3464 0 11 11 11 20200 23500 150 3120 2400 24100 | Antimony | MG/KG | 0 | 0.00% | 6 | 31 285714 | 0 | 0 | 11 | 0 84 UN | 0.8 UN | 0.9 UN | 0 81 UN | 0.8 UN | 0.82 UN | | Beryllium MG/KG 0.51 100 00% 1.13 0.14854651 0 11 11 0.34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0.00% 2.46 39 107143 0 0 11 0.07 U | Arsenic | MG/KG | 5 4 | 100 00% | 8.9 | 0 42583333 | 0 | 11 | 11 | 4.4 | 3.6 | 3 4 | 5 4 | 47 | 3.9 | | Cadmium MG/KG 0 0.00% 2 46 39 107143 0 0 11 0.07 U 0.07 U 0.08 U 0.07 0. | Banum | MG/KG | 126 | 100.00% | 300 | 5475 | 0 | 11 | 11 | 54.7 | 41.5 B | 61 4 | 57.2 | 101 | 86.3 | | Calcium MG/KG 14100 100 00% 125300 0 11 11 2350 1710 1410 236 B 1120 B 1290 Chromium MG/KG 22 6 100.00% 30 78214 0 11 11 167 15 13 22 6 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4893 0 11 11 11 10.4 B 97 B 6.7 B 13.8 12.1 128 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17 1 Cyande MG/KG 0 0 0.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17 1 Cyande MG/KG 0 0 0.00% 37410 23464 0 11 11 11 07 U 0.68 U 0.74 U 0.69 U 0.70 0.71 U 10.00 MG/KG 31400 100.00% 37410 23464 0 11 11 11 20200 23500 15500 31200 24000 Lead MG/KG 314 100.00% 24 3 3 11 11 163 15 24.3 14.1 28.2 21 | Beryllium | MG/KG | 0 51 | 100 00% | 1.13 | 0 14854651 | 0 | 11 | 11 | 034 B | 0.34 B | 0.23 B | 0.51 B | 0.34 B | 0 45 B | | Chromium MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 226 18.6 20.9 Cobalt MG/KG 13.8 100.00% 30 4693 0 11 11 11 10.4 B 9.7 B 6.7 B 13.8 12.1 12.8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0 0.00% 0.35 0 0 0 11 17 17 0.7 U 0.68 U 0.7 U 0.69 U 0.7 U 0.7 U 0.7 U 0.00 MG/KG 3140 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21 | Cadmium | MG/KG | 0 | 0.00% | 2 46 | 39 107143 | 0 | 0 | 11 | 0 07 U | 0 07 U | 0.08 U | 0.07 U | 0.07 U | 0.07 U | | Cobalt MG/KG 13.8 100.00% 30 4693 0 11 11 10.4 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0.00% 0.35 0 0 11 0.7 U 0.68 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21 | Calcium | MG/KG | 14100 | 100 00% | 125300 | | 0 | 11 | 11 | 2350 | 1710 | 1410 | 236 B | 1120 B | 1290 | | Copper MG/KG 27.2 100.00% 33 3129 0 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0.00% 0.35 0 0 11 0.7 U 0.88 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21 | Chromium | MG/KG | 22 6 | 100.00% | 30 | 78214 | 0 | 11 | 11 | 16 7 | 15 | 13 | 22 6 | 18.6 | 20.9 | | Cyanide MG/KG 0 0.35 0 0 11 0.7 U 0.68 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31 4 100.00% 24 4 3 11 11 16.3 15 24.3 14.1 26.2 21 | Cobalt | MG/KG | 13.8 | 100.00% | 30 | 4693 | 0 | 11 | 11 | 10.4 B | 97 B | 6.7 B | 13.8 | 12.1 | 12 8 | | fron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 24600 24100 Lead MG/KG 31 4 100.00% 24 4 3 11 11 16 3 15 24.3 14.1 26.2 21 | Copper | MG/KG | 27.2 | 100.00% | 33 | 3129 | 0 | 11 | 11 | 14 2 | 10.6 | 16.4 | 26.7 | 13 1 | 17 1 | | Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21 | Cyanide | MG/KG | 0 | 0 00% | 0.35 | | 0 | 0 | 11 | 0.7 U | 0.68 U | 0.74 U | 0.69 U | 0 7 U | 0 71 U | | Lead Migrid 314 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21 | fron | MG/KG | 31400 | 100.00% | 37410 | 23464 | 0 | 11 | 11 | 20200 | 23500 | 15500 | 31200 | 21600 | 24100 | | Magnesium MG/KG 6920 100.00% 21700 0 11 11 2940 2570 2030 2640 2020 2450 | Lead | | 31 4 | 100.00% | 24 4 | | 3 | 11 | 11 | 16.3 | 15 | 24.3 | 14.1 | 28,2 | 21 | | | Magnesium | MG/KG | 6920 | 100.00% | 21700 | | 0 | 11 | 11 | 2940 | 2570 | 2030 | 3640 | 3020 | 3450 | | Manganese MG/KG 1200 100.00% 1100 1799 1 11 11 662 772 755 287 930 720 | Manganese | | 1200 | | 1100 | 1799 | 1 | 11 | 11 | 662 | 772 | 755 | 287 | 930 | 720 | | Mercury MG/KG 0.13 27.27% 0.1 23 1 3 11 0.06 U 0.06 U 0.13 B 0.06 U 0.06 U 0.06 U | | | | | | | 1 | 3 | 11 | 0.06 U | 0 06 U | 0.13 B | 0.06 U | 0.06 U | 0.06 U | | Nickel MG/KG 25.4 100.00% 50 1564 0 11 11 18.6 16.1 13.4 25.4 22.6 25.1 | | | | | | 1564 | 0 | 11 | | | | 13 4 | 25.4 | 22.6 | 25 1 | | Potassium MG/KG 1470 100.00% 2623 0 11 11 1350 763 B 911 B 1360 1260 1350 | | | | | 2623 | | 0 | 11 | 11 | 1350 |
763 B | 911 B | 1360 | 1260 | 1350 | | Selenium MG/KG 1.5 9.09% 2 391 0 1 11 1.1 U 1.1 U 1.2 U 1.1 U 1.1 U 1.1 U | | | 15 | 9 09% | _ | | 0 | 1 | | | 1.1 U | 1.2 U | 1.1 U | 1.1 U | 1.1 U | | Silver MG/KG 0 0.00% 0.8 391 0 0 11 0.51 U 0.48 U 0.54 U 0.49 U 0.48 U 0.49 U | Silver | | 0 | 0.00% | 0.8 | 391 | 0 | 0 | 11 | 0.51 U | 0 48 U | 0.54 U | 0.49 U | 0.48 U | 0.49 U | | Sodium MG/KG 0 0.00% 188 0 0 11 146 U 139 U 155 U 141 U 139 U 142 U | | | | | | | | | | | | | | | 142 U | | Thallium MG/KG 0 0.00% 0.855 6 0 0 11 1.5 U 1.4 U 1.6 U 1.5 U 1.4 U 1.5 U | | | | | | | 0 | | | | | | | 1.4 U | 1.5 U | | Vanadium MG/KG 27.8 100.00% 150 548 0 11 11 22.5 E 23.5 E 19.3 E 27.8 E 23.2 E 25.8 E | | | | | | | 0 | | | | | | | | 25.8 E | | Zinc MG/KG 124 100.00% 115 23464.286 1 11 11 73.7 60.6 71.4 67.8 90 100 | Zinc | MG/KG | 124 | 100.00% | 115 | 23464.286 | 1 | 11 | 11 | 73.7 | 606 | 71.4 | 67.8 | 90 | 100 | #### Table 11-6 123D - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg. 715 | SEAD-123D
Area West of
Bldg 715 | SEAD-123D
Area West of
Bldg 715 | |---------------------|-------|---------|-----------|--------|------------|--------|---------|----------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------| | LOC ID | | | | | | | | | TP123D-3 | TP123D-4 | TP123D-4 | TP123D-5 | TP123D-5 | | SAMP ID | | | | | | | | | EB103 | EB104 | EB105 | EB100 | EB101 | | QC CODE | | | | | | | | | SA | SA | SA | SA | SA | | SAMP DETH TOP | | | | | | | | | 2 | 0.5 | 1 | 1 5 | 4.1 | | SAMP DEPTH BOT | Γ | | | | | | | | 2 | 0.5 | 1 | 1.5 | 4 1 | | MATRIX. | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 4-Mar-98 | 5-Mar-98 | 5-Mar-98 | 4-Mar-98 | 4-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Aluminum | MG/KG | 16500 | 100 00% | 19520 | 78214 286 | 0 | 11 | 11 | 13900 | 10900 | 10400 | 11800 | 15100 | | Antimony | MG/KG | 0 | 0 00% | 6 | 31 285714 | 0 | 0 | 11 | 0 82 UN | 1 1 11 | 0 8 UN | 0 84 UN | 0 88 UN | | Arsenic | MG/KG | 5 4 | 100 00% | 8 9 | 0 42583333 | 0 | 11 | 11 | 38 | 3 2 | 4.9 | 2 9 | 3 3 | | Barium | MG/KG | 126 | 100.00% | 300 | 5475 | 0 | 11 | 11 | 104 | 104 | 103 | 75.4 | 126 | | Beryllium | MG/KG | 0 51 | 100 00% | 1 13 | 0 14854651 | 0 | 11 | 11 | 0 33 B | 0 32 B | 0 26 B | 0 35 B | 0 43 B | | Cadmium | MG/KG | 0 | 0 00% | 2 46 | 39 107143 | 0 | 0 | 11 | 0 07 U | 0.09 U | 0 07 U | 0.07 U | 0.08 U | | Calcium | MG/KG | 14100 | 100 00% | 125300 | | 0 | 11 | 11 | 1430 | 9800 | 14100 | 1490 | 2990 | | Chromium | MG/KG | 22 6 | 100 00% | 30 | 78214 | 0 | 11 | 11 | 18 1 | 13 1 | 17 9 | 15.4 | 20.1 | | Cobalt | MG/KG | 13 8 | 100.00% | 30 | 4693 | 0 | 11 | 11 | 12 3 | 8 8 B | 9.3 B | 9.6 B | 11 B | | Copper | MG/KG | 27 2 | 100.00% | 33 | 3129 | 0 | 11 | 11 | 14.3 | 22 6 | 27.2 | 12.4 | 13.8 | | Cyanide | MG/KG | 0 | 0 00% | 0 35 | | 0 | 0 | 11 | 07 U | 0.8 U | 0.65 U | 0.67 U | 0 67 U | | Iron | MG/KG | 31400 | 100 00% | 37410 | 23464 | 0 | 11 | 11 | 21500 | 16800 | 31400 | 19000 | 22600 | | Lead | MG/KG | 31 4 | 100 00% | 24 4 | | 3 | 11 | 11 | 31.4 | 28.7 | 20 8 | 14 5 | 19.4 | | Magnesium | MG/KG | 6920 | 100.00% | 21700 | | 0 | 11 | 11 | 3020 | 3430 | 6920 | 2650 | 3240 | | Manganese | MG/KG | 1200 | 100.00% | 1100 | 1799 | 1 | 11 | 11 | 1020 | 697 | 923 | 546 | 1200 | | Mercury | MG/KG | 0 13 | 27.27% | 0 1 | 23 | 1 | 3 | 11 | 0 06 U | 0 1 B | 0.08 B | 0.06 U | 0 07 U | | Nickel | MG/KG | 25.4 | 100.00% | 50 | 1564 | 0 | 11 | 11 | 23 1 | 15.9 | 18.7 | 18.4 | 24 | | Potassium | MG/KG | 1470 | 100.00% | 2623 | | 0 | 11 | 11 | 1210 | 1470 | 1160 | 976 B | 1240 B | | Selenium | MG/KG | 15 | 9.09% | 2 | 391 | 0 | 1 | 11 | 1.1 U | 1 5 B | 1 1 U | 1.1 U | 1.2 U | | Silver | MG/KG | 0 | 0.00% | 0.8 | 391 | 0 | 0 | 11 | 0 49 U | 0.62 U | 0.48 U | 0.5 U | 0.53 U | | Sodium | MG/KG | 0 | 0.00% | 188 | | 0 | 0 | 11 | 142 U | 178 U | 138 U | 146 U | 152 U | | Thallium | MG/KG | 0 | 0 00% | 0 855 | 6 | 0 | - | 11 | | 18 U | 1.4 U | 1.5 U | 1.6 U | | Vanadium | MG/KG | 27.8 | 100 00% | 150 | 548 | 0 | 11 | 11 | | 20.5 E | 19 7 E | 19.3 € | 24 5 E | | Zinc | MG/KG | 124 | 100 00% | 115 | 23464 286 | 1 | 11 | 11 | 87 | 124 | 80.2 | 64.2 | 79.8 | Table 11-7 123D - Metals in Soil vs PRG-RES Non-Evaluated EBS Sites | | | | | | | | | SEAD-123D | SEAD-123D | SEAD-123D | SEAD-123D | SEAD-123D | SEAD-123D | |---------------------------------------|--|--|--|---|--
---|---|--|--------------|--------------|--|----------------|--------------| Area West of | Area West of | Area West of | Area West | Area West of | Area West of | | | | | | | | | | Bldg. 715 | Bldg 715 | Bldg. 715 | of Bldg 715 | Bldg. 715 | Bldg. 715 | | | | | | | | | | TP123D-1 | TP123D-1 | TP123D-2 | TP123D-2 | TP123D-3 | TP123D-3 | | | | | | | | | | EB108 | EB109 | EB106 | EB107 | EB001 | EB102 | | | | | | | | | | SA | SA | SA | SA | DU | SA | | | | | | | | | | 0.5 | 1 | 0.5 | 1,5 | 0.5 | 0.5 | | | | | | | | | | 0.5 | 1 | 0.5 | 1.5 | 0.5 | 0.5 | | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | | | | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5-Mar-98 | 5-Mar-98 | 5-Mar-98 | 4-Mar-98 | 4-Mar-98 | | LINIT | MIMIXAM | | TAGM | PRG | | | | VALUE O | VALUE O | VALUE | VALUE | VALUE O | VALUE Q | | | | | | | | | | | | | | | 16000 | | | | | | | _ | | | | | | | | | | | | | _ | | _ | - | | | | | | | 33 | | | | | | | | | | *** | | | | | 86.3 | | | | | | | - | | | | | | | | 0.45 B | | | | | | | | | | | | | | | 0.07 U | | | | | | 33.107 143 | - | | | | | | | | 1290 | | | | | | 78214 | - | | | | | | | | 20 9 | | | | | | | - | | | | | | | | 12.8 | | | | | | | _ | | | | | | | | 17.1 | | | | | | 3123 | | | | | | | | | 0.71 U | | | | | | 23464 | 4 | _ | | | | | | | 24100 | | | | | | 20104 | 0 | | | | | | | | 21 | | | | | | | _ | | | | | | | | 3450 | | | | | | 1799 | | | | | | | | | 720 | | | | | | | - | | | | | | | | 0.06 U | | | | | | | | 11 | | | | | | | 25.1 | | | | | | 100-1 | | 11 | | | | | | | 1350 | | | | | | 391 | 0 | 1 | | | | | | | 1.1 U | | | | | | | - | 0 | | | | | | | 0.49 U | | | | | | 001 | - | | | | | | | | 142 U | | | | | | 6 | _ | | | | | | | | 1.5 U | | | | | | | | | | | | | | | 25.8 E | | | | | | | - | | | | | | | | 100 | | A A A A A A A A A A A A A A A A A A A | UNIT MG/KG | UNIT MAXIMUM 165/KG 16500.0 165/KG 0.0 165/KG 5.4 165/KG 0.5 165/KG 0.5 165/KG 0.0 165/KG 14100.0 165/KG 13400.0 165/KG 31400.0 165/KG 31400.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 0.0 | AG/KG 16500.0 100.0% AG/KG 0.0 0.0% AG/KG 5.4 100.0% AG/KG 126.0 100.0% AG/KG 0.5 100.0% AG/KG 0.5 100.0% AG/KG 14100.0 100.0% AG/KG 14100.0 100.0% AG/KG 13.8 100.0% AG/KG 13.8 100.0% AG/KG 31.4 100.0% AG/KG 1200.0 100.0% AG/KG 1200.0 100.0% AG/KG 1200.0 100.0% AG/KG 1470.0 100.0% AG/KG 15.5 9.1% AG/KG 0.0 0.0% | UNIT MAXIMUM DETECTION TAGM 165/06 16500.0 100.0% 19520 165/KG 15.4 100.0% 300 165/KG 126.0 100.0% 1.13 165/KG 0.5 100.0% 1.13 165/KG 0.5 100.0% 1.13 165/KG 0.0 0.0% 2.46 165/KG 14100.0 100.0% 300 165/KG 14100.0 100.0% 30 165/KG 1318 100.0% 30 165/KG 1318 100.0% 33 165/KG 1318 100.0% 33 165/KG 1310.0% 33 165/KG 10.0 0.0% 2.46 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 30 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 27 165/KG 10.0 10.0% 21 165/KG 10.0 10.0% 25 165/KG 10.0 10.0% 50 165/KG 10.0 10.0% 50 165/KG 10.0 10.0% 50 165/KG 1470.0 100.0% 2623 165/KG 1470.0 100.0% 2623 165/KG 0.0 0.0% 0.8 165/KG 0.0 0.0% 0.8 165/KG 0.0 0.0% 188 165/KG 0.0 0.0% 188 165/KG 0.0 0.0% 185 165/KG 0.0 0.0% 1855 165/KG 27.8 100.0% 155 | OF OF OSTACLE NO. 100.0% | No. | NOTE | OF HAZINUM DETECTION TAGM PRG TAGM DETECTS ANALYSES ANALYSES 16500.0 100.0% 19520 78214.286 0.0 11 11 11 11 11 11 11 11 11 11 11 11 11 | FREQUENCY | FREQUENCY OF | FREQUENCY OF FREQUENCY OF TAGM PRG TAGM PRG TAGM PRG TAGM DETECTION TAGM PRG TAGM DETECTS ANALYSES VALUE Q | FREQUENCY CF | BB108 | Table 11-7 123D - Metals in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-123D | SEAD-123D | SEAD-123D | SEAD-123D | SEAD-123D | |---------------|-------|---------
-----------|--------|------------|-----------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------| | DESCRIPTION | | | | | | | | | Area West of | | | | | | | | | | | Bldg. 715 | Bldg. 715 | Bldg. 715 | Bldg. 715 | Bldg 715 | | LOC ID. | | | | | | | | | TP123D-3 | TP123D-4 | TP123D-4 | TP123D-5 | TP123D-5 | | SAMP ID: | | | | | | | | | EB103 | EB104 | EB105 | EB100 | EB101 | | QC CODE: | | | | | | | | | SA | SA | SA | SA | SA · | | SAMP DETH TOP | o: | | | | | | | | 2 | 0.5 | 1 | 1.5 | 4.1 | | SAMP DEPTH BO | OT, | | | | | | | | 2 | 0.5 | 1 | 1.5 | 4.1 | | MATRIX: | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 4-Mar-98 | 5-Mar-98 | 5-Mar-98 | 4-Mar-98 | 4-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Aluminum | MG/KG | 16500.0 | 100.0% | 19520 | 78214 286 | 0 | 11 | 11 | 13900 | 10900 | 10400 | 11800 | 15100 | | Antimony | MG/KG | 0.0 | 0.0% | 6 | 31 285714 | 0 | 0 | 11 | 0.82 UN | 1 UN | 0.8 UN | 0.84 UN | 0.88 UN | | Arsenic | MG/KG | 5 4 | 100.0% | 89 | 0.42583333 | 11 | 11 | 11 | 3.8 | 7.3.3 | 4.9 | 2.9 | 3.3 | | Barium | MG/KG | 126.0 | 100.0% | 300 | 5475 | 0 | 11 | 11 | 104 | 104 | 103 | 75.4 | 126 | | Beryllium | MG/KG | 0.5 | 100.0% | 1.13 | 0.14854651 | 11 | 11 | 11 | 0.33 B | 0.32 B | 0.26 B | " " Tat B | 0.43 B | | Cadmium | MG/KG | 0.0 | 0.0% | 2.46 | 39 107143 | 0 | 0 | 11 | 0.07 U | 0.09 U | 0.07 U | 0.07 U | 0 08 U | | Calcium | MG/KG | 14100.0 | 100.0% | 125300 | | 0 | 11 | 11 | 1430 | 9800 | 14100 | 1490 | 2990 | | Chromium | MG/KG | 22.6 | 100.0% | 30 | 78214 | 0 | 11 | 11 | 18.1 | 13.1 | 17.9 | 15.4 | 20.1 | | Cobalt | MG/KG | 13.8 | 100.0% | 30 | 4693 | 0 | 11 | 11 | 12.3 | 8.8 B | 9.3 B | 96 B | 11 B | | Copper | MG/KG | 27.2 | 100.0% | 33 | 3129 | 0 | 11 | 11 | 14.3 | 22.6 | 27.2 | 12.4 | 13.8 | | Cyanide | MG/KG | 0.0 | 0.0% | 0.35 | | 0 | 0 | . 11 | 0.7 U | 0.8 U | 0.65 U | 0.67 U | 0.67 U | | Iron | MG/KG | 31400 0 | 100.0% | 37410 | 23464 | 4 | 11 | 11 | 21500 | 16800 | 3700 | 19000 | 22600 | | Lead | MG/KG | 31.4 | 100.0% | 24.4 | | 0 | 11 | 11 | 31 4 | 28.7 | 20.8 | 14.5 | 19.4 | | Magnesium | MG/KG | 6920.0 | 100.0% | 21700 | | 0 | 11 | 11 | 3020 | 3430 | 6920 | 2650 | 3240 | | Manganese | MG/KG | 1200.0 | 100.0% | 1100 | 1799 | 0 | 11 | 11 | 1020 | 697 | 923 | 546 | 1200 | | Mercury | MG/KG | 0.1 | 27.3% | 0.1 | 23 | 0 | , 3 | 11 | 0.06 U | 0.1 B | 0.08 B | 0.06 U | 0.07 U | | Nickel | MG/KG | 25.4 | 100.0% | 50 | 1564 | 0 | 11 | 11 | 23.1 | 15.9 | 18.7 | 18.4 | 24 | | Potassium | MG/KG | 1470.0 | 100.0% | 2623 | | 0 | 11 | 11 | 1210 | 1470 | 1160 | 976 B | 1240 B | | Selenium | MG/KG | 1.5 | 9.1% | 2 | 391 | 0 | 1 | 11 | 1.1 U | 1.5 B | 1.1 U | 1.1 U | 1.2 U | | Silver | MG/KG | 0.0 | 0.0% | 8,0 | 391 | 0 | 0 | 11 | 0.49 U | 0.62 U | 0.48 U | 0.5 U | 0.53 U | | Sodium | MG/KG | 0.0 | 0.0% | 188 | | 0 | 0 | 11 | 142 U | 178 U | 138 U | 146 U | 152 U | | Thallium | MG/KG | 0.0 | 0.0% | 0.855 | 6 | 0 | 0 | 11 | 1.5 U | 18 U | 1.4 U | 1.5 U | 1.6 U | | Vanadium | MG/KG | 27.8 | 100.0% | 150 | 548 | 0 | 11 | 11 | 21.8 E | 20.5 E | 19.7 E | 19.3 E | 24.5 E | | Zinc | MG/KG | 124.0 | 100.0% | 115 | 23464.286 | 0 | 11 | 11 | 87 | 124 | 80.2 | 64 2 | 79.8 | Table 11-8 123D - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-1
Area W
Bldg 71 | est of | SEAD-12
Area We
Bldg 71 | st of | SEAD-12
Area We
Bldg 715 | st of | SEAD-12
Area Wes
Bldg. 715 | st of | SEAD-123
Area West
Bldg. 715 | _ | SEAD-123
Area Wes
Bldg: 715 | t of | |-------------------------------|----------------|---------|-----------|------------|------------------|--------|---------|----------|-----------------------------|----------------|-------------------------------|----------------|--------------------------------|----------------|----------------------------------|----------------|------------------------------------|----------------|-----------------------------------|-------| | LOC ID | | | | | | | | | TP1230 |)-1 | TP123D- | -1 | TP123D- | -2 | TP123D- | 2 | TP123D-3 | | TP123D-3 | 3 | | SAMP ID | | | | | | | | | EB108 | | EB109 | | EB106 | | EB107 | | EB001 | | EB102 | | | QC CODE | | | | | | | | | SA | | SA | | SA | | SA | | DU | | SA | | | SAMP DETH TOP | | | | | | | | | | 0.5 | | 1 | | 0.5 | | 1.5 | | 0 5 | | 0.5 | | SAMP DEPTH BOT | | | | | | | | | | 0.5 | | 1 | | 0.5 | | 15 | | 0 5 | | 0.5 | | MATRIX | | | | | | | | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-N | Aar-98 | 5-M | ar-98 | 5-Ma | ar-98 | 5-Ma | ar-98 | 4-Mar | -98 | 4-Ma | ar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | | | 4.4`-DDD | UG/KG | 0.0 | | 2900 | 2661 | 0 | 0 | 11 | | 4.1 U | | 41 U | | 4.4 U | | 4.2 U | | 4.4 U | | 4.4 | | 4,4`-DDE | UG/KG | 2 7 | 9 1% | 2100 | 1879 | 0 | 1 | 11 | | 41 U | | 4 1 U | | 2.7 J | | 4.2 U | | 4.4 U | | 4.4 | | 4.4`-DDT | UG/KG | 46 | | 2100 | 1879 | 0 | 2 | 11 | | 4.1 U | | 41 U | | 4.4 U | | 4.2 U | | 4.4 U | | 44 | | Aldrin | UG/KG | 0 0 | | 41 | 38 | 0 | 0 | | | 21 U | | 2 1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2 3 | | Alpha-BHC | UG/KG | 0.0 | | 110 | | 0 | 0 | | | 2.1 U | | 2 1 U | | 23 U | | 2.2 U | | 2.3 U | | 2 3 | | Alpha-Chlordane | UG/KG | 0.0 | | | | 0 | 0 | 11 | | 2.1 U | | 2 1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 23 | | Aroclor-1016 | UG/KG | 0 0 | | | 5475 | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Aroclor-1221 | UG/KG | 0 0 | | | | 0 | 0 | | | 84 U | | 83 U | | 89 U | | 85 U | | 89 U | | 90 | | Aroclor-1232 | UG/KG | 0 0 | | | | 0 | 0 | 11 | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Aroclor-1242 | UG/KG | 0 0 | | | | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Aroclor-1248 | UG/KG | 0 0 | | | | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Aroclor-1254 | UG/KG | 0 0 | | 10000 | 1564 | 0 | 0 | 11 | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Aroclor-1260 | UG/KG | 0.0 | | 10000 | | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | | 44 | | Beta-BHC | UG/KG | 0 0 | | 200 | | 0 | 0 | | | 2 1 U | | 2.1 U | | 2.3 U | | 2 2 U | | 2.3 U | | 2.3 | | Delta-BHC | UG/KG | 0 0 | | 300 | 40 | 0 | 0 | 11 | | 2 1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2.3 | | Dieldnn | UG/KG | 0.0 | | 44 | 40 | 0 | 1 | 11
10 | | 4 1 U | | 4.1 U
2 1 U | | 4.4 U | | 4.2 U | | 4.4 U | | 4.4 | | Endosulfan I
Endosulfan II | UG/KG
UG/KG | 18 | | 900
900 | 469286
469286 | 0 | 0 | | | 2.1 U
4 1 U | | 41 U | | 2.3 U
4.4 U | | 2.2 U
4.2 U | | 2.3 U
4.4 U | | 2.3 | | Endosulfan sulfate | UG/KG | 0.0 | | 1000 | 409200 | 0 | 0 | | | 4.1 U | | 4 1 U | | 4.4 U | | 4.2 U | | 4.4 U | | 4.4 | | Endosulian suitate | UG/KG | 0.0 | | 100 | 23464 | 0 | 0 | | | 4.1 U | | 4.1 U | | 4.4 U | | 4.2 U | | 44 U | | 4.4 | | Endnn aldehyde | UG/KG | 0.0 | | 100 | 23464 | 0 | ١ ٥ | | | 4.1 U | | 4.1 U | | 4.4 U | | 4.2 U | | 4.4 U | | 4.4 | | Endrin ketone | UG/KG | 0.0 | | | 23464 | 0 | 0 | | | 4.1 U | | 4 1 U | | 4.4 U | | 4.2 U | | 4.4 U | | 4.4 | | Gamma-BHC/Lindane | UG/KG | 0.0 | | 60 | 25404 | 0 | 0 | | | 2.1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2.3 | | Gamma-Chlordane | UG/KG | 0.0 | | 540 | | 0 | 0 | | | 2.1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2.3 | | Heptachlor | UG/KG | 0.0 | | 100 | 142 | 0 | 0 | 11 | | 2.1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2.3 | | Heptachlor epoxide | UG/KG | 0.0 | | 20 | 70 | 0 | 0 | 11 | | 2.1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | | 2.3 | | Methoxychlor | UG/KG | 0.0 | | | 391071 | 0 | 0 | 11 | | 21 U | | 21 U | | 23 U | | 22 U | | 23 U | | 23 | | Toxaphene | UG/KG | 0.0 | | | | 0 | 0 | 11 | | 210 U | | 210 U | | 230 U | | 220 U | | 230 U | | 230 | | F | | | | | | | | | | | | _ | | | | | | - | | | #### Table 11-8 123D - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-12
Area We
Bldg 715 | st of | SEAD-123D
Area West of
Bldg 715 | SEAD-12
Area Wes
Bldg 715 | st of | SEAD-12
Area We
Bldg. 715 | st of | SEAD-123
Area Wesl
Bldg 715 | | |------------------------------|-------|---------|-----------|-------|--------|--------|---------|------------|--------------------------------|-------|---------------------------------------|---------------------------------|-------|---------------------------------|-------|-----------------------------------|-------| | LOC ID
SAMP ID
QC CODE | | | | | | | | | TP123D-
EB103
SA | -3 | TP123D-4
EB104
SA | TP123D-
EB105
SA | 4 | TP123D-
EB100
SA | 5 | TP123D-5
EB101
SA | i | | SAMP DETH TOP | | | | | | | | | | 2 | 0.5 | | 1 | | 15 | - | 4 1 | | SAMP DEPTH BOT | | | | | | | | | | 2 | 0 5 | | 1 | | 15 | | 4 1 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 4-M | ar-98 | 5-Mar-98 | 5-Ma | ır-98 | 4-Ma | ar-98 | 4-Mar | r-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES Q | VALUE | Q | VALUE Q | VALUE | Q | VALUE | Q | VALUE | Q | | 4,4°-DDD | UG/KG | 0 0 | 0 0% | 2900 | 2661 | 0 | 0 | | | 44 U | 4.8 U | | 4.1 U | | 42 U | | 43 U | | 4,4'-DDE | UG/KG | 2 7 | 9 1% | 2100 | 1879 | 0 | 1 | 11 U | | 4 4 U | 4 8 U | | 4.1 U | | 4 2 U | | 43 U | | 4,4`-DDT | UG/KG | 46 | | 2100 | 1879 | 0 | 2 | | | 44 U | 3 J | | 46 | | 42 U | | 4.3 U | | Aldnn | UG/KG | 0 0 | | 41 | 38 | 0 | 0 | ., . | | 2.3 U | 2 5 U | | 2 1 U | | 2.2 U | | 2.2 U | | Alpha-BHC | UG/KG | 0 0 | | 110 | | 0 | 0 | | | 2.3 U | 2 5 U | | 21 U | | 2.2 U | | 2.2 U | | Alpha-Chlordane | UG/KG | 0 0 | | | | 0 | 0 | | | 2.3 U | 2 5 U | | 2 1 U | |
2.2 U | | 2.2 U | | Aroclor-1016 | UG/KG | 0 0 | | | 5475 | 0 | 0 | 11.0 | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1221 | UG/KG | 0 0 | | | | 0 | 0 | | | 89 U | 98 U | | 83 U | | 85 U | | 87 U | | Aroclor-1232 | UG/KG | 0 0 | | | | 0 | 0 | | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1242 | UG/KG | 0.0 | | | | 0 | 0 | | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1248 | UG/KG | 0.0 | | | | 0 | 0 | | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1254 | UG/KG | 0 0 | | 10000 | 1564 | 0 | 0 | | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1260 | UG/KG | 0 0 | | 10000 | | 0 | _ | | | 44 U | 48 U | | 41 U | | 42 U | | 43 U | | Beta-BHC | UG/KG | 0.0 | | 200 | | 0 | 0 | | | 23 U | 2.5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Delta-BHC | UG/KG | 0 0 | | 300 | | 0 | 0 | | | 2.3 U | 2 5 U | | 2.1 U | | 2.2 U | | 22 U | | Dieldrin | UG/KG | 0 0 | | 44 | 40 | 0 | 0 | 7.0 | | 4.4 U | 4 8 U | | 4.1 U | | 4.2 U | | 43 U | | Endosulfan i | UG/KG | 1.8 | | 900 | 469286 | 0 | 1 | 10 U | | 2.3 U | 18 JP | | 2.1 U | | 2.2 U | | 2.2 U | | Endosulfan II | UG/KG | 0 0 | | 900 | 469286 | 0 | 0 | | | 4.4 U | 4 8 U | | 4.1 U | | 4 2 U | | 4.3 U | | Endosulfan sulfate | UG/KG | 0 0 | | 1000 | | 0 | 0 | | | 4.4 U | 4.8 U | | 41 U | | 4.2 U | | 4.3 U | | Endnn | UG/KG | 0 0 | | 100 | 23464 | 0 | 0 | | | 4.4 U | 48 U | | 4.1 U | | 4.2 U | | 4.3 U | | Endrin aldehyde | UG/KG | 0 0 | | | 23464 | 0 | 0 | | | 4 4 U | 4.8 U | | 4.1 U | | 4.2 U | | 43 U | | Endnn ketone | UG/KG | 0 0 | | | 23464 | 0 | 0 | | | 4.4 U | 48 U | | 4.1 U | | 4.2 U | | 4.3 U | | Gamma-BHC/Lindane | UG/KG | 0 0 | | 60 | | 0 | 0 | | | 2.3 U | 2 5 U | | 2.1 U | | 2.2 U | | 2 2 U | | Gamma-Chlordane | UG/KG | 0.0 | | 540 | | 0 | 0 | | | 23 U | 2.5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Heptachlor | UG/KG | 0 0 | | 100 | 142 | 0 | 0 | | | 23 U | 2 5 U | | 2.1 U | | 2.2 U | | 2 2 U | | Heptachlor epoxide | UG/KG | 0.0 | | | 70 | 0 | 0 | | | 23 U | 2.5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Methoxychlor | UG/KG | 0.0 | | | 391071 | 0 | - | | | 23 U | 25 U | | 21 U | | 22 U | | 22 U | | Toxaphene | UG/KG | 0.0 | 0 0% | | | 0 | 0 | 11 U | | 230 U | 250 U | | 210 U | | 220 U | | 220 U | #### Table 11-9 123D - Pesticices/PCBs in Soils vs PRG-RES Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123
Area West
Bldg. 715 | | SEAD-12
Area Wes
Bldg 715 | st of | SEAD-1:
Area We
Bldg. 71 | st of | SEAD-12
Area We
Bldg 71: | st of | SEAD-123
Area Wes
Bldg 715 | _ | SEAD-123D
Area West of
Bldg. 715 | | |---|----------------|------------|-----------|--------------|--------------|--------|---------|----------|------------------------------------|--------------|---------------------------------|----------------|--------------------------------|----------------|--------------------------------|----------------|----------------------------------|----------------|--|--| | LOC ID
SAMP ID
QC CODE
SAMP DETH TOP | | | | | | | | | TP123D-1
EB108
SA | 0.5 | TP123D-
EB109
SA | 1 | TP123D
EB106
SA | -2
0 5 | TP123D
EB107
SA | -2
1 5 | TP123D-3
EB001
DU | 0 5 | TP123D-3
EB102
SA | | | SAMP DEPTH BOT
MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | 0 5 | SOIL
5-Ma | 1
ar QR | SOIL | 0.5
ar-98 | SOIL
5-Ma | 1 5 | | 0.5 | 0 5
SOIL
4-Mar-98 | | | SAMP DATE | | | OF | | | ABOVE | OF | OF | J-IVIAI | -90 | J-1416 | ai-90 | 3-101 | ai-90 | 5-1416 | 31-90 | 4-19141 | -90 | 4-IVIAI-90 | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | Q | VALUE | | | 4.4°-DDD | UG/KG | 00 | | 2900 | 2661 | 0 | 0 | | | 41 U | | 41 U | | 4 4 U | | 4 2 U | | 4.4 U | 4.4 | | | 4,4'-DDE
4,4'-DDT | UG/KG
UG/KG | 2 7
4.6 | | 2100
2100 | 1879
1879 | 0 | 1 2 | 11 | | 41 U
41 U | | 41 U
41 U | | 2.7 J
4.4 U | | 4 2 U
4 2 U | | 4.4 U
4.4 U | 4.4
4.4 | | | 4.4 -DD1
Aldrin | UG/KG
UG/KG | 0.0 | | 41 | 38 | 0 | 0 | | | 21 U | | 4 1 U | | 23 U | | 4 2 U
2.2 U | | 4.4 U
2.3 U | 2.3 | | | Alpha-BHC | UG/KG | 00 | | 110 | 30 | 0 | 0 | | | 21 U | | 2 1 U | | 23 U | | 2.2 U | | 2.3 U | 23 | | | Alpha-Chlordane | UG/KG | 0.0 | | 110 | | 0 | 0 | | | 2 1 U | | 2 1 U | | 23 U | | 22 U | | 2.3 U | 23 | | | Aroclor-1016 | UG/KG | 0.0 | | | 5475 | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Aroclor-1221 | UG/KG | 00 | | | | 0 | 0 | | | 84 U | | 83 U | | 89 U | | 85 U | | 89 U | 90 | | | Aroclor-1232 | UG/KG | 0.0 | | | | 0 | 0 | | | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Aroclor-1242 | UG/KG | 0.0 | | | | 0 | 0 | 11 | 1 | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Aroclor-1248 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | l | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Aroclor-1254 | UG/KG | 0.0 | 0 00% | 10000 | 1564 | 0 | 0 | 11 | i | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Aroclor-1260 | UG/KG | 0.0 | 0 00% | 10000 | | 0 | 0 | 11 | 1 | 41 U | | 41 U | | 44 U | | 42 U | | 44 U | 44 | | | Beta-BHC | UG/KG | 0.0 | | 200 | | 0 | 0 | | | 2.1 U | | 2.1 U | | 2.3 U | | 22 U | | 23 U | 2 3 | | | Delta-BHC | UG/KG | 0.0 | | 300 | | 0 | 0 | | | 2.1 U | | 2.1 U | | 2.3 U | | 2.2 U | | 2.3 U | 2.3 | | | Dieldnn | UG/KG | 0.0 | | 44 | 40 | 0 | 0 | | | 4.1 U | | 4.1 U | | 4.4 U | | 4.2 U | | 44 U | 4.4 | | | Endosulfan I | UG/KG | 18 | | 900 | 469286 | 0 | 1 | 10 | | 2 1 U | | 21 U | | 2.3 U | | 2.2 U | | 2.3 U | 2.3 | | | Endosulfan II | UG/KG | 0 0 | | 900 | 469286 | 0 | 0 | | | 4 1 U | | 4.1 U | | 4.4 U | | 4 2 U | | 44 U | 4 4 | | | Endosulfan sulfate | UG/KG | 0.0 | | 1000 | | 0 | 0 | | | 4 1 U | | 4 1 U | | 44 U | | 4.2 U | | 4.4 U | 4.4 | | | Endrin | UG/KG | 0.0 | | 100 | 23464 | 0 | 0 | | | 4.1 U | | 4 1 U | | 4.4 U | | 4.2 U | | 4.4 U | 4 4 | | | Endrin aldehyde | UG/KG | 0.0 | | | 23464 | 0 | 0 | | | 4 1 U | | 4 1 U | | 4.4 U | | 4.2 U | | 4.4 U
4.4 U | 4,4 | | | Endrin ketone | UG/KG | 0.0 | | | 23464 | 0 | 0 | | | 41 U
21 U | | 4.1 U
2 1 U | | 4.4 U
2 3 U | | 4.2 U
2.2 U | | 4.4 U
2.3 U | 44 | | | Gamma-BHC/Lindane | UG/KG
UG/KG | 00 | | 60
540 | | 0 | 0 | | | 21 U | | 2 1 U | | 23 U | | 2.2 U | | 2.3 U | 23 | | | Gamma-Chlordane
Heptachlor | UG/KG
UG/KG | 0.0 | | 100 | 142 | 0 | 0 | | | 21 U | | 2 1 U | | 2.3 U | | 2.2 U | | 2.3 U | 2.3 | | | Heptachlor epoxide | UG/KG | 0.0 | | 20 | 70 | 0 | 0 | | | 21 U | | 2 1 U | | 2.3 U | | 2.2 U | | 2.3 U | 2.3 | | | Methoxychlor | UG/KG | 0.0 | | 20 | 391071 | 0 | 0 | | | 21 U | | 21 U | | 2.3 U | | 22 U | | 23 U | 23 | | | Toxaphene | UG/KG | 00 | | | 001071 | 0 | 0 | | | 210 U | | 210 U | | 230 U | | 220 U | | 230 U | 230 | | | . охарного | 30/10 | 0.0 | 0 00 70 | | | · · | Ü | | | | | • | | | | | | | 200 | | Table 11-9 123D - Pesticides/PCBs in Soils vs PRG-RES Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-123
Area Wes
Bldg 715 | t of | SEAD-123
Area West
Bldg 715 | _ | SEAD-12
Area Wes
Bldg 715 | st of | SEAD-
Area W
Bldg . 7 | est of | SEAD-12
Area Wes
Bldg: 715 | st of | |------------------------------|----------------|---------|----------------|------------|-----------|-----------------|--------------|--------------|----------------------------------|---------------|-----------------------------------|----------------|---------------------------------|----------------|-----------------------------|----------------|----------------------------------|----------------| | LOC ID
SAMP ID
QC CODE | | | | | | | | | TP123D-3
EB103
SA | | TP123D-4
EB104
SA | | TP123D-
EB105
SA | 4 | TP1238
EB100
SA | D-5 | TP123D-5
EB101
SA | j | | SAMP DETH TOP | | | | | | | | | | 2 | | 0.5 | | 1 | | 15 | | 4 1 | | SAMP DEPTH BOT | | | | | | | | | | 2 | | 0.5 | | 1 | | 1 5 | | 4 1 | | MATRIX | | | EDE OUE NOV | | | AU IMPED | | AU IMPER | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 4-Mai | r-98 | 5-Mar | 98 | 5-Ma | r-98 | 4-1 | /lar-98 | 4-Ma | 7-98 | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES Q | VALUE | Q | | 4.4'-DDD | UG/KG | 0.0 | 0 00% | 2900 | 2661 | 0 | 000000 | | | 4.4 U | | 4 8 U | VALUE | 4.1 U | VALUE | 4.2 U | VALUE | 4 3 U | | 4.4 -DDE | UG/KG | 2.7 | 9 09% | 2100 | 1879 | 0 | 1 | 11 U | | 4.4 U | | 48 U | | 4.1 U | | 4.2 U | | 43 U | | 4.4 -DDT | UG/KG | 46 | 18 18% | 2100 | 1879 | 0 | 2 | | | 4.4 U | | 3 J | | 4.6 | | 42 U | | 43 U | | Aldrin | UG/KG | 0.0 | 0 00% | 41 | 38 | 0 | 0 | | | 23 U | | 2.5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Alpha-BHC | UG/KG | 0.0 | 0.00% | 110 | | ō | Ö | | | 2.3 U | | 2 5 U | | 2 1 U | | 2.2 U | | 2 2 U | | Alpha-Chlordane | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | | 2 3 U | | 2 5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Aroclor-1016 | UG/KG | 0.0 | 0 00% | | 5475 | 0 | 0 | 11 U | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1221 | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | | 89 U | | 98 U | | 83 U | | 85 U | | 87 U | | Aroclor-1232 | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1242 | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 U | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1248 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 U | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1254 | UG/KG | 0.0 | 0.00% | 10000 | 1564 | 0 | 0 | 11 U | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Aroclor-1260 | UG/KG | 0.0 | 0.00% | 10000 | | 0 | 0 | | | 44 U | | 48 U | | 41 U | | 42 U | | 43 U | | Beta-BHC | UG/KG | 0.0 | 0 00% | 200 | | 0 | 0 | | | 2.3 U | | 2 5 U | | 2.1 U | | 2.2 U | | 2.2 U | | Delta-BHC | UG/KG | 0.0 | 0 00% | 300 | | 0 | 0 | | | 2.3 U | | 2.5 U | | 2.1 U | | 2.2 U | | 22 U | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 40 | 0 | 0 | | | 4.4 U | | 48 U | | 4.1 U | | 4.2 U | | 43 U | | Endosulfan i | UG/KG | 18 | 10.00% | 900
| 469286 | 0 | 1 | 10 U | | 2.3 U | | 18 JP | | 2.1 U | | 2.2 U | | 22 U | | Endosulfan II | UG/KG | 0.0 | 0.00% | 900 | 469286 | 0 | 0 | | | 44 U | | 4 8 U | | 4.1 U | | 4 2 U | | 43 U | | Endosulfan sulfate | UG/KG | 0 0 | 0.00% | 1000 | | 0 | 0 | | | 44 U | | 4 8 U | | 4.1 U | | 4 2 U | | 43 U | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 23464 | 0 | 0 | 11 U | | 4 4 U | | 4 8 U | | 4 1 U | | 4.2 U | | 4.3 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 23464 | 0 | 0 | | | 4.4 U | | 4 8 U | | 4.1 U | | 4.2 U | | 43 U | | Endrin ketone | UG/KG | 0.0 | 0.00% | | 23464 | 0 | 0 | | | 4.4 U | | 4 8 U | | 4.1 U | | 4.2 U | | 4 3 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | 60 | | 0 | 0 | | | 2.3 U | | 2.5 U | | 2.1 U | | 2.2 U | | 22 U | | Gamma-Chlordane | UG/KG | 0.0 | 0.00% | 540
100 | 140 | 0 | 0 | | | 2.3 U
23 U | | 2 5 U
2 5 U | | 2.1 U
2.1 U | | 2.2 U
2.2 U | | 2 2 U
2 2 U | | Heptachlor | UG/KG | 0.0 | 0 00%
0 00% | 100
20 | 142
70 | 0 | 0 | | | 23 U | | 25 U
25 U | | 2.1 U | | 2.2 U | | 22 U | | Heptachlor epoxide | UG/KG
UG/KG | 0.0 | 0 00% | 20 | 391071 | 0 | 0 | | | 23 U | | 25 U | | 2.1 U | | 2.2 U | | 22 U | | Methoxychlor | UG/KG
UG/KG | 0.0 | 0 00% | | 3910/1 | 0 | 0 | | | 23 U
230 U | | 25 U | | 210 U | | 22 U
220 U | | 22 U | | Toxaphene | UG/NG | 0.0 | 0.00% | | | U | Ü | 110 | | 230 0 | 4 | 50 0 | | 210 0 | | 220 0 | | 220 0 | # SEAD-123F # **Mound North of Post 3** Table 13-1 # Sample Collection Information SEAD-123F - Mound North of Post 3 # 12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|------------|--| | SOIL | TP123F | EB110 | 3/5/98 | 0.5 | 0.5 | SA | Located at north end of mound based on presence of disturbed area and stressed vegetation in low area. No staining observed on ground surface. Near surface sample taken near north end of disturbed area. | | SOIL | TP123F | EBIII | 3/5/98 | 1.5 | 1.5 | SA | Same location ID as above. Sample taken at mid-
point depth near south end of disturbed area. No
VOC hits or indication of impact to soils. | Notes: SA = Sample Table 13-2 123F - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-123
Mound No
of Post 3 | | SEAD-12
Mound No
of Post 3 | orth | |---------------------------------|-------|---------|-----------------|------|----------|-----------------|--------------|--------------|-----------------------------------|------|----------------------------------|------| | LOC ID:
SAMP ID:
QC CODE: | | | | | | | | | TP123F
EB110
SA | | TP123F
EB111
SA | | | SAMP. DETH TOP: | | | | | | | | | | 0.5 | | 1.5 | | SAMP. DEPTH BOT: | | | | | | | | | | 0.5 | | 1.5 | | MATRIX: | | | | | | | | | SOIL | | SOIL | | | SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 5- M a | r-98 | 5-Ma | r-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0.00% | 800 | 2737500 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0.00% | 600 | 31938 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0.00% | | 11206 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,1-Dichloroethane | UG/KG | 0 | 0.00% | 200 | 7821429 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,1-Dichloroethene | UG/KG | 0 | 0.00% | 400 | 1065 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,2-Dichloroethane | UG/KG | 0 | 0.00% | 100 | 7821429 | 0 | 0 | 2 | | 12 U | | 12 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 12 U | | 12 U | | 1,2-Dichloropropane | UG/KG | 0 | 0.00% | | 9393 | 0 | 0 | 2 | | 12 U | | 12 U | | Acetone | UG/KG | 7 | 50.00% | 200 | 7821429 | 0 | 1 | 2 | | 12 U | | 7 J | | Benzene | UG/KG | 0 | 0.00% | 60 | 22026 | 0 | 0 | 2 | | 12 U | | 12 U | | Bromodichloromethane | UG/KG | 0 | 0.00% | | 10302 | 0 | 0 | 2 | | 12 U | | 12 U | | Bromoform | UG/KG | 0 | 0.00% | | 80854 | 0 | 0 | 2 | | 12 U | | 12 U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 7821429 | 0 | 0 | 2 | | 12 U | | 12 U | | Carbon tetrachloride | UG/KG | 0 | 0.00% | 600 | 4913 | 0 | 0 | 2 | | 12 U | | 12 U | | Chlorobenzene | UG/KG | 0 | 0.00% | 1700 | 1564286 | 0 | 0 | 2 | | 12 U | | 12 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 7604 | 0 | 0 | 2 | | 12 U | | 12 U | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 31285714 | 0 | 0 | 2 | | 12 U | | 12 U | | Chloroform | UG/KG | 0 | 0.00% | 300 | 104713 | 0 | 0 | 2 | | 12 U | | 12 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 12 U | | 12 U | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 7821429 | 0 | 0 | 2 | | 12 U | | 12 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 111846 | 0 | 0 | 2 | | 12 U | | 12 U | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 12 U | | 12 U | | Methyl chloride | UG/KG | 0 | 0.00% | | 49135 | 0 | 0 | 2 | | 12 U | | 12 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | 2 | | 12 U | | 12 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 6257143 | 0 | 0 | 2 | | 12 U | | 12 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 85167 | 0 | 0 | 2 | | 12 U | | 12 U | | Styrene | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 12 U | | 12 U | | Tetrachloroethene | UG/KG | 0 | 0.00% | 1400 | 12284 | 0 | 0 | 2 | | 12 U | | 12 U | | Toluene | UG/KG | 0 | 0.00% | 1500 | 15642857 | 0 | 0 | 2 | | 12 U | | 12 U | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | | 0 | 0 | 2 | | 12 U | | 12 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 12 U | | 12 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 58068 | 0 | 0 | 2 | | 12 U | | 12 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 336 | 0 | 0 | 2 | | 12 U | | 12 U | ## Table 13-3 123F - Volatiles in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-123F
Mound North
of Post 3 | SEAD
Mound
of Pos | d North | |---------------------------------|-------|---------|-----------|------|----------|--------|---------|----------|---------------------------------------|-------------------------|---------| | LOC ID:
SAMP ID:
QC CODE: | | | | | | | | | TP123F
EB110
SA | TP123
EB111
SA | 3F | | SAMP. DETH TOP: | | | | | | | | | 0.5 | ٥, ٠ | 1.5 | | SAMP. DEPTH BOT: | | | | | | | | | 0.5 | | 1.5 | | MATRIX: | | | | | | | | | SOIL | SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5- | -Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | Q VALU | | | 1,1,1-Trichloroethane | UG/KG | 0 | 0.00% | 800 | 2737500 | 0 | 0 | 2 | 12 1 | U | 12 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0.00% | 600 | 31938 | 0 | 0 | | | U | 12 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0.00% | | 11206 | 0 | 0 | _ | | | 12 U | | 1,1-Dichloroethane | UG/KG | 0 | 0.00% | 200 | 7821429 | 0 | 0 | | | | 12 U | | 1,1-Dichloroethene | UG/KG | 0 | 0.00% | 400 | 1065 | 0 | 0 | | | U | 12 U | | 1,2-Dichloroethane | UG/KG | 0 | 0.00% | 100 | 7821429 | 0 | 0 | _ | | | 12 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | 0 | 0 | | | U | 12 U | | 1,2-Dichloropropane | UG/KG | 0 | 0.00% | | 9393 | 0 | 0 | | | | 12 U | | Acetone | UG/KG | 7 | 50.00% | 200 | 7821429 | 0 | 1 | _ | | | 7 J | | Benzene | UG/KG | 0 | 0.00% | 60 | 22026 | 0 | 0 | _ | | U | 12 U | | Bromodichloromethane | UG/KG | 0 | 0.00% | | 10302 | 0 | 0 | _ | | | 12 U | | Bromoform | UG/KG | 0 | | | 80854 | 0 | 0 | | | | 12 U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 7821429 | 0 | 0 | | | | 12 U | | Carbon tetrachloride | UG/KG | 0 | 0.00% | 600 | 4913 | 0 | 0 | _ | | | 12 U | | Chlorobenzene | UG/KG | 0 | | 1700 | 1564286 | 0 | 0 | | | | 12 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 7604 | 0 | 0 | | | | 12 U | | Chloroethane | UG/KG | 0 | | 1900 | 31285714 | 0 | 0 | _ | | | 12 U | | Chloroform | UG/KG | 0 | | 300 | 104713 | 0 | 0 | | | | 12 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | | | | 0 | 0 | | | | 12 U | | Ethyl benzene | UG/KG | 0 | | 5500 | 7821429 | 0 | 0 | _ | | - | 12 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 111846 | 0 | 0 | | | | 12 U | | Methyl butyl ketone | UG/KG | 0 | | | | 0 | 0 | _ | | | 12 U | | Methyl chloride | UG/KG | 0 | | | 49135 | 0 | 0 | | | | 12 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | | | | 12 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 6257143 | 0 | 0 | _ | | | 12 U | | Methylene chloride | UG/KG | 0 | | 100 | 85167 | 0 | 0 | | | | 12 U | | Styrene | UG/KG | 0 | 0.00% | | | 0 | 0 | | | | 12 U | | Tetrachloroethene | UG/KG | 0 | | 1400 | 12284 | 0 | 0 | | | | 12 U | | Toluene | UG/KG | 0 | | 1500 | 15642857 | 0 | 0 | | | | 12 U | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | | 0 | 0 | _ | | | 12 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | | | | 0 | 0 | | | | 12 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 58068 | 0 | 0 | | | | 12 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 336 | 0 | 0 | 2 | 12 | U | 12 U | Table 13-4 123F - Semivolatiles/TPH In Soils vs TAGMs Non-Evaluated EBS Sites Page 1 | SITE
DESCRIPTION | | | | | | | | | | | SEAD 12
Mound N
of Post 3 | orth | SEAD-12
Mound N
of Post 3 | lorth | |--|----------------|--------------|--------------------|--------------|----------------------|--------|---|---------|---|----------|---------------------------------|---------------|---------------------------------|---------------| | | | | | | | | | | | | |
 | | | LOC ID
SAMP ID | | | | | | | | | | | TP123F
EB110 | | TP123F
EB111 | | | OC CODE
SAMP DETH TOP | | | | | | | | | | | SA | 05 | SA | 15 | | SAMP DEPTH ROT | | | | | | | | | | | | 0.5 | | 15 | | MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | | NUMBER | | NUMBER | SOR
S.M. | ar-98 | SOIL
5.M | ar 98 | | | | | OF | | | ABOVE | | OF | | OF | | | | u. 50 | | PARAMETER 1 2 4 Trichlorobenzene | UNIT
UG/KG | MAXIMUM
0 | DETECTION
0 00% | TAGM
3400 | PRG
782143 | TAGM | 0 | DETECTS | 0 | ANALYSES | VALUE | 77 U | VALUE | 2
78 U | | 1 2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 7039286 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 1 3-Dichlarobenzene | UG/KG | 0 | 0.00% | 1600 | 6961071 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 1 4 Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 26615 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 2.4 5-Trichlorophenol
2.4 6 Trichlorophenol | UG/KG
UG/KG | 0 | 0.00% | 100 | 7821429
58068 | | 0 | | 0 | 2 | | 190 U
77 U | | 190 U
78 U | | 2.4 Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 234643 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 2 4-Dimethylphenot | UG/KG | 0 | 0.00% | | 1564286 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 2 4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 156429 | | 0 | | 0 | 2 | | 190 U | | 190 U | | 2,4-Dinitrotoluene 2,6-Dinitrotoluene | UG/KG
UG/KG | 0 | 0.00% | 1000 | 156429
78214 | | 0 | | 0 | 2 | | 77 U
77 U | | 78 U | | 2.Chloronaphthalene | UG/KG | 0 | 0.00% | 1000 | 70214 | | 0 | | 0 | - 2 | | 77 U | | 78 U | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 391071 | | 0 | | 0 | 7 | | 77 U | | 78 U | | 2-Methylnaphthalene | UG/KG | 0 | 0 00% | 36400 | | | 0 | | 0 | 2 | | 77 U | | 78 U | | 2-Methylphenol
2-Nitroansine | UG/KG
UG/KG | 0 | 0 00% | 100
430 | 3910714
4693 | | 0 | | 0 | 2 | | 77 U
190 U | | 78 U
190 U | | 2-Nitrophenot | UG/KG | 0 | 0.00% | 330 | 40373 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 3.3 Dichtorobenzidine | UG/KG | 0 | 0.00% | | 1419 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 3-Nitroambne | UG/KG | 0 | 0 00% | 500 | 234643 | | 0 | | 0 | 2 | | 190 U | | 190 U | | 4 5-Dinitro 2-methylphenol
4-Bromophenyl phenyl ether | UG/KG
UG/KG | 0 | 0.00% | | 4536429 | | 0 | | 0 | 2 | | 190 U
77 U | | 190 U
78 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | 45 10479 | | o | | 0 | 2 | | 77 U | | 78 U | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 312857 | | 0 | | 0 | 2 | | 77 U | | 78 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | | 0 | | 0 | 2 | | 77 U | | 78 U | | 4-Methylphenol
4-Nitroaniline | UG/KG
UG/KG | 0 | 0 00% | 900 | 234643 | | 0 | | 0 | 2 | | 77 U
190 U | | 78 U
190 U | | 4-Nitrophenol | UG/KG | 0 | 0 00% | 100 | 4692857 | | 0 | | 0 | 2 | | 190 U | | 190 U | | Acenaphthene | UG/KG | 0 | 0.00% | 50000 | | | 0 | | 0 | 2 | | 77 U | | 78 U | | Acenaphthylene | UG/KG | 0 | 0.00% | 41000 | | | 0 | | 0 | 2 | | 77 U | | 78 U | | Anthracene
Benzo[a]amhracene | UG/KG | 0
5 1 | 0 00%
50 00% | 50000
224 | 23464286
875 | | 0 | | 0 | 2 | | 77 บ
5 1 J | | 78 U
78 U | | Benzo[a]pyrene | UG/KG | 53 | 50 00% | 61 | 88 | | 0 | | 1 | 2 | | 53 J | | 78 U | | Benzo(b)fluoranthene | UG/KG | 7.5 | 200 00% | 1100 | 875 | | D | | 2 | 1 | | 75 J | | 7 JY | | Senzo[ghi]perylene | UG/KG | 5.2 | 50.00% | 50000 | | | 0 | | 1 | 2 | | 52 J | | 78 U | | Benzo(k)fluoranthene
Bis(2-Chloroethoxy)methane | UG/KG
UG/KG | 6 2
0 | 50 00%
0 00% | 1100 | 8750 | | 0 | | 1 | 2 | | 52 J
77 U | | 78 U
78 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0 00% | | 581 | | 0 | | ō | - 2 | | 77 U | | 78 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0 00% | | 9125 | | 0 | | 0 | 2 | | 77 U | | 78 U | | Bis(2-Ethythexyl)phthalate | UG/KG | 11 | 50 00% | 50000 | 45625
15642857 | | 0 | | 0 | 3 | | 11 J
77 U | | 78 U
78 U | | Butylbenzylphthalate
Carbszole | UG/KG
UG/KG | 0 | 0.00% | 50000 | 15642857
31938 | | 0 | | 0 | 2 | | 77 U | | 78 U | | Chrysene | UG/KG | 73 | 50 00% | 400 | 87500 | | 0 | | 1 | | | 73 J | | 78 U | | Di-n-butylphthalate | UG/KG | 0 | 0 00% | 8100 | | | 0 | | 0 | - 7 | | 77 U | | 78 U | | Dr-n-octylphthalate | UG/KG
UG/KG | 0 | 0 00% | 50000
14 | 1564286 | | 0 | | 0 | 3 | | 77 U
77 U | | 78 U
78 U | | Dibenz[a,h]anthracene
Dibenzofuran | UG/KG | 0 | 0 00% | 6200 | 312857 | | 0 | | 0 | | | 77 U | | 78 U | | Diethyl phthalate | UG/KG | 12 | 100 00% | 7100 | 62571429 | | 0 | | 2 | 2 | ? | 12 JB | | 72 JB | | Dimethylphthalate | UG/KG | 0 | 0 00% | 2000 | 782142857 | | 0 | | 0 | - 2 | | 77 U | | 78 U | | Ethylene Glycol
Fluoranthene | MG/KG
UG/KG | 12 | 0 00% | 50000 | 156428571
3128571 | | 0 | | 2 | | | 12 J | | 63 J | | Fluorene | UG/KG | 0 | 0.00% | 50000 | 3128571 | | 0 | | Ď | | | 77 U | | 78 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 399 | | 0 | | 0 | - 2 | | 77 U | | 78 U | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | | 8189
547500 | | 0 | | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | Hexachlorocyclopentadiene
Hexachloroethane | UG/KG
UG/KG | 0 | 0 00%
0 00% | | 547500
45625 | | 0 | | 0 | | | 77 U | | 78 U | | Indeno[1,2 3-cd]pyrene | UG/KG | 48 | 50 00% | 3200 | 875 | | 0 | | 1 | | | 48 J | | 78 U | | Isophotone | UG/KG | 0 | 0 00% | 4400 | | | 0 | | 0 | | | 77 U | | 78 U | | N-Nitrosodrphenylamine | UG/KG | 0 | 0 00% | | 130357 | | 0 | | 0 | 3 | | 77 U
77 U | | 78 U | | N-Nifrosodipropylamine
Naphthalene | UG/KG
UG/KG | 0 | 0.00% | 13000 | 3128571 | | 0 | | 0 | | | 77 U | | 78 U | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 39107 | | 0 | | 0 | 7 | 2 | 77 U | | 78 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 5323 | | 0 | | 0 | - 2 | | 190 U | | 190 U | | Phenanthrene | UG/KG | 59 | 50 00% | 50000 | 400000 | | 0 | | 1 | | | 59 J
77 U | | 78 U | | Phenol
Propylene Glycol | UG/KG
MG/KG | 0 | 0.00% | 30 | 46928S71 | | 0 | | 0 | | | // 0 | | 70 U | | Pyrene | UG/KG | 10 | 100 00% | 50000 | 2346429 | | 0 | | 2 | 2 | 2 | 10 J | | 55 J | | TPH | MG/KG | 0 | 0 00% | | | | 0 | | 0 | - | 2 | 17 2 U | | 18 2 U | #### Table 13-5 123F - Semivolatiles/TPH in Soll vs PRG-RES Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD 123
Mound No
of Post 3 | | SEAD-13
Mound N
of Post 3 | lorth | |---|----------------|----------|-------------------|---------------|------------------------|-----------------|---------|--------------|-----------------------------------|-----------------|---------------------------------|----------------| | LOC ID
SAMP ID
GC GODE | | | | | | | | | TP123F
EB110
SA | | TP123F
EB111
SA | | | SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | | 05
05 | | 1 5
1 5 | | MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER | NUMBER
OF | SOIL
5 Ma | -08 | SOIL
5 M | ar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1 2 4-Trichlorobenzene 1 2 Dichlorobenzene | UG/KG
UG/KG | 0 | 0.00% | 3400
7900 | 782143
7039286 | 0 | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | 1 3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 6961071 | 0 | 0 | 2 | | 77 U | | 78 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 26615 | 0 | 0 | 2 | | 77 U | | 78 U | | 2.45-Trichlorophenal | UG/KG | 0 | 0 00% | 100 | 7821429 | 0 | 0 | 2 | | 190 U
77 U | | 190 U | | 2,4 6-Trichlaraphenol
2 4-Dichlaraphenol | UG/KG
UG/KG | 0 | 0 00% | 400 | 58068
234643 | 0 | 0 | 2 | | 77 U | | 78 U | | 2.4-Dimethylphenal | UG/KG | 0 | 0 00% | 400 | 1564286 | 0 | ő | 2 | | 77 U | | 78 U | | 2 4-Dinitrophenal | UG/KG | 0 | 0.00% | 200 | 156429 | 0 | 0 | 2 | | 190 U | | 190 U | | 2.4-Dinitrotoluene | UG/KG | 0 | 0 00% | | 156429 | 0 | 0 | 2 | | 77 U | | 78 U | | 2.6 Dinitrotoluene 2. Chloronaphthalene | UG/KG
UG/KG | 0 | 0 00% | 1000 | 78214 | 0 | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | 2-Chlorophenol | UG/KG
UG/KG | 0 | 0.00% | 800 | 391071 | 0 | 0 | 2 | | 77 U | | 78 U | | 2-Methylnaphthalene | UG/KG | 0 | 0 00% | 36400 | | 0 | 0 | 2 | | 77 U | | 7B U | | 2-Methylphenal | UG/KG | 0 | 0 00% | 100 | 3910714 | 0 | 0 | 2 | | 77 U | | 78 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 4693 | 0 | 0 | 2 | | 190 tJ
77 tJ | | 190 U
78 U | | 2-Nitrophenal
3.3 -Dichlorobenzidine | UG/KG
UG/KG | 0 | 0 00% | 330 | 1419 | 0 | 0 | 2 | | 77 U | | 78 U | | 3-Nitroaniine | UG/KG | 0 | 0 00% | 500 | 234643 | 0 | 0 | 2 | | 190 U | | 190 U | | 4 6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 190 U | | 190 U | | 4-Bramophenyl phenyl ether | UG/KG | 0 | 0.00% | | 4536429 | 0 | 0 | 2 | | 77 U | | 78 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240
220 | 312857 | 0 | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | 4-Chlorozniline 4-Chlorophenyl phenyl ether | UG/KG
UG/KG | 0 | 0.00% | 220 | 312637 | 0 | 0 | 2 | | 77 U | | 78 U | | 4 Methylphenal | UG/KG | 0 | 0 00% | 900 | | 0 | 0 | 7 | | 77 U | | 78 U | | 4 Nitroaniline | UG/KG | 0 | 0.00% | | 234643 | 0 | 0 | 2 | | 190 U | | 190 U | | 4-Nitrophenol | UG/KG
UG/KG | 0 | 0 00% | 100
50000 | 4692857 | 0 | 0 | 2 | | 190 U
77 U | | 190 U
78 U | | Acenaphthene
Acenaphthylene | UG/KG | 0 | 0 00% | 41000 | | 0 | 0 | 2 | | 77 U | | 78 U | | Anthracene | UG/KG | 0 | 0 00% | 50000 | 23464286 | 0 | 0 | 2 | | 77 U | | 78 U | | Benzo(a)anthracene | UG/KG | 5 1 | 50 00% | 224 | 875 | 0 | 1 | 2 | | 51 J | | 78 U | | Benzo(a)pyrene | UG/KG | 53
75 | 50 00%
200 00% | 61
1100 | 88
875 | 0 | 1 2 | 2 | | 53 J
75 J | | 78 U
7 JY | | Benzo(b)fluoranthene
Benzo(ghi)perylene | UG/KG
UG/KG | 52 | 50 00% | 50000 | 075 | 0 | 1 | 2 | | 52J | | 78 U | | Benzo[k]fluoranthene | UG/KG | 62 | 50 00% | 1100 | 8750 | 0 | 1 | 2 | | 62 J | | 78 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 77 U | | 78 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0 00% | | 581
9125 | 0 | 0 | 2 | | 77 U
77 U | |
78 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG
UG/KG | 0 | 0 00%
50 00% | 50000 | 45625 | 0 | 1 | 2 | | 11 J | | 78 U | | Butylbenzylphthalate | UG/KG | 0 | 0 00% | 50000 | 15642857 | 0 | n | 2 | | 77 U | | 78 U | | Carbazole | UG/KG | 0 | 0 00% | | 31938 | 0 | 0 | 2 | | 77 U | | 78 U | | Chrysene | UG/KG | 73 | 50 00% | 400 | 87500 | 0 | 1 | 2 | | 73 J | | 78 U | | Di-n-butylphthalate Di-n-octylphthalate | UG/KG
UG/KG | 0 | 0 00% | 8100
50000 | 1564286 | 0 | 0 | 2 | | 77 U | | 78 U
78 U | | Dibenz[a,h]anthracene | UG/KG | 0 | 0 00% | 14 | 100-400 | 0 | 0 | 2 | | 77 U | | 78 U | | Dibenzofuran | UG/KG | 0 | 0.00% | 6200 | 312857 | 0 | 0 | 2 | | 77 U | | 78 U | | Diethyl phthalate | UG/KG | 12 | 100 00% | 7100 | 62571429 | 0 | 2 | 2 | | 12 JB
77 U | | 7 2 JB
78 U | | Dimethylphthalate
Ethylene Glycol | UG/KG
MG/KG | 0 | 0 00% | 2000 | 782142857
156428571 | 0 | 0 | 2 | | // 0 | | /8 U | | Fluoranthene | UG/KG | 12 | 100 00% | 50000 | 3128571 | 0 | 2 | 2 | | 12 J | | 63 J | | Fluorene | UG/KG | 0 | 0.00% | 50000 | 3128571 | 0 | 0 | 2 | | 77 U | | 78 U | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 399
8189 | 0 | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | Hexachlorobutadiene
Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | 0 00% | | 547500 | 0 | 0 | 2 | | 77 U | | 78 U | | Hexachloroethane | UG/KG | 0 | 0 00% | | 45625 | 0 | 0 | 2 | | 77 U | | 78 U | | Indeno[1,2 3 cd]pyrene | UG/KG | 4.8 | 50 00% | 3200 | 875 | 0 | 1 | 2 | | 48 J | | 78 U | | Isaphorone | UG/KG | 0 | 0 00% | 4400 | | 0 | 0 | 2 | | 77 U | | 78 U | | N-Nitrosodiphenylamine | UG/KG
UG/KG | 0 | 0 00% | | 130357 | 0 | 0 | 2 | | 77 U
77 U | | 78 U
78 U | | N-Nitrosodipropylamine
Naphthalene | UG/KG
UG/KG | 0 | 0 00% | 13000 | 3128571 | 0 | 0 | 2 | | 77 U | | 78 U | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 39107 | 0 | 0 | 2 | | 77 U | | 78 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 5323 | 0 | 0 | 2 | | 190 U | | 190 U | | Phenanthrene | UG/KG | 5 9 | 50 00% | 50000 | 46928571 | 0 | 1 0 | 2 | | 59 J
77 U | | 78 U
78 U | | Phenol
Propylene Glycol | UG/KG
MG/KG | 0 | 0 00% | 30 | 469285/1 | 0 | 0 | 2 | | // 0 | | /B U | | Pyrene Glycal | UG/KG | 10 | 100 00% | 50000 | 2346429 | 0 | 2 | 2 | | 10 J | | 55 J | | TPH | MG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 17 2 U | | 18 2 U | ## Table 13-6 123F - Metals in Soils vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-123F
Mound North
of Post 3 | SEAD-123F
Mound North
of Post 3 | |-----------------------|-------|---------|-----------|--------|------------|--------|---------|----------|---------------------------------------|---------------------------------------| | LOC ID: | | | | | | | | | TP123F | TP123F | | SAMP ID: | | | | | | | | | EB110 | EB111 | | QC CODE: | | | | | | | | | SA | SA | | SAMP. DETH TOP: | | | | | | | | | 0.5 | 1.5 | | SAMP. DEPTH BOT: | | | | | | | | | 0.5 | 1.5 | | MATRIX: | | | | | | | | | SOIL | SOIL | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | | Aluminum | MG/KG | 10600.0 | 100.0% | 19520 | 78214.286 | 0 | 2 | 2 | 9000 | 10600 | | Antimony | MG/KG | 0.0 | 0.0% | 6 | 31.285714 | 0 | 0 | 2 | 0.79 UI | 0.81 UN | | Arsenic | MG/KG | 4.9 | 100.0% | 8.9 | 0.42583333 | 0 | 2 | 2 | 3.7 | 4.9 | | Barium | MG/KG | 108.0 | 100.0% | 300 | 5475 | 0 | 2 | 2 | 87.7 | 108 | | Beryllium | MG/KG | 0.3 | 100.0% | 1.13 | 0.14854651 | 0 | 2 | 2 | 0.31 B | 0.26 B | | Cadmium | MG/KG | 0.0 | 0.0% | 2.46 | 39.107143 | 0 | 0 | 2 | 0.07 U | 0.07 U | | Calcium | MG/KG | 84600.0 | 100.0% | 125300 | | 0 | 2 | 2 | 84600 | 64100 | | Chromium | MG/KG | 17.3 | 100.0% | 30 | 78214 | 0 | 2 | 2 | 15.2 | 17.3 | | Cobalt | MG/KG | 11.6 | 100.0% | 30 | 4693 | 0 | 2 | 2 | 10.2 B | 11.6 | | Copper | MG/KG | 26.7 | 100.0% | 33 | 3129 | 0 | . 2 | 2 | 24.6 | 26.7 | | Cyanide | MG/KG | 0.0 | 0.0% | 0.35 | | 0 | 0 | 2 | 0.63 U | 0.64 U | | Iron | MG/KG | 21800.0 | 100.0% | 37410 | 23464 | 0 | 2 | 2 | | 21800 | | Lead | MG/KG | 11.0 | 100.0% | 24.4 | | 0 | 2 | | | 11 | | Magnesium | MG/KG | 13500.0 | 100.0% | 21700 | | 0 | 2 | | | 10800 | | Manganese | MG/KG | 872.0 | 100.0% | 1100 | 1799 | 0 | 2 | 2 | | 872 | | Mercury | MG/KG | 0.0 | 0.0% | 0.1 | 23 | 0 | 0 | 2 | | 0.06 U | | Nickel | MG/KG | 35.7 | 100.0% | 50 | 1564 | 0 | 2 | 2 | | 35.7 | | Potassium | MG/KG | 1720.0 | 100.0% | 2623 | | 0 | 2 | 2 | | 1720 | | Selenium | MG/KG | 0.0 | 0.0% | 2 | 391 | 0 | 0 | 2 | | 1.1 U | | Silver | MG/KG | 0.0 | 0.0% | 0.8 | 391 | 0 | 0 | 2 | | 0.49 U | | Sodium | MG/KG | 0.0 | 0.0% | 188 | | 0 | 0 | 2 | | 141 U | | Thallium | MG/KG | 0.0 | 0.0% | 0.855 | 6 | 0 | 0 | 2 | | 1.5 U | | Vanadium | MG/KG | 19.2 | | 150 | 548 | 0 | 2 | 2 | | 19.2 E | | Zinc | MG/KG | 64.1 | 100.0% | 115 | 23464.286 | 0 | 2 | 2 | 61.6 | 64.1 | Table 13-7 123F - Metals in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE: DESCRIPTION: LOC ID: SAMP ID: QC CODE: | | | | | | | | | SEAD-123F
Mound North
of Post 3
TP123F
EB110
SA | | SEAD-123
Mound No
of Post 3
TP123F
EB111
SA | | |---|-------|---------|-----------|--------|------------|-----------------|--------------|--------------|--|----|--|---------| | SAMP, DETH TOP: | | | | | | | | | 0.5 | | 34 | 1.5 | | SAMP, DEPTH BOT: | | | | | | | | | 0.5 | | | 1.5 | | MATRIX: | | | | | | | | | SOIL | ' | SOIL | 1.5 | | SAMP. DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 5-Mar-98 | } | 5-Ma | ır-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | Aluminum | MG/KG | 10600 | 100.00% | 19520 | 78214.286 | 0 | 2 | | | | | 0600 | | Antimony | MG/KG | 0 | 0.00% | 6 | 31.285714 | 0 | 0 | | | UN | | 0.81 UN | | Arsenic | MG/KG | 4.9 | 100.00% | 8.9 | 0.42583333 | 2 | 2 | | | | E909/EN | 4.9 | | Barium | MG/KG | 108 | 100.00% | 300 | 5475 | 0 | 2 | | | | | 108 | | Beryllium | MG/KG | 0.31 | 100.00% | 1.13 | 0.14854651 | 2 | 2 | | | | 10000000 | 0.26 B | | Cadmium | MG/KG | 0 | 0.00% | 2.46 | 39.107143 | 0 | 0 | | | | | 0.07 U | | Calcium | MG/KG | 84600 | 100.00% | 125300 | | 0 | 2 | | | | | 1100 | | Chromium | MG/KG | 17.3 | 100.00% | 30 | 78214 | 0 | 2 | 2 | 15.2 | 2 | | 17.3 | | Cobalt | MG/KG | 11,6 | 100.00% | 30 | 4693 | 0 | 2 | 2 | 10.2 | В | | 11.6 | | Copper | MG/KG | 26.7 | 100.00% | 33 | 3129 | 0 | 2 | 2 | 24.6 | | | 26.7 | | Cyanide | MG/KG | 0 | 0.00% | 0.35 | | 0 | 0 | 2 | 0.63 | U | | 0.64 U | | Iron | MG/KG | 21800 | 100.00% | 37410 | 23464 | 0 | 2 | 2 | 19500 |) | 21 | 1800 | | Lead | MG/KG | 11 | 100.00% | 24.4 | | 0 | 2 | 2 | 9.7 | | | 11 | | Magnesium | MG/KG | 13500 | 100.00% | 21700 | | 0 | 2 | 2 | 13500 | 1 | 10 | 0800 | | Manganese | MG/KG | 872 | 100.00% | 1100 | 1799 | 0 | 2 | 2 | 493 | i | | 872 | | Mercury | MG/KG | 0 | 0.00% | 0.1 | 23 | 0 | 0 | 2 | 0.05 | U | | 0.06 U | | Nickel | MG/KG | 35.7 | 100.00% | 50 | 1564 | 0 | 2 | 2 | 30.3 | | | 35.7 | | Potassium | MG/KG | 1720 | 100.00% | 2623 | | 0 | 2 | | | | 1 | 1720 | | Selenium | MG/KG | 0 | 0.00% | 2 | 391 | 0 | 0 | 2 | 1.1 | U | | 1.1 U | | Silver | MG/KG | 0 | 0.00% | 8.0 | 391 | 0 | 0 | 2 | 0.47 | U | 1 | 0.49 U | | Sodium | MG/KG | 0 | 0.00% | 188 | | 0 | 0 | _ | | | | 141 U | | Thallium | MG/KG | 0 | 0.00% | 0.855 | 6 | 0 | 0 | | | | | 1.5 U | | Vanadium | MG/KG | 19.2 | 100.00% | 150 | 548 | 0 | 2 | | | | | 19.2 E | | Zinc | MG/KG | 64.1 | 100.00% | 115 | 23464.286 | 0 | 2 | 2 | 61.6 | | , | 64.1 | ### Table 13-8 123F - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites | SITE.
DESCRIPTION: | | | | | | | | | SEAD-123F
Mound North
of Post 3 | | SEAD-123F
Mound North
of Post 3 | | |-----------------------------------|-------|---------|-----------------|-------|--------|-----------------|--------------|--------------|---------------------------------------|-----|---------------------------------------|---| | LOC ID
SAMP ID:
QC CODE: | | | | | | | | | TP123F
EB110
SA | | TP123F
EB111
SA | | | SAMP DETH TOP:
SAMP DEPTH BOT: | | | | | | | • | | 0.
0. | | 1.5
1.5 | | | MATRIX | | | | | | | | | SOIL 0. | 3 | SOIL | | | SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 5-Mar-9 | 8 | 5- M ar-98 | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 4,4`-DDD | UG/KG | 0 | 0.00% | 2900 | 2661 | 0 | 0 | 2 | | 8 U | 3.9 | | | 4,4`-DDE | UG/KG | 0 | 0.00% | 2100 | 1879 | 0 | 0 | 2 | 3. | 8 U | 3.9 | U | | 4,4`-DDT | UG/KG | 0 | 0.00% | 2100 | 1879 | 0 | 0 | 2 | 3. | 8 U | 3.9 | U | | Aldrin | UG/KG | 0 | 0.00% | 41 | 38 | 0 | 0 | 2 | | 2 U | 2 | U | | Alpha-BHC | UG/KG | 0 | 0.00% | 110 | | 0 | 0 | 2 | | 2 U | 2 | U | | Alpha-Chlordane | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 2 U | 2 | U | | Aroclor-1016 | UG/KG | 0 | 0.00% | | 5475 | 0 | 0 | 2 | 3 | 8 U | 39 | U | | Aroclor-1221 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 7 | 8 U | 79 | U | | Aroclor-1232 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 8 U | 39 | | | Aroclor-1242 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 8 U | 39 | | | Aroclor-1248 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | | 8 U | 39 | | | Aroclor-1254 | UG/KG | 0 | 0.00% | 10000 | 1564 | 0 | 0 | 2 | | 8 U | 39 | | | Aroclor-1260 | UG/KG | 0 | 0.00% | 10000 | | 0 | 0 | 2 | | 8 U | 39 | U | | Beta-BHC | UG/KG | 0 | 0.00% | 200 | | 0 | 0 | 2 | | 2 U | 2 | | | Delta-BHC | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | 2 | | 2 U | 2 | | | Dieldrin | UG/KG | 0 | 0.00% | 44 | 40 | 0 | 0 | 2 | | 8 U | 3.9 | | | Endosulfan I | UG/KG | 0 | 0.00% | 900 | 469286 | 0 | 0 | 2 | | 2 U | 2 | | | Endosulfan II | UG/KG | 0 | 0.00% | 900 |
469286 | 0 | 0 | 2 | | 8 U | 3.9 | | | Endosulfan sulfate | UG/KG | 0 | 0.00% | 1000 | | 0 | 0 | 2 | | 8 U | 3.9 | | | Endrin | UG/KG | 0 | 0.00% | 100 | 23464 | 0 | 0 | 2 | | 8 U | 3.9 | | | Endrin aldehyde | UG/KG | 0 | 0.00% | | 23464 | 0 | 0 | 2 | | 8 U | 3.9 | _ | | Endrin ketone | UG/KG | 0 | 0.00% | | 23464 | 0 | 0 | 2 | | 8 U | 3.9 | | | Gamma-BHC/Lindane | UG/KG | 0 | 0.00% | 60 | | 0 | 0 | 2 | | 2 U | 2 | | | Gamma-Chlordane | UG/KG | 0 | 0.00% | 540 | | 0 | 0 | 2 | | 2 U | 2 | | | Heptachlor | UG/KG | 0 | 0.00% | 100 | 142 | 0 | 0 | 2 | | 2 U | 2 | | | Heptachlor epoxide | UG/KG | 0 | 0.00% | 20 | 70 | 0 | 0 | 2 | | 2 U | 2 | | | Methoxychlor | UG/KG | 0 | 0.00% | | 391071 | 0 | 0 | 2 | | 0 U | 20 | | | Toxaphene | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 20 | 0 U | 200 | U | Table 13-9 123F - Pesticides/PCBs in Soil vs PRG-RES Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-123F
Mound North
of Post 3 | SEAD-123F
Mound North
of Post 3 | |---------------------------------|-------|---------|-----------|-------|--------|--------|---------|----------|---------------------------------------|---------------------------------------| | LOC ID:
SAMP ID:
QC CODE: | | | | | | | | | TP123F
EB110
SA | TP123F
EB111
SA | | SAMP. DETH TOP: | | | | | | | | | 0.5 | 1.5 | | SAMP. DEPTH BOT: | | | | | | | | | 0.5
SOIL | 1.5
SOIL | | MATRIX:
SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 501L
5-Mar-98 | | SAME DATE. | | | OF | | | ABOVE | OF | OF | 5-Wai-50 | 3-IVIAI-30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE (| VALUE Q | | 4,4`-DDD | UG/KG | 0 | 0.00% | 2900 | 2661 | 0 | 0 | | 3.8 ₺ | | | 4,4`-DDE | UG/KG | 0 | 0.00% | 2100 | 1879 | 0 | 0 | 2 | 3.8 ₺ | J 3.9 U | | 4,4`-DDT | UG/KG | 0 | 0.00% | 2100 | 1879 | 0 | 0 | 2 | 3.8 ₺ | J 3.9 U | | Aldrin | UG/KG | 0 | 0.00% | 41 | 38 | 0 | 0 | 2 | 2 L | J 2 U | | Alpha-BHC | UG/KG | 0 | 0.00% | 110 | | 0 | 0 | 2 | 2 L | J 2 U | | Alpha-Chlordane | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 2 L | J 2 U | | Aroclor-1016 | UG/KG | 0 | 0.00% | | 5475 | 0 | 0 | 2 | 38 L | J 39 U | | Aroclor-1221 | UG/KG | 0 | 0 00% | | | 0 | 0 | 2 | 78 L | J 79 U | | Aroclor-1232 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 38 L | J 39 U | | Aroclor-1242 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 38 L | | | Aroclor-1248 | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 38 L | J 39 U | | Aroclor-1254 | UG/KG | 0 | 0.00% | 10000 | 1564 | 0 | 0 | | 38 L | | | Aroclor-1260 | UG/KG | 0 | 0.00% | 10000 | | 0 | 0 | _ | 38 L | | | Beta-BHC | UG/KG | 0 | 0.00% | 200 | | 0 | 0 | _ | 2 L | | | Delta-BHC | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | | 2 L | | | Dieldrin | UG/KG | 0 | 0.00% | 44 | 40 | 0 | 0 | | 3.8 € | • | | Endosulfan I | UG/KG | 0 | 0.00% | 900 | 469286 | 0 | 0 | _ | 2 ل | | | Endosulfan !I | UG/KG | 0 | 0.00% | 900 | 469286 | 0 | 0 | | | | | Endosulfan sulfate | UG/KG | 0 | 0.00% | 1000 | | 0 | 0 | | 3.8 L | | | Endrin | UG/KG | 0 | 0.00% | 100 | 23464 | 0 | 0 | | 3.8 € | | | Endrin aldehyde | UG/KG | 0 | 0.00% | | 23464 | 0 | 0 | | 3.8 € | | | Endrin ketone | UG/KG | 0 | 0.00% | | 23464 | 0 | 0 | | 3.8 L | | | Gamma-BHC/Lindane | UG/KG | 0 | 0.00% | 60 | | 0 | 0 | | 2 L | | | Gamma-Chlordane | UG/KG | 0 | 0.00% | 540 | | 0 | 0 | _ | 2 ل | | | Heptachlor | UG/KG | 0 | 0.00% | 100 | 142 | 0 | 0 | _ | 2 ل | | | Heptachlor epoxide | UG/KG | 0 | 0.00% | 20 | 70 | 0 | 0 | | 2 L | | | Methoxychlor | UG/KG | 0 | 0.00% | | 391071 | 0 | 0 | _ | 20 L | | | Toxaphene | UG/KG | 0 | 0.00% | | | 0 | 0 | 2 | 200 ل | J 200 U | # SEAD-68 Old Pest Control Shop (Building S-335) Table 15-1 # Sample Collection Information SEAD-68 - Old Pest Control Shop (Building S-335) # 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|---| | SURFACE SOIL | SS68-1 | EB142 | 3/10/98 | 0.0 | 0.2 | SΛ | Location is east of the garage door on the southern
corner of the building. This is a potential
discharge location outside the building because of
its close proximity to the bay door. | | SURFACE SÕIL | SS68-2 | EB143 | 3/10/98 | 0.0 | 0.2 | SA | Location is immediately outside the door on the southeastern side of the building. This is a potential discharge location outside the building because of its close proximity to the doorway. | | SÜRFACE SOIL | SS68-3 | EB144 | 3/10/98 | 0.0 | 0 2 | SA | Location is immediately outside the door on the
northeastern side of the building This is a
potential discharge location outside the building
because of its proximity to the doorway | | SURFACE SOIL | SS68-4 | EB145 | 3/10/98 | 0.0 | 0.2 | SA | Location is near an outside corner of the building, north of the door on the northwestern side of the building. This is a potential discharge location outside the huilding because of its proximity to the doorway | | SURFACE SOIL | SS68-5 | EB146 | 3/10/98 | 0.0 | 0.2 | SA | Location is west of the garage door on the western corner of the building. This is a potential discharge location outside the building because of its close proximity to the doorway. | | SOIL | SB68-1 | EB250 | 3/16/98 | 0.0 | 0 3 | SA | Location is east of the garage door on the southers side of the building. This is a potential discharge location outside the building because of its proximity to the doorway, and its downgradient location. | Table 15-1 # Sample Collection Information SEAD-68 - Old Pest Control Shop (Building S-335) # 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|------------|--| | SOIL | SB68-1 | EB251 | 3/16/98 | 4.5 | 4 8 | SA | Same location as above, sample collected at bottom of boring because of shallow depth to bedrock and no impacts to subsurface soils | | SOIL | SB68-2 | EB248 | 3/16/98 | 0.0 | 0.2 | SA | Location is west of the garage door on the western corner of the building. This is a potential discharge location outside the building because of its close proximity to the doorway, and its downgradient location. | | SOIL | SB68-2 | EB249 | 3/16/98 | 4 0 | 4 4 | SA | Same location as above, sample collected at bottom of boring because of shallow depth to bedrock, and no impact to subsurface soil was observed | | WATER | SS68-1 | EB031 | 3/20/98 | 0.0 | 0.0 | RB | NA | Notes SA - Sample RB Rinse Blank NA Not Applicable Lable 15-2 68 - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-6
Old Pes
Control (Bldg. S | ticide
Shop | SEAD-6
Old Pes
Control
(Bldg. S | sticide
Shop | |---|--------|---------|-----------|------|------------|--------|---------|----------|---------------------------------------|----------------|--|-----------------| | LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT | | | | | | | | | SB68-1
EB250
SA
0 | | SB68-1
EB251
SA
4.5 | | | MATRIX: | | | | | | | | | 0.3
SOIL | | 4.8
SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL | 3/16/98 | SOIL | 3/16/98 | | | | | OF | | | ABOVE | OF | OF | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 18396000 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 286160 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0.00% | | 100407 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 52560000 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 9539 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 62892 | 0 | 0 | 9 | | 11 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0.0 | 0.00% | | 84165 | 0 | 0 | 9 | | 11 U | | 11 U | | Acetone | UG/KG | 41.0 | 55.56% | 200 | 52560000 | 0 | 5 | 9 | | 28 | | 41 | | Benzene | UG/KG | 2.0 | 22.22% | 60 | 197352 | 0 | 2 | 9 | | 11 U | | 2 J | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 92310 | 0 | 0 | 9 | | 11 U | | 11 U | | Bromoform | UG/KG | 0.0 | 0.00% | | 724456 | 0 | 0 | 9 | | 11 U | | 11 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 52560000 | 0 | 0 | 9 | | 11 U | | 11 U | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 44025 | 0 | 0 | 9 | | 11 U | | 11 U | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 10512000 | 0 | 0 | 9 | | 11 U | | 11 U | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 68133 | 0 | 0 | 9 | | 11 U | | 11 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 210240000 | 0 | 0 | 9 | | 11 U | | 11 U | | Chloroform | UG/KG | 4.0 | 11.11% | 300 | 938230 | 0 | 1 | 9 | | 11 U | | 4 J | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 52560000 | 0 | 0 | 9 | | 11 U | | 11 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 751608 | 0 | 0 | 9 | | 11 U | | 11 U | | Methyl butyl ketone | UG/KG |
0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | Methyl chloride | ŲG/KG | 0.0 | 0.00% | | 440246 | 0 | 0 | 9 | | 11 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 9 | | 11 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 42048000 | 0 | 0 | 9 | | 11 U | | 11 U | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 763093 | 0 | 0 | 9 | | 11 U | | 11 U | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 110062 | 0 | 0 | 9 | | 11 U | | 11 U | | Toluene | UG/KG | 56.0 | 77.78% | 1500 | 105120000 | 0 | 7 | 9 | | 9 J | | 21 | | Total Xylenes | UG/KG | 5.0 | 22.22% | 1200 | 1051200000 | 0 | 2 | 9 | | 11 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | Trichloroethene | UG/KG | 5.0 | 11.11% | 700 | 520291 | 0 | 1 | 9 | | 11 U | | 11 U | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 3012 | 0 | 0 | 9 | | 11 U | | 11 U | | Ting chorac | 00/110 | 0.0 | 0.0070 | 200 | 3312 | · · | O | 9 | | 110 | | 11 0 | Table 15-2 68 - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION. | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg, S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |--|---|--|---|---|---|---|---| | LOC ID: SAMP_ID: QC CODE: SAMP DETH TOP SAMP. DEPTH BOT: MATRIX: SAMP. DATE: | SB68-2
EB248
SA
0
0.2
SOIL
3/16/98 | SB68-2
EB249
SA
4
4 4
SOIL
3/16/98 | SS68-1
EB142
SA
0
0.2
SOIL
3/10/98 | SS68-2
EB143
SA
0
0.2
SOIL
3/10/98 | SS68-3
EB144
SA
0
0.2
SOIL
3/10/98 | SS68-4
EB145
SA
0
0.2
SOIL
3/10/98 | SS68-5
EB146
SA
0
0.2
SOIL
3/10/98 | | PARAMETER 1.1.1-Trichloroethane 1.1.2.2-Tetrachloroethane 1.1.2-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropropane Acetone Benzene Bromodichloromethane Bromoform Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroform Cis-1,3-Dichloropropene Ethyl benzene Methyl butyl ketone Methyl chloride Methyl ethyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methylene chloride Styrene Tetrachloroethene | VALUE Q 11 U | VALUE Q 10 U | VALUE Q 11 U | VALUE Q 12 U | VALUE Q 12 U | VALUE Q 13 U | VALUE Q 11 U | | Toluene Total Xylenes Trans-1,3-Dichloropropene Trichloroethene Vinyl chloride | 30
2 J
11 U
11 U
11 U | 56
5 J
10 U
5 J
10 U | 8 J
11 U
11 U
11 U
11 U | 12 U
12 U
12 U
12 U
12 U
12 U | 12 U
12 U
12 U
12 U
12 U
12 U | 4 J
13 U
13 U
13 U
13 U | 2 J
11 U
11 U
11 U
11 U | #### Table 15-3 68 - Volatiles in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-68
Old Pest
Control S
(Bldg. S- | icide
Shop | SEAD-68
Old Pesti
Control S
(Bldg. S-3 | cide
hop | SEAD-68
Old Pest
Control S
(Bldg. S- | icide
Shop | |--|-------|---------|-----------------|------|------------|-----------------|--------------|--------------|---|---------------|---|-------------|---|---------------| | LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX. | | | | | | | | | SB68-1
EB250
SA
0
0.3
SOIL | | SB68-1
EB251
SA
4.5
4.8
SOIL | | SB68-2
EB248
SA
0
0.2
SOIL | | | SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SOIL | 3/16/98 | | 3/16/98 | SOIL | 3/16/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 18396000 | 0 | 0 | 9 | | 11 U | VALUE | 11 U | VALUE | 11 | | 1.1.2.2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 286160 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0.00% | 000 | 100407 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1.1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 52560000 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1.1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 9539 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1.2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 62892 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | 1,2-Dichloropropane | UG/KG | 0.0 | 0.00% | | 84165 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | Acetone | UG/KG | 41.0 | 55.56% | 200 | 52560000 | 0 | 5 | 9 | | 28 | | 41 | | 11 | | Benzene | UG/KG | 2.0 | 22.22% | 60 | 197352 | 0 | 2 | 9 | | 11 U | | 2 J | | 11 | | Bromodichloromethane | UG/KG | 0.0 | 0 00% | | 92310 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | Bromoform | UG/KG | 0.0 | 0.00% | | 724456 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 52560000 | 0 | 0 | 9 | | 11 U | | 11 U | | 11 | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 44025 | 0 | 0 | 9 | 1 | 11 U | | 11 U | | 11 | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 10512000 | 0 | 0 | 9 | 1 | 11 U | | 11 U | | 11 | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 68133 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 210240000 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Chloroform | UG/KG | 4.0 | 11.11% | 300 | 938230 | 0 | 1 | 9 |) | 11 U | | 4 J | | 11 | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 52560000 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 751608 | 0 | 0 | 9 | 1 | 11 U | | 11 U | | 11 | | Methyl butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 1 | 11 U | | 11 U | | 11 | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 440246 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Methyl ethyl ketone | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 9 | 1 | 11 U | | 11 U | | 11 | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 42048000 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 763093 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 110062 | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Toluene | UG/KG | 56.0 | 77.78% | 1500 | 105120000 | 0 | 7 | 9 |) | 9 J | | 21 | | 30 | | Total Xylenes | UG/KG | 5.0 | 22.22% | 1200 | 1051200000 | 0 | 2 | 9 |) | 11 U | | 11 U | | 2 | | Trans-1.3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 |) | 11 U | | 11 U | | 11 | | Trichloroethene | UG/KG | 5.0 | 11.11% | 700 | 520291 | 0 | 1 | 9 |) | 11 U | | 11 U | | 11 | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 3012 | 0 | Ó | 9 |) | 11 U | | 11 U | | 11 | Table 15-3 68 - Volatiles in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |--|--------|---|---|---|--|---|---| | LOC ID. SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE: | | SB68-2
EB249
SA
4
4.4
SOIL
3/16/98 | SS68-1
EB142
SA
0
0 2
SOIL
3/10/98 | SS68-2
EB143
SA
0
0.2
SOIL
3/10/98 | SS68-3
EB144
SA
0
0.2
SOIL
3/10/98 | SS68-4
EB145
SA
0
0.2
SOIL
3/10/98 |
SS68-5
EB146
SA
0
0.2
SOIL
3/10/98 | | OANNI . DATE. | | 5/10/30 | 3/10/00 | 3/10/30 | 3/10/30 | 3/10/90 | 3/10/96 | | PARAMETER 1.1,1-Trichloroethane 1.1,2,2-Tetrachloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropthane 1.2-Dichloropthane Benzene Benzene Bromodichloromethane Bromoform Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Cis-1,3-Dichloropropene Ethyl benzene Methyl butyl ketone Methyl chloride Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methylene chloride | | VALUE Q 10 U | VALUE Q 11 U | VALUE Q 12 U | VALUE Q 12 U | VALUE Q 13 U | VALUE Q 11 U | | Styrene Tetrachloroethene Toluene Total Xylenes Trans-1,3-Dichloropropene | n
n | 10 U
10 U
56
5 J
10 U | 11 U
11 U
8 J
11 U
11 U | 12 U
12 U
12 U
12 U
12 U | 12 U
12 U
12 U
12 U
12 U | 13 U
13 U
13 U
4 J
13 U | 11 U
11 U
2 J
11 U
11 U | | Trans-1,3-Dichloropropene Trichloroethene Vinyl chloride | U | 5 J
10 U | 11 U
11 U | 12 U
12 U
12 U | 12 U
12 U
12 U | 13 U
13 U | 11 U
11 U | Table 15-4 68 - Semivolatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE: | | | | | | | | | SEAD-6 | 8 | SEAD-68 | 3 | SEAD-68 | 3 | SEAD-88 | | SEAD-88 | 3 | |-----------------------------|--------|---------|-----------|-------|------------|--------|---------|----------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------| | DESCRIPTION: | | | | | | | | | Old Pesi | licide | Old Pest | | Old Pest | icide | Old Pest | icide | Old Pest | | | | | | | | | | | | Control : | Shop | Control S | Shop | Control S | Shop | Control S | hop | Control S | Shop | | | | | | | | | | | (Bldg S | -335) | (Bldg S- | 335) | (Bldg. S- | 335) | (Bldg. S- | 335) | (Bldg, S- | 335) | | LOC ID: | | | | | | | | | SB68-1 | | SB68-1 | | SB68-2 | | SB68-2 | | SS68-1 | | | SAMP ID: | | | | | | | | | EB250 | | EB251 | | EB248 | | EB249 | | EB142 | | | QC CODE: | | | | | | | | | SA | | | SAMP. DETH TOP: | | | | | | | | | 0 | | 4.5 | | 0 | | 4 | | 0 | | | SAMP. DEPTH BOT. | | | | | | | | | 0.3 | | 4.8 | | 0.2 | | 4.4 | ١. | 0.2 | | | MATRIX: | | | | | | | | | SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | COIL | 3/16/98 | JOIL | 3/16/98 | | 3/16/98 | | 3/16/98 | SOIL | 3/10/98 | | CAMIL. DATE. | | | OF | | | ABOVE | OF | . OF | | 0110100 | | 3/10/30 | | 3/10/30 | | 3/10/30 | | 3/10/30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | | 1,2,4-Trichlorobenzene | UG/KG | 0.0 | 0.00% | 3400 | 5256000 | 0 | 0 | | | 69 U | AVEOL | 69 U | VALUE | 71 U | VALUE | 69 U | AVEOR | 140 U | | 1,2-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 7900 | 47304000 | 0 | 0 | - | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 1,3-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 1600 | 46778400 | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 1.4-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 8500 | 238467 | 0 | _ | - | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 2,4,5-Trichlorophenol | UG/KG | 0.0 | 0.00% | 100 | 52560000 | 0 | | - | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | 2,4,6-Trichlorophenol | UG/KG | 0.0 | 0.00% | 100 | 520291 | 0 | | - | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 2.4-Dichlorophenol | UG/KG | 0.0 | 0.00% | 400 | 1576800 | 0 | | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 2,4-Dimethylphenol | UG/KG | 00 | 0.00% | 400 | 10512000 | 0 | - | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 2,4-Dinitrophenol | UG/KG | 0.0 | 0.00% | 200 | 1051200 | 0 | - | _ | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | 2,4-Dinitrotoluene | UG/KG | 0.0 | 0.00% | 200 | 1051200 | 0 | | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | | | | | 1000 | 525800 | 0 | | | | 69 U | | | | 71 U | | | | | | 2,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | 1000 | 523600 | | | | | | | 69 U | | | | 69 U | | 140 U | | 2-Chloronaphthalene | UG/KG | 0.0 | 0.00% | 000 | 2020000 | | | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 2-Chlorophenol | UG/KG | 00 | 0.00% | 800 | 2628000 | 0 | | | | | | 89 U | | 71 U | | 69 U | | 140 U | | 2-Methylnaphthalene | UG/KG | 310.0 | 44.44% | 36400 | 0000000 | 0 | | - | | 69 U | | 69 U | | 4.9 J | | 69 U | | 8.7 J | | 2-Methylphenol | UG/KG | 0.0 | 0.00% | 100 | 26280000 | 0 | | | | 69 U | | · 69 U | | 71 U | | 69 U | | 140 U | | 2-Nitroantine | UG/KG | 0.0 | 0.00% | 430 | 31536 | 0 | | _ | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | 2-Nitropheno! | UG/KG | 0.0 | 0.00% | 330 | | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 3,3'-Dichlorobenzidine | UG/KG | 0.0 | 0.00% | | 12718 | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 3-Nitroaniline | UG/KG | 0.0 | 0.00% | 500 | 1576800 | 0 | | _ | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0.0 | 0.00% | | 10.7.000 | 0 | 0 | _ | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U - | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0.00% | | 30484800 | 0 | 0 | - | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 4-Chloro-3-methylphenol | UG/KG | 00 | 0.00% | 240 | | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 4-Chloroaniline | UG/KG | 00 | 0.00% | 220 | 2102400 | 0 | - | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 4-Methylphenol | UG/KG | 0.0 | 0.00% | 900 | | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | 4-Nitroaniline | UG/KG | 0.0 | 0.00% | | 1576800 | 0 | 0 | | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | 4-Nitrophenol | UG/KG | 0.0 | 0.00% | 100 | 31536000 | 0 | | | | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | Acenaphthene | UG/KG | 49.0 | 44.44% | 50000 | | 0 | 4 | _ | | 69 U | | 69 U | | 71 U | | 69 U | | 34 J | | Acenaphthylene | UG/KG | 0.0 | 0.00% | 41000 | | 0 | | | | 69 U | | 69 U | | 71 U | | 89 U | | 140 U | | Anthracene | UG/KG | 97.0 | 68.67% | 50000 | 157680000 | 0 | | |) | 69 U | | 69 U | | 6 J | | 69 U | | 53 J | | Benzo[a]anthracene | UG/KG | 900.0 | 86.89% | 224 | 7840 | 2 | | | 1 | 69 U | | 7.2 J | | 46 J | | 9.6 J | March 1 | 360 | | Benzo[a]pyrene | UG/KG | 770.0 | 88.89% | 61 | 784 | 5 | | 9 | | 69 U | | 6.7 J | | 50 J | | 8 7 | | 350 | | Benzo(b)fluoranthene | UG/KG | 940 0 | 6 88.89% | 1100 | 7840 | 0 | 8 | 9 | 1 | 69 U | | 7.4 J | | 68 J | | 10 J | | 380 | | Benzo(ghi)perylene | UG/KG | 420.0 | 88.89% | 50000 | | 0 | 6 | 9 |) | 69 U | | 7.1 J | | 47 J | | 12 J | | 280 | | Benzo(k)fluoranthene | UG/KG | 830.0 | 88.89% | 1100 | 78400 | 0 | 8 | 9 |) | 69 U | | 8.2 J | | 58 J | | 12 J | | 460 | | Bis(2-Chloroethoxy)methane | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | • | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Bis (2-Chloroethyl)ether | UG/KG | 0.0 | 0.00% | | 5203 | 0 | | 9 | + | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0.0 | 0.00% | | 81760 | 0 | 0 | 9 | 1 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 150.0 | 112.50% | 50000 | 408800 | 0 | | 8 | | 4.8 JB | | 1-1 JB | | 27 JB | | 8.6 JB | | 110 BJ | | Butylbenzylphthalate | UG/KG | 18.0 | 55.58% | S0000 | 105120000 | 0 | 5 | 9 | 1 | 4.9 J | | 69 U | | 6.5 J | | 69 U | | 15 J | | Carbazole | UG/KG | .80.0 | 66.67% | | 286160 | 0 | 6 | 9 | 1 | 69 U | | 69 U | | 9.3 J | | 69 U | | 67 J | | Chrysene | UG/KG | 1000.0 | 100.00% | 400 | 784000 | 2 | 9 | 9 | 1 | 4 J | | 8.8 J | | 60 J | | 14 J | | 430 | | Di-n-butylphthalate | UG/KG | 36.0 | 62.50% | 8100 | | 0 | 5 | 8 | Į. | 69 U | | 4.2 J | | 3.6 J | | 69 U | | 7.3 BJ | | Di-n-octylphthalate | UG/KG | 18.0 | 11.11% | 50000 | 10512000 | 0 | 1 | 9 |) | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Dibenz[a,h]anthracene | UG/KG | 220.0 | 88 89% | 14 | 784 | 6 | 8 | 9 |) | 69 U | | 5 J | 1000 | 17. J | | 4.8 J | - | 110 J | | Dibenzofuran | UG/KG | 43.0 | 44.44% | 6200 | 2102400 | 0 | 4 | 9 | | 69 U | | 69 U | | 71 U | | 69 U | | 13 J | | Diethyl phthalate | UG/KG | 34.0 | 112.50% | 7100 | 420480000 | 0 | 9 | 8 | | 6.1 JB | | 6.5 JB | | 8.2 JB | | 5.2 JB | | 12 BJ | | Dimethylphthalate | UG/KG | 0.0 | 0.00% | 2000 | 5256000000 | 0 | 0 | 9 | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Fluoranthene | UG/KG | 1500.0 | 100.00% | 50000 | 21024000 | 0 | 9 | 9 | | 6.1 J | | 14 J | | 120 | | 23 J | | 700 | | Fluorene | UG/KG | 34.0 | 44.44% | 50000 | 21024000 | 0 | 4 | 9 | 1 | 69 U | | 89 U | | 71 U | | 69 U | | 22 J | | Hexachlorobenzene | UG/KG | 0.0 | 0.00% | 410 | 3577 | 0 | 0 | 9 | 1 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Hexachlorobutadiene | UG/KG | 0.0 | 0.00% | | 73374 | 0 | 0 | 9 | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Hexachlorocyclopentadiene | UG/KG | 0.0 | 0.00% | | 3679200 | 0 | 0 | 9 | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Hexachloroethane | UG/KG | 0.0 | 0.00% | | 408800 | 0 | 0 | 9 | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 400.0 | 88.89% | 3200 | 7840 | 0 | | _ | | 69 U | | 6.6 J | | 44 J | | 7.8 J | | 260 | | Isophorone | UG/KG | 0.0 | 0.00% | 4400 | | 0 | 0 | | | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | aspiror orre | 00,,10 | 3.0 | 0.0070 | | | | | | | | | | | | * | | | | #### Fable 15-4 68 - Semivolattles in Soil vs. LAGMs Non-Lyalinated LBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-6i
Old Pest
Control S
(Bldg S- | ticide
Shop | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335 | , | SEAD-68
Old Pestick
Control Sho
(Bldg. S-33 | р | SEAD-68
Old Pestic
Control St
(Bldg S-3 | ide
iop | SEAD-68
Old Pestic
Control Sh
(Bldg. S-33 | юр | |------------------------|-------|---------|-----------|-------|-----------|--------|---------|----------
--|----------------|---|-------|--|-------|--|------------|--|---------| | LOC ID | | | | | | | | | SB68-1 | | SB68-1 | | SB68-2 | | SB68-2 | | SS68-1 | | | SAMP_ID | | | | | | | | | EB250 | | EB251 | | EB248 | | EB249 | | EB142 | | | QC CODE | | | | | | | | | SA | | | SAMP DETH TOP | | | | | | | | | 0 | | 4 5 | | 0 | | 4 | | 0 | | | SAMP DEPTH BOT | | | | | | | | | 0.3 | | 4 8 | | 0.2 | | 4 4 | | 0.2 | | | MATRIX | | | | | | | | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | 3/16/98 | 3/1 | 6/98 | 3/ | 16/98 | 3 | /16/98 | 3 | 3/10/98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | | N-Nitrosodiphenylamine | UG/KG | 0.0 | 0.00% | | 1168000 | 0 | 0 | 9 | 9 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | N-Nitrosodipropylamine | UG/KG | 0.0 | 0 00% | | 818 | 0 | 0 | 9 | 9 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Naphthalene | UG/KG | 78 0 | 22 22% | 13000 | 21024000 | 0 | 2 | 9 | 9 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Nitrobenzene | UG/KG | 0.0 | 0 00% | 200 | 262800 | 0 | 0 | | 9 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Pentachlorophenol | UG/KG | 0.0 | 0 00% | 1000 | 47693 | 0 | 0 | 9 | 9 | 170 U | | 170 U | | 170 U | | 170 U | | 350 U | | Phenanthrene | UG/KG | 480 0 | 77 78% | 50000 | | 0 | 7 | | 9 | 69 U | | 69 U | | 42 J | | 11 J | | 350 | | Phenol | UG/KG | 0.0 | 0.00% | 30 | 315360000 | 0 | 0 | 9 | 9 | 69 U | | 69 U | | 71 U | | 69 U | | 140 U | | Pyrene | UG/KG | 1500 0 | 100 00% | 50000 | 15768000 | 0 | 9 | ! | 9 | 4 3 J | | 11 J | | 94 | | 16 J | | 840 | Table 15-4 68 - Semivolatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION: | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | |-----------------------------|--|--|--|--| | | (Bldg. S-335) | (Bldg. S-335) | (Bldg S-335) | (Bldg. S-335) | | LOC ID: | SS68-2 | SS68-3 | SS68-4 | SS68-5 | | SAMP_ID: | EB143 | EB144 | EB145 | EB146 | | QC CODE: | SA | SA | SA | SA | | SAMP. DETH TOP: | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT: | 0.2 | 0.2 | 0 2 | 0.2 | | MATRIX: | SOIL | SOIL | SOIL | SOIL | | SAMP DATE: | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | | PARAMETER | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 1,2,4-Trichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1.2-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1,3-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1,4-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 2,4,5-Trichlorophenol | 180 U | 740 U | 1000 U | 190 U | | 2,4,6-Trichlorophenol | 76 U | 310 U | 410 U | 77 U | | 2,4-Dichlorophenol | 76 U | 310 U | 410 U | 77 U | | 2,4-Dimethylphenol | 76 U | 310 U | 410 U | 77 U | | 2,4-Dinitrophenol | 180 U | 740 U | 1000 U | 190 U | | 2.4-Dinitrotoluene | 76 U | 310 U | 410 U | 77 U | | 2.6-Dinitrotoluene | 76 U | 310 U | 410 U | 77 U | | 2-Chloronaphthalene | 76 U | 310 U | 410 U | 77 U | | 2-Chlorophenol | 76 U | 310 U | 410 U | 77 U | | 2-Methylnaphthalene | 76 U | 310 U | 310 J | 7.9 J | | 2-Methylphenol | 76 U | 310 U | 410 U | 77 U | | 2-Nitroaniline | 180 U | 740 U | 1000 U | 190 U | | 2-Nitrophenol | 76 U | 310 U | 410 U | 77 U | | 3,3'-Dichlorobenzidine | 76 U | 310 U | 410 U | 77 U | | 3-Nitroanitine | 180 U | 740 U | 1000 U | 190 U | | 4,6-Dinitro-2-methylphenol | 180 U | 740 U | 1000 U | 190 U | | 4-Bromophenyl phenyl ether | 76 U | 310 U | 410 U | 77 U | | 4-Chloro-3-methylphenol | 76 U | 310 U | 410 U | 77 U | | 4-Chloroaniline | 76 U | 310 U | 410 U | 77 U | | 4-Chlorophenyl phenyl ether | 76 U | 310 U | 410 U | 77 U | | 4-Methylphenol | 76 U | 310 U | 410 U | 77 U | | 4-Nitroanitine | 180 U | 740 U | 1000 U | 190 U | | 4-Nitrophenol | 180 U | 740 U | 1000 U | 190 U | | Acenaphthene | 4.8 J | 49 J | 410 U | 14 J | | Acenaphthylene | 76 U | 310 U | 410 U | 77 U | | Anthracene | 7.5 J | 97 J | 31 J | 23 J | | Benzo(a)anthracene | 66 J | 906 | 100 J | 130 | | Benzo(a)pyrene | 77 | 778 | 126 J | 130 | | Senzo(b)fluoranthene | 110 | 940 | 130 J | 170 | | Benzo(ghi]perylene | 64 J | 420 | 110 J | 100 | | Benzo[k]fluoranthene | 100 | 830 | 150 J | 180 | | Bis(2-Chloroethoxy)methane | 76 U | 310 U | 410 U | 77 U | | Bis(2-Chloroethyf)ether | 76 U | 310 U | 410 U | 77 U | | Bis(2-Chloroisopropyl)ether | 76 U | 310 U | 410 U | 77 U | | Bis(2-Ethylhexyl)phthalate | 14 JB | 120 JB | 58 JB | 150 B | | Butylbenzylphthalate | 76 U | 18 J | 410 U | 8.7 J | | Carbazole | 13 J | 80 J | 46 J | 36 J | | Chrysene | 94 | 1860 | 150 J | 160 | | Di-n-butylphthalate | 76 U | 310 U | 36 JB | 14 JB | | Di-n-octylphthalate | 76 U | 18 J | 410 U | 77 U | | Dibenz[a,h]anthracene | 26 . | 220 J | 56 J | #0 J | | Dibenzofuran | 76 U | 18 J | 43 J
34 JB | 6.6 J
14 JB | | Diethyl phthalate | 13 JB | 23 JB | | | | Dimethylphthalate | 76 U | 310 U | 410 U | 77 U | | Fluoranthene | 150 | 1500 | 220 J
27 J | 320
12 J | | Fluorene | 76 U | 34 J
310 U | | 12 J
77 U | | Hexachlorobenzene | 76 U | | 410 U
410 U | 77 U | | Hexachlorobutadiene | 76 U | 310 U | | 77 U | | Hexachlorocyclopentadiene | 76 U | 310 U | 410 U
410 U | 77 U | | Hexachloroethane | 76 U | 310 U
400 | 410 U
96 J | 77 U | | Indeno[1,2,3-cd]pyrene | 61 J
76 U | 400
310 U | 96 J
410 U | 77 U | | Isophorone | 76 0 | 310 0 | 410 0 | 77 0 | #### Lable 18-4 68 - Semiyolatiles in Soil vs TAGMs Non-Lyalitated FBS Sites | SITE
DESCRIPTION | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | , | SEAD-68
Old Pestic
Control Sh
(Bldg S-3) | ор | SEAD-68
Old Pesticide
Control Short
(Bldg S-335 | | SEAD-68
Old Pestic
Control Sh
(Bldg. S-3 | ор | |--|--|--|---|---|--|---|---|---| | LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | SS68-2
EB143
SA
0
0 2
SOIL | 0/98 | SS68-3
EB144
SA
0
0 2
SOIL | i/10/98 | SS68-4
EB145
SA
0
0 2
SOIL | 0/98 | SS68-5
EB146
SA
0
0 2
SOIL | /10/98 | | PARAMETER N-Natrosodiphenylamine N-Nitrosodipropylamine Naphthalene Naphthalene Pentachlorophenol Phenanthrene Phenol Pyrene | | Q
76 U
76 U
76 U
76 U
180 U
54 J
76 U | VALUE | 310 U
310 U
310 U
310 U
740 U
480
310 U | VALUE | Q
410 U
410 U
78 J
410 U
1000 U
210 J
410 U
260 J | VALUE | 77 U
77 U
65 J
77 U
190 U
150
77 U
310 | #### table 15-5 68 - Sennyolatiles in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | 0 | EAD-68
ld Pesticide
ontrol Shop | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | SEAD-68
Old Pesticide
Control Shop | |---|----------------|----------------|--------------------|--------------|--------------------|-----------|---------|------------|---------------------------------------|--|--|--|--| | LOC ID SAMP_ID QC CODE SAMP DETH TOP | | | | | | | | S | | (Bidg S-335)
SB68-1
EB251
SA
4 5 | (Bldg. S-335)
SB68-2
EB248
SA | (Bldg. S-335)
SB68-2
EB249
SA | (Bldg S-335)
SS68-1
EB142
SA | | SAMP DEPTH BOT
MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | 3/16/98 | 4.8
SOIL
3/16/98 | 0.2
SOIL
3/16/98 | 4 4
SOIL
3/16/98 | 0 2
SOIL
3/10/98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | PARAMETER 1,2,4-Trichlorobenzene | UNIT
UG/KG | MAXIMUM
0 0 | DETECTION
0.00% | TAGM
3400 | PRG
5256000 | TAGM
0 | DETECTS | ANALYSES V | ALUE Q
69 U | VALUE Q
69 U | VALUE Q
71 U | VALUE Q
69 U | VALUE Q
140 U | | 1.2-Dichlorobenzene | UG/KG | 0.0 | 0 00% | 7900 | 47304000 | 0 | 0 | 9 | 69 U | 69 U | 71 U | 69 U | 140 U | | 1,3-Dichlorobenzene | UG/KG | 0.0 | 0 00% | 1600 | 46778400 | 0 | 0 | | 69 U | 69 U | 71 U | 69 U | 140 U | | 1.4-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 8500 | 238467 | 0 | | | 69 U | 69 U | 71 U | 69 U | 140 U | | 2,4,5-Trichlorophenol | UG/KG
UG/KG | 0.0 | 0 00%
0 00% | 100 | 52560000
520291 | 0 | (| - | 170 U
69 U | 170 U
69 U | 170 U
71 U | 170 U
69 U | 350 U
140 U | | 2,4,6-Trichlorophenol 2,4-Dichlorophenol | UG/KG
UG/KG | 0.0 | 0 00% | 400 | 1576800 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U
140 U | | 2,4-Dimethylphenol | UG/KG | 0.0 | 0 00% | 400 | 10512000 | 0 | | | 69 U | 69 U | 71 U | 69 U | 140 U | | 2 4-Dinitrophenol | UG/KG | 0.0 | 0 00% | 200 | 1051200 | 0 | | 9 | 170 U | 170 U | 170 U | 170 U | 350 U | | 2,4-Dinitrotoluene | UG/KG | 0.0 | 0 00% | | 1051200 | 0 | 0 | 9 | 69 U | 69 U | 71 U | 69 U | 140 U | | 2,6-Dinfrotoluene | UG/KG | 0.0 | 0 00% | 1000 | 525600 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U |
| 2-Chloronaphthalene | UG/KG | 0.0 | 0.00% | | | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | 2-Chlorophenol | UG/KG | 0.0 | 0 00% | 800 | 2628000 | 0 | (| - | 69 U | 69 U | 71 U | 69 U | 140 U | | 2-Methylnaphthalene | UG/KG
UG/KG | 310 0
0 0 | 44.44%
0.00% | 36400
100 | 26280000 | 0 | | | 69 U | 69 U
69 U | 4.9 J
71 U | 69 U
69 U | 8.7 J
140 U | | 2-Methylphenot
2-Nitroaniline | UG/KG | 0.0 | 0.00% | 430 | 31536 | 0 | (| | 170 U | 170 U | 170 U | 170 U | 350 U | | 2-Nitrophenol | UG/KG | 0.0 | 0.00% | 330 | 31330 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | 3.3 -Dichlorobenzidine | UG/KG | 0.0 | 0 00% | | 12718 | 0 | (| 9 | 69 U | 69 U | 71 U | 69 U | 140 U | | 3-Nitroaniline | UG/KG | 0.0 | 0.00% | 500 | 1576800 | 0 | (| | 170 U | 170 U | 170 U | 170 U | 350 U | | 4.6-Dinitro-2-methylphenol | UG/KG | 0.0 | 0 00% | | | 0 | (| | 170 U | 170 U | 170 U | 170 U | 350 U | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0.00% | | 30484800 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | 4-Chloro-3-methylphenol | UG/KG
UG/KG | 0.0 | 0.00% | 240
220 | 2102400 | 0 | (| | 69 U
69 U | 69 U
69 U | 71 U
71 U | 69 U
69 U | 140 U
140 U | | 4-Chloroaniline
4-Chlorophenyl phenyl ether | UG/KG | 0.0 | 0 00% | 220 | 2102400 | 0 | , | | 69 U | 69 U | 71 U | 69 U | 140 U | | 4-Methylphenol | UG/KG | 0.0 | 0 00% | 900 | | 0 | Ċ | 0 9 | 69 U | 69 U | 71 U | 69 U | 140 U | | 4-Nitroaniline | UG/KG | 0.0 | 0.00% | | 1576800 | 0 | (| 0 9 | 170 U | 170 U | 170 U | 170 U | 350 U | | 4-Nifrophenol | UG/KG | 0.0 | 0 00% | 100 | 31536000 | 0 | (| - | 170 U | 170 U | 170 U | 170 U | 350 U | | Acenaphthene | UG/KG | 49 0 | 44.44% | 50000 | | 0 | 4 | | 69 U | 69 U | 71 U | 69 U | 34 J | | Acenaphthylene | UG/KG | 0.0 | 0 00% | 41000 | 45700000 | 0 | (| | 69 U
69 U | 69 U
69 U | 71 U | 69 U
69 U | 140 U
53 J | | Anthracene | UG/KG
UG/KG | 97 0
900 0 | 66.67%
88.89% | 50000
224 | 157680000
7840 | 0 | | - | 69 U | 7.2 J | 6 J
46 J | 9.6 J | 360 | | Benzo[a]anthracene
Benzo[a]pyrene | UG/KG | 770.0 | 88.89% | 61 | 784 | 0 | | | 69 U | 6.7 J | 50 J | 9 J | 350 | | Benzo[b]fluoranthene | UG/KG | 940.0 | 88 89% | 1100 | 7840 | 0 | 8 | 8 9 | 69 U | 7.4 J | 68 J | 10 J | 380 | | Benzo[ghi]perylene | UG/KG | 420.0 | 88.89% | 50000 | | 0 | 8 | 8 9 | 69 U | 71 J | 47 J | 12 J | 280 | | Benzo[k]fluoranthene | UG/KG | 830.0 | 88.89% | 1100 | 78400 | 0 | 8 | | 69 U | 8.2 J | 58 J | 12 J | 460 | | Bis(2-Chloroethoxy)methane | UG/KG | 0.0 | 0.00% | | | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | Bis(2-Chloroethyl)ether | UG/KG | 0.0 | 0.00% | | 5203
81760 | 0 | (| | 69 U
69 U | 69 U
69 U | 71 U
71 U | 69 U
69 U | 140 U
140 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG
UG/KG | 150 0 | 112.50% | 50000 | 408800 | 0 | | | 4.8 JB | 11 JB | 27 JB | 6.6 JB | 110 BJ | | Bulylbenzylphthalate | UG/KG | 18.0 | 55.56% | 50000 | 105120000 | 0 | | - | 4.9 J | 69 U | 6.5 J | 69 U | 15 J | | Carbazole | UG/KG | 80.0 | 66 67% | | 286160 | 0 | 6 | 6 9 | 69 U | 69 U | 9.3 J | 69 U | 67 J | | Chrysene | UG/KG | 1000.0 | 100 00% | 400 | 784000 | 0 | 9 | 9 9 | 4 J | 8.8 J | 60 J | 14 J | 430 | | Di-n-butylpbthalate | UG/KG | 36 0 | 62.50% | 8100 | | 0 | : | - | 69 U | 4.2 J | 3.8 J | 69 U | 7 3 BJ | | Di-n-octylphthalate | UG/KG | 18 0 | 11 11% | 50000 | 10512000 | 0 | | 1 9 | 69 U | 69 U | 71 U | 69 U | 140 U | | Dibenz(a,h)anthracene | UG/KG | 220.0 | 88.89%
44.44% | 14
6200 | 784
2102400 | 0 | | 8 9
4 9 | 69 U
69 U | 5 J
69 U | 17 J
71 U | 4.8 J
69 U | 110 J
13 J | | Dibenzofuran | UG/KG
UG/KG | 43.0
34 0 | 112 50% | 7100 | 420480000 | 0 | | | 6.1 JB | 6.5 JB | 8.2 JB | 5.2 JB | 12 BJ | | Diethyl phthalate
Dimethylphthalate | UG/KG | 0.0 | 0.00% | 2000 | 5256000000 | 0 | · | - | 69 U | 69 U | 71 U | 69 U | 140 U | | Fluoranthene | UG/KG | 1500 0 | 100.00% | 50000 | 21024000 | 0 | 9 | - | 6.1 J | 14 J | 120 | 23 J | 700 | | Fluorene | UG/KG | 34.0 | 44.44% | 50000 | 21024000 | 0 | 4 | 4 9 | 69 U | 69 U | 71 U | 69 U | 22 J | | Hexachlorobenzene | UG/KG | 0.0 | 0.00% | 410 | 3577 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | Hexachlorobutadiene | UG/KG | 0.0 | 0.00% | | 73374 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | Hexachlorocyclopentadiene | UG/KG | 0.0 | 0.00% | | 3679200 | 0 | (| | 69 U | 69 U | 71 U | 69 U | 140 U | | Hexachloroethane | UG/KG | 0.0 | 0.00% | 2200 | 408800 | 0 | (| | 69 U | 69 U
6.6 J | 71 U
44 J | 69 U
7,6 J | 140 U
260 | | Indeno[1,2,3-cd]pyrene | UG/KG
UG/KG | 400.0
0.0 | 68.89%
0.00% | 3200
4400 | 7840 | 0 | (| | 69 U | 69 U | 44 J
71 U | 7.6 J
69 U | 140 U | | Isophorone
N-Nitrosodiphenylamine | UG/KG | 0.0 | 0.00% | 7400 | 1168000 | 0 | Č | | 69 U | 69 U | 71 U | 69 U | 140 U | | ranio so a priori y latinire | | 3.0 | 0.0070 | | | | | , | 3 | | | | | ### Lable 15-5 68 - Semivolatiles in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-68
Old Pest
Control S
(Bldg S- | icide
Shop | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | | SEAD-68
Old Pestici
Control Sho
(Bldg S-33 | ор | SEAD-68
Old Pesticic
Control Sho
(Bldg. S-33 | р | SEAD-68
Old Pestic
Control Si
(Bldg S-3 | hop | |--|--|---|---|--|---|--|--------------------|--------------|--|---|---|---|---|--|---|---|--|---| | LOC ID-
SAMP_ID
QC CODE.
SAMP DETH TOP
SAMP DEPTH BOT.
MATRIX | | | | | | | | | SB68-1
EB250
SA
0
0 3
SOIL | | SB68-1
EB251
SA
4 5
4 8
SOIL | | SB68-2
EB248
SA
0
0.2
SOIL | | SB68-2
EB249
SA
4
4.4
SOIL | | SS68-1
EB142
SA
0
0 2
SOIL | | | SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | | 3/16/98 | 3/16/ | 98 | | /16/98 | | 16/98 | | 3/10/98 | | PARAMETER 1.2,4-Trichlorobenzene N-Nirosodipropylamine Naphthalene Narrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene | UNIT UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG | MAXIMUM
0 0
78 0
0 0
480 0
0.0
1500.0 | DETECTION
0 00%
0 00%
22 22%
0 00%
0 00%
77 78%
0 00%
100 00% | 13000
200
1000
50000
30
50000 | PRG
5256000
818
21024000
262800
47693
315360000
15768000 | TAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DETECTS 0 2 2 0 7 | | VALUE | Q
69 U
69 U
69 U
170 U
69 U
69 U
4 3 J | 1 | Q
59 U
59 U
59 U
70 U
59 U
59 U | VALUE | Q
71 U
71 U
71 U
71 U
170 U
42 J
71 U
94 | VALUE | G9 U
69 U
69 U
69 U
170 U
11 J
69 U
16 J | VALUE | 140 U
140 U
140 U
140 U
350 U
350 U
350
140 U
840 | ### Table 18-5 68 - Semivolatiles in Soil vs PRG-IND Non-Evaluated EB5 Sites | SITE | SEAD-68 | SEAD-68 | SEAD-68 | SEAD-68 | |--|---------------|-----------------|-----------------|-----------------| | DESCRIPTION | Old Pesticide | Old Pesticide | Old Pesticide | Old Pesticide | | | Control Shop | Control Shap | Control Shop | Control Shop | | | (Bldg S-335) | (Bldg S-335) | (Bldg S-335) | (Bldg S-335) | | FOC ID | SS68-2 | SS68-3 | SS68-4 | SS68-5 | | SAMP_ID | EB143 | EB144 | EB145 | EB146 | | OC CODE | SA | SA | SA | SA | | SAMP DETH TOP | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | 0 2 | 0 2 | 0 2 | 0 2 | | MATRIX | SOIL | SOIL
3/10/98 | SOIL
3/10/98 | SOIL
3/10/98 | | SAMP DATE | 3/10/98 | 3/10/90 | 3/10/90 | 3/10/90 | | PARAMETER | VALUE O | VALUE Q | VALUE Q | VALUE Q | | 1,2,4-Trichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1,2-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1,3-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 1,4-Dichlorobenzene | 76 U | 310 U | 410 U | 77 U | | 2,4.5-Trichlorophenol | 180 U | 740 U | 1000 U | 190 U | | 2.4.6-Trichlorophenol | 76 U
76 U | 310 U
310 U | 410 U
410 U | 77 U
77 U | | 2.4-Dichlorophenol 2.4-Dimethylphenol | 76 U | 310 U | 410 U | 77 U | | 2,4-Dinterryiphenol | 180 U | 740 U | 1000 U | 190 U | | 2.4-Dinitrotoluene | 76 U | 310 U | 410 U | 77 U | | 2.6-Dinitrotoluene | 76 U | 310 U | 410 U | 77 U | | 2-Chloronaphthalene | 76 U | 310 U | 410 U | 77 U | | 2-Chlorophenol | 76 U | 310 U | 410 U | 77 U | | 2-Methylnaphthalene | 76 U | 310 U | 310 J | 79 J | | 2-Methylphenol | 76 U | 310 U | 410 U | 77 U | | 2-Nitroaniline | 180 U | 740 U | 1000 U | 190 U | | 2-Nitrophenol | 76 U
76 U | 310 U
310 U | 410 U
410 U | 77 U
77 U | | 3,3 -Dichlorobenzidine 3-Nifroanitine | 180 U | 740 U | 1000 U | 190 U | | 4,6-Dinitro-2-methylphenol | 180 U | 740 U | 1000 U | 190 U | | 4-Bromophenyl phenyl ether | 76 U | 310 U | 410 U | 77 U | | 4-Chloro-3-methylphenol | 76 U | 310 U | 410 U | 77 U | | 4-Chloroaniline | 76 U | 310 U | 410 U | 77 U | | 4-Chlorophenyl phenyl ether | 76 U | 310 U | 410 U | 77 U
| | 4-Methylphenol | 76 U | 310 U | 410 U | 77 U | | 4-Nitroaniline | 180 U | 740 U | 1000 U | 190 U | | 4-Nitrophenal | 180 U | 740 U | 1000 U | 190 U | | Acenaphthene
Acenaphthylene | 4 8 J
76 ∪ | 49 J
310 U | 410 U
410 U | 14 J
77 U | | Anthracene | 75 J | 97 J | 31 J | . 23 J | | Benzo[a]anthracene | 66 J | 900 | 100 J | 130 | | Benzo[a]pyrene | 77 | 770 | 120 J | 130 | | Benzo[b]fluoranthene | 110 | 940 | 130 J | 170 | | Benzo[ghi]perylene | 64 J | 420 | 110 J | 100 | | Benzo(k)fluoranthene | 100 | 830 | 150 J | 180 | | Bis(2-Chloroethoxy)methane | 76 U | 310 U | 410 U
410 U | 77 U
77 U | | Bis(2-Chloroethyl)ether
Bis(2-Chloroisopropyl)ether | 76 U
76 U | 310 U
310 U | 410 U | 77 U | | Bis(2-Ethylhexyf)phthalate | 14 JB | 120 JB | 58 JB | 150 B | | Butylbenzylphthalate | 76 U | 18 J | 410 U | 87 J | | Carbazole | 13 J | 80 J | 46 J | 36 J | | Chrysene | 94 | 1000 | 150 J | 160 | | Di-n-butylphthalate | 76 U | 310 U | 36 JB | 14 JB | | Di-n-octylphthalate | 78 U | 18 J | 410 U | 77 U | | Dibenz[a,h]anthracene | 26 J | 220 J | 50 J | 40 J | | Dibenzoluran | 76 U
13 JB | 18 J
23 JB | 43 J
34 JB | 6.6 J
14 JB | | Diethyl phthalate Dimethylphthalate | 13 JB
76 U | 23 JB
310 U | 34 JB
410 U | 77 U | | Fluoranthene | 150 | 1500 | 220 J | 320 | | Fluorantnene | 76 U | 34 J | 27 J | 12 J | | Hexachlorobenzene | 76 U | 310 U | 410 U | 77 U | | Hexachlorobutadiene | 76 U | 310 U | 410 U | 77 U | | Hexachlorocyclopentadiene | 76 ∪ | 310 U | 410 ∪ | 77 U | | Hexachloroethane | 76 ∪ | 310 U | 410 U | 77 U | | Indeno[1,2,3-cd]pyrene | 61 J | 400 | 96 J | 98 | | Isophorone | 76 U | 310 U | 410 U | 77 U
77 U | | N-Nitrosodiphenylamine | 76 ∪ | 310 U | 410 ∪ | 77 0 | Table 15-5 68 - Sennyolaules in Soil vs PRG-DND Non-Evaluated EBS Sites | SITE
DESCRIPTION | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | | SEAD-68
Old Pestici
Control Shi
(Bldg S-33 | ор | SEAD-68
Old Peshcid
Control Sho
(Bldg \$-33) | P | SEAD-68
Old Pestici
Control Sh
(Bldg S-33 | ор | |---|--|--|---|--|---|---|--|---| | LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | SS68-2
EB143
SA
0
0 2
SOIL | /98 | SS68-3
EB144
SA
0
0 2
SOIL | /10/98 | SS68-4
EB145
SA
0
0 2
SOIL | 0/98 | SS68-5
EB146
SA
0
0 2
SOIL | /10/98 | | PARAMÉTER 1,2,4-Trichlorobenzene N-Nitrosodipropylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene | | Q
76 U
76 U
76 U
76 U
76 U
180 U
54 J
76 U | VALUE | Q
310 U
310 U
310 U
310 U
740 U
480
310 U
1500 | VALUE | Q
410 U
410 U
78 J
410 U
1000 U
210 J
410 U
260 J | VALUE | 77 U
77 U
65 J
77 U
190 U
150
77 U
310 | # Table 15-6 68 - Pesticides in Soil vs T \GMs Non-Evaluated EBS Sites | SITE
DESCRIPTION. | | | | | | | | | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pestic
Control S
(Bldg. S-3 | cide
hop | |---|-------|---------|-----------------|------|---------|---------------|---------------|----------------|---|--|----------------| | LOC ID SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT. | | | | | | | | | SB68-1
EB250
SA
0
0.3 | SB68-1
EB251
SA
4.5
4.8 | | | MATRIX:
SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER | NUMBER | NUMBER | SOIL
3/16/98 | SOIL | 3/16/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | ABOVE
TAGM | OF
DETECTS | OF
ANALYSES | VALUE Q | VALUE | Q | | 4.4 -DDD | UG/KG | 0.0 | 0.00% | 2900 | 23847 | 0 | 0 | 9 | 3.5 U | VALUE | 3.5 U | | 4.4 -DDE | UG/KG | 260.0 | 100.00% | 2100 | 16833 | 0 | 7 | 7 | 3.5 U | | 3.5 U | | 4,4'-DDT | UG/KG | 4000.0 | 100.00% | 2100 | 16833 | 1 | 6 | 6 | 3.5 U | | 3.5 U | | Aldrin | UG/KG | 0.0 | 0.00% | 41 | 337 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Alpha-BHC | UG/KG | 0.0 | 0.00% | 110 | 337 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Alpha-Chlordane | UG/KG | 24.0 | 83.33% | 110 | | 0 | 5 | 6 | 1.8 U | | | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 358 | 0 | 0 | 9 | 3.5 U | | 1.8 U
3.5 U | | Endosulfan i | UG/KG | 0.0 | 0.00% | 900 | 3153600 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Endosulfan II | UG/KG | 0.0 | 0.00% | 900 | 3133600 | 0 | 0 | 9 | 3.5 U | | 3.5 U | | Endosulfan sulfate | UG/KG | 0.0 | 0.00% | 1000 | | 0 | 0 | 9 | 3.5 U | | 3.5 U | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 157680 | 0 | 0 | 9 | 3.5 U | | 3.5 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | 100 | 157680 | 0 | 0 | 9 | 3.5 U | | 3.5 U | | Endrin alderryde
Endrin ketone | UG/KG | 2.3 | 12.50% | | 157680 | 0 | 1 | 8 | 3.5 U | | 3.5 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | 60 | 4402 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Gamma-Chlordane | UG/KG | 23.0 | 62.50% | 540 | 4402 | 0 | 5 | 8 | 1.8 U | | 1.8 U | | Heptachlor | UG/KG | 0.0 | 0.00% | 100 | 1272 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Heptachlor epoxide | UG/KG | 4.0 | 50.00% | 20 | 629 | 0 | 4 | 8 | 1.8 U | | 1.8 U | | Methoxychlor | UG/KG | 0.0 | 0.00% | 20 | 2628000 | 0 | 0 | 9 | 1.8 U | | 1.8 U | | Toxaphene | UG/KG | 0.0 | 0.00% | | 2020000 | 0 | 0 | 9 | 180 U | | 180 U | | Azinphos-methyl | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Bolstar (Sulprofos) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Chlorpyrifos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Coumaphos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Demeton-O | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Diazinon | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Dichlorvos (DDVP) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | . 9 | 35 U | | 35 U | | Dimethoate | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Disulfoton | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | EPN | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Ethoprop | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Fensulfothion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Fenthion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Malathion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Merphos | UG/KG | 0.0 | 0.00% | | | Ö | 0 | 9 | 35 U | | 35 U | | Methyl parathion | UG/KG | 0.0 | 0.00% | | 131400 | 0 | 0 | 9 | 35 U | | 35 U | | Mevinphos | UG/KG | 0.0 | 0.00% | | .51400 | 0 | 0 | 9 | 35 U | | 35 U | | Monocrotophos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Parathion, ethyl | UG/KG | 0.0 | 0.00% | 1200 | | 0 | 0 | 9 | 35 U | | 35 U | | Ronnel | UG/KG | 0.0 | 0.00% | 1200 | | 0 | 0 | 9 | 35 U | | 35 U | | Stirophos (Tetrachlorovinphos) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Tokuthion (Protothiofos) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Trichloronate | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | | 35 U | | Hemorollate | 30/10 | 0.0 | 0.0070 | | | · · | • | 9 | 55 0 | | | Table 15-6 68 - Pesticides in Soil vs TAGMs Non-Evaluated EBS Sites | SITE. DESCRIPTION: | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |--------------------------------|---|---|--|---|--|---|---| | LOC ID | SB68-2 | SB68-2 | SS68-1 | SS68-2 | SS68-3 | SS68-4 | SS68-5 | | SAMP_ID: | EB248 | EB249 | EB142 | EB143 | EB144 | EB145 | EB146 | | QC CODE | SA | SAMP DETH TOP: | 0 | 4 | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT: | 0.2 | 4.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0 2 | | MATRIX: | SOIL | SAMP DATE: | 3/16/98 | 3/16/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | | PARAMETER | VALUE Q | 4,4`-DDD | 3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U | 41 U | 3.8 U | | 4,4`-DDE | 19 | 4.2 | 83 D | 130 D | 26 | 260 | 36 | | 4,4`-DDT | 22 | 3.5 U | 28 | 170 D | 23 | 4000 D | 330 D | | Aldrin | 1.8 U | 1.8 U | 1.8 U | 1.9 U | 1.9 U | 21 U | 1.9 U | | Alpha-BHC | 1.8 U | 1.8 U | 1.8 U | 1.9 U | 1.9 U | 21 U | 1.9 U | | Alpha-Chlordane | 6.2 P | 3.7 P | 24 D
1.8 U | 1,9 U | 1.9 U | 19 J | 1.6 J
1.9 U | | Beta-BHC | 1.8 U | 1.8 U
1.8 U | 1.8 U
1.8 U | 1.9 U
1.9 U | 1.9 U
1.9 U | 21 U
21 U | 1.9 U
1.9 U | | Delta-BHC | 1.8 U
3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U | 21 U | 3.8 U | | Dieldrin
Endosulfan I | 1.8 U | 1.8 U | 1.8 U | 1.9 U | 1.9 U | 21 U | 1.9 U | | Endosulfan II | 3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U | 41 U | 3.8 U | | Endosulfan sulfate | 3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U
 41 U | 3.8 U | | Endrin | 3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U | 41 U | 3.8 U | | Endrin aldehyde | 3.5 U | 3.5 U | 3.6 U | 3.8 U | 3.9 U | 41 U | 3.8 U | | Endrin ketone | 3.5 U | 3.5 U | 2.3 JP | 3.8 U | 3.9 U | 41 U | 3.8 U | | Gamma-BHC/Lindane | 1.8 U | 1.8 U | 1.8 U | 1.9 U | 1.9 U | 21 U | 1.9 U | | Gamma-Chlordane | 7.5 | 4.4 | 23 | 1.9 U | 1.9 U | 18 J | 1.2 JP | | Heptachlor | 1.8 U | 1.8 U | 1.8 U | 1.9 U | 1.9 U | 21 U | 1.9 U | | Heptachlor epoxide | 1.6 J | 1.8 U | 4 P | 1.3 J | 3.6 | 21 U | 1.9 U | | Methoxychlor | 18 U | 18 U | 18 U | 19 U | 19 U | 210 U | 19 U | | Toxaphene | 180 U | 180 U | 180 U | 190 U | 190 U | 2100 U | 190 U | | Azinphos-methyl | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Bolstar (Sulprofos) | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Chlorpyrifos | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U
45 U | 37 U
37 U | | Coumaphos | 35 U | 35 U | 37 U
37 U | 38 U
38 U | 37 U
37 U | 45 U
45 U | 37 U | | Demeton-O | 35 U
35 U | 35 U
35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Diazinon Dichlorvos (DDVP) | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Dimethoate | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Disulfoton | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | EPN | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Ethoprop | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Fensulfothion | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Fenthion | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Malathion | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Merphos | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Methyl parathion | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Mevinphos | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Monocrotophos | 35 U | 35 U | . 37 U | 38 U | 37 U | 45 U | 37 U | | Parathion, ethyl | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Ronnel | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Stirophos (Tetrachlorovinphos) | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Tokuthion (Protothiofos) | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 U | | Trichloronate | 35 U | 35 U | 37 U | 38 U | 37 U | 45 U | 37 ∪ | # fable 15-7 68 - Pesticides in Soil vs PRG-IND Non-Evaluated FBS Sites | SITE:
DESCRIPTION: | | | | | | | | Old
Co | AD-68
d Pesticide
ntrol Shop
dg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg S-335) | |--|----------------|-------------|-----------------|-----------|---------|-----------------|--------------|----------------------------|--|---|--| | LOC ID. SAMP_ID: QC CODE. SAMP_DETH TOP: SAMP_DEPTH BOT MATRIX: | | | | | | | | EB
SA
0
0.3
SC | 3
DIL | SB68-1
EB251
SA
4.5
4.8
SOIL | SB68-2
EB248
SA
0
0.2
SOIL | | SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 3/16/98 | 3/16/98 | 3/16/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES VA | | VALUE Q | VALUE | | 4.4`-DDD | UG/KG | 0.0 | 0.00% | 2900 | 23847 | 0 | 0 | 9 | 3.5 U | 3.5 U | 3.5 | | 4.4 -DDE | UG/KG | 260.0 | 100.00% | 2100 | 16833 | 0 | 7 | 7 | 3.5 U | 3.5 U | 19 | | 4,4°-DDT | UG/KG | 4000.0 | 100.00% | 2100 | 16833 | 0 | 6 | 6 | 3.5 U | 3.5 U | 22 | | Aldrin | UG/KG | 0.0 | 0.00% | 41 | 337 | 0 | 0 | 9 | 1.8 U | 1.8 U | 1.8 | | Alpha-BHC | UG/KG | 0.0 | 0.00% | 110 | | 0 | 0 | 9 | 1.8 U | 1.8 U | 1.8 | | Alpha-Chlordane | UG/KG | 24.0 | 83.33% | | | 0 | 5 | 6 | 1.8 U | 1.8 U | 6.2 | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | 0 | _ | 1.8 U | 1.8 U | 1.8 | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 9 | 1.8 U | 1.8 U | 1.8 | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 358 | 0 | 0 | 9 | 3.5 U | 3.5 U | 3.5 | | Endosulfan I | UG/KG | 0.0 | 0.00% | 900 | 3153600 | 0 | 0 | 9 | 1.8 U | 1.8 U | 1.8 | | Endosulfan II | UG/KG | 0.0 | 0.00% | 900 | | 0 | 0 | 9 | 3.5 U | 3.5 U | 3.5 | | Endosulfan sulfate | UG/KG | 0.0 | 0.00% | 1000 | 457000 | 0 | 0 | 9
9 | 3.5 U | 3.5 U | 3.5 | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 157680 | 0 | 0 | | 3.5 U | 3.5 U | 3.5 | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 157680 | 0 | 0 | 9
8 | 3.5 U
3.5 U | 3.5 U
3.5 U | 3.5
3.5 | | Endrin ketone | UG/KG | 2.3 | 12.50% | co | 157680 | 0 | | | | | 3.5
1.8 | | Gamma-BHC/Lindane | UG/KG | 0.0
23.0 | 0.00%
62,50% | 60
540 | 4402 | 0 | 0
5 | 8 | 1.8 U
1.8 U | 1.8 U
1.8 U | 7.5 | | Gamma-Chlordane | UG/KG | 0.0 | 0.00% | 100 | 1272 | 0 | 0 | | 1.8 U | 1.8 U | 1.8 | | Heptachlor | UG/KG
UG/KG | 4.0 | 50.00% | 20 | 629 | 0 | 4 | 8 | 1.8 U | 1.8 U | 1.6 | | Heptachlor epoxide | UG/KG | 0.0 | 0.00% | 20 | 2628000 | 0 | 0 | | 1.8 U | 18 U | 18 | | Methoxychlor | UG/KG | 0.0 | 0.00% | | 2020000 | 0 | 0 | | 180 U | 180 U | 180 | | Toxaphene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Azinphos-methyl
Bolstar (Sulprofos) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Chlorpyrifos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Coumaphos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Demeton-O | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Diazinon | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Dichlorvos (DDVP) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Dimethoate | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Disulfoton | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | EPN | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Ethoprop | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Fensulfothion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Fenthion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Malathion | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Merphos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Methyl parathion | UG/KG | 0.0 | 0.00% | | 131400 | 0 | 0 | 9 | 35 U | 35 U | 35 | | Mevinphos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 35 U | 35 U | 35 | | Monocrotophos | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Parathion, ethyl | UG/KG | 0.0 | 0.00% | 1200 | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Ronnel | UG/KG | 0.0 | 0.00% | - | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Stirophos (Tetrachłorovinpho | | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Tokuthion (Protothiofos) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | Trichloronate | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 35 U | 35 U | 35 | | | | | | | | | | | | | | Table 15-7 68 - Pesticides in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE.
DESCRIPTION. | | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg, S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg, S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |---|------------------|---|---|---|---|--|--| | LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP DEPTH BOT: MATRIX. | | SB68-2
EB249
SA
4
4.4
SOIL | SS68-1
EB142
SA
0
0.2
SOIL | SS68-2
EB143
SA
0
0 2
SOIL | SS68-3
EB144
SA
0
0.2
SOIL | SS68-4
EB145
SA
0
0.2
SOIL | SS68-5
EB146
SA
0
0.2
SOIL | | SAMP. DATE: | | 3/16/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | | PARAMETER 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Alpha-BHC Alpha-Chlordane Beta-BHC Della-BHC Dieldrin | 000000000 | VALUE Q 3.5 U 4.2 3.5 U 1.8 U 1.8 U 3.7 P 1.8 U 1.8 U 3.5 U | VALUE Q 3.6 U 83 D 28 1.8 U 1.8 U 24 D 1.8 U 1.8 U 3.6 U | VALUE Q 3.8 U 130 D 170 D 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.8 U | VALUE Q 3.9 U 26 23 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.9 U | VALUE Q
41 U
260
4000 D
21 U
21 U
19 J
21 U
21 U
41 U | VALUE Q 3.8 U 36 330 D 1.9 U 1.9 U 1.6 J 1.9 U 1.9 U 3.8 U | | Endosulfan I
Endosulfan II
Endosulfan sulfate
Endrin | U
U
U | 1.8 U
3.5 U
3.5 U
3.5 U
3.5 U | 1.8 U
3.6 U
3.6 U
3.6 U
3.6 U | 1.9 U
3.8 U
3.8 U
3.8 U
3.8 U | 1.9 U
3.9 U
3.9 U
3.9 U
3.9 U | 21 U
41 U
41 U
41 U
41 U | 1.9 U
3.8 U
3.8 U
3.8 U
3.8 U | | Endrin aldehyde
Endrin ketone
Gamma-BHC/Lindane
Gamma-Chlordane
Heptachlor | U
U
U | 3.5 U
1.8 U
4.4
1.8 U | 2.3 JP
1.8 U
23
1.8 U | 3.8 U
1.9 U
1.9 U
1.9 U | 3.9 U
1.9 U
1.9 U
1.9 U | 41 U
21 U
18 J
21 U | 3.8 U
1.9 U
1.2 JP
1.9 U | | Heptachlor epoxide
Methoxychlor
Toxaphene
Azinphos-methyl | J
U
U | 1.8 U
18 U
180 U
35 U
35 U | 4 P
18 U
180 U
37 U
37 U | 1.3 J
19 U
190 U
38 U
38 U | 3.6
19 U
190 U
37 U
37 U | 21 U
210 U
2100 U
45 U
45 U | 1.9 U
19 U
190 U
37 U
37 U | | Boistar (Sulprofos) Chlorpyrifos Coumaphos Demeton-O Diazinon | U
U
U | 35 U
35 U
35 U
35 U | 37 U
37 U
37 U
37 U
37 U | 38 U
38 U
38 U
38 U | 37 U
37 U
37 U
37 U
37 U | 45 U
45 U
45 U
45 U | 37 U
37 U
37 U
37 U | | Dichlorvos
(DDVP)
Dimethoate
Disulfoton
EPN | U
U
U | 35 U
35 U
35 U
35 U | 37 U
37 U
37 U
37 U | 38 U
38 U
38 U
38 U | 37 U
37 U
37 U
37 U | 45 U
45 U
45 U
45 U | 37 U
37 U
37 U
37 U | | Ethoprop
Fensulfothion
Fenthion
Malathion | U
U
U | 35 U
35 U
35 U
35 U | 37 U
37 U
37 U
37 U
37 U | 38 U
38 U
38 U
38 U | 37 U
37 U
37 U
37 U
37 U | 45 U
45 U
45 U
45 U
45 U | 37 U
37 U
37 U
37 U
37 U | | Merphos
Methyl parathion
Mevinphos
Monocrotophos
Parathion, ethyl | U
U
U
U | 35 U
35 U
35 U
35 U
35 U | 37 U
37 U
37 U
37 U
37 U | 38 U
38 U
38 U
38 U
38 U | 37 U
37 U
37 U
37 U
37 U | 45 U
45 U
45 U
45 U | 37 U
37 U
37 U
37 U
37 U | | Ronnel Stirophos (Tetrachlorovinpho Tokuthion (Protothiofos) Trichloronate | U | 35 U
35 U
35 U
35 U | 37 U
37 U
37 U
37 U
37 U | 38 U
38 U
38 U
38 U | 37 U
37 U
37 U
37 U
37 U | 45 U
45 U
45 U
45 U
45 U | 37 U
37 U
37 U
37 U | Table 15-8 68 - Herbicides and Arsenic in Soil vs TAGM Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-68
Old Pesti
Control S
(Bldg. S-5 | icide
Shop | SEAD-68
Old Pestic
Control Sh
(Bldg. S-3 | пор | |--------------------------|-------|---------|-----------------|------|----------|-----------------|--------------|--------------|---|---------------|---|---------| | LOC ID: | | | | | | | | | SB68-1 | | SB68-1 | | | SAMP_ID: | | | | | | | | | EB250 | | EB251 | | | QC CODE: | | | | | | | | | SA | | SA | | | SAMP, DETH TOP: | | | | | | | | | 0 | | 4.5 | | | SAMP. DEPTH BOT: | | | | | | | | | 0.3 | | 4.8 | | | MATRIX: | | | EDEOUENOV | | | | AU III ADCD | | SOIL | 0140100 | SOIL | 140100 | | SAMP. DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVÉ | NUMBÉR
OF | NUMBER
OF | | 3/16/98 | 3 | 3/16/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 2,4,5-T | UG/KG | 25.0 | 12.50% | 1900 | FKG | 0 | 1 | | 8 | 5 U | VALUE | 5 U | | 2,4,5-TP/Silvex | UG/KG | 0.0 | 0.00% | 700 | | 0 | 0 | | 9 | 5 U | | 5 U | | 2,4-D | UG/KG | 0.0 | 0.00% | 500 | | 0 | 0 | | 9 | 49 U | | 49 U | | 2,4-DB | UG/KG | 90.0 | 12.50% | 300 | | 0 | 1 | | 8 | 50 U | | 50 U | | 3,5-Dichlorobenzoic acid | UG/KG | 0.0 | 0.00% | | | 0 | | | 9 | 49 U | | 49 U | | Dalapon | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 270 U | | 270 U | | Dicamba | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 4.9 U | | 4.9 U | | Dichloroprop | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 49 U | | 49 U | | Dinoseb | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 25 U | | 25 U | | MCPA | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 4900 U | | 4900 U | | MCPP | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 9 | 4900 U | | 4900 U | | Pentachlorophenol | UG/KG | 24.0 | 11.11% | 1000 | 47693 | 0 | 1 | | 9 | 18 U | | 18 U | | Picloram | UG/KG | 0.0 | 0.00% | | 36792000 | 0 | 0 | | 9 | 5 U | | 5 U | | Arsenic | MG/KG | 11.3 | 100.00% | 8.9 | 3.19 | 1.00 | 9.00 | | 9 | 5.2 N* | | 4.7 N* | Fable 15-8 68 - Herbicides and Arsenic in Soil vs TAGM Non-Evaluated FBS Sites | SITE:
DESCRIPTION: | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) |--------------------------|---|---|---|---|---|---|---| | LOC ID: | SB68-2 | SB68-2 | SS68-1 | SS68-2 | SS68-3 | SS68-4 | SS68-5 | | SAMP_ID: | EB248 | EB249 | EB142 | EB143 | EB144 | EB145 | EB146 | | QC CODE: | SA | SAMP, DETH TOP: | 0 | 4 | 0 | 0 | 0 | 0 | 0 | | SAMP, DEPTH BOT: | 0 2 | 4.4 | 0 2 | 0.2 | 0.2 | 0.2 | 0.2 | | MATRIX: | SOIL | SAMP. DATE: | 3/16/98 | 3/16/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | | PARAMETER | VALUE Q | 2,4,5-T | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 25 P | 5.3 U | | 2.4.5-TP/Silvex | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 6.6 U | 5.3 U | | 2.4-D | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | 2,4-DB | 51 U | 50 U | 53 U | 55 U | 54 U | 90 P | 53 U | | 3,5-Dichlorobenzoic acid | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | Dalapon | 280 U | 270 U | 290 U | 300 U | 290 U | 360 U | 290 U | | Dicamba | 5 U | 4.9 U | 5.2 U | 5.4 U | 5.3 U | 6.4 U | 5.2 U | | Dichtoroprop | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | Dinoseb | 25 U | 25 U | 27 U | 28 U | 27 U | 33 U | 27 U | | MCPA | 5000 U | 4900 U | 5200 U | 5400 U | 5300 U | 6400 U | 5200 U | | MCPP | 5000 U | 4900 U | 5200 U | 5400 U | 5300 U | 6400 U | 5200 U | | Pentachlorophenol | 18 U | 18 U | 19 U | 24 | 19 U | 23 U | 19 U | | Picloram | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 6.6 U | 5.3 U | | Arsenic | 3.9 N | 60 N* | 8.3 N* | 3.8 N* | 7.7 N* | 11.3 N* | 6.6 N* | Table 15-9 68 - Herbicides and Arsenic in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |--|-------|---------|-----------|------|----------|--------|---------|----------|---|---| | LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: | | | | | | | | | SB68-1
EB250
SA
0 | SB68-1
EB251
SA
4.5
4.8 | | MATRIX:
SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL 3/16/98 | SOIL
3/16/98 | | SAMP. DATE. | | | OF | | | ABOVE | OF | OF | 3/10/30 | 3/10/30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | | 2,4,5-T | UG/KG | 25.0 | 12.50% | 1900 | | 0 | 1 | 8 | 5 U | 5 U | | 2,4,5-TP/Silvex | UG/KG | 0.0 | 0.00% | 700 | | 0 | 0 | . 9 | 5 U | 5 U | | 2,4-D | UG/KG | 0.0 | 0.00% | 500 | | 0 | 0 | 9 | 49 U | 49 U | | 2,4-DB | UG/KG | 90.0 | 12.50% | | | 0 | 1 | 8 | 50 U | 50 U | | 3,5-Dichlorobenzoic acid | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 49 U | 49 U | | Dalapon | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 270 U | . 270 U | | Dicamba | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 4.9 U | 4.9 U | | Dichloroprop | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 49 U | 49 U | | Dinoseb | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 25 U | 25 U | | MCPA | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 9 | 4900 U | 4900 U | | MCPP | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | 4900 U | 4900 U | | Pentachlorophenol | UG/KG | 24.0 | 11.11% | 1000 | 47693 | 0 | 1 | 9 | 18 U | 18 U | | Picloram | UG/KG | 0.0 | 0.00% | | 36792000 | 0 | 0 | 9 | 5 U | 5 U | | Arsenic | MG/KG | 11.3 | 100.00% | 8.9 | 3.19 | 9.00 | 9.00 | 9 | 5,2 N° | 4.7 N° | Table 15-9 68 - Herbicides and Arsenic in Soil vs PRG-IND Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg, S-335) | SEAD-68
Old Pesticide
Control Shop
(Bldg. S-335) | |--------------------------|---|---|---|---|---|---|---| | LOC ID: | SB68-2 | SB68-2 | SS68-1 | SS68-2 | SS68-3 | SS68-4 | SS68-5 | | SAMP_ID: | EB248 | EB249 | EB142 | EB143 | EB144 | EB145 | EB146 | | QC CODE: | SA | SAMP, DETH TOP: | 0 | 4 | 0 | 0 | 0 | 0 | 0 | | SAMP, DEPTH BOT: | 0.2 | 4.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | MATRIX: | SOIL | SAMP. DATE: | 3/16/98 | 3/16/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | 3/10/98 | | PARAMETER | VALUE Q | 2,4,5-T | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 25 P | 5.3 U | | 2,4,5-TP/Silvex | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 6.6 U | 5.3 U | | 2,4-D | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | 2,4-DB | 51 U | 50 U | 53 U | 55 U | 54 U | 90 P | 53 U | | 3,5-Dichlorobenzoic acid | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | Dalapon | 280 U | 270 U | 290 U | 300 U | 290 U | 360 U | 290 U | | Dicamba | 5 U | 4.9 U | 5.2 U | 5.4 U | 5.3 U | 6.4 U | 5.2 U | | Dichloroprop | 50 U | 49 U | 52 U | 54 U | 53 U | 64 U | 52 U | | Dinoseb | 25 U | 25 U | 27 U | 28 U | 27 U | 33 U | 27 U | | MCPA | 5000 U | 4900 U | 5200 U | 5400 U | 5300 U | 6400 U | 5200 U | | MCPP | 5000 U | 4900 U | 5200 U | 5400 U | 5300 U | 6400 U | 5200 U | | Pentachlorophenol | 18 U | 18 U | 19 U | 24 | 19 U | 23 U | 19 U | | Picloram | 5.1 U | 5 U | 5.3 U | 5.5 U | 5.4 U | 6.6 U | 5.3 U | | Arsenic | 3.9 N* | 6.0 N* | | 3.8 N* | 7.7 N* | 11.3 N° | 6.6 N° | # SEAD-120A 50 Area Dumping Areas Table 16-1 # Sample Collection Information SEAD-120A - 50 Area Dumping Areas 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------|----------|--------|----------|--------|--------|------|---| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL. | TP120A-1 | EB155 | 3/3()/98 | 0.0 | () 6 | SA | Location is a mound in the southeastern portion of the site. Chosen because the mound is located near Ovid Road and
has an access ramp leading to it, it is also near rr tracks, near possible staging area. | | SOIL | TP120A-1 | EB032 | 3/30/98 | 0.0 | 0.6 | DU | Same location as above | | SOIL | TP120A-1 | EB156 | 3/30/98 | 2 0 | 2.5 | SA | Location is the same as above. The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil | | SOIL | TP120A-2 | EB157 | 3/31/98 | 0.0 | 0.2 | SA | Location is a mound in the eastern portion of the site west of Building 2084. Chosen because the mound is located near Seneca Road and is covered in dehris, it appeared to he a building material dump area. | | SOIL | TP120A-2 | EB158 | 3/31/98 | 2 0 | 2 2 | SA | Location is the same as above The sample was collected directly below debris. | | SOIL | TP120A-3 | EB159 | 3/30/98 | 0.0 | 0.6 | SA | Location is a mound in the southwestern portion of the site. Chosen because the mound is next to railroad tracks and there was little vegetation on the surface of the mound. | | SOIL | TP120A-3 | EB160 | 3/30/98 | 2.0 | 2.5 | SΛ | Location is the same as above. The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil. | | SOIL | TP120A-4 | EB161 | 3/30/98 | 0.0 | 0.6 | SΛ | Location is a mound in the southwestern portion of the site. Chosen because the mound is at the end of railroad tracks where dumping occured, there were several rusty drums at the base of the mound. | Table 16-1 # Sample Collection Information SEAD-120A - 50 Area Dumping Areas # 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|------------|---| | SOIL | TP120A-4 | EB162 | 3/30/98 | 2 0 | 2.5 | SA | Location is the same as above The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil | | SOIL | TP120A-5 | EB163 | 3/30/98 | 0.0 | 0.6 | SA | Location is a mound in the northwestern portion of the site. Chosen because the mound is near West Patrol Road and it is in an area that has easy access for dumping. | | SOIL | TP120A-5 | EB164 | 3/30/98 | 10 | 1.2 | SA | Location is the same as above The sample was collected at approximately mid-depth in the pit because there were no VOC bits or impacts to soil | | WATER | TP120A-1 | EB033 | 3/30/98 | 0.0 | 0.0 | RB | NA | Notes SA - Sample RB = Rinse Blank NA ~ Not Applicable # | Lable 16 | Sol | C | AGM | Non 1 | duated LBS Sites | | SITE
DESCRIPTION | | | | | | | | | SEAD 120A
50 Area Dumping
Areas | SEAD
50 Are
Areas | 120A
a Dumping | SEAD-12
50 Area D
Areas | | SEAD-120/
50 Area Du
Areas | | SEAD-12
50 Area D
Areas | | |------------------------------|-------|-----------|----------|------|------------|--------|---------|----------|---------------------------------------|-------------------------|-------------------|-------------------------------|-------------|----------------------------------|------------|-------------------------------|-----------| | LOC ID
SAMP_ID
OC CODE | | | | | | | | | TP120A-1
EB155
SA | TP120
E8032
DU | | TP120A 1
EB156
SA | ı | TP120A-2
EB157
SA | | TP120A-2
EB158
SA | ! | | SAMP DETH TOP | | | | | | | | | 0 | 0 | | 2 | | 0 | | 2 | | | SAMP DEPTH BOT
MATRIX | | | | | | | | | SOIL | 0 6
SOIL | | 2 5
SOIL | | 0.2
SOIL | | 2.2
SOIL | | | SAMP DATE | | F | REQUENCY | | | NUMBER | NUMBÉR | NUMBER | 30-Mar-98 | 301 | 30-Mar-98 | | 30-Mar-98 | | 1-Mar-98 | | 31-Mar-98 | | SAM DATE | | | OF | | | ABOVE | OF | OF | 30 (114) 30 | | 30-14101-30 | | 30 11181 30 | | 1-14-01-50 | | 31-Wai-30 | | PARAMETER | UNIT | MAXIMUM D | | TAGM | PRG-REC | TAGM | DETECTS | ANALYSES | VALUE | Q VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 36850962 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0.00% | 600 | 3439423 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 U | | 1 1,2-Trichloroethane | UG/KG | 0 | 0 00% | | 1206815 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 U | | 1,1 Dichloroethane | UG/KG | 0 | 0 00% | 200 | 105288462 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 U | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 114647 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 ∪ | | 13 U | | 1,2-Dichloroethane | UG/KG | 0 | 0.00% | 100 | 755917 | 0 | 0 | 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 ∪ | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 |) 11 | 11 | U | 11 U | | 12 U | | 13 U | | 13 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 1011595 | 0 | C | | | U | 11 U | | 12 U | | 13 U | | 13 U | | Acetone | UG/KG | 18 | 45 45% | 200 | 105288462 | 0 | 5 | 5 11 | 11 | U | 11 U | | 12 U | | 8 J | | 8 J | | Benzene | UG/KG | 0 | 0.00% | 60 | 2372016 | 0 | C | | | U | 11 U | | 12 U | | 13 U | | 13 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 1109491 | 0 | 0 | | | U | 11 U | | 12 U | | 13 U | | 13 U | | Bromoform | UG/KG | 0 | 0.00% | | 8707400 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 ∪ | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 105288462 | 0 | 0 | | | U | 11 U | | 12 U | | 13 U | | 13 ∪ | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 529142 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 21057692 | 0 | C | , , | | U | 11 U | | 12 U | | 13 U | | 13 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 818910 | 0 | C | , ., | | | 11 U | | 12 U | | 13 U | | 13 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 421153846 | 0 | Ċ | | | | 11 U | | 12 U | | 13 U | | 13 ∪ | | Chloroform | UG/KG | 4 | 9 09% | 300 | 11276797 | 0 | 1 | 11 | | | 11 U | | 12 U | | 13 U | | 13 ∪ | | Cis 1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 105288462 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 1505625 | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Methyl butyl ketone | UG/KG | 0 | 0 00% | | | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Methyl chloride | UG/KG | 0 | 0.00% | | 5291420 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 ∪ | | Methyl ethyl kelone | UG/KG | 0 | 0 00% | 300 | | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 84230769 | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Methylene chlonde | UG/KG | 3 | 9 09% | 100 | 9171795 | 0 | 1 | 11 | | | 11 U | | 12 U | | 3 1 | | 13 U | | Styrene | UG/KG | 0 | 0 00% | | | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Tetrachloroethene | UG/KG | 0 | 0 00% | 1400 | 1322855 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 U | | Toluene | UG/KG | 9 | 81.82% | 1500 | 210576923 | 0 | 9 | | | _ | 11 U | | 3 J | | 3 J | | 9 J | | Total Xylenes | UG/KG | 0 | 0 00% | 1200 | 2105769231 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 13 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | C | | | - | 11 U | | 12 U | | 13 U | | 13 U | | Trichloroethene | UG/KG | 0 | 0 00% | 700 | 6253497 | 0 | C | | | | 11 U | | 12 U | | 13 U | | 13 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 36204 | 0 | c |) 11 | | U | 11 U | | 12 U | | 13 U | | 13 U | # Table 16.5 129A - Volatiles in Soil v. 1 VGM Non D aluated 138 Site | SITE
DESCRIPTION | | SEAD-120A
50 Area Dumping | 50 A | D-120A
rea Dumping | SEAD-120
50 Area D | | SEAD-12
50 Area l | | | 20A
Dumping | | 20A
Dumping | |----------------------------|-------|------------------------------|-------|-----------------------|-----------------------|-----------|----------------------|-----------|--------|----------------|--------|----------------| | | | Areas | Area | | Areas | | Areas | | Areas | | Areas | | | FOC ID | | TP120A-3 | | 20A-3 | TP120A-4 | | TP120A | 4 | TP120A | -5 | TP120A | -5 | | SAMP_ID | | EB159 | EB16 | 50 | EB161 | | EB162 | | EB163 | | EB164 | | | QC CODE. | | SA | SA | | | SAMP DETH TOP | | 0 | 2 | | 0 | | 2 | | 0 | | 1 | | | SAMP, DEPTH BOT | | 0.6 | 2.5 | | 0.6 | | 2 5 | | 0.6 | | 1.2 | | | MATRIX | | SOIL | SOIL | | | SAMP DATE | | 30-Mar 9 | 3 | 30-Mar-98 | 3 | 30 Mar-98 | | 30-Mar-98 | | 30 Mar-98 | | 30-Mar-98 | | PARAMETER | UNIT | VALUE | Q VAL | JE Q | VALUE | Q | VALUE | 0 | VALUE | Q | VALUE | Q | | 1.1.1-Trichloroethane | UG/KG | | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.1.2.2-Tetrachloroethane | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.1.2-Trichloroethane | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.1 Dichloroethane | UG/KG | | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.1-Dichloroethene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.2-Dichloroethane | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1,2-Dichloroethene (total) | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | 1.2-Dichloropropane | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Acetone | UG/KG | | 2 U | 14 | | 12 U | | 11 U | | 18 | | 10 J | | Benzene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Bromodichloromethane | UG/KG | | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Bromoform | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Carbon disulfide | UG/KG | | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Carbon tetrachloride | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Chlorobenzene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Chlorodibromomethane | UG/KG | 1 | 2 U | 12 U | | 12
U | | 11 U | | 12 U | | 13 U | | Chloroethane | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Chloroform | UG/KG | 1 | 2 U | 4 J | | 12 U | | 11 U | | 12 U | | 13 U | | Cis 1,3-Dichloropropene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Ethyl benzene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methyl bromide | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methyl butyl ketone | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methyl chloride | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methyl ethyl ketone | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methyl isobutyl ketone | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Methylene chloride | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Styrene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Tetrachloroethene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Toluene | UG/KG | | 4 J | 3 J | | 4 J | | 3 J | | 3 J | | 7 J | | Total Xylenes | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Trans-1,3-Dichloropropene | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Trichloroethene | UG/KG | | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | | Vinyl chloride | UG/KG | 1 | 2 U | 12 U | | 12 U | | 11 U | | 12 U | | 13 U | ### Table 16-3 120 V Volatiles in Soil ve PRG R1 C on Evaluat al 1198 Sites | SITE DESCRIPTION LOC ID SAMP ID GC COSE SAMP DETH TOP SAMP DEPTH BOT MATPIX SAMP DATE | | , | FREQUENCY
OF | | | NUMBE R
ABOVE | NUMBER
OF | | 0A-1 | SEAD-1
50 Area
Areas
TP120A
EB032
DU
0
0 6
SOIL | Dumping | SEAD
50 Area
Areas
TP120/
EB156
SA
2
2 5
SOIL | Dumping | SEAD-1
50 Area
Areas
TP120A
EB157
SA
0
0 2
SOIL | Dumping | SFAD 1
50 Area
Areas
TP120A
EB158
SA
2
2 2
SOIL | Dumping | SEAD-12/
50 Area D
Areas
TP120A-3
EB159
SA
0
0 6
SOIL | tumping | SEAD-12
50 Area D
Areas
TP120A-1
EB160
SA
2
2 5
SOIL | Dumping | SEAD-12'
50 Area C
Areas
TP120A-4
EB161
SA
0
0 6
SOIL | umping | SEAD-120A
SO Area Dur
Areas
TP120A-4
EB162
SA
2
2 5
SOIL | | |---|-------|---------|-----------------|------|------------------|------------------|--------------|---------------|-------|---|--------------|---|---------|---|---------|---|--------------|---|--------------|--|---------|---|--------------|--|-----| | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES VALL | IF O | VALUE | Q | VALUE | | VALUE | 0 | VALUE | Q | VALUE | 0 | VALUE | 0 | VALUE | a | VALUE | | | 1.1.1 Trichloroethane | UG/KG | 0.0 | 0 00% | 800 | 36850962 | 0 | 0210010 | 11 | 11 U | TALUE | 11 U | VALUE | 12 U | *FECE | 13 U | AVEOC | 13 U | AVEOR | 12 U | VALUE | 12 U | 47505 | 12 U | VACUE | 11 | | 1 1 2 2 Tetrachiorogithane | UG'KG | 0.0 | 0 00% | 600 | 3439423 | 0 | 0 | 11 | 11 U | | 11 11 | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | 1 1 2 Trichlorpethane | UG/kG | 00 | 0.00% | 000 | 1206815 | 0 | 0 | 11 | 11 U | | 11.0 | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | ! I Dichlorgethane | UG/KG | 0.0 | 0.00% | 200 | 105288452 | 0 | 0 | 11 | 11 1) | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | 1 1 Dichlorgethene | UG/KG | 0.0 | 0 00% | 400 | 114647 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | 1.2-Dichloroethane | UG/KG | 0.0 | D 00% | 100 | 755917 | 0 | 0 | - 13 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | 1.2 Dichlornethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | 1.2 Dichloropropane | UG/KG | 0.0 | 0.00% | | 1011595 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Acelone | UG/KG | 18.0 | 45 45% | 200 | 105288482 | 0 | 5 | 11 | 11 U | | 11 U | | 12 U | | 8 J | | 8 J | | 12 U | | 14 | | 12 U | | 11 | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 2372016 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 1109491 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Bromoform | UG/KG | 0.0 | 0.00% | | 8707400 | C | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 105288462 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 529142 | 0 | 0 | 11 | 11 U | | 11 11 | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 1.1 | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 21057692 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 815910 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Chlorosthane | UG/KG | 0.0 | 0.00% | 1900 | 421153846 | 0 | 0 | 11 | 11 U | | 11 ປ | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Chloroform | UG/KG | 40 | 9 09% | 300 | 11276797 | 0 | 1 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 4 3 | | 12 U | | 11 | | Cis 1 3 Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 105288462 | ٥ | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 1505625 | 0 | D | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Methy! butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 1.0 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | t2 U | | 12 U | | 11 | | Methyl chloride | UCIKG | 0.0 | 0.00% | | 5291420 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Methyl ethyl ketone | UCNKG | 0.0 | 0.00% | 300 | | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 84230769 | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Methylene chloride | UG/KG | 30 | 9 09% | 100 | 9171795 | 0 | 1 | 11 | 11 U | | 11 U | | 12 U | | 3 J | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U | | 12 U | | 12 U | | 12 U | | 11 | | Tetrachloroethene | ug/kg | 0.0 | 0.00% | 1400 | 1322855 | 0 | 0 | 11 | 11 U | | 11 0 | | 12 U | | 13 U | | 13 U | | 12 0 | | 12 U | | 12 U | | 11 | | Toluene | UG/KG | 9.0 | 81 82% | 1500 | 210576923 | 0 | 9 | 11 | 11 U | | 11 U | | 3 J | | 3 3 | | a 1 | | 4 J | | 3.7 | | 4 3 | | 3 | | Total Xylenes | UG/KG | 0.0 | 0 00% | 1200 | 2105769231 | 0 | 0 | 11 | 11 U | | 11 U
11 U | | 12 U | | 13 U | | 13 0 | | 12 U | | 12 U | | 12 U | | 11 | | Trans ! 3 Dichloropropene | UG/KG | 0.0 | 0.00% | 700 | 6262407 | 0 | 0 | 11 | 11 U | | 11 0 | | 12 U | | 13 U | | 13 U | | 12 U
12 U | | 12 U | | 12 U | | 11 | | Trichloroethene | UG/KG | 0.0 | 0 00% | 700 | 6253497
36204 | | 0 | 11 | 11 U | | 11 U | | 12 U | | 13 U | | 13 U
13 U | | 12 U | | 12 U | | 12 U
12 U | | 11 | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 36204 | 0 | 0 | 11 | 11 0 | | 11 0 | | 12 0 | | 13 0 | | 13 0 | | 12 0 | | 12 0 | | 12 0 | | 17 | ž . | | | | | | | | | SEAU-120A | SEAU IZUA | | |---------------------------------|-------------------|---------------|------|------------|--------|---------|------------|-----------------|-----------------|-------| | | | | | | | | | 50 Area Dumping | S0 Area Dumping | 5 | | | | | | | | | | Areas | Areas | | | | | | | | | | | TP120A S | TP120A 5 | | | | | | | | | | | £8163 | E8164 | | | | | | | | | | | A CO | SA | | | | | | | | | | | | - | | | | | | | | | | | 90 | | | | | | | | | | | | | i OS | | | | u. | REGUENCY | | | NUMBER | NUMBER | NUMBER | 3D Mar 98 | 30-Mar 98 | 98 | | | | ō | | | ABOVE | 90 | o. | | | 1 | | TINO | MAXIMUM DETECTION | DETECTION | TAGM | PRG | TACM | DETECTS | ANALYSES O | VALUE | VALUE | C | | HG/KG | 0.0 | %000 | 900 | 36850962 | 0 | 0 | | 12 | | 13 0 | | 1.1.2.2 Tetrachloroethane UG/KG | 0.0 | 2,00 o | 9 | 3439423 | 0 | 0 | 11.0 | | | 2 | | UG/KG | 00 | 2,000 | | 1206815 | 0 | 0 | 1 | | | 13 0 | | UG/KG | 00 | 2,000 | 200 | 105288452 | 0 | 0 | 11 0 | 12 0 | | 13 11 | | UG/KG | 00 | %00 D | 400 | 114647 | С | 0 | 11 U | | | 13 U | | UG/KG | 00 | %000 | 8 | 755917 | 0 | 0 | 11 0 | 12 U | | 13 17 | | .2 Dichloroethene (total) UG/KG | 00 | %000 | | | 0 | 0 | 0 11 | 12 n | | | | NGWG | 00 | %000 | | 1011595 | С | 0 | 11 0 | 12 U | | | | USIKG | 18.0 | 45 45% | 200 | 105288462 | 0 | N) | U 11 | 181 | | | | UG/KG | | %000 | 8 | 2372016 | 0 | 0 | 11 0 | 12 U | | 33.0 | | UG/KG | | 0 00% | | 1109491 | 0 | 0 | 11 0 | 12 U | | 13 U | | DXXCO | | %00 D | | 8707400 | 0 | 0 | 11 0 | 12 U | | 13 0 | | UG/KG | | %.00 0 | 2700 | 105288452 | 0 | 0 | 11 0 | 12 U | |
13 U | | UG/KG | | 7,000 | 909 | 529142 | 0 | 0 | 11 0 | U 21 | | 13 U | | UG/KG | | %00 Q | 1700 | 21057692 | 0 | 0 | 11 0 | 12 U | | 13 0 | | UG/KG | | %00 0 | | 818910 | 0 | 0 | Ξ | 12 U | | 13 U | | UGVKG | | % 00 0 | 1900 | 421153846 | 0 | 0 | Ξ | 12 U | | 13 U | | UGVKG | | 9 09% | 300 | 11276797 | 0 | - | 11 0 | 12 U | | 13 U | | UGVKG | | 7,00 D | | | 0 | 0 | 11 0 | 12 U | | 13 ∪ | | UG/KG | | %00 D | 2200 | 105288462 | 0 | 0 | 11 0 | 12 U | | 13 U | | UG/KG | | %00 D | | 1505625 | 0 | 0 | 11 0 | 12 U | | 13 U | | UGVKG | | %00 D | | | 0 | 0 | | U 51 | | 13 U | | UCVKG | | ₹ 00 0 | | 5291420 | 0 | 0 | | U 21 | | 13 U | | UGVKG | | 0 00% | 8 | | 0 | 0 | U 17 | 12 ∪ | | 13 U | | UG/KG | | 0 00 % | 1000 | 84230769 | 0 | 0 | 11 D | 12 U | | 13 U | | UG/KG | 30 | %60 6 | ğ | 9171795 | 0 | - | U 11 | 12 U | | 0 0 | | UG/KG | 00 | %000 | | | 0 | 0 | 11 0 | 12 U | | 13 U | | UGAKG | 00 | 0 00% | 1400 | 1322855 | 0 | 0 | 11 0 | 12 U | | 13 U | | UG/KG | 0.6 | 81 82% | 1500 | 210578923 | 0 | 6 | 1 5 | 3 3 | | 7 | | UG/KG | 00 | 9,000 | 1200 | 2105769231 | 0 | 0 | 0.11 | 12 U | | 13.0 | | Trans 1.3 Dichloropropene UG/XG | 00 | 7,000 | | | 0 | 0 | 11 0 | 12 U | | 13 U | | UGVKG | 00 | %00 O | 700 | 6253497 | 0 | 0 | 13 0 | 12 11 | | 13 U | | | | | | | | | | | | | #### Table 16-4 120 V S no olitiks TPH in Soil vs. [MaS] Non-Evillated [108 Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-12
50 Area I
Areas | | SEAD-1;
50 Area
Areas | | SEAD-120
50 Area Do
Areas | | SEAD-120
50 Area Du
Areas | | SEAD-120/
50 Area Du
Areas | | SEAD-120:
50 Area Du
Areas | | SEAD-120A
50 Area Dump
Areas | ng | SEAD-120
50 Area D
Areas | | |---|----------------|--------------|------------------|----------------|-----------------------|---------------|---------------|----------------|-------------------------------|----------------|-----------------------------|----------------|---------------------------------|--------------|---------------------------------|----------------|----------------------------------|----------------|----------------------------------|----------------|------------------------------------|----------------|--------------------------------|----------------| | LOC ID
SAMP_ID
QC CODE | | | | | | | | | TP120A-
EB155
SA | -1 | TP120A-
E8032
DU | 1 | TP120A-1
EB156
SA | | TP120A-2
EB157
SA | | TP120A-2
EB158
SA | | TP120A-3
E8159
SA | | TP120A-3
EB160
SA | | TP120A-4
EB161
SA | | | SAMP DETH TOP | | | | | | | | | 0 | | 0 | | 2 | | 0 | | 2 | | 0 | | 2 | | 0 | | | SAMP DEPTH BOT
MATRIX | | | | | | | | | 0 6
SOIL | | 0.6
SOIL | | 2 5
SOIL | | 0 2
SOIL | | 2 2
SOIL | | 0.6
SOIL | | 25
SOIL | | 0 6
SOIL | | | SAMP DATE | | F | REQUENCY | | | NUMBER | NUMBER | NUMBER | | 30-Mar 98 | | 30-Mar 98 | | O-Mar-98 | | -Mar-98 | | -Mar-98 | | -Mar-98 | 30-M | r-98 | | 0-Mar-98 | | PARAMETER | UNIT | MAXIMUM E | OF | TAGM | PRG | ABOVE
TAGM | OF
DETECTS | OF
ANALYSES | VALUE | 0 | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | a | VALUE | 0 | VALUE | Ω | VALUE | Ω | | 1 2 4 Trichlorobenzene | UG/KG | 0.0 | 0.00% | 3400 | 10528845 | 1,4000 | | NAME (SES | | 78 U | AVEGE | 77 U | VALUE | 78 U | VACUE | 87 U | VALUE | 87 U | VALUE | 77 U | VALUE | 76 U | VALUE | 90 U | | 1 2-Dichlornbenzene | UG/KG | 0.0 | 0.00% | 7900 | 94759515 | 0 | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 60 U | | 1 3 Dichlorobenzene
1 4 Dichlorobenzene | UG/KG
UG/KG | 00 | 0.00% | 1600
8500 | 93706731
2866186 | 0 | | 1 | | 76 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U | | 87 U
87 U | | 77 U
77 U | | 75 U
76 U | | 80 U
80 U | | 2 4 5-Trichlorophenol | UG/KG | 00 | 0.00% | 100 | 105288462 | c | | i | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | | 190 U | | 2.4 6 Trichlorophenol | UG/KG | 0.0 | 0.00% | | 6253497 | 0 | 0 | 1 | • | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | 2.4-Dichlorophenol | UG/KG
UG/KG | 0.0 | 0.00% | 400 | 3158654
21057692 | C | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U
87 U | | 77 U
77 U | | 76 U | | 60 U | | 2 4-Dimethylphenol 2.4-Dinitrophenol | UG/KG
UG/KG | 00 | 0.00% | 200 | 21057692 | 0 | | 1 | | 190 U | | 190 U | | 78 U | | 210 U | | 87 U
210 U | | 77 U
190 U | | 76 U
180 U | | 80 U
190 U | | 2.4-Dinitrotoluene | UG/KG | 0.0 | 0 00% | 200 | 2105769 | Č | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 90 U | | 2 6-Dinstrotoluene | UG/KG | 0.0 | 0.00% | 1000 | 1052885 | | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 75 U | | 80 U | | 2-Chloronaphthalene | UG/KG
UG/KG | 0.0 | 0.00% | 800 | 5264423 | 0 | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 87 U
87 U | | 87 U
87 U | | 77 U
77 U | | 75 U | | 80 U
80 U | | 2 Chlorophenol
2 Methylnaphthalene | UG/KG | 20.0 | 27 27% | 36400 | 5264423 | | | , | | 78 U | | 77 U | | 78 U | | 87 U | | 73 J | | 77 U | | 76 U | | 80 U | | 2 Methylphenol | UG/KG | 0.0 | 0 00% | 100 | | |) 0 | t | 1 | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | 2 Nifroaniline | UG/KG | 0.0 | 0.00% | 430 | 63173 | 0 | | 1 | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | | 190 U | | 2-Nitrophenol
3.3 -Dichlorobenzidine | UG/KG
UG/KG | 0.0 | 0 00% | 330 | | 0 | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U
87 U | | 77 U
77 U | | 76 U
76 U | | 80 U
80 U | | 3-Nitroaniline | UG/KG | 00 | 0.00% | 500 | 3158654 | | | 1 | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | | 190 U | | 4 6-Dinitro-2-methylphenol | UG/KG | 0.0 | 0 00% | | | Ċ | | 1 | 1 | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | | 190 U | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0 00% | | 61067308 | | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | 4 Chloro-3-methylphenol
4-Chloroaniline | UG/KG
UG/KG | 00 | 0 00% | 240
220 | 4211538 | 0 | | 1 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 87 U
87 U | | 67 U
87 U | | 77 U
77 U | | 76 U | | 90 U | | 4-Chlorophenyl phenyl ether | UG/KG | 56 | 9 09% | 220 | 4211330 | | | i | | 78 U | | 77 U | | 78 U | | 87 U | | 56 J | | 77 U | | 76 U | | 80 U | | 4-Methylphenol | UG/KG | 0.0 | 0.00% | 900 | | Ċ | 0 | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | 4-Nifroaniline | UG/KG | 0.0 | 0 00% | 100 | 3158654
63173077 | 0 | | 1 7 | | 190 U
190 U | | 190 U
190 U | | 190 U | | 210 U
210 U | | 210 U
210 U | | 190 U
190 U | | 180 U
180 U | | 190 U
190 U | | 4-Nitrophenol
Acenaphthene | UG/KG
UG/KG | 00
53 | 0 00%
9 09% | 100
50000 | 63173077 | | | 1 | | 78 U | | 190 U | | 78 U | | 210 U
87 U | | 53 J | | 77 U | | 76 U | | 190 U | | Acenaphthylene | UG/KG | 49 | 9 09% | 41000 | | Č | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 49 J | | 77 U | | 76 U | | 80 U | | Anthracene | UG/KG | 69 | 18 18% | 50000 | 31586538\$ | 0 | | 1 | | 78 U | | 77 U | | 78 U | | 69 J | | 61 J | | 77 U | | 76 U | | 80 U | | Benzo[a]anihracene
Benzo[a]pyrene | UG/KG
UG/KG | 37 0
31 0 | 36 36%
45 45% | 224
61 | 9423 | 0 | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 37 J
31 J | | 16 J
16 J | | 77 U
77 U | | 76 U
76 U | | 80 U
80 U | | Benzojajpyrene
Benzojbjfluoranihene | UG/KG | 38.0 | 50 00% | 1100 | 94231 | Č | | 1 | | 78 U | | 77 U | | 78 U | | 38 J | | 20 J | | 77 U | | 76 U | | 80 U | | Benzo(ghi perylene | UG/KG | 26 0 | 45 45% | 50000 | | | 5 | 1 | • | 78 U | | 77 U | | 78 U | | 26 J | | 15 J | | 77 U | | 76 U | | 90 U | | Benzo[kMuoranthene | UG/KG | 33 0 | 27 27% | 1100 | 942308 | (| | 7 | | 78 U | | 77 U | | 78 U | | 33 J
87 U | | 15 J
87 U | | 77 U
77 U | | 76 U | | 80 U | | Bis(2-Chloroethoxy)methane
Bis(2-Chloroethyt)ether | UG/KG
UG/KG | 00 | 0 00% | | 62535 | 0 | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U
76 U | | 80 U | | Brs(2-Chloraisopropyl)ether | UG/KG | 0.0 | 0 00% | | 982692 | č | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | Brs(2-Ethylberyl)phihalate | UG/KG | 35 0 | 100 00% | 50000 | | | | | | 7 2 JB | | 65 JB | | 68 JB | | 35 JB | | 12 JB | | 5 2 JB | | 66 JB | | 86 JB | | Butylbenzylphthalate | UG/KG
UG/KG | 93
140 | 18 18%
18 18% | 50000 | 210576923
3439423 | 0 | | 1 | | 78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
12 J | | 67 J
14 J | | 77 U
77 U | | 76 U
76 U | | 80 U
80 U | | Carbazole
Chrysene | UG/KG | 43.0 | 36 36% | 400 | 9423077 | | | 1 | | 78 U | | 77 U | | 78 U | | 43 J | | 21 J | | 77 U | | 76 U | | 90 U | | Di n-butyiphthalate | UG/KG | 7 7 | 18 18% | 8100 | | Ċ | 2 | 1 | t | 78 U | | 77 U | | 78 U | | 87 U | | 77 J | | 77 U | | 76 U | | 80 U | | Di-n-octy/phthalate | UG/KG | 5.3 | 9 09% | 50000 | 21057692 | | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 87 U
11 J | | 53 J
11 J | | 77 U
77 U | | 76 U
76 U | | 80 U
80 U | | Dibenzja,hjanthracene
Dibenzofuran | UG/KG
UG/KG | 11 0
6 5 | 27 27%
18 18% | 14
6200 | 4211538 | | , , | 1 | | 78 U | | 77 U | | 78 U | | 11 J
87 U | | 65 J | | 77 U | | 76 U | | 80 U | | Diethyl phthalate | UG/KG | 97 | 63 64% | 7100 | 842307692 | č | | 1 | | 78 U | | 77 U | | 59 JB | | 48 JB | | 97 J8 | | 77 U | | E3 JB | | 44 JB | | Dimethylphthalate | UG/KG | 0.0 | 0.00% | 2000 | 10528845150 | | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | t) 08 | | Fluoranthene
Fluorene | UG/KG
UG/KG | 96 0
6 5 | 36 36% | 50000
50000 | 42115385
42115385 | | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 96
87 U | | 33 J
65 J | | 77 U
77 U | | 76
U
76 U | | 80 U
80 U | | Hexachlorobenzene | UG/KG | 00 | 0.00% | 410 | 42993 | Ċ | | i | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | Hexachlorobuladiene | UG/KG | 0.0 | 0 00% | | 210577 | | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | Hexachlorocyclopentadiene | UG/KG | 0.0 | 0 00% | | 7370192 | | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U
87 U | | 77 U
77 U | | 76 U
76 U | | 80 U | | Hexachloroethane
Indeno[1,2 3-cd]pyrene | UG/KG
UG/KG | 0 0
24 0 | 0 00%
36 36% | 3200 | 4913452
94231 | (| | 1 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | Isophorone | UÇ/KG | 00 | 0 00% | 4400 | 5-201 | ò | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | N-Nitrosodiphenylamine | UG/KG | 0.0 | 0.00% | | 14038462 | 0 | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | N Nitrosodipropylamine | UG/KG | 00 | 0 00% | 13000 | 42115385 | | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U | | 87 U
87 U | | 77 U
77 U | | 76 U
76 U | | 1) 08
U 08 | | Naphthalene
Nitrobenzene | UG/KG
UG/KG | 10.0 | 0 00% | 200 | 526442 | , | | 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | | 80 U | | Pentachlorophenol | UG/KG | 0.0 | 0 00% | 1000 | 573237 | Č | 0 | 1 | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | | 190 U | | Phenanthrene | UG/KG | 50 0 | 36 36% | 50000 | | | | 1 | | 78 U
78 U | | 77 U
77 U | | 78 U | | 50 J
87 U | | 19 J
87 U | | 77 U | | 76 U
76 U | | 80 U
80 U | | Phenol | UG/KG
UG/KG | 0 0
75 0 | 0 00%
36 36% | 30
50000 | 631730769
31586538 | 0 | | 1 | | 78 U | | 77 U
77 U | | 78 U | | 87 U
75 J | | 87 U
28 J | | 77 U | | 76 U | | 80 U | | Pyrene
TPH | MG/KG | 00 | 0.00% | 30000 | 31300330 | | | 1 | | 183 U | | 19 2 U | | 167 U | | 100 | | | | 176 U | | 17 1 U | | 167 U | | 1111 | MOING | 00 | 0.00% | | | , | | | | | | | | | | | | | | | | - | | | #### | Lable 16-1 | 129 V | Semiyofatik | 1711 in Soil (s. 1346) { | North digital 1118 Site | SITE | SEAD 120A | SEAD-120A | SEAD 120A | |--|-------------------|-------------------|-------------------| | DESCRIPTION | 50 Area Dumping | 50 Area Dumping | 50 Area Dumping | | LOCID | Areas
TP120A-4 | Areas
TP120A 5 | Areas
TP100A.5 | | SAMP ID | EB162 | EB163 | EB164 | | OC CODE | SA | SA | SA | | SAMP DETH TOP | 2 | 0 | 1 | | SAMP DEPTH BOT | 25 | 0.6 | 1.2 | | MATRIX | SOIL | SOIL | SOIL | | SAMP DATE | 30-Mar-98 | 30-Mar-98 | 30 Mar 98 | | PARAMETER | | | | | 1.2.4-Trichlorobenzene | VALUE Q
7B U | VALUE Q
83 U | VALUE Q | | 1.2 Dichlorobenzene | 78 U | 83 U | 84 U | | 1 3 Dichlorobenzene | 78 U | 83 U | 84 U | | 1.4 Dichlorohenzene | 78 U | 83 U | 84 U | | 2 4 5-Trichlaraphenal | 190 Lf | 200 U | 200 U | | 2 4 6 Trichlorophenol | 78 U | 83 U | 84 U | | 2 4-Dichlorophenol | 78 U | B3 U | 84 U | | 2 4 Dimethylphenol
2 4 Dintriphenol | 78 U | 83 U
200 U | 84 U
200 U | | 2 4-Dintroppenoi | 190 U
78 U | 200 U | 200 U | | 2.6-Dinitrataluene | 78 U | 83 U | 84 U | | 2 Chloronaphthalene | 78 U | 11 E8 | 84 U | | 2-Chlorophenol | 78 U | 83 U | 84 U | | 2 Methy/naphthalene | 78 U | 14 J | 20 J | | 2 Methylphenol | 78 U | 83 U | 84 U | | 2-Nitroantine | 190 U | 200 ∪ | 200 U | | 2 Nitrophenol | 78 U | 83 U | 84 U | | 3 3 -Dichlorobenzidine 3 Nitroaniline | 78 U
190 U | 83 U
200 U | 84 U
200 U | | 4 6-Dinitro-2 methylphenol | 190 U | 200 U | 200 U | | 4-Bromophenyl phenyl ether | 78 11 | 83 11 | 84 11 | | 4-Chloro-3 methylphenol | 78 U | 83 U | 84 U | | 4-Chloroaniline | 78 U | 83 U | 84 U | | 4-Chlorophenyl phenyl ether | 78 U | 83 U | 84 U | | 4-Methylphenol | 78 U | 83 U | 84 U | | 4 Nitroaniline | 190 U
190 U | 200 U
200 U | 200 U
200 U | | 4-Nitrophenol
Acenaphthene | 190 U | 200 U | 700 U
84 U | | Acenaphthylene | 78 U | 83 U | 84 U | | Anthracene | 78 U | 83 U | 84 U | | Benzo[a]anthracene | 78 U | 53 J | 57 J | | Benzo[a]pyrene | 45 J | 6 J | 56 J | | Benzo[b]fluoranthene | 83 J | 12 JY | 73 J | | Benzo[ghi perylene | 45 J | 9 J | 71 J | | Benzo[k]fluoranthene
Bis(2 Chloroethoxy)methane | 78 U
78 U | 83 U
83 U | 5.2 J
84.11 | | Bis(2-Chloroethyl)ether | 78 U | 83 U | 84 U | | Bis(2-Chloroisopropyl)ether | 78 U | 83 U | 84 U | | Brs(2-Ethylhexyl)phthalate | 65 J | 5 2 JB | 4 4 JB | | Butylbenzylphthalate | 9 3 JB | 83 U | 84 U | | Carbazole | 78 U | 83 U | 84 U | | Chrysene | 78 U | 10 J
83 U | 12 J
84 U | | Di n butylphthalate
Di-n-octylphthalate | 48 J
78 U | 83 U | 84 U | | Dihenz[a,h]anthracene | 62 J | 83 U | 84 U | | Dibenzoluran | 78 U | 83 U | 6 6 - J | | Diethyl phthalate | 5 5 JB | 83 U | 5.7 JB | | Dimethylphthalale | 78 U | 83 U | 84 U | | Fluoranthene | 78 U | 10 J | 96 J | | Fluorene | 78 U | 83 U | 84 U | | Hexachlorobenzene | 78 U | 83 U
83 U | 84 U
84 U | | Hexachlorobutadiene Hexachlorocyclopertadiene | 78 U | 83 U | 84 IJ | | Hexachloroethane | 78 U | 83 U | 84 U | | Indeno[1 2 3-cd]pyrene | 59 J | 5 9 J | 84 U | | Isophorone | 78 U | 83 U | 84 U | | N-Nitrosodiphenylamine | 78 U | 83 U | 84 U | | N-Ndrosodipropylamine | 78 U | B3 U | 84 U | | Naphthalene | 78 U | 74 J | 10 J | | Nitrobenzene | 78 U | 83 U
200 U | 84 U
200 U | | Pentachlorophenol
Phenanthrene | 190 U
78 U | 200 U | 200 U
22 J | | Phenol | 78 U | 83 U | 84 U | | Pyrene | 78 U | 99 J | 10 J | | TPH | 18 4 U | 18 4 U | 21 4 U | | | | | | . #### Lidd, 1678 150 V. Scimy olathy (PH in Soil -s PRG/R) C Non-Lyalint, d LRS Site | SITE DESCRIPTION LOG ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX | | | | | | | | | SEAD-12
50 Area D
Areas
TP120A 1
EB155
SA
0
0 6
SOIL | | SEAD 1
50 Area
Areas
TP120A
EB032
DU
0
0 6
SOIL | Dumping | SEAD-
50 Are:
Areas
TP120:
EB156
SA
2
2 5
SOIL | Dumping | SEAD-12
50 Area
Areas
TP120A-
EB157
SA
0
0 2
SOIL | Dumping | SEAD-124
50 Area D
Areas
TP120A-2
EB158
SA
2
2 2 2
SOIL | lumping | SEAD-120
50 Area Do
Areas
TP120A-3
EB159
SA
0
0 6
SOIL | umping | SEAD-120
50 Area Du
Areas
TP120A-3
EB160
SA
2
2 5
SOIL | | SEAD-120A
50 Area Dumping
Areas
TP120A-4
EB161
SA
0
0 6
SOIL | |--|----------------|--------------|----------------|--------------|----------------------|-----------------|---------|------------|--|----------------|---|----------------|--|----------------|---|---------------|---|---------------|--|---------------|--|---------------|--| | SAMP DATE | | FI | OF | | | NUMBER
ABOVE | NUMBER | NUMBER | | 30 Mai 98 | | 30-Mar-98 | | 30 Mar 98 | | 31 Mar-98 | | 1 Mar 98 | | 0-Mar 98 | | -Mar-98 | 30 Mar-98 | | PARAMETER | UNIT | | ETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | Q | VALUE | Q | VALUE | | VALUE | Q | VALUE | ٥ | VALUE | a | VALUE | Q | VALUE | | 1,2 4-Trichlorohenzene
1,2 Dichlorobenzene | UG/KG
UG/KG | 0.0 | 0.0% | 3400
7900 | 10528846
94759615 | 0 | | | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U
87 U | | 77 U | | 76 U | 80 | | 1 3-Dichlorobenzene | UG/KG | 0.0 | 0.0% | 1600 | 93706731 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U
77 U | | 76 U | 80
80 | | 1 4 Dichlorobenzene | UG/KG | 0.0 | 0.0% | 8500 | 2866186 | 0 | · | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | 2 4 5 Trichlorophenol | UG/KG | 0.0 | 0.0% | 100 | 105288462 | 0 | | | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 2,4.6 Trichlorophenol 2,4-Dichlorophenol | UG/KG
UG/KG | 0.0 | 0.0% | 400 | 6253497
3158654 | 0 | | 1 | | 78 U
78 U | | 77 U | | 78 U
78 U | | 87 U
87 U | | 87 U | | 77 U | | 76 U | 80 | | 2 4-Dichorophenol | UG/KG
UG/KG | 0.0 | 0.0% | 400 | 21057692 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U
77 U | | 76 U
76 U | 80
80 | | 2 4-Oinfraphenal | UG/KG | 0.0 | 0.0% | 200 | 2105769 | 0 | | | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 2 4 Oinfratoluene | UG/KG | 0.0 | 0.0% | | 2105769 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 90 | | 2.6 Dintrololuene | UG/KG | 0.0 | 0.0% | 1000 | 1052885 | 0 | | | | 78 U
78 U | | 77 U
77 U | | 78 U | | 87 U
87 U | | 87 U | | 77 U | | 76 U | 80 | | 2-Chloronaphthalene
2 Chlorophenol | UG/KG
UG/KG | 0.0 | 0.0% | 800 | S264423 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U
87 ป | | 77 U
77 U | | 76 U
76 U | 80
80 | | 2 Methylnaphthalene | UG/KG | 20.0 | 27.3% | 36400 | 0204420 | ū | | | | 78 U | | 77 U | | 78 U | | 87 U | | 73 J | | 77 U | | 76 U | 80 | | 2-Methylphenol | UG/KG | 0.0 | 0.0% | 100 | | 0 |) (| | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | 2-Nitroaniline | UG!KG | 0.0 | 0.0% | 430 | 63173 | 0 | | | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 2-Nifrophenol
3,3 -Dichlorobenzidine | UG/KG | 00 | 0.0% | 330 | | 0 | , (| | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U
 | 87 U
87 U | | 87 U
87 U | | 77 U | | 76 U
76 U | 80
80 | | 3 Nitroanline | UG/KG | 0.0 | 0.0% | 500 | 3158654 | 0 | | | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 4 5-Dindro-?-methylphenol | UG/KG | 0.0 | 0.0% | | | 0 | | 1 | | 190 U | | 190 U | | 190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0.0% | 240 | 61067308 | 0 | | 0 1
0 1 | | 76 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | 4-Chloro 3-methylphenol
4-Chloroaniline | UG/KG
UG/KG | 00 | 0.0% | 240
220 | 4211538 | | | 0 f | | 78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U | | 77 U
77 U | | 76 U
76 U | 80
80 | | 4 Chlorophenyl phenyl ether | UG/KG | 5.6 | 9 1% | 250 | -277000 | C | | 1 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 56 J | | 77 U | | 76 U | 80 | | 4 Methylphenal | UG/KG | 0.0 | 0.0% | 900 | | 0 | | | | 78 U | | 77 U | | 78 ∪ | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | 4 Nitroantine | UG/KG | 0.0 | 0.0% | 100 | 3158654 | 0 | | 0 1 | | 190 U
190 U | | 190 U
190 U | | 190 U
190 U | | 210 U | | 210 U | | 190 U | | 180 U | 190 | | 4-Nitrophenol
Acenaphthene | UG/KG
UG/KG | 0 0
5 3 | 0 0%
9 1% | 100
50000 | 63173077 | | | 1 1 | | 78 LI | | 77 U | | 190 U | | 210 U
87 U | | 210 U
53 J | | 190 U
77 U | | 180 U | 190
80 | | Acenaphthylene | UG/KG | 49 | 91% | 41000 | | 0 | | 1 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 49 1 | | 77 U | | 76 U | 80 | | Anthracene | UG/KG | 69 | 18 2% | 50000 | 315865385 | 0 | | 2 1 | | 78 U | | 77 U | | 78 U | | 69 J | | 617 | | 77 U | | 76 U | 80 | | Benzo(a)anthracene | UG/KG | 37 0 | 36 4%
45 5% | 224
61 | 9423 | 0 | | | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 37 J
31 J | | 16 J | | 77 U | | 76 U
76 U | 80
80 | | Benzo[a]pyrene
Benzo[b]fluoranthene | UG/KG
UG/KG | 31 0
38 0 | 45 5%
50 0% | 1100 | 9423 | 0 | | | | 78 U | | 77 U | | 78 U | | 38 J | | 20 J | | 77 U | | 76 U | 80 | | Benzolghilperylene | UG/KG | 26 0 | 45 5% | 50000 | 0.50 | ō | | 5 1 | | 78 U | | 77 U | | 78 U | | 26 J | | 15 J | | 77 U | | 76 U | 80 | | Benzolkifluoranthene | UG/KG | 33 0 | 27.3% | 1100 | 942308 | 0 | | | | 78 U | | 77 U | | 78 U | | 33 J | | 15 J | | 77 U | | 76 U | 80 | | Brs(2-Chloroethoxy)methane
Brs(2-Chloroethyt)ether | UG/KG
UG/KG | 0.0 | 0 0% | | 62535 | 0 | | 0 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 87 U
87 U | | 77 U
77 U | | 76 U
76 U | 80
80 | | Bis(2-Chloralsopropyl)ether | UG/KG | 00 | 0.0% | | 982692 | 0 | | 0 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 35 0 | 100 0% | 50000 | | ō | | | | 7 2 JB | | 65 JB | | 8 JB | | 35 JB | | 12 JB | | 5 2 JB | | 66 JB | 8 6 | | Butylbenzylphthalate | UG/KG | 9 3 | 18 2% | 50000 | 210576923 | 0 | | 2 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 67 J | | 77 U | | 76 U | 80 | | Carbazole
Chrysene | UG/KG
UG/KG | 14 0
43 0 | 18 2%
36 4% | 400 | 3439423
9423077 | 0 | | 2 1 | | 78 U | | 77 U
77 U | | 78 U | | 12 J
43 J | | 14 J
21 J | | 77 U
77 U | | 76 U
76 U | 90
90 | | Di-n butylphthalate | UG/KG | 77 | 18 2% | 8100 | 5425077 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 77 J | | 77 U | | 76 U | 80 | | Di-n-octylphthalate | UG/KG | 5 3 | 9 1% | 50000 | 21057692 | Ċ | | 1 1 | 1 | 78 U | | 77 U | | 78 U | | 87 U | | 53 J | | 77 U | | 76 U | 80 | | Dibenz a hjanthracene | UG/KG | 11 0 | 27 3%
18 2% | 14 | 4211538 | 0 | | 3 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 11 J
87 U | | 11 J
65 J | | 77 U | | 76 U
76 U | 80
80 | | Dibenzofuran
Diethyl phthalate | UG/KG
UG/KG | 66
97 | 18 2%
63 6% | 6200
7100 | 842307692 | 0 | | 2 1
7 t | | 78 U | | 77 U | | 78 U
59 JB | | 48 JB | | 97 JB | | 77 U | | 63 JB | 4 4 | | Dimethylphthalate | UG/KG | 00 | 0.0% | 2000 | 10528846150 | 0 | | 0 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Fluoranthene | UG/KG | 96 0 | 36 4% | 50000 | 42115385 | 0 | | 4 1 | | 78 U | | 77 U | | 78 U | | 96 | | 33 J | | 77 U | | 76 U | 80 | | Fluorene
Hexachlorobenzene | UG/KG
UG/KG | 65
00 | 9 1% | 50000
410 | 42115385
42993 | 0 | | 1 1 | | 78 U | | 77 U
77 U | | 78 U
78 U | | 87 U
87 U | | 65 J
87 U | | 77 U
77 U | | 76 U
76 U | 80
80 | | Hexachiorobetzene
Hexachiorobuladiene | UG/KG | 0.0 | 0.0% | 410 | 210577 | | | 5 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Hexachlorocyclopentadiene | UG/KG | 00 | 0.0% | | 7370192 | 0 |) (| 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Hexachlorgethane | UG/KG | 0.0 | 0.0% | | 4913462 | 0 | | 3 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Indeno[1,2,3 cd]pyrene | UG/KG
UG/KG | 24 0
0 D | 36 4%
0.0% | 3200
4400 | 94231 | 0 | | 4 1
D 1 | | 78 U
78 U | | 77 U
77 U | | 78 U
78 U | | 24 J
87 U | | 14 J
87 U | | 77 U | | 76 U
76 U | 80
80 | | Isophorone
N-Nitrosodiphenylamine | UG/KG
UG/KG | 00 | 0.0% | 4400 | 14038462 | 0 | | 0 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | N-Nitrosodipropylamine | UG/KG | 0.0 | 0.0% | | | 0 | | 0 1 | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Naphthalene | UG/KG | 10 D | 18 2% | 13000 | 42115385 | 0 | | | | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Nitrobenzene | UG/KG
UG/KG | 0.0 | 0.0% | 200
1000 | 526442
573237 | 0 | | | | 78 U
190 U | | 77 U
190 U | | 78 U
190 U | | 87 U
210 U | | 87 U
210 U | | 77 U
190 U | | 76 U
180 U | 90
190 | | Pentachlorophenol Phenauthrene | UG/KG
UG/KG | 500 | 36.4% | 50000 | 5/323/ | | | 4 1 | | 78 U | | 77 U | | 78 U | | 50 J | | 19 J | | 77 U | | 76 U | 80 | | Phenol | UG/KG | 0.0 | 00% | 30 | 631730769 | Č | | 0 1 | 1 | 78 U | | 77 U | | 78 U | | 87 U | | 87 U | | 77 U | | 76 U | 80 | | Pyrene | UG/KG | 75 0 | 36 4% | 50000 | 31586538 | C | , | . , | | 78 U | | 77 U | | 78 U | | 75 J | | 28 J | | 77 U | | 76 U | 08 | | TPH | MG/KG | 00 | 00% | | | C |) (| 0 1 | 1 | 18 3 U | | 1920 | | 16 7 U | ND | | ND | | | 17 6 U | | 171 U | 16 7 | # | 139, 3 c | | 120 V | Same slank | 1211 m Sol (| 1226 | 1310 | Non) | de old 133 Sq. | SITE | | SEAD-1204 | | SEAD 1 | | SEAD 1 | | |--|--------|-------------------|---------------|--------|---------------|--------|---------------| | DESCRIPTION | | 50 Area Du | mping | | Dumping | | Dumping | | | | Areas | | Areas | _ | Areas | | | LOCID
SAMP ID | | TP120A-4
EB152 | | TP120/ | . 5 | TP120A | 1-5 | | SAMP_ID
OC CODE | | 5A
5A | | SA SA | | 5A | | | SAMP DETH TOP | | 2
2 | | O. | | 1 | | | SAMP DEPTH BOT | | 2.5 | | 0.6 | | 1.2 | | | MATRIX | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | Mar 98 | : NOTE | 30 Mar-98 | 3016 | 30 Mar 98 | | July Chil | | 30 | ivial 30 | | 30 mai-20 | | 30 mai su | | PARAMETER | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1.2.4 Trichlorobenzene | U | | 78 U | | 83 U | | 84 U | | 1.2 Dichlorobenzene | U | | 78 U | | 83 U | | 84 U | | 1 3 Dichlorobenzene | U | | 78 U | | 83 U | | 84 U | | 1.4 Dichlorobenzene | U | | 78 U | | 83 U | | 84 U | | 2.4.5 Trichlerophenol | U | | 190 U | | 200 U | | 200 U | | 2 4 G-Trichlorophenol | U | | 78 U | | 83 U | | 84 U | | 2 4 Dichlorophenol | U | | 78 U | | 83 U | | 84 U | | 2.4 Dimethylphenol | U | | 78 U | | 83 U | | 84 U | | 2 4 Dinitrophenol | U | | 190 U | | 200 U | | 200 U | | 2 4 Dinitrolaluene
2 6 Dinitrolaluene | f) | | 78 U
78 U | | 83 U
83 U | | 84 U
84 U | | | U | | 79 U
78 U | | 83 U | | 84 U | | 2-Chloronaphthalene
2-Chlorophenol | u
u | | 78 U | | 83 U | | 84 U | | 2 Methylnaphthalene | U | | 78 U | | 14 J | | 84 U
20 J | | 2-Methylphenol | u | | 78 U | | 83 U | | 84 U | | 2 Ndroanilne | Ü | | 190 U | | 200 U | | 200 U | | 2 Nitrophenal | Ü | | 78 U | | 83 U | | 84 U | | 3,3 -Dichlorobenzidine | υ | | 78 U | | 83 U | | 84 U | | 3 Nitroaniline | U | | 190 U | | 200 U | | 200 U | | 4.6-Dinitro 2 methylphenol | U | | 190 U | | 200 U | | 200 U | | 4-Bromophenyl phenyl ether | U | | 78 U | | 83 U | | 84 U | | 4-Chloro 3 melhylphenol | U | | 78 U | | 83 U | | 84 U | | 4 Chloroaniline | U | | 78 U | | 83 U | | 84 U | | 4 Chlorophenyl phenyl ether | U | | 78 U | | 83 U | | 84 U | | 4 Methylphenol | U | | 78 U | | 83 U | | 84 U | | 4 Nitroaniline | U | | 190 U | | 200 U | | 200 U | | 4 Ndrophenol | U | | 190 U
78 U | | 200 U
83 U | | 200 U
84 U | | Acenaphthene | U | | 78 U | | 83 U | | 84 U
84 U | | Acenaphthylene
Anthracene | Ü | | 78 U | | 83 U | | 84 U | | Benzo(alanthracene | U | | 78 U | | 53 J | | 57 J | | Benzo[a]pyrene | u | | 45.1 | | 6.1 | | 56.1 | | Benzo(b)fluoranihene | Ü | | 8 3 J | | 12 JY | | 7 3 J | | Benzo[ghi]perylene | U | | 45 J | | 9 J | | 7 1 J | | Benzo(k)fluoranthene | U | | 78 U | | 83 U | | 5 2 J | | Brs(2-Chloroethoxy)methane | U | | 78 U | | 83 U | | 84 U | | Bis(2-Chloroethyl)ether | U | | 78 U | | 83 U | | 84 U | | Bis(2 Chloroisopropyl)ether | U | | 78 U | | 83 U | | 64 U | | Bis(2 Ethylhexyl)phthalale | JΒ | | 65 J | | 5 2 JB | | 44 JB | | Butyibenzylphthalale | U | | 93 JB | | 83 U | | 84 U | | Carbazole | U | | 78 U | | 83 U | | 84 U
12 J | | Chrysene | U | | 78 U | | 10 J
83 U | | 12 J
84 U | | Di-n-butylphthalate
Di-n-octylphthalate | U | | 78 U | | 83 U | | 84 U | | Di-n-octylphthalate
Dibenz(a h)anthracene | U | | 62 J | | 83 U | | 84 U | | Dibenzia njaninracene
Dibenzofuran | U | | 78 U | | 83 U | | 66 J | | Diethyl phthalate | BL | | 55 JB | | 63 U | | 5.7 JB | | Dimethylphthalate | U | | 78 U | | 83 U | | 84 U | | Fluoranthene | Ŭ | | 78 U | | 10 J | | 96 J | | Fluorene | Ü | | 78 U | | 83 U | | 84 U | | Hexachlorobenzene | U | | 78 U | | 83 U | | 84 U | | Hexachlorobutadiene |
U | | 78 U | | 83 U | | 84 U | | Hexachlorocyclopenladiene | U | | 78 U | | 83 U | | 84 U | | Hexachloroelhane | U | | 78 U | | 83 U | | 84 U | | Indeno[1 2 3-cd]pyrene | U | | 59 J | | 5 9 J | | 84 U | | Isophorone | U | | 78 U | | 83 U | | 84 U | | N Nitrosodiphenylamine | U | | 78 U | | 83 U | | 84 U | | N-Nitrosodipropylamine | U | | 78 U | | 83 U | | 84 U | | Naphthaiene | U | | 78 U | | 7 4 J
63 U | | 10 J | | Nilrobenzene | U | | 78 U | | 200 U | | 84 U
200 U | | Pentachlorophenol
Phenanthrene | U | | 190 U
78 U | | 200 U | | 200 U
22 J | | Phenanthrene
Phenoi | U | | 78 U | | 83 U | | 22 J
84 U | | Prenoi
Pyrene | U | | 78 U | | 99 1 | | 10 J | | | | | | | | | | # Table 16-6 120A - Metals in Soil vs TAGM Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-1 | 20A | SEAD-12 | 10A | SEAD-1 | 20A | SEAD-120A | | |----------------|-------|---------|-----------|--------|---------|--------|---------|----------|---------|------------|-----------|-----------|---------|-----------|--------------|-------| | DESCRIPTION: | | | | | | | | | 50 Area | Dumping | 50 Area I | Dumping | 50 Area | Dumping | 50 Area Dump | ing | | | | | | | | | | | Areas | , , | Areas | | Areas | | Areas | | | LOC ID: | | | | | | | | | TP120A | -1 | TP120A- | 1 | TP120A | -1 | TP120A-2 | | | SAMP_ID: | | | | | | | | | EB155 | | EB032 | | EB156 | | EB157 | | | QC CODE | | | | | | | | | SA | | DU | | SA | | SA | | | SAMP DETH TOP: | | | | | | | | | 0 | | 0 | | 2 | | 0 | | | SAMP DEPTH BOT | | | | | | | | | 06 | | 06 | | 2.5 | | 02 | | | MATRIX. | | | | | | | | | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | OOIL | 30-Mar-98 | | 30-Mar-98 | JOIL | 30-Mar-98 | 31-M | ar-98 | | SAMI DATE | | | OF | | | ABOVE | OF | OF | | 55 Mai -56 | | 00 11101 | | oo mar oo | 01.11 | , 00 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | Aluminum | MG/KG | 14500 0 | 100.0% | 19520 | 1052885 | 0 | 11 | 11 | | 10100 | | 11400 | | 12800 - | 1 | 3200 | | Antimony | MG/KG | 1.9 | 37.5% | 6 | 421 | 0 | 3 | 3 | 3 | 1.1 UN | | 1.2 UN | | 1.6 BN | | 1.9 | | Arsenic | MG/KG | 60 | 100 0% | 8.9 | 46 | 0 | 11 | 11 | | 4.2 | | 3.5 | | 3.6 | | 6 | | Barium | MG/KG | 134 0 | 100.0% | 300 | 73702 | 0 | 11 | 11 | | 61 | | 68.9 | | 79.9 | | 109 | | Beryllium | MG/KG | 0.6 | 100.0% | 1.13 | 16 | 0 | 11 | 11 | l | 0.36 B | | 0.44 B | | 0.49 B | | 0.49 | | Cadmium | MG/KG | 0.0 | 0.0% | 2.46 | 526 | 0 | 0 | 11 | I | 0.07 U | | 0.07 U | | 0.07 U | | 0.07 | | Calcium | MG/KG | 85300 0 | 100.0% | 125300 | | 0 | 11 | 11 | 1 | 85300 * | | 70100 * | | 23000 ° | | 4280 | | Chromium | MG/KG | 31.5 | 100.0% | 30 | | 1 | 11 | 11 | | 16.6 | | 18.5 | | 19.4 | 79000 | 31.5 | | Cobalt | MG/KG | 12.0 | 100.0% | 30 | 6317 | 0 | 11 | 11 | | 10.1 B | | 11 B | | 10.3 B | | 10.9 | | Copper | MG/KG | 57.7 | 100.0% | 33 | 42115 | 1 | 11 | 11 | I | 21 8 | | 21.8 | | 26.4 | | 57.7 | | Cyanide | MG/KG | 0.0 | 0.0% | 0.35 | | 0 | 0 | 11 | I | 0.63 U | | 0.61 U | | 0.65 U | | 0.69 | | Iron | MG/KG | 44500.0 | 100.0% | 37410 | 315865 | 1 | 11 | 11 | | 20600 | | 22700 | | 23900 | PB 1 | 44560 | | Lead | MG/KG | 68.3 | 100.0% | 24.4 | | 2 | 11 | | | 10.8 | | 12.4 | | 10.9 | | 68.3 | | Magnesium | MG/KG | 19600.0 | 100 0% | 21700 | | 0 | 11 | 11 | | 15900 * | | 13800 * | | 7800 * | | 3240 | | Manganese | MG/KG | 945.0 | 100.0% | 1100 | 24216 | 0 | 11 | 11 | I | 486 | | 463 | | 567 | | 757 | | Mercury | MG/KG | 0 1 | 18.2% | 0.1 | 316 | 0 | 2 | 11 | 1 | 0.06 U | | 0.06 U | | 0.06 U | | 0.07 | | Nickel | MG/KG | 35.2 | 100.0% | 50 | 21058 | 0 | 11 | 11 | 1 | 31.3 | | 31.3 | | 34 | | 35.2 | | Potassium | MG/KG | 2110.0 | 100.0% | 2623 | | 0 | 11 | 11 | | 1630 | | 1760 | | 1660 | | 2100 | | Selenium | MG/KG | 1.6 | 220.0% | 2 | 5264 | 0 | 11 | 5 | | 1 UN* | | 1 UN* | | 1.1 UN* | | 1.2 | | Silver | MG/KG | 0.5 | 9.1% | 0.8 | 5264 | 0 | . 1 | 11 | | 0.29 U | | 0.54 B | | 0.3 U | | 0.3 | | Sodium | MG/KG | 119.0 | 54.5% | 188 | | 0 | 6 | | | 108 B | | 110 B | | 110 B | | 60.7 | | Thallium | MG/KG | 2.1 | 18.2% | 0.855 | | 2 | 2 | | | 1.5 U | | 1.5 U | | 1.6 U | | 2.1 | | Vanadium | MG/KG | 25.3 | 100.0% | 150 | 7370 | 0 | 11 | | | 17.1 | | 19.3 | | 22 | | 24.2 | | Zinc | MG/KG | 100.0 | 100 0% | 115 | 315865 | 0 | 11 | 11 | I | 67.5 E | | 73.3 E | | 72.8 E | | 100 | Table 16-6 120A - Metals in Soil vs TAGM Non-Evaluated EBS Sites | SITE: | | SEAD-120A | SEAD-120A | | SEAD-120 |)A | SEAD-120 |)A | SEAD-120/ | A | SEAD-120/ | A | SEAD-12 | 0A | |-----------------|-----|-----------------|--------------|---------|-----------|----------|-----------|---------------|------------|---------|------------|------------------|-----------|-----------| | DESCRIPTION: | | 50 Area Dumping | 50 Area Dump | ping | 50 Area D | umping | 50 Area D | umping | 50 Area Du | mping | 50 Area Du | ımpina | 50 Area D | Dumpina | | | | Areas | Areas | F 3 | Areas | | | LOC ID. | | TP120A-2 | TP120A-3 | | TP120A-3 | | TP120A-4 | | TP120A-4 | | TP120A-5 | | TP120A- | 5 | | SAMP_ID: | | EB158 | EB159 | | EB160 | | EB161 | | EB162 | | EB163 | | EB164 | | | QC CODE: | | SA | SA | | | SAMP DETH TOP: | | 2 | 0 | | 2 | | 0 | | 2 | | 0 | | 1 | | | SAMP DEPTH BOT: | | 22 | 0.6 | | 2.5 | | 0.6 | | 2.5 | | 0.6 | | 1.2 | | | MATRIX: | | SOIL | SOIL | | | SAMP DATE | | 31-Mar-98 | 30-M | 1ar-98 | | 0-Mar-98 | | 80-Mar-98 | | -Mar-98 | | 0-Mar-98 | | 30-Mar-98 | | PARAMETER | Q | VALUE | Q VALUE | Q | VALUE | 0 | | Aluminum | 4 | 14500 | | 12500 | AVEOL | 10100 | VALUE | 13100 | VALUE | 10600 | VALUE | | VALUE | Q | | Antimony | BN | 1.4 | | 1.2 UN | | 1 1 UN | | 1.2 UN | | 1,1 UN | | 13300 | | 14300 | | Arsenic | DIA | 5.5 | DIA | 4.1 | | 35 | | 3.8 | | 4.3 | | 1.2 UN | | 1.3 UN | | Barium | | 128 | | 74.8 | | 62.4 | | 82.5 | | 62.7 | | 3.7
120 | | 3.1 | | Beryllium | В | 0.59 | D. | 0.46 B | | 0.38 B | | 0.52 B | | 0.44 B | | | | 134 | | Cadmium | U | 0.08 | | 0.40 B | | 0.06 U | | 0.07 U | | 0.44 B | | 0.57 B
0.07 U | | 0 62 B | | Calcium | | 5210 | | 55100 * | | 63200 ° | | 25500 * | | 45700 * | | | | 0.08 U | | Chromium | | 19.9 | , | 19.6 | | 16,7 | | 19 7 | | 17.4 | | 15100 * | | 5450 * | | Cobalt | В | 12 | D | 10.7 B | | 10.1 B | | 99 B | | | | 18.7 | | 19.3 | | Copper | ь | 20.4 | ь | 22.8 | | 21.2 | | 22.6 | | 9.2 B | | 8.9 B | | 8.4 B | | Cyanide | U | 0.72 | | 0 58 U | | 0.61 U | | | | 23.7 | | 20.5 | | 20.1 | | Iron | U | 25100 | | 23400 | | 20500 | | 0.64 U | | 0.62 U | | 0.68 U | | 0.66 U | | Lead | | 47,5 | | 12.4 | | 10.7 | · | 23800
12.3 | | 22100 | | 22300 | | 22900 | | Magnesium | | 3650 | | 10900 * | | 19600 * | | | | 12.5 | | 15.4 | | 12.5 | | Manganese | | 945 | | 497 | | 487 | | 7380 *
500 | | 8800 * | | 5780 * | | 3680 * | | Mercury | В | 0.06 | 0 | 0 05 U | | 0.05 U | | | | 475 | | 469 | | 519 | | Nickel | В | 26.6 | В | 32.3 | | | | 0.06 U | | 0.05 U | | 0.06 U | | 0.06 U | | Potassium | | | | | | 28.3 | | 29.8 | | 29.6 | | 24.3 | | 22.4 | | Selenium | BN* | 1690
1.6 | Alm | 2110 | | 1590 | | 1950 | | 1380 | | 1720 | | 1500 | | | | | | 1 UN* | | 1.3 N* | | 1.3 N* | | 1.5 N* | | 1 UN* | | 1.5 N° | | Silver | U | 0.34 | | 0.29 U | | 0.28 U | | 0.3 U | | 0.28 U | | 0.3 U | | 0.33 U | | Sodium | U | 69.3 | | 119 B | | 86 1 B | | 59 9 U | | 91.2 B | | 61 U | | 65.7 U | | Thallium | В | 1.8 | U | 1.5 U | | 1.4 U | | 1.5 U | 1 | 1.5 B | | 1.6 U | | 1.7 U | | Vanadium | - | 25 3 | _ | 21 | | 17.6 | | 22.6 | | 17.5 | | 23.1 | | 24 | | Zinc | E | 94 7 | t | 83 7 E | | 80 E | | 96.1 E | | 83.7 E | | 87.6 E | | 81.4 E | # Fable 16-7 120A - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE. DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-1
50 Area
Areas
TP120A
EB155
SA
0
0 6
SOIL | Dumping | SEAD-12
50 Area I
Areas
TP120A-
EB032
DU
0
0.6
SOIL | Dumping | SEAD-1:
50 Area
Areas
TP120A:
EB156
SA
2
2 5
SOIL | Dumping | SEAD-12
50 Area
Areas
TP120A-
EB157
SA
0
0 2
SOIL | Dumping | |--|-------|---------|-----------------|--------|---------|-----------------|--------------|--------------|---|---------|---|---------|---|---------|---|---------| | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | Aluminum | MG/KG | 14500 0 | 100.00% | 19520 | 1052885 | 0 | 11 | 11 | | 10100 | | 11400 | | 12800 | | 13200 | | Antimony | MG/KG | 1.9 | 37 50% | 6 | 421 | 0 | 3 | 8 | 3 | 1.1 UN | | 1.2 UN | | 1 6 BN | | 19 | | Arsenic | MG/KG | 6 0 | 100.00% | 8 9 | 46 | 0 | 11 | 11 | | 4 2 | | 3.5 | | 3.6 | | 6 | | Barium | MG/KG | 134.0 | 100.00% | 300 | 73702 | 0 | . 11 | 11 | | 61 | | 68.9 | | 79.9 | | 109 | | Beryllium | MG/KG | 0.6 | 100.00% | 1 13 | 16 | 0 | 11 | 11 | | 0.36 B | | 0 44 B | | 0.49 B | | 0.49 | | Cadmium | MG/KG | 0 0 | 0.00% | 2 46 | 526 | 0 | 0 | 11 | | 0.07 U | | 0.07 U | | 0.07 U | | 0.07 | | Calcium | MG/KG | 85300.0 | 100.00% | 125300 | | 0 | 11 | 11 | | 85300 * | | 70100 * | | 23000 * | | 4280 | | Chromium | MG/KG | 31 5 | 100 00% | 30 | | 0 | 11 | 11 | | 16.6 | | 18.5 | | 19.4 | | 31.5 | | Cobalt | MG/KG | 12 0 | 100.00% | 30 | 6317 | 0 | 11 | 11 | | 10 1 B | | 11 B | | 10.3 B | | 10 9 | | Copper | MG/KG | 57 7 | 100.00% | 33 | 42115 | 0 | 11 | 11 | | 21.8 | | 21.8 | | 26.4 | | 57.7 | | Cyanide | MG/KG | 0.0 | 0.00% | 0 35 | | 0 | 0 | 11 | | 0.63 U | | 0.61 U | | 0.65 U | | 0.69 | | Iron | MG/KG | 44500.0 |
100.00% | 37410 | 315865 | 0 | 11 | 11 | | 20600 | | 22700 | | 23900 | | 44500 | | Lead | MG/KG | 68 3 | 100.00% | 24 4 | | 0 | 11 | 11 | | 10 8 | | 12.4 | | 10.9 | | 68 3 | | Magnesium | MG/KG | 19600.0 | 100.00% | 21700 | | 0 | 11 | 11 | | 15900 * | | 13800 * | | 7800 * | | 3240 | | Manganese | MG/KG | 945 0 | 100.00% | 1100 | 24216 | 0 | 11 | 11 | | 486 | | 463 | | 567 | | 757 | | Mercury | MG/KG | 0 1 | 18.18% | 0 1 | 316 | 0 | 2 | 11 | | 0.06 U | | 0 06 U | | 0.06 U | | 0.07 | | Nickel | MG/KG | 35.2 | 100.00% | 50 | 21058 | 0 | 11 | 11 | | 31.3 | | 31.3 | | 34 | | 35.2 | | Potassium | MG/KG | 2110 0 | 100.00% | 2623 | | 0 | 11 | 11 | | 1630 | | 1760 | | 1660 | | 2100 | | Selenium | MG/KG | 1.6 | 220.00% | 2 | 5264 | 0 | 11 | 5 | ; | 1 UN* | | 1 UN* | | 1.1 UN* | | 1.2 | | Silver | MG/KG | 0.5 | 9.09% | 0.8 | 5264 | 0 | 1 | 11 | | 0.29 U | | 0.54 B | | 0.3 U | | 0.3 | | Sodium | MG/KG | 119.0 | 54.55% | 188 | | 0 | 6 | 11 | | 108 B | | 110 B | | 110 B | | 60.7 | | Thallium | MG/KG | 2 1 | 18.18% | 0 855 | | 0 | 2 | 11 | | 1.5 U | | 1.5 U | | 16 U | | 2 1 | | Vanadium | MG/KG | 25.3 | 100 00% | 150 | 7370 | 0 | 11 | 11 | | 17.1 | | 19.3 | | 22 | | 24.2 | | Zinc | MG/KG | 100 0 | 100 00% | 115 | 315865 | 0 | 11 | 11 | | 67 5 E | | 73.3 E | | 72.8 E | | 100 | # Table 16-7 120A - Metals in Soil vs PRG-RFC Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT | | SEAD-120A
50 Area Dump
Areas
TP120A-2
EB158
SA
2 | ing | SEAD-120A
50 Area Dun
Areas
TP120A-3
EB159
SA
0 | | SEAD-120,
50 Area Du
Areas
TP120A-3
EB160
SA
2
2 5 | | SEAD-120.
50 Area Do
Areas
TP120A-4
EB161
SA
0
0 6 | | SEAD-120.
50 Area Do
Areas
TP120A-4
EB162
SA
2 | | SEAD-120A
50 Area Du
Areas
TP120A-5
EB163
SA
0 | | SEAD-120
50 Area D
Areas
TP120A-5
EB164
SA
1 | umping | |---|--------|--|----------------------------|---|-----------------------------|---|-----------------------------|---|-----------------------------|--|-----------------------------|--|-----------------------------|--|----------------------------| | MATRIX
SAMP DATE | | SOIL
31-M | ar 09 | SOIL | Mar-98 | SOIL | 0-Mar-98 | SOIL | 0-Mar-98 | SOIL | 0-Mar-98 | SOIL |)-Mar-98 | SOIL | 30-Mar-98 | | SAMP DATE | | 31-101 | ar-96 | 30- | Mai-90 | 30 | J-1VIAI -30 | 30 | 7-IVIAI - 90 | 31 | J-MISI-30 | 30 | -War-98 | | 30-Mar-98 | | PARAMETER
Aluminum | Q | VALUE
1 | Q
4500 | VALUE | Q
12500 | VALUE | Q
10100 | VALUE | Q
13100 | VALUE | Q
10600 | VALUE | Q
13300 | VALUE | Q
14300 | | Antimony
Arsenic
Barium | BN | | 1 4 BN
5 5
128 | | 1 2 UN
4.1
74 8 | | 1 1 UN
3 5
62.4 | | 1 2 UN
3 8
82 5 | | 1.1 UN
4.3
62.7 | | 1.2 UN
3.7
120 | | 1.3 UN
3.1
134 | | Beryllium
Cadmium
Calcium | ₽
B | | 0 59 B
0 08 U
5210 * | | 0 46 B
0 07 U
55100 * | | 0 38 B
0 06 U
63200 * | | 0 52 B
0 07 U
25500 * | | 0.44 B
0.07 U
45700 * | | 0.57 B
0.07 U
15100 * | | 0 62 B
0.08 U
5450 * | | Chromium
Cobalt | В | | 19 9
12 B | | 19.6
10.7 B | | 16 7
10 1 B | | 197
99 B | | 17.4
9 2 B | | 18.7
89 B | | 19.3
8 4 B | | Copper
Cyanide
Iron | U | | 20 4
0 72 U
5100 | | 22 8
0 58 U
23400 | | 21 2
0.61 U
20500 | | 22.6
0 64 U
23800 | | 23.7
0.62 U
22100 | | 20 5
0 68 U
22300 | | 20.1
0.66 U
22900 | | Lead
Magnesium | | | 47.5
3650 * | | 12.4
10900 * | | 10 7
19600 * | | 12 3
7380 * | | 12.5
8800 * | | 15.4
5780 * | | 12.5
3680 * | | Manganese
Mercury
Nickel | В | | 945
0 06 B
26 6 | | 497
0.05 U
32 3 | | 487
0 05 U
28 3 | | 500
0 06 U
29.8 | | 475
0.05 U
29.6 | | 469
0.06 U
24.3 | | 519
0 06 U
22.4 | | Potassium
Selenium | BN* | | 1690
1 6 N° | | 2110
1 UN* | | 1590
1 3 N* | | 1950
1.3 N* | | 1380
1.5 N* | | 1720
1 UN* | | 1500
1.5 N* | | Silver
Sodium | U | | 0.34 U
69 3 U | | 0 29 U
119 B | | 0 28 U
86 1 B | | 0 3 U
59.9 U | | 0 28 U
91.2 B | | 0.3 U
61 U | | 0.33 U
65.7 U | | Thallium
Vanadium | В | | 1.8 U
25 3 | | 1 5 U
21 | | 1 4 U
17 6 | | 15 U
226 | | 1 5 B
17.5 | | 1.6 U
23 1 | | 1.7 U
24 | | Zinc | Е | | 94.7 E | | 83 7 E | | 80 E | | 96 1 E | | 83 7 E | | 87.6 E | | 81.4 E | # Fable 16-8 120 V Pesticides/PCB in Soil vs TAGM Non-Evaluated FBS Sites | SITE. DESCRIPTION LOC ID SAMP_ID CODE SAMP DETH TOP SAMP DEPTH BOT: MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-12
50 Area I
Areas
TP120A-
EB155
SA
0
0 6
SOIL | Dumping | SEAD-120A
50 Area Du
Areas
TP120A-1
EB032
DU
0
0 6
SOIL | | SEAD-120,
50 Area Du
Areas
TP120A-1
EB156
SA
2
2 5
SOIL | | SEAD-120
50 Area D
Areas
TP120A-2
EB157
SA
0
0.2
SOIL | lumping | |---|-------|---------|-----------------|-------|---------|-----------------|--------------|--------------|---|---------|---|-------|---|-------|---|---------| | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | 4.4`-DDD | UG/KG | 0.0 | 0 00% | 2900 | | 0 | 0 | 11 | | 39 U | | 38 U | | 3.9 U | | 4.3 | | 4,4`-DDE | UG/KG | 0.0 | 0 00% | 2100 | | 0 | 0 | 11 | | 3.9 U | | 3.8 U | | 39 U | | 4.3 | | 4.4 -DDT | UG/KG | 3 1 | 22 22% | 2100 | | 0 | 2 | 9 |) | 3 9 U | | 3.8 U | | 39 U | | 4.3 | | Aldrın | UG/KG | 0.0 | 0 00% | 41 | 4046 | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Alpha-BHC | UG/KG | 2 3 | 9 09% | 110 | | 0 | 1 | 11 | l | 2 U | | 2 U | | 2 U | | 22 | | Alpha-Chlordane | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 2 U | | 2 U | | 2 U | | 2.2 | | Aroclor-1016 | UG/KG | 0 0 | 0 00% | | 73702 | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1221 | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 11 | | 78 U | | 78 U | | 79 U | | 88 | | Aroclor-1232 | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1242 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1248 | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Arocior-1254 | UG/KG | 0 0 | 0 00% | 10000 | 21058 | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1260 | UG/KG | 0.0 | 0 00% | 10000 | | 0 | 0 | 11 | | 39 U | | 38 U | | 39 U | | 43 | | Beta-BHC | UG/KG | 0 0 | 0 00% | 200 | | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2 2 | | Delta-BHC | UG/KG | 14 0 | 9 09% | 300 | | 0 | 1 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Dieldrin | UG/KG | 0.0 | 0 00% | 44 | 4299 | 0 | 0 | 11 | | 3 9 U | | 38 U | | 3.9 U | | 4.3 | | Endosulfan I | UG/KG | 0.0 | 0 00% | 900 | | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Endosulfan II | UG/KG | 0.0 | 0 00% | 900 | | 0 | 0 | 11 | | 3.9 U | | 3 8 U | | 3 9 U | | 4.3 | | Endosulfan sulfate | UG/KG | 0 0 | 0.00% | 1000 | | 0 | 0 | 11 | | 3.9 U | | 3 8 U | | 3 9 U | | 4.3 | | Endrin | UG/KG | 0.0 | 0 00% | 100 | 315865 | 0 | 0 | 11 | | 3.9 U | | 3 8 U | | 3.9 U | | 4 3 | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | | 3 9 U | | 3.8 U | | 3.9 U | | 4.3 | | Endrin ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 11 | | 3 9 U | | 3.8 U | | 3 9 U | | 4 3 | | Gamma-BHC/Lindane | UG/KG | 8 8 | 9.09% | 60 | | 0 | 1 | 11 | | 2 U | | 2 U | | 2 U | | 22 | | Gamma-Chlordane | UG/KG | 0 0 | 0.00% | 540 | 45000 | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Heptachlor | UG/KG | 0 0 | 0.00% | 100 | 15286 | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Heptachlor epoxide | UG/KG | 0.0 | 0 00% | 20 | 7559 | 0 | 0 | 11 | | 2 U | | 2 U | | 2 U | | 2.2 | | Methoxychlor | UG/KG | 0 0 | 0.00% | | 5264423 | 0 | 0 | 11 | | 20 U | | 20 U | | 20 U | | 22 | | Toxaphene | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 11 | ł | 200 U | | 200 U | | 200 U | | 220 | # Table 16-8 420A - Pesticides PCB in Soil vs. LAGM Non-Evaluated EBS Sites | SITE
DESCRIPTION
LOC ID | | SEAD-120A
50 Area Dum
Areas
TP120A-2 | nping | SEAD-120
50 Area Di
Areas
TP120A-3 | umping | SEAD-120/
50 Area Du
Areas
TP120A-3 | | SEAD-120A
50 Area Du
Areas
TP120A-4 | | SEAD-120/
50 Area Du
Areas
TP120A-4 | | SEAD-120A
50 Area Du
Areas
TP120A-5 | | SEAD-12
50 Area I
Areas
TP120A- | Dumping | |-------------------------------|---|---|-----------|---|----------|--|--------------|--|------------|--|------------|--|-----------|--|---------------| | SAMP_ID | | EB158 | | EB159 | | EB160 | | EB161 | | EB162 | | EB163 | | EB164 | 5 | | QC CODE: | | SA SA | | | SAMP DETH TOP | | 2 | | 0 | | 2 | | 0 | | 2 |
 0 | | 1 | | | SAMP DEPTH BOT | | 2 2 | | 06 | | 2 5 | | 0.6 | | 25 | | 0.6 | | 12 | | | MATRIX | | SOIL | SAMP DATE | | | Mar-98 | | 0-Mar-98 | | D-Mar-98 | |)-Mar-98 | |)-Mar-98 | | -Mar-98 | | 30-Mar-98 | | SAME DATE | | 31- | IVIAI -30 | 3 | 0-War-50 | 30 | J-14141 - 30 | 30 |)-14101-30 | 30 | J-14141-30 | 30 | -IVIAI-30 | | 30-IVIAI - 30 | | PARAMETER | Q | VALUE | 4,4`-DDD | U | | 4.3 U | | 38 U | | 3 8 U | | 4 U | | 3 9 U | | 4.2 U | | 4 2 U | | 4.4 - DDE | U | | 4.3 U | | 3 8 U | | 3 8 U | | 4 U | | 3.9 U | | 4.2 U | | 4 2 U | | 4.4 -DDT | U | | 4.3 U | | 3 8 U | | 3 1 JP | | 4 U | | 3.9 U | | 2.7 JP | | 4 2 U | | Aldrin | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 2 2 U | | Alpha-BHC | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2 2 U | | 2 3 | | Alpha-Chlordane | U | | 2.2 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2.2 U | | 2 2 U | | Aroclor-1016 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1221 | U | | 88 U | | 78 U | | 77 U | | 81 U | | 79 U | | 85 U | | 86 U | | Aroclor-1232 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1242 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1248 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1254 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1260 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Beta-BHC | U | | 2.2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2 2 U | | 2 2 U | | Delta-BHC | U | | 2 2 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2.2 U | | 14 | | Dieldrin | U | | 43 U | | 3 8 U | | 3 8 U | | 4 U | | 3.9 U | | 4.2 U | | 4.2 U | | Endosulfan I | U | | 2.2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 2 2 U | | Endosulfan II | U | | 4.3 U | | 3 8 U | | 3 8 U | | 4 U | | 3.9 U | | 4.2 U | | 4.2 U | | Endosulfan sulfate | U | | 4 3 U | | 3 8 U | | 3 8 U | | 4 U | | 3.9 U | | 4.2 U | | 4 2 U | | Endrin | U | | 4.3 U | | 3 8 U | | 3.8 U | | 4 U | | 3.9 U | | 4 2 U | | 4.2 U | | Endrin aldehyde | U | | 4.3 U | | 38 U | | 3 8 U | | 4 U | | 3.9 U | | 4.2 U | | 4 2 U | | Endrin ketone | U | | 4 3 U | | 3.8 U | | 3 8 U | | 4 U | | 3 9 U | | 4.2 U | | 4.2 U | | Gamma-BHC/Lindane | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 88 | | Gamma-Chlordane | U | | 2 2 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2.2 U | | 2 2 U | | Heptachlor | U | | 2.2 U | | 2 U | | 1.9 U | | 21 U | | 2 U | | 2.2 U | | 2.2 U | | Heptachlor epoxide | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 2.2 U | | Methoxychlor | U | | 22 U | | 20 U | | 19 U | | 21 U | | 20 U | | 22 U | | 22 U | | Toxaphene | U | | 220 U | | 200 U | | 190 U | | 210 U | | 200 U | | 220 U | | 220 U | # Table 16-9 120A - Pesticides/PCBs in Soil vs PRG-RFC Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX | | | | | | | | | SEAD-1
50 Area
Areas
TP120A
EB155
SA
0
0 6
SOIL | Dumping | SEAD-12
50 Area I
Areas
TP120A-
EB032
DU
0
0 6
SOIL | Dumping | SEAD-12
50 Area I
Areas.
TP120A-
EB156
SA
2
2 5
SOIL | Dumping | SEAD-12
50 Areas
Areas
TP120A-
EB157
SA
0
0.2
SOIL | Dumping | |--|-------|---------|-----------------|-------|---------|-----------------|--------------|--------------|---|-----------|---|-----------|--|-----------|--|-----------| | SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | | 30-Mar-98 | | 30-Mar-98 | | 30-Mar-98 | | 31-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | 4,4 -DDD | UG/KG | 0.0 | 0.00% | 2900 | | 0 | 0 | 11 | ı | 3 9 U | | 3.8 U | | 3 9 U | | 4 3 | | 4.4 -DDE | UG/KG | 0.0 | 0 00% | 2100 | | 0 | 0 | 11 | ı | 3 9 U | | 3 8 U | | 3 9 U | | 4.3 | | 4,4 -DDT | UG/KG | 3 1 | 22 22% | 2100 | | 0 | 2 | 9 | 9 | 3 9 U | | 3.8 U | | 3 9 U | | 4 3 | | Aldrin | UG/KG | 0.0 | 0 00% | 41 | 4046 | 0 | 0 | 11 | 1 | 2 U | | 2 U | | 2 U | | 2.2 | | Alpha-BHC | UG/KG | 23 | 9 09% | 110 | | 0 | 1 | 11 | I | 2 U | | 2 U | | 2 U | | 2 2 | | Alpha-Chlordane | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | ł | 2 U | | 2 U | | 2 U | | 2.2 | | Aroclor-1016 | UG/KG | 0.0 | 0 00% | | 73702 | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1221 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 78 U | | 78 U | | 79 U | | 88 | | Aroclor-1232 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1242 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1248 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1254 | UG/KG | 0.0 | 0.00% | 10000 | 21058 | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Aroclor-1260 | UG/KG | 0.0 | 0 00% | 10000 | | 0 | 0 | 11 | 1 | 39 U | | 38 U | | 39 U | | 43 | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | 0 | 11 | I | 2 U | | 2 U | | 2 U | | 2 2 | | Delta-BHC | UG/KG | 14 0 | 9 09% | 300 | | 0 | 1 | 11 | I | 2 U | | 2 U | | 2 U | | 22 | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 4299 | 0 | 0 | 11 | 1 | 39 U | | 3.8 U | | 3.9 U | | 4 3 | | Endosulfan I | UG/KG | 0.0 | 0 00% | 900 | | 0 | 0 | 11 | 1 | 2 U | | 2 U | | 2 U | | 2.2 | | Endosulfan II | UG/KG | 0 0 | 0.00% | 900 | | 0 | 0 | 11 | 1 | 3.9 U | | 38 U | | 3.9 U | | 4.3 | | Endosulfan sulfate | UG/KG | 0 0 | 0 00% | 1000 | | 0 | 0 | 11 | 1 | 3 9 U | | 3.8 U | | 3.9 U | | 43 | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 315865 | 0 | 0 | 11 | t | 3.9 U | | 3.8 U | | 3.9 U | | 43 | | Endrin aldehyde | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 39 U | | 3.8 U | | 3.9 U | | 4.3 | | Endrin ketone | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | 1 | 3 9 U | | 3.8 U | | 3.9 U | | 4 3 | | Gamma-BHC/Lindane | UG/KG | 8.8 | 9 09% | 60 | | 0 | 1 | 11 | 1 | 2 U | | 2 U | | 2 U | | 22 | | Gamma-Chlordane | UG/KG | 0 0 | 0 00% | 540 | | 0 | 0 | 11 | 1 | 2 U | | 2 U | | 2 U | | 2.2 | | Heptachlor | UG/KG | 0 0 | 0 00% | 100 | 15286 | 0 | 0 | 11 | I | 2 U | | 2 U | | 2 U | | 22 | | Heptachlor epoxide | UG/KG | 0.0 | 0 00% | 20 | 7559 | 0 | 0 | 11 | I | 2 U | | 2 U | | 2 U | | 2.2 | | Methoxychlor | UG/KG | 0.0 | | | 5264423 | 0 | 0 | 11 | Ī | 20 U | | 20 U | | 20 U | | 22 | | Toxaphene | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 11 | | 200 U | | 200 U | | 200 U | | 220 | # Lable 16-9 120 V - Pesticides PCBs in Soil vs PRG-RFC Non-Evaluated FBS Sites | SITE
DESCRIPTION | | SEAD-120A
50 Area Dump
Areas | ping | Areas | Dumping | SEAD-120
50 Area Do
Areas | | SEAD-120
50 Area D
Areas | Dumping | SEAD-120A
50 Area Du
Areas | | SEAD-120A
50 Area Du
Areas | | SEAD-120
50 Area D
Areas | umping | |--------------------------|---|------------------------------------|--------|---------|-----------|---------------------------------|----------|--------------------------------|-----------|----------------------------------|---------|----------------------------------|----------|--------------------------------|-----------| | LOC ID | | TP120A-2 | | TP120A | -3 | TP120A-3 | | TP120A-4 | 1 | TP120A-4 | | TP120A-5 | | TP120A-5 | , | | SAMP_ID | | EB158 | | EB159 | | EB160 | | EB161 | | EB162 | | EB163 | | EB164 | | | QC CODE | | SA | | SA | | SA | | SA
0 | | SA
2 | | SA | | SA
1 | | | SAMP DETH TOP | | 2 | | 0
06 | | 2
2 5 | | 06 | | 2 5 | | 0 | | | | | SAMP DEPTH BOT
MATRIX | | 2.2
SOIL | | SOIL | | SOIL | | SOIL | | SOIL | | 06
SOIL | | 12
SOIL | | | SAMP DATE | | | 4 00 | SOIL. | 30-Mar-98 | | 0-Mar-98 | | 30-Mar-98 | | -Mar-98 | |)-Mar-98 | | 30-Mar-98 | | SAMP DATE | | 31-10 | 1ar-98 | | 30-Mar-98 | 3 | U-Mar-98 | | 30-Mar-98 | 30 | -Mar-98 | 30 | -Mar-98 | ` | 30-Mar-98 | | PARAMETER | Q | VALUE | 4.4`-DDD | U | | 43 U | | 38 U | | 3.8 U | | 4 U | | 3.9 U | | 4 2 U | | 4 2 U | | 4,4`-DDE | U | | 43 U | | 3 8 U | | 3 8 U | | 4 U | | 39 U | | 4 2 U | | 4.2 U | | 4.4`-DDT | U | | 43 U | | 3 8 U | | 3 1 JP | | 4 U | | 39 U | | 27 JP | | 42 U | | Aldrin | U | | 22 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2 2 U | | 2 2 U | | Alpha-BHC | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 2 3 | | Alpha-Chlordane | U | | 2.2 U | | 2 U | | 1.9 U | | 2 1 U | | 2 U | | 2.2 U | | 2 2 U | | Aroclor-1016 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1221 | U | | 88 U | | 78 U | | 77 U | | 81 U | | 79 U | | 85 U | | 86 U | | Aroclor-1232 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1242 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1248 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1254 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 U | | 42 U | | 42 U | | Aroclor-1260 | U | | 43 U | | 38 U | | 38 U | | 40 U | | 39 Ų | | 42 U | | 42 U | | Beta-BHC | U | | 2.2 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2 2 U | | 2.2 U | | Delta-BHC | U | | 2.2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 14 | | Dieldrin | U | | 4 3 U | | 3 8 U | | 3 8 U | | 4 U | | 3.9 U | | 4 2 U | | 4 2 U | | Endosulfan I | U | | 2 2 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2.2 U | | 2.2 U | | Endosulfan II | U | | 43 U | | 3.8 U | | 3 8 U | | 4 U | | 3 9 U | | 4.2 U | | 4.2 U | | Endosulfan sulfate | U | | 43 U | | 3.8 U | | 3 8 U | | 4 U | | 39 U | | 4 2 U | | 4.2 U | | Endrin | U | | 4.3 U | | 3.8 U | | 3 8 U | | 4 U | | 3 9 U | | 4 2 U | | 4 2 U | | Endrin aldehyde | U | | 4.3 U | | 3 8 U | | 3.8 U | | 4 U | | 3 9 U | | 4.2 U | | 4.2 U | | Endrin ketone
| U | | 43 U | | 3 8 U | | 3 8 U | | 4 U | | 3 9 U | | 4.2 U | | 4.2 U | | Gamma-BHC/Lindane | U | | 2 2 U | | 2 U | | 19 U | | 2.1 U | | 2 U | | 2 2 U | | 8.8 | | Gamma-Chlordane | U | | 22 U | | 2 U | | 1 9 U | | 2.1 U | | 2 U | | 2 2 U | | 2 2 U | | Heptachlor | U | | 22 U | | 2 U | | 19 U | | 2 1 U | | 2 U | | 2 2 U | | 2.2 U | | Heptachlor epoxide | U | | 22 U | | 2 U | | 1 9 U | | 2.1 U | | 2 U | | 2.2 U | | 2.2 U | | Methoxychlor | U | | 22 U | | 20 U | | 19 U | | 21 U | | 20 U | | 22 U | | 22 U | | Toxaphene | U | | 220 U | | 200 U | | 190 U | | 210 U | | 200 U | | 220 U | | 220 U | # Table 16-10 120A - Herbicides in Soil vs TAGM Non-Evaluated FBS Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | MIMOSO | Areas
TP120A-
EB155
SA
0
0 6
SOIL | Dumping
.1 | SEAD-120A
50 Area Dump
Areas
TP120A-1
EB032
DU
0
0 6
SOIL | | SEAD-12
50 Area I
Areas
TP120A-
EB156
SA
2
2 5
SOIL | Dumping | SEAD-120A
50 Area Dumping
Areas
TP120A-2
EB157
SA
0
0 2
SOIL | | |--|-------|---------|-----------|------|----------|--------|--------------|--------------|---|---------------|---|--------|---|-----------|--|----| | SAME DATE | | | OF | | | ABOVE | NUMBER
OF | NUMBER
OF | | 30-Mar-98 | 30-M | lar-98 | ; | 30-Mar-98 | 31-Mar-9 | 18 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | 2,4,5-T | UG/KG | 0 0 | 0 00% | 1900 | | 0 | 0 | 11 | | 5.6 U | NA | | | 5.7 U | 6 | 3 | | 2,4,5-TP/Silvex | UG/KG | 0.0 | 0 00% | 700 | | 0 | 0 | 11 | | 5.6 U | NA | | | 57 U | 6. | - | | 2,4-D | UG/KG | 0 0 | 0 00% | 500 | | 0 | 0 | 11 | l | 55 U | NA | | | 56 U | | 52 | | 2,4-DB | UG/KG | 0 0 | | | | 0 | 0 | 11 | l | 56 U | NA | | | 57 U | | 53 | | 3,5-Dichlorobenzoic acid | UG/KG | 0 0 | | | | 0 | 0 | 11 | ! | 55 U | NA | | | 56 U | 6 | 52 | | Dalapon | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 11 | | 300 U | NA | | | 310 U | 34 | 10 | | Dicamba | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | | 5.5 U | NA | | | 5.6 U | 6 | 2 | | Dichloroprop | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 11 | | 55 U | NA | | | 56 U | 6 | 52 | | Dinoseb | UG/KG | 0 0 | 0.00% | | | 0 | 0 | | | 28 U | NA | | | 28 U | 3 | 32 | | MCPA | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | | 5500 U | NA | | | 5600 U | 620 | 10 | | MCPP | UG/KG | 0.0 | 0 00% | | | 0 | 0 | | | 5500 U | NA | | | 5600 U | 620 | 10 | | Pentachiorophenol | UG/KG | 0 0 | 0 00% | 1000 | 573237 | 0 | 0 | 11 | | 20 U | NA | | | 20 U | 2 | 22 | | Picloram | UG/KG | 0 0 | 0 00% | | 73701923 | 0 | 0 | 11 | | 5.6 U | NA | | | 57 U | 6. | .3 | # Table 16-10 120A - Herbicides in Soil vs TAGM Non-Evaluated FBS Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX | | SEAD-120A
50 Area Dum
Areas
TP120A-2
EB158
SA
2
2 2 2
SOIL | nping | SEAD-120A
50 Area Dun
Areas
TP120A-3
EB159
SA
0
0 6
SOIL | nping | SEAD-120A
50 Area Dun
Areas
TP120A-3
EB160
SA
2
2 5
SOIL | | SEAD-120A
50 Area Dur
Areas
TP120A-4
EB161
SA
0
0 6
SOIL | | SEAD-120A
50 Area Du
Areas
TP120A-4
EB162
SA
2
2 5
SOIL | | SEAD-120A
50 Area Dun
Areas
TP120A-5
EB163
SA
0
0.6
SOIL | nping | SEAD-120A
50 Area Dun
Areas
TP120A-5
EB164
SA
1
1 2
SOIL | | |---|---|--|---|--|---|--|--|--|--|---|---|--|---|--|--| | SAMP DATE | | 31-1 | Mar-98 | 30- | Mar-98 | 30- | Mar-98 | 30 | -Mar-98 | 30 | -Mar-98 | 30- | Mar-98 | 30- | Mar-98 | | PARAMETER 2 4.5-T 2.4.5-TP/Silvex 2.4-D 3.5-Dichlorobenzoic acid Dalapon Dicamba Dichloroprop Dinoseb MCPA MCPP Pentachlorophenol | 0 | VALUE | Q
63 U
63 U
62 U
63 U
62 U
340 U
6.2 U
62 U
32 U
6200 U
6200 U
6200 U | VALUE | Q 5 6 U 5 6 U 5 5 U 5 U 5 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U | VALUE | Q
5 5 U
5 5 U
5 4 U
5 5 U
5 4 U
300 U
5 4 U
28 U
28 U
5400 U
5400 U | VALUE | Q
5 8 U
5 8 U
5 7 U
5 8 U
5 7 U
3 2 0 U
5 7 U
2 9 U
5 7 0 U
5 7 0 U
2 9 U
5 7 0 0 U
2 1
U | VALUE | Q
5.6 U
5.6 U
55 U
56 U
55 U
300 U
5.5 U
28 U
5500 U
5500 U
20 U | VALUE | Q
61 U
6.1 U
59 U
61 U
59 U
330 U
59 U
30 U
5900 U
5900 U
22 U | VALUE | Q
6 2 U
60 U
60 U
60 U
330 U
6 U
31 U
6000 U
6000 U | # Table 16-11 120 V - Herbieides in Soil vs PRG-RFC Non-Evaluated FBS Sites | SITE
DESCRIPTION | | | | | | | | | | 20A
Dumping | SEAD-120A
50 Area Dum | ping | SEAD-12
50 Area (| | SEAD-120A
50 Area Dun | | |-------------------------------------|----------------|---------|-----------|------|------------|--------|---------|----------|------------------|----------------|--------------------------|---------|----------------------|-----------|--------------------------|---------| | LOC ID | | | | | | | | | Areas
TP120A- | .1 | Areas
TP120A-1 | | Areas
TP120A- | 4 | Areas
TP120A-2 | | | SAMP_ID | | | | | | | | | EB155 | | EB032 | | EB156 | 1 | EB157 | | | QC CODE | | | | | | | | | SA | | DU | | SA | | SA | | | SAMP DETH TOP | | | | | | | | | 0 | | 0 | | 2 | | 0 | | | SAMP DEPTH BOT | | | | | | | | | 0.6 | | 0.6 | | 2 5 | | 0 2 | | | MATRIX | | | | | | | | | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | 30-Mar-98 | 30-N | /lar-98 | | 30-Mar-98 | | -Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | - | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | 2,4,5-T | UG/KG | 0 0 | | 1900 | | 0 | 0 | | | 5.6 U | NA | | | 5.7 U | | 63 | | 2,4,5-TP/Silvex | UG/KG | 0.0 | | 700 | | 0 | 0 | | | 5.6 U | NA | | | 5.7 U | | 6.3 | | 2,4-D | UG/KG | 00 | | 500 | | 0 | 0 | | | 55 U | NA | | | 56 U | | 62 | | 2,4-DB | UG/KG | 0.0 | | | | 0 | 0 | | | 56 U | NA | | | 57 U | | 63 | | 3,5-Dichlorobenzoic acid
Dalapon | UG/KG | 0 0 | | | | 0 | 0 | | | 55 U | NA | | | 56 U | | 62 | | Dicamba | UG/KG
UG/KG | 0.0 | | | | 0 | 0 | | | 300 U | NA | | | 310 ป | | 340 | | Dichloroprop | UG/KG | 0.0 | | | | 0 | 0 | | | 5.5 U | NA | | | 5.6 U | | 6.2 | | Dinoseb | UG/KG | 0.0 | | | | 0 | 0 | | | 55 U | NA | | | 56 U | | 62 | | MCPA | UG/KG | 0.0 | | | | 0 | 0 | * * | | 28 U | NA | | | 28 U | | 32 | | MCPP | UG/KG | 0.0 | | | | 0 | 0 | 11 | | 5500 U | NA | | | 5600 U | | 6200 | | Pentachiorophenoi | UG/KG | 0.0 | | 1000 | 573237 | 0 | 0 | 11 | | 5500 U
20 U | NA
NA | | | 5600 U | | 6200 | | Picloram | UG/KG | 0.0 | | 1000 | 73701923 | 0 | 0 | | | 20 U | NA
NA | | | 20 U | | 22 | | | 5 5/10 | 0.0 | 0 00 /4 | | . 5. 51526 | 0 | O | | ' | 300 | 1474 | | | 5.7 U | | 63 | ### Table 16-11 120 V - Herbicides in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | SEAD-120A
50 Area Dum
Areas | ping | SEAD-120A
50 Area Dun
Areas | | SEAD-120A
50 Area Dum
Areas | ping | SEAD-120A
50 Area Dur
Areas | | SEAD-120A
50 Area Dui
Areas | | SEAD-120A
50 Area Dun
Areas | | SEAD-120A
50 Area Dun
Areas | | |--------------------------|---|-----------------------------------|-----------|-----------------------------------|--------|-----------------------------------|--------|-----------------------------------|---------|-----------------------------------|---------|---|--------|---|--------| | LOC ID | | TP120A-2 | | TP120A-3 | | TP120A-3 | | TP120A-4 | | TP120A-4 | | TP120A-5 | | TP120A-5 | | | SAMP ID | | EB158 | | EB159 | | EB160 | | EB161 | | EB162 | | EB163 | | EB164 | | | QC CODE | | SA | SAMP DETH TOP: | | 2 | | 0 | | 2 | | 0 | | 2 | | 0 | | 1 | | | SAMP DEPTH BOT | | 2.2 | | 0.6 | | 2 5 | | 06 | | 2.5 | | 0.6 | | 1 2 | | | MATRIX | | SOIL | SAMP DATE | | | 31-Mar-98 | | Mar-98 | 30-1 | Mar-98 | | -Mar-98 | | -Mar-98 | | Mar-98 | | Mar-98 | | PARAMETER | Q | VALUE | 2.4.5-T | Ü | | 6 3 U | | 56 U | | 5 5 U | | 5 8 U | | 5.6 U | *************************************** | 6.1 U | *************************************** | 62 U | | 2.4.5-TP/Silvex | U | | 63 U | | 56 U | | 55 U | | 5.8 U | | 56 U | | 6.1 U | | 6.2 U | | 2,4-D | U | | 62 U | | 55 U | | 54 U | | 57 U | | 55 U | | 59 U | | 60 U | | 2.4-DB | U | | 63 U | | 56 U | | 55 U | | 58 U | | 56 U | | 61 U | | 62 U | | 3,5-Dichlorobenzoic acid | U | | 62 U | | 55 U | | 54 U | | 57 U | | 55 U | | 59 U | | 60 U | | Dalapon | U | | 340 U | | 300 U | | 300 U | | 320 U | | 300 U | | 330 U | | 330 U | | Dicamba | U | | 6.2 U | | 5 5 U | | 5.4 U | | 57 U | | 5.5 U | | 5.9 U | | 6 U | | Dichloroprop | U | | 62 U | | 55 U | | 54 U | | 57 U | | 55 U | | 59 U | | 60 U | | Dinoseb | U | | 32 U | | 28 U | | 28 U | | 29 U | | 28 U | | 30 U | | 31 U | | MCPA | U | | 6200 U | | 5500 U | | 5400 U | | 5700 U | | 5500 U | | 5900 U | | 6000 U | | MCPP | U | | 6200 U | | 5500 U | | 5400 U | | 5700 U | | 5500 U | | 5900 U | | 6000 U | | Pentachlorophenol | U | | 22 U | | 20 U | | 20 U | | 21 U | | 20 U | | 22 U | | 22 U | | Picloram | U | | 63 U | | 56 U | | 5 5 U | | 58 U | | 56 U | | 6.1 U | | 6 2 U | # SEAD-120B Ovid Road Small Arms Range Table 17-1 ### Sample Collection Information SEAD-120B - Ovid Road Small Arms Range ### 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------|----------|--------|---------|--------|--------|------|--| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL | TP120B-1 | EB165 | 3/31/98 | 0.6 | 1.0 | SA | Location is in central portion of the arcuate berm behind target mounting post (potential bullet impact area) Sample depth chosen where the most projectiles were found | | SOIL | TP120B-1 | EB034 | 3/31/98 | 0.6 | 10 | DU | Location is in central portion of the arcuate berm behind target mounting post (potential bullet impact area) Sample depth chosen where the most projectiles were found | | SOIL | TP120B-1 | EB166 | 3/31/98 | 2 0 | 2 2 | SA | Location same as above Sample chosen beneath the zone that contained the most projectiles (potential impact due to leaching from zone above) | | SOIL | TP120B-2 | EB167 | 3/31/98 | 0.8 | 10 | SA | Location is in south-central portion of the arcuate berm behind a target mounting post (potential bullet impact area) Sample chosen where the most projectiles were found | | SOIL | TP120B-2 | EB168 | 3/31/98 | 20 | 2.2 | SA | Location same as above. Sample chosen beneath the zone that contained the most bullet casings (potential impact due to leaching from zone above) | | SOIL | TP120B-3 | EB169 | 3/31/98 | 1.0 | 1.5 | SA | Location is in north-central portion of the arcuate berm behind a target mounting post (potential bullet impact area). Sample chosen where the most projectiles were found | | SOII. | TP120B-3 | EB170 | 3/31/98 | 2 8 | 3 0 | SA | Location same as above Sample chosen beneath the zone that contained the most projectiles (potential impact due to leaching from zone above) | | WATER | TP120B-1 | EB035 | 3/31/98 | 0.0 | 0.0 | RB | NA | Notes SA Sample DU - Duplicate NA - Not Applicable ### Table 17-2 120B - Explosives in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION. | | | | | | | | | SEAD-120B
Ovid Road
Small Arms
Range | | SEAD-120
Ovid Road
Small Arm
Range | 1 | |----------------------------|-------|---------|-----------|------|---------|--------|---------|----------|---|------|---|-------| | LOC ID: | | | | | | | | | TP120B-1 | | TP120B-1 | | | SAMP_ID | | | | | | | | | EB165 | | EB034 | | | QC CODE | | | | | | | | | SA | | DU | | | SAMP, DETH TOP: | | | | | | | | | 0.6 | | 0.6 | | | SAMP DEPTH BOT: | | | | | | | | | 1 | | 1 | | | MATRIX: | | | | | | | | | SOIL | | SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 3/31/9 | 8 | | 31/98 | | | | | OF | | | ABOVE | OF | OF | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1,3,5-Trinitrobenzene | UG/KG | 0.0 | 0.00% | | 52644 | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 1,3-Dinitrobenzene | UG/KG | 0.0 | 0.00% | | 105288 | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 2,4,6-Trinitrotoluene | UG/KG | 0.0 | 0.00% | | 526442 | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 2,4-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | 2105769 | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 2,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | 1000 | 1052885 | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 2-Nitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 2-amino-4,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | 3-Nitrotoluene | UG/KG | 0.0 | | | | 0 | 0 | 7 | | 20 U | | 120 U | | 4-Nitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | 12 | 20 U | | 120 U | | 4-amino-2,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 20 U | | 120 U | | HMX | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | ' 12 | 20 U | | 120 U | | Nitrobenzene | UG/KG | 0.0 | 0.00% | 200 | 526442 | 0 | 0 | 7 | 12 | 20 U | | 120 U | | RDX | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 20 U | | 120 U | | Tetryl | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | 12 | 20 U | | 120 U | Table 17-2 120B - Explosives in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | SEAD-120B
Ovid Road
Small Arms
Range | | SEAD-120B
Ovid Road
Small Arms
Range | | SEAD-120B
Ovid Road
Small Arms
Range | | SEAD-120E
Ovid Road
Small Arms
Range | | SEAD-120E
Ovid Road
Small Arms
Range | | |----------------------------|---|------|---|-------|---|-------|---|-------
---|-------| | LOC ID: | TP120B-1 | | TP120B-2 | | TP120B-2 | | TP120B-3 | | TP120B-3 | | | SAMP_ID: | EB166 | | EB167 | | EB168 | | EB169 | | EB170 | | | QC CODE: | SA | | | SAMP, DETH TOP: | 2 | | 0.8 | | 2 | | 1 | | 2.8 | | | SAMP. DEPTH BOT: | 2.2 | | 1 | | 2.2 | | 1.5 | | 3 | | | MATRIX: | SOIL | | | SAMP. DATE: | 3/31/ | 198 | 3/31 | 1/98 | 3/31 | 1/08 | 3/31 | /O.R | 3/31 | 1/00 | | or title . British | 0,0 1, | 30 | 0,0 | 1730 | 5/5 | 1730 | 3/3 [| 130 | 3/3 | .190 | | PARAMETER | VALUE | Q | | 1,3,5-Trinitrobenzene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 1,3-Dinitrobenzene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 2,4,6-Trinitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 2,4-Dinitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 2,6-Dinitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 2-Nitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 2-amino-4,6-Dinitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 3-Nitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 4-Nitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | 4-amino-2,6-Dinitrotoluene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | HMX | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | Nitrobenzene | 1 | 20 U | | 120 U | | 120 U | | 120 U | | 120 U | | RDX | 1 | 20 U | | 120 U | | 120 U | • | 120 U | | 120 U | | Tetryl | 1 | 20 U | | 120 U | | 120 U | • | 120 U | | 120 U | ### Table 17-3 120B - Explosives in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-120
Ovid Road
Small Arm
Range | d | SEAD-120
Ovid Road
Small Arm
Range | 1 | |----------------------------|-------|---------|-----------|------|---------|--------|---------|----------|---|-------|---|-------| | LOC ID:
SAMP_ID: | | | | | | | | | TP120B-1
EB165 | | TP120B-1
EB034 | | | QC CODE: | | | | | | | | | SA | | DU | | | SAMP. DETH TOP: | | | | | | | | | 0.6 | | 0.6 | | | SAMP. DEPTH BOT: | | | | | | | | | 1 | | 1 | | | MATRIX: | | | | | | | | | SOIL | | SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 3/3 | 31/98 | 3/3 | 31/98 | | | | | OF | | | ABOVE | OF | OF | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | | 1,3,5-Trinitrobenzene | UG/KG | 0.0 | 0.00% | | 52644 | 0 | 0 | 7 | | 120 U | | 120 U | | 1,3-Dinitrobenzene | UG/KG | 0.0 | 0.00% | | 105288 | 0 | 0 | 7 | | 120 U | | 120 U | | 2,4,6-Trinitrotoluene | UG/KG | 0.0 | 0.00% | | 526442 | 0 | 0 | 7 | | 120 U | | 120 U | | 2,4-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | 2105769 | 0 | 0 | 7 | | 120 U | | 120 U | | 2,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | 1000 | 1052885 | 0 | 0 | 7 | | 120 U | | 120 U | | 2-Nitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | 2-amino-4,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | 3-Nitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | 4-Nitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | 4-amino-2,6-Dinitrotoluene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | HMX | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | Nitrobenzene | UG/KG | 0.0 | 0.00% | 200 | 526442 | 0 | 0 | 7 | | 120 U | | 120 U | | RDX | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | | Tetryl | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 7 | | 120 U | | 120 U | Table 17-3 120B - Explosives in Soil vs PRG-REC Non-Evaluated EBS Sites | DESCRIPTION: | Ovid Road
Small Arms
Range | SEAD-120B
Ovid Road
Small Arms
Range | SEAD-12
Ovid Roa
Small Ari
Range | ad | SEAD-120B
Ovid Road
Small Arms
Range | SEAD-120B
Ovid Road
Small Arms
Range | |---|---|---|---|--|---|---| | LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: | TP120B-1
EB166
SA
2
2.2
SOIL | TP120B-2
EB167
SA
0.8
1
SOIL | TP120B-
EB168
SA
2
2.2
SOIL | | TP120B-3
EB169
SA
1
1.5
SOIL | TP120B-3
EB170
SA
2.8
3
SOIL | | SAMP. DATE: | 3/31/98 | 3/31/98 | 3, | /31/98 | 3/31/98 | 3/31/98 | | PARAMETER 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 2-amino-4,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-amino-2,6-Dinitrotoluene HMX Nitrobenzene RDX Tetryl | VALUE 120 120 120 120 120 120 120 120 120 120 | U 120 | U
U
U
U
U
U
U
U
U
U
U | Q
120 U
120 U | VALUE 120 U | 120 U | #### | 1 del | 47 f | 12010 | Symmethalis and Soil Soil Artists | Soil Destinated LDS Sates | | | | | | | | | | | | AD-120B | | | | | | | | _ | | | |---|----------------|------------|-----------------|----------------|----------------------|-----------------|--------------|----------|------------------------|------------|----------|----------------|---------------|-----------|---------------|-----------------------|---------------|-----------------------|---------------|-----------------------|---------------| | SITE
DESCRIPTION | | | | | | | | | SEAD 120B
Oved Road | | d Road | SEAD
Oved R | | SEAD-12 | | SEAD-120
Ovid Rose | | SEAD 120
Oved Road | | SEAD-120
Ovid Road | | | DECCRIPTION | | | | | | | | | Small Arms | | all Aims | Small | | Small Arn | | Small Air | | Small Arm | | Small Arm | | | | | | | | | | | | Range | Rai | | Range | | Range | | Range | - | Range | | Range | - | | LOC ID | | | | | | | | | TP120B 1 | | 170B-1 | TP120 | | TP120B-2 | | TP120B 2 | | TP120B-3 | | TP120B-3 | ł. | | SAMP ID | | | | | | | | | EB165 | 683 | | EB160 | | EB167 | | EB168 | | EB169 | | E8170 | | | GC CODE | | | | | | | | | SA | DU | | SA | | | SAMP DETH TOP | | | | | | | | | 0.6 | 0.6 | | 2 | | 0.8 | | 2 | | 1 | | 2.8 | | | SAMP DEPTH BOT | | | | | | | | | 1 | 1 | | 2.2 | | 1 | | 2 2 | | 1 5 | | 3 | | | MATRIX | | | | | | | | | SOIL | so | | SOIL | | | SAMP DATE | | | FREQUENC/ | | | NUMBER
ABOVE | NUMBER
OF | NUMBER | 3:31:96 | } | 3/31/98 | | 3/31/98 | 3 | /31/98 | 3/ | 31/98 | 3/3 | 1/98 | 3 | V31/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q VA | LUF O | VALUE | E Q | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | 0 | | 1 2 4 Trichlorobenzene | UG/KG | 0.0 | 0.00% | 3400 | 10528846 | 0 | 0 | 7 | 75 | U | NA | | 79 U | | 80 U | | 80 U | | 60 U | | 78 U | | 1 2-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 7900 | 94759615 | 0 | 0 | 7 | | U | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 1 3 Dichlorobenzene | UG/KG | 0.0 | 0.00% | 1600 | 93706731 | 0 | D | 7 | | υ | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 1 4 Dichlorobenzene | UG/KG | 0.0 | 0 00% | 8500 | 2866186 | 0 | 0 | 7 | | U | NA | | 79 U | | 80 U | | 80 U | | 60 U | | 78 U | | 2 4 5-Trichlorophenol | UG/KG | 0.0 | 0.00% | 100 | 105288462 | 0 | 0 | 7 | |) U | NA
NA | | 190 U
79 U | | 190 U
80 U | | 190 U
80 U | | 190 U | | 190 U | | 2,4,6-Trichlorophenol | UG/KG
UG/KG | 0.0 | 0 00% | 400 | 6253497
3158654 | 0 | 0 | 7 | |
) U | NA
NA | | 79 U | | 80 U | | 80 U | | 80 U
80 U | | 78 U
78 U | | 2,4 Dichlarophenal
2,4-Dimethylphenal | UG/KG | 00 | 0.00% | 400 | 21057692 | 0 | 0 | 7 | | Ü | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 2 4-Dinitrophenal | UG/KG | 0.0 | 0.00% | 200 | 2105769 | 0 | 0 | 7 | | บ | NA. | | 190 U | | 2 4 Dindrotoluene | UG/KG | 0.0 | 0.00% | | 2105769 | 0 | 0 | 7 | | U | NA | | 79 U | | 80 U | | 80 U | | 50 Ų | | 78 U | | 2 6 Dinstrotaluene | UG/kG | 0.0 | 0.00% | 1000 | 1052885 | 0 | D | 7 | 71 | U | NA | | 79 U | | 80 U | | 80 U | | 50 U | | 78 U | | 2-Chloronaphthalene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | | U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 2-Chlorophenol | UG/KG | 0.0 | 0.00% | 800 | 5264423 | 0 | 0 | | | U | NA | | 79 U | | 80 U | | 80 U | | 80 V | | 78 U | | 2-Methylnaphthalene | UG/KG | 0.0 | 0.00% | 36400 | | 0 | 0 | | | U C | NA | | 79 U | | 80 U | | 80 U | | 50 U | | 78 U | | 2 Methylphenol | UG/KG | 0.0 | 0.00% | 100 | 52644231 | 0 | 0 | | | n U | NA
NA | | 79 U
190 U | | 80 U | | 80 U
190 U | | 50 U
190 U | | 78 U | | 2-Nitroaniline
2 Nitrophenol | UG/KG
UG/KG | 0.0 | 0.00% | 430
330 | 63173 | 0 | 0 | | |) U | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 190 U
78 U | | 3 3 -Dichlorobenzidine | UG/KG | 0.0 | 0.00% | 330 | 152863 | 0 | 0 | , | |) U | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 3 Nitroansine | UG/KG | 0.0 | 0 00% | 500 | 3158654 | 0 | 0 | | 19 | U | NA | | 190 U | | 4 5 Dinitro-2-methylphenol | UG/NG | 0.0 | 0.00% | | | 0 | 0 | 7 | | U | NA | | 190 U | | 4-Sromophenyl phenyl ether | UG/KG | 0.0 | 0.00% | | 61067308 | D | | | | U | NA | | 79 U | | 50 U | | 80 U | | 60 U | | 78 U | | 4 Chloro 3-methylphenol | UG/KG | 0.0 | 0 00% | 240 | | 0 | 0 | | | U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 4-Chloroaniline | UG/KG | 0.0 | D 00% | 220 | 4211538 | 0 | 0 | | | U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0.0 | 0 00% | | | 0 | 0 | | | e U | NA
NA | | 79 U | | 80 U
80 U | | 80 U
80 U | | 80 U | | 78 U
78 U | | 4 Methylphenol 4 Nitroaniline | UG/KG
UG/KG | 0.0 | 0.00% | 900 | 3158654 | 0 | 0 | | | , U | NA
AA | | 190 U | | 4 Ntrophenol | UG/KG | 0.0 | 0.00% | 100 | 63173077 | 0 | 0 | | | U | NA. | | 190 U | | Acenachthene | UG/KG | 0.0 | 0 00% | 50000 | 03113011 | 0 | a | | | 9 U | NA. | | 79 U | | 80 U | | 80 U | | U 08 | | 78 U | | Acenaphthylene | UG/XG | 0.0 | 0.00% | 41000 | | 0 | d | 7 | 7 | 9 U | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Anthracene | UG/KG | 4.5 | 14 29% | 50000 | 315865385 | 0 | | 7 | | 9 U | NA | | 79 U | | 45 J | | 80 U | | 80 U | | 78 U | | Benzo[a]anthracene | UG/KG | 0.0 | 0.00% | 224 | 94231 | 0 | | | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Senzo[a]pyrene | UG/KG | 0.0 | 0.00% | 61 | 9423 | 0 | 0 | | | 9 U | NA | | 79 U | | 80 U | | U 08 | | 80 U | | 78 U | | Benzo[b]fluoranthene | UG/KG | 0.0 | 0.00% | 1100
50000 | 94231 | 0 | 0 | | | 9 U | NA
NA | | 79 U | | 50 U | | 50 U | | 80 U | | 78 U
78 U | | Benzo(ghi)perylene
Benzo(k)ñuoranthene | UG/KG
UG/KG | 0.0 | 0.00% | 1100 | 942308 | 0 | 0 | | | 9 U | NA
NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Bis(2-Chloroethoxy)methane | UG/KG | 0.0 | 0.00% | 1100 | 342300 | 0 | o | | | . u | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Bis(2-Chloroethyllether | UG/KG | 0.0 | 0.00% | | 62535 | 0 | 0 | 7 | 7 | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Bis(2 Chloroisopropyl)ether | UG/KG | 0.0 | 0.00% | | 982692 | 0 | 0 | 7 | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | 8rs(2-Ethythexyl)phthalate | UG/KG | 7.7 | 85 71% | 50000 | 4913462 | 0 | | | | 4 JB | NA | | 46 JB | | 63 JB | | 64 18 | | 69 JB | | 77 JB | | Butylbenzylphthalate | UG/KG | 0.0 | 0.00% | 50000 | 210576923 | 0 | | | | 9 U | NA | | 79 U | | 80 U | | U 08 | | 80 U | | 78 U | | Carbazole | UG/KG
UG/KG | 0.0 | 0 00%
28 57% | 400 | 3439423
9423077 | 0 | | | | 9 J
U | NA
NA | | 79 U
79 U | | 53 J | | 80 U | | 80 U | | 78 U
78 U | | Chrysene
Di-n-butylphthalate | UG/KG | 53 | 0 00% | 8100 | 9423077 | 0 | | | | 9 U | NA. | | 79 U | | 80 U | | 50 U | | U 08 | | 78 U | | Di-n-octylphthalate | UG/KG | 0.0 | 0.00% | 50000 | 21057692 | 0 | | | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Dibenz(a h)anthracene | UG/KG | 0.0 | 0.00% | 14 | 9423 | 0 | 0 | 7 | 7 | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Dibenzofuran | UG'KG | 0.0 | 0.00% | 6200 | 4211538 | 0 | 0 | | | 9 U | NA | | 79 U | | 60 U | | 50 U | | 80 U | | 78 U | | Diethyl phthalate | UG/KG | 9 5 | 85 71% | 7100 | 842307892 | 0 | | | | s JB | NA | | 95 JB | | 7 7 JB | | 63 JB | | 4 6 JB | | 6 8 JB | | Dimethylphthalate | UG/NG | 0.0 | 0.00% | 2000 | 10528848150 | 0 | | | | 9 U | NA
NA | | 79 U | | 80 U
6 9 J | | 80 U
47 J | | 80 U
80 U | | 78 U
78 U | | Fluoranthene | UG/KG
UG/KG | 8 9
0 0 | 42 86%
0 00% | 50000
50000 | 42115385
42115385 | 0 | | | | 2 J | NA
NA | | 79 U
79 U | | 89 J | | 80 U | | 80 U | | 78 U | | Fluorene
Hexachlorobenzene | UG/KG | 0.0 | 0 00% | 410 | 42993 | 0 | | | | 9 U | NA
AN | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Hexachlorobutadiene | UG/KG | 0.0 | 0 00% | | 210577 | ō | | | | 9 U | NA. | | 79 U | | 80 U | | 80 U | | U 08 | | 78 U | | Hexachlorocyclopentadiena | UG/KG | 0.0 | 0 00% | | 7370192 | ō | | 7 | 7 | 9 U | NA | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U | | Hexachlorpethane | UG/KG | 0.0 | 0.00% | | 1052885 | 0 | 0 | 7 | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 60 U | | 78 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 0.0 | 0 00% | 3200 | 94231 | 0 | | | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 60 U | | 78 U | | Isophorane | UG/KG | 0.0 | 0.00% | 4400 | | 0 | | | | 9 U | NA | | 79 U | | 80 U | | 80 U | | 60 U | | 78 U | | N-Ndrosodiphenylamine | UC/KG | 0.0 | 0 00% | | 14038462 | 0 | | | | 9 U | NA. | | 79 U | | 80 U | | 80 U | | 80 U | | 78 U
78 U | | N Nitrosodipropylamine | UG/KG | 0.0 | 0 00% | 13000 | 9827
42115385 | 0 | | | | 9 U
9 U | NA
NA | | 79 U
79 U | | 80 U | | 80 U
80 U | | 80 U
80 U | | 78 U | | Naphthalene
Nitrobenzene | UG/KG | 0.0 | 0.00% | 13000 | 42115385
526442 | 0 | | | | 9 U | NA
NA | | 79 U | | 80 U | | 10 OB | | 80 U | | 78 U | | Nitrobenzene
Pantachlorophenol | UG/KG | 0.0 | 0.00% | 1000 | 573237 | 0 | | | |) U | NA
NA | | 190 U | | Phenanthrene | UG/KG | 44 | 14 29% | 50000 | | o o | | 7 | 7 | 9 U | NA | | 79 U | | 44 J | | 8D U | | 80 U | | 78 U | | Phenoi | UG/KG | 0.0 | 0.00% | 30 | 631730769 | 0 | | | | 9 U | NA | | 79 U | | 80 U | | 60 U | | 80 U | | 78 U | | Pyrene | UG/KG | 6.6 | 28 57% | 50000 | 31586538 | 0 | 2 | 7 | 5 | 5 J | NA. | | 79 U | | 66 J | | 80 U | | 80 U | | 78 tJ | y :_ | | _ | _ | _ | | | 2: | | | | _ : | | | - | - | | | | | -1 | | | . = | | <u>.</u> | : | | _ | | 5 5 | | E | | . : | | - 1 | - | _ B | | | | | | _ | = : | <u>.</u> _ | | . = | _ | | _ | 2 2 | |--|------------|---------|-----------|---------------|------------|------------------|------------------|---------------------|-----------|----------|----------------------|------------------------|---------------|----------------|----------------|-----------------|-------------------|-----------------|---|---------------|---------------|-------------------------|----------------|------------------------------|-------------------------|----------------|-------------------------------|---------------------|----------------|-------------|---------------|------------|------------------------------------|--------------------|---------------------|---------------------|-----------------------------|---------------------------|----------------|-----------------------|---------|----------------------|----------------------
--|----------------|---------------------|-------------|--------|-------------------|--------------------------|-------------------|--------------------------|----------------|------------------------------|-------------|--------------|-------------------|--------------|------------------| | St UD-120R
Child Rind
Small Vms | 11120R-3 | 18170 | | - | 11 1 08 | | 78 | X. | 18 | 78 | 1901 | M. | 78 | 3.6 | 100 | 87 | 78 | E 1 | E 9F | 95 | 14 | 78 | 161 | 130 | 78 | 78 | 7.8 | 7.8 | 961 | 100 | 84 | 87. | E 1 | 78 | #2 | 78 | 7 79 | 25 | 77 | 28 | 28. | 87 | 78 | 7.8 | 11 | 77 | 7.8 | 7.8 | 38. | 738 | 78 | 78 | 84 84 | 7, 27 | 78 | X.C | 061 | 78 | E 12 | | = - : | _ | | | | 1 11 0% | 5 |) :-
Si | , (n | .) 498 | .) 118 | . 1 061 | .) (M | No (* | 70 L | 1 08 | .) (3 | 11 08 | - CO | - C - C - C - C - C - C - C - C - C - C | - 20 | 1 UM | 80 t | .1 061 | . 1 101 | | .1 08 | 1 08 | 80.1 | 1 00 1 | 1 1 1 1 1 | 1, 08 | 108 | 2 2 | 2 18 | 80 t | 108 | 08 9 | 1 08 | A 9 JR | 30 1. | 101 | 13 03 | 11 08 | .1 08 | 108 | 80 1: | 11 08 | .) 08 | No C | ug | . 1 vs | 200 | 1 (38) | R0 C | . OK | .) (18 | 1001 | 30 1 | % 12
1- 1- 1- | | SF VD-12mH
Chad Road
Small Vress
Record | 17-120B-1 | FRING | | 1.5 | 100 | 20R
mad | 7 | | | | 1 11 98 | | | 30 (| .1 08 | 80 1 | 1 161 | 100 | 200 | 308 | Ro C | RO 1. | . J 138 | | | 1961 | '1 0% | .1 08 | 1 061 | 8 | | | 188 | - GK | 1 061 | 30 1. | 30 1 | - CO | 11 08 | 1 2 | 11 US | 208 | 20 12 | . L GX | 6.4 33 | .1 08 | 98 | | 30 1: | .1 08 | .1 0% | 11 08 | 47.1 | 80 1 | 508 | 101 | i) lik | _ :
E : | 1 1 1 1 1 1 | 11 08 | . 1 OM | 71 08 | 1 061 | 30 1, | 2 R | | SL VO-120B
Ox of Road
Small Arms
Range | 1 P1 203-2 | 18168 | ٠, | 2.2 | = | 11111 | Light
Soad
Vene | H-2 | | | | 86.11.1 | | | SK. | 1 08 | .1 688 | 1.85 | | NO C | 1 181 1 | .) ()% | .) (p) | . J 08 | 2 3 | 2 2 | 1001 | e cx | - GR | 1.30 | 00. | 2 2 | K0 L7 | X0 1, | .1 08 | 1 00 1 | - F 0X | NO 11 | 7.2 | 2 08 | , D | .1 08 | - 5 | 9 8 | 1 68 | A) A | 108 | | X0 (; | '1 CK | .1 08 | 7 2 2 | Xn 1 | 6.9 3 | 1 08 | 2 08 | 8 2 | - GR | 2 8 | | ¥ 1 |
 | i ox | 1001 | 77 | KD (* | | SI MALIZOR
Daid Road
Small Ames
Renuc | 179120 | 18167 | 0 8 | - 3 | | 1111 | St. Up. 1200
Oxad Sond Small
Vens Renge | | | | | 3.414.8 | | | 7.1.7 | 70.17 | 70.0 | 100 | 2 2 | 2 2 | 2 00 | 70 [| 70 1. | 70.00 | 2 2 | : E | 1 061 | 7 5 | -1 64 | 100 | 190 1 | 2 2 | 79 (- | 79 (2 | 2 | 30 100 | 2 | 2 | 79 1 | 2 2 | 2 2 | 70 (1 | 2 2 | 2 2 | -1 62 | 146 133 | 2 | R | 2 2 | 70 (* | 70 1: | 7 67 0 | 79 11 | .1 62 | 79 [| 2 1 | - - - | 70 11 | 2 2 | 2 2 | . 2 | 79 | 5 | 1061 | 70 1. | 2 2 2 | | Shirt
Anny | 1102341 | | ٠. | 2, 5 | | 11111 | St. AD-170H
Oxed Read Susall
Vine Renye | р.1 | | | | 1 11 08 | | | 7 | 7 | 7 | 5 | ; | 2 : | . 5 | 7 | 12 | 7 | ;; | 7 | 7 | 7 | 7 | ź | 2 | 2. 2 | 5 | 7 | ; | ;; | ; ; | 1 | ź | 27 | 2 2 | 1 | 7 | 55 | ; | 7 | í. | 7 | <i>: :</i> | 5 | 7 | ;; | í | 1% | ź | 5 | ; ; | 7 | 2 2 | . 7 | ; ; | 7 | í. | 5 | Ź | 52 | | () () () () () () () () () () () () () (| 111209-1 | 2 20 | 7 8 | _ 3 | | 1111 | Sl VD-L20B
Oxid Read Sotall
Vites Range | 1.4 | | | | 30 11 1 | 2 | - 12 | 70.1 | - 1- | 2 | 190 | 2 2 | 2 2 | 196 | 7.07 | 70 1. | 2 | 2 2 | ž. | 141 | Ę. | Ê | 100 | 1.00 | 2 2 | - 12 | -1 12 | 2 . | 9 2 | î | î | 2 1 |
R # | 1 2 | 70 (| 2 1 | 78. | 7 2 | E 13 | 130 | 101 | - 2 | 79 1 | 2 | 2 9 3 | 20 02 | 6.2.3 | 70 - | R F | 70 1. | - 62 | 2 2 | 2 2 | 2 2 | 10.00 | 1 (4 | 1.xi | 79 (| | | Charles
Charles | 17170R-1 | SA | 90 | - 5 | 4 100 K | 1815 1 11 13 | 7 | r | - | 7 | - 1 | | | - 1- | 7 | 7 | 7 | | | 7 | ^ | 7 | ۱ - | - 1 | | 7 | 7 | ٠, | | | 7 | r 1 | | | 7 | ۲, | | | 7 | 7 | - + | | 7 | 7 | , | - | 7 | 7 | - 1 | | 7 | | | | | 1 | , | 7 | , | | | | | | | | | _ | = | a | ¢ | | | 5 0 | | D | c | 0 | = = | : = | c | 0 | e | | 2 : | : : | 9 | | 5 5 | | | c | - : | e = | | 0 | ٥: | | ÷ | 4 | 0 | = ^ | . = | = | 0 | c 4 | . c | - | 0 | 2 5 | : = | = | = = | | | c | c | e · | - | = ^ | | | | | | | R NINTER | | _ | ÷ | = | = | c | c : | | : 0 | G | c | = | = = | : 0 | c | 0 | ٥ | ٠. | = 0 | 2 5 | п | | 0 : | 0 0 | | ÷ | ± : | | | 0 | c : | | | 9 | a : | = = | : 5 | 63 | c | c c | | с | 0 | | | 0 | 0 0 | | : 0 | • | • | с: | = | = = | | | | | | | STABLE | | | | = | s | > 1 | | 7 2 | 7.6 | 64 | 84 | | 12 | = | 12 | | 5 | J | | 40 | 18 | | | 7 6 | | | \$2 | = = | . = | | 380 | 22 | ,7 | 25 | 12 | T, F | | 92 | 23 | 33 | 06 | 83 | Σ: | 1 1 | | KS. | = | 5 | | 2 | 12 | 1.1 | | 61 81 | | | | | | | | PRC. | 23846 | 91109014 | 917067 | 386418b | 1915,788,1 | 1156 | MALL TO STORY | 0925017 | 2105769 | 105.288 | | 1264421 | 17644231 | 1/11/1 | | 152867 | 1152251 | * 100 7 100 | Place | 4211548 | | | 61171077 | | | 115865185 | 1576 | 11.7% | | 942303 | 159 | 19824112 | 47 (04 | 2105769 | 14/14 | 75 | 21057692 | Z | 42117438 | 105288461 | 121151 | 151127 | 627 | 7170192 | 1415.28 | 942 | 140184 | T.S.V. | 42115185 | 426442 | 2112 | | 11586518 | | | | | | | | 1 103/1 | 1,100 | 71381 | 16/00 | 8400 | 100 | trans | CH. | 300 | | (HH) | | 36.100 | 100 | 11/1 | 011 | | 400 | | or. | 320 | | DOK. | 1001 | SDOWN | 41080 | \$6660 | 2 3 | 1001 | SHANN | 100 | | | \$19090 | \$13000 | Gir | 8 30 | 46000 | 7 | 7100 | 2000 | SODOR | SUDGE | = | | | 1200 | * | | 13690 | 200 | 1000 | SONN | th
50000 | | | | | | | FRI OT 4:3 | II CTO | | 0 (MP*, | 11 150** | 0 00", | 0.000 | 0.007 | 1 197" | 0.00.0 | () (107. | 0 00" | "(H) () | "(B) (C | | 0 DD* | O DIP. | 0.00** | 0.000 | 0.000 | 0.00% | 0.00** | 0.00** | 0.000 | 0.00" | 0.00" | 0 187". | 14 29", | 0,000 | 0.000 | 0 (30,4) | 0.000 | " KI G | D (M)", | 85.71~ | 0 (K)** | 1010 | 0000 | 0.00** | 40 00 p | 84.71" | 0.000 | 42 X6"p | 0.00.0 | 0 Off. | 0.000 | O Dates | 0.100** | | | 0.00** | (1 Ol)*a | 0.000 | 12 27. | 28 47" | | | | | | | Œ | I 40 IV. IIVIVIV | 0.0 | 9.0 | 9.0 | 0 | 9.0 | 0 0 | 0 0 | 2 0 | 9.0 | 0.0 | 2 | 0 0 | | 0 0 | 0.0 | 0.0 | 0.0 | 0 0 | | - | 9 6 | 0 0 | 0 0 | 0.0 | 6 0 | * 7 | 0 0 | 2 0 | 0 0 | 0 : | = 6 | G G | 11 | 00 | 0 0 | 8 0 | 0.0 | 0.0 | 0 0 | 0.0 | 6.9 | 0.0 | 0 0 | | 0.0 | 0 0 | 2 0 | 0 0 | 6.0 | 0.0 | 0.0 | 7 | 6 8 9 | | | | | | | | INI IIV | | t c. kG | t. kt. | I to ke | 6. KG | 5 P C | C P C | e ke | G-KG | h, kci | r. kg | 5 2 2 | C KG | 't. KG | '6-Kr6 | G NG | , K | | e ve | G NG | 6,46 | 5 P.C | Takis
Takis | GRG | '6-KG | G KG | 5 N S | 5 7 5 | 'G N.G | 5,40 | 10 KG | C.K.G | V. KG | 76. KG | 5 KG | ri KG | 7t- KG | 'C: KG | 6 KG | GKG | 'G KG | G kG | da ko | SERG | GKG | 5 KG | 5 2 2 | i ki | 'c. KG | 0.86 | 949 | in KG | tisks
tisks | | | | | | | | - | _ | - | _ | - | | | - | - | _ | - | - : | | - | - | - | - | | | | - | - | | | | 1 | | | - | - | | | . 2 | _ | | | - | - | - | | - | _ | - : | - : | | _ | | _ | | - | - | - | - | - | | ٤ | | | 1700 | 1001 | | ~ | obenzen | SHALM. | 287782 | MILLER | upheni | home | there's | permi | Hene | nenc. | iheline | dhalone | | | _ | henruline | | 4 A. Daulius / methy iphensi | 4 Chloro Cmethy lphenol | Ac | 4 Thlorophens I phens I other | lus. | | | NC 30 | | 311111 | anthene . | n Jene | anthone | Book 2 Chlorochavy Inchance | Red 2 (Threemorphythether | ve liphthalate | hibalate | | helate | halate | ihra, cnc | 1 | alate | | | n/cnc | Iceachinececlapentadiene | hane | Indeaol 1 2 3 and pyrene | Newpherman | ney lamine | | | hemail | | | | STE
DEVENTRON | 0
10 | CK. COM | ar DI III | VAR DIPITIBUT | 10.00.00 | PVKVVDIIK | 12 terubbenkaren | 1.2 De blerebenzene | D. Morrok | Dr blomb | 7.4.4.1m.hlorophenol | 2.4.5. Itt. blomphenol | Dat Money | 4 Deviteurbino | 4-Destrolation | to Dentrodulare | " hlumanphihalene | 2.4 Maringhenal | leths fahen | 2-Nationaline | 2-Netrophenal | t 3 Dr. Mistrobenzuline | 1. Vitroandine | Danillin. | Motor Cas | 1 (Thereanding | hlorophen | 1. Activity liphone | 4-Nitrophenel | Wenaphihene | Lensphih lene | Inthracenc | Renzulajanthrace
Benzulahusenne | Denzieh Humanthene | Benzulahilpers lene | Benzofk Murranthone | 2-Chlorine | 2 (Thforem | 2-F rhs lhe | Turi Penzy Iphibalaic | arbayok | Da-n-buty fphthalate | Dr.n.m.ts Sphibalate | Description of the land | Dieter infuran | Symethy bolithelate | hurranthene | Norene | levachinriben/ene | - Chlimer | llexachluroethane | and 1 2 4 | N. Valenandesk | / / if completion is the inc | Suphthalone | Sitridenzese | Penta, Muruphenul | Themanthrene | Pend | Table 17-6 120B - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-1
Ovid Ro
Small A
Range | ad | SEAD-120
Ovid Road
Small Am
Range | d | SEAD-1
Ovid Ro
Small Ar
Range | ad | |-----------------------|-------|---------|-----------|--------|---------|-----------------|--------------|--------------|---------------------------------------|---------|--|-------|--|---------| | LOC ID: | | | | | | | | | TP120E | -1 | TP120B-1 | | TP120B | i-1 | | SAMP_ID: | | | | | | | | | EB165 | | EB034 | | EB166 | | | QC CODE: | | | | | | | | | SA | | DU | | SA | | | SAMP, DETH TOP: | | | | | | | | | 0.6 | | 0.6 | | 2 | | | SAMP. DEPTH BOT: | | | | | | | | | 1 | | 1 | | 2.2 | | | MATRIX: | | | | | | | | | SOIL | | SOIL | | SOIL | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | | 3/31/98 | 3/3 | 31/98 | | 3/31/98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | Aluminum | MG/KG | 15300.0 | 85.71% | 19520 | 1052885 | 0 | 6 | 7 | 7 | 13300 | | NA | | 13400 | | Antimony | MG/KG | 1.4 | 75.00% | 6 | 421 | 0 | 3 | 4 | 1 | 1.1 UN | | NA | | 1.2 UN | | Arsenic | MG/KG | 10.7 | 85.71% | 8.9 | 46 | 1 | 6 | 7 | 7 | 2.9 | | NA | 100 | 10.7 | | Barium | MG/KG | 148.0 | 85.71% | 300 | 73702 | 0 | 6 | 7 | 7 | 105 | | NA | | 148 | | Beryllium | MG/KG | 0.6 | 85.71% | 1.13 | 16 | 0 | 6 | 7 | 7 | 0.56 B | | NA | | 0.40 B | | Cadmium | MG/KG | 0.0 | 0.00% | 2.46 | 526 | 0 | 0 | 7 | 7 . | 0.07 U | | NA | | 0.07 U | | Calcium | MG/KG | 36600.0 | 85.71% | 125300 | | 0 | 6 | 7 | 7 | 20300 * | | NA | | 21700 * | | Chromium | MG/KG | 21.9 | 85.71% | 30 | 1052885 | 0 | 6 | 7 | 7 | 19.7 | | NA | | 20.1 | | Cobalt | MG/KG | 14.2 | 85.71% | 30 | 63173 | 0 | 6 | 7 | 7 | 9.8 B | | NA | | 14.2 | | Copper | MG/KG | 212.0 | 85.71% | 33 | 42115 | 4 | 6 | 7 | 71 | M191 | | NA | A SHOW IN | 57.0 | | Cyanide | MG/KG | 0.0 | 0.00% | 0.35 | | 0 | 0 | 7 | 7 | 0.63 U | | NA | | 0.65 U | | Iron | MG/KG | 27100.0 | 85.71% | 37410 | 315865 | 0 | 6 | | 7 | 24100 | | NA | 2.2 | 26200 | | Lead | MG/KG | 522.0 | 85.71% | 24.4 | | 6 | 6 | | TWEET. | 289 | | NA | ALC: N | 324 | | Magnesium | MG/KG | 10300.0 | 85.71% | 21700 | | 0 | 6 | 7 | | 6200 * | | NA | | 7640 * | | Manganese | MG/KG | 945.0 | 85.71% | 1100 | 24216 | 0 | 6 | 7 | | 448 | | NA | | 945 | | Mercury | MG/KG | 0.1 | 14.29% | 0.1 | 316 | 0 | 1 | 7 | | 0.06 U | | NA | | 0.07 B | | Nickel | MG/KG | 34.6 | 85.71% | 50 | 21058 | 0 | 6 | 7 | | 29.9 | | NA | | 34.6 | | Potassium | MG/KG | 2270.0 | 85.71% | 2623 | | 0 | 6 | 7 | | 1630 | | NA | | 1730 | | Selenium | MG/KG | . 1.2 | | 2 | 5264 | 0 | 6 | 1 | | 1.0 UN* | | NA | | 1.1 UN* | | Silver | MG/KG | 0.4 | | 8.0 | 5264 | 0 | 1 | 7 | | 0.29 U | | NA | | 0.31 U | | Sodium | MG/KG | 92.5 | | 188 | | 0 | 5 | 7 | | 90.4 B | | NA | 71 | 88.5 B | | Thallium | MG/KG | 2.9 | | 0.855 | 84 | 2 | 2 | 7 | | 1.5 U | | NA | 10000 | 1.9 B | | Vanadium | MG/KG | 25.7 | 85.71% | 150 | 7370 | 0 | 6 | 7 | | 21.2 | | NA | | 24.2 | | Zinc | MG/KG | 110.0 | 85.71% | 115 | | 0 | 6 | 7 | 7 | 83.5 E | | NA | | 87.2 E | Table 17-6 120B - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE: | SEAD-120B | | SEAD-120E | 3 | SEAD-1206 | 3 | SEAD-1 | 20B | | |------------------|------------|---------|------------|---------|------------|---------|---|---------|--| | DESCRIPTION: | Ovid Road | | Ovid Road | | Ovid Road | | Ovid Ro | | | | | Small Arms | | Small Arms | | Small Arms | | Small Ar | | | | | Range | | Range | | Range | | Range | 1110 | | | LOC ID: | TP120B-2 | | TP120B-2 | | TP120B-3 | | TP120B- | -3 | | | SAMP ID: | EB167 | | EB168 | | EB169 | | EB170 | | | | QC CODE: | SA | | SA | | SA | | SA | | | | SAMP, DETH TOP: | 0.8 | | 2 | | 1 | | 2.8 | | | | SAMP. DEPTH BOT: | 1 | | 2.2 | | 1.5 | | 3 | | | | MATRIX: | SOIL | | SOIL | | SOIL | | SOIL | | | | SAMP. DATE: | 3/3 | 1/98 | 3/31 | /98 | 3/31 | /98 | | 3/31/98 | | | PARAMETER | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | | Aluminum | | 300 | | 600 | - | 400 | *************************************** | 13100 | | | Antimony | | 1.4 BN | | 1.2 UN | | 1.2 BN | | 1.3 BN | | | Arsenic | | 5.1 | | 4.0 | | 3.2 | | 2.7 | | | Barium | | 134 | | 115 | | 112 | | 106 | | | Beryllium | | 0.51 B | - 0 | .53 B | 0 | .54 B | | 0.56 B | | | Cadmium | | 0.07 U | C | .07 U | 0 | .07 U | | 0.07 U | | | Calcium | 8 | 020 * | 27: | 200 * | 285 | 500 * | | 36600 * | | | Chromium | | 21.9 | 2 | 0.2 | 1 | 9.6 | | 19.3 | | | Cobalt | | 12.2 | 1 | 1.6 B | | 9.6 B | | 8.6 B | | | Copper | C. P. P. | 138 | 11-0777 | 212 | 3 | 3.0 | | 32,1 | | | Cyanide | | 0.62 U | C | .65 U | 0 | .62 U | | 0.63 U | | | Iron | 27 | 100 | 24 | 500 | 23 | 100 | | 22500 | | | Lead | me/As | 522 | MA CONTAIN | 166 | 1 | 12,6 | | 72 | | | Magnesium | 5 | 130 * | 7: | 280 * | 103 | 300 * | | 10200 * | | | Manganese | | 871 | ! | 585 | 4 | 474 | | 352 | | | Mercury | | 0.06 U | C | .06 U | 0 | .05 U | | 0.06 U | | | Nickel | | 32.1 | | 1.1 | 2 | 9.3 | | 27.7 | | | Potassium | 2 | 270 | | 570 | | 300 | | 1700 | | | Selenium | | 1.2 BN* | | 1.0 UN* | | 1.0 UN* | | 1.0 UN* | | | Silver | | 0.31 U | | .38 B | | .29 U | | 0.3 U | | | Sodium | 250 | 92.5 B | | 2.2 B | | 8.5 U | | 69.6 B | | | Thallium | NEL TE | 2.9 | | 1.5 U | | 1.5 U | | 1.6 U | | | Vanadium | | 25.7 | | 2.7 | | 2.6 | | 21.9 | | | Zinc | | 105 E | | 110 E | 8 | 3.9 E | | 79.9 E | | ### Table 17-7 120B - Metals in Soil vs PRG-RFC Non-Evaluated EBS Sites | SITE
DESCRIPTION: | | | | | | | | | SEAD-120B
Ovid Road
Small Arms
Range | SEAD-120B
Ovid Road
Small Arms
Range | SEAD-120B
Ovid Road
Small Arms
Range | |----------------------|-------|---------|-----------|--------|---------|--------|---------|----------|---|---|---| | LOC ID. | | | | | | | | | TP120B-1 | TP120B-1 | TP120B-1 | | SAMP ID: | | | | | | | | | EB165 | EB034 | EB166 | | QC CODE: | | | | | | | | | SA | DU | SA | | SAMP DETH TOP: | | | | | | | | | 0.6 | 0.6 | 2 | | SAMP, DEPTH BOT: | | | | | | | | | 1 | 1 | 2.2 | | MATRIX: | | | | | | | | | SOIL | SOIL | SOIL | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 3/31/98 | 3/31/98 | 3/31/98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | VALUE Q | | Aluminum | MG/KG | 15300.0 | 85.71% | 19520 | 1052885 | 0 | 6 | 7 | 13300 | NA | 13400 | | Antimony | MG/KG | 1.4 | 75.00% | 6 | 421 | 0 | 3 | 4 | 1.1 UN | NA | 1.2 UN | | Arsenic | MG/KG | 10.7 | 85.71% | 8.9 | 46 | 0 | 6 | 7 | 2.9 | NA | 10.7 | | Barium | MG/KG | 148.0 | 85.71% | 300 | 73702 | 0 | 6 | 7 | 105 | NA | 148 | | Beryllium | MG/KG | 0.6 | 85.71% | 1.13 | 16 | 0 | 6 | 7 | 0.56 B | NA | 0.40 B | | Cadmium | MG/KG | 0.0 | 0.00% | 2.46 | 526 | 0 | 0 | | 0.0. | NA | 0.07 U | | Calcium | MG/KG | 36600.0 | 85.71% | 125300 | | 0 | 6 | | 20000 | NA | 21700 * | | Chromium | MG/KG | 21.9 | 85.71% | 30 | 1052885 | 0 | 6 | 7 | 19.7 | NA | 20.1 | | Cobalt | MG/KG | 14.2 | 85.71% | 30 | 63173 | 0 | 6 | | 0.00 | NA | 14.2 | | Copper | MG/KG | 212.0 | 85.71% | 33 | 42115 | 0 | 6 | 7 | | NA | 57.0 | | Cyanide | MG/KG | 0.0 | 0.00% | 0.35 | | 0 | 0 | | 0.00 | NA | 0.65 U | | Iron | MG/KG | 27100.0 | 85.71% | 37410 | 315865 | 0 | 6 | | | NA | 26200 | | Lead | MG/KG | 522.0 | 85.71% | 24.4 | | 0 | 6 | | | NA | 324 | | Magnesium | MG/KG | 10300.0 | 85.71% | 21700 | | 0 | 6 | | 0200 | NA | 7640 * | | Manganese | MG/KG | 945.0 | 85.71% | 1100 | 24216 | 0 | 6 | | | NA | 945 | | Mercury | MG/KG | 0.1 | 14.29% | 0.1 | 316 | 0 | 1 | 7 | 0.00 | NA | 0.07 B | | Nickel | MG/KG | 34.6 | 85.71% | 50 | 21058 | 0 | 6 | | 20.0 | NA | 34.6 | | Potassium | MG/KG | 2270.0 | 85.71% | 2623 | | 0 | 6 | | 1000 | NA | 1730 | | Selenium | MG/KG | 1.2 | 600.00% | 2 | 5264 | 0 | 6 | | 1.0 UN* | NA | 1.1 UN* | | Silver | MG/KG | 0.4 | 14.29% | 0.8 | 5264 | 0 | 1 | 7 | 0.20 | NA | 0.31 U | | Sodium | MG/KG | 92.5 | 71.43% | 188 | | 0 | 5 | | | NA | 88.5 B | | Thallium | MG/KG | 2.9 | 28.57% | 0.855 | 84 | 0 | 2 | | | NA | 1.9 B | | Vanadium | MG/KG | 25.7 | 85.71% | 150 | 7370 | 0 | 6 | | | NA | 24.2 | | Zinc | MG/KG | 110.0 | 85.71% | 115 | | 0 | 6 | 7 | 83.5 E | NA | 87.2 E | Table 17-7 120B - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE. | SEAD-120B | SEAD-120B | SEAD-1208 | SEAD-120B | |-----------------|-----------------|---------------|-----------------|-----------------| | DESCRIPTION: | Ovid Road | Ovid Road | Ovid Road | Ovid Road | | | Small Arms | Small Arms | Small Arms | Small Arms | | | Range | Range | Range | Range | | LOC ID | TP120B-2 | TP120B-2 | TP120B-3 | TP120B-3 | | SAMP_ID | EB167 | EB168 | EB169 | EB170 | | QC CODE. | SA |
SA | SA | SA | | SAMP DETH TOP: | 0.8 | 2 | 1 | 2 8 | | SAMP DEPTH BOT. | 1 | 2.2 | 1.5 | 3 | | MATRIX | SOIL | SOIL | SOIL | SOIL | | SAMP DATE: | 3/31/98 | 3/31/98 | 3/31/98 | 3/31/98 | | | | | | | | PARAMETER | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | Aluminum | 15300 | 13600 | 13400 | 13100 | | Antimony | 1.4 BN | 1.2 UN | 1.2 BN | 1.3 BN | | Arsenic | 5.1 | 4.0 | 3.2 | 2.7 | | Barium | 134 | 115 | 112 | 106 | | Beryllium | 0.51 B | 0.53 B | 0.54 B | 0.56 B | | Cadmium | 0.07 U | 0.07 U | 0.07 U | 0.07 U | | Calcium | 8020 * | 27200 * | 28500 * | 36600 * | | Chromium | 21.9 | 20.2 | 19.6 | 19.3 | | Cobalt | 12.2 | 11.6 B | 9.6 B | 8 6 B | | Copper | 136 | 212
0.65 U | 33.0 | 32.1 | | Cyanide
Iron | 0.62 U
27100 | 24500 | 0.62 U
23100 | 0.63 U
22500 | | Lead | 522 | 166 | 82.6 | 72 | | Magnesium | 5130 * | 7280 * | 10300 * | 10200 * | | Manganese | 871 | 585 | 474 | 352 | | Mercury | 0.06 U | 0.06 U | 0.05 U | 0.06 U | | Nickel | 32.1 | 31.1 | 29.3 | 27.7 | | Potassium | 2270 | 1670 | 1800 | 1700 | | Selenium | 1.2 BN* | 1.0 UN* | 1.0 UN* | 1.0 UN* | | Silver | 0.31 U | 0.38 B | 0.29 U | 0.3 U | | Sodium | 92.5 B | 72.2 B | 58.5 U | 69.6 B | | Thallium | 2.9 | 1.5 U | 1.5 U | 1.6 U | | Vanadium | 25.7 | 22.7 | 22.6 | 21.9 | | Zinc | 105 E | 110 E | 83.9 E | 79.9 E | | | | | | | ## SEAD-120D ## MP Refueling Island in the Q Table 19-1 ## Sample Collection Information SEAD-120D - MP Refueling Island in the Q ## 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------------|----------|--------|---------|--------|--------|------|---| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL | SB120D-1 | EB258 | 3/17/98 | 0.0 | 0.3 | SA | Location is at the southwestern end of the MP refueling island. The location was chosen because it is immediately downgradient of a fomer underground gasoline storage tank, hased on info. provided by SEDA environmental staff. | | SOIL | SB120D-1 | EB026 | 3/17/98 | 0.0 | 0.3 | DU | Location same as above. | | SOIL | SB120D-1 | EB259 | 3/17/98 | 6.8 | 7.2 | SA | Location same as above. Sample collected at approximately mid-depth (near water table) in the boring because no VOCs or other indications of impacts were observed in the subsurface soil. | | SURFACE SOIL | SS120D-1 | EB260 | 3/17/98 | 0.0 | 0.2 | SA | Location is in the northeastern portion of the refueling island. Sample chosen because it was an area of stressed vegetation. | | SURFACE SOIL | SS120D-2 | EB261 | 3/17/98 | 0.0 | 0.2 | SA | Location is in the southwestern portion of the refueling island. Sample chosen because it was an area of stressed vegetation. | | WATER | SB120D-1 | EB024 | 3/17/98 | 0.0 | 0.0 | RB | NA | Notes: SA = Sample DU = Duplicate RB = Rinse Blank ### Table 19-2 120D - Volatiles in Soil vs TAGMs Non-Lyalinated FBS Sites | SITE DESCRIPTION LOC ID SAMP_ID GC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | SEAD-120D
MP Refueling
Island in the Q
SB120D-1
EB258
SA
0
0 3
SOIL
17-Mar-98 | SEAD-12
MP Refu
Island in
SB120D-
EB026
DU
0
0 3
SOIL | eling
the Q | SEAD-120
MP Refuel
Island in th
SB120D-1
EB259
SA
6 8
7 2
SOIL | ling
ne Q | SEAD-120I
MP Refueli
Island in th
SS120D-1
EB260
SA
0
0 2
SOIL | ng
e Q | SEAD-120E
MP Refuelin
Island in the
SS120D-2
EB261
SA
0
0.2
SOIL | ing
e Q | |--|----------------|-------------|------------------|--------------|----------------------|--------|---------|----------|--|---|----------------|--|--------------|--|-------------|--|------------| | SAIVIF DATE | | | OF | | | ABOVE | OF | OF | 17-Wat-30 | 17-1 | Ma1-90 | 17-1 | //ar-98 | 17-Ma | ar-98 | 17-M | lar-98 | | PARAMETER | UNIT | MAXIMUM | | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0 00% | 800 | 36850962 | 0 | 0 | | | | 11 U | VALUE | 12 U | VALUE | 13 U | VALUE | 11 U | | 1.1.2.2-Tetrachloroethane | UG/KG | 0.0 | 0 00% | 600 | 3439423 | 0 | 0 | _ | | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0.00% | | 1206815 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 105288462 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 114647 | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 755917 | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0.0 | 0 00% | | 1011595 | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Acetone | UG/KG | 210.0 | 60.00% | 200 | 105288462 | 1 | 3 | 5 | 210 | | 17 B | | 160 | | 13 U | | 11 U | | Benzene | UG/KG | 0.0 | 0 00% | 60 | 2372016 | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 1109491 | 0 | 0 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Bromoform | UG/KG | 0 0 | 0.00% | | 8707400 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 105288462 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Carbon tetrachlonde | UG/KG | 0.0 | 0.00% | 600 | 529142 | 0 | 0 | _ | , , , | | 11 U | | 12 U | | 13 U | | 11 U | | Chlorobenzene | UG/KG | 0 0 | 0 00% | 1700 | 21057692 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Chlorodibromomethane | UG/KG | 0 0 | 0.00% | | 818910 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 421153846 | 0 | 0 | _ | | | 11 U | | 12 U | | 13 U | | 11 U | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 10528846 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Ethyl benzene | UG/KG | 0.0 | 0 00% | 5500 | 105288462 | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 1505625 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl butyl ketone | UG/KG | 0.0 | 0 00% | | | 0 | 0 | _ | ,. 0 | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 5291420 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0 00% | 300 | | 0 | 0 | | | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0.0 | 0 00% | 1000 | 84230769 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Methylene chlonde | UG/KG | 0 0 | 0.00% | 100 | 9171795 | 0 | 0 | 5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Styrene | UG/KG | 0.0 | 0 00% | 4.400 | 4222055 | 0 | - | _ | | | 11 U | | 12 U | | 13 U | | 11 U | | Tetrachloroethene | UG/KG | 0 0
13 0 | 0 00%
100 00% | 1400
1500 | 1322855
210576923 | 0 | 0
5 | 5 | | | 11 U
5 J | | 12 U
6 J | | 13 U
5 J | | 11 U | | Toluene
Total Vylanas | UG/KG
UG/KG | 0.0 | 0 00% | 1200 | | 0 | 0 | _ | | | 11 U | | 12 U | | 13 U | | 13
11 U | | Total Xylenes Trans-1,3-Dichloropropene | UG/KG | 0.0 | | 1200 | 2103/09231 | 0 | 0 | 5
5 | | | 11 U | | 12 U | | 13 U | | 11 U | | Trichloroethene | UG/KG | 0.0 | 0.00% | 700 | 6253497 | 0 | 0 | - | | | 11 U | | 12 U | | 13 U | | 11 U | | Vinvl chlonde | UG/KG | 0.0 | | 200 | 36204 | 0 | 0 | _ | | | 11 U | | 12 U | | 13 U | | 11 U | | viriyi chionde | JUNG | 0.0 | 0 00% | 200 | 30204 | U | U | 5 | 11 0 | | 11.0 | | 12 0 | | 13 0 | | 11 0 | ### Table 19-3 120D - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-120
MP Refuel | ling | SEAD-120
MP Refuel | ling | SEAD-120
MP Refuel | ing | SEAD-1200
MP Refuelin | ng | SEAD-120
MP Refue | ling | |----------------------------|-------|---------|-----------|------|------------|--------|---------|----------|-----------------------|---------|-----------------------|-------|-----------------------|-------|--------------------------|--------|----------------------|--------| | LOC ID | | | | | | | | | SB120D-1 | | SB120D-1 | | SB120D-1 | ic Q | SS120D-1 | 5 Q | SS120D-2 | | | SAMP_ID | | | | | | | | | EB258 | | EB026 | | EB259 | | EB260 | | EB261 | | | QC CODE | | | | | | | | | SA | | DU | | SA | | SA | | SA | | | SAMP DETH TOP | | | | | | | | | 0 | | 0 | | 68 | | 0 | | 0 | | | SAMP DEPTH BOT | | | | | | | | | 0 3 | | 0.3 | | 7.2 | | 0.2 | | 0.2 | | | MATRIX | | | | | | | | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 17-N | /lar-98 | 17-M | ar-98 | 17-M | ar-98 | | lar-98 | | lar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | | 1,1,1-Tnchloroethane | UG/KG | 0.0 | 0 00% | 800 | 36850962 | 0 | 0 | 5 | ; | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0.0 | 0 00% | 600 | 3439423 | 0 | 0 | 5 | , | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 0
| 0 00% | | 1206815 | 0 | 0 | 5 | ; | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 105288462 | 0 | 0 | 5 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 114647 | 0 | 0 | 5 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 755917 | 0 | 0 | 5 | 5 | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1.2-Dichloroethene (total) | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 5 | , | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0.0 | 0 00% | | 1011595 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Acetone | UG/KG | 210 0 | 60.00% | 200 | 105288462 | 0 | 3 | 5 | , | 210 | | 17 B | | 160 | | 13 U | | 11 U | | Benzene | UG/KG | 0 0 | 0 00% | 60 | 2372016 | 0 | 0 | 5 | ; | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 1109491 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Bromoform | UG/KG | 0.0 | 0 00% | | 8707400 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 105288462 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Carbon tetrachlonde | UG/KG | 0 0 | 0.00% | 600 | 529142 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Chlorobenzene | UG/KG | 0 0 | 0.00% | 1700 | 21057692 | 0 | 0 | 5 | • | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Chlorodibromomethane | UG/KG | 0.0 | 0 00% | | 818910 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 421153846 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Chloroform | UG/KG | 0 0 | 0.00% | 300 | 10528846 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Ethyl benzene | UG/KG | 0 0 | 0.00% | 5500 | 105288462 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl bromide | UG/KG | 0 0 | 0.00% | | 1505625 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl butyl ketone | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl chloride | UG/KG | 0 0 | 0.00% | | 5291420 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0 00% | 300 | | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 0 | 0 00% | 1000 | 84230769 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Methylene chloride | UG/KG | 0.0 | 0 00% | 100 | 9171795 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Tetrachloroethene | UG/KG | 0.0 | 0 00% | 1400 | 1322855 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Toluene | UG/KG | 13 0 | 100 00% | 1500 | 210576923 | 0 | 5 | 5 | | 7 J | | 5 J | | 6 J | | 5 J | | 13 | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | 2105769231 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Tnchloroethene | UG/KG | 0.0 | 0 00% | 700 | 6253497 | 0 | 0 | 5 | | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | | Vinyl chloride | UG/KG | 0 0 | 0 00% | 200 | 36204 | 0 | 0 | 5 | • | 11 U | | 11 U | | 12 U | | 13 U | | 11 U | #### Table 19-4 120D - Semiyoluthes and TPH in Soil vs. 1 AGM Non-Lvaluated LPS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-1200
MP Refueling | | SEAD-120
MP Refuel | ing | SEAD-120
MP Refuel | ing | SEAD-120 | ng | SEAD-120
MP Refuel | ng | |--|----------------|------------|-----------|---------------|--------------------------|-----------------|---------|----------|---------------------------|--------------|-------------------------|----------------|--------------------------|----------------|-------------------------|----------------|---|----------------| | LOC ID
SAMP_ID
OC CODE | | | | | | | | | SB120D-1
EB258
SA | | SB120D-1
EB026
DU | | \$B120D-1
EB259
SA | | SS120D-1
EB260
SA | | SS120D-2
EB261
SA | | | SAMP DETH TOP | | | | | | | | | 0 | | 0 | | 6 B
7.2 | | 0 | | 0 | | | SAMP DEPTH BOT
MATRIX | | | | | | | | | 03
SOIL | | SOIL | | 7.2
SOIL | | SOIL | | 02
SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER | NUMBER | 17-Mar-9 | 86 | | ar-96 | | tar-98 | 17-M | ar-98 | | Aar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | a | VALUE | Q | VALUE | Q | VALUE | a | VALUE | Q | | 1 2,4-Trichlorobenzene | UG/KG | 0.0 | | 3400 | 10528845 | 0 | 0 | | | 72 U | | 73 U | | 74 U | ********* | 85 U | *************************************** | 73 U | | 1.2-Dichlorobenzene | UG/KG | 0.0 | 0 00% | 7900 | 94759615 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 1,3-Dichlorobenzene | UG/KG | 0.0 | 0 00% | 1600 | 93706731 | 0 | 0 | 5 | | 2 U | | 73 U | | 74 U | | 85 U | | 73 U | | 1.4-Dichlorobenzene
2.4,5-Trichlorophenol | UG/KG
UG/KG | 00 | 0 00% | 8500
100 | 2856186
105288462 | 0 | 0 | 5 | | 72 U
30 U | | 73 U
180 U | | 74 U
180 U | | 85 U
200 U | | 73 U
180 U | | 2,4,5-Trichlorophenol | UG/KG | 00 | 0.00% | 100 | 6253497 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 2,4-Dichlorophenol | UG/KG | 00 | | 400 | 3158654 | 0 | 0 | | | 12 U | | 73 U | | 74 U | | 85 U | | 73 U | | 2,4-Dimethylphenol | UG/KG | 0.0 | 0 00% | | 21057692 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 2.4-Dinitrophenol | UG/KG | 0.0 | | 200 | 2105769 | 0 | 0 | | | 30 U | | 180 U | | 180 U | | 200 U | | 180 U | | 2.4-Dintrotoluene | UG/KG | 00 | | | 2105769 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 2,6-Dinitrotoluene | UG/KG | 00 | | 1000 | 1052885 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 65 U | | 73 U | | 2-Chloronaphthalene
2-Chlorophenol | UG/KG
UG/KG | 00 | | 800 | 5264423 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U
73 U | | 2-Methylnaphthalene | UG/KG | 61 | 40 00% | 38400 | 320423 | 0 | 2 | | | 72 U | | 4 J | | 74 U | | 85 U | | 61 J | | 2-Methylphenol | UG/KG | 0.0 | | 100 | 52644231 | 0 | ō | | | 72 U | | 73 U | | 74 U | | BS U | | 73 U | | 2-Nitroaniline | UG/KG | 0.0 | 0 00% | 430 | 63173 | 0 | 0 | | | 30 U | | 180 U | | 180 U | | 200 U | | 180 U | | 2-Nitrophenol | UGKG | 0.0 | 0 00% | 330 | | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 3,3'-Dichloroberizidine | UG/KG | 0.0 | | | 152863 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 3-Nitroentine | UG/KG
UG/KG | 0.0 | | 500 | 3158654 | 0 | 0 | | | 50 U | | 180 U
180 U | | 180 U | | 200 U
200 U | | 160 U
180 U | | 4.6-Dinitro-2-methylphenol
4-Bromophenyl phenyl ether | UG/KG | 00 | | | 61067308 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 4-Chloro-3-methylphenol | UG/KG | 0.0 | | 240 | 01007300 | 0 | o | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 4-Chioroaniline | UG/KG | 00 | | 220 | 4211538 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0.0 | | | | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 4-Methylphenol | UG/KG | 0.0 | | 900 | | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | 4-Nitroanline | UG/KG | 00 | | 100 | 31586S4
63173077 | 0 | 0 | | | 30 U | | 180 U | | 180 U | | 200 U
200 U | | 160 U
180 U | | 4-Nitrophenol
Acensphthene | UG/KG
UG/KG | 0.0
8.6 | | 50000 | 63173077 | 0 | 2 | | | 72 U | | 73 U | | 74 U | | 5.4 J | | 86 J | | Acenaphthylene | UG/KG | 0.0 | | 41000 | | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Anthracene | UG/KG | 190 | 80 00% | 50000 | 315865385 | 0 | 4 | | | 8 J | | 43 J | | 74 U | | 9 J | | 19 J | | Benzo[a]anthracens | UG/KG | 160.0 | | 224 | 94231 | 0 | 4 | 5 | | 46 J | | 36 'J | | 74 U | | 68 J | | 160 | | Benzo(a)pyrene | UG/KG | 200 0 | | 61 | 9423 | 2 | 4 | | | 52 J | | 40 J | | 74 U | 4 | が何」 | | 1.300 | | Benzo(b)fluoranthene | UG/KG | 320 0 | | 1100
50000 | 94231 | 0 | 4 | | | 52 J | | 47 J | | 74 U | | 96
64 J | | 320 | | Benzo(ghi)perylene
Benzo(k)/huoranthene | UG/KG
UG/KG | 210 0 | | 1100 | 942308 | 0 | 7 | | | 87 J | | 55 J | | 74 U | | 85 | | 230 | | Bls(2-Chloroethaxy)methane | UG/KG | 0.0 | | 7100 | 0-12000 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Bls(2-Chioroethyl)ether | UG/KG | 0.0 | 0 00% | | 62535 | 0 | 0 | 5 | 5 | 72 U | | 73 U | | 74 U | | 85 · U | | 73 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 00 | | | 982692 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Sis(2-Ethylhexyl)phthelete | UG/KG | 1100 | | 50000 | 4913482 | 0 | 5 | | | 27 JB | | 19 JB | | 16 JB | | 9.2 JB | | 110 B | | Butylbenzylphthalate | UG/KG | 48.0 | | 50000 | 210576923
3439423 | 0 | 0 | | | 72 U
5 J | | 73 U
57 J | | 74 U
74 U | | 85 U
12 J | | 73 U
48 J | | Carbazole
Chrysene | UG/KG | 270 0 | | 400 | 9423077 | 0 | 4 | | | 57 J | | 50 J | | 74 U | | 96 | | 270 | | Di-n-butylphthalate | UG/KG | 36 | | 8100 | 0-120077 | o | 1 | | | 8 3 | | 73 U | | 74 U | | 85 U | | 73 U | | Di-n-octylphthalata | UG/KG | 00 | | 50000 | 21057692 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Dibenz[e,h]anthracene | UG/KG | 92 0 | | 14 | 9423 | 4 | 4 | | | 1 | No. | ET J | | 74 U | 241 | 20 / | 10 | 93 | | Dibenzofuran | UG/KG | 46 | | 6200 | 4211538 | 0 | 1 | | | 72 U | | 73 U | | 74 U
7.9 JB | | 78 JB | | 46 J
77 JB | | Diethyl phthelate | UG/KG
UG/KG | 79 | | 7100 | 842307692
10528846150 | 0 | 5 | | | 18 JB | | 5 3 JB
73 U | | 74 U | | 85 U | | 73 U | | Damethylphthalate
Ekonanthene | UG/KG | 450 0 | | 50000 | 42115385 | 0 | 4 | | | 87 | | 82 | | 74 U | | 200 | | 450 | |
Pluorene | UG/KG | 84 | | 50000 | 42115385 | 0 | 2 | | | 72 U | | 73 U | | 74 U | | 5.1 J | | 8 4 J | | Hexachiorobenzene | UG/KG | 0.0 | | 410 | 42993 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Hexachlorobutadiene | UG/KG | 0.0 | | | 210577 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 65 U | | 73 U | | Hexachlorocyclopentadlene | UG/KG | 00 | | | 7370192 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Hexachloroethane | UG/KG | 00 | | 3200 | 1052885
94231 | 0 | 0 | | | 72 U | | 73 U
32 J | | 74 U | | 61 J | | 73 U
160 | | Indeno(1,2,3-cd)pyrene
Isophorone | UG/KG
UG/KG | 180 0 | | 4400 | 34231 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | N-Nitrosodiphenylamine | UG/KG | 00 | | | 14038462 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | N-Nitrosodipropylamine | UG/KG | 0.0 | | | 9827 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 65 U | | 73 U | | Naphthalene | UG/KG | 49 | 20 00% | 13000 | 42115385 | 0 | 1 | | | 72 U | | 73 U | | 74 U | | 85 U | | 4.9 J | | Ntrobenzene | UG/KG | . 00 | | 200 | 526442 | 0 | 0 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Pentachlorophenol | UG/KG | 0.0 | | 1000 | 573237 | 0 | 0 | | | 80 U
22 J | | 180 U
26 J | | 180 U | | 200 U
96 | | 180 U | | Phenanthrene
Phenol | UG/KG
UG/KG | 180 0 | | 50000 | 631730769 | 0 | 4 | | | 72 U | | 73 U | | 74 U | | 85 U | | 73 U | | Phenol
Pyrene | UG/KG
UG/KG | 720 0 | | 50000 | 31586538 | 0 | 5 | | | 70 J | | 66 J | | 4 J | | 180 | | 720 E | | TPH | MG/KG | .200 | | , | | | | | 1 | 18 | | 141 | | 18 4 U | | 43.6 | | 181 | ## Table 19 5 120D Semiyolatiles and TPH in Soil vs PRG-RFC Non-Lyaluated LBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD 120D
MP Refueling
Island in the Q | SEAD 120D
MP Refueling
Island in the Q | SEAD 120D
MP Refueling
Island in the Q | SEAD-120D
MP Refueling
Island in the Q | SEAD-120D
MP Refueling
Island in the O | |---|----------------|----------------|------------------|--------------|----------------------|--------|---------|----------|--|--|--|--|--| | LOC ID
SAMP_ID | | | | | | | | | SB120D-1
EB258 | SB120D-1
EB026 | SB120D-1
EB259 | SS120D-1
EB260
SA | SS120D-2
EB261 | | QC CODE
SAMP_DETH_TOP | | | | | | | | | SA
0 | 0 | 6 8 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0 3 | 0.3 | 7 2 | 0 2 | 0 2 | | MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5OIL
17-Mar-98 | SOIL
17-Mar-98 | SOIL
17-Mar-98 | SOIL
17-Mar-98 | SOIL
17-Mar-98 | | SAME DATE | | | OF | | | ABOVE | OF | OF | 77-18191-30 | 17-1401-00 | 17-11121-30 | 17-461-50 | 17-14101-50 | | PARAMETER | UNIT | | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | VALUE Q | VALUÉ Q | VALUE Q | VALUE Q | | 1,2 4 Trichlorobenzene
1,2-Dichlorobenzene | UG/KG
UG/KG | 00 | 0 00% | 3400
7900 | 10528846
94759615 | 0 | 0 | 5 | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | 1.3-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 1600 | 93706731 | 0 | 0 | 5 | | 73 U | 74 U | 85 U | 73 U | | 1,4-Dichlorobenzene | UG/KG | 0.0 | 0 00% | 8500 | 2866186 | 0 | 0 | 5 | 72 U | 73 U | 74 U | 85 U | 73 U | | 2.4.5-Trichlorophenol | UG/KG | 0 0 | 0 00% | 100 | 105288462 | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 2,4,6-Trichlorophenol | UG/KG | 0.0 | 0 00% | 400 | 6253497
3158654 | 0 | 0 | 5 | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | 2,4-Dichlorophenol
2,4-Dimethylphenol | UG/KG
UG/KG | 0.0 | 0.00% | 400 | 21057692 | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | 2 4-Dinitrophenol | UG/KG | 0.0 | 0 00% | 200 | 2105769 | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 2,4-Dintrotoluene | UG/KG | 0.0 | 0 00% | | 2105769 | 0 | 0 | | | 73 ∪ | 74 U | 85 U | 73 U | | 2,6-Dinitrotoluene | UG/KG | 0 0 | 0 00% | 1000 | 1052885 | 0 | 0 | 5 | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | 2-Chloronaphthalene
2-Chlorophenol | UG/KG
UG/KG | 0.0 | 0 00% | 800 | 5264423 | 0 | 0 | _ | | 73 U | 74 U | 85 U | 73 U | | 2-Methylnaphthalene | UG/KG | 6 1 | 40 00% | 36400 | 3,04423 | 0 | 2 | 5 | | 4 J | 74 U | 85 U | 61 J | | 2-Methylphenal | UG/KG | 0.0 | 0 00% | 100 | 52644231 | 0 | 0 | 5 | | 73 U | 74 U | 85 U | 73 ∪ | | 2-Nitroaniline | UG/KG | 0 0 | 0 00% | 430 | 63173 | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 2-Nrtrophenol | UG/KG
UG/KG | 0.0 | 0 00% | 330 | 152863 | 0 | 0 | | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | 3,3 -Dichlorobenzidine
3-Nitroaniline | UG/KG | 0.0 | 0 00% | 500 | 3158654 | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 4.6-Dinitro-2-methylphenol | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 4-Bromophenyl phenyl ether | UG/KG | 0.0 | 0 00% | | 61067308 | 0 | 0 | 5 | | 73 U | 74 U | 85 U | 73 U | | 4-Chloro-3-methylphenoi | UG/KG
UG/KG | 0 0 | 0 00% | 240
220 | 4211538 | 0 | 0 | 5 | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | 4-Chloroaniline
4-Chlorophenyl phenyl ether | UG/KG | 0.0 | 0.00% | 220 | 4211336 | 0 | 0 | 5 | | 73 U | 74 U | 85 U | 73 U | | 4-Methylphenol | UG/KG | 0.0 | 0 00% | 900 | | 0 | 0 | 5 | 72 U | 73 U | 74 U | 85 U | 73 U | | 4-Nitroaniline | UG/KG | 0.0 | 0 00% | | 3158654 | 0 | 0 | 5 | | 180 U | 180 U | 200 U | 180 U | | 4-Nitrophenol | UG/KG
UG/KG | 0 0
8 6 | 0 00%
40 00% | 100
50000 | 63173077 | 0 | 0 | 5 | | 180 U
73 U | 180 U
74 U | 200 U
5 4 J | 180 U
8.6 J | | Acenaphthene
Acenaphthylene | UG/KG | 00 | 0 00% | 41000 | | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | Anthracene | UG/KG | 19 0 | 80 00% | 50000 | 315865385 | 0 | 4 | 5 | | 4 3 J | 74 U | 9 J | 19 J | | Benzo(a)anthracene | UG/KG | 160 0 | 80 00% | 224 | 94231 | 0 | 4 | 5 | | 36 J | 74 U
74 U | 68 J | 160 | | Benzo(a)pyrene
Benzo(b)fluoranthene | UG/KG
UG/KG | 200 0
320 0 | 80 00%
80 00% | 61
1100 | 9423
94231 | 0 | 4 | 5 | | 40 J
47 J | 74 U | 74 J
96 | 200
320 | | Benzo(ghi)perylene | UG/KG | 210 0 | 80 00% | 50000 | 54251 | 0 | 4 | | | 33 J | 74 U | 64 J | 210 | | Benzo[k]fluoranthene | UG/KG | 230 0 | 80 00% | 1100 | 942308 | 0 | 4 | 5 | | 55 J | 74 U | 85 | 230 | | Bis(2-Chloroethoxy)methane | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 5 | | 73 U | 74 U | 85 U | 73 U | | Bis(2-Chloroethyl)ether | UG/KG
UG/KG | 0 0 | 0 00% | | 62535
982692 | 0 | 0 | 5 | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG | 1100 | 100 00% | 50000 | 4913462 | 0 | 5 | | | 19 JB | 16 JB | 9 2 JB | 110 B | | Butylbenzylphthalate | UG/KG | 0.0 | 0 00% | 50000 | 210576923 | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | Carbazole | UG/KG | 48 0 | 80 00% | | 3439423 | 0 | 4 | | | 57 J | 74 U
74 U | 12 J
96 | 48 J
270 | | Chrysene
Di-n-butylphthalate | UG/KG
UG/KG | 270 0
3 8 | 80 00%
20 00% | 400
8100 | 9423077 | 0 | 4 | | | 50 J
73 U | 74 U | 85 U | 73 U | | Di-n-outylphthalate | UG/KG | 0.0 | 0 00% | 50000 | 21057692 | 0 | 0 | 5 | 72 U | 73 U | 74 U | 85 U | 73 U | | Dibenz(a,h)anthracene | UG/KG | 92 0 | 80 00% | 14 | 9423 | . 0 | 4 | | | 17 J | 74 U | 21 J | 92 | | Dibenzofuran | UG/KG | 46 | 20 00% | 6200
7100 | 4211538
842307692 | 0 | 1 5 | | | 73 U
53 JB | 74 U
7 9 JB | 85 U
7 8 JB | 46 J
77 JB | | Diethyl phthalate
Dimethylphthalate | UG/KG
UG/KG | 7 9
0 0 | 100 00%
0 00% | 2000 | 10528846150 | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | Fluoranthene | UG/KG | 450 0 | 80 00% | 50000 | 42115385 | 0 | 4 | | 5 87 | 82 | 74 U | 200 | 450 | | Fluorene | UG/KG | 8 4 | 40 00% | 50000 | 42115385 | 0 | 2 | | | 73 U | 74 U | 5 1 J | 8 4 J | | Hexachlorobenzene | UG/KG | 0.0 | 0 00% | 410 | 42993 | 0 | 0 | | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | Hexachlorobutadiene
Hexachlorocyclopentadiene | UG/KG
UG/KG | 0.0 | 0 00% | | 210577
7370192 | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | Hexachloroethane | UG/KG | 0.0 | 0 00% | | 1052885 | 0 | 0 | | 5 72 U | 73 U | 74 U | 85 U | 73 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 180 0 | 80 00% | 3200 | 94231 | 0 | 4 | | | 32 J | 74 U | 61 J | · 180 | | Isophorone | UG/KG | 0.0 | 0 00% | 4400 | ****** | 0 | 0 | | | 73 U
73 U | 74 U
74 U | 85 U
85 U | 73 U
73 U | | N-Nitrosodiphenylamine | UG/KG
UG/KG | 00 | 0 00% | | 14038462
9827 | 0 | 0 | | | 73 U | 74 U | 85 U | 73 U | | N-Nitrosodipropylamine
Naphthalene | UG/KG | 4 9 | 20 00% | 13000 | 42115385 | 0 | 1 | | | 73 U | 74 U | 85 U | 49 J | | Nitrobenzene | UG/KG | 0.0 | 0 00% | 200 | 526442 | 0 | 0 | | | 73 ∪ | 74 U | 85 U | 73 U | | Pentachiorophenol | UG/KG | 0.0 | 0 00% | 1000 | 573237 | 0 | 0 | | | 180 U | 180 U
74 U | 200 U
96 | 180 U
180 | | Phenanthrene
Phenol | UG/KG
UG/KG | 180 0 | 80 00%
0 00% | 50000
30 | 631730769 | 0 | 4 | | | 26 J
73 U | 74 U | 96
85 U | 73 U | | Pyrene | UG/KG | 720 0 | 100 00% | 50000 | 31586538 | 0 | 5 | | | 66 J | 4 J | 180 | 720 E | | трн | MG/KG | 181 0 | 80 00% | | | 0 | 4 | | 5 118 | 141 | 18 4 U | 43 6 | 181 | | | | | | | | | | | | | | | | ## SEAD-120E Near Building 2131, Possible DDT Disposal Table 20-1 ## Sample Collection Information SEAD-120E - Near Building 2131, Possible DDT Disposal ## 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |----------|----------|--------------|----------------|---------------|------------------|------------|--|
 SOIL | SB120E-1 | EB262 | 3/17/98 | 0.0 | 0.2 | SA | Location is approximately 50 northeast of Building 2131; adjacent to a magnetic anomaly. | | SOIL | SB120E-1 | EB027 | 3/17/98 | 0.0 | 0.2 | DU | Location is approximately 50 northeast of Building 2131; adjacent to a magnetic anomaly. | | SOIL | SB120E-1 | EB266 | 3/17/98 | 2.3 | 2.6 | SA | Location is same as above. Sample collected at this interval in the boring because of stained soil and wire debris | | SEDIMENT | SD120E-1 | EB263 | 3/17/98 | 0.0 | 0.2 | SA | Location is in drainage ditch immediately downgradient of the magnetic anomaly. | | SEDIMENT | SD120E-2 | EB264 | 3/17/98 | 0.0 | 0.2 | SA | Location is in drainage ditch approximately 100 feet downgradient of the magnetic anomaly. | | SEDIMENT | SD120E-3 | EB265 | 3/17/98 | 0.0 | 0.2 | SA | Location is in drainage ditch approximately 200 feet downgradient of the magnetic anomaly; at intersection with Kendaia Creek. | | WATER | SB120E-1 | EB025 | 3/17/98 | 0.0 | 0.0 | RB | NA | Notes: SA ~ Sample DU = Duplicate RB = Rinse Blank NA = Not Applicable # Table 20-2 120E Pesticides in Soil vs TAGM Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-120E
Near Bldg 2131,
Possible DDT
Disposal | SEAD-120E
Near Bldg 2131,
Possible DDT
Disposal | SEAD-120E
Near Bldg 2131,
Possible DDT
Disposal | |-----------------------|-------|---------|-----------|------|---------|--------|---------|----------|--|--|--| | LOC ID: | | | | | | | | | SB120E-1 | SB120E-1 | SB120E-1 | | SAMPLE ID: | | | | | | | | | EB262 | EB027 | EB266 | | QA/QC CODE: | | | | | | | | | SA | DU | SA | | SAMPLE TOP: | | | | | | | | | 0 | 0 | 2.3 | | SAMPLE BOT: | | | | | | | | | 0.2 | 0.3 | 2.6 | | MATRIX: | | | | | | | | | SOIL | SOIL | SOIL | | SAMPLE DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 17-Mar-98 | 17-Mar-98 | 17-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | VALUE Q | | 4.4 -DDD | UG/KG | 0.0 | 0.00% | 2900 | 286619 | 0 | 0 | 3 | 4.6 U | 4.6 U | 3.7 U | | 4.4`-DDE | UG/KG | 0.0 | 0.00% | 2100 | 202319 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | 4.4`-DDT | UG/KG | 3.0 | 50.00% | 2100 | 202319 | 0 | 1 | 2 | 3 JP | 4.6 U | 3.7 U | | Aldrin | UG/KG | 0.0 | 0.00% | 41 | 4046 | 0 | 0 | 3 | 2.3 U | 2.3 U | 1.9 U | | Alpha-BHC | UG/KG | 0.0 | 0.00% | 110 | | 0 | 0 | 3 | 2.3 U | 2.3 U | 1.9 U | | Alpha-Chlordane | UG/KG | 1.3 | 50.00% | | | 0 | 1 | 2 | | 2.3 U | 1.9 U | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 4299 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | Endosulfan I | UG/KG | 0.0 | 0.00% | 900 | 6317308 | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Endosulfan II | UG/KG | 2.6 | 33.33% | 900 | 6317308 | 0 | 1 | 3 | | 4.6 U | 3.7 U | | Endosulfan sulfate | UG/KG | 0.0 | 0.00% | 1000 | | 0 | 0 | 3 | | 4.6 U | 3.7 U | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 315865 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | Endrin ketone | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | 60 | 52914 | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Gamma-Chlordane | UG/KG | 0.0 | 0.00% | 540 | | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Heptachlor | UG/KG | 0.0 | 0.00% | 100 | 15286 | 0 | 0 | 3 | | 2.3 U | 1.9 U | | Heptachlor epoxide | UG/KG | 2.1 | 50.00% | 20 | 7559 | 0 | 1 | 2 | | 2.3 U | 1.9 U | | Methoxychlor | UG/KG | 0.0 | 0.00% | | 5264423 | 0 | 0 | 3 | | 23 U | 19 U | | Toxaphene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 3 | 230 U | 230 U | 190 U | # Table 20-3 120E Pesticides in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-120E
Near Bldg 2131,
Possible DDT
Disposal | SEAD-120E
Near Bldg 2131,
Possible DDT
Disposal | SEAD-120E
Near Bldg 2131.
Possible DDT
Disposal | |-----------------------|-------|---------|-----------|------|---------|--------|---------|----------|--|--|--| | LOC ID: | | | | | | | | | SB120E-1 | SB120E-1 | SB120E-1 | | SAMPLE ID: | | | | | | | | | EB262 | EB027 | EB266 | | QA/QC CODE: | | | | | | | | | SA | DU | SA | | SAMPLE TOP: | | | | | | | | | 0 | 0 | 2.3 | | SAMPLE BOT | | | | | | | | | 0.2 | 0.3 | 2.6 | | MATRIX: | | | | | | | | | SOIL | SOIL | SOIL | | SAMPLE DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 17-Mar-98 | 17-Mar-98 | 17-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | VALUE Q | VALUE Q | | 4.4 -DDD | UG/KG | 0.0 | 0.00% | 2900 | 286619 | 0 | 0 | 3 | | 4.6 U | 3.7 U | | 4.4 -DDE | UG/KG | 0.0 | 0.00% | 2100 | 202319 | 0 | 0 | 3 | 3 4.6 U | 4.6 U | 3.7 U | | 4.4 -DDT | UG/KG | 3.0 | 50.00% | 2100 | 202319 | 0 | 1 | | 2 3 JP | 4.6 U | 3.7 U | | Aldrin | UG/KG | 0.0 | 0.00% | 41 | 4046 | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Alpha-BHC | UG/KG | 0.0 | 0.00% | 110 | | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Alpha-Chlordane | UG/KG | 1.3 | 50.00% | | | 0 | 1 | | 2 1.3 JP | 2.3 U | 1.9 U | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 4299 | 0 | 0 | | 3 4.6 U | 4.6 U | 3.7 U | | Endosulfan I | UG/KG | 0.0 | 0.00% | 900 | 6317308 | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Endosulfan II | UG/KG | 2.6 | 33.33% | 900 | 6317308 | 0 | 1 | | 3 2.6 J | 4.6 U | 3.7 U | | Endosulfan sulfate | UG/KG | 0.0 | 0.00% | 1000 | | 0 | 0 | | 3 4.6 U | 4.6 U | 3.7 U | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 315865 | 0 | 0 | | 3 4.6 U | 4.6 U | 3.7 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | | 3 4.6 U | 4.6 U | 3.7 U | | Endrin ketone | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | | 3 4.6 U | 4.6 U | 3.7 U | | Gamma-BHC/Lindan | UG/KG | 0.0 | 0.00% | 60 | 52914 | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Gamma-Chlordane | UG/KG | 0.0 | 0.00% | 540 | | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Heptachior | UG/KG | 0.0 | 0.00% | 100 | 15286 | 0 | 0 | | 3 2.3 U | 2.3 U | 1.9 U | | Heptachlor epoxide | UG/KG | 2.1 | 50.00% | 20 | 7559 | 0 | 1 | | 2 2.1 JP | 2.3 U | 1.9 U | | Methoxychlor | UG/KG | 0.0 | 0.00% | | 5264423 | 0 | 0 | | 3 23 U | 23 U | 19 U | | Toxaphene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | ; | 3 230 U | 230 U | 190 U | ## Table 20-4 Pesticides in Sediment vs NYS Criteria Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-120E
Near Building 2131.
Possible DDT
Disposal | SEAD-120E
Near Building 2131,
Possible DDT
Disposal | SEAD-120E
Near Building 2131,
Possible DDT
Disposal | |---------------------|-------|---------|-----------|--|-------|----------------|---------|----------|--|--|--| | LOC ID | | | | | | | | | SD120E-1 | SD120E-2 | SD120E-3 | | SAMP_ID | | | | | | | | | EB263 | EB264 | EB265 | | QC CODE | | | | | | | | | SA | SA | SA | | SAMP DETH TOP | | | | | | | | | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0.2 | 0 2 | 0.2 | | MATRIX | | | | | | | | | SEDIMENT | SEDIMENT | SEDIMENT | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 17-Mar-98 | 17-Mar-98 | 17-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | CRITERIA TYPE | LEVEL | CRITERIA LEVEL | DÉTECTS | ANALYSES | | VALUE Q | VALUE Q | | 4.4 -DDD | UG/KG | 5 1 | 33.33% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 10 | 0 | 1 | 3 | 4.8 ∪ | 6.5 U | 5.1 JP | | 4.4 -DDE | UG/KG | 7.9 | 50.00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 10 | 0 | 1 | 2 | 4.8 ∪ | 6.5 U | 7.9 P | | 4.4 DDT | UG/KG | 6 3 | 100 00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 10 | 0 | 3 | 3 | . 4.3 JP | 4.5 JP | 6.3 J | | Aldrın | UG/KG | 0 0 | 0.00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 100 | 0 | 0 | 3 | . 2.4 U | 3.3 ∪ | 3.7 U | | Alpha-BHC | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 3 | . 2.4 U | 3.3 ∪ | 3 7 U | | Alpha-Chlordane | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 3 | 2.4 ∪ | 3.3 U | 3 7 U | | Beta-BHC | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 3 | . 2.4 U | 3.3 U | 3 7 U | | Delta-BHC | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 3 | . 24 U | 3.3 U | 3 7 U | | Dieldnn | UG/KG | 0.0 | 0.00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 100 | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Endosulfan I | UG/KG | 0 0 | | NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA | 30 | 0 | 0 | 3 | 2.4 ∪ | 3.3 U | 3.7 ∪ | | Endosulfan II | UG/KG | 0.0 | | NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA | 30 | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Endosulfan sulfate | UG/KG | 0 0 | | | | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Endrin | UG/KG | 0.0 | 0 00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 800 | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Endrin ketone | UG/KG | 0.0 | 0 00% | • | | 0 | 0 | 3 | 4.8 U | 6.5 U | 7.4 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 3 | 2.4 U | 3.3 U | 3.7 U | | Gamma-Chlordane | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 3 | . 2.4 U | 3.3 U | 3.7 U | | Heptachlor | UG/KG | 0.0 | 0 00% | NYS HUMAN HEALTH BIOACCUMULATION CRITERIA | 8 | 0 | 0 | 3 | 2.4 U | 3.3 ∪ | 3.7 U | | Heptachlor epoxide | UG/KG | 0.0 | 0 00% | NYS HUMAN HEALTH BIOAÇCUMULATION CRITERIA | 8 | 0 | 0 | 3 |
. 2,4 U | 3.3 U | 3.7 U | | Methoxychlor | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 3 | . 24. U | 33. U | 37 U | | Toxaphene | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 3 | 240. U | 330. U | 370. U | ## SEAD-120G ## Mounds at the Duck Pond Table 22-1 ## Sample Collection Information SEAD-120G - Mounds at the Duck Ponds ### 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------|----------|--------|--------|--------|--------|------|---| | | 1D | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL. | TP120G-1 | EB112 | 3/5/98 | 0.5 | 0.5 | SΛ | Location is at north end of Duck Ponds Area,
location chosen because it was where a depression
within a 3-foot high mound, which was on top of
a larger 4-foot high mound, was located; the
mounds were covered with brush and trees | | SOIL | TP120G-1 | EB113 | 3/5/98 | 2 0 | 2.0 | SΛ | Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil | | SOIL | TP120G-2 | EB114 | 3/6/98 | 15 | 1.5 | SΛ | Location is at north end of Duck Ponds Area, location was chosen because it is where a 100-foot long and 65 feet wide east-west trending mound is located. The trench was located on the north side of the mound, the only area that had surface dehris | | SOIL | TP120G-2 | EBI15 | 3/6/98 | 3.0 | 3.0 | SA | Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacats were noted in the soil | | SOIL | TP120G-3 | EB135 | 3/9/98 | 1.0 | 10 | SA | Location is a grassy area in east-central area of Duck Ponds Area. location was chosen because it is where uneven, lumpy ground was noted, it was a location that was suspected to be a previous excavation. | | SOIL | TP120G-3 | EB136 | 3/9/98 | 2 0 | 2.0 | SA | Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacats were noted in the soil | | SOIL | TP120G-4 | EB118 | 3/6/98 | 1.5 | 1.5 | SA | Location is a mound in southeastern portion of Duck Ponds Area, location was chosen because it is the location of a 200-foot long and 100-foot wide mound, the excavatoin was on the east side of the mound near the road | Table 22-1 ### Sample Collection Information SEAD-120G - Mounds at the Duck Ponds ### 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|------------|--| | SOIL | TP120G-4 | EB119 | 3/6/98 | 3.5 | 3 5 | SA | Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil | | SOIL | TP120G-5 | EB120 | 3/6/98 | 1.0 | 1.0 | SA | Location is a mound in southern portion of Duck
Ponds Area, location was chosen because it is
where a 50-foot long, 35-foot wide, and 3-foot
high area of disturbed ground with surface debris
(metal strapping) was located | | SOIL | TP120G-5 | EB121 | 3/6/98 | 20 | 2.0 | SA | Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil | Notes SA Sample #### Table 22-2 120G - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-12
MOUNDS
THE DUC
POND | S AT | SEAD-120
MOUNDS
THE DUCI
POND | AT | SEAD-120
MOUNDS
THE DUC
POND | AT | MC
TH | AD-120G
DUNDS AT
E DUCK
ND | |---|----------------|------------|----------------|--------------|-------------------------|--------|---------|----------|--------------------------------------|--------------|--|--------------|---------------------------------------|--------------|----------|-------------------------------------| | LOC ID
SAMP ID
QC CODE. | | | | | | | | | TP120G-
EB112
SA | | TP120G-1
EB113
SA | | TP120G-2
EB114
SA | 2 | | 120G-2
115 | | SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | | 0.5 | | 2 | | 15 | | 3 | | MATRIX: | | | | | | | | | SOIL | 05 | SOIL | 2 | SOIL | 15 | so | 3 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | ar-98 | | Mar-98 | 6-Ma | ır-98 | 30 | 6-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | 5 Mai 55 | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | Q | VALUE | Q | VALUE | Q | VA | LUE | | 1,1,1-Tnchloroethane | UG/KG | 0.0 | 0 00% | 800 | 36850962 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | 1,1,2,2-Tetrachloroethane | UG/KG
UG/KG | 0.0 | 0 00%
0 00% | 600 | 3439423 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | 1,1,2-Trichloroethane
1,1-Dichloroethane | UG/KG
UG/KG | 0.0 | | 200 | 1206815
105288462 | 0 | 0 | 10
10 | | 12 U | | 12 U | | 12 U | | 13 | | 1,1-Dichloroethene | UG/KG | 0.0 | | 400 | 114647 | 0 | 0 | 10 | | 12 U
12 U | | 12 U
12 U | | 12 U
12 U | | 13 | | 1.2-Dichloroethane | UG/KG | 0.0 | | 100 | 755917 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13
13 | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | | 100 | 700017 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | 1,2-Dichloropropane | UG/KG | 0.0 | | | 1011595 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Acetone | UG/KG | 20.0 | | 200 | 105288462 | 0 | 6 | 10 | | 12 U | | 11 J | | 17 | | 20 | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 2372016 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Bromodichloromethane | UG/KG | 0 0 | 0 00% | | 1109491 | 0 | 0 | 10 | 1 | 12 U | | 12 U | | 12 U | | 13 | | Bromoform | UG/KG | 0.0 | 0.00% | | 8707400 | 0 | 0 | 10 | 1 | 12 U | | 12 U | | 12 U | | 13 | | Carbon disulfide | UG/KG | 0 0 | | 2700 | 105288462 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Carbon tetrachloride | UG/KG | 0 0 | | 600 | 529142 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Chlorobenzene | UG/KG | 0.0 | | 1700 | 21057692 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Chlorodibromomethane | UG/KG
UG/KG | 0.0 | | 4000 | 818910
421153846 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Chloroethane
Chloroform | UG/KG
UG/KG | 0.0 | | 1900
300 | 10528846 | 0 | 0 | 10
10 | | 12 U
12 U | | 12 U | | 12 U | | 13 | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | | 300 | 10320040 | 0 | 0 | 10 | | 12 U | | 12 U
12 U | | 12 U
12 U | | 13
13 | | Ethyl benzene | UG/KG | 00 | | 5500 | 105288462 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Methyl bromide | UG/KG | 0.0 | | 0000 | 1505625 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Methyl butyl ketone | UG/KG | 0.0 | | | | 0 | ō | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Methyl chloride | UG/KG | 0.0 | 0 00% | | 5291420 | 0 | 0 | 10 | 1 | 12 U | | 12 U | | 12 U | | 13 | | Methyl ethyl ketone | UG/KG | 0.0 | 0 00% | 300 | | 0 | 0 | 10 | 1 | 12 U | | 12 U | | 12 U | | 13 | | Methyl isobutyl ketone | UG/KG | 0.0 | | 1000 | 84230769 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Methylene chlonde | UG/KG | 0.0 | | 100 | 9171795 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Styrene | UG/KG | 0.0 | | | | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Tetrachloroethene | UG/KG | 0.0 | | 1400 | 1322855 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | Toluene
Total Xvienes | UG/KG
UG/KG | 7.0
0.0 | | 1500
1200 | 210576923
2105769231 | 0 | 5 | 10
10 | | 12 U | | 12 U | | 12 U | | 13 | | Trans-1,3-Dichloropropene | UG/KG | 00 | | 1200 | 2105/69231 | 0 | 0 | 10 | | 12 U
12 U | | 12 U
12 U | | 12 U
12 U | | 13 | | Trichloroethene | UG/KG | 0.0 | | 700 | 6253497 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U
12 U | | 13
13 | | Vinyl chloride | UG/KG | 0.0 | | 200 | 36204 | 0 | 0 | 10 | | 12 U | | 12 U | | 12 U | | 13 | | , | 00,110 | 0.0 | 0.0070 | 200 | 30204 | U | U | 10 | | 12 0 | | ,2 0 | | 12 0 | | 13 | ### Table 22-2 120G - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | SEAD-120G
MOUNDS AT
THE DUCK
POND | | SEAD-120
MOUNDS
THE DUCK
POND | AT | SEAD-120
MOUNDS
THE DUC
POND | AT | SEAD-12
MOUNDS
THE DUC
POND | SAT | SEAD-120
MOUNDS
THE DUCI
POND | AT | SEAD-120
MOUNDS
THE DUC
POND | AT | |--|---|--|--------------|--|--------------|---------------------------------------|--------------|--------------------------------------|--------------|--|--------------|---------------------------------------|--------------| | LOC ID
SAMP ID
QC CODE | | TP120G-3
EB135
SA | | TP120G-3
EB136
SA | | TP120G-4
EB118
SA | 4 | TP120G-
EB119
SA | 4 | TP120G-5
EB120
SA | | TP120G-5
EB121
SA | | | SAMP DETH TOP | | | 1 | | 2 | | 15 | | 3.5 | | 1 | | 2 | | SAMP DEPTH BOT | | | 1 | | 2 | | 1 5 | | 3.5 | | 1 | | 2 | | MATRIX | | SOIL | | | SAMP DATE | | 9-Mar-9 | 8 | 9-Ma | ar-98 | 6-M | ar-98 | 6-M | lar-98 | 6-Ma | ar-98 | 6-Ma | ar-98 | | PARAMETER | Q | VALUE | Q | | 1,1,1-Trichloroethane | U | 1 | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1,1,2,2-Tetrachloroethane | U | | 3 U | | 13 U | | 12 U | |
11 U | | 14 U | | 14 U | | 1,1,2-Trichloroethane | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1,1-Dichloroethane | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1,1-Dichloroethene | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1,2-Dichloroethane | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1.2-Dichloroethene (total) | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | 1,2-Dichloropropane | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Acetone | | | 3 U | | 9 J | | 7 J | | 10 J | | 14 U | | 14 U | | Benzene | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Bromodichloromethane | U | | 3 U | | 13 U
13 U | | 12 U
12 U | | 11 U
11 U | | 14 U
14 U | | 14 U
14 U | | Bromoform
Corbon disulfide | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Carbon disulfide
Carbon tetrachloride | U | | 13 U
13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Carbon tetrachionde
Chlorobenzene | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Chlorodibromomethane | U | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Chloroethane | U | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Chloroform | Ü | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Cis-1,3-Dichloropropene | Ŭ | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Ethyl benzene | Ü | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Methyl bromide | Ü | | 3 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Methyl butyl ketone | U | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Methyl chloride | Ū | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Methyl ethyl ketone | U | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Methyl isobutyl ketone | U | 1 | 13 U | | 13 U | | 12 U | | 11 ∪ | | 14 U | | 14 U | | Methylene chloride | U | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Styrene | U | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Tetrachloroethene | U | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Toluene | U | | 13 U | | 7 J | | 4 J | | 2 J | | 5 J | | 3 J | | Total Xylenes | U | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Trans-1,3-Dichloropropene | U | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Trichloroethene | U | | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | | Vinyl chlonde | U | 1 | 13 U | | 13 U | | 12 U | | 11 U | | 14 U | | 14 U | ### Table 22-3 120G - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE | | | | | | | | | SEAD-120G
MOUNDS AT
THE DUCK
POND
TP120G-1
EB112
SA | MOUNDS A | TP120G-1
EB113
SA | | SEAD-120G
MOUNDS AT
THE DUCK
POND
TP120G-2
EB114
SA | | |--|-------|---------|-----------|------|------------|--------|---------|--------|---|----------|-------------------------|-------|---|----------| | SAMP DETH TOP | | | | | | | | | 0 5 | | 2 | | 15 | 3 | | SAMP DEPTH BOT | | | | | | | | | 0.5 | | 2 | | 15 | 3 | | MATRIX | | | | | | | | | SOIL | SOIL | | SOIL | | SOIL | | SAMP DATE. | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Mar-98 | 5-Mar | -98 | 6-Mar | -98 | 6-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | | | VALUE | Q | VALUE | Q | VALUE | | 1,1.1-Trichloroethane | UG/KG | 0.0 | 0 00% | 800 | 36850962 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 0 | 0 00% | 600 | 3439423 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0 00% | | 1206815 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | 1,1-Dichloroethane | UG/KG | 0 0 | | 200 | 105288462 | 0 | 0 | | | | 12 U | | 12 U | 13 | | 1,1-Dichloroethene | UG/KG | 0.0 | 0 00% | 400 | 114647 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | 1.2-Dichloroethane | UG/KG | 0.0 | 0 00% | 100 | 755917 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0 00% | | | . 0 | 0 | 10 | 12 U | | 12 U | | 12 U | 13 | | 1,2-Dichloropropane | UG/KG | 0.0 | 0 00% | | 1011595 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Acetone | UG/KG | 20 0 | | 200 | 105288462 | 0 | 6 | 10 | | | 11 J | | 17 | 20 | | Benzene | UG/KG | 0 0 | | 60 | 2372016 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Bromodichloromethane | UG/KG | 0 0 | 0 00% | | 1109491 | 0 | 0 | 10 | 12 U | | 12 U | | 12 U | 13 | | Bromoform | UG/KG | 0.0 | 0 00% | | 8707400 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Carbon disulfide | UG/KG | 0 0 | 0.00% | 2700 | 105288462 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Carbon tetrachloride | UG/KG | 0 0 | 0 00% | 600 | 529142 | 0 | 0 | 10 | 12 U | | 12 U | | 12 U | 13 | | Chlorobenzene | UG/KG | 0 0 | 0 00% | 1700 | 21057692 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 818910 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Chloroethane | UG/KG | 0 0 | 0 00% | 1900 | 421153846 | 0 | 0 | 10 |) 12 U | | 12 U | | 12 U | 13 | | Chloroform | UG/KG | 0.0 | 0 00% | 300 | 10528846 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Cis-1,3-Dichloropropene | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 10 | 12 U | | 12 U | | 12 U | 13 | | Ethyl benzene | UG/KG | 0 0 | 0 00% | 5500 | 105288462 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 1505625 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methyl butyl ketone | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methyl chloride | UG/KG | 0.0 | 0 00% | | 5291420 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methyl ethyl ketone | UG/KG | 0.0 | 0 00% | .300 | | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methyl isobutyl ketone | UG/KG | 0.0 | 0 00% | 1000 | 84230769 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Methylene chloride | UG/KG | 0.0 | 0 00% | 100 | 9171795 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Styrene | UG/KG | 0.0 | | | | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Tetrachloroethene | UG/KG | 0.0 | | 1400 | 1322855 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Toluene | UG/KG | 7 0 | | 1500 | 210576923 | 0 | 5 | 10 | | | 12 U | | 12 U | 13 | | Total Xylenes | UG/KG | 0.0 | | 1200 | 2105769231 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | | | | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Trichloroethene | UG/KG | 0.0 | | 700 | 6253497 | 0 | 0 | 10 | | | 12 U | | 12 U | 13 | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 36204 | 0 | 0 | 10 |) 12 U | | 12 U | | 12 U | 13 | Table 22-3 120G - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | SEAD-120G
MOUNDS AT
THE DUCK
POND
TP120G-3
EB135
SA
1
1
SOIL
9-Mar-98 | SEAD-120G MOUNDS AT THE DUCK POND TP120G-3 EB136 SA 2 2 SOIL 9-Mar-98 | SEAD-120G MOUNDS AT THE DUCK POND TP120G-4 EB118 SA 1.5 1.5 SOIL 6-Mar-98 | SEAD-120G MOUNDS AT THE DUCK POND TP120G-4 EB119 SA 3.5 3.5 SOIL 6-Mar-98 | SEAD-120G
MOUNDS AT
THE DUCK
POND
TP120G-5
EB120
SA
1
1
SOIL
6-Mar-98 | SEAD-120G
MOUNDS AT
THE DUCK
POND
TP120G-5
EB121
SA
2
2
SOIL
6-Mar-98 | |--|--------|---|---|---|---|---|---| | PARAMETER | Q | VALUE Q | \/ALLIE 0 | VALUE | | | | | 1,1,1-Trichloroethane | U | VALUE Q
13 U | VALUE Q | VALUÉ Q | VALUE Q | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | 1,1,2,2-Tetrachioroethane | υ | 13 U | 13 U
13 U | 12 U | 11 U | 14 U | 14 U | | 1,1-Dichloroethane | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | 1,1-Dichloroethane | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | 1.2-Dichloroethane | U | 13 U | _ | 12 U | 11 U | 14 U | 14 U | | | U | | 13 U | 12 U | 11 U | 14 U | 14 U | | 1,2-Dichloroethene (total) 1,2-Dichloropropane | U | 13 U
13 U | 13 U
13 U | 12 U | 11 U | 14 U | 14 U | | Acetone | U | 13 U | 9 J | 12 U
7 J | 11 U | 14 U | 14 U | | Benzene | U | 13 U | 13 U | | 10 J | 14 U | 14 U | | Bromodichloromethane | U | 13 U | | 12 U | 11 U | 14 U | 14 U | | Bromoform | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Carbon disulfide | U | | 13 U | 12 U | 11 U | 14 U | 14 U | | Carbon distillide Carbon tetrachloride | - | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Carbon tetrachionide
Chlorobenzene | U
U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | | | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Chlorodibromomethane | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Chloroethane | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Chloroform | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Cis-1,3-Dichloropropene | U
U | 13 U
13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Ethyl benzene | U | | 13 U | 12 U | 11 U | 14 U | 14 U | | Methyl bromide Methyl butyl ketone | U | 13 U
13 U | 13 U
13 U | 12 U | 11 U | 14 U | 14 U | | | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Methyl chloride | U | 13 U | | 12 U | 11 U | 14 U | 14 U | | Methyl ethyl ketone | U | 13 U | 13 U
13 U | 12 U | 11 U | 14 U | 14 U | | Methyl isobutyl ketone | | 13 U | | 12 U | 11 U | 14 U | 14 U | | Methylene chloride | U
U | | 13 U | 12 U | 11 U | 14 U | 14 U | |
Styrene | | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Tetrachloroethene | U | 13 U
13 U | 13 U
7 J | 12 U | 11 U | 14 U | 14 U | | Toluene | U | | 7 J
13 U | 4 J | 2 J | 5 J | 3 J | | Total Xylenes | - | 13 U | | 12 U | 11 U | 14 U | 14 U | | Trans-1,3-Dichloropropene | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Trichloroethene | U
U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | | Vinyl chloride | U | 13 U | 13 U | 12 U | 11 U | 14 U | 14 U | #### Title 12 d 11/8 - Seminar till for and 18 than 5 alone TARARS Than 6 - Americal 1861 of the | 5111
(4 \ r.p.15 11/3N | | | | | | | | SEAL!
MATHE | IN SIL | SEAL 199G
M. HOLDS AT | MO | D-1706
PMF S-AT | SEAD 120G
MOI RES AT | SEAD-1707-
MOUNTS AT | SEAD-1:
MOUND | S AT | SEAD 1200
MOI NOS A | | SEAD 120G
MOI PATS AT | 340 | AD-120G
DIANDS AT | SEAD-120G
MOUNDS AT | |---|----------------|--------------|------------------|---------------|-------------------------|-----------------|----------|----------------|-----------------|--------------------------|-------------|--------------------|-------------------------|-------------------------|------------------|---------------|------------------------|---------------|--------------------------|-----|----------------------|------------------------| | | | | | | | | | 14 (
14 (| | TIME
SECIEN | PON | TV K. K. | LUNU
LIE DOCK | THE DLK K
POND | THE CKI
POND | OX. | THE EVEN | | HE CHOX | | € COCX | THE EXICK
POND | | SAME! | | | | | | | | IPIN
FBII | | 19113
18113 | TP1:
FB1 | 20G-2
14 | TP120G-2
EB115 | TP120G-3
EB135 | FP120G
EB1V | 3 | TP120G 4
EB118 | | 1P120G 4
EB117 | | 120G 5
1120 | TP120G 5
EB121 | | OK 1 UDE | | | | | | | | <₩ | | <.∧ | SA | | 4,Λ | SA | SA | | SA | | SA | SA | | SA | | SAME DEPTH FOR | | | | | | | | | 05 | | ; | 15 | 3 | 5 | | 2 | | 15 | 35 | | ; | 2 | | MATRIX | | | | | | | | ·.ci. | | 44.4 | SOIL | | SOIL | SOIL | SOIL | • | SOIL | | SOIL | | DIL . | SOIL | | SAMP CATE | | | LEKE COLALINE A | | | NUMBER
ABOVT | DI IMBER | NUMBER
CA | 5 Mar. 18 | 's Mixe his | | is May ria | Fi Mar NA | 9 M ns ns | | Mar NH | 7-Me | ne ne | AP WAR | | A Mar 98 | 5 Mar 98 | | FARAMETER 1.14 Trobumbenzene | UNIT | MAXMIN | DETECTION | 7AGM
3400 | PRG
10528846 | TAGM | r∉trcts. | ANALYSIS SALE | F 0 | . At 14 | O VAL | UF (3
(2.1) | VALIE () | VALUE | D VALLE | Q | VALUE | 78 U | VALUE .'B | | ALIFE Q | VALUE 0 | | 1.2 Ex histobenzene | 1666 | по | Outre. | 34(K) | 94759615 | rı | n | 10 | 87.11 | | 2.11 | R2 11 | 85 11 | 5.
5.2 | | 85 U
85 U | | 78 U | 7R | | 99 U | 97.11 | | 1.31 V blumberzene | USAG | пп | U (K). | 1500 | 93709731 | (1) | 19 | 10 | H2 11 | | . 11 | 82.11 | 86 11 | H." | | 45 U | | 76 11 | 78 | | 89 U | 97 11 | | 1.4 Fer blockbenzene 7.4 S. Trichtgerighengt | UGAG
UGAG | 0.0 | 0.00** | 4500
100 | 2865186
105288452 | n | n
n | 10 | 200 11 | | . 11 | 82 11
'00 11 | 210 U | 6.7
200 | | 85 U
300 U | | 78 U
190 U | 190 | | 89 U
220 U | 9, 11 | | 7.4.6 Tochinophenni | LIGAS | 0.0 | 0.00% | 1181 | 6253497 | n | n | 10 | 82 11 | | 2 17 | 87.11 | 85 11 | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 (1 | | 2.4 Exchlorophenol | HCKG | 0.0 | 0.00% | 400 | 1158654 | n | 0 | 10 | 87 (1 | | 2.11 | R2 (1 | 86 17 | 62 | | 85 () | | 78 U | 78 | U | 89 U | 97 U | | 2.4 Firmethylphenol | UGAG | ñ n | 0.00% | | 21057692 | D | n | 10 | 87 (1 | | 2.0 | 82 (I | 85 U | 62 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | ; 4 (Introphenol
2.4 (Indicate) whe | USAS | 0.0 | 0.00% | 200 | 2105769
2105769 | 0 | D n | 10 | 200 11
82 1J | | . U | 82.0 | 210 U | 200 | | 200 U
85 U | | 190 U | 190 | | 220 U
89 U | 240 E1
97 U | | 2.5 (sndrdrkuene | HGAG | 0.0 | 0.00% | 1000 | 105,7885 | 63 | n | 10 | 82 U | | 111 | 82.11 | 86 17 | 83 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | 2 Chioronaphthatene | HGAKG | 0.0 | 0.00% | | | 0 | Ð | 10 | 87 (1 | | 2.0 | 8.5 11 | 86 U | 82 | | 85 () | | 78 U | 78 | | 89 U | 97 U | | , Chiarophena | UGAC. | 0.0 | 0.00% | 800 | 5764473 | 0 | n | 10 | 82.11 | | 2.14 | 67 H | 86 U | 6.7
6.7 | | 85 () | | 78 U | 78 | | 89 U | 97 () | | ? Methylnaphti siese ? Methylphenoi | UGAKG | 0.0 | 0.00% | 95400
100 | 52644231 | 0 | 0 | 10 | 82.11 | | 2.17 | 82 U | 11.28 | 6.2 | | 85 U | | 78 U
78 U | 78
78 | | 89 U | 97 H
97 H | | 2 Namanine | UG/KC- | 0.0 | 0.00% | 430 | 63173 | 0 | a | 10 | 200 U | 200 | 0 11 | 200.17 | 210.11 | ,00 | | 200 U | | 190 U | 190 | | 220 U | 240 LF | | 2 Miliophenol | UGALG | 50 | 0.00% | 3 10 | | n | 0 | 10 | 82 U | | 2.17 | 87 U | 86 () | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | 3.3 Exchlorobenzidine 3.titroandine | UGAKG | 0.0 | 0.00% | 500 | 152863 | 0 | 0 | 10 | 82 U
200 U | | 2 U | 82 U
200 U | 80 U | 87 | | 85 U
200 U | | 78 U | 78
190 | | 89 U
220 U | 97 U
240 U | | 4 f I knitro 2 methylphenol | USAG | 0.0 | 0.00% | 910 | 11,890,14 | 0 | 0 | 10 | 200 11 | | D (I | 200 U | 210 U | 790 | | 200 U | | 190 U | 190 | | 220 U | 240 U | | 4 Bromophenyl phenyl ether | | 0.0 | 0.00% | | 61057308 | 0 | 2 | 10 | 82 12 | | 2 U | 82.17 | 84 U | A2 | | 85 U | | 78 U | 78 | U | 89 U | 97 (1 | | 4 (2-lorg 3 methylphenol | UGAKG | 0.0 | 0.00% | 240 | 4211539 | n | 0 | 10 | 82 U | | 2.0 | 82.11 | 86 U
86 U | 82 | | 85 U | | 79 U | 78
78 | | 89 U | 97 (I
97 U | | 4 Chkroankne
4 Chlatophenyl phenyl elher | UGAKG | 0.0 | 0.00% | 230 | 4211519 | 0 | 0 | 10 | 82 U | | 2.0 | 82 U | 85 U | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 11 | | 4 Methylphenal | UGAG | 0.0 | 0.00% | 1400 | 52644231 | n | n | 10 | 82 U | | 2.0 | 82.17 | 86 U | 62 | | 85 U | | 78 U | 79 | Ü. | 89 U | 97 U | | 4 Nitroamine | UÇAKC. | n a | 0.00% | | 3158654 | 0 | G. | 10 | 200 U | | αU | 200 U | 210 U | 200 | | 200 U | | 190 U | 190 | | 220 U | 240 ∪ | | 4 Nitrophenol
Acertacotherie | UGAG | 0.0 | 0.00% | 50000 | 63173077 | 0.0 | 0 | 1(1 | 200 H
82 U | | n () | 200 U
82 U | 210 U
86 U | 200 | | 200 U
85 U | | 190 U
78 U | 190 | | 220 U
81 U | 240 U
97 U | | Acen sphilitylene | USAG | 0.0 | 0.00% | 41000 | | 0 | n | 10 | 82 U | | 2.07 | 82.11 | 86 17 | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | Anthracene | I KAKG | 11.0 | 10 00% | 50000 | 315865385 | n | 1 | 10 | 82 U | | 2.0 | 82.11 | 85 U | 82 | | 11 J | | 78 U | 78 | | 89 U | 97 LI | | [lenzo[a]nnthracene | KWG | 41 G
40 G | 30 00% | 224 | 94231 | 0 | , | 10 | 82 U
47 J | | 2 U | 82 U | 96 U
85 U | 12 | 1 | 41 J
40 J | | 78 U
78 U | 78
78 | | 7 1 J
83 J | 97 LI
97 U | | Renzolajoyrene
Renzolajtiuoraminene | USAKG | 40 C | 40 00%
40 00% | 1100 | 94231 | q | 4 | 10 | 59.3 | | 2.0 | 82 U | 85 U | 22 | | 48 J | | 78 U | 75
75 | | 98 1 | 97 U | | (lenznight)peryiene | UGAG | 29.0 | 40.00% | 50000 | | 0 | 4 | 10 | 5 1 J | | 2 U | 87 11 | 86 U | 16 | | 29 J | | 78 U | 78 | | 99 1 | 97 U | | Renzujk/Nuoranthene | USAKS | 410 | 40 00** | 1100 | 942308 | 0 | 4 | 10 | 7 2 J
87 U | | 2.0 | 82 U | 85 U | 14 | J | 41 I
85 U | | 78 U
78 U | 78
78 | | 10 J
69 U | 97 U | | Bist? Chloroethory)methine
Bist? Chloroethyljether | UGMG | 00 | 0.00% | | 62535 | 0 | | 1D | 82 U | | 2.0 | 82 U | 86 U | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | Brit? Chlorosopropyljether | USAKG | 20 | 0.00% | | 962602 | 0 | 0 | 10 | 82 U | | 7 0 | 82 U | U 86 | 82 | U | 85 U | | 78 U | /8 | U | 89 U | 97 U | | Bisi.' Ethylheirylichthalate | UGAKG | 25.0 | 60 00% | 50000 | 4913457 | 0 | - | 10 | 25 J | | 5 1 | 82 U | 86 U | | J | 48 J | | 78 U | 78 | | 16 JB | 12 JB | | Butytherszylphthaliste
Certhazole | UGAG | 8 2
8 3 | 30 00%
10 00% | 50M0 | 210576923 | 0 | 3 | 10 | 82 U | | 1 JB | 82 11 | 82 JB | 92 | | 52 I | | 78 U | 76
78 | | 89 U | 97 U | | Chrysene | UGAKG | 48.0 | 50 00% | 400 | 942.9777 | 0 | 5 | 10 | 611 | 83 | 2.17 | 82 U | 85 U | | ì | 48 J | | 78 U | 78 | | 11 J | 6.3 J | | O n butylphthalete | UG/KG | 0.0 | 0.00% | 8100 | | 0 | 0 | 10 | 82 U | | 2.11 | 82 14 | 86 U | 87
83 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | Can octylphthalate Dibensia blanthiarene | HOMO | 14.0 | 10.00% | 50000 | 21057592 | 0 | | 10 | 82 U | | 2 U
2 U | 82 U | 96 U | | U | 85 U
14 J | | 78 U | 78
78 | | 89 U | 97 U
97 U | | Cabenzinfuran | UGAKG | 0.0 | 0.00% | 6200 | 9827 | a | 0 | 10 | 92 U | 83 | 2 U | 82.11 | 86 U | 82 | U | 85 U | | 78 U | 78 | U | 89 U | 97 U | | Elethyl phthalate | UGMG | 20 0 | 125 00% | 7100 | 842307692 | o | 10 | 8 | 6 IB | | 7 :IR | 63 R | 98 JB | | RJ. | 8 2 BJ | | 89 J | 7.1 | | 50 J | 7.4.1 | | Camethylphilhalate Fluoranthene | UGAKG | 00
950 | 0 00%
40 00% | 2000
50000 | 10530000000
42115385 | 0 | 0 | 10 | 82 U
9 3 .1 | | 2 U | 82 U | 86 U
7.2 J | 82 | u . | 85 U
95 | | 78 U
78 U | 78
78 | | 89 U | 97 U
87 J | | Fluorene | USAKS | 5.6 | 10 00% | 50000 | 42115385 | a | 1 | 10 | 82 U | | 2.0 | 82 11 | 86 U | 82 | | 56 J | | 78 U | 78 | | 89 U | 97 17 | | Herachlorgbenzene | UCKG | 0.0 | 0.00% | 410 | 42993 | c | 0 | 10 | 82 U | | 2 U | 87 U | 95 U | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 ∪ | | I texts bloodsuladiene | UGAC | 0.0 | 0.00% | | 210577 | 0 | 0 | 10 | 82 U
82 U | | 2 () | 82 U
82 U | 86 U | 82 | | 85 U | | 78 U
78 U | 78
78 | | 89 U
89 U | 97 U
97 U | | Lievachiorocyclopentagiene
Hexachioxoethane | UGAKG | 0.0 | 0.00%
0.00% | | 1052885 | 0 | 0 | 10 | 82 U | | 2 U | 82 17 | 85 U | 82 | | 85 U | | 78 U | 78 | | 89 U | 97 U | | Indenn(1 2 3 cd)pviene | UGAG | 27 0 | 40 00% | 3200 | 94231 | 0 | 4 | 10 | 46 J | | 7 U | 82 IJ | 86 U | 12 | | 27 .) | | 78 U | 78 | U | 7.4 J | 97 U | | Largharone | HOWG | 0.0 | 0.00% | 4400 | | 0 | 0 | 10 | 82 U | | 2 U | 82 U | 96 U
95 U | e:
e: | | 85 U | | 78 U | 78
78 | | 89 U | 97 U | | N Nitroscophenylamine
N Nitroscopropylamine | UG/KG
UG/KG | 0.0 | 0.00% | | 14038462
9827 | 0 | 0 | 10 | 87 U | | 2 U | 82 U | 95 U
96 U | 82
 | 85 U | | 78 U | 78 | | 89 U | 97 U | | N Narrascopropyramine
Naphthalene | UGAKG | 00 | 0.00% | 13000 | 42115385 | 0 | 0 | 10 | 82 U | | 2 U | 82 U | 85 U | 82 | U | 85 U | | 78 U | 78 | U | 89 U | 97 U | | *littobenzene | UGAKG | 0.0 | | 200 | 526442 | D | n | 10 | 82 U | | 2.0 | 82 U | 86 U | | U | 85 U | | 78 U | 78 | | 89 U | 97 U | | Pentachlorophenol Phenanthrene | UGAKG | 0 n
50 0 | 0.00% | 1000 | 573237 | 0 | 0 | 10 | 200 U
59 J | 200
a | 0 U
2 U | 200 U
82 U | 710 U
86 U | 200 | | 200 U
60 J | | 190 U
78 U | 190 | | 220 U | 240 U
5.5 .I | | Phenri | LIGNIG | 0.0 | 0.00% | 30 | 631730769 | 0 | 0 | 10 | A2 U | | 20 | 82 U | 86 U | | Ű | 85 U | | 78 U | 78 | U | 89 U | 97 U | | Pyréné | UGARG | 95.0 | PO 00% | 50000 | 31585538 | n | 6 | 10 | 81 / | 6. | 2.19 | 6? U | 65 J | 71 | J | 84 | | 78 U | 7,8 | U | 13 J | 7.4.3 | | TPH | MONG | 0.0 | 0.00% | | | 0 | n | 10 | 18.9 | 18 | 7.11 | 20.4.17 | 20.8 U | 22.4 | | 35 A | | 18 D U | 23.4 | D | 20 6 U | 22 5 U | | 074 | WESTER! | | | | | | | | 10.7 | 18 | , | 200.17 | 20 8 17 | | v | 33.0 | | | 214 | | 2000 | 22 3 0 | | SEAD-1200 MOUNDS AT MOUNDS AT POUCK POND TP120G 5 E8171 SA 2 SOIL 2 6 MA: 98 | | |--|---| | SEAD-120G MOUNDS AT THE DUCK POND TP120G-5 SA 1 SOIL SOIL 6-Mai 96 | 7 C C C C C C C C C C C C C C C C C C C | | SEAD 120G THE DUCK POND TP 120G 4 EB 19 SA 3 5 SOIL 6 Mar 96 | 20 M M M M M M M M M M M M M M M M M M M | | SEAD 120G THE DUCK POND TP120G 4 EB118 SA 15 SOIL 15 6-1/ks1.96 6-1/ks1.96 | 40 | | SEAD-120G
MCUMCS AT
THE DUCK
POND
TP120G 3
E8136
S.A. 2
SOR, 2
9 Mar 96 | | | SEAD-120G
MCMUNGS AT
THE DUCK
POND
TP120G-3
SA 1
SA 1
SOLL 9 Mar 96 | | | SEAD-120G THE DUCK POND TP 170G 2 EB115 SA 3 SGIL 13 SGIL 61Abr 98 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SEAD 120G THE DUCK POUND AT THE DUCK POUND TP 120G 2 EB 114 SA 15 50.1 A Main 9B | | | SEAD 170G THE CUCK POND TP120G 1 EB113 SA 2 SOIL 5 Mar 96 | 2 | | 20G AT UCK
UCK
3 1 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | $\frac{1}{8} = \frac{1}{8} \times \frac{1}$ | | SEAD 130G 1.0GH/S0 41 110 UOCH 1.0GH/S0 110 UCH 1.0 | ************************************** | | NUMBER | | | NJABER
About | | | 2 |
10073046
91700713
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007104
7007 | | | 7700.47 7700.4 | | FREGUENCY | | | PREC | PARTIES AND | | | 114 141 141 141 141 141 141 141 141 141 | | STE
PESCRIPTION
LOC. D
SAMP TO
SAMP DETERMENT
SAMP DATE | 1 Or International Control Con | Page 1 Į, ### Table 22-6 120G - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | | | | | | | | | SEAD-120G
MOUNDS AT
THE DUCK
POND | | SEAD-120
MOUNDS
THE DUC
POND | AT | SEAD-120
MOUNDS
THE DUCK
POND | AT | SEAD-120G
MOUNDS AT
THE DUCK
POND | |-----------------------|-------|---------|-----------|--------|---------|-----------------|--------------|--------------|--|----------|---------------------------------------|---------|--|---------|---| | LOC ID | | | | | | | | | TP120 | 0G-1 | TP120G- | 1 | TP120G-2 | | TP120G-2 | | SAMP ID | | | | | | | | | EB112 | 2 | EB113 | | EB114 | | EB115 | | QC CODE: | | | | | | | | | SA | | · SA | | SA | | SA | | SAMP DETH TOP: | | | | | | | | | | 0.5 | | 2 | | 1,5 | 3 | | SAMP DEPTH BOT. | | | | | | | | | | 0.5 | | 2 | | 1.5 | 3 | | MATRIX. | | | | | | | | | SOIL | | SOIL | _ | SOIL | | SOIL | | SAMP DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | | 5-Mar-98 | | lar-98 | | ar-98 | 6-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALU | E Q | VALUE | Q | VALUE | Q | VALUE | | Aluminum | MG/KG | 20200 | 100 00% | 19520 | 1053000 | 1 | 10 | 1 | 0 | 12600 | | 14100 | | 7800 | A 31-34 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | | Antimony | MG/KG | 1.5 | 150.00% | 6 | 421 | 0 | 6 | | 4 | 0.86 UN | | 0.88 BN | | 1.1 BN | 1.4 | | Arsenic | MG/KG | 10.3 | 100.00% | 8.9 | 46 | 1 | 10 | 1 | 0 | 3.9 | | 3.6 | | 4.4 | 5.2 | | Barium | MG/KG | 155 | 100 00% | 300 | 73702 | 0 | 10 | 1 | 0 | 82.6 | | 79.1 | | 111 | 149 | | Beryllium | MG/KG | 0.7 | 90.00% | 1 13 | 16 | 0 | 9 | 1 | 0 | 0.4 B | | 0.41 B | | 0.07 B | 0.54 | | Cadmium | MG/KG | 0.09 | 400.00% | 2 46 | 526 | 0 | 8 | | 2 | 0.07 U* | | 0.05 U* | | 0.07 U* | 0.08 | | Calcium | MG/KG | 23700 | 100,00% | 125300 | | 0 | 10 | 1 | 0 | 10400 | | 4010 | | 1710 | 3290 | | Chromium | MG/KG | 26 8 | 100 00% | 30 | 1052885 | 0 | 10 | 1 | 0 | 15.1 * | | 15.5 * | | 20.2 * | 24.2 | | Cobalt | MG/KG | 13.9 | 100.00% | 30 | 63173 | 0 | 10 | 1 | 0 | 8.6 B | | 8.2 B | | 12.8 | 10.6 | | Copper | MG/KG | 27.3 | 100.00% | 33 | 42115 | 0 | 10 | 1 | 0 | 18.3 ° | | 13.5 * | | 14 * | 19 | | Cyanide | MG/KG | 0 | 0.00% | 0.35 | | 0 | 0 | 1 | 0 | 0.66 U | | 0.64 U | | 0.66 U | 0.71 | | Iron | MG/KG | 33200 | 100.00% | 37410 | 315865 | 0 | 10 | 1 | 0 | 17800 | | 16800 | 2 | 4600 | 31800 | | Lead | MG/KG | 38 | 100.00% | 24.4 | | 3 | 10 | 1 | 0 | 17.5 | | 12.1 | | 15.4 | 18.3 | | Magnesium | MG/KG | 7740 | 100.00% | 21700 | | 0 | 10 | 1 | 0 | 5260 ° | | 3100 * | | 3530 * | 3390 | | Manganese | MG/KG | 2070 | 100.00% | 1100 | 24216 | 3 | 10 | 1 | 0 | 508 | | 420 | 1100-2100 | 1920 | 1570 | | Mercury | MG/KG | 0.08 | 20.00% | 0.1 | 316 | 0 | 2 | 1 | 0 | 0.06 U | | 0.06 U | | 0.06 U | 0.06 | | Nickel | MG/KG | 43.8 | 500.00% | 50 | 21058 | 0 | 10 | | 2 | 18.4 E* | | 16.2 E* | | 19.5 E* | 19.8 | | Potassium | MG/KG | 2120 | 100 00% | 2623 | | 0 | 10 | 1 | 0 | 1410 | | 1150 | | 1620 | 2070 | | Selenium | MG/KG | 0 | 0.00% | 2 | 5264 | 0 | 0 | 1 | 0 | 1.2 UN | | 0.8 UN | | 1.2 UN | 1.2 | | Silver | MG/KG | 0 | 0 00% | 0.8 | 5264 | 0 | 0 | 1 | 0 | 0.52 U | | 0.36 U | | 0.51 U | 0.55 | | Sodium | MG/KG | 0 | 0 00% | 188 | | 0 | 0 | 1 | 0 | 149 U | | 104 U | | 149 U | 158 | | Thallium | MG/KG | 2.8 | 40.00% | 0.855 | 84 | 4 | 4 | 1 | 0 | 1.7 B | | 1.1 U | in the same of | В | 2.8 | | Vanadium | MG/KG | 37.5 | 100.00% | 150 | 7370 | 0 | 10 | 1 | 0 | 21.5 E | | 23.3 E | , U U. | 29.9 E | 37.5 | | Zinc | MG/KG | 103 | 100.00% | 115 | 315865 | 0 | 10 | 1 | 0 | 57 | | 51.5 | | 66.5 | 102 | Table 22-6 120G - Metals in Soil vs TAGMs Non-Evaluated EBS Sites | SITE
DESCRIPTION | | MOUNDS A | | | OG
AT
K | MOUNDS A | SEAD-120G
MOUNDS AT
THE DUCK
POND | | SEAD-120G
MOUNDS AT
THE DUCK
POND | | G
AT | SEAD-12
MOUNDS
THE DUO
POND | SAT | |---------------------|----|----------|--------|------------------|---------------|-------------------|--|----------|--|----------|---------|--------------------------------------|---------| | LOC ID: | | TP120G-3 | | POND
TP120G-3 | 3 | TP120G-4 | | TP120G-4 | | TP120G-5 | | TP120G- | -5 | | SAMP ID | | EB135 | | EB136 | | EB118 | | EB119 | | EB120 | | EB121 | | | QC CODE | | SA | | | SAMP DETH TOP: | | Or . | 1 | | 2 | | 1.5 | | 3.5 | 1 | | | 2 | | SAMP DEPTH BOT | | | 1 | | 2 | | 15 | | 3.5 | 1 | | | 2 | | MATRIX | | SOIL | • | SOIL | - | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE. | | 9-Mar | -98 | . 9-M | ar-98 | 6-Mar-98 | | 6-Mar-98 | | 6-Mar-98 | | 6-Mar-98 | | | PARAMETER | Q | VALUE | Q | | Aluminum | | 148 | 300 | 1 | 13400 | | 17000 | | 000 | 169 | 900 | | 16400 | | Antimony |
BN | | .82 UN | 1 5 BN | | 0 | .85 BN | | 08 UN | | 1.4 BN | 1 UN | | | Arsenic | | | 5.1 | | 4 | | 4.5 | | 5 | | 63 | 2,8 B | | | Barium | | | 155 | | 97 | 84 4 | | 81.4 | | | 115 | | 145 | | Beryllium | В | 0 | .02 U | | 0.63 B | | 0.7 B | (| 58 B | C | .57 B | | 0.67 B | | Cadmium | U* | 0 | 07 U | | 0 08 U | 0.05 U* | | (| 0.07 U* | C | .08 U° | | 0.09 U* | | Calcium | | 111 | 100 * | | 8840 * | 12300 | | 23 | 700 | 6 | 070 | | 7100 | | Chromium | • | 1 | 9.7 | | 19.7 | 26.8 * | | 22.2 * | | | 22 * | | 21.4 * | | Cobalt | В | 1 | 3.7 | | 11 2 B | | 3.9 | 11.3 B | | 11.5 B | | 8.5 E | | | Copper | • | 2 | 3.1 N° | | 26.3 N* | | 7.3 * | 25 * | | 26.2 * | | 24.7 * | | | Cyanide | U | 0 | .64 U | | 0.67 U | | .59 U | | 0.62 U | | .71 U | | 0.75 U | | Iron | | 231 | | 2 | 1900 | | 200 | | 500 | | 300 | | 23000 | | Lead | | 4.4 | ** | | 36.9 | | 6.3 | | 13.3 | | 15.6 | | 19.5 | | Magnesium | • | | 540 | | 4310 | | 810 * | | 740 * | | 120 * | | 3980 ° | | Manganese | | 1423 | | | 379 | | 513 | | 520 | | 489 | | 402 | | Mercury | U | | 0.08 B | | 0.06 B | |).06 U | | 0.06 U | | .07 U | | 0.06 U | | Nickel | E* | | 6.4 | | 296 | | 3.8 E* | | 32.3 E* | | 7.8 E* | | 24.5 E* | | Potassium | | | 120 | | 1920 | | 570 | 1 | 480 | | 090 | | 1800 | | Selenium | UN | | 1.1 U | | 1.2 U | | 0.8 UN | | 1.1 UN | | 1.2 UN | | 1.4 UN | | Silver | U | | .49 U | | 0.53 U | | 0.36 U | | 0.48 U | | .56 U | | 0.61 U | | Sodium | U | | 143 U | | 152 U | | 104 U | | 138 U | | 161 U | | 175 U | | Thallium | | | 1,5 UN | 1.6 UN | | Lit. night I.M. B | | 1.4 U | | 1.7 U | | 1.8 U | | | Vanadium | E | | 6.8 | 21.8 | | 25.1 E | | 23 6 E | | 27.2 E | | 24.6 E | | | Zinc | | | 100 N | 103 N | | 9 | 6.5 | 71 5 | | 9 | 5.7 | 101 | | # Table 22-7 120G - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | ı | | | | | | | | SEAD-120
MOUNDS .
THE DUCK
POND | AT | SEAD-120
MOUNDS
THE DUCI
POND | AT | SEAD-120G
MOUNDS AT
THE DUCK
POND | | SEAD-120G
MOUNDS AT
THE DUCK
POND | |---------------------|-------|---------|-----------|--------|---------|--------|---------|----------|--|---------|--|---------|--|-------|--| | LOC ID | | | | | | | | | TP120G-1 | | TP120G-1 | | TP120G-2 | | TP120G-2 | | SAMP ID | | | | | | | | | EB112 | | EB113 | | EB114 | | EB115 | | QC CODE | | | | | | | | | SA | | SA | | SA | | SA | | SAMP DETH TOP | | | | | | | | | | 0 5 | | 2 | 1 | 5 | 3 | | SAMP DEPTH BOT | | | | | | | | | | 0.5 | | 2 | 1 | .5 | 3 | | MATRIX | | | | | | | | | SOIL | | SOIL | | SOIL | | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 5-Ma | ar-98 | 5-M | lar-98 | 6-Mar-9 | 98 | 6-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | 0 11141 00 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | Aluminum | MG/KG | 20200.0 | 100 00% | 19520 | 1053000 | 0 | 10 | 10 | 12 | 2600 | | 14100 | 1786 | 00 | 20200 | | Antimony | MG/KG | 1 5 | 150.00% | 6 | 421 | 0 | 6 | 4 | | 0.86 UN | | 0.88 BN | 1 | .1 BN | 1.4 | | Arsenic | MG/KG | 10 3 | 100.00% | 8 9 | 46 | 0 | 10 | 10 | 1 | 3 9 | | 36 | 4 | 4 | 5.2 | | Barium | MG/KG | 155 0 | 100.00% | 300 | 73702 | 0 | 10 | 10 | 1 | 82.6 | | 79.1 | 1 | 11 | 149 | | Beryllium | MG/KG | 0 7 | 90 00% | 1 13 | 16 | 0 | 9 | 10 | 1 | 0.4 B | | 0 41 B | 0.0 | 07 B | 0.54 | | Cadmium | MG/KG | 0 1 | 400 00% | 2 46 | 526 | 0 | 8 | 2 | | 0.07 U* | | 0.05 U* | 0.0 | 07 U* | 0.08 | | Calcium | MG/KG | 23700.0 | 100 00% | 125300 | | 0 | 10 | 10 | 10 | 0400 | | 4010 | 17 | 10 | 3290 | | Chromium | MG/KG | 26 8 | 100 00% | 30 | 1052885 | 0 | 10 | 10 | 1 | 15.1 * | | 15.5 * | 20 | 2 * | 24.2 | | Cobalt | MG/KG | 13.9 | 100.00% | 30 | 63173 | 0 | 10 | 10 | 1 | 8.6 B | | 8.2 B | 12 | .8 | 106 | | Copper | MG/KG | 27 3 | 100.00% | 33 | 42115 | 0 | 10 | 10 | 1 | 18.3 * | | 13.5 * | | 14 * | 19 | | Cyanide | MG/KG | 0.0 | 0.00% | 0 35 | | 0 | 0 | 10 | | 0.66 U | | 0.64 U | 0.6 | 66 U | 0 71 | | Iron | MG/KG | 33200.0 | 100.00% | 37410 | 315865 | 0 | 10 | 10 | 17 | 7800 | | 16800 | 2460 | 00 | 31800 | | Lead | MG/KG | 38 0 | 100.00% | 24 4 | | 0 | 10 | 10 | | 17.5 | | 12 1 | 15 | .4 | 183 | | Magnesium | MG/KG | 7740.0 | 100.00% | 21700 | | 0 | 10 | 10 | | 5260 * | | 3100 * | 353 | 30 ° | 3390 | | Manganese | MG/KG | 2070.0 | 100.00% | 1100 | 24216 | 0 | 10 | 10 | | 508 | | 420 | 192 | 20 | 1570 | | Mercury | MG/KG | 0.1 | 20.00% | 0.1 | 316 | 0 | 2 | 10 | | 0.06 U | | 0.06 U | 0.0 | 06 U | 0 06 | | Nickel | MG/KG | 43 8 | 500.00% | 50 | 21058 | 0 | 10 | 2 | | 18.4 E* | | 16.2 E* | 19 | .5 E* | 19.8 | | Potassium | MG/KG | 2120 0 | 100.00% | 2623 | | 0 | 10 | 10 | | 1410 | | 1150 | 162 | 20 | 2070 | | Selenium | MG/KG | 0 0 | 0.00% | 2 | 5264 | 0 | 0 | 10 | | 1.2 UN | | 0.8 UN | 1 | .2 UN | 1.2 | | Silver | MG/KG | 0 0 | 0.00% | 8 0 | 5264 | 0 | 0 | 10 | | 0.52 U | | 0 36 U | 0.5 | 51 U | 0.55 | | Sodium | MG/KG | 0 0 | 0.00% | 188 | | 0 | 0 | 10 | | 149 U | | 104 U | 14 | 19 U | 158 | | Thallium | MG/KG | 28 | 40 00% | 0 855 | 84 | 0 | 4 | 10 | | 1.7 B | | 1.1 U | | .6 B | 2.8 | | Vanadium | MG/KG | 37 5 | 100 00% | 150 | 7370 | 0 | 10 | 10 | | 21 5 E | | 23.3 E | | .9 E | 37 5 | | Zinc | MG/KG | 103 0 | 100 00% | 115 | 315865 | 0 | 10 | 10 | | 57 | | 51.5 | 66 | .5 | 102 | Table 22-7 120G - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | SEAD-120G
MOUNDS AT
THE DUCK | | |---------------------|-----|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--| | | | POND | POND | POND | POND | POND | POND | | | LOC ID | | TP120G-3 | TP120G-3 | TP120G-4 | TP120G-4 | TP120G-5 | TP120G-5 | | | SAMP ID | | EB135 | EB136 | EB118 | EB119 | EB120 | EB121 | | | QC CODE | | SA | SA | SA | SA | SA | SA | | | SAMP DETH TOP | • | 1 | 2 | 1 5 | 3 5 | 1 | 2 | | | SAMP DEPTH BO | T | 1 | 2 | 1 5 | 3 5 | 1 | 2 | | | MATRIX | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | | SAMP DATE | | 9-Mar-98 | 9-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | | | PARAMETER | Q | VALUE Q | VALUE Q | VALUE Q | VALUE O | VALUE Q | VALUE Q | | | Aluminum | u. | 14800 | 13400 | 17000 | 15000 | 16900 | 16400 | | | Antimony | BN | 0.82 UN | 1.5 BN | 0.85 BN | 0.8 UN | 1.4 BN | 1 UN | | | Arsenic | 014 | 5.1 | 4 | 4.5 | 5 | 103 | 2.8 B | | | Barium | | 155 | 97 | 84 4 | 81 4 | 115 | 145 | | | Beryllium | В | 0.02 U | 0 63 B | 07 B | 0 58 B | 0.57 B | 0 67 B | | | Cadmium | Ü٠ | 0.07 U | 0 08 U | 0.05 U* | 0 07 U* | 0.08 U* | 0 09 U* | | | Calcium | | 11100 * | 8840 * | 12300 | 23700 | 6070 | 7100 | | | Chromium | | 19 7 | 19.7 | 26.8 * | 22.2 * | 22 * | 21.4 * | | | Cobalt | В | 13 7 | 11.2 B | 13.9 | 11 3 B | 11.5 B | 8 5 B | | | Copper | • | 23.1 N* | 26 3 N* | 27.3 * | 25 * | 26.2 * | 24.7 * | | | Cyanide | U | 0 64 U | 0 67 U | 0 59 U | 0.62 U | 0.71 U | 0.75 U | | | Iron | _ | 23100 | 21900 | 33200 | 27500 | 29300 | 23000 | | | Lead | | 38 | 36 9 | 16.3 | 13 3 | 25 6 | 19.5 | | | Magnesium | | 4540 | 4310 | 6810 * | 7740 * | 4120 * | 3980 * | | | Manganese | | 2070 | 379 | 513 | 520 | 489 | 402 | | | Mercury | U | 0 08 B | 0.06 B | 0 06 U | 0.06 U | 0.07 U | 0.06 U | | | Nickel | E* | 26.4 | 296 | 43 8 E* | 32 3 E* | 27.8 E* | 24.5 E* | | | Potassium | | 2120 | 1920 | 1570 | 1480 | 2090 | 1800 | | | Selenium | UN | 1.1 U | 1,2 U | 0.8 UN | 1 1 UN | 1.2 UN | 1.4 UN | | | Silver | U | 0.49 U | 0.53 U | 0 36 U | 0 48 U | 0 56 U | 0.61 U | | | Sodium | U | 143 U | 152 U | 104 U | 138 U | 161 U | 175 U | | | Thallium | | 1 5 UN | 1.6 UN | 1 1 B | 1.4 U | 1.7 U | 1.8 U | | | Vanadium | E | 26.8 | 21.8 | 25.1 E | 23.6 E | 27.2 E | 24.6 E | | | Zinc | | 100 N | 103 N | 96 5 | 71 5 | 95 7 | 101 | | | | | | | | | | | | ### Table 22-8 120G - Pesticides/PCBs in Soil vs TAGMS Non-Evaluated EBS Sites | SIT | E
SCRIPTION | | | | | | | | | SEAD-1.
MOUND
THE DU
POND | S AT | SEAD-1:
MOUND
THE DU
POND | SAT | SEAD-120
MOUNDS
THE DUCK
POND | AT | SEAD-
MOUNI
THE DI
POND | DS AT | |-----|-----------------------------|-------|---------|-----------|-------|---------|--------|---------|----------|------------------------------------|------------|------------------------------------|--------|--|------------|----------------------------------|--------| | SA | C ID
MP ID
CODE | | | | | | | | | TP120G
EB112
SA | G-1 | TP120G
EB113
SA | -1 | TP120G-2
EB114
SA | | TP1200
EB115
SA | | | SA | MP DETH TOP
MP DEPTH BOT | | | | | | | | | | 0 5
0 5 | | 2 | | 1 5
1 5 | | 3 | | | TRIX
MP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL
5-M | Mar-98 | SOIL
5-M | lar-98 | SOIL
6-Mar | r-98 | SOIL
6- | Mar-98 | | | | | | OF | | | ABOVE | OF | OF | | _ | | _ | | _ | | | | | RAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | | | -DDD | UG/KG | 0 | | 2900 | 286619 | 0 | C | | 0 | 4.2 U | | 4 2 U | | 42 U | | 4 4 | | | -DDE | UG/KG | 0 | | 2100 | 202319 | 0 | 0 | | 0 | 4.2 U | | 4 2 U | | 42 U | | 4 4 | | | -DDT | UG/KG | 0 | | 2100 | 202319 | 0 | (| | 0 | 4.2 U | | 4 2 U | | 4.2 U | | 4.4 | | Alc | | UG/KG | 0 | | 41 | 4046 | 0 | C | | 0 | 2.1 U | | 2 1 U | | 2.1 U | | 22 | | | ha-BHC | UG/KG | 0 | 0 00 10 | 110 | | 0 | 0 | | 0 | 2 1 U | | 2 1 U | | 21 U | | 2 2 | | | ha-Chlordane | UG/KG | 0 | | | | 0 | (| | 0 | 2.1 U | | 2 1 U | | 2 1 U | | 22 | | | oclor-1016 | UG/KG | 0 | | | 73702 | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | | oclor-1221 | UG/KG | 0 | | | | 0 | (| | 0 | 83 U | | 83 U | | 83 U | | 88 | | | oclor-1232 | UG/KG | 0 | | | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44
| | | oclor-1242 | UG/KG | 0 | | | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | | oclor-1248 | UG/KG | 0 | | | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Arc | oclor-1254 | UG/KG | 0 | | 10000 | 21058 | 0 | (| , | 0 | 42 U | | 42 U | | 42 U | | 44 | | Arc | oclor-1260 | UG/KG | 0 | | 10000 | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Be | ta-BHC | UG/KG | 0 | | 200 | | 0 | (| | 0 | 2.1 U | | 2.1 U | | 2 1 U | | 2.2 | | De | Ita-BHC | UG/KG | 0 | | 300 | | 0 | (| | 0 | 2.1 U | | 2.1 U | | 2.1 U | | 2.2 | | Die | eldrin | UG/KG | 0 | | 44 | 4299 | 0 | (| | 0 | 4.2 U | | 4.2 U | | 42 U | | 4 4 | | En | dosulfan l | UG/KG | 0 | | 900 | 6317308 | 0 | (| | 0 | 2.1 U | | 2.1 U | | 21 U | | 2.2 | | En | dosulfan II | UG/KG | 0 | 0 00% | 900 | 6317308 | 0 | (| | 0 | 4.2 U | | 4:2 U | | 4.2 U | | 4.4 | | En | dosulfan sulfate | UG/KG | 0 | 0 00% | 1000 | | 0 | (| | 0 | 4.2 U | | 4.2 U | | 4.2 U | | 4 4 | | En | drin | UG/KG | 0 | 0.00% | 100 | 315865 | 0 | (| | 0 | 4.2 U | | 4 2 U | | 42 U | | 4 4 | | En | drin aldehyde | UG/KG | 0 | 0.00% | | 315865 | 0 | (| | 0 | 4.2 U | | 4 2 U | | 42 U | | 4.4 | | En | drin ketone | UG/KG | 0 | 0 00% | | 315865 | 0 | (|) 1 | 0 | 4.2 U | | 4.2 U | | 4.2 U | | 4.4 | | Ga | mma-BHC/Lindane | UG/KG | 0 | 0.00% | 60 | 52914 | 0 | (|) 1 | 0 | 2 1 U | | 2.1 U | | 2.1 U | | 2.2 | | Ga | mma-Chlordane | UG/KG | 0 | 0.00% | 540 | | 0 | (|) 1 | 0 | 2 1 U | | 2.1 U | | 2.1 U | | 22 | | He | ptachlor | UG/KG | O | 0.00% | 100 | 15286 | 0 | (| | 0 | 2.1 U | | 2 1 U | | 2.1 U | | 2.2 | | | ptachlor epoxide | UG/KG | C | 0.00% | 20 | 7559 | 0 | (|) 1 | 0 | 2 1 U | | 2.1 U | | 2.1 U | | 2.2 | | | ethoxychlor | UG/KG | C | 0.00% | | 5264423 | 0 | (| , | 0 | 21 U | | 21 U | | 21 U | | 22 | | | xaphene | UG/KG | 0 | 0.00% | | | 0 | (|) 1 | 0 | 210 U | | 210 U | | 210 U | | 220 | Table 22-8 120G - Pesticides/PCBs in Soil vs TAGMS Non-Evaluated EBS Sites | SITE
DESCRIPTION | | SEAD-120G
MOUNDS AT
THE DUCK
POND | |---------------------|---|--|--|--|--|--|--| | LOC ID | | TP120G-3 | TP120G-3 | TP120G-4 | TP120G-4 | TP120G-5 | TP120G-5 | | SAMP ID | | EB135 | EB136 | EB118 | EB119 | EB120 | EB121 | | QC CODE | | SA | SA | SA | SA | SA | SA | | SAMP DETH TOP | | 1 | 2 | 1 5 | 3.5 | 1 | 2 | | SAMP DEPTH BOT | | 1 | 2 | 1 5 | 3 5 | 1 | 2 | | MATRIX | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | 9-Mar-98 | 9-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | | PARAMETER | Q | VALUE Q | | 4,4`-DDD | U | 4.1 U | 4 2 U | 3 9 U | 4 U | 4 5 U | 4.9 U | | 4.4°-DDE | U | 4 1 U | 4 2 U | 3 9 U | 4 U | 4 5 U | 4.9 U | | 4,4°-DDT | U | 4 1 U | 4 2 U | 3 9 U | 4 U | 4 5 U | 4.9 U | | Aldrin | U | 2 1 U | 2.2 U | 2 U | 2 U | 2 2 U | 2 4 U | | Alpha-BHC | U | 2.1 U | 2.2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Alpha-Chlordane | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Aroclor-1016 | U | 41 U | 42 U | 39 ∪ | 40 U | 45 U | 49 U | | Aroclor-1221 | U | 84 U | 86 U | 78 U | 79 U | 90 U | 98 U | | Aroclor-1232 | Ų | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1242 | U | 41 U | 42 U | 39 ∪ | 40 U | 45 U | 49 U | | Aroclor-1248 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1254 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1260 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Beta-BHC | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 24 U | | Delta-BHC | U | 2 1 U | 2 2 U | 2 U | 2 U | 2 2 U | 24 U | | Dieldnn | Ų | 4 1 U | 42 U | 3.9 U | 4 U | 4.5 U | 49 U | | Endosulfan I | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Endosulfan II | U | 4.1 U | 4.2 U | 39 U | 4 U | 4.5 U | 4.9 U | | Endosulfan sulfate | U | 4.1 U | 42 U | 3 9 U | 4 U | 4.5 U | 4.9 ∪ | | Endrin | Ų | 4 1 U | 4 2 U | 39 ∪ | 4 U | 4 5 U | 4.9 U | | Endnn aldehyde | Ų | 4 1 U | 4 2 U | 3.9 ↓ | 4 ∪ | 4.5 U | 4.9 U | | Endrin ketone | U | 4 1 U | 4 2 U | 3 9 U | 4 U | 4 5 U | 4.9 U | | Gamma-BHC/Lindane | U | 2 1 U | 2 2 U | 2 U | 2 U | 2 2 U | 2.4 U | | Gamma-Chlordane | U | 2.1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Heptachlor | U | 2.1 U | 2.2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Heptachlor epoxide | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Methoxychlor | U | 21 U | 22 U | 20 U | 20 U | 22 U | 24 U | | Toxaphene | U | 210 U | 220 U | 200 U | 200 U | 220 U | 240 U | #### Table 22-9 120G - Pesticides/PCBs in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-12
MOUNDS
THE DUG
POND | SAT | SEAD-12
MOUNDS
THE DUC
POND | AT | SEAD-120
MOUNDS
THE DUCK
POND | AT | SEAD-1
MOUND
THE DU
POND | OS AT | |---------------------|-------|---------|-----------------|-------|---------------|-----------------|--------------|--------------|--------------------------------------|----------------|--------------------------------------|----------------|--|----------------|-----------------------------------|------------| | LOC ID | | | | | | | | | TP120G- | -1 | TP120G- | ı | TP120G-2 | | TP1200 | S-2 | | SAMP ID | | | | | | | | | EB112 | | EB113 | | EB114 | | EB115 | | | QC CODE | | | | | | | | | SA | | SA | _ | SA | | SA | | | SAMP DETH TOP | | | | | | | | | | 0.5 | | 2 | | 1.5 | | 3 | | SAMP DEPTH BOT | | | | | | | | | 000 | 0 5 | | 2 | | 15 | | 3 | | MATRIX | | | | | | | | | SOIL | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | FREOUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | | Mar-98 | 5-M | ar-98 | 6-Ma | r-98 | 6- | Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRĞ | TAGM | DETECTS | ANALYSES | | Q | VALUE | Q | VALUE | Q | VALUE | | | 4.4°-DDD | UG/KG | 0 | 0 00% | 2900 | 286619 | 0 | | | 0 | 4.2 U | | 4.2 U | | 4.2 U | | 44 | | 4.4 DDE | UG/KG | 0 | 0 00% | 2100 | 202319 | 0 | (| | 0 | 42 U | | 42 U | | 4.2 U | | 44 | | 4.4`-DDT | UG/KG | 0 | | 2100 | 202319 | 0 | , | | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aldrin | UG/KG | 0 | 0 00% | 41 | 4046 | 0 | (| | 0 | 21 U | | 21 U | | 2 1 U | | 22 | | Alpha-BHC | UG/KG | 0 | | 110 | | 0 | (| | 0 | 2.1 U | | 21 U | | 2.1 U | | 2.2 | | Alpha-Chlordane | UG/KG | 0 | | | | 0 | (| | 0 | 21 U | | 2 1 U | | 2.1 U | | 2.2 | | Aroclor-1016 | UG/KG | 0 | | | 73702 | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aroclor-1221 | UG/KG | 0 | 0 00% | | | 0 | (| | 0 | 83 U | | 83 U | | 83 U | | 88 | | Aroclor-1232 | UG/KG | 0 | | | | 0 | | | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aroclor-1242 | UG/KG | 0 | 0 00% | | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aroclor-1248 | UG/KG | 0 | | | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aroclor-1254 | UG/KG | 0 | 0 00% | 10000 | 21058 | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Aroclor-1260 | UG/KG | 0 | | 10000 | | 0 | (| | 0 | 42 U | | 42 U | | 42 U | | 44 | | Beta-BHC | UG/KG | 0 | 0.00% | 200 | | 0 | , | | 0 | 2 1 U | | 2.1 U | | 21 U | | 2.2 | | Delta-BHC | UG/KG | 0 | | 300 | | 0 | | | 0 | 2 1 U | | 2.1 U | | 2.1 U | | 2 2 | | Dieldrin | UG/KG | 0 | | 44 | 4299 | 0 | (| | 0 | 4 2 U | | 4.2 U | | 4.2 U | | 4 4 | | Endosulfan I | UG/KG | 0 | 0.00% | 900 | 6317308 | 0 | (| | 0 | 21 U | | 2.1 U | | 2.1 U | | 2.2 | | Endosulfan II | UG/KG | 0 | 0 00% | 900 | 6317308 | 0 | | | 0 | 4.2 U | | 4.2 U | | 4.2 U | | 4.4 | | Endosulfan sulfate | UG/KG | 0 | 0 00% | 1000 | 045005 | 0 | (| | 0 | 4.2 U | | 4 2 U | | 4.2 U | | 4.4 | | Endrin | UG/KG | 0 | | 100 | 315865 | 0 | (| | 0 | 4 2 U | | 4.2 U | | 4.2 U | | 4 4
4 4 | | Endrin aldehyde | UG/KG | 0 | 0.00% | | 315865 | - | (| | 0 | 4 2 U | | 4.2 U | | 4.2 U | | | | Endrin ketone | UG/KG | 0 | 0.00% | | 315865 | 0 | , | | 0 | 4.2 U | | 4.2 U | | 4.2 U | | 4.4 | | Gamma-BHC/Lindane | UG/KG | 0 | | 60 | 52914 | 0 | 1 | | 0
0 | 2.1 U
2.1 U | | 2.1 U
2.1 U | | 2.1 U
2.1 U | | 2 2 | | Gamma-Chlordane | UG/KG | 0 | | 540 | 45000 | 0 | (| | 0 | | | 2.1 U | | 2.1 U | | 2.2 | | Heptachlor | UG/KG | 0 | | 100 | 15286
7559 | 0 | (| | 0 | 2 1 U
2.1 U | | 2.1 U | | 2.1 U | | 2.2 | | Heptachlor epoxide | UG/KG | 0 | | 20 | 5264423 | 0 | (| | 0 | 2.1 U | | 2.1 U | | 2.1 U | | 22 | | Methoxychlor | UG/KG | 0 | | | 5204423 | 0 | ` | | 0 | 210 U | | 210 U | | 21 U | | 220 | | Toxaphene | UG/KG | 0 | 0.00% | | | U | (| , 1 | 0 | 210 0 | | 2100 | | 2100 | | 220 | Table 22-9 120G - Pesticides/PCBs in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | SEAD-120G
MOUNDS AT
THE DUCK
POND | |---------------------|---|--|--|--|--|--|--| | LOC ID
SAMP ID | | TP120G-3
EB135 | TP120G-3
EB136 | TP120G-4
EB118 | TP120G-4
EB119 | TP120G-5
EB120 | TP120G-5
EB121 | | QC CODE | | SA | SA | SA | SA | SA | SA | | SAMP DETH TOP | | 1 | 2 | 15 | 3 5 | 1 | 2 | | SAMP DEPTH BOT | | 1 | 2 | 1.5 | 3 5 | 1 | 2 | | MATRIX | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | 9-Mar-98 | 9-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | 6-Mar-98 | | PARAMETER | Q | VALUE Q | | 4 4'-DDD | Ū | 4 1 U | 4 2 U | 3 9 U | 4 U | 4.5 U | 4.9 U | | 4.4'-DDE | Ü | 41 U | 42 U | 3 9 U | 4 U | 4.5 U | 4.9 U | | 4.4°-DDT | Ü | 41 U | 4.2 U | 3 9 U | 4 U | 4.5 U | 4 9 U | | Aldrin | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Alpha-BHC | Ū | 2 1 U | 2.2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Alpha-Chlordane | Ū | 2 1 U | 2.2 U | 2 U | 2 U | 2.2 U | 2 4 U | | Aroclor-1016 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1221 | U | 84 U | 86 U | 78 U | 79 U | 90 U | 98 U | | Aroclor-1232 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U |
| Aroclor-1242 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1248 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroctor-1254 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Aroclor-1260 | U | 41 U | 42 U | 39 U | 40 U | 45 U | 49 U | | Beta-BHC | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Delta-BHC | U | 2.1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Dieldnn | U | 41 U | 4.2 U | 39 U | 4 U | 4.5 U | 4.9 U | | Endosulfan I | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Endosulfan II | U | 4.1 U | 4 2 U | 3 9 U | 4 U | 4.5 U | 4.9 U | | Endosulfan sulfate | U | 41 U | 4 2 U | 3 9 U | 4 U | 4 5 U | 4.9 U | | Endrin | U | 4 1 U | 4 2 U | 3 9 U | 4 U | 4.5 U | 4.9 U | | Endrin aldehyde | U | 4.1 U | 4 2 U | 3 9 U | 4 U | 4,5 U | 4 9 U | | Endrin ketone | U | 4.1 U | 4 2 U | 3.9 U | 4 U | 4.5 U | 4.9 U | | Gamma-BHC/Lindane | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2 4 U | | Gamma-Chlordane | U | 2.1 U | 2 2 U | 2 U | 2 U | 2 2 U | 2.4 U | | Heptachlor | U | 2 1 U | 2 2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Heptachlor epoxide | U | 2 1 U | 2.2 U | 2 U | 2 U | 2.2 U | 2.4 U | | Methoxychlor | U | 21 U | 22 U | 20 U | 20 U | 22 U | 24 U | | Toxaphene | U | 210 U | 220 U | 200 U | 200 U | 220 U | 240 U | ## SEAD-120J ## Farmer's Dump Table 25-1 # Sample Collection Information SEAD-120J - Farmer's Dump ## 12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM (feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------------|----------------|--------------|----------------|---------------|---------------|------------|---| | SURFACE SOIL | SS120J-1 | EB269 | 3/18/98 | 0.0 | 0.2 | SA | Location is at base of a slope that is downgradient of a debris pile; debris includes rotting wood, metal siding/stove pipes, pig hides/fur/bones; also, the remains of two unlabelled drums and a container labelled (4-DAMINE No. 4) herbicide. | | SURFACE SOIL | SS120J-1 | EB029 | 3/18/98 | 0.0 | 0.2 | DU | Location is at base of a slope that is downgradient of a debris pile; debris includes rotting wood, metal siding/stove pipes, pig hides/fur/bones; also, the remains of two unlabelled drums and a container labelled (4-DAMINE No. 4) herbicide. | | SURFACE SOIL | SS120J-2 | EB270 | 3/18/98 | 0.0 | 0.2 | SA | Location is at the bottom of the main drainage wash into a low area; the area contained cans, glass bottles, plastic bottles, and other household debris. | | SURFACE SOIL | SS120J-3 | EB271 | 3/18/98 | 0.0 | 0.2 | SA | Location is approx. I foot downslope of the contained labelled 4-DAMINE No. 4 mentioned above. | | SURFACE SOIL | SS120J-4 | EB272 | 3/18/98 | 0.0 | 0.2 | SA | Location is just below (downgradient) an unlabelled drum, which had no bottom or top. | Notes: SA = Sample DU = Duplicate ### Table 25-2 120J - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites | SITE DESCRIPTION. | | | | | | | | | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | |---|-------|---------|-----------------|------|------------|-----------------|--------------|--------------|---|---| | LOC ID: SAMP_ID: QC CODE: SAMP. DEPTH TOP: SAMP. DEPTH BOT: MATRIX: | | | | | | | | | SS120J-1
EB269
SA
0
0.2
SOIL | SS120J-1
EB029
DU
0
0.2
SOIL | | SAMP DATE: | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 36850962 | 0 | 0 | ANAL 1 3 E 3 | | | | 1,1,2,2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 3439423 | 0 | 0 | 5 | | 16 U
16 U | | 1.1.2-Trichloroethane | UG/KG | 0.0 | 0.00% | 000 | 1206815 | 0 | 0 | 5 | | | | 1.1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 105288462 | 0 | 0 | 5 | | 16 U
16 U | | 1,1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 114647 | 0 | 0 | 5 | | 16 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 755917 | 0 | 0 | 5 | | 16 U | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | 700017 | 0 | 0 | 5 | | 16 U | | 1,2-Dichloropropane | UG/KG | 0.0 | 0.00% | | 1011595 | 0 | 0 | 5 | | 16 U | | Acetone | UG/KG | 20.0 | 20.00% | 200 | 105288462 | 0 | 1 | 5 | | 20 B | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 2372016 | 0 | | 5 | | 16 U | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 1109491 | 0 | 0 | 5 | | 16 U | | Bromoform | UG/KG | 0.0 | 0.00% | | 8707400 | 0 | 0 | 5 | | 16 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 105288462 | o o | 0 | 5 | | 16 U | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 529142 | 0 | 0 | 5 | | 16 U | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 21057692 | 0 | 0 | 5 | | 16 U | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 818910 | 0 | 0 | 5 | | 16 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 421153846 | 0 | 0 | 5 | | 16 U | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 10528846 | 0 | 0 | 5 | | 16 U | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | - | | 0 | 0 | 5 | | 16 U | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 105288462 | 0 | 0 | 5 | | 16 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 1505625 | 0 | 0 | 5 | | 16 U | | Methyl butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 5291420 | 0 | 0 | 5 | | 16 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 5 | | 16 U | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 84230769 | 0 | 0 | 5 | | 16 U | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 9171795 | 0 | 0 | 5 | | 16 U | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 1322855 | 0 | 0 | 5 | | 16 U | | Toluene | UG/KG | 13.0 | 80.00% | 1500 | 210576923 | 0 | 4 | 5 | | 16 U | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | 2105769231 | 0 | 0 | 5 | | 16 U | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | | Trichloroethene | UG/KG | 0.0 | 0.00% | 700 | 6253497 | 0 | 0 | 5 | | 16 U | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 36204 | 0 | 0 | 5 | | 16 U | | • | | | | | | | | | | | Table 25-2 120J - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites | SITE:
DESCRIPTION: | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | |---|------------------------------|------------------------------|------------------------------| | DESCRIPTION. | rainiei's Dunip | Tarrier's Durip | Tamer 3 Bamp | | LOC ID:
SAMP_ID:
QC CODE:
SAMP, DEPTH TOP: | SS120J-2
EB270
SA
0 | SS120J-3
EB271
SA
0 | SS120J-4
EB272
SA
0 | | SAMP DEPTH BOT: | 0.2 | 0.2 | 0.2 | | MATRIX: | SOIL | SOIL | SOIL | | SAMP. DATE: | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | | | | | | PARAMETER | VALUE Q | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | 14 U | 13 U | 16 U | | 1,1,2,2-Tetrachloroethane | 14 U | 13 U | 16 U | | 1,1,2-Trichloroethane | 14 U | 13 U | 16 U | | 1,1-Dichloroethane | 14 U | 13 U | 16 U | | 1,1-Dichloroethene | 14 U | 13 U | 16 U | | 1,2-Dichloroethane | 14 U | 13 U | 16 U | | 1,2-Dichloroethene (total) | 14 U | 13 U | 16 U | | 1,2-Dichloropropane | 14 U | 13 U | 16 U | | Acetone | 14 U | 13 U | 16 U | | Benzene | 14 U | 13 U | 16 U | | Bromodichloromethane | 14 U | 13 U | 16 U | | Bromoform | 14 U | 13 U | 16 U | | Carbon disulfide | 14 U | 13 U | 16 U | | Carbon tetrachloride | 14 U | 13 U | 16 U | | Chlorobenzene | 14 U | 13 U | 16 U | | Chlorodibromomethane | 14 U | 13 U | 16 U | | Chloroethane | 14 U | 13 U | 16 U | | Chloroform | 14 U | 13 U | 16 U | | Cis-1,3-Dichloropropene | 14 U | 13 U | 16 U | | Ethyl benzene | 14 U | 13 U | 16 U | | Methyl bromide | 14 U | 13 U | 16 U | | Methyl butyl ketone | 14 U | 13 U | 16 U | | Methyl chloride | 14 U | 13 U | 16 U | | Methyl ethyl ketone | 14 U | 13 U | 16 U | | Methyl isobutyl ketone | 14 U | 13 U | 16 U | | Methylene chloride | 14 U | 13 U | 16 U | | Styrene | 14 U | 13 U | 16 U | | Tetrachloroethene | 14 U | 13 U | 16 U | | Toluene | 13 J | 12 J | 7 J | | Total Xylenes | 14 U | 13 U | 16 U | | Trans-1,3-Dichloropropene | 14 U | 13 U | 16 U | | Trichloroethene | 14 U | 13 U | 16 U | | Vinyl chloride | 14 U | 13 U | 16 U | # Table 25-3 120J - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE DESCRIPTION: | | | | | | | | | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | |--|-------|---------|-----------|------|------------|--------|---------|----------|------------------------------|------------------------------|------------------------------| | LOC ID:
SAMP_ID
QC CODE
SAMP_DEPTH TOP: | | | | | | | | | SS120J-1
EB269
SA
0 | SS120J-1
EB029
DU
0 | SS120J-2
EB270
SA
0 | | SAMP_DEPTH_BOT:
MATRIX | | | | | | | | | 0.2
SOIL | 0.2
SOIL | 0.2
SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 10-IVIAI - 30 | 10-Mar-30 | 10-14141-30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0.00% | 800 | 36850962 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 3439423 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0.00% | | 1206815 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,1-Dichloroethane | UG/KG | 0.0 | 0.00% | 200 | 105288462 | 0
 0 | 5 | 16 U | 16 U | 14 U | | 1,1-Dichloroethene | UG/KG | 0.0 | 0.00% | 400 | 114647 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0.00% | 100 | 755917 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | 16 U | 16 U | 14 U | | 1,2-Dichloropropane | UG/KG | 0.0 | 0.00% | | 1011595 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Acetone | UG/KG | 20.0 | 20.00% | 200 | 105288462 | 0 | 1 | 5 | 16 U | 20 B | 14 U | | Benzene | UG/KG | 0.0 | 0.00% | 60 | 2372016 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Bromodichloromethane | UG/KG | 0.0 | 0.00% | | 1109491 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Bromoform | UG/KG | 0.0 | 0.00% | | 8707400 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Carbon disulfide | UG/KG | 0.0 | 0.00% | 2700 | 105288462 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Carbon tetrachloride | UG/KG | 0.0 | 0.00% | 600 | 529142 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 21057692 | 0 | 0 | 5 | | 16 U | 14 U | | Chlorodibromomethane | UG/KG | 0.0 | 0.00% | | 818910 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 421153846 | 0 | 0 | 5 | 16 U | 16 U | 14 U | | Chloroform | UG/KG | 0.0 | 0.00% | 300 | 10528846 | 0 | 0 | 5 | | 16 U | 14 U | | Cis-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | 14 U | | Ethyl benzene | UG/KG | 0.0 | 0.00% | 5500 | 105288462 | 0 | 0 | 5 | | 16 U | 14 U | | Methyl bromide | UG/KG | 0.0 | 0.00% | | 1505625 | 0 | 0 | 5 | | 16 U | 14 U | | Methyl butyl ketone | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | 14 U | | Methyl chloride | UG/KG | 0.0 | 0.00% | | 5291420 | 0 | 0 | 5 | | 16 U | 14 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | 5 | | 16 U | 14 U | | Methyl isobutyl ketone | UG/KG | 0.0 | 0.00% | 1000 | 84230769 | 0 | 0 | 5 | | 16 U | 14 U | | Methylene chloride | UG/KG | 0.0 | 0.00% | 100 | 9171795 | 0 | 0 | 5 | | 16 U | 14 U | | Styrene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | 14 U | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 1322855 | 0 | 0 | 5 | | 16 U | 14 U | | Toluene | UG/KG | 13.0 | 80.00% | 1500 | 210576923 | 0 | 4 | 5 | | 16 U | 13 J | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | 2105769231 | 0 | 0 | 5 | | 16 U | 14 U | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | | 16 U | 14 U | | Trichloroethene | UG/KG | 0.0 | 0.00% | 700 | 6253497 | 0 | 0 | 5 | | 16 U | 14 U | | Vinyl chloride | UG/KG | 0.0 | 0.00% | 200 | 36204 | 0 | 0 | 5 | 16 U | 16 U | 14 U | Table 25-3 120J - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE.
DESCRIPTION: | SEAD-120J
Farmer's Dump | SEAD-120J
Farmer's Dump | |--|--|--| | LOC ID: SAMP_ID: QC CODE: SAMP_DEPTH TOP: SAMP_DEPTH BOT. MATRIX: SAMP_DATE: | SS120J-3
EB271
SA
0
0.2
SOIL
18-Mar-98 | SS120J-4
EB272
SA
0
0.2
SOIL
18-Mar-98 | | BARAMETER | | | | PARAMETER | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | 13 U | 16 U | | 1,1,2,2-Tetrachloroethane | 13 U | 16 U | | 1,1,2-Trichloroethane 1,1-Dichloroethane | 13 U
13 U | 16 U
16 U | | 1,1-Dichloroethane | 13 U | 16 U | | 1.2-Dichloroethane | 13 U | 16 U | | 1,2-Dichloroethene (total) | 13 U | 16 U | | 1,2-Dichloropropane | 13 U | 16 U | | Acetone | 13 U | 16 U | | Benzene | 13 U | 16 U | | Bromodichloromethane | 13 U | 16 U | | Bromoform | 13 U | 16 U | | Carbon disulfide | 13 U | 16 U | | Carbon tetrachloride | 13 U | 16 U | | Chlorobenzene | 13 U | 16 U | | Chlorodibromomethane | 13 U | 16 U | | Chloroethane | 13 U | 16 U | | Chloroform | 13 U | 16 U | | Cis-1,3-Dichloropropene | 13 U | 16 U | | Ethyl benzene | 13 U | 16 U | | Methyl bromide | 13 U | 16 U | | Methyl butyl ketone | 13 U | 16 U | | Methyl chloride | 13 U | 16 U | | Methyl ethyl ketone | 13 U | 16 U | | Methyl isobutyl ketone | 13 U | 16 U | | Methylene chloride | 13 U | 16 U | | Styrene | 13 U | 16 U | | Tetrachloroethene | 13 U | 16 U | | Toluene
Total Xylones | 12 J
13 U | 7 J
16 U | | Total Xylenes | 13 U
13 U | 16 U | | Trans-1,3-Dichloropropene Trichloroethene | 13 U | 16 U | | Vinyl chloride | 13 U | 16 U | | viriyi chloride | 13 U | 16 0 | ### Table 25-4 120J - Semivolatiles/TPH in Soil vs TAGM Non-Evaluated EBS Sites | 0.75 | | | | | | | | | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | |---|----------------|------------|------------------|------------|---------------------|-----------------|--------------|--------------|-------------------|----------------|---------------|---------------|----------------| | SITE
DESCRIPTION | | | | | | | | | Farmer's Dump | | LOCID | | | | | | | | | SS120J-1 | SS120J-1 | SS120J-2 | SS120J-3 | SS120J-4 | | SAMP, ID. | | | | | | | | | EB269 | EB029 | EB270 | EB271 | EB272 | | QC CODE. | | | | | | | | | SA | DU | SA | SA | SA | | SAMP DEPTH TOP | | | | | | | | | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0 2 | 0 2 | 0.2 | 0.2 | 0.2 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP. DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | 0 0 | 0.00% | 3400 | 10528846 | 0 | (| 5 | | 100 U | 81 U | 87 U | 100 U | | 1.2-Dichlorobenzene | UG/KG | 0 0 | 0 00% | 7900 | 94759615 | 0 | | 5 | | 100 U | 81 U | 87 U | 100 U | | 1,3-Dichlorobenzene | UG/KG | 0 0 | 0 00% | 1600 | 93706731 | 0 | | 5 | | 100 U | 81 U | 87 U | 100 U | | 1,4-Dichlorobenzene | UG/KG | 0 0 | 0 00% | 8500 | 2866186 | 0 | , |) 5 | | 100 U | 81 U | 87 U | 100 U | | 2,4,5-Trichlorophenol | UG/KG | 0 0 | 0 00% | 100 | 105288462 | 0 | | 0 5 | | 250 U | 200 U | 210 U | 250 U
100 U | | 2,4,6-Trichlorophenol | UG/KG | 0 0 | 0.00% | 100 | 6253497 | 0 | | D 5 | | 100 U
100 U | 81 U
81 U | 87 U
87 U | 100 U | | 2,4-Dichlorophenol | UG/KG | 0 0 | 0 00% | 400 | 3158654
21057692 | 0 | |) :
D : | | 100 U | 81 U | 87 U | 100 U | | 2,4-Dimethylphenol | UG/KG
UG/KG | 0.0
0.0 | 0 00%
0 00% | 200 | 21057692 | 0 | | 0 5 | | 250 U | 200 U | 210 U | 250 U | | 2,4-Dinitrophenol 2,4-Dinitrotoluene | UG/KG | 00 | 0.00% | 200 | 2105769 | 0 | | 0 5 | | 100 U | 81 U | 87 U | 100 U | | 2,6-Dinitrotoluene | UG/KG | 00 | 0.00% | 1000 | 1052885 | 0 | | D 5 | | 100 U | 81 U | 87 U | 100 U | | 2-Chloronaphthalene | UG/KG | 0 0 | 0 00% | 1000 | 1002000 | 0 | | 0 5 | | 100 U | 81 U | 87 U | 100 U | | 2-Chlorophenol | UG/KG | 0 0 | 0 00% | 800 | 5264423 | 0 | | 0 5 | | 100 U | 81 U | 87 U | 100 U | | 2-Methylnaphthalene | UG/KG | 0.0 | 0 00% | 36400 | | 0 | (| 0 5 | 5 100 U | 100 U | 81 U | 87 U | 100 U | | 2-Methylphenol | UG/KG | 0 0 | 0 00% | 100 | | 0 | (| 0 5 | 100 U | 100 U | 81 U | 87 U | 100 U | | 2-Nitroaniline | UG/KG | 0 0 | 0.00% | 430 | 63173 | 0 | (| 0 9 | | 250 U | 200 U | 210 U | 250 U | | 2-Nitrophenol | UG/KG | 0.0 | 0.00% | 330 | | 0 | | 0 5 | | 100 U | 81 U | 87 U | 100 U | | 3,3 -Dichlorobenzidine | UG/KG | 0.0 | 0.00% | | | 0 | | 0 5 | | 100 U | 81 U | 87 U | 100 U | | 3-Nitroaniline | UG/KG | 0 0 | 0.00% | 500 | 3158654 | 0 | | 0 5 | | 250 U | 200 U | 210 U | 250 U | | 4.6-Dinitro-2-methylphenol | UG/KG | 0 0 | 0.00% | | | 0 | | 0 5 | | 250 U | 200 U | 210 U | 250 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 0 | 0.00% | 0.10 | 61067308 | 0 | | 0 9 | | 100 U
100 U | 81 U
81 U | 87 U
87 U | 100 U
100 U | | 4-Chloro-3-methylphenol | UG/KG | 0 0 | 0 00% | 240
220 | 4211538 | 0 | | o s | | 100 U | 81 U | 87 U | 100 U | | 4-Chloroaniline | UG/KG
UG/KG | 00 | 0.00% | 220 | 4211536 | 0 | | 0 9 | | 100 U | 81 U | 87 U | 100 U | | 4-Chlorophenyl phenyl ether
4-Methylphenol | UG/KG | 0.0 | 0.00% | 900 | | 0 | | 0 4 | | 100 U | 81 U | 87 U | 100 U | | 4-Nitroaniline | UG/KG | 0.0 | 0.00% | 300 | 3158654 | 0 | | 0 ! | | 250 U | 200 U | 210 U | 250 U | | 4-Nitrophenol | UG/KG | 0.0 | 0.00% | 100 | 63173077 | 0 | | 0 9 | 5 240 U | 250 U | 200 U | 210 U | 250 U | | Acenaphthene | UG/KG | 0 0 | 0.00% | 50000 | | 0 | | 0 ! | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Acenaphthylene | UG/KG | 0.0 | 0.00% | 41000 | | 0 | | 0 5 | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Anthracene | UG/KG | 0.0 | 0.00% | 50000 | 315865385 | 0 | | 0 : | | 100 U | 81 U | 87 U | 100 U | | Benzo[a]anthracene | UG/KG | 22.0 | 100.00% | 224 | | 0 | | 5 | | 22 J | 8.8 J | 7.6 J | 18 J | | Benzo[a]pyrene | UG/KG | 23 0 | 100.00% | 61 | 9423 | 0 | | | 5 21 J | 23 J | 10 J | 9 J | 21 J | | Benzo[b]fluoranthene | UG/KG | 30.0 | 100.00% | 1100 | 94231 | 0 | | - | 5 24 J | 28 J | 14 J | 17 J | 30 J | | Benzo[ghi]perylene | UG/KG | 20 0 | 100.00% | 50000 | 0.40000 | 0 | | | 5 17 J
5 27 J | 19 J
27 J | 12 J
15 J | 9.6 J
10 J | 20 J
23 J | | Benzo[k]fluoranthene | UG/KG | 27 0 | 100.00%
0.00% | 1100 | 942308 | 0 | | - | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Bis(2-Chloroethoxy)methane | UG/KG
UG/KG | 0.0 | 0.00% | | 62535 | 0 | | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Bis(2-Chloroethyl)ether | UG/KG | 0.0 | 0.00% | | 982692 | 0 | | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/KG | 14.0 | 100.00% | 50000 | 302302 | 0 | | | 5 12 JB | 12 JB | 10 JB | 14 JB | 11 JB | | Butylbenzylphthalate | UG/KG | 8.1 | 20 00% | 50000 | 210576923 | 0 | | 1 ! | 5 100 U | 100 U | 81 U | 8.1 J | 100 U | | Carbazole | UG/KG | 66 | 20.00% | | 3439423 | 0 | | 1 : | 5 6.6 J | 100 U | 81 U | 87 U | 100 U | | Chrysene | UG/KG | 33 0 | 100.00% | 400 | 9423077 | 0 | | 5 | 5 28 J | 33 J | 17 J | 15 J | 30 J | | Di-n-butylphthalate | UG/KG | 0.0 | 0.00% | 8100 | | 0 | | - | 5 100 U | 100 U | 81 U | 87 U | 100 U
| | Di-n-octylphthalate | UG/KG | 0.0 | 0.00% | 50000 | 21057692 | 0 | | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Dibenz[a,h]anthracene | UG/KG | 8 7 | 80.00% | 14 | | 0 | | | 5 100 U | 8.7 J | 6.3 J | 6 J | 7.4 J | | Dibenzofuran | UG/KG | 0.0 | 0.00% | 6200 | 4211538 | 0 | | • | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Diethyl phthalate | UG/KG | 34 0 | 100.00% | 7100 | 842307692 | 0 | | • | 5 34 J | 7.3 J | 4.2 J | 7.5 J
87 U | 7 J
100 U | | Dimethylphthalate | UG/KG | 0 0 | 0.00% | | 10528846150 | 0 | | - | 5 100 U | 100 ป
55 J | 81 U
18 J | 87 U
20 J | 100 U
45 J | | Fluoranthene | UG/KG | 55.0 | 100 00% | 50000 | 42115385 | 0 | | | 5 46 J
5 100 U | 100 U | 18 J
81 U | 20 J
87 U | 100 U | | Fluorene | UG/KG | 0.0 | 0.00% | 50000 | 42115385 | 0 | | - | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Hexachlorobenzene | UG/KG | 0.0 | 0.00% | 410 | 42993
210577 | 0 | | - | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Hexachlorobutadiene | UG/KG | 0.0
0.0 | 0.00% | | 7370192 | 0 | | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Hexachlorocyclopentadiene | UG/KG | 0.0 | 0.0070 | | 7370192 | Ü | | • | | .50 0 | 3, 0 | | | ## Table 25-4 120J - Semivolatiles/TPH in Soil vs TAGM Non-Evaluated EBS Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-120J
Farmer's Dump
SS120J-1
EB269
SA
0
0 0 2
SOIL
18-Mar-98 | SEAD-120J
Farmer's Dump
SS120J-1
EB029
DU
0
0 2
SOIL
18-Mar-98 | SEAD-120J
Farmer's Dump
SS120J-2
EB270
SA
0
0 2
SOIL
18-Mar-98 | SEAD-120J
Farmer's Dump
SS120J-3
EB271
SA
0
0.2
SOIL
18-Mar-98 | SEAD-120J
Farmer's Dump
SS120J-4
EB272
SA
0
0 2
SOIL
18-Mar-98 | |--|-------|---------|-----------------|-------|-----------|-----------------|--------------|--------------|--|--|--|--|--| | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Hexachloroethane | UG/KG | 0.0 | 0 00% | | 1052885 | 0 | 0 | 5 | | 100 U | 81 U | 87 U | 100 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 18 0 | 100 00% | 3200 | 94231 | 0 | 5 | | 5 15 J | 18 J | 11 J | 8 J | 17 J | | Isophorone | UG/KG | 0.0 | 0.00% | 4400 | | 0 | 0 | | 100 U | 100 U | 81 U | 87 U | 100 U | | N-Nitrosodiphenylamine | UG/KG | 0 0 | 0 00% | | 14038462 | 0 | C | | 100 U | 100 U | 81 U | 87 U | 100 ∪ | | N-Nitrosodipropylamine | UG/KG | 0 0 | 0 00% | | | 0 | C | | 100 U | 100 U | . 81 U | 87 U | 100 U | | Naphthalene | UG/KG | 0.0 | 0 00% | 13000 | 42115385 | 0 | C | | 100 U | 100 U | 81 U | 87 U | 100 U | | Nitrobenzene | UG/KG | 0 0 | 0 00% | 200 | 526442 | 0 | C | 5 | 100 U | 100 U | 81 U | 87 ∪ | 100 U | | Pentachlorophenol | UG/KG | 0 0 | 0.00% | 1000 | 573237 | 0 | C | | 240 U | 250 U | 200 U | 210 U | 250 U | | Phenanthrene | UG/KG | 35 0 | 100 00% | 50000 | | 0 | 5 | | 5 26 J | 35 J | 10 J | 12 J | 26 J | | Phenol | UG/KG | 0 0 | 0.00% | 30 | 631730769 | 0 | C | | 100 U | 100 U | 81 U | 87 U | 100 ∪ | | Pyrene | UG/KG | 54 0 | 100.00% | 50000 | 31586538 | 0 | 5 | | 5 46 J | 54 J | 15 J | 21 J | 43 J | | TPH | MG/KG | 71 4 | 80 00% | | | 0 | 4 | 5 000 | 69.7 | 71 4 | 23.7 | 19.6 U | 62.9 | ## Table 25-5 120J - Semivolatiles and TPH in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | |--|----------------|-------------|------------------|-------|---------------------|--------|---------|----------|---------------|----------------|----------------|-------------------|-------------------| | DESCRIPTION | | | | | | | | | Farmer's Dump | | LOC ID | | | | | | | | | SS120J-1 | SS120J-1 | SS120J-2 | SS120J-3 | SS120J-4 | | SAMP_ID | | | | | | | | | EB269 | EB029 | EB270 | EB271 | EB272 | | QC CODE | | | | | | | | | SA | DU | SA · | SA | SA | | SAMP DEPTH TOP SAMP DEPTH BOT | | | | | | | | | 0
0 2 | 0.2 | 0 | 0 | 0 | | MATRIX | | | | | | | | | SOIL | SOIL | 0 2
SOIL | 0 2 | 0 2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | SOIL
18-Mar-98 | SOIL
18-Mar-98 | | SAMP DATE | | | OF | | | ABOVE | OF | OF | 10-14/01-20 | 10-Mai-50 | 10-M91-90 | 10-Mai-96 | 10-Mat-80 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | 1 2,4-Trichlorobenzene | UG/KG | 0.0 | 0.00% | 3400 | 10528846 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 1,2-Dichlorobenzene | UG/KG | 0.0 | 0.00% | 7900 | 94759615 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 1,3-Dichlorobenzene | UG/KG | 0 0 | 0.00% | 1600 | 93706731 | 0 | 0 | 5 | | 100 U | 81 U | 87 U | 100 U | | 1 4-Dichlorobenzene | UG/KG | 0 0 | 0.00% | 8500 | 2866186 | 0 | 0 | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | 2,4,5-Trichlorophenol | UG/KG | 0 0 | 0 00% | 100 | 105288462 | 0 | 0 | 5 | 240 U | 250 U | 200 U | 210 U | 250 U | | 2.4,6-Trichlorophenol | UG/KG | 0.0 | 0.00% | | 6253497 | 0 | 0 | | , ,,,, | 100 U | 81 U | 87 U | 100 U | | 2,4-Dichlorophenol | UG/KG | 0.0 | 0.00% | 400 | 3158654 | 0 | 0 | , | | 100 U | 81 ∪ | 87 U | 100 U | | 2.4-Dimethylphenol | UG/KG | 0.0 | 0.00% | | 21057692 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 2.4-Dintrophenol | UG/KG | 0 0 | 0 00% | 200 | 2105769 | 0 | 0 | | | 250 U | 200 U | 210 U | 250 U | | 2,4-Dinitrotoluene | UG/KG | 0 0 | 0.00% | 4000 | 2105769 | 0 | 0 | | | 100 U
100 U | 81 U | 87 U | 100 U | | 2.6-Dinitrotoluene | UG/KG
UG/KG | 0 0 | 0.00% | 1000 | 1052885 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 2-Chloronaphthalene 2-Chlorophenol | UG/KG | 00 | 0 00% | 800 | 5264423 | 0 | 0 | | | 100 U | 81 U
81 U | 87 U
87 U | 100 U
100 U | | 2-Methylnaphthalene | UG/KG | 0.0 | 0 00% | 36400 | 3204423 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 2-Methylphenol | UG/KG | 0.0 | 0.00% | 100 | 52644231 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 2-Nitroaniline | UG/KG | 0.0 | 0 00% | 430 | 63173 | 0 | 0 | | | 250 U | 200 U | 210 U | 250 U | | 2-Nitrophenol | UG/KG | 0.0 | 0 00% | 330 | | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | 3,3 - Dichlorobenzidine | UG/KG | 0.0 | 0.00% | | 152863 | 0 | 0 | | 100 U | 100 U | 81 U | 87 U | 100 U | | 3-Nitroaniline | UG/KG | 0.0 | 0.00% | 500 | 3158654 | 0 | 0 | | 240 U | 250 U | 200 U | 210 U | 250 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 5 | 5 240 U | 250 U | 200 U | 210 U | 250 ∪ | | 4-Bromophenyl phenyl ether | UG/KG | 0 0 | 0.00% | | 61067308 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 4-Chloro-3-methylphenol | UG/KG | 0.0 | 0 00% | 240 | | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 4-Chloroaniline | UG/KG | 0 0 | 0.00% | 220 | 4211538 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 0 | 0.00% | | | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 4-Methylphenol | UG/KG | 0.0 | 0.00% | 900 | 2458654 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | 4-Nitroaniline 4-Nitrophenol | UG/KG
UG/KG | 0.0
0.0 | 0.00%
0.00% | 100 | 3158654
63173077 | 0 | 0 | | | 250 U
250 U | 200 U
200 U | 210 U
210 U | 250 U
250 U | | 4-Nifrophenoi
Acenaphthene | UG/KG | 0.0 | 0.00% | 50000 | 631/30// | 0 | 0 | | | 100 U | 200 U
81 U | 210 U
87 U | 100 U | | Acenaphthylene | UG/KG | 00 | 0.00% | 41000 | | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | Anthracene | UG/KG | 0.0 | 0.00% | 50000 | 315865385 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Benzo[a]anthracene | UG/KG | 22 0 | 100.00% | 224 | 94231 | 0 | 5 | 5 | | 22 J | 8.8 J | 7.6 J | 18 J | | Benzo[a]pyrene | UG/KG | 23 0 | 100 00% | 61 | 9423 | 0 | 5 | 4 | 5 21 J | 23 J | 10 J | 9 J | 21 J | | Benzo[b]fluoranthene | UG/KG | 30 0 | 100.00% | 1100 | 94231 | 0 | 5 | 5 | 5 24 J | 28 J | 14 J | 17 J | 30 J | | Benzo[ghi]perylene | UG/KG | 20.0 | 100.00% | 50000 | | 0 | 5 | 5 | | 19 J | 12 J | 9.6 J | 20 J | | Benzo(k)fluoranthene | UG/KG | 27.0 | 100.00% | 1100 | 942308 | 0 | 5 | | | 27 J | 15 J | 10 J | 23 J | | Bis(2-Chloroethoxy)methane | UG/KG | 0.0 | 0.00% | | | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 0 | 0.00% | | 62535
982692 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Bis(2-Chloroisopropyl)ether | UG/KG
UG/KG | 0 0
14.0 | 0.00%
100.00% | 50000 | 4913462 | 0 | 5 | - | | 100 U
12 JB | 81 U
10 JB | 87 U
14 JB | 100 U
11 JB | | Bis(2-Ethylhexyl)phthalate
Butylbenzylphthalate | UG/KG | 8.1 | 20.00% | 50000 | 210576923 | 0 | 1 | | | 100 U | 81 U | 14 JO
81 J | 100 U | | Carbazole | UG/KG | 6.6 | 20.00% | 30000 | 3439423 | 0 | 1 | | , | 100 U | 81 U | 87 U | 100 U | | Chrysene | UG/KG | 33.0 | 100 00% | 400 | 9423077 | 0 | 5 | | | 33 J | 17 J | 15 J | 30 J | | Di-n-bulylph/halate | UG/KG | 0 0 | 0.00% | 8100 | | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Di-n-octylphthalate | UG/KG | 0.0 | 0.00% | 50000 | 21057692 | 0 | 0 | | 100 U | 100 U | 81 U | 87 U | 100 U | | Dibenz[a,h]anthracene | UG/KG | 8 7 | 80.00% | 14 | 9423 | 0 | 4 | 5 | 100 U | 87 J | 6.3 J | 6 J | 7.4 J | | Dibenzofuran | UG/KG | 0.0 | 0.00% | 6200 | 4211538 | 0 | 0 | | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Diethyl phthalate | UG/KG | 34 0 | 100.00% | 7100 | 842307692 | 0 | 5 | - | | 7.3 J | 4.2 J | 7.5 J | 7 J | | Dimethylphthalate | UG/KG | 0.0 | 0.00% | 2000 | 10528846150 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | |
Fluoranthene | UG/KG | 55.0 | 100.00% | 50000 | 42115385 | 0 | 5 | | | 55 J | 18 J | 20 J | 45 J | | Fluorene | UG/KG | 0 0 | 0.00% | 50000 | 42115385 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Hexachiorobenzene | UG/KG | 0.0 | 0.00% | 410 | 42993 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | Hexachlorobutadiene | UG/KG | 0 0 | 0 00% | | 210577 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | Hexachlorocyclopentadiene | UG/KG | 0.0 | 0.00%
0.00% | | 7370192
1052885 | 0 | 0 | | | 100 U
100 U | 81 U
81 U | 87 U
87 ∪ | 100 U
100 U | | Hexachloroethane | UG/KG
UG/KG | 0.0
18.0 | 100.00% | 3200 | 94231 | 0 | 5 | - | | 18 J | 11 J | 8 J | 100 U | | Indeno[1,2,3-cd]pyrene
Isophorone | UG/KG
UG/KG | 0.0 | 0 00% | 4400 | 37231 | 0 | 0 | - | | 100 U | 81 U | 87 U | 100 U | | N-Nitrosodiphenylamine | UG/KG | 0.0 | 0.00% | 7400 | 14038462 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | N-Nitrosodipropylamine | UG/KG | 0.0 | 0.00% | | 9827 | 0 | 0 | | | 100 U | 81 U | 87 U | 100 U | | | | | | | | | | | | | | | | ## Table 25-5 120J - Semivolatiles and TPH in Soil vs PRG-REC Non-Evaluated EBS Sites | SITÉ
DESCRIPTION | | | | | | | | | SEAD-120J
Farmer's Dump | |---------------------|-------|---------|-----------|-------|-----------|--------|---------|----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | LOC ID | | | | | | | | | SS120J-1 | SS120J-1 | SS120J-2 | SS120J-3 | SS120J-4 | | SAMP_ID | | | | | | | | | EB269 | EB029 | EB270 | EB271 | EB272 | | QC CODE | | | | | | | | | SA | DU | SA | SA | SA | | SAMP DEPTH TOP | | | | | | | | | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0 2 | 0.2 | 0 2 | 0.2 | 0 2 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | CALL DATE | | | OF | | | ABOVE | OF | OF | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Naphthalene | UG/KG | 0.0 | 0 00% | 13000 | 42115385 | | 0 | 0 | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Nitrobenzene | UG/KG | 0.0 | 0 00% | 200 | 526442 | | 0 | 0 | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Pentachlorophenol | UG/KG | 0.0 | 0.00% | 1000 | 573237 | | 0 | 0 | 5 240 U | 250 U | 200 ∪ | 210 U | 250 U | | Phenanthrene | UG/KG | 35 0 | 100.00% | 50000 | | | 0 | 5 | 5 26 J | 35 J | 10 J | 12 J | 26 J | | Phenol | UG/KG | 0.0 | 0.00% | 30 | 631730769 | | 0 | 0 | 5 100 U | 100 U | 81 U | 87 U | 100 U | | Pyrene | UG/KG | 54 0 | 100.00% | 50000 | 31586538 | | 0 | 5 | 5 46 J | 54 J | 15 J | 21 J | 43 J | | TPH | MG/KG | 71 4 | 80 00% | | | | 0 | 4 5 00 | 0 69 7 | 71 4 | 23 7 | 19 6 U | 62 9 | ## Table:25-6 120J - Metals in Soil vs TAGM Non-Evaluated EBS Sites | SITE: | | | | | | | | | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | |------------------|-------|---------|-----------|--------|---------|-----------------|---------|----------|---------------|---------------|---------------|---------------|---------------| | DESCRIPTION: | | | | | | | | | Farmer's Dump | | LOC ID: | | | | | | | | | SS120J-1 | SS120J-1 | SS120J-2 | SS120J-3 | SS120J-4 | | SAMP_ID: | | | | | | | | | EB269 | EB029 | EB270 | EB271 | EB272 | | QC CODE: | | | | | | | | | SA | DU | SA | SA | SA | | SAMP. DEPTH TOP: | | | | | | | | | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT: | | | | | | | | | 02 | 0.2 | 0.2 | 0.2 | 0.2 | | MATRIX: | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | Aluminum | MG/KG | 16400.0 | 100.00% | 19520 | 1052885 | 0 | 5 | 5 | 14800 | 14500 | 11100 | 16400 | 15700 | | Antimony | MG/KG | 0.0 | 0.00% | 6 | 421 | 0 | 0 | | 3.2 UN | 3.3 UN | 2.7 UN | 2.8 UN | 3.3 UN | | Arsenic | MG/KG | 5.6 | 100,00% | 8 9 | 46 | 0 | 5 | | 4.1 N° | 3.6 N° | 3.6 N° | 4.3 N* | 5.6 N* | | Banum | MG/KG | 154.0 | 100 00% | 300 | 73702 | 0 | 5 | | 154 | 142 | 73.6 | 50.6 B | 132 | | Beryllium | MG/KG | 0.8 | 100.00% | 1.13 | 16 | 0 | 5 | | 0.76 B | 0.76 B | 0.44 B | 0.64 B | 0.58 B | | Cadmium | MG/KG | 0.0 | 0.00% | 2.46 | 526 | 0 | 0 | | 0 21 U | 0.21 U | 0.17 U | 0.18 U | 0.21 U | | Calcium | MG/KG | 8620.0 | 100.00% | 125300 | 0 | 0 | 5 | | 8050 | 8620 | 5760 | 2760 | 6150 | | Chromium | MG/KG | 29.8 | 100.00% | 30 | 1052885 | 0 | 5 | 5 | 24.2 | 23.2 | 18.0 | 29.8 | 23.8 | | Cobalt | MG/KG | 15.3 | 100.00% | 30 | 63173 | 0 | 5 | | 11.2 B | 10.5 B | 10.7 B | 15.3 | 13.7 B | | Copper | MG/KG | 61.8 | 100.00% | 33 | 42115 | 1 | 5 | 5 | 21.1 | 21.7 | 17.4 | 61.3 | 24.9 | | Cyanide | MG/KG | 0.0 | 0.00% | 0.35 | | 0 | 0 | 5 | 0.80 U | 0.84 U | 0.64 U | 0.69 U | 0 82 U | | Iron | MG/KG | 33000.0 | 100.00% | 37410 | 315865 | 0 | 5 | | 28300 | 27300 | 22500 | 33000 | 28200 | | Lead | MG/KG | 144.0 | 100.00% | 24.4 | | 5 | 5 | | 14. | ** 415 * | 38,4 | | 32.8 | | Magnesium | MG/KG | 6690.0 | 100.00% | 21700 | | 0 | 5 | , | | 4420 | 4290 | 6690 | 4690 | | Manganese | MG/KG | 823.0 | 100.00% | 1100 | 24216 | 0 | 5 | 5 | 420 | 401 | 427 | 324 | 823 | | Mercury | MG/KG | 0.1 | 20.00% | 0.1 | 316 | 0 | 1 | 5 | 0.07 U | 0.07 U | 0.05 U | 0.06 U | 0.08 B | | Nickel | MG/KG | 47.3 | 100.00% | 50 | 21058 | 0 | 5 | 5 | 34.3 | 33.0 | 28.7 | 47.3 | 34.6 | | Potassium | MG/KG | 2270.0 | 100,00% | 2623 | | 0 | 5 | | 1920 | 1960 | 1230 B | 2080 | 2270 | | Selenium | MG/KG | 1.6 | 20.00% | 2 | 5264 | 0 | 1 | 4 | 1.6 N | 1.4 UN | 1.2 UN | 1,2 UN | 1.4 UN | | Silver | MG/KG | 0.0 | 0.00% | 0.8 | 5264 | 0 | 0 | | 1,1 U | 1.2 U | 0.94 U | 0.98 U | 1.2 U | | Sodium | MG/KG | 0.0 | 0.00% | 188 | | 0 | 0 | | 252 U | 256 U | 208 U | 217 U | 256 U | | Thallium | MG/KG | 0.0 | 0.00% | 0.855 | 84 | . 0 | 0 | | 1.9 U | 1.9 U | 1.6 U | 1.6 U | 1.9 ປ | | Vanadium | MG/KG | 25.0 | 100.00% | 150 | 7370 | 0 | 5 | | | 21.2 | 17.4 | 22.9 | 25.0 | | Zinc | MG/KG | 233.0 | 100.00% | 115 | 315865 | 1 | 5 | | 93.2 | 91.2 | 82.6 | 233 | 114 | Page 1 ### Table 25-7 120J - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-120J
Farmer's Dump | |------------------------------|-------|---------|-----------|--------|---------|--------|---------|----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | LOC ID
SAMP_ID
QC CODE | | | | | | | | | SS120J-1
EB269
SA | SS120J-1
EB029
DU | SS120J-2
EB270
SA | SS120J-3
EB271
SA | SS120J-4
EB272
SA | | SAMP DEPTH TOP | | | | | | | | | 0 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0.2 | 0 2 | 0 2 | 0.2 | 0.2 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | 10-14181-30 | 10-19181-90 | 10-10101-90 | 10-Mai-90 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | VALUE O | VALUE Q | VALUE Q | VALUE Q | | Alumnum | MG/KG | 16400 0 | 100 00% | 19520 | 1052885 | 0 | 5 | | 5 14800 | 14500 | 11100 | 16400 | 15700 | | Antimony | MG/KG | 0.0 | 0.00% | 6 | 421 | 0 | 0 | | 5 3.2 UN | 3.3 UN | 2 7 UN | 2.8 UN | 3 3 UN | | Arsenic | MG/KG | 5.6 | 100 00% | 8.9 | 46 | 0 | 5 | | 5 41 N° | 3 6 N° | 3 6 N* | 4 3 N° | 5.6 N* | | Barrum | MG/KG | 154.0 | 100 00% | 300 | 73702 | 0 | 5 | | 5 154 | 142 | 73 6 | 50.6 B | 132 | | Beryllium | MG/KG | 0.8 | 100 00% | 1 13 | 16 | 0 | 5 | | 5 0.76 B | 0 76 B | 0.44 B | 0.64 B | 0.58 B | | Cadmium | MG/KG | 0.0 | 0 00% | 2.46 | 526 | 0 | 0 | | 5 0.21 U | 0.21 U | 0.17 U | 0.18 U | 0.30 B | | Calcium | MG/KG | 8620 0 | 100 00% | 125300 | 0 | 0 | 5 | | 5 8050 | 8620 | 5760 | 2760 | 6150 | | Chromium | MG/KG | 29 8 | 100.00% | 30 | 1052885 | 0 | 5 | | 5 24.2 | 23 2 | 18.0 | 29 8 | 23.8 | | Cobalt | MG/KG | 15.3 | 100 00% | 30 | 63173 | 0 | 5 | | 5 11 2 B | 10.5 B | 10.7 B | 15 3 | 13 7 B | | Copper | MG/KG | 61.8 | 100 00% | 33 | 42115 | 0 | 5 | | 5 21.1 | 21.7 | 17.4 | 61.8 | 24.9 | | Cyanide | MG/KG | 0.0 | 0.00% | 0 35 | | 0 | 0 | | 5 0 80 U | 0 84 U | 0.64 U | 0.69 U | 0.82 U | | Iron | MG/KG | 33000 0 | 100 00% | 37410 | 315865 | 0 | 5 | | 5 28300 | 27300 | 22500 | 33000 | 28200 | | Lead | MG/KG | 144 0 | 100 00% | 24.4 | | 0 | 5 | | 5 144 * | 115 * | 38.4 * | 29.9 * | 32 8 * | | Magnesium | MG/KG | 6690 0 | 100 00% | 21700 | | 0 | 5 | | 5 4670 | 4420 | 4290 | 6690 | 4690 | | Manganese | MG/KG | 823 0 | 100 00% | 1100 | 24216 | 0 | 5 | | 5 420 | 401 | 427 | 324 | 823 | | Mercury | MG/KG | 0 1 | 20.00% | 0.1 | 316 | 0 | 1 | | 5 0.07 U | 0 07 U | 0.05 ∪ | 0.06 U | 0.08 B | | Nickel | MG/KG | 47 3 | 100.00% | 50 | 21058 | 0 | 5 | | 5 343 | 33.0 | 28.7 | 47.3 | 34.6 | | Potassium | MG/KG | 2270 0 | 100.00% | 2623 | | 0 | 5 | | 5 1920 | 1960 | 1230 B | 2080 | 2270 | | Selenium | MG/KG | 16 | 20.00% | 2 | 5264 | 0 | 1 | | 5 16 N | 1.4 UN | 1.2 UN | 1.2 UN | 1.4 UN | | Silver | MG/KG | 0.0 | 0 00% | 0.8 | 5264 | 0 | 0 | | 5 1.1 U | 1.2 U | 0.94 U | 0.98 U | 1.2 U | | Sodium | MG/KG | 0.0 | 0.00% | 188 | | 0 | 0 | | 5 252 U | 256 U | 208 U | 217 U | 256 U | | Thallium | MG/KG | 0.0 | 0.00% | 0.855 | 84 | 0 | 0 | | 5 19U | 1,9 U | 16 U | 1.6 U | 1.9 U | | Vanadium | MG/KG | 25.0 | 100 00% | 150 | 7370 | 0 | 5 | | 5 217 | 21.2 | 17.4 | 22.9 | 25.0 | | Zinc | MG/KG | 233 0 | 100 00% | 115 | 315865 | 0 | 5 | | 5 93 2 | 91 2 | 82 6 | 233 | 114 | | | | | | | | | | | | | | | | ### Table 25-8 120J - Pesticides/PCB in Soil vs TAGM Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-120J
Farmer's Dump | |---|-------|---------|-----------------|-------|---------
-----------------|--------------|--------------|---|--|---|---|---| | LOC ID SAMP_ID QC CODE SAMP_DEPTH TOP SAMP_DEPTH BOT MATRIX | | | | | | | | | SS120J-1
EB269
SA
0
0.2
SOIL | S\$120J-1
EB029
DU
0
0.2
SOIL | SS120J-2
EB270
SA
0
0 2
SOIL | SS120J-3
EB271
SA
0
0.2
SOIL | SS120J-4
EB272
SA
0
0.2
SOIL | | SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | | ANALYSES | VALUE Q | | 4,4°-DDD | UG/KG | 0.0 | 0.00% | 2900 | 286619 | 0 | 0 |) 5 | 5 U | 5 1 U | 4.1 U | 4.3 U | 5.1 U | | 4.4'-DDE | UG/KG | 2 2 | 20.00% | 2100 | 202319 | 0 | 1 | . 5 | | 5.1 U | 4.1 U | 2.2 J | 5 1 U | | 4,4 -DDT | UG/KG | 4.3 | 40.00% | 2100 | 202319 | 0 | 2 | | | 5 1 U | 2.7 J | 4.3 J | 5.1 U | | Aldrin | UG/KG | 0 0 | 0.00% | 41 | 4046 | 0 | C | | | 26 U | 2.1 U | 2.2 U | 2.6 U | | Alpha-BHC | UG/KG | 0 0 | 0.00% | 110 | | 0 | C | | 2.00 | 2.6 U | 2.1 U | 2.2 U | 26 U | | Alpha-Chlordane | UG/KG | 0.0 | 0 00% | | | 0 | C | | 2.00 | 2.6 U | 2 1 U | 2.2 U | 2.6 U | | Aroclor-1016 | UG/KG | 0.0 | 0 00% | | 73702 | 0 | 0 | | | 51 U | 41 U | 43 U | 51 U | | Aroclor-1221 | UG/KG | 0.0 | 0.00% | | | 0 | C | | | 100 U | 83 U | 88 U | 100 U | | Aroclor-1232 | UG/KG | 0 0 | 0.00% | | | 0 | 0 | | | 51 U | 41 U | 43 U | 51 U | | Aroclor-1242 | UG/KG | 0.0 | 0 00% | | | 0 | 0 | | | 51 U | 41 U | 43 U | 51 U | | Aroclor-1248 | UG/KG | 0 0 | 0.00% | | | 0 | C | | | 51 U | 41 U | 43 U | 51 U | | Aroclor-1254 | UG/KG | 0 0 | 0.00% | 10000 | 21058 | 0 | C | | | 51 U | 41 U | 43 U | 51 U | | Aroclor-1260 | UG/KG | 0.0 | 0 00% | 10000 | | 0 | C | | | 51 U | 41 ∪ | 43 U | 51 U | | Beta-BHC | UG/KG | 0.0 | 0.00% | 200 | | 0 | C | | | 2.6 U | 2 1 U | 2.2 U | 26 U | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | C | | | 2.6 U | 2 1 U | 2.2 U | 2.6 U | | Dieldrin | UG/KG | 0.0 | 0.00% | 44 | 4299 | 0 | C | | | 5.1 U | 4.1 U | 4.3 U | 5.1 U | | Endosulfan I | UG/KG | 0.0 | 0.00% | 900 | 6317308 | 0 | C | - | | 2.6 U | 2.1 U | 2.2 U | 2 6 U | | Endosulfan II | UG/KG | 0.0 | 0.00% | 900 | 6317308 | 0 | C | - | | 5.1 U | 4.1 U | 4.3 U | 5.1 U | | Endosulfan sulfate | UG/KG | 0 0 | 0 00% | 1000 | | 0 | C | - | | 5.1 U | 4.1 U | 4.3 U | 5 1 U | | Endrin | UG/KG | 0 0 | 0.00% | 100 | 315865 | 0 | C | | | 5 1 U | 4 1 U | 4.3 U | 5 1 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | - | | 5 1 U | 4 1 U | 4.3 U | 5.1 U | | Endrin ketone | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | | | 5.1 U | 4 1 U | 4.3 U | 5 1 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | 60 | 52914 | 0 | 0 | | | 2.6 U | 2.1 U | 2.2 U | 26 U | | Gamma-Chlordane | UG/KG | 0.0 | 0.00% | 540 | | 0 | 0 | | | 2.6 U | 2.1 U | 2.2 U | 2.6 U | | Heptachlor | UG/KG | 0.0 | 0.00% | 100 | 15286 | 0 | 0 | | | 2.6 U | 2.1 U | 2.2 U | 2.6 ↓ | | Heptachlor epoxide | UG/KG | 0.0 | 0.00% | 20 | 7559 | 0 | 0 | - | | 2.6 U | 2.1 U | 2.2 U | 2.6 U | | Methoxychlor | UG/KG | 0 0 | 0.00% | | 5264423 | 0 | 0 | | | 26 U | 21 U | 22 U | 26 U | | Toxaphene | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 5 | 260 U | 260 U | 210 U | 220 U | 260 U | #### Table 25-9 120J - Pesticides/PCB in Soil vs PRG-REC Non-Evaluated EBS Sites | SITE | | | | | | | | | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | SEAD-120J | |--|-------|---------|-----------------|-------|---------------|-----------------|--------------|--------------|---|------------------------------|------------------------------|------------------------------|------------------------------| | DESCRIPTION | | | | | | | | | Farmer's Dump | | LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT | | | | | | | | | SS120J-1
EB269
SA
0 | SS120J-1
EB029
DU
0 | SS120J-2
EB270
SA
0 | SS120J-3
EB271
SA
0 | SS120J-4
EB272
SA
0 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE O | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 4.4 -DDD | UG/KG | 0.0 | 0 00% | 2900 | 286619 | 0 | 0 | | 5 5 6 | | 4 1 U | 4 3 U | 5 1 U | | 4.4 -DDE | UG/KG | 22 | 20.00% | 2100 | 202319 | 0 | 1 | | 5 5 1 | 5.1 U | 4.1 U | 2.2 J | 5.1 U | | 4,4`-DDT | UG/KG | 4 3 | 40.00% | 2100 | 202319 | 0 | 2 | : | 5 5 L | 5.1 U | 2 7 J | 4.3 J | 5 1 U | | Aldrın | UG/KG | 0.0 | 0.00% | 41 | 4046 | 0 | 0 | : | 5 26 L | 2.6 U | 2.1 U | 2 2 U | 2.6 U | | Alpha-BHC | UG/KG | 0 0 | 0 00% | 110 | | 0 | 0 | : | 5 2.6 L | | 2.1 U | 2 2 U | 2.6 U | | Alpha-Chlordane | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | 5 261 | | 2.1 U | 2 2 U | 2.6 U | | Aroclor-1016 | UG/KG | 0 0 | 0.00% | | 73702 | 0 | 0 | | 5 50 (| | 41 U | 43 U | 51 U | | Aroclor-1221 | UG/KG | 0 0 | 0 00% | | | 0 | 0 | , | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 83 U | 88 U | 100 U | | Araclor-1232 | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | 5 50 L | | 41 U | 43 U | 51 U | | Aroclor-1242 | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | | | 41 U | 43 U | 51 U | | Aroclor-1248 | UG/KG | 0 0 | 0 00% | | | 0 | 0 | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 41 U | 43 U | 51 U | | Aroclor-1254 | UG/KG | 0 0 | 0.00% | 10000 | 21058 | 0 | 0 | | | | 41 U | 43 U | 51 U | | Aroclor-1260 | UG/KG | 0.0 | 0 00% | 10000 | | 0 | 0 | | | | 41 U | 43 U | 51 U | | Beta-BHC | UG/KG | 0 0 | 0.00% | 200 | | 0 | 0 | | 5 2.6 L | | 2 1 U | 2.2 U | 2 6 U | | Delta-BHC | UG/KG | 0.0 | 0.00% | 300 | | 0 | 0 | | 5 26 L | | 2 1 U | 2.2 U | 2.6 U | | Dieldrin | UG/KG | 0 0 | 0 00% | 44 | 4299 | 0 | 0 | | | | 4 1 U | 4 3 U | 5.1 U | | Endosulfan I | UG/KG | 0.0 | 0.00% | 900 | 6317308 | 0 | 0 | | 5 261 | | 2 1 U | 2.2 U | 2 6 U | | Endosulfan II | UG/KG | 0.0 | 0 00% | 900 | 6317308 | 0 | 0 | | | | 4.1 U | 4.3 U | 5.1 U | | Endosulfan sulfate | UG/KG | 0 0 | 0.00% | 1000 | 0.15005 | 0 | 0 | | 5 5 1 | | 4.1 U | 4.3 U | 5 1 U | | Endrin | UG/KG | 0.0 | 0.00% | 100 | 315865 | 0 | 0 | | 5 5 1 | | 4.1 U | 4 3 U | 5.1 U | | Endrin aldehyde | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | | | | 4 1 U | 4.3 U | 5.1 U | | Endrin ketone | UG/KG | 0.0 | 0.00% | | 315865 | 0 | 0 | | | | 4.1 U | 4 3 U | 5.1 U | | Gamma-BHC/Lindane | UG/KG | 0.0 | 0.00% | 60 | 52914 | 0 | 0 | | | | 2.1 U | 2.2 U | 2.6 U | | Gamma-Chlordane | UG/KG | 0.0 | 0 00% | 540 | 15200 | 0 | 0 | | 5 26 L
5 2.6 L | | 2.1 U | 2.2 ∪ | 2.6 U | | Heptachlor | UG/KG | 0.0 | 0.00% | 100 | 15286
7559 | 0 | 0 | | 5 2.6 L | | 2.1 U
2.1 U | 2.2 U
2.2 U | 2 6 U
2 6 U | | Heptachlor epoxide | UG/KG | 0.0 | 0.00% | 20 | 5264423 | 0 | 0 | | 5 2.6 L | | 2.1 U
21 U | 2.2 U | 26 U | | Methoxychlor | UG/KG | | 0.00% | | 3204423 | 0 | 0 | | 5 260 L | | 21 U | 22 U
220 U | 26 U | | Toxaphene | UG/KG | 0 0 | 0.00% | | | 0 | 0 | | 200 0 | 260 0 | 210 0 | 220 0 | 260 0 | #### Table 25-10 120J - Herbicides in Soil vs TAGM Non-Evaluated EBS Sites | SITE:
DESCRIPTION | | | | | | | | | SEAD-120J
Farmer's Dump | |--|--|--|--|----------------------------|-----------------|--|--|--------|--|--|--|---|---| | LOC ID SAMP_ID QC CODE. SAMP DEPTH TOP: SAMP DEPTH BOT: MATRIX | | | | | | | | | SS120J-1
EB269
SA
0
0 2
SOIL | SS120J-1
EB029
DU
0
0.2
SOIL | SS120J-2
EB270
SA
0
0.2
SOIL | SS120J-3
EB271
SA
0
0.2
SOIL | SS120J-4
EB272
SA
0
0.2
SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER 2.4,5-T 2.4,5-TP/Silvex 2.4-D 2.4-DB 3.5-Dichlorobenzoic acid Dalapon Dicamba Dichloroprop Dinoseb | UNIT
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG
UG/KG | MAXIMUM
0
0
0
0
0
0
0 | OF DETECTION 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% | TAGM
1900
700
500 | PRG | ABOVE TAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | OF
DETECTS
0
0
0
0
0 | | 73 U 73 U 73 U 73 U 74 U 75 73 U 76 73 U 77 U 77 U 78 390 U 77 U 77 U 78 390 U 79 390 U 79 390 U | VALUE Q
7.4 U
74 U
72 U
74 U
72 U
400 U
7.2 U
72 U
37 U | VALUE Q
5.9 U
5.9 U
58 U
58 U
320 U
5.8 U
300 U | VALUE Q
6.3 U
6.3 U
62 U
62 U
340 U
6.2 U
62 U
32 U | VALUE Q
7 3 U
7.3 U
71 U
73 U
71 U
390 U
7.1 U
36 U | | MCPA
MCPP
Pentachlorophenol | UG/KG
UG/KG
UG/KG | 0
0
0 | 0.00%
0.00%
0.00% | 1000 | 573 2 37 | 0 | 0 | | 7100 U
7100 U
26 U | 7200 U
7200 U
26 U | 5800 U
5800 U
21 U | 6200 U
6200 U
22 U | 7100 U
7100 U
26 U | | Picloram | UG/KG | 0 | 0 00% | | 73701923 | 0 | 0 | | 5 73 U | 7 4 U | 5 9 U | 6.3 U | 7.3 U | ### Table 25-11 120J - Herbicides in Soil vs PRG-REC
Non-Evaluated EBS Sites | SITE
DESCRIPTION | | | | | | | | | SEAD-120J
Farmer's Dump | |---|-------|---------|-----------------|------|----------|--------|---------|----------|--|--|--|--|--| | LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SS120J-1
EB269
SA
0
0 2
SOIL
18-Mar-98 | SS120J-1
EB029
DU
0
0.2
SOIL
18-Mar-98 | SS120J-2
EB270
SA
0
0 2
SOIL
18-Mar-98 | SS120J-3
EB271
SA
0
0.2
SOIL
18-Mar-98 | SS120J-4
EB272
SA
0
0 2
SOIL
18-Mar-98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG | ABOVE | OF | OF | | | | | 10 18.65 50 | | 2,4,5-T | UG/KG | 0 | 0.00% | | PRG | TAGM | DETECTS | ANALYSES | VALUE Q | | 2,4,5-TP/Silvex | UG/KG | - | | 1900 | | 0 | 0 | | 7.3 U | 7 4 U | 59 U | 6.3 U | 7.3 U | | 2,4,3-17/3/livex
2,4-D | | 0 | 0 00% | 700 | | 0 | 0 | | 7.3 U | 7.4 U | 5.9 U | 6.3 U | 73 U | | | UG/KG | 0 | 0 00% | 500 | | 0 | 0 | | 71 U | 72 U | 58 U | 62 U | 71 U | | 2.4-DB | UG/KG | 0 | 0.00% | | | 0 | 0 | | 73 U | 74 U | 59 U | 63 U | 73 U | | 3,5-Dichlorobenzoic acid | UG/KG | 0 | 0.00% | | | 0 | 0 | ! | 71 U | 72 U | 58 U | 62 U | 71 U | | Dalapon | UG/KG | 0 | 0.00% | | | 0 | 0 | | 390 ∪ | 400 U | 320 U | 340 U | 390 U | | Dicamba | UG/KG | 0 | 0 00% | | | 0 | 0 | | 7.1 U | 7.2 U | 5.8 U | 6.2 U | 7.1 U | | Dichloroprop | UG/KG | 0 | 0 00% | | | 0 | 0 | | 5 71 U | 72 U | 58 U | 62 U | 71 U | | Dinoseb | UG/KG | 0 | 0.00% | | | 0 | 0 | | 36 U | 37 U | 30 U | 32 U | 36 U | | MCPA | UG/KG | 0 | 0 00% | | | 0 | 0 | | 7100 U | 7200 U | 5800 U | 6200 U | 7100 U | | MCPP | UG/KG | 0 | 0.00% | | | 0 | 0 | | 7100 U | 7200 U | 5800 U | 6200 U | 7100 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 573237 | 0 | 0 | | 26 ∪ | 26 U | 21 U | 22 U | 26 U | | Picloram | UG/KG | 0 | 0 00% | | 73701923 | 0 | 0 | į | 7.3 U | 7 4 U | 5 9 U | 6.3 U | 7.3 U | ## SEAD-121B Building 325 PCB Oil Spill Table 27-1 ## Sample Collection Information SEAD-121B - Building 325 PCB Oil Spill ## 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|---| | SOIL | SB121B-1 | EB212 | 3/7/98 | 0.00 | 0.20 | SA | Location is a potential run-off area next to loading ramp to Bldg. 325. Surface soil sample. | | SOIL | SB121B-1 | EB213 | 3/7/98 | 4.00 | 4.50 | SA | Same location as above. Approx. mid-
depth sample at water table. No VOC's
or impact to soils detected. | | SURFACE SOIL | SS121B-1 | EB238 | 3/9/98 | 0.00 | 0.20 | SA | Location is a drainage ditch downgradient of loading ramp to Bldg. 325. | | SURFACE SOIL | SS121B-2 | EB239 | 3/9/98 | 0.00 | 0.20 | SA | Location is next to steps to loading platform at Bldg. 325. | | SURFACE SOIL | SS121B-3 | EB240 | 3/9/98 | 0.00 | 0.20 | SA | Location is a downgradient ditch between Bldg. 325 and adjacent railroad line. | SA = Sample #### Table 27-2 SEAD-121B - Volatiles in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID: SAMP_ID QC CODE | | | | | | | | | SEAD-12
Bldg 325
PCB Oil
SB121B-
EB212
SA | 5
Spill
1 | SEAD-12
Bldg. 325
PCB Oil S
SB121B-
EB213
SA | Spill
1 | SEAD-12
Bldg. 325
PCB Oil S
SS121B-
EB238
SA | Spill
1 | SEAD-12
Bidg. 325
PCB Oil S
SS121B-
EB239
SA | Spill
2 | SEAD-12
Bldg 32
PCB Oil
SS121B
EB240
SA | 5
Spill
-3 | |---|--------|---------|-----------|------|------------|--------|---------|----------|--|-----------------|---|------------|---|------------|---|------------|--|------------------| | SAMP DETH TOP | | | | | | | | | | 0 | | 4 | | 0 | | 0 | | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0 2 | | 4.5 | | 0 2 | | 02 | | 0 2 | | MATRIX | | | | | | | | | SOIL | | | SAMP DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 7-M | ar-98 | 7-Ma | r-98 | 9-Mai | r-98 | 9-Ma | r-98 | 9-M | lar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | | Q | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | | 800 | 18396000 | 0 | | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | | 600 | 286160 | 0 | _ | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 | | | 100407 | 0 | | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | 0 | 0 | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | 0 | 0 | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 62892 | 0 | 0 | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | | | | 0 | 0 | 5 | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0 | 0.00% | | 84165 | 0 | 0 | 5 | , | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Acetone | UG/KG | 14 | 20 00% | 200 | 52560000 | 0 | 1 | 5 | ; | 14 J | | 12 U | | 16 U | | 14 U | | 11 U | | Benzene | UG/KG | 0 | 0.00% | 60 | 197352 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 92310 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Bromoform | UG/KG | 0 | 0 00% | | 724456 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 52560000 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Carbon tetrachloride | UG/KG | 0 | 0.00% | 600 | 44025 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 10512000 | 0 | 0 | 5 | , | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 68133 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 210240000 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Chloroform | UG/KG | 0 | 0.00% | 300 | 938230 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | 5 | i | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 52560000 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 751608 | 0 | 0 | | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methyl butyl ketone | UG/KG | 0 | | | | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methyl chloride | UG/KG | 0 | | | 440246 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methyl ethyl ketone | UG/KG | 0 | | 300 | | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | | 1000 | 42048000 | 0 | 0 | 5 | , | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Methylene chloride | UG/KG | 0 | | 100 | 763093 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Styrene | UG/KG | 0 | | | | 0 | 0 | 5 | , | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Tetrachloroethene | UG/KG | 0 | | 1400 | 110062 | 0 | 0 | 5 | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Toluene | UG/KG | 20 | | 1500 | 105120000 | 0 | 5 | | , | 6 J | | 7 J | | 4 J | | 2 J | | 20 | | Total Xylenes | UG/KG | 0 | | 1200 | 1051200000 | 0 | 0 | | ; | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | | 0 | | 0 | 0 | | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Trichloroethene | UG/KG | 0 | | 700 | 520291 | 0 | 0 | | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Vinyl chloride | UG/KG | 0 | | 200 | 3012 | 0 | 0 | | | 14 U | | 12 U | | 16 U | | 14 U | | 11 U | | Villy) Chloride | 30/110 | O | 3.5076 | ~~~ | 3012 | Ü | | | | | | | | | | | | | ## Table 27-3 SEAD-1218- Volatiles in Soil vs. PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP ID OC CODI | | | | | | | | | SEAD-121
Bldg 325
Oil Spill
SB121B-1
FB212
SA | | SEAD-121B
Bldg 325 PCB
Oil Spill
SB121B-1
EB213
SA | SEAD-121
Bldg 325 I
Oil Spill
SS121B-1
EB238
SA | | SEAD-121
Bldg 325 1
Oil Spill
SS121B-2
EB239
SA | | SEAD-12
Bldg 325
Oil Spill
SS121B-3
EB240
SA | PCB | |--|-------|---------|-------------------------------------|------|------------|--------|----------|----------|--|---------|---|--|--------|--|-------|---|---------| | SAMP DETH TOP | | | | | | | | | | () | 4 | 5.1 | 0 | 3/1 | 0 | .,,, | 0 | | SAME DEPTH BOT | | | | | | | | | | 0.2 | 45 | | 0.2 | | 0.2 | | 0.2 | | MATRIX | | | | | | | | | SOIL | | SOIL |
SOIL | 0.2 | SOIL. | 17 2 | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | ar-98 | 7-Mar-98 | 9-Ma | r_08 | 9-Ma | r-08 | | Jar-98 | | 13811 17311 | | | OF | | | ABOVE | OF | OF | | 111-211 | 7-11111-211 | 7-1814 | 11-711 | 7-1512 | 1-78 | 7-10 | 101-711 | | PARAMETER. | TINIT | MAXIMUM | DEFFCTION | LAGM | PRG-IND | LAGM | DT LECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1.1 1-Trichloroethane | UG/KG | {1 | 0.00% | 800 | 18396000 | () | O | | , | 14 () | 12 U | | 16 (1 | | 14 () | | 11 U | | 1.1.2.7-Tetrachloroethane | UG/KG | 0 | 0.00° a | 600 | 286160 | 0 | 0 | • | 5 | 14 U | 12 U | | 16 U | | 14 U | | H U | | 1.1.2-Trichloroethane | UG/KG | 0 | 0.00% | | 100407 | O | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | 1.1-Dichloroethane | UGKG | 0 | 0.00% | 200 | 52560000 | () | O | | i | 14 17 | 12 U | | 16 U | | 14 U | | H U | | 1.1-Dichloroethene | UG/KG | Ω | 0.00% | 400 | 9539 | 0 | n | 4 | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | 1,2-Dichloroethane | UG/KG | () | 0.00% | 100 | 62892 | () | () | | 5 | 14 U | 12 U | | 16 U | | 14 N | | HU | | 1.2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | 0 | () | | 5 | 14 U | 12 U | | 16 U | | 14 U | | H U | | 1 2-Dichloropropane | UG/KG | 0 | 0.00% | | 84165 | -0 | 0 | • | 5 | 14 U | 12 U | | 16 U | | 14 U | | H U | | Accione | UG/KG | 14 | 20 00% | 200 | 52560000 | () | 1 | : | 5 | 11.3 | 12 U | | 16 U | | 14 U | | 11 U | | Benzene | UG/KG | () | 0.00% | (4) | 197352 | ο | () | | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Bromodichloromethane | UG/KG | 0 | () ()() ⁿ / _n | | 92310 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | Bromoform | UG/KG | () | 0.00% | | 724456 | 0 | . 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | H U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 52560000 | () | 0 | | 3 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Carbon tetrachloride | UG/KG | 0 | 0.00% | 6481 | 44025 | () | 0 | : | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Chlorobenzene | UG/KG | 0 | 0.00% | 1700 | 10512000 | () | () | | 5 | 14 U | 12 U | | 16 U | | 14 U | | HU | | Chlorodibromonichanc | UG/KG | 0 | 0.00% | | 68133 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 11 D | | 11 U | | Chloroethane | UG/KG | 0 | () ()) ⁿ / ₆ | 1900 | 210240000 | () | 0 | : | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | Chloroform | UG/KG | 0 | () (VO% | 300 | 938230 | () | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 60% | | | 0 | Ω | 4 | i . | 14 U | 12 U | | 16 U | | 14 U | | HU | | Ethyl benzene | UG/KG | () | 0.00% | 5500 | 52560000 | () | 0 | : | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | Methyl bromide | UG/KG | 0 | 0.00% | | 751608 | 0 | 0 | : | 5 | 14 U | 12 U | | 16 U | | 14 U | | U 11 | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | 0 | | ٩ | 14 U | 12 U | | 16 U | | 14 U | | H U | | Methyl chloride | UG/KG | 0 | 0.00% | | 440246 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | 0 | 0 | 4 | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 0001 | 42048000 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 763093 | 0 | () | | 5 | 14 U | 12 U | | 16 U | | 14 U | | ΠU | | Styrene | UG/KG | 0 | 0.00% | | | 0 | t) | : | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Tetrachloroethene | UG/KG | 0 | 0.00% | 1400 | 110062 | () | {} | : | 5 | HU | 12 U | | 16 U | | 14 U | | H U | | Tolucne | UG/KG | 20 | [00 00% | 1500 | 105120000 | 0 | 5 | | 5 | 6 J | 7 J | | 4 J | | 2 J | | 20 | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | 1051200000 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | | Trans-1.3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 5 | 14 D | 12 U | | 16 U | | 14 U | | 11 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | 0 | 0 | | 5 | 14 U | 12 U | | 16 U | | 14 U | | II U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 3012 | 0 | n | | 5 | 14 U | 12 U | | 16 U | | 14 U | | 11 U | ### Table 27-4 SEAD-121B-Semivolatiles/TPH in Soil vs. NYTAGM Non-Evaluated Sites | | AD-121B SEAD-121B
g. 325 PCB Bldg. 325 PCB | SEAD-121B
Bldg, 325 PCB | |--|---|----------------------------| | DESCRIPTION Oil Spill | Spill Oil Spill | Oil Spill | | | 21B-1 SS121B-2 | SS121B-3 | | SAMP_ID: EB212 EB213 EB2: | | EB240 | | OC CODE SA SA SA | SA | SA | | SAMP DETHTOP 0 4 | 0 0 | () | | SAMP DEPTH BOT 0.2 4.5 | 0.2 | 0.2 | | MATRIX SOIL SOIL SOIL | | SOIL | | SAMP DATE FREQUENCY NUMBER NUMBER 7-Mar-98 7-Mar-98 OF ABOVE OF OF | 9-Mar-98 9-Mar-98 | 9-Mar-98 | | PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VA | | VALUE Q | | 1,2,4-1) (110) 001/210 | 500 U 970 U | 3700 U | | 1.2-Dichlorobenzene UG/KG 0 0.00% 7900 47304000 0 0 5 220 U 220 U 13-Dichlorobenzene UG/KG 0 0.00% 1600 46778400 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 1, Delition of the second t | 500 U 970 U | 3700 U | | 7.4-Diction obclinate | 500 U 970 U
1200 U 2400 U | 3700 U
9000 U | | 6,1,2 176/1010/01010 | | | | 2.4.6-Trichlorophonol UG/KG 0 0.00% 520291 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 2,4-Dichiolophichol | 500 U 970 U
500 U 970 U | 3700 U
3700 U | | 2.4-billionity piction | | 9000 U | | 2.4-Dinitrophenol UG/KG 0 0.00% 200 1051200 0 0 5 530 U 540 U 2.4-Dinitrophenol UG/KG 0 0.00% 1051200 0 0 5 220 U 220 U | 1200 U 2400 U | | | 2,4-billionidatic | 500 U 970 U | 3700 U | | 2.6-Dinitrotoluenc UG/KG 0 0.00% 1000 52.5600 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 2-Chloronaphthalene UG/KG 0 0.00% 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 2-Chlorophenol UG/KG 0 0.00% 800 2628000 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 2-Methylnaphthalene UG/KG 460 60.00% 36400 0 3 5 220 U 220 U | 27 J 78 J | 460 J | | 2-Methylphenol UG/KG 0 0,00% 100 262800000 0 0 5 221 U 220 U | 500 U 970 U | 3700 U | | 2-Nitroaniline UG/KG 0 0.00% 430 31536 0 0 5 530 U 540 U | 1200 U 2400 U | 9000 U | | 2-Nitrophenol UG/KG 0 0.00% 330 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 3.3'-Dichlorobenzidine UG/KG 0 0.00% 12718 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 3-Nitroaniline UG/KG 0 0,00% 500 1576800 0 0 5 530 U 540 U | 1200 U 2400 U | 9000 U | | 4.6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 0 5 530 U 540 U | 1200 U 2400 U | 9000 U | | 4-Bromophenyl phenyl ether UG/KG 0 0.01% 30484800 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 4-Chloro-3-methylphonol UG/KG 0 0.00% 240 0 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 4-Chloroaniline UG/KG 0 0.00% 220 2102400 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 4-Chlorophenyl phenyl ether UG/KG 0 0.00% 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 4-Methylphenol UG/KG 0 0.00% 900 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | 4-Nitroaniline UG/KG 0 0.00% 1576800 0 0 5 530 U 540 U | 1200 U 2400 U | 9000 U | | 4-Nitrophenol UG/KG 0 0,00% 100 31536000 0 0 5 530 U 540 U | 1200 U 2400 U | 9000 U | | Accessibilities UG/KG 1800 100.00% 50000 0 5 5 59 J 120 J | 320 J 640 J | 1800 J | | Acenaphthylene UG/KG 0 0.00% 41000 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Anthrucene UG/KG 2500 100 00% 50000 157680000 0 5 5 83 J 160 J | 430 J 960 J | 2500 J | | Ben.zo[a]anthracene UG/KG 9400 100 00% 224 7840 5 5 5 390 439 | 1600 3100 | 9400 | | Benzolalpyrene UG/KG 9100 100 00% 61 784 5 5 5 396 | 1500 2800 | 9100 | | Benzo[b]fluoranthene UG/KG 10000 100.00% 1100 7840 3 5 5 460 410 | 1700 3200 | 10000 | | Benzolghilperylene UG/KG 6500 100.00% 50000 0 5 5 260 230 | Trades #1010 | | | Benzo[k]fluoranthene UG/KG 9700 100 00% 1100 78400 3 5 5 410 440 | 1600 2600 | 9790 | | Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Bis(2-Chloroethy1)ether UG/KG 0 0.00% 5203 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Bis(2-Chloroisoprops))ether UG/KG 0 0.00% 81760 0 0 5 220 U 220 U | 500 U 970 U |
3700 U | | Bis(2-Eihylhesy))phthalate UG/KG 0 0.00% 50000 408800 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Buty lbenzylphthalate UG/KG 0 0.00% 50000 105120000 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Carbazolc UG/KG 5300 100,00% 286160 0 5 5 10 J 200 J | \$20 1400 | 5300 | | Christing OO/KO (20kh) 100 00/h 4187 | | 1.1 | | Di-n-but lphthalate UG/KG 0 0.00% 8100 0 0 5 220 U , 220 U | 500 U 970 U | 3700 U | | Di-n-ock lphthalate UG/KG 0 0.00% 50000 10512000 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | | | 2100 J | | Dibenzofuran UG/KG 1200 100.00% 6200 2102400 0 5 5 16 J 42 J | 140 J 300 J | 1200 J | | Diethyl phthalate UG/KG 12 20,00% 7100 420480000 0 1 5 12 J 220 U | 500 U 970 U | 3700 U | | Dimethylphthalate UG/KG 0 0.00% 2000 5256000000 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Fluoranthene UG/KG 30000 100.00% 50000 21024000 0 5 5 1100 1200 | 5000 E 8900 E | 30000 | | Fluorene UG/KG 1800 100,00% 50000 21024000 0 5 5 44 J 88 J | 270 J . 580 J | 1800 J | | Hexachlorobenzene UG/KG 0 0,00% 410 3577 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Hexachlorobutadiene UG/KG 0 0.00% 73374 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Hexachloroex elopentadiene UG/KG 0 0.00% 3679200 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Hexachloroethane UG/KG 0 0.00% 408800 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | | Indeno[1,2,3-ed]pyrene UG/KG 6600 100,00% 3200 7840 1 5 5 240 210 J | 970 2000 | All and the second | | Isophoronc UG/KG 0 0.00% 4400 0 0 5 220 U 220 U | 500 U 970 U | 3700 U | ## Table 27-4 SEAD-121B-Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites | SITE DESCRIPTION LOC ID SAMP ID QC CODE. SAMP DETH TOP | | | | | | | | | SEAD-
Bldg 3
Oil Spil
SB1241
EB212
SA | 25 PCB
II
3-1 | SEAD-121B
Bldg 325 PCB
Oil Spill
SB121B-1
EB213
SA | SEAD-121B
Bldg 325 PCB
Oil Spill
SS121B-1
EB238
SA | SEAD-121B
Bldg. 325 PCB
Oil Spill
SS121B-2
EB239
SA | SEAD-121B
Bldg 325 PCB
Oil Spill
SS121B-3
EB240
SA | |---|-------|-------|------------|-------|-----------|--------|---------|----------|--|---------------------|---|---|--|---| | SAME DIPTH BOT | | | | | | | | | | 0 | 4 | () | 0 | () | | MATRIX | | | | | | | | | | 0.2 | 4.5 | 0.2 | 0.2 | 0.2 | | SAMP DATI | | | EDEOLIEVOV | | | | | | SOIL | | SOIL | SOIL. | SOIL | SOIL | | 3480 12411 | | | FREQUENCY | | | NUMBER | NUMBI R | NUMBER | 7- | Mai-98 | 7-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | DADAMETER | | | OF | | | ABOVI | OF- | OF | | | | | | | | PARAMETER | UNIT | | DETECTION | TAGM | PRG-IND | LAGM | DETECTS | ANALYSES | VALUE | / Q | VALUE Q | VALUE Q | VALUE O | VALUE Q | | N-Nitrosodiphenylamnie | UG/KG | 0 | 0.00% | | 1168000 | 0 | 0 | | 5 | 220 U | 220 11 | 500 Ü | 970 U | 3700 U | | N-Nitrosodipropylamine | UGKG | {} | 0.00% | | 818 | 0 | 0 | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 [1 | | Naphthalene | UG/KG | 1700 | 60 00% | 13000 | 21024000 | 0 | 3 | | 5 | 220 U | 220 LF | 79 J | 240 J | 1700 J | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 262800 | 0 | () | | 5 | 220 U | 220 U | 500 U | 970 11 | 3700 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | 0 | 0 | | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | Phenanthrene | UG/KG | 21000 | 100 00% | 50000 | | 0 | 5 | | 5 | 620 | 940 | 3200 | 5800 | 21000 | | Phenol | UG/KG | 0 | B 00% | 30 | 315360000 | 0 | Ð | | 5 | 220 U | 220 U | 500 U | 970 U | | | Pyrene | UG/KG | 21000 | 100.00% | 50000 | 15768000 | Ð | 5 | | 5 | 940 | 1100 | 3800 | 5900 | 3700 U | | TPH | MG/KG | 1360 | 60 00% | | | 0 | 3 | | 5 | 20 4 U | 19.5 U | 109 | | 21000 | | | | | | | | | | | | 211 4 0 | 193 0 | 1177 | 1200 | 1360 | Table 27-5 SEAD-121B-Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE: | | | | | | | | | SEAD- | | SEAD-121B
Bldg 325 | SEAD-121B
Bldg, 325 | SEAD-121B
Bldg. 325 | SEAD-121B
Bldg, 325 | |--------------------------------------|----------------|---------|-----------|--------------|-------------------------|-----------------|--------------|----------|--------|----------------|-----------------------|---------------------------------------|------------------------|------------------------| | DESCRIPTION. | | | | | | | | | PCB Oi | | PCB Oil Spill | PCB Oil Spill | PCB Oil Spill | PCB Oil Spill | | LOC ID: | | | | | | | | | SB1218 | | SB121B-1 | SS121B-1 | SS121B-2 | SS121B-3 | | SAMP ID: | | | | | | | | | EB212 | | EB213 | EB238 | EB239 | EB240 | | QC CODE: | | | | | | | | | SA | | SA | SA | SA | SA | | SAMP. DETH TOP. | | | | | | | | | | 0 | 4 | 0 | 0 | 0 | | SAMP, DEPTH BOT: | | | | | | | | | | 0.2 | 4.5 | 0.2 | 0.2 | 02 | | MATRIX. | | | | | | | | | SOIL | | SOIL | SOIL | SOIL | SOIL | | SAMP DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER | 7- | Mar-98 | 7-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 5256000 | 0 | (|) | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 47304000 | 0 | (|) | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 1,3-Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 | 46778400 | 0 | |) | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | (| | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0.00% | | 520291 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2,4-Dichlorophenol | UG/KG | 0 | | 400 | 1576800 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2,4-Dinitrophenol | UG/KG | 0 | | 200 | 1051200 | 0 | (| | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | 2,4-Dinitrotoluene | UG/KG | 0 | | | 1051200 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2,6-Dinitrotoluene | UG/KG | 0 | | 1000 | 525600 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2-Chloronaphthalene | UG/KG | 0 | | 200 | 0000000 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2-Chlorophenol | UG/KG | 0 | | 800 | 2628000 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 2-Methylnaphthalene | UG/KG
UG/KG | 460 | | 36400 | 25250000 | 0 | 3 | | 5 | 220 U | 220 U | 27 J | 78 J | 460 J | | 2-Methylphenol 2-Nitroaniline | UG/KG | 0 | 0.00% | 100
430 | 26280000
31536 | 0 | (| | 5 | 220 U
530 U | 220 U | 500 U | 970 U | 3700 U | | | UG/KG | 0 | | 330 | 31330 | 0 | | | 5 | 220 U | 540 U | 1200 U | 2400 U | 9000 U | | 2-Nitrophenol 3,3'-Dichtorobenzidine | UG/KG | 0 | 0.00% | 330 | 12718 | 0 | | | 5 | 220 U | 220 U
220 U | 500 U
500 U | 970 U | 3700 U | | 3-Nitroaniline | UG/KG | * 0 | 0.00% | 500 | 1576800 | 0 | | | 5 | 530 U | 540 U | 1200 U | 970 U
2400 U | 3700 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | 500 | 1376000 | 0 | | | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U
9000 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 30484800 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | 30404000 | o | ì | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 4-Chloroaniline | UG/KG | 0 | | 220 | 2102400 | o | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 4-Chlorophenyl phenyl ether | UG/KG | o | | | 2102100 | 0 | Č | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 4-Methylphenol | UG/KG | 0 | | 900 | | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 1576800 | 0 | (| | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | 4-Nitrophenol | UG/KG | 0 | 0.00% | 100 | 31536000 | 0 | (| | 5 | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | Acenaphthene | UG/KG | 1800 | 100 00% | 50000 | | 0 | | 5 | 5 | 59 J | 120 J | 320 J | 640 J | 1800 J | | Acenaphthylene | UG/KG | 0 | 0.00% | 41000 | | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Anthracene | UG/KG | 2500 | 100.00% | 50000 | 157680000 | 0 | | 5 | 5 | 83 J | 160 J | 430 J | 960 J | 2500 J | | Benzo[a]anthracene | UG/KG | 9400 | 100.00% | 224 | 7840 | 1 | | 5 | 5 | 390 | 420 | 1600 | 3100 | 9400 | | Benzo[a]pyrene | UG/KG | 9100 | 100.00% | 61 | 784 | 3 | | 5 | 5 | 390 | 390 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 9100 | | Benzo[b]fluoranthene | UG/KG | 10000 | 100.00% | 1100 | 7840 | 1 | | | 5 | 460 | 410 | 1700 | 3200 | 10400 | | Benzo[ghi]perylene | UG/KG | 6500 | 100.00% | 50000 | | 0 | | | 5 | 260 | 230 | 1000 | 2000 | 6500 | | Benzo[k]fluoranthene | UG/KG | 9700 | 100.00% | 1100 | 78400 | 0 | | | 5 | 410 | 440 | 1600 | 2600 | 9700 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | | | 5203 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | | | 81760 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 0 | | 50000 | 408800 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Butylbenzylphthalate | UG/KG | 0 | | 50000 | 105120000 | 0 | (| | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Carbazole | UG/KG | 5300 | | 400 | 286160 | 0 | | | 5 | 130 J | 200 J | 820 | 1400 | 5300 | | Chrysene | UG/KG | 12000 | 100.00% | 400 | 784000 | 0 | | | 5 | 450 | 450 | 2000 | 3400 | 12000 | | Di-n-butylphthalate | UG/KG | 0 | | 8100 | 40540000 | 0 | | | 5 |
220 U | 220 U | 500 U | 970 U | 3700 U | | Di-n-octylphthalate | UG/KG | 0 | | 50000 | 10512000
784 | 0 | | | 5 | 220 U
110 J | 220 U
78 J | 500 U
500 | 970 U | 3700 U | | Dibenz[a,h]anthracene | UG/KG | 2100 | 100.00% | 14 | | 0 | | | 5 | 16 J | 78 J
42 J | 140 J | 640 J | 2100 J | | Dibenzofuran | UG/KG | 1200 | | 6200 | 2102400 | 0 | | • | 5 | | | 500 U | 300 J | 1200 J | | Diethyl phthalate | UG/KG
UG/KG | 12 | 20.00% | 7100
2000 | 420480000
5256000000 | 0 | | | 5 | 12 J
220 U | 220 U
220 U | 500 U | 970 U
970 U | 3700 U
3700 U | | Dimethylphthalate | | 30000 | | 50000 | 21024000 | 0 | | | 5 | 1100 | 1200 | 500 U | | 30000 | | Fluoranthene | UG/KG | | | 50000 | 21024000 | 0 | | | 5 | 1100
44 J | 1200
88 J | 270 J | 8900 E
580 J | | | Fluorene | UG/KG
UG/KG | 1800 | 100,00% | 410 | 3577 | 0 | | | 5 | 44 J
220 U | 220 U | 500 U | 580 J
970 U | 1800 J
3700 U | | Hexachlorobenzene | UG/KG | 0 | | 410 | 73374 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | | | Hexachlorocyclopentadiene | UG/KG
UG/KG | 0 | | | 408800 | 0 | | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U
3700 U | | Hexachloroethane | UG/KG | 6600 | 100,00% | 3200 | 7840 | 0 | | | 5 | 240 | 210 J | 970 | 2000 | 6600 | | Indeno[1,2,3-cd]pyrene
Isophorone | UG/KG | 0 | 0.00% | 4400 | 7040 | 0 | | | 5 | 240
220 U | 210 J
220 U | 500 U | 970 U | 3700 U | | ravpilototto | JUNG | 0 | 0.03% | 7700 | | 0 | , | , | • | 220 0 | 220 0 | 300 0 | 310 0 | 3700 0 | ## Table 27-5 SEAD-1218-Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE | | | | | | | | | SEAD-121
Bldg. 325 | В | SEAD-121B
Bldg 325 | SEAD-121B
Bldg 325 | SEAD-121B
Bldg 325 | SEAD-121B
Bldg 325 | |------------------------|-------|---------|-----------|-------|-----------|--------|---------|----------|-----------------------|--------|-----------------------|-----------------------|-----------------------|-----------------------| | DESCRIPTION | | | | | | | | | PCB Oil S | pill | PCB Oil Spill | PCB Oil Spill | PCB Oil Spill | PCB Oil Spill | | LOC ID | | | | | | | | | SB121B-1 | | SB121B-1 | SS121B-1 | SS121B-2 | SS121B-3 | | SAMP_ID | | | | | | | | | EB212 | | EB213 | EB238 | EB239 | EB240 | | QC CODE | | | | | | | | | SA | | SA | SA | SA | SA | | SAMP DETH TOP | | | | | | | | | | 0 | 4 | 0 | 0 | 0 | | SAMP DEPTH BQT | | | | | | | | | | 0 2 | 4.5 | 0 2 | 0 2 | 0 2 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 7-Ma | r-98 | 7-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 1168000 | 0 | 0 | | | 220 U | 220 U | 500 U | 970 U | 3700 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 818 | 0 | 0 | | | 220 U | 220 U | 500 U | 970 U | 3700 U | | Naphthalene | UG/KG | 1700 | 60 00% | 13000 | 21024000 | 0 | 3 | | | 220 U | 220 U | 79 J | 240 J | 1700 J | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | 0 | | 5 | 220 U | 220 U | 500 U | 970 U | 3700 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | 0 | | | 530 U | 540 U | 1200 U | 2400 U | 9000 U | | Phenanthrene | UG/KG | 21000 | 100.00% | 50000 | | 0 | 5 | | 5 | 620 | 940 | 3200 | 5800 | 21000 | | Phenoi | UG/KG | 0 | 0 00% | 30 | 315360000 | 0 | 0 | | | 220 U | 220 U | 500 U | 970 U | 3700 U | | Pyrene | UG/KG | 21000 | 100 00% | 50000 | 15768000 | 0 | 5 | | | 940 | 1100 | 3800 | 5900 | 21000 | | TPH | MG/KG | 1360 | 60.00% | | | 0 | 3 | | 5 | 20 4 U | 19 5 U | 109 | 1200 | 1360 | #### Table 27-6 SEAD-121B-PCBs in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION FOCID SAMP ID OCCODE | | | | | | | | | SEAD-12
Bldg 325
Oil Spill
SB121B-
EB212
SA | PCB | SEAD-121B
Bldg 325 PCB
Oil Spill
SB121B-1
EB213
SA | SEAD-121B
Bldg 325 PCB
Oil Spill
SS121B-1
EB238
SA | SEAD-121B
Bidg 325 PCB
Oil Spill
SS121B-2
EB239
SA | SEAD-121B
Bldg 325 PCB
Oil Spill
SS121B-3
EB240
SA | |--|-------|---------|-----------|-------|---------|--------|---------|----------|--|--------|---|---|---|---| | SAMP DETH TOP | | | | | | | | | | 0 | 4 | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0.2 | 4.5 | 0.2 | 0.2 | 0.2 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 7-N | lai-98 | 7-Nlar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | | | | OF: | | | ABOAT | OF | Ol: | | | | | | 7 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | LAGM | DUTECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE Q | VALUE 0 | VALUE O | | Aroclor-1016 | UG/KG | 0 | 0.00% | | 36792 | 0 | () | | 5 | 44 (1 | 40 Ú | 50 U | 48 (I | 37 U | | Aroclor-1221 | UG/KG | 0 | 0.00% | | | 0 | () | | 5 | 88 U | 79 U | 100 U | 98 U | 75 11 | | Aroclor-1232 | UGKG | 0 | 0.00% | | | 0 | () | | 5 | 44 U | 40 U | 50 U | 48 U | 37 U | | Aroclor-1242 | UG/KG | 0 | 0.00% | | | 0 | 0 | | 5 | 44 U | 40 [1 | 50 U | 48 U | 37 U | | Aroclor-1248 | UG/KG | 0 | 0.00% | | | 0 | 0 | | 5 | 44 U | 40 U | 50 (1 | 48 U | 37 U | | Aroclor-1254 | UG/KG | 76 | 25.00% | 10000 | 10512 | 0 | ı | | 1 | 44 () | 40 U | 50 U | 48 U | 76 P | | Aroclor-1260 | UG/KG | 0 | 0.00% | 10000 | | 0 | 0 | | | 44 () | 40 U | 50 U | | | | | ,, | | ., .,, | | | • | ., | | | 44 () | 40 0 | 20 0 | 48 () | 37 U | ## Table 27-7 SEAD-121B-PCBs in Soit vs PRG-IND Non-Evaluated Sites | SITE | | | | | | | | | SEAD-12
Bldg, 325 | | SEAD-1211
Bldg, 325 | 3 | SEAD-12
Bldg 325 | | SEAD-121
Bldg, 325 | IB | SEAD-12
Bldg 325 | | |----------------|-------|---------|-----------|-------|---------|--------|---------|----------|----------------------|-------|------------------------|------|---------------------|-------|-----------------------|------|---------------------|-------| | DESCRIPTION | | | | | | | | | Oil Spill | | PCB Oil Sp | iB | PCB Oil S | pill | PCB Oil S | pill | Oil Spill | | | LOC ID | | | | | | | | | SB121B- | 1 | SB121B-1 | | SS121B- | | SS121B-2 | | SS121B-3 | 3 | | SAMP_ID. | | | | | | | | | EB212 | | EB213 | | EB238 | | EB239 | | EB240 | | | QC CODE | | | | | | | | | SA | | | SAMP DETH TOP | | | | | | | | | | 0 | | 4 | | 0 | | 0 | | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0 2 | | 4.5 | | 0 2 | | 0 2 | | 0 2 | | MATRIX | | | | | | | | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 7-M | ar-98 | 7-Mar | -98 | 9-Ma | r-98 | 9-Ma | r-98 | 9-Ma | ar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | | Aroclor-1016 | UG/KG | 0 | 0 00% | | 36792 | 0 | 0 | | 5 | 44 U | | 40 U | | 50 U | | 48 U | | 37 U | | Aroclor-1221 | UG/KG | 0 | 0.00% | | | 0 | 0 | | 5 | 88 U | | 79 U | | 100 U | | 98 U | | 75 U | | Aroclor-1232 | UG/KG | 0 | 0.00% | | | 0 | 0 | | 5 | 44 U | | 40 U | | 50 U | | 48 U | | 37 U | | Aroclor-1242 | UG/KG | 0 | 0 00% | | | 0 | 0 | | 5 | 44 U | | 40 U | | 50 U | | 48 U | | 37 U | | Aroclor-1248 | UG/KG | 0 | 0.00% | | | 0 | 0 | | 5 | 44 U | | 40 U | | 50 U | | 48 U | | 37 U | | Aroclor-1254 | UG/KG | 76 | | 10000 | 10512 | 0 | 1 | | 4 | 44 U | | 40 U | | 50 U | | 48 U | | 76 P | | Aroclor-1260 | UG/KG | 0 | 0 00% | 10000 | | 0 | 0 | | 5 | 44 U | | 40 U | | 50 U | | 48 U | | 37 U | ## SEAD-121C DRMO Yard Table 28-1 ### Sample Collection Information SEAD-121C - DRMO Yard 9 Low Priority EBS Non-Evaluated Sites Scneca Army Depot Activity | MATRIX | LOCATION
1D | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|--| | SOIL | SB121C-1 | EB231 | 3/9/98 | 0.0 | 0.2 | SA | Location is near the NW fence where surface
water flows into drainage ditch. Scrap metal and
plastic fragments on ground surface | | SOIL | SB121C-1 | EB014 | 3/9/98 | 0.0 | 0.2 | DU | Same location as above | | SOIL | SB121C-1 | EB232 | 3/9/98 | 2.5 | 3.0 | SA | Same location as above Sample taken at water table Bedrock at 3 ft. No detected VOC's or impact to soils | | SOIL | SB121C-2 | EB226 | 3/9/98 | 0.0 | 0.2 | SA | Location is N of SB121C-1 near concrete storage cells Surface debris. Small arms projectiles at sample depth | | SOIL | SB121C-2 | EB228 | 3/9/98 | 2.0 | 2.5 | SA | Same location as above Sample taken at water table. Bedrock at 3 8 ft. No detected VOC's or impact to soils | | SOIL | SB121C-3 | EB233 | 3/9/98 | 0.0 | 0.2 | SA | Location is SW corner of Building T-355 where spills may of occured | | SOIL | SB121C-3 | EB234 | 3/9/98 | 2.5 | 3.0 | SA | Same location as above Mid-depth sample,
bedrock at 4.5 ft. No detected VOC's or impact to
soils | | SOIL | SB121C-4 | EB229 | 3/9/98 | 0.0 | 0.2 | SA | Location at midway on south fence line and is downgradient of parking/storage areas | | SOIL | SB121C-4 | EB020 | 3/9/98 | 0.0 | 0.2 | DU | Same location as above | | SOIL | SB121C-4 | EB230 | 3/9/98 | 2.5 | 3.0 | SA | Same location as above Sample taken at fill and former ground surface interface | | SURFACE SOIL | SS121C-1 | EB235 | 3/9/98 | 0.0 | 0.2 | SA | Sample taken at SW
corner of compound, downgradient of parking/storage area and concrete debris containment. | h \eng\seneca\ebs\report\low\tables\Smp1121c xis Table 28-1 ## Sample Collection Information SEAD-121C - DRMO Yard ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|---| | SURFACE SOIL | SS121C-2 | FB236 | 3/9/98 | 0.0 | 0.2 | SA | Sample taken along NW fence downgradient of parking area | | SURFACE SOIL | SS121C-3 | EB237 | 3/9/98 | 0.0 | 0.2 | SA | Sample taken N of Bldg 360 near concrete storage bays used for recyclable materials | | SURFACE SOIL | SS121C-4 | EB241 | 3/10/98 | 0.0 | 0.2 | SA | Sample taken in the NW corner of the yard near the concrete storage bays along the fence Near drainage of surface water | | GROUNDWATER | MW121C-1 | EB153 | 3/17/98 | 4.68
(TOC) | 11.76 (TOC) | SA | Well located in SW corner of yard, downgradient of surface water drainage and the concrete debris containment | | GROUNDWATER | MW121C-1 | EB023 | 3/17/98 | 4.68
(TOC) | 11.76 (TOC) | DU | Same as above | | GROUNDWATER | MW121C-2 | EB154 | 3/17/98 | 4.75
(TOC) | 7.4 (TOC) | SA | Well located in SE corner of yard,downgradient of Bldg. T-355 and parking area | h leng\seneca\ebs\report\low\tables\Smp1121c xls ### Table 28-2 SEAD-121C- Volatile in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SEAD-12
DRMO Y
SB121C-
EB226
SA
SOIL
9-Ma | ard | SEAD-12
DRMO Y
SB121C-
EB231
SA
SOIL
9-Ma | o
0
0 2 | SEAD-1:
DRMO 1)
SB121C
EB232
SA
SOIL | Yard | |---|-------|-------------------|-----------|-------|------------|--------|---------|----------|---|------|---|---------------|---|------| | DADAMETED | LINIT | 14 A V 18 AL 18 A | OF | T4014 | DDQ (ND | ABOVE | OF | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0.0 | 0 00% | 800 | 18396000 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0.0 | 0.00% | 600 | 286160 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,1,2-Trichloroethane | UG/KG | 0.0 | 0 00% | | 100407 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,1-Dichloroethane | UG/KG | 0.0 | 0 00% | 200 | 52560000 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,1-Dichloroethene | UG/KG | 0 0 | 0 00% | 400 | 9539 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,2-Dichloroethane | UG/KG | 0.0 | 0 00% | 100 | 62892 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,2-Dichloroethene (total) | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1,2-Dichloropropane | UG/KG | 0 0 | 0 00% | | 84165 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Acetone | UG/KG | 28.0 | 50.00% | 200 | 52560000 | 0 | 7 | 14 | | 12 U | | 12 U | | 14 | | Benzene | UG/KG | 2 0 | 7 14% | 60 | 197352 | 0 | 1 | 14 | | 12 U | | 12 U | | 12 U | | Bromodichloromethane | UG/KG | 0.0 | 0 00% | | 92310 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Bromoform | UG/KG | 0.0 | 0 00% | | 724456 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Carbon disulfide | UG/KG | 0 0 | 0 00% | 2700 | 52560000 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Carbon tetrachloride | UG/KG | 0 0 | 0 00% | 600 | 44025 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Chlorobenzene | UG/KG | 0.0 | 0.00% | 1700 | 10512000 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Chlorodibromomethane | UG/KG | 0.0 | 0 00% | | 68133 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Chloroethane | UG/KG | 0.0 | 0.00% | 1900 | 210240000 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Chloroform | UG/KG | 40 | 28 57% | 300 | 938230 | 0 | 4 | 14 | Į. | 12 U | | 12 U | | 12 U | | Crs-1,3-Dichloropropene | UG/KG | 0 0 | 0 00% | | | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Ethyl benzene | UG/KG | 0.0 | 0 00% | 5500 | 52560000 | 0 | 0 | 14 | ļ. | 12 U | | 12 U | | 12 U | | Methyl bromide | UG/KG | 0 0 | 0.00% | | 751608 | 0 | 0 | 14 | ļ. | 12 U | | 12 U | | 12 U | | Methyl butyl ketone | UG/KG | 0 0 | 0.00% | | | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Methyl chloride | UG/KG | 0.0 | 0 00% | | 440246 | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Methyl ethyl ketone | UG/KG | 0.0 | 0 00% | 300 | | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Methyl isobutyl ketone | UG/KG | 0.0 | 0 00% | 1000 | 42048000 | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Methylene chloride | UG/KG | 0.0 | 0 00% | 100 | 763093 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Styrene | UG/KG | 0.0 | 0 00% | | | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Tetrachloroethene | UG/KG | 0.0 | 0.00% | 1400 | 110062 | 0 | 0 | 14 | l . | 12 U | | 12 U | | 12 U | | Toluene | UG/KG | 28 0 | 100.00% | 1500 | 105120000 | 0 | 14 | 14 | ļ | 3 J | | 2 J | | 7 J | | Total Xylenes | UG/KG | 0.0 | 0.00% | 1200 | 1051200000 | 0 | 0 | 14 | l . | 12 U | | 12 U | | 12 U | | Trans-1,3-Dichloropropene | UG/KG | 0.0 | 0.00% | | | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Trichloroethene | UG/KG | 0 0 | 0.00% | 700 | 520291 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Vinyl chloride | UG/KG | 0 0 | 0 00% | 200 | 3012 | 0 | 0 | 14 | ŀ | 12 Ų | | 12 U | | 12 U | ### Table 28-2 SEAD-121C- Volatile in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU
0 0 2
SOIL
9-Mar-98 | SEAD-121C SEAD-121C DRMO Yard DRMO Yard SB121C-2 SB121C-3 EB228 EB233 SA SA 2 0 25 0 SOIL SOIL 9-Mar-98 9-Mar-98 | | SEAD-121C
DRMO Yard
SB121C-3
EB234
SA 2 5
3
SOIL 9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB020
DU
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB229
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB230
SA 2.5
3
SOIL 9-Mar-98 | SEAD-121C
DRMO Yard
SS121C-1
EB235
SA
0
0 2
SOIL
9-Mar-98 | |---|-------|--|--|---------|---|---|---|---|---| | | | | | | | | | 0 11101 00 | 5 Mai 55 | | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE 0 | VALUE Q | VALUE Q | VALUE Q | | 1.1.1-Trichloroethane | UG/KG | 12 U | 11 | 1,1,2,2-Tetrachloroethane | UG/KG | 12 U | 11 | 1,1,2-Trichloroethane | UG/KG | 12 U | 11 | 1.1-Dichloroethane | UG/KG | 12 U | 11 | 1.1-Dichloroethene | UG/KG | 12 U | 11 | 1,2-Dichloroethane | UG/KG | 12 U | 11 | 1,2-Dichloroethene (total) | UG/KG | 12 U | 11 | 1,2-Dichloropropane | UG/KG | 12 U | 11 | Acetone | UG/KG | 12 J | 11 U | 11 U | 16 | 10 J | 11 U | 28 | 10 J | | Benzene | UG/KG | 12 U | 2 J | 11 U | | Bromodichloromethane | UG/KG | 12 U | 11 | Bromoform | UG/KG | 12 U | 11 | Carbon disulfide | UG/KG | 12 U | 11 | Carbon tetrachloride | UG/KG | 12 U | 11 | Chlorobenzene | UG/KG | 12 U | 11 | Chlorodibromomethane | UG/KG | 12 U | 11 | Chloroethane | UG/KG | 12 U | 11 | Chloroform | UG/KG | 12 U | 4 J | 11 U | 11 U | 11 U | 4 J | 2 J | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 12 U | 11 | Ethyl benzene | UG/KG | 12 U | 11 | Methyl bromide | UG/KG | 12 U | 11 | Methyl butyl ketone | UG/KG | 12 U | 11 | Methyl chloride | UG/KG | 12 U | 11 | Methyl ethyl ketone | UG/KG | 12 U | 11 | Methyl isobutyl ketone | UG/KG | 12 U | 11 | Methylene chloride | UG/KG | 12 U | 11 | Styrene | UG/KG | 12 U | 11 U | . 11 U | | Tetrachloroethene | UG/KG | 12 U | 11 | Toluene | UG/KG | 5 J | 5 J | 2 J | 9 J | 12 | 10 J | 4 J | 9 J | | Total Xylenes | UG/KG | 12 U | 11 | Trans-1,3-Dichloropropene | UG/KG | · 12 U | 11 | Trichloroethene | UG/KG | 12 U | 11 | Vinyl chloride | UG/KG | 12 U | 11 Table 28-2 SEAD-121C- Volatile in Soil vs. NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | SEAD-121C
DRMO Yard
SS121C-2
EB236
SA
0 0 2
SOIL
9-Mar-98 | SEAD-12
DRMO Yard
SS121C-
EB237
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121
DRMO Yard
SS121C-4
EB241
SA
0
0 2
SOIL
10-Mar-98 | |---|----------------|--|--|---| | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 11
U | 11 U | 11 U | | 1, 1,2,2-1 etrachioroethane
1,1,2-Trichloroethane | UG/KG
UG/KG | 11 U | 11 U | 11 U | | 1.1-Dichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1.1-Dichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1,2-Dichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 11 U | 11 U | 11 U | | 1,2-Dichloropropane | UG/KG | 11 U | 11 U | 11 U | | Acetone | UG/KG | 11 U | 11 U | 6 JB | | Benzene | UG/KG | 11 U | 11 U | 11 U | | Bromodichloromethane | UG/KG | 11 U | 11 U | 11 U | | Bromoform | UG/KG | 11 U | 11 U | 11 U | | Carbon disulfide | UG/KG | 11 U | 11 U | 11 U | | Carbon tetrachloride | UG/KG | 11 U | 11 U | 11 U | | Chlorobenzene | UG/KG | 11 U | 11 U | 11 U | | Chlorodibromomethane | UG/KG | 11 U | 11 U | 11 U | | Chloroethane | UG/KG | 11 U | 11 U | 11 U | | Chloroform | UG/KG | 11 U | 11 U | 4 J | | Cis-1.3-Dichloropropene | UG/KG | 11 U | 11 U | 11 U | | Ethyl benzene | UG/KG | 11 U | 11 U | 11 U | | Methyl bromide | UG/KG | 11 U | 11 U | 11 U | | Methyl butyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methyl chloride | UG/KG | 11 U | 11 U | 11 U | | Methyl ethyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methyl isobutyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methylene chloride | UG/KG | 11 U | 11 U | 11 U | | Styrene | UG/KG | 11 U | 11 U | 11 U | | Tetrachloroethene | UG/KG | 11 U | 11 U | 11 U | | Toluene | UG/KG | 28 | 4 J | 16 | | Total Xylenes | UG/KG | 11 U | 11 U | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 11 U | 11 U | 11 U | | Trichloroethene | UG/KG | 11 U | 11 U | 11 U | | Vinyl chloride | UG/KG | 11 U | 11 U | 11 U | | | | | | | ### Table 28-3 SEAD-121C- Volatile in Soil vs PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP | | | | | | | | | SEAD-12
DRMO Y
SB121C-
EB226
SA | ard
-2 | SEAD-12
DRMO Y3
SB121C-
EB231
SA | ard
1 | SEAD-1
DRMO N
SB121C
EB232
SA | Yard
C-1 | |---|-------|---------|-----------|------|------------|--------|---------|----------|---|-----------|--|----------|---|-------------| | SAMP DEPTH BOT | | | | | | | | | | 0
0 2 | | 0
0 2 | | 25
3 | | MATRIX | | | | | | | | | SOIL | 0.2 | SOIL | 0 2 | SOIL | 3 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | ar-98 | 9-Ma | r-98 | | Mar-98 | | 074111 | | | OF | | | ABOVE | OF | OF | 0 111 | u. 50 | 3-1110 | 11-50 | 5-11 | 1141 30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 18396000 | 0 | 0 | 14 | , | 12 U | | 12 U | | 12 Ū | | 1.1.2.2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 286160 | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | 1.1.2-Trichloroethane | UG/KG | 0 | 0 00% | | 100407 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | 0 | 0 | 14 | ı | 12 U | | 12 U | | 12 U | | 1.1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | 0 | 0 | 14 | ı | 12 U | | 12 U | | 12 U | | 1,2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 62892 | 0 | 0 | 14 | ı | 12 U | | 12 U | | 12 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | 1.2-Dichloropropane | UG/KG | 0 | 0 00% | | 84165 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Acetone | UG/KG | 28 | 50 00% | 200 | 52560000 | 0 | 7 | 14 | 1 | 12 U | | 12 U | | 14 | | Benzene | UG/KG | 2 | 7 14% | 60 | 197352 | 0 | 1 | 14 | 1 | 12 U | | 12 U | | 12 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 92310 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Bromoform | UG/KG | 0 | 0 00% | | 724456 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 52560000 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 44025 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 10512000 | 0 | 0 | 14 | Į. | 12 U | | 12 U | | 12 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | | 68133 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 210240000 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Chloroform | UG/KG | 4 | 28.57% | 300 | 938230 | 0 | 4 | 14 | 1 | 12 U | | 12 U | | 12 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 52560000 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 751608 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Methyl butyl ketone | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 440246 | 0 | 0 | 14 | ļ | 12 U | | 12 U | | 12 U | | Methyl ethyl ketone | UG/KG | 0 | | 300 | | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Methyl isobutyl ketone | UG/KG | 0 | | 1000 | 42048000 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Methylene chloride | UG/KG | 0 | | 100 | 763093 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Styrene | UG/KG | 0 | | | | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Tetrachloroethene | UG/KG | 0 | | 1400 | 110062 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Toluene | UG/KG | 28 | 100.00% | 1500 | 105120000 | 0 | 14 | 14 | | 3 J | | 2 J | | 7 3 | | Total Xylenes | UG/KG | 0 | | 1200 | 1051200000 | 0 | 0 | 14 | • | 12 U | | 12 U | | 12 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | | | | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Trichloroethene | UG/KG | 0 | 0 00% | 700 | 520291 | 0 | 0 | 14 | | 12 U | | 12 U | | 12 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 3012 | 0 | 0 | 14 | 1 | 12 U | | 12 U | | 12 U | #### Table 28-3 SEAD-121C- Volatile in Soil vs PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE | | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU 0
0.2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-2
EB228
SA 2
2 5
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-3
EB233
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-3
EB234
SA
2 5
3
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB020
DU
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB229
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-4
EB230
SA
2 5
3
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SS121C-1
EB235
SA
0
0 2
SOIL
9-Mar-98 | |--|-------|--|--|---|---|---|---|---|---| | PARAMETER | UNIT | VALUE Q | 1.1.1-Trichloroethane | UG/KG | 12 U | 11 | 1.1.2.2-Tetrachloroethane | UG/KG | 12 U | 11 | 1,1,2-Trichloroethane | UG/KG | 12 U | 11 | 1.1-Dichloroethane | UG/KG | 12 U | 11 | 1.1-Dichloroethene | UG/KG | 12 U | 11 | 1.2-Dichloroethane | UG/KG | 12 U | 11 | 1,2-Dichloroethene (total) | UG/KG | 12 U | 11 | 1.2-Dichloropropane | UG/KG | 12 U | 11 | Acetone | UG/KG | 12 J | 11 U | 11 U | 16 | 10 J | 11 U | 28 | 10 J | | Benzene | UG/KG | 12 U | 2 J | 11 U | | Bromodichloromethane | UG/KG | 12 U | 11 | Bromoform | UG/KG | 12 U | 11 | Carbon disulfide | UG/KG | 12 U | 11 | Carbon tetrachloride | UG/KG | 12 U | 11 | Chlorobenzene | UG/KG | 12 U | 11 | Chlorodibromomethane | UG/KG | 12 U | 11 | Chloroethane | UG/KG | 12 U | 11 | Chloroform | UG/KG | 12 U | 4 J | 11 U | 11 U | 11 U | 4 J | 2 J | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 12 U | 11 | Ethyl benzene | UG/KG | 12 U | 11 | Methyl bromide | UG/KG | 12 U | 11 | Methyl butyl ketone | UG/KG | 12 U | 11 | Methyl chloride | UG/KG | 12 U | 11 | Methyl ethyl ketone | UG/KG | 12 U | 11 | Methyl isobutyl ketone | UG/KG | 12 U | 11 | Methylene chloride | UG/KG | 12 U | 11 | Styrene | UG/KG | 12 U | 11 | Tetrachloroethene | UG/KG | 12 U | 11 | Toluene | UG/KG | 5 J | 5 J | 2 J | 9 J | 12 | 10 J | 4 J | 9 J | | Total Xylenes | UG/KG | 12 U | 11 | Trans-1,3-Dichloropropene | UG/KG | 12 U | 11 | Trichloroethene | UG/KG | 12 U | 11 | Vinyl chloride | UG/KG | 12 U | 11 # Table 28-3 SEAD-121C- Volatile in Soil vs. PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | SEAD-121C
DRMO Yard
SS121C-2
EB236
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SS121C-3
EB237
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121B
DRMO Yard
SS121C-4
EB241
SA
0
0 2
SOIL
10-Mar-98 | |---|----------------|---|---|--| | PARAMETER | LIMIT | VALUE Q | VALUE | VALUE | | 1,1,1-Trichloroethane | UNIT
UG/KG | VALUE Q
11 U | VALUE Q
11 U | VALUÉ Q
11 U | | 1.1.2.2-Tetrachloroethane | | 11 U | 11 U | 11 U | | 1,1,2-Trichloroethane | UG/KG
UG/KG | 11 U | 11 U | 11 U | | 1.1-Dichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1.1-Dichloroethene | UG/KG
| 11 U | 11 U | 11 U | | 1.2-Dichloroethane | UG/KG | 11 U | 11 U | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 11 U | 11 U | 11 U | | 1,2-Dichloropropane | UG/KG | 11 U | 11 U | 11 U | | Acetone | UG/KG | 11 U | 11 U | 6 JB | | Benzene | UG/KG | 11 U | 11 U | 11 U | | Bromodichloromethane | UG/KG | 11 U | 11 U | 11 U | | Bromoform | UG/KG | 11 U | 11 U | 11 U | | Carbon disulfide | UG/KG | 11 U | 11 U | 11 U | | Carbon tetrachloride | UG/KG | 11 U | 11 U | 11 U | | Chlorobenzene | UG/KG | 11 U | 11 U | 11 U | | Chlorodibromomethane | UG/KG | 11 U | 11 U | 11 U | | Chloroethane | UG/KG | 11 U | 11 U | 11 U | | Chloroform | UG/KG | 11 U | 11 U | 4 J | | Cis-1,3-Dichloropropene | UG/KG | 11 U | 11 U | 11 U | | Ethyl benzene | UG/KG | 11 U | 11 U | 11 U | | Methyl bromide | UG/KG | 11 U | 11 U | 11 U | | Methyl butyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methyl chloride | UG/KG | 11 U | 11 U | 11 U | | Methyl ethyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methyl isobutyl ketone | UG/KG | 11 U | 11 U | 11 U | | Methylene chloride | UG/KG | 11 U | 11 U | 11 U | | Styrene | UG/KG | 11 U | 11 U | 11 U | | Tetrachloroethene | UG/KG | 11 U | 11 U | 11 U | | Toluene | UG/KG | 28 | 4 J | 16 | | Total Xylenes | UG/KG | 11 U | 11 U | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 11 U | 11 U | 11 U | | Trichloroethene | UG/KG | 11 U | 11 U | 11 U | | Vinyl chloride | UG/KG | 11 U | 11 U | 11 U | | | | | | | ## Table 28-4 SEAD-121C- Semivolatiles/TPH in Soil vs NYTAGM Non-Evaluated Sites | SITE: DESCRIPTION: LOC ID. SAMP_ID: | | | | | | | | | SEAD
DRMC
SB121
EB226 | Yard
1C-2 | SEAD-121C
DRMO Yard
SB121C-1
EB231 | SEAD-12
DRMO Y
SB121C-
EB232 | ard | SEAD-121C
DRMO Yard
SB121C-2
EB014 | SEAD-121C
DRMO Yard
SB121C-2
EB228 | SEAD-121C
DRMO Yard
SB121C-3
EB233 | |---------------------------------------|----------------|------------|-----------------|--------------|----------------------|---------------|---------------|----------------|--------------------------------|--------------|---|---------------------------------------|---------------|---|---|---| | QC CODE: | | | 1 | | | | | | SA | | SA | SA | | DU | SA | SA | | SAMP. DETH TOP | | | | | | | | | | 0 | 0 | | 2.5 | 0 | 2 | 0 | | SAMP, DEPTH BOT | | | | | | | | | | 0.2 | 02 | | 3 | 0.2 | 2.5 | 0.2 | | MATRIX. | | | | | | | | | SOIL | | SOIL | SOIL | | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 9 | -Mar-98 | 9-Mar-98 | 9-M | ar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG-IND | ABOVE
TAGM | OF
DETECTS | OF
ANALYSES | VALU | E Q | VALUE | Q VALUE | Q | VALUE Q | VALUE Q | VALUE | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 5256000 | 0 | 0 | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 1,2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 47304000 | 0 | 0 | 14 | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 1,3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 46778400 | 0 | 0 | 14 | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | 0 | 14 | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | 0 | 14 | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0.00% | | 520291 | 0 | | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | - | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 2,4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | - | | | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | 2.4-Dinitrotoluene | UG/KG | 45 | | 4000 | 1051200 | 0 | | 14 | | 45 J | 78 | | 77 U | 73 U | 75 U | 72 | | 2,6-Dinitrotoluene | UG/KG
UG/KG | 0 | . 0.00% | 1000 | 525600 | 0 | 0 | 1- | | 73 U | 78
78 | | 77 U | 73 U
73 U | 75 U
75 U | 72 | | 2-Chloronaphthalene
2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 2628000 | 0 | | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72
72 | | 2-Methylnaphthalene | UG/KG | 18 | | 36400 | 2020000 | 0 | 7 | 1. | | 8.6 J | 78 | | 77 U | 4.3 J | 7 J | 5,5 | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100 | 26280000 | 0 | , | 1. | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 31536 | 0 | | | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | 31330 | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 3.3 -Dichlorobenzidine | UG/KG | 0 | 0.00% | **** | 12718 | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 3-Nitroaniline | UG/KG | 0 | 0.00% | 500 | 1576800 | 0 | 0 | | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | 4.6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 180 U | 190 | | 190 U | 180 U | . 180 U | 180 | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 30484800 | 0 | 0 | 1- | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | 1- | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 2102400 | 0 | 0 | 1- | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | 4-Nitroanifine | UG/KG | 0 | 0.00% | | 1576800 | 0 | - | | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | 4-Nitrophenol | UG/KG | .0 | 0.00% | 100 | 31536000 | 0 | 0 | | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | Acenaphthene | UG/KG | 52 | | 50000 | | 0 | 7 | | 4 | 32 J | 78 | | 77 U | 6.8 J | 20 J | 72 | | Acenaphthylene | UG/KG | 0 | 0.00% | 41000 | 157680000 | 0 | 0 | | 4 | 73 U | 78
78 | | 77 U
77 U | 73 U
15 J | 75 U
41 J | 72 | | Anthracene | UG/KG | 96 | | 50000
224 | 7840 | 2 | | | 4 | 52 J
180 | 78 | | 4.6 J | 76 | 140 | 72
8.2 | | Benzo[a]anthracene | UG/KG
UG/KG | 420
370 | | 61 | 784 | 4 | 10 | | 4 | 158 | 78 | | 6.3 J | 57 J | 100 | 8.1 | | Benzo[a]pyrene Benzo[b]fluoranthene | UG/KG | 530 | | 1100 | 7840 | 0 | | | 4 | 200 | 78 | | 6.6 J | 95 | 110 | 13 | | Benzo(ghi)perylene | UG/KG | 380 | | 50000 | 7040 | 0 | | | 4 | 98 | 78 | | 12 J | 42 J | 65 J | 11 | | Benzo[k]fluoranthene | UG/KG | 390 | | 1100 | 78400 | 0 | | | 4 | 150 | 78 | | 5.7 J | 67 J | 120 | 7 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | | | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | 1- | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | 81760 | 0 | 0 | 1 | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 200 | 100.00% | 50000 | 408800 | 0 | 14 | 1 | 4 | 8.6 JB | 13 | | 10 J | 15 JB | 21 J | 9.2 | | Butylbenzylphthalate | UG/KG | 24 | 28.57% | 50000 | 105120000 | 0 | 4 | | 4 | 73 U | 78 | | 77 U | 73 U | 6.4 J | 72 | | Carbazole | UG/KG | 130 | 50 00% | | 286160 | 0 | | | 4 | 73 J | 78 | | 77 U | 17 J | 56 J | 72 | | Chrysene | UG/KG | 510 | | 400 | 784000 | 1 | 12 | | 4 | 210 | 78 | | 5.5 J | 90 | 160 | 11 | | Di-n-butylphthalate | UG/KG | 50 | | 8100 | | 0 | - | | 4 | 27 JB | 78 | | 77 U | 10 JB | 19 J | 72 | | Di-n-octylphthalate | UG/KG | 17 | | 50000 | 10512000 | 0 | - | | 4 | 73 U | 9.9 | | 9.8 J | 73 U | 17 J | 72 | | Dibenz[a,h]anthracene | UG/KG | 150 | | 14 | 784 | 6 | | | 4 | 13 J
19 J | 78
78 | | 9.7 J
77 U | 5.1 J | . 13 J | 72
72 | | Oibenzofuran | UG/KG | 22 | | 6200 | 2102400
420480000 | 0 | | | 4
3 | 7.2 JB | 5.8 | | 8.9 JB | 11 JB | 6.8 JB | 8.5 | | Diethyl phthalate | UG/KG | 18 | | 7100
2000 | 5256000000 | 0 | | | 4 | 7.2 JB | 78 | | 77 U | 73 U | 75 U | 72 | | Dimethylphthalate | UG/KG | 820 | 0.00%
85.71% | 50000 | 21024000 | 0 | | | 4 | 520 | 78 | | 4.8 J | 180 | 390 | 13 | | Fluoranthene
Fluorene | UG/KG
UG/KG | 43 | | 50000 | 21024000 | 0 | | | 4 | 32 J | 78 | | 77 U | 8 J | 22 J | 72 | | Hexachlorobenzene | UG/KG | 8.5 | | 410 | 3577 | 0 | | | 4 | 8.5 J | 78 | | 77 U | 73 U | 75 U | 72 | | Hexachlorobutadiene | UG/KG | 0.5 | 0.00% | 410 | 73374 | 0 | | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | Hexachloroethane | UG/KG | 0 | 0.00% | | 408800 | 0 | | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | Indeno[1,2,3-cd]pyrene | UG/KG | 350 | | 3200 | 7840 | 0 | 10 | | 4 | 94 | 78 | U | 8.6 J | 41 J | 58 J | 8.6 | | Isophorone | UG/KG | 0 | 0.00% | 4400 | | 0 | 0 | | | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | N-Nitrosodiphenylamine | UG/KG | 4.8 | 7.14% | | 1168000 | 0 | 1 | | 4 | 4.8 J | 78 | U | 77 U | 73 U | 75 U | 72 | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | 0 | 0 | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | Naphthalene | UG/KG | 14 | | 13000 | 21024000 | 0 | 6 | 1 | 4 | 11 J | 78 | | 77 U | 73 U | 12 J | 72 | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 262800 | 0 | - | | 4 | 73 U | 78 | | 77 U | 73 U | 75 U | 72 | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | 0 | - | | 4 | 180 U | 190 | | 190 U | 180 U | 180 U | 180 | | Phenanthrene | UG/KG | 520 | | 50000 | | 0 | 11 | | 4 | 360 | 78 | | 77 U | 96 | 280 | 8.8 | | Phenol | UG/KG | 0 | 0.00% | 30 | 315360000 | 0 | 0 | 1- | 4 | 73 U | 78 | U | 77 U | 73 U | 75 U | 72 | ### Table 28-4 SEAD 121C: Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites | SITE DESCRIPTION LOC ID SAMP JID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SEAD 121C
DRMO
Yard
SB121C-2
EB226
SA 0
0 2
SOIL
9 Mar 98 | SEAD 121C
DRMO Yard
SB121C-1
EB231
SA
0
0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C 1
EB232
SA
2 5
3
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU
0 0 2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-2
EB228
SA
2
2 5
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-3
EB233
SA
0
0 2
SOIL
9 Mar-98 | |--|-------|---------|-----------|-------|----------|--------|---------|----------|--|---|---|--|---|---| | SAME DATE | | | OF | | | ABOVE | OF | OF | 5 11151 00 | 5 7101 50 | 5-1111-50 | 5 Mai 50 | 3-1101-30 | 3 (44)1 20 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG IND | TAGM | DETECTS | ANALYSES | VALUE O | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE | | Pyrene | UG/KG | 820 | 85 71% | 50000 | 15768000 | | 0 12 | 1 | 14 380 | 78 U | 4 7 J | 170 | 290 | 13 | | TPH | MG/KG | 482 | 85 71% | | | | 0 12 | 1 | 14 23.4 | 16 7 U | 90.4 | 28 3 | 18 5 | 19 | Table 28-4 SEAD-121C- Semivolatiles/TPH in Soil vs. NYTAGM Non-Evaluated Sites | SITE: DESCRIPTION- LOC ID: SAMP_ID: QC CODE: | | | SEAD-121C
DRMO Yard
SB121C-3
EB234 | SEAD-121C
DRMO Yard
SB121C-4
EB020
DU | SEAD-121C
DRMO Yard
SB121C-4
EB229
SA | SEAD-121C
DRMO Yard
SB121C-4
EB230
SA | SEAD-121C
DRMO Yard
SS121C-1
EB235
SA | SEAD-121C
DRMO Yard
SS121C-2
EB236
SA | SEAD-12
DRMO Yard
SS121C-
EB237
SA | SEAD-121
DRMO Yard
SS121C-4
EB241
SA | |--|-------|----|---|---|---|---|---|---|--|--| | | | | SA 2.5 | 00 | 0 | 2.5 | . 0 | 0 | 0 | 0 | | SAMP, DETH TOP:
SAMP, DEPTH BOT: | | | 2.5 | 0.2 | 0.2 | 3 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | SOIL | SOIL | SOIL | SOIL 0.2 | SOIL | SOIL U.2 | SOIL 0.2 | | MATRIX: | | | SOIL | | | | 9-Mar-98 | | | | | SAMP DATE | | | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-96 | 9-Mar-98 | 9-Mar-98 | 10-Mar-98 | | PARAMETER | UNIT | 0 | VALUE Q | VALUE Q | VALUE Q | VALUE 0 | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1.2,4-Trichlorobenzene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1,2-Dichlorobenzene | | | | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1,3-Dichlorobenzene | UG/KG | U | 77 U | | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1.4-Dichlorobenzene | UG/KG | U | 77 U | 72 U | | | | | | | | 2,4,5-Trichlorophenol | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2,4,6-Trichlorophenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4-Dichlorophenol | UG/KG | Ų | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2.4-Dimethylphenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4-Dinitrophenol | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2,4-Dinitrotoluene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,6-Dinitrotoluene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Chloronaphthalene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Chlorophenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Methylnaphthalene | UG/KG | J | 8.3 J | 72 U | 71 U | 76 U | 72 U | 69 U | 18 J | 9.9 J | | 2-Methylphenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 1'80 U | 170 U | | 2-Nitroanifine | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2-Nitrophenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 3,3'-Dichlorobenzidine | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 3-Nitroaniline | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 4,6-Dinitro-2-methylphenol | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 4-Bromophenyl phenyl ether | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 ∪ | 170 U | | 4-Chloro-3-methylphenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Chloroaniline | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Chlorophenyl phenyl ether | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Methylphenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Nitroaniline | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 4-Nitrophenol | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | Acenaphthene | UG/KG | U | 13 J | 72 U | 71 U | 76 U | 72 U | 6.5 J | 50 J | 52 J | | Acenaphthylene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Anthracene | UG/KG | U | 19 J | 72 U | 71 U | 76 U | 72 U | 6.5 J | 96 J | 70 J | | Benzo(a)anthracene | UG/KG | J | 68 J | 3.9 J | 7 J | 4.6 J | 72 U | 30 J | 424 | 320 | | Benzo[a]pyrene | UG/KG | J | 58 J | 72 U | 71 U | 6 J | 72 U | 28 J | 370 | 264 | | Benzo[b]fluoranthene | UG/KG | J | 74 J | 13 J | 71 U | 5.8 J | 72 U | 40 J | 530 | 310 | | Benzo[ghi]perylene | UG/KG | J | 54 J | 72 U | 71 U | 6 2 J | 72 U | 15 J | 380 | 190 | | Benzolkifluoranthene | UG/KG | J | 70 J | 72 U | 71 U | 6.7 J | 72 U | 29 J | 340 | 390 | | Bis(2-Chloroethoxy)methane | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Chloroethyl)ether | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Chloroisopropyl)ether | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | J | 39 J | 9.3 J | 13 J | 14 J | 7.2 J | 9.2 J | 200 | 52 JB | | Butylbenzylphthalate | UG/KG | Ü | 77 U | 72 U | 71 U | 76 U | 72 U | 7.8 J | 24 J | 10 J | | Carbazole | UG/KG | ŭ | 34 J | 72 U | 71 U | 76 U | 72 U | 14 J | 130 J | 100 J | | Chrysene | UG/KG | J | 82 | 8.8 J | 12 J | 7.8 J | 72 U | 35 J | 516 | 360 | | Di-n-butylphthalate | UG/KG | U | 5.3 J | 72 U | 3.7 J | 76 U | 8.2 J | 69 U | 50 J | 20 JB | | Di-n-octylphthalate | UG/KG | ŭ | 77 U | 72 U | 71 U | 3.9 J | 72 U | 3.8 J | 180 U | 170 U | | Dibenz(a,h)anthracene | UG/KG | U | 26 J | 72 U | 71 U | 76 U | 72 U | 7.6 J | 150 J | WIJ | | Dibenzofuran | UG/KG | Ü | 4.1 | 72 U | 71 U | 76 U | 72 U | 69 U | 22 J | 22 J | | Diethyl phthalate | UG/KG | JB | 18 JB | 8.1 JB | 10 BJ | 4.7 JB | 11 JB | 9.4 JB | 11 JB | 170 U | | Dimethylphthalate | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Fluoranthene | UG/KG | J | 160 | 7.4 J | 10 J | 9.6 J | 72 U | 65 J | 820 | 760 | | Fluorene | UG/KG | ŭ | 12 J | 72 U | 71 U | 76 U | 72 U | 5 J | 41 J | 43 J | | | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Hexachlorobenzene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Hexachlorobutadiene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Hexachlorocyclopentadiene | | | | | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Hexachloroethane | UG/KG | U | 77 U | 72 U | 71 U | 5.9 J | 72 U | 17 J | 350 | 180 | | Indeno[1,2,3-cd]pyrene | UG/KG | J | .48 J | 72 U | | | | | | 170 U | | Isophorone | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | | | N-Nitrosodiphenylamine | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | N-Nitrosodipropylamine | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Naphthalene | UG/KG | U | 6.9 J | 72 U | 71 U | 76 U | 72 U | 4 J | 14 J | 12 J | | Nitrobenzene | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Pentachlorophenol | UG/KG | U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | Phenanthrene | UG/KG | J | 110 | 8.8 J | 7.6 J | 5.9 J | 72 U | 38 J | 520 | 440 | | Phenol | UG/KG | U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | ### Table 28-4 SEAD 121C Semivolatiles/TPH in Soil vs. NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | SEAD-121C
DRMO Yard
SB121C-3
EB234
SA | SEAD 121C
DRMO Yard
SB121C 4
EB020
DU | SEAD-121C
DRMO Yard
SB121C 4
EB229
SA | SEAD 121C
DRMO Yard
SB121C 4
EB230
SA | SEAD-121C
DRMO Yard
SS121C 1
EB235
SA | SEAD-121C
DRMO Yard
SS121C 2
EB236
SA | SEAD-12
DRMO Yard
SS121C-
EB237
SA | SEAD-121
DRMO Yard
SS121C-4
EB241
SA | |---|---------|---|---|---|---|---|---|--|--| | SAMP DETH
TOP | | 2 5 | 0 | 0 | 2 5 | 0 | 0 | D | 0 | | SAMP DEPTH BOT | | 3 | 0 2 | 0 2 | 3 | 0.2 | 0.2 | 0 2 | 0 2 | | MATRIX | | SOIL | SAMP DATE | | 9-Mar 98 | 9-Mar-98 | 9 Mar 98 | 9 Mai 98 | 9 Mar-98 | 9-Mar-98 | 9 Mar 98 | 10-Mar-98 | | PARAMETER | UNIT Q | VALUE Q | VALUE Q | VALUE Q | VALUE O | VALUE Q | VALUE O | VALUE Q | VALUE Q | | Pyrene | UG/KG J | 130 | 8.3 J | 14 J | L ‡ 8 | 72 U | 53 J | 820 | 580 | | TPH | MG/KG | 213 | 413 | 303 | 38 4 | 19 3 U | 109 | 482 | 66 3 | ### Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX | | | | | | | | | DRMI
SB12
EB22
SA
SOIL | 0
0 2 | SEAD-121C
DRMO Yard
SB121C-1
EB231
SA
0
0.2
SOIL | SEAD-121C
DRMO Yard
SB121C-1
EB232
SA 2 5
3 | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU
0
0 2 | SEAD-121C
DRMO Yard
SB121C-2
EB228
SA
2
2 5
SOIL | |---|----------------|-----------|-------------------|----------------|---------------------|-----------------|--------------|--------------|------------------------------------|----------------|---|--|---|---| | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | Ş | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | PARAMETER | UNIT | | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALL | | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 5256000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 1.2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 47304000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 1.3-Dichlorobenzene
1,4-Dichlorobenzene | UG/KG
UG/KG | 0 | 0 00%
0 00% | 1600
8500 | 46778400
238467 | 0 | 0 | | | 73 U
73 U | 78 U
78 U | 77 U | 73 U | 75 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0 00% | 100 | 52560000 | 0 | 0 | | | 180 U | 190 U | 77 U
190 U | 73 U
180 U | 75 U
180 U | | 2.4,6-Trichlorophenol | UG/KG | 0 | 0 00% | 100 | 520291 | ő | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2.4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2,4-Dinitrophenol | UG/KG | 0 | 0 00% | 200 | 1051200 | 0 | 0 | 1 | 4 | 180 U | 190 U | 190 U | 180 U | 180 U | | 2.4-Dinitrotoluene | UG/KG | 45 | 7 14% | | 1051200 | 0 | 1 | 1- | 4 | 45 J | 78 U | 77 U | 73 U | 75 U | | 2,6-Dinstrotoluene | UG/KG | 0 | 0.00% | 1000 | 525600 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2-Chloronaphthalene | UG/KG | 0 | 0.00% | | | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 2628000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2-Methylnaphthalene | UG/KG | 18 | 50.00% | 36400 | | 0 | 7 | 1 | | 8 6 J | 78 U | 77 U | 4.3 J | 7 J | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100
430 | 26280000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 2-Nitroaniline 2-Nitrophenol | UG/KG
UG/KG | 0 | 0 00% | 330 | 31536 | 0 | 0 | | | 180 U
73 U | 190 U
78 U | 190 U
77 U | 180 U
73 U | 180 U
75 U | | 3,3 Dichlorobenzidine | UG/KG | 0 | 0 00% | 330 | 12718 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 3-Nitroaniline | UG/KG | 0 | 0 00% | 500 | 1576800 | 0 | 0 | | | 180 U | 190 U | 190 U | 180 U | 180 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0 00% | | | 0 | 0 | | | 180 U | 190 U | 190 U | 180 U | 180 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0 00% | | 30484800 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 2102400 | 0 | 0 | 1- | 4 | 73 U | 78 U | 77 U | 73 U | 75 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 1576800 | 0 | 0 | | | 180 U | 190 U | 190 U | 180 U | 180 U | | 4-Nitrophenol | UG/KG | 0 | 0.00% | 100 | 31536000 | 0 | 0 7 | | | 180 U | 190 U | 190 U | 180 U | 180 U | | Acenaphthene | UG/KG
UG/KG | 52
0 | 50.00%
0.00% | 50000
41000 | | 0 | , | | | 32 J
73 U | 78 U
78 U | 77 U
77 U | 6.8 J
73 U | 20 J
75 U | | Acenaphthylene
Anthracene | UG/KG | 96 | 50.00% | 50000 | 157680000 | 0 | 7 | , | | 73 U
52 J | 78 U | 77 U | 73 U
15 J | 75 U
41 J | | Benzo[a]anthracene | UG/KG | 420 | 85 71% | 224 | 7840 | 0 | 12 | | | 180 | 78 U | 46 J | 76 | 140 | | Benzo[a]pyrene | UG/KG | 370 | 71.43% | 61 | 784 | ő | 10 | | | 150 | 78 U | 6.3 J | 57 J | 100 | | Benzo[b]fluoranthene | UG/KG | 530 | 78.57% | 1100 | 7840 | 0 | 11 | 1 | 4 | 200 | 78 U | 6.6 J | 95 | 110 | | Benzo(ghi)perylene | UG/KG | 380 | 71.43% | 50000 | | 0 | 10 | 1 | 4 | 98 | 78 U | 12 J | 42 J | 65 J | | Benzo[k]fluoranthene | UG/KG | 390 | 71.43% | 1100 | 78400 | 0 | 10 | 1- | 4 | 150 | 78 U | 5.7 J | 67 J | 120 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0 00% | | | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | 81760 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Bis(2-Ethylhexyl)phthalate | UG/KG
UG/KG | 200
24 | 100.00%
28.57% | 50000
50000 | 408800
105120000 | 0 | 14 | | | 8.6 JB
73 U | 13 J
78 U | 10 J
77 U | 15 JB
73 U | 21 J
6 4 J | | Butylbenzylphthalate
Carbazole | UG/KG | 130 | 50.00% | 30000 | 286160 | 0 | 7 | | | 73 J | 78 U | 77 U | 17 J | 56 J | | Chrysene | UG/KG | 510 | 85.71% | 400 | 784000 | ő | 12 | | | 210 | 78 U | 5 5 J | 90 | 160 | | Di-n-bulylphthalate | UG/KG | 50 | 57.14% | 8100 | 104000 | ō | 8 | | | 27 JB | 78 U | 77 U | 10 JB | 19 J | | Di-n-octylphthalate | UG/KG | 17 | 35.71% | 50000 | 10512000 | 0 | 5 | . 1 | 4 | 73 U | 9.9 J | 9.8 J | 73 U | 17 J | | Dibenz(a,h)anthracene | UG/KG | 150 | 57.14% | 14 | 784 | 0 | 8 | 1- | 4 | 43 J | 78 U | 9.7 J | 21 J | 33 J | | Dibenzofuran | UG/KG | 22 | 42.86% | 6200 | 2102400 | 0 | 6 | | | 19 J | 78 U | 77 U | 5.1 J | 13 J | | Diethyl phthalate | UG/KG | 18 | 100 00% | 7100 | 420480000 | 0 | 13 | | | 7.2 JB | 5.8 JB | 8.9 JB | 11 JB | 6.8 JB | | Dimethylphthalate | UG/KG | 0 | 0.00% | 2000 | 5256000000 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Fluoranthene | UG/KG | 820 | 85.71% | 50000 | 21024000 | 0 | 12 | | | 520 | 78 U | 4.8 J | 180 | 390 | | Fluorene | UG/KG | 43 | 50.00% | 50000 | 21024000 | 0 | 7 | | | 32 J | 78 U | 77 U | 8 J | 22 J | | Hexachlorobenzene | UG/KG | 8 5 | 7 14% | 410 | 3577 | 0 | 1 | 1. | | 8.5 J | 78 U | 77 U | 73 U | 75 U | | Hexachlorobuladiene | UG/KG | 0 | 0.00% | | 73374
3679200 | 0 | 0 | | | 73 U
73 U | 78 U
78 U | 77 U
77 U | 73 U
73 U | 75 U
75 U | | Hexachlorocyclopentadiene
Hexachloroethane | UG/KG
UG/KG | 0 | 0.00% | | 3679200
408800 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 350 | 71.43% | 3200 | 7840 | 0 | 10 | | | 94 | 78 U | 8.6 J | 41 J | 58 J | | Isophorone | UG/KG | 0 | 0.00% | 4400 | ,540 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | N-Nitrosodiphenylamine | UG/KG | 4.8 | 7.14% | 7.00 | 1168000 | 0 | 1 | 1 | | 4.8 J | 78 U | 77 U | 73 U | 75 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | 0 | 0 | | | 73 U | 78 U | 77 U | 73 U | 75 U | | Naphthalene | UG/KG | 14 | 42.86% | 13000 | 21024000 | 0 | 6 | 1- | 4 | 11 J | 78 U | 77 U | 73 U | 12 J | ### Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | | | | | | | | SEAD-12
DRMO Y
SB121C-
EB226
SA | ard | SEAD-121C
DRMO Yard
SB121C-1
EB231
SA | SEAD-121C
DRMO Yard
SB121C-1
EB232
SA | | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU | SEAD-121C
DRMO Yard
SB121C-2
EB228
SA | | |---|-------|---------|-----------|--------|-----------|--------|---------|----------|---|-------|---|---|-----|---|---|--| | SAMP DETH TOP | | | | | | | | | | 0 | 0 | 2 | 5 | 0 | 2 | | | SAMP DEPTH BOT | | | | | | | | | | 0.2 | 0 2 | | 3 | 0 2 | 2.5 | | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | | SOIL | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 9-M | ar-98 | 9-Mar-98 | 9-Mar-9 | 8 | 9-Mar-98 | 9-Mar-98 | | | OAM DATE | | | OF | | | ABOVE | OF | OF | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE | Q | VALUE Q | VALUE Q | | | Narobenzene | UG/KG | 0 | 0.00% | 200 | 262800 | 0 | 0 | 1 | 4 | 73 U | 78 U | 7 | 7 U | 73 U | 75 U | | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | 0 | 1 | 4 | 180 U | 190 U | 19 | 0 U | 180 U | 180 U | | | Phenanthrene | UG/KG | 520 | 78 57% | 50000 | | 0 | 11 | 1 | 4 | 360 | 78 U | 7 | 7 U | 96 | 280 | | | Phenol | UG/KG | 0.00 | 0 00% | 30 | 315360000 | 0 | 0 | 1 | 4 | 73 U | 78 U | 7 | 7 U | 73 U | 75 ∪ | | | Pyrene | UG/KG | 820 | 85 71% | 50000 | 15768000 | 0 | 12 | 1 | 4 | 380 | 78 U | 4. | 7 J | 170 | 290 | | | TPH | MG/KG | 482 | 85 71% | ****** | | 0 | 12 | 1 | 4 | 23 4 | 16 7 U | 90 | | 28 3 | 18.5
 | ## Table 28-5 SEAD-121C- Semivolables/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE | | SEAD-121C SEAD-1218 | |--|-------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------| | DESCRIPTION: | | DRMO Yard DRMQ Yard | DRMO Yard | | FOC ID | | SB121C-3 | SB121C-3 | SB121C-4 | SB121C-4 | SB121C-4 | \$\$121C-1 | SS121C-2 | SS121C-3 | SS121C-4 | | SAMP_ID | | EB233 | EB234 | EB020 | EB229 | EB230 | EB235 | EB236 | EB237 | EB241 | | QC CODE | | SA | SA | DU | SA | SA | SA | SA | SA | SA | | SAMP DETH TOP | | 0 | 2 5 | 0 | 0 | 2 5 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | 0 2 | 3 | 0.2 | 0.2 | 3 | 0.2 | 0 2 | 0.2 | 0.2 | | MATRIX | | SOIL | SAMP DATE | | 9-Mar-98 10-Mar-98 | | PARAMETER | UNIT | VALUE Q | 1,2,4-Trichlorobenzene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1,2-Dichlorobenzene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1,3-Dichlorobenzene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 1.4-Dichlorobenzene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4 5-Trichlorophenol | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2,4,6-Trichlorophenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4-Dichlorophenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4-Dimethylphenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,4-Dinitrophenol | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2.4-Dinitrotoluene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2,6-Dintrotoluene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Chloronaphthalene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Chlorophenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Methylnaphthalene | UG/KG | 5.5 J | 83 J | 72 U | 71 U | 76 U | 72 U | 69 U | 18 J | 9.9 J | | 2-Methylphenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 2-Nitroaniline | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 2-Nitrophenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 3.3 - Dichlorobenzidine | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 3-Nitroanitine
4,6-Dinitro-2-methylphenol | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 4-Bromophenyl phenyl ether | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Chloro-3-methylphenol | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Chloroaniline | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Chlorophenyl phenyl ether Mathylahagal | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | 4-Methylphenol 4-Nitroaniline | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | 4-Nitrophenol | UG/KG | 180 U | 190 U | 170 U | 170 U | 180 U | 180 U | 170 U | 440 U | 420 U | | Acenaphthene | UG/KG | 72 U | 13 J | 72 U | 71 U | 76 U | 72 U | 6.5 J | 50 J | 52 J | | Acenaphthylene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 ∪ | 170 U | | Anthracene | UG/KG | 72 U | 19 J | 72 U | 71 U | 76 U | 72 U | 6.5 J | 96 J | 70 J | | Benzo[a]anthracene | UG/KG | 8 2 J | 68 J | 3.9 J | 7 J | 4.6 J | 72 U | 30 J | 420 | 320 | | Benzo[a]pyrene | UG/KG | 8 1 J | 58 J | 72 U | 71 U | 6.1 | 72 U | 28 J | 370 | 260 | | Benzo[b]fluoranthene | UG/KG | 13 J | 74 J | 13 J | 71 U | 5 8 J | 72 U | 40 J | 530 | 310 | | Benzo(ghi)perylene | UG/KG | 11 J | 54 J | 72 U | 71 U | 6 2 J | 72 U | 15 J | 380 | 190 | | Benzo[k]fluoranthene | UG/KG | 7 J | 70 J | 72 U | 71 U | 6.7 J | 72 U | 29 J | 340 | 390 | | Bis(2-Chloroethoxy)methane | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Chloroethyl)ether | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 9 2 J | 39 J | 9 3 J | 13 J | 14 J | 7.2 J | 9.2 J | 200 | 52 JB | | Butylbenzylphthalate | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 7 8 J | 24 J | 10 J | | Carbazole | UG/KG | 72 U | 34 J | 72 U | 71 U | 76 ∪ | 72 U | 14 J | 130 J | 100 J | | Chrysene | UG/KG | 11 J | 82 | 8.8 J | 12 J | 7,8 J | 72 U | 35 J | 510 | 360 | | Di-n-butylphthalate | UG/KG | 72 U | 5 3 J | 72 U | 37 J | 76 U | 8 2 J | 69 U | 50 J | 20 JB | | Di-n-octylphthalate | UG/KG | 72 U | 77 U | 72 U | 71 U | 3.9 J | 72 U | 3 8 J | 180 ∪ | 170 ∪ | | Dibenz[a,h]anthracene | UG/KG | 72 U | 26 J | 72 U | 71 U | 76 U | 72 U | 7.6 J | 150 J | 79 J | | Dibenzofuran | UG/KG | 72 U | 8 J | 72 U | 71 U | 76 U | 72 U | 69 U | 22 J | 22 J | | Diethyl phthalate | UG/KG | 8.5 JB | 18 JB | 8.1 JB | 10 BJ | 4 7 JB | 11 JB | 9.4 JB | 11 JB | 170 U | | Dimethylphthalale | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Fluoranthene | UG/KG | 13 J | 160 | 7.4 J | 10 J | 9.6 J | 72 U | 65 J | 820 | 760 | | Fluorene | UG/KG | 72 U | 12 J | 72 U | 71 U | 76 U | 72 U | 5 J | 41 J | 43 J | | Hexachlorobenzene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 ∪ | 180 ∪ | 170 U | | Hexachlorobutadiene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 ∪ | 180 U | 170 ∪ | | Hexachlorocyclopentadiene | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Hexachloroethane | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 8.6 J | 48 J | 72 U | 71 U | 5.9 J | 72 U | 17 J | 350 | 180 | | Isophorone | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 ∪ | 170 U | | N-Nitrosodiphenylamine | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | N-Nitrosodipropylamine | UG/KG | 72 U | 77 U | 72 U | 71 U | 76 U | 72 U | 69 U | 180 U | 170 U | | Naphthalene | UG/KG | 72 U | 6.9 J | 72 U | 71 U | 76 U | 72 U | 4 J | 14 J | 12 J | | aprimate ne | COING | 72.0 | 0,00 | ,,, | ., . | | | | | | # Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | SEAD-121
DRMO YA
SB121C-3
EB233
SA | rd | SEAD-12
DRMO Y:
SB121C-:
EB234
SA | ard | SEAD-121
DRMO YA
SB121C-4
EB020
DU | rd | SEAD-12
DRMO Y2
SB121C-4
EB229
SA | ard | SEAD-12
DRMO Y
SB121C-
EB230
SA | ard | SEAD-121
DRMO Ya
SS121C-1
EB235
SA | | SEAD-12
DRMO Ya
SS121C-2
EB236
SA | erd | SEAD-12
DRMO Y:
SS121C-:
EB237
SA | ard | SEAD-12
DRMO Y
SS121C-
EB241
SA | 'ard | |---|-------|--|-------|---|-------|--|-------|---|-------|---|-------|--|-------|---|-------|---|-------|---|-------| | SAMP DETH TOP | | | 0 | | 2 5 | | 0 | | 0 | | 2 5 | | 0 | | 0 | | 0 | | 0 | | SAMP DEPTH BOT | | | 0 2 | | 3 | | 0 2 | | 0 2 | | 3 | | 0 2 | | 0.2 | | 0 2 | | 0.2 | | MATRIX | | SOIL | SAMP DATE | | 9-Mar | -98 | 9-Ma | r-98 | 9-Mai | r-98 | 9-Ma | ar-98 | 9-Ma | ır-98 | 9-Mai | -98 | 9-Ma | r-98 | 9-Ma | ır-98 | 10-Ma | ır-98 | | PARAMETER | UNIT | VALUE | Q | VALUE | ۵ | VALUE | Q | Nitrobenzene | UG/KG | | 72 U | | 77 U | | 72 U | | 71 U | | 76 U | | 72 U | | 69 U | | 180 U | | 170 U | | Pentachlorophenol | UG/KG | 1 | 180 U | | 190 U | | 170 U | | 170 U | | 180 U | | 180 U | | 170 U | | 440 U | | 420 U | | Phenanthrene | UG/KG | | 8.8 J | | 110 | | 88 J | | 76 J | | 5.9 J | | 72 U | | 38 J | | 520 | | 440 | | Phenol | UG/KG | | 72 U | | 77 U | | 72 U | | 71 U | | 76 U | | 72 U | | 69 U | | 180 U | | 170 U | | Pyrene | UG/KG | | 13 J | | 130 | | 83 J | | 14 J | | 8 1 J | | 72 U | | 53 J | | 820 | | 580 | | TPH | MG/KG | | 19 | | 213 | | 413 | | 303 | | 38 4 | 1 | 9.3 U | | 109 | | 482 | | 66 3 | ### Table 28-6 SEAD 121C- Pesticides/PCBs in Soil vs. NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | | SEAD-121C
DRMO Yard
SB121C-2
E6226
SA
0 0.2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-1
EB231
SA
0
2
SOIL
9-Mar 98 | SEAD-121C
DRMO Yard
SB121C-1
EB232
SA 2.5
3
SOIL 9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-2
EB014
DU 0
0.2
SOIL
9-Mar-98 | SEAD-121C
DRMO Yard
SB121C-2
EB228
SA
2
2.5
SOIL
9-Mar-98 | |---|-------|---------|-----------------|-------|---------|-----------------|--------------|----------|--|---|---|--|---| | PARAMETER | UNIT |
MUMIXAM | DETECTION | TAGM | PRG IND | TAGM | DETECTS | ANALYSES | VALUE Q | | 4.4 DDD | UG/KG | 7.4 | 7 14% | 2900 | 23847 | 0 | 1 | 14 | 37 U | 3 9 U | 3.8 U | 37 U | 3.8 U | | 4.4 DDE | UG/KG | 69 | 64 29% | 2100 | 16833 | 0 | 9 | 14 | | 3.9 U | 3.8 U | 29 | 13 | | 4.4 -DDT | UG/KG | 100 | 61 54% | 2100 | 16833 | 0 | 8 | 13 | | 3 9 U | 3.8 U | 35 | 98 | | Aldrin | UG/KG | 0 | 0.00% | 41 | 337 | 0 | 0 | 14 | | 2 U | 2 U | 1 8 U | 19 U | | Alpha-BHC | UG/KG | 1.5 | 7.69% | 110 | | 0 | 1 | 13 | | 2 U | 2 U | 1 5 JP | 19 U | | Alpha-Chlordane | UG/KG | 1 | 7.69% | .,, | | 0 | 1 | 13 | | 2 U | 2 U | 1.8 U | 1.9 U | | Aroclor 1016 | UG/KG | 0 | 0.00% | | 36792 | 0 | 0 | 14 | | 39 U | 38 U | 37 U | 38 U | | Aroclor-1221 | UG/KG | 0 | 0.00% | | 00702 | 0 | 0 | 14 | | 79 U | 78 U | 74 U | 76 U | | Aroclor-1232 | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | | 39 U | 38 U | 37 U | 38 U | | Aroclor-1242 | UG/KG | 58 | 7 69% | | | 0 | 1 | 13 | | 39 U | 38 U | 37 U | 38 U | | Aroclor-1248 | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | | 39 U | 38 U | 37 U | 38 U | | Aroclor 1254 | UG/KG | 79 | 14.29% | 10000 | 10512 | 0 | 2 | 14 | 37 U | 39 U | 38 U | 37 U | 38 U | | Aroclor-1260 | UG/KG | 200 | 50.00% | 10000 | | 0 | 5 | 10 | | 39 U | 38 U | 30 JP | 200 | | Beta-BHC | UG/KG | 0 | 0 00% | 200 | | 0 | 0 | 14 | 1.8 U | 2 U | 2 U | 1.8 U | 1.9 U | | Delta BHC | UG/KG | 2 | 40.00% | 300 | | 0 | 4 | 10 | 1.8 U | 2 U | 2 U | 0 95 JP | 1 3 JP | | Dieldrin | UG/KG | 0 | 0 00% | 44 | 358 | 0 | 0 | 14 | 37 U | 3.9 U | 3.8 U | 3.7 U | 3.8 U | | Endosulfan I | UG/KG | 0 | 0 00% | 900 | 3153600 | 0 | 0 | 14 | 1.8 U | 2 U | 2 U | 1 8 U | 19 U | | Endosulfan II | UG/KG | 0 | 0.00% | 900 | 3153600 | 0 | 0 | 14 | 37 U | 3 9 U | 3.8 U | 3.7 U | 3.8 U | | Endosulfan sulfate | UG/KG | 0 | 0 00% | 1000 | | 0 | 0 | 14 | 3 7 U | 3 9 U | 3.8 U | 3.7 U | 3 8 U | | Endon | UG/KG | 0 | 0 00% | 100 | 157680 | 0 | 0 | 14 | 37 U | 3 9 U | 3 8 U | 3.7 U | 3.8 U | | Endrin aldehyde | UG/KG | 0 | 0.00% | | 157680 | 0 | 0 | 14 | 3.7 U | 3.9 U | 3 8 U | 3.7 U | 3.8 U | | Endrin ketone | UG/KG | 3.8 | 7.69% | | 157680 | 0 | 1 | 13 | 3.7 U | 3 9 U | 3 8 U | 3.7 U | 38 U | | Gamma-BHC/Lindane | UG/KG | 0 | 0 00% | 60 | 4402 | 0 | 0 | 14 | 1.8 U | 2 U | 2 U | 1.8 U | 19 U | | Gamma-Chlordane | UG/KG | 1.2 | 7 69% | 540 | | 0 | 1 | 13 | 1 8 U | 2 U | 2 U | 1 8 U | 19 U | | Heptachlor | UG/KG | 2 1 | 7 69% | 100 | 1272 | 0 | 1 | 13 | 1.8 U | 2 U | 2 U | 1.8 U | 1.9 U | | Heptachlor epoxide | UG/KG | 2.8 | 27 27% | 20 | 629 | 0 | 3 | 11 | 1.8 U | 2 U | 2 U | 1.8 U | 1.1 JP | | Methoxychlor | UG/KG | 0 | 0 00% | | 2628000 | 0 | 0 | 14 | 18 U | 20 U | 20 U | 18 U | 19 U | | Toxaphene | UG/KG | 0 | 0 00% | | | 0 | 0 | 14 | 180 U | 200 U | 200 U | 180 U | 190 U | ### Table 28.6 SEAD 121C Pesticides/PCBs in Soil vs. NYTAGM Non-Evaluated Sites | 0.75 | | | | | | | | | | | |--------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | SITE | | SEAD-121C | SEAD-121C | SEAD 121C | SEAD 121C | SEAD-121C | SEAD 121C | SEAD-121C | SEAD-12 | SEAD-121 | | DESCRIPTION | | DRMO Yard | LOC ID | | SB121C-3 | SB121C-3 | SB121C 4 | SB121C 4 | SB121C 4 | SS121C-1 | SS121C-2 | SS121C | SS121C-4 | | SAMP_tD | | EB233 | EB234 | EB020 | EB229 | EB230 | EB235 | EB236 | EB237 | EB241 | | OC CODE | | SA | SA | DU | SA | SA | SA | SA | SA | SA | | SAMP DETH TOP | | 0 | 2 5 | 0 | 0 | 2 5 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | 0 2 | 3 | 0 2 | 0 2 | 3 | 0 2 | 0.2 | 0.2 | 0.2 | | MATRIX | | SOIL | SAMP DATE | | 9 Mar-98 | 9-Mar-98 | 9-Mar 98 | 9-Mar 98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 10-Mar-98 | | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE O | VALUE Q | VALUE O | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 4.4 DDD | UG/KG | 3 6 U | 3 B U | 36 U | 3 5 U | 3 8 U | 3.6 U | 3 5 U | 7.4 | 3 5 U | | 44 DDE | UG/KG | 3 6 U | 17 | 3.8 | 4.5 | 2 5 J | 3 6 U | 3 5 U | 69 E | 50 | | 4,4 -DDT | UG/KG | 36 U | 16 | 19 J | 2 3 JP | 3 B U | 3 6 U | 3 5 U | 100 E | 37 | | Aldrin | UG/KG | 19 U | 2 U | 1 8 U | 1 B U | 2 U | 19 U | 1 8 U | 19 U | 1.8 U | | Alpha BHC | UG/KG | 19 U | 2 U | 1 8 U | 1 B U | 2 U | 19 U | 18 U | 1.9 U | 1.8 U | | Alpha Chlordane | UG/KG | 19 U | 2 U | 1 8 U | 1 B U | 2 U | 1.9 U | 18 U | 19 U | 1 JP | | Aroclor-1016 | UG/KG | 36 U | 38 U | 36 U | 35 U | 38 U | 36 U | 35 U | 36 U | 35 U | | Aroclor 1221 | UG/KG | 74 U | 78 U | 73 U | 72 U | 77 U | 74 U | 70 U | 74 U | 71 U | | Arodor 1232 | UG/KG | 36 U | 38 U | 36 U | 35 U | 38 U | 36 U | 35 U | 36 U | 35 U | | Aroclor-1242 | UG/KG | 36 U | 38 U | 36 U | 35 U | 38 U | 36 U | 35 U | 36 U | 58 P | | Arocfor 1248 | UG/KG | 36 U | 38 ∪ | 36 U | 35 U | 38 U | 36 U | 35 U | 36 U | 35 U | | Aroclor-1254 | UG/KG | 36 U | 38 U | 36 ∪ | 35 U | 38 U | 36 U | 35 U | 72 | 79 | | Aroclor-1260 | UG/KG | 36 U | 21 JP | 36 U | 35 U | 38 U | 36 U | 35 U | 85 P | 36 P | | Beta BHC | UG/KG | 19 U | 2 U | 1 B U | 1 8 U | 2 U | 19 U | 1 8 U | 1.9 U | 1 8 U | | Delta-BHC | UG/KG | 19 U | 2 U | 18 ∪ | 18 U | 2 U | 19 U | 1.8 U | 1.2 JP | 2 P | | Dieldrin | UG/KG | 3 6 U | 38 ∪ | 3 6 U | 3 5 U | 3 8 U | 3 6 U | 3.5 U | 3.6 U | 3 5 U | | Endosulfan I | UG/KG | 19 U | 2 U | 18 U | 1 8 U | 2 U | 1.9 U | 18 U | 1.9 U | 1.8 U | | Endosulfan II | UG/KG | 3.6 U | 3 8 U | 3.6 U | 3 5 U | 3 8 U | 3.6 U | 3 5 U | 3 6 U | 3.5 U | | Endosulfan sulfate | UG/KG | 3 6 U | 3 8 U | 3 6 U | 3 5 U | 38 U | 3.6 U | 3 5 U | 3.6 U | 3.5 U | | Endrin | UG/KĢ | 3 6 U | 3 8 U | 36 U | 3 5 U | 3.8 U | 36 U | 3.5 U | 3.6 U | 35 U | | Endrin aldehyde | UG/KG | 3 6 U | 3.8 U | 3 6 U | 3.5 U | 3 8 U | 3 6 U | 3.5 U | 3.6 U | 35 U | | Endrin ketone | UG/KG | 3 6 U | 3 8 U | 3.6 U | 3 5 U | 3 8 U | 3.6 U | 3 5 U | 3.8 P | 3 5 U | | Gamma-BHC/Lindane | UG/KG | 1.9 ↓ | 2 U | 18 U | 1 B U | 2 U | 19 U | 1 8 U | 19 U | 18 U | | Gamma-Chlordane | UG/KG | 19 U | 2 U | 1 8 U | 18 U | 2 U | 1.9 U | 1 8 U | 19 U | 1.2 JP | | Heptachlor | UG/KG | 1.9 U | 2 U | 18 U | 18 ∪ | 2 U | 19 U | 18 U | 2 1 P | 1.8 U | | Heptachlor epoxide | UG/KG | 1.9 U | 2 U | 18 ∪ | 1 B U | 2 U | 1.9 U | 18 U | 2.8 P | 1.4 JP | | Methoxychlor | UG/KG | 19 ∪ | 20 U | 18 U | 18 U | 20 U | 19 U | 18 U | 19 U | 18 U | | Toxaphene | UG/KG | 190 U | 200 U | 180 U | 180 U | 200 U | 190 U | 180 U | 190 U | 180 U | Table 28-7 SEAD 121C: Perticides/PCBs in SOil vs. PRG IND Non Evaluated Sites | 5 | | | | | | | | 2 | SI 40.171C | SEADLING | SEADLINE | SEAD-171C | SEADLING | 20,000 | |---------------------|---------|---------|------------|--------|---------|----------|----------|----------------|------------|-----------|-----------|-----------|-----------|-----------| | DESCRIPTION | | | | | | | | 30 | DRAKO Yand | DRMO Yard | | 108.19 | | | | | | | | N. | SH1210.2 | SD121C 1 | SB121C-1 | SB121C-2 | SB121C-2 | SB1216.3 | | SAMP ID | | | | | | | | Ξ | 11326 | FB231 | 1 112 12 | FB014 | 1 B228 | 171/211 | | CK CODI | | | | | | | | V.S. | | V.Y. | 8. | 1)(1 | VS. | 8.1 | | SAMP DUTITIOP | | | | | | | | | В | 0 | 2 5 | U | 2 | O | | SAMP DUPITIBOL | | | | | | | | | 0.2 | ç e | _ | 0.2 | 2.5 | 0.2 | | MAIRIX | | | | | | | | NOI | | SOIL | SOIL | SOIL | SOII | ROS | | SAMP DATI | | | FREQUI NCY | | | NUMBER R | NUMBER R | NIMBER | 9. Mar-98 | 9-Mar-98 | 9-Mar-98 | 9.Mar-98 | 9-Mar-98 | 9.Mar-98 | | | | | -10 | | | ABOVI | [0 | 01 | | | | | | | | PARAMI II R | EN. | MAXIMIM | DULLICITON | 14634 | PRG IND | 1 4 GM | DI HC 18 | ANALYSIS VALUE | | VALUE Q | VAL111 Q | O UIV | VALUE 0 | O LINA | | 1.1 [991) | HGAG | 7.4 | 7 1-4"6 | 2,400 | 23817 | Ċ | ~ | 7 | 17 11 | 13 6 8 | 11 8 11 | 17.11 | 13.81 | 16.11 | | 1 1 1003 | 13C/NG | 5 | 64.29°4 | 2100 | 11891 | E | 7 | Ξ | -1 | 11 11 11 | 11 8 1 | 5.0 | 1.1 | 11 91 | | 1.1 DB1 | UGAG | 100 | 61 54% | 2100 | 16833 | C | × | ~ | N. | 13.61 | 18 11 | 15 | 8.0 | 11 91 | | Abhm | IK:/KG | С | 0.00% | 17 | 111 | 0 | 0 | Ξ | 181 | 2 11 | 0.7 | 18 11 | 11 6 11 | 11 6 1 | | Alpha-BHC | UGAG | ~_ | 7 6.90% | 911 | | Ξ | - | 13 | 181 | 2 11 | 2.13 | 11.5 JP | 11 6 1 | 11.61 | | Alphu-Chlordane | UGAG | - | 7.69% | | | С | - | 13 | 18 1 | 2.10 | 2.11 | 11 8 11 | 11 6 1 | 11.61 | | Aroclop-1016 | DGAG: | 0 | 0.000% | | 26.793 | С | G | 7 | 17 11 | 11 61 | 11 81 | 37.11 | 18 11 | 11 91 | | Atox for 1221 | DONG | 0 | 0.00% | | | = | G | 17 | 74 17 | 11 62 | 1) 8/ | 14 11 | 1) 92 | 73.0 | | Aroc lor- 1232 | HONG | 0 | 0.00% | | | С | ٥ | Ξ | 17 (1 | 11 61 | 13 8 13 | 11 (1 | 11 81 | 13 92 | | Vest lot-12.12 | HGAG | \$¢ | 7 6.90% | | | С | ~ | ~ | 17 (1 | 11 61 | 11 82 | 1) () | 11 81 | 11 9% | | Aroc lor-12:48 | DGAG | C | %000 | | | = | С | - | 17 (1 | 11 64 | 11 81 | U U | 13 8 (1 | 11 98 | | Areclor-1254 | 1107.00 | 74 | 14.29% | (0000) | 10512 | = | 7 | 14 | 17 (1 | 11 61 | 38.10 | 13 61 | 11 81 | 11 91 | | Aroclor-1260 | 1KI/KG | 2100 | \$10 (10)% | 10000 | | Ξ | ** | 10 | 11 71 | 19 11 | 11 81 | At th | 200 | 14 91 | | Reta BIRC | DC://C: | C | 20 nm2 | 200 | | C | G | 2 | 18 11 | 2 (1) | 3.10 | 11 8 1 | 11 6 1 | 11 6 1 | | Delta BHC | UCKG | 2 | 40.00% | NX) | | G . | - | 01 | 1 8 1 | 2.11 | 2 11 | 0.95 JP | 13.77 | 11 6 1 | | Dieldrin | TRINGS | c | (1 (X)*5 | 7 | 358 | a | = | <u></u> | 11 61 | 11 61 | 3.8.11 | 17.11 | 11 8 11 | 1) 9 % | | I ndo stilan I | TGWG | 5 | 0.00% | 1000 | 1157600 | C | = | ~ | 1.8 t) | 2 17 | 2 13 | 11.8.11 | 11 6 1 | 11 6 1 | | Inde affan II | UGAG | C | 0.000% | 006 | 1153000 | c | 2 | 7 | 17 11 | 11 6 8 | 11.8.1 | 17.0 | 11 8 1 | 36.11 | | I mbosultan sulfate | UGAG | С | 6.000% | 1000 | | С | = | 14 | 17.11 | 11 6 8 | 13 81 | 11 11 | 13 8 11 | 11 91 | | 1 infrim | UGAG | 0 | 6.200.0 | 001 | 13.7680 | С | 0 | ± | 11 11 | 13.61 | 11 8 1 | 11 2.1 | 18.11 | 11 91 | | Ludrin aldeby de | TICARG | C | 0.00.0 | | 1570.80 | C | Ξ | 7 | 17 11 | 11 6 1 | 11 8 11 | 17 11 | 18 11 | 11 9 1 | | Indrin ketone | UC:NG: | 8, | 7 0.00% | | 157680 | С | - | <u>"</u> | 1,7 11 | 11 0 1 | 181 | 11 / 11 | 181 | 11 91 | | Ganna-BHCA indanc | UGAG | O | 5-011 O | (%) | 1402 | ū | = | 7 | 11 8 1 | 2 13 | 2 11 |
18.0 | 11 6 1 | 0.61 | | Camina Chlordane | UGAG | 12 | 7,69% | 44D | | С | - | 13 | 18 1 | 2.11 | 2.11 | 11.8.1 | 11 6 11 | 11.6.1 | | Heptachlor | 1RiAG | 2 t | 2 (.9% | 001 | 1272 | C | - | | 18 11 | 2.0 | 2 13 | 11 8 1 | 1.9 U | 1) 61 | | Heptuchlur epovide | UC/KG | 2 x | 27 27% | 30 | 629 | С | ~ | = | 18 11 | 2 11 | 2.10 | 18.0 | JI JP | 11.61 | | Methovychlor | UGAG | = | 0.000 | | 2628000 | 0 | С | | 18 11 | 20 13 | 20 02 | 1) 81 | 11 61 | 19 11 | | Lovaphene | UGARG | = | 0.00% | | | Ξ | c | 7 | 11 081 | 200 11 | 200 U | 180 11 | 11 061 | 1300 13 | 1abt 28.7 SEAD 121G, Predicides/PCRs in SOllive PRG-IND Non-Evallated Sites | SFAD-121B
DRNO Yard
SSI2IC-4
TD241
SA | D | 0.2 | SOIL | 10-Mar-98 | V1111 Q | 11 5 2 | 97 | 17 | 18 1 | 18.11 | - H | 11 51 | 71 (1 | 11 51 | 48 P | 13 (1) | 70 | 46. P | 18 (1 | 2 P | 11 5 11 | 13 8 11 | 13 51 | 11 5 11 | 11 > 1 | 13 \$ 11 | 11 5 1 | 181 | 1.2.1P | 18 11 | 14 JP | 18 11 | 180 11 | |--|---------------|----------------|--------|------------|-------------|---------|---------|---------|---------|-----------|-----------------|---------------|--------------|--------------|---------------|--------------|----------------|---------------|----------|-----------|----------|---------------|---------------|--------------------|---------|-------------------|--------------|--------------------|-----------------|------------|--------------------|--------------|-----------| | SFAD 121C
DRMO Yord
SS121C-3
TB237
SA | C) | 0.2 | Soll | 9-Mar-98 | VARIO | - | - 69 | 1001 | 11 0 11 | 11 6 1 | 11 6 1 | 14 92 | 7.1 (1) | 14 91 | To El | 11 % | 7.2 | 85 P | 11 6 1 | 1.2 JP | 11 01 | 0.61 | 14.41 | 19 9 1 | 16 17 | 11 9 1 | 3 % 5 | 11 6 3 | 11 6 1 | 2.1.12 | 28 1 | 11 61 | 190.41 | | SUAD-121C
DRMO Yard
SSI21C 2
11875,
SA | D | G 2 | - F 7 | 21 M.n. 98 | V 18111 Q | 11:11 | 11 5 12 | 11 5 1 | 1.8.1 | 1 8 1 | 1.8.1 | 1) 51 | 11 (1) | 1 % | 13.11 | 11:11 | 13:11 | 11 51 | 181 | 181 | 11 > 1 | 1.8.1 | 11 5 11 | 11 5 11 | 13.11 | 11 > 1 | 11 \$ 11 | 18 1 | 18 1 | 11 8 1 | 181 | 18 11 | 130 (1 | | SI AD-121C
DRMO Yard
SS121C-1
111235
SA | T) | i i | 1102 | o Mar ox | VALMED | 1 17 | 11 92 | 16.41 | 11 0 1 | 11.6.1 | 19 61 | 14, 11 | - :: | 11 91 | 11 1/1 | 11 V | 13 v4 | 11 1/1 | 11 6 1 | 11 0 11 | 16.11 | 13 6 1 | 11 11 | 11 91 | 11.91 | 11 91 | 11 91 | 13 6 1 | 101 | 11 6 1 | 11 0 11 | 11 61 | 11-00-1 | | SLAD-121C
DRMO Yard
SB121C 1
11123d
SA | 2.5 | pr | SOII | 9.Nar 98 | VALES Q | 18 8 1 | 7 : 7 | 11.8.11 | 2 11 | 7 11 | 7 11 | 18 81 | U 77 | 13 81 | 13 81 | 11 81 | (1.8) | 11 81 | 2.13 | 2.17 | 11.8 F | 2 17 | 18.11 | 18 (1 | 3.8.11 | 13 8 1 | 13.8 11 | 2 [1 | 2.0 | 2.11 | 2.11 | 20 13 | 200 U | | SLAD-121G
DRMO Yard
SR121G +
1/8220
SA | 2 | ; ; | IIO | 9.NLn 08 | VALUE | 1 % 1 | - | = :: | - × - | 1.8.1 | L 8 L | 11 21 | 72.10 | 11 12 | 11 53 | 13.11 | 11 53 | 13.51 | 18 1 | 13.8.1 | 1 > 1 | 1 × 1 | 11 5 1 | 11 5 2 | 11 > 1 | 13 > 1 | 13 % (1 | 1 × 1 | 18 13 | 11 8 1 | 1 × 1 | 18 11 | 13(08) | | SEAD-121G
DRAKO Yard
SH121G 1
1 B020
D81 | = | 0.2 | KOIL | 9 Mar-98 | O HINA | -1 11 | × | 1.61 | 1.81 | 11 8 1 | 1.8.1 | 11.17 | 11-12 | 11 % | 11 % | 11 vp | 11 91 | 11 % | 11 8 1 | (1.8.1) | 36.17 | 18.1 | 11 41 | 3.6.11 | 16.81 | 11 91 | 11 91 | 13 8 1 | 18.1 | 11.8.1 | 11.8.1 | 18.1 | 13 (38) | | SI AD-121C
DRMO Yard
SB121C 3
11823
SA | 5. | ~ | Nor | 9-Mai-98 | VALUE Q | 1 8 1 | - | ≤ | 2.11 | 2 11 | 2 11 | 1) 84 | 11 87 | 11 81 | 18 11 | | | | 2 13 | | | | | | 38.0 | 13.8.1 | 13 8 13 | 2 11 | 2 (1 | 2 (1 | 2 11 | 20 [] | 200 1) | | | | | | | IN. | Herko | UGAG | HGAG | UG/KG | UGKG | DC/KG | UGAG | HG/KG | UGAG | 11C/KG | HGKG | TIGAGG | HGAG | UGAG | HGAG | HGKG | DGKG | UG/KG | (IG/KG | DC/KG | 11G/AG | HGAG | DCAG | UGAG | UCKG | UGÆG | UGAG | TIEVAG | | NIII DISCRIPTION LOCATION SAMPLED CR. CODI | SAMP DUTH TOP | SAMP DUPITIBOL | MATRIX | SAMP DAH | PARAMI II R | 1 11/11 | t I DDM | 100.11 | Aldım | Alpha-BIR | Alpha Chlordane | Arou for-1016 | Aroclor-1221 | Arochur 1232 | Arec lor-1242 | Aroclor-1248 | Aroc lot -1254 | Arix for 1260 | Beta-BHC | Delin-BHC | Dieldrin | I nde adlan f | Fudo-offon II | Ludosuftan suttate | 1 ndrin | findrin addehy de | Fudrm ketone | Gamma-BHC/I indane | Gamma-Chlordane | Heptachlor | Heptachlor epovide | Methosschlor | Lovaphene | S121cf xis pestpcbprg #### Table 28-8 SEAD-121C- Metals in Soil vs. NYTAGM Non-Evaluated Sites | SITE
DESCRIPTION
LOC ID
SAMP_ID | | | | | | | | | SEAD-121C
DRMO Yard
SB121C-2
EB226 | SEAD-121C
DRMO Yard
SB121C-1
EB231 | SEAD-121C
DRMO Yard
SB121C-1
EB232 | SEAD-121C
DRMO Yard
SB121C-2
EB014 | SEAD-121C
DRMO Yard
SB121C-2
EB228 | SEAD-121C
DRMO Yard
SB121C-3
EB233 | |--|-------|----------|-----------|--------|---------|-----------------|--------------|--------------|---|---|---|---|--|---| | QC CODE | | | | | | | | | SA | SA | SA | DU | SA | SA | | SAMP DETH TOP | | | | | | | | | 0 | 0 | 2.5 | 0 | 2 | 0 | | , SAMP DEPTH BOT | | | | | | | | | 02 | 0.2 | | 0 2 | 2.5 | 0 2 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | 9-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE Q | | Aluminum | MG/KG | 16200 0 | 100 00% | 19520 | 525600 | 0 | 14 | 1 | | 12800 | 13400 | 14500 | 16200 | 1730 | | Antimony | MG/KG | 19.3 | 433 33% | 6 | 210 | 3 | 13 | | 3 17.3 N | 1 1 BN | 1 4 BN | 19.3 N | 11.5 BN | 0 93 BN | | Arsenic | MG/KG | 8 1 | 100 00% | 8 9 | 4 | 0 | 14 | 1 | | 5 5 | 4 4 | 6.1 | 8.1 | 38 | | Barrum | MG/KG | 1600 0 | 100 00% | 300 ' | 36792 | 4 | 14 | 1 | 4 1430 | 64 9 | 64 2 | 1680 | 1050 | 18.1 B | | Beryllium | MG/KG | 0.7 | 100 00% | 1 13 | 1 | 0 | 14 | 1 | 4 0.47 B | 0 52 B | 0 72 B | 0.4 B | 0.43 B | 0.25 B | | Cadmium | MG/KG | 21 1 | 50 00% | 2 46 | 263 | 6 | 7 | 1 | 4 2.3 * | 0 07 U | 0.07 U | 27 - | 11,6 | 0.07 U | | Calcium | MG/KG | 296000 0 | 100.00% | 125300 | | 3 | 14 | | 4 23400 | 2580 * | 2280 ° | 31300 | 31600 * | 283400 | | Chromsum | MG/KG | 49 2 | 100 00% | 30 | 525600 | 6 | 14 | 1 | 4 17 1307 353 . | 20 9 | 21 | 32.9 | 37 | 3.8 | | Cobalt | MG/KG | 19 7 | 100 00% | 30 | 31536 | 0 | 14 | 1 | 4 15 7 | 12 8 | 94 B | 16.5 | 16 | 35 B | | Copper | MG/KG | 9750 0 | 100 00% | 33 | 21024 | 9 | 14 | 1 | 4 " 9756" * | 19 7 N° | 18 7 N* | 7698 * | 2445 1/ | 88 N° | | Cyanide | MG/KG | 0.0 | 0 00% | 0 35 | | 0 | 0 | 1 | 4 0.56 U | 0 63 U | 0 65 U | 0.59 U | 0.63 U | D 58 U | | Iron | MG/KG | 54100 0 | 100 00% | 37410 | 157680 | 5 | 14 | 1 | 4 SHIP THERE | 25700 | 23800 | 42100 | 54100 | 4230 | | Lead | MG/KG | 5280 0 | 100 00% | 24 4 | | 10 | 14 | 1 | 4 5000 | 11 8 | 14.1 | 5260 | 1790 | 11 7 | | Magnesium | MG/KG | 15400 0 | 100 00% | 21700 | | 0 | 14 | 1 | 4 6810 ° | 4590 | 4040 | 6820 * | 6480 | 10200 | | Manganese | MG/KG | 752 0 | 100 00% | 1100 | 12089 | 0 | 14 | 1 | 4 525 | 598 | 299 | 612 | 752 | 213 | | Mercury | MG/KG | 02 | 50 00% | 0 1 | 158 | 2 | 7 | 1 | 4 0 0 T B | 0 06 U | 0 05 B | 0 05 U | 0.07 B | 0 04 U | | Nickel | MG/KG | 224 0 | 116 67% | 50 | 10512 | 8 | 14 | 1 | 2 56.5 E* | 40 5 | 35 8 | E. | | 116 | | Potassium | MG/KG | 1990 0 | 100 00% | 2623 | | 0 | 14 | 1 | 4 1990 | 1600 | 1670 | 1840 | 1220 | 1150 | | Selenium | MG/KG | 0.0 | 0 00% | 2 | 2528 | 0 | 0 | 1 | 4 1 UN | 11 U | 11 U | 0 92 UN | 0 97 U | 1 U | | Silver | MG/KG | 21 8 | 28 57% | 0.8 | 2628 | 4 | 4 | 1 | 4 0.45 U | 0 48 U | 0 48 U | 0.41 U | 0.43 U |
0 46 U | | Sodium | MG/KG | 606 0 | 57 14% | 188 | | 6 | 8 | 1 | 4 191 B | 139 U | 138 U | 444 B | B | 132 U | | Thallium | MG/KG | 0.0 | 0 00% | 0 855 | 42 | 0 | 0 | 1 | 4 14 U | 14 UN | 1 4 UN | 1 2 U | 1.3 UN | 1.4 UN | | Vanadium | MG/KG | 21.8 | 100 00% | 150 | 3679 | 0 | 14 | 1 | 4 20.9 E | 20 8 | 21 8 | 19.5 E | 19.3 | 5 1 B | | Zinc | MG/KG | 1350 0 | 100 00% | 115 | 157680 | 10 | 14 | 1 | 4 1350 | 80 3 N | 70 5 N | | N A STATE OF THE S | 29 8 N | S121cf xts mettagm Table 28-8 SEAD-121C- Metals in Soil vs. NYTAGM Non-Evaluated Sites | SITE | | SEAD-121C | SEAD-121C | SEAD-121C | SEAD-121C | SEAD-121C | SEAD-121C | SEAD-121 | SEAD-121C | |----------------|-------|----------------|-----------|-----------|-------------|-----------|-----------|-------------|------------| | DESCRIPTION | | DRMO Yard | LOC ID | | SB121C-3 | SB121C-4 | SB121C-4 | SB121C-4 | SS121C-1 | SS121C-2 | SS121C-3 | SS121C-4 | | SAMP ID | | EB234 | EB020 | EB229 | EB230 | EB235 | EB236 | EB237 | EB241 | | QC CODE | | SA | DU | SA | SA | SA | SA | SA | SA | | SAMP DETH TOP | | 2 5 | 0 | 0 | 2.5 | 0 | 0 | 0 | 0 | | SAMP DEPTH BOT | | 3 | 0.2 | 0.2 | 3 | 0.2 | 0.2 | 0.2 | 0.2 | | MATRIX | | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | SQIL ' | SOIL | | SAMP DATE | | 9-Mar-98 10-Mar-98 | | PARAMETER | UNIT | VALUE Q | VALUE O | VALUE Q | VALUE O | VALUE Q | VALUE Q | VALUE O | VALUE Q | | Aluminum | MG/KG | 8880 | 14400 | 13000 | 15700 | 12800 | 12600 | 7650 | 2700 | | Antimony | MG/KG | 0 98 BN | 1 7 BN | 0 81 BN | 0 69 UN | 2 5 BN | 2 2 BN | 3 4 BN | 29 BN | | Arsenic | MG/KG | 46 | 5 | 37 | 6.4 | 5 2 | 63 | 6.4 | 5 4 | | Barium | MG/KG | 46 3 B | 86 6 | 69 6 | 72 4 | 57 7 | 252 | 334 | 90 6 | | Beryllium | MG/KG | 0 32 B | 0.57 B | 0 49 B | 0 63 B | 0 56 B | 0.48 B | 0.3 B | 0.21 B | | Cadmium | MG/KG | 0 07 U | 0 07 U | 0 05 U | 0 06 U | 21.1 | 7.1 | 18.5 | 12.6 | | Calcium | MG/KG | 97200 * | 17200 * | 25500 * | 13000 * | 11800 ° | 53100 * | 129000 * | 296000 ° | | Chromium | MG/KG | 13 1 | 27 8 | 22 6 | 30 | 32.9 | 48.7 | 49.2 | 9.2 | | Cobalt | MG/KG | 77 B | 17.6 | 12 5 | 19 7 | 14 | 15 5 | 11 3 | 9.6 B | | Copper | MG/KG | 20 6 N° | 39.1 N° | 33 N° | 39.1 N° | 139 N° | ATE IN | 383 N° | "111 N" | | Cyanide | MG/KG | 0.58 U | 0.56 U | 0 61 U | 0.63 U | 0 62 U | 0.53 U | 0 59 U | 0 54 U | | fron | MG/KG | 16500 | 32000 | 25900 | 35600 | 41366 | 45600 | 35000 | 8050 | | Lead | MG/KG | Bulkar L. Bill | 27.1 | 23 5 | £02., 1 All | 78.2 | 251 | Salahat Ald | 171 | | Magnesium | MG/KG | 8000 | 6980 | 5630 | 7500 | 6220 | 12800 | 8770 | 15400 | | Manganese | MG/KG | 473 | 413 | 359 | 394 | 364 | 403 | 494 | 407 | | Mercury | MG/KG | 0.06 U | 0.04 U | 0 04 U | 0 06 B | 0 05 U | 01 | 0.15 | 6.13 | | Nickel | MG/KG | 22.3 | 87.0 | 49.3 | 69.7 | 58.6 | 234 | 62.5 | 19.5 | | Potassium | MG/KG | 1500 | 1980 | 1450 | 1870 | 1480 | 1890 | 1600 | 1290 | | Selenium | MG/KG | 11 U | 1 U | 08 U | 0 92 U | 1 U | 0.95 U | 1 U | 1 U | | Silver | MG/KG | 0 49 U | 0 46 U | 0 36 U | 0 41 U | 21.8 | 13 B | AT | 21 B | | Sodium | MG/KG | 141 U | 132 U | 110 B | 119 U | 223 B | 196 B | 255 B | 147 B | | Thalium | MG/KG | 1.5 UN | 1 4 UN | - 11 UN | 1 2 UN | 1 4 UN | 13 UN | 1.4 UN | 1,3 UN | | Vanadium | MG/KG | 14.4 | 21 | 17 | 21 7 | 18.6 | 20 1 | 21.5 | 8.5 B | | Zinc | MG/KG | 77 6 N | '193 N | "196 N | 136 N | 58\$ N | 1 dit N | 523 N | N. Service | Table 28.9 SEAD-121C Metals in Soil vs. PRG IND Non Evaluated Sites 2/17/99 | SI AD-1210 | DKIMO VIII | SB121C.3 | FB2 13 | ν. | | | Soll | | | VALUI | 0.17 | 100 | ** | 181 | 0.23 | 0.07 | 28.4(00) | 18 | 1.5 | oc
oc | 85.0 | 42.40 | 11.7 | 10200 | 213 | 0.04 | 911 | 0511 | - | 0.46 | 112 | -7 | - 1 > | | |------------------------|---------------|----------|---------|--------|---------------|---------------|--------|--------------|----------|------------------|------------|----------|---------|---------|----------|----------|------------|-----------|-----------|--------------------------|----------|-------------|---------|-----------|-----------|---------|---------|-----------|---------|---------|---------|----------|----------|--| | SI AD-1210 | DECISIO 1310 | SB121C-2 | 111228 | VS | • | 3.6 | llos | 9-Mar-98 | | VALUE | 16200 | 11 5 BN | 1.60 | 1050 | 0.43 B | - 80 | 316/K) * | 11 | £ | 2440 N* | 0.61 U | 64100 | 1780 | 6480 | 752 | 0.07 B | 9'95 | 1220 | 0.97 11 | 0.43 U | 214 B | 13 th | 163 | | | SLAD-121C | DENIN TING | SB121C-2 | FB011 | 13(1 | c | 0.0 | llos | 9-Mur-98 | | VALUE | 1.13(R) | N 1 01 | 6.1 | 1400 | 0.4 B | 2.7 * | ()()), [1, | 12.9 * | 16.5 | 0692 | 0.59 11 | 41100 | 5280 | 6820 * | 612 | 0.05 U | 54.2 F* | 1840 | 0 92 UN | 0.41 15 | 8 909 | 1.2.13 | 19 \$ 1: | | | SEAD-121C | DENGE FAIR | SB121C-1 | F182.12 | S.A. | 5.2 | *** | Nos | 9-Mar-98 | | VALUE Q | 13:400 | 1.4 BN | 7 | 612 | 0.72 B | 0.07 11 | 2280 * | 2.1 | 9.4 B | 18.7 N* | 11 89/0 | 23800 | 14.5 | 4040 | 299 | 0.05 B | 15.8 | 1670 | 11.0 | 0.48 U | 118 11 | 1.4 UN | 21.8 | | | SLAD-121C | Markey Faller | SB121C-1 | 11271 | V.S. | = | 0.2 | SON | 9-Mar-98 | | UASTIT Q | 12800 | NB I I | 5.5 | 64.9 | 0.52.8 | 0.07 11 | 2580 * | 20.0 | 12.8 | 10 7 N | 0.63 U | 25700 | 8 II | 4500 | 808 | 11 90 0 | 40 5 | 1600 | 0 11 | 0.48.11 | U (F) | NU 41 | 20 8 | | | SLAD-1210
DRMOV act | DIRECT PRICE | SH121C 2 | 1 B226 | VS. | С | 0.2 | HOS | | | VALL | 154(8) | Z ~ C. | 6.5 | 1420 | 0.47 B | 2.1 * | 27,400 | 35.2 * | 157 | • 0570 | 0.56.11 | 11,000 | 5080 | 6810 * | 424 | 0.07 B | *1 > 85 | 0661 | NI - | 0.46.0 | 102 B | 141 | 20.9.1 | | | | | | | | | | | NUMBI R | ē | ANALYSTS | Ξ | ~ | Ξ | | 17 | <u></u> | Ξ | = | ≖ | Ξ. | <u> </u> | Ξ | Ξ | 14 | Ξ | = | 12 | = | = | = | = | = | 14 | | | | | | | | | | | NUMBI R | <u>[</u> | SI II CIS | = | 13 | Ξ | Ξ | = | r- | = | = | == | <u>=</u> | О | = | <u></u> | == | Ξ | 7 | 7 | ≖ | 0 | | × | 0 | ~ | | | | | | | | | | | NUMBER | ABOVI | LYCM | PRG-IND | 0.009825 | 210.0 | £1 7 | 16792 0 | 0 | 24.1.0 | 0.0 | 0.000525 | 11546.0 | 21024 0 | 0 0 | 157680 0 | 0 0 | 0 0 | 12089 0 | 158.0 | 10512.0 | 0.0 | 2428.0 | 2628.0 | 0 0 | 42.0 | 0.629 | | | | | | | | | | | | | LYCM | 19520 | 9 | - × | 300 | | 3.46 | 125400 | 0, | 30) | 33 | 0.15 | 17:110 | 2.1.4 | 21700 | 11(8) | - 0 | 95 | 2421 | ٠ | 8 0 | 188 | 558.0 | 150 | | | | | | | | | | | I RI QUI NCY | 5 | NOTESTE RE | FOO 1997 o | 411 13"0 | 100 00% | E00 00% | 100 000 | 50.00" | 100 00% | 2200 DOM: | LOO 1301" | 100 00% | 0.00% | 5""(Y) C/OI | 100 OUT | E00 (9)% | FOO DO!*5 | 540 00% | 116.67% | ICO (X)." | 0.00% | 28 57% | 57 140% | 0.00% | 9,00,001 | | | | | | | | | | | | | MAXIMUM DLITCHON | 14200 | 19.3 | ~ | (x)UI | 0.72 | 21.1 | 296000 | 10.7 | 19.7 | 9750 | ¢ | 54100 | 4280 | 0.0151 | 752 | 0.15 | 224 | 1990 | C | 21 X | 909 | 0 | 21.8 | | | | | | | | | | | | | ĪŅ. | MGAG | MG/KG | MCKG | MGAG | MCKG | MGAG | MGAG | MGARG | MGAG | MGAG | MOAG | MGAG | MGAG | MG/KG | MGAG | MGAG | MONG | MGAG | MGKG | MG/KG | MGAG | MCAG | MG/KG | | | SILE
DISCREPTION | November 1 | 100 111 | SAMP 1D | (x con | SAMP DETH TOP | SAMP DEPTHROL | MAIRIA | SAMP DAIL | | PVRAMI II R | Mummin | Antunom | Arsenn | Ranten | Beryllum | Cadminia | Cakinin | Chromina | C obalt | Соружт | C vanide | Iron | l ead | Maenessum | Manganese | Mercuix | Nickel | Potassium | Seleman | Silver | Sadium | Thallium | Vanadam | | | SI AD-121B
DRMO Yard ·
SS121C-4
1B241 | _ | 0 | llos | 10-Mar-98 | VALUE | 2700 | 2 v 11N | \$.4 | 9.06 | 0.21 B | 12 6 | * ()()()()() | 9.2 | 96.18 | *Z (); ' | 0.54 (1 | 8050 | 171 | 15400 | 407 | 110 | 5 61 | 1290 | 13.1 | 2.1 B | 147 B | - 1 TA | × × × | 250 N | |--|--------------|---------------|--------|-----------|------------|----------|------------|---------|--------|-----------|-----------|--------------|----------|---------|----------|----------|---------|-------|-----------|-----------|----------|--------|----------|----------
---------|--------|---------|----------|--------| | SEAD-121C
DRMO Yard
SS121C-3
HB237
SA | = | 0.2 | SOIL | 9 Mar.98 | VALUE | Th 42 | ZE : E | 6.4 | 101 | 0.3 8 | > 81 | 1290883 | 763 | 1 1 | *X XX | 11 65 0 | 15(100) | 477 | 8770 | 191 | \$1.0 | \$ 29 | 1000 | 111 | 4.7 | 255 B | NI T | 21 \$ | 425 N | | SEAD-121C SEAD-121C BDRNO Yand DESS121C-2 SEAD-1182% EAS-1 SEAD-12 SEA | = | 0.2 | Soft | 9-Mar-98 | VALIST | 12600 | 2.2 IBN | 6.3 | 252 | 0.48 13 | 7.1 | \$ 3100 * | 45.7 | 14.4 | *N 102 | 0.53 (1 | 43(0) | 251 | 12800 | £U† | ē | 224 | 1890 | H 66 0 | 111 | 10v, B | Z ~ ~ | 20 1 | Z - 17 | | SEAD 121C
DRAIO Yaid
SSEEIC A
DEPS | c | 0.2 | 102 | 9 Mar-98 | ė li wa | 1,2%(10) | N= | \$ | 4.77 | 11 sts 13 | 11. | • (NOS) I | 12.9 | = | -X 02 | 0.62.11 | 41300 | 7.8.2 | 0.220 | 36.5 | 0.05 U | 28.6 | 1180 | 1 1 | 51.8 | 22.1 H | N :- | 18 6 | N - 85 | | SLAD-121G
DRMO Yard
SREEG 1
118230
SA | 3.4 | , | 5011 | 9.Ma 38 | VALID | 15700 | NIL COLD | 4.4 | 1 | 063 B | 1) 100 (1 | 1 3(MM) * | 35) | 40 4 | *Z - & | 13 12/10 | 35000 | 37 | 17500 | 10.1 | 0.06.11 | 60.17 | 07.81 | 0.92 [1 | 0.41 17 | 11 611 | NI CL | 217 | N 851 | | SIAD 121C SI, DRAWO Yard DR SH21C 4 SR [R22] R22 | G. | 0.2 | SOH | o Mar 98 | VAR | 1,70001 | 0 81 BN | 1.7 | 9 69 | 0.49 B | 0.05 U | 255(10) * | 226 | 12 3 | *× % | 11 19'0 | 25000 | 213 | 56.10 | 150 | 0.01.11 | 49.1 | 1150 | 0.8.13 | 11 98 0 | 110 B | NE I | 1.1 | N '961 | | 1 415-12 (C
1885 Vaid
1812 (C - 1
1812 (c - 1 | = | c. c. | II O | 9.Mar-98 | 0 1111 | 114001 | N# | w. | Nr. 6: | 0.52 B | 0.07.11 | 17,2101 * | 2.7 K | 176 | *Z - % | 13 95 0 | 120003 | 27.1 | 6.980 | Ξ | 0.04.11 | 8 19 | 1980 | == | D 26- U | 13.71 | N. 1 | 21 | Z 251 | | SI AD-121C S DRMO Yard D SH123C 3 S 1123M 1 | ** | - | NOIL | 9 Mar-98 | VALUE | SSS(1) | NH 80 0 | 4.6 | 46.1 B | 0 12 B | 11 70 11 | • 17200 • | Ĩ. | 7.7 B | 20 5 N* | 0.48.11 | 16500 | 10.0 | SANO | 473 | 0.00, 17 | 22 3 | 1 (00) | 11.0 | 11 61 0 | 111 11 | Y 1 . | ** | N 977 | | | | | | | 0 | | | | | | | | | | ż | | | | | | = | | | | | | | × | | | | | | | | ĪŅ. | MGAG | MG/KG | MIGAG | MGAG | MG/kG | MGAG | MGAG | MG/KG | MG/KG | MG/KG | MGAG | MGAG | MGAG | MGAG | MGAG | MGAG | MCARG | MGFKG | MGAG | MGAG | MGAG | MGAG | MGAG | MGAG | | MIT
DESCRITION
TOC ID
SAMP ID
OCCODE | SAMP DUTITOP | SAMP DIPHTROL | MATRIA | SAMP DATI | PARAMI ITR | Alemman | Anfillions | Arsenie | Barum | Berdlum | Calmann | Calcum | Сътопния | < obalt | Copper | Cymrde | From | Lead | Magnesian | Manganese | Merum | Nickel | Potssium | Seleumin | Silver | Sodium | Ballium | Vanachum | /1114 | S121cf xls 1 U 1 U 1 U 1 U 1 U 1 U 3 #### Table 28-10 S121C - Volatiles in Groundwater vs. Class GA Non Evaluated Sites SITE SEAD-121C SEAD-121C SEAD-121C DESCRIPTION DRMO Yard DRMO Yard DRMO Yard LOC ID MW121C-1 MW121C-1 MW121C-2 SAMP ID EB023 EB153 EB154 QC CODE DU SA ŞA SAMP. DETH TOP 2 1 16 SAMP DEPTH BOT 9.7 5 1 MATRIX GROUNDWATER GROUNDWATER GROUNDWATER SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS UNIT MUMIXAM ANALYSES VALUE VALUE Q VALUE Q 1.1.1-Trichloroethane UG/L 0 00% 792 55 0 1 U 1 U 1 U 5 00 0 52 1.1.2.2-Tetrachloroethane UG/L 0.00% 0 0 1 U 1 U 1 U 1,1,2-Trichloroethane UG/L 0 00% 0 19 0 0 1 U 1 U 1 U 1,1-Dichloroethane UG/L 0 00% 5 00 811 74 1 U 1 U 3 1 U 1,1-Dichloroethene UG/L 5.00 0 04 0.00% 0 3 1 U 1 U 1 U 1,2-Dibromo-3-chloropropan UG/L 0 00% 5.00 0 12 0 3 1 U 1 U 1 U 1,2-Dibromoethane UG/L 0 00% 5 00 0 3 1 U 1 U 1 U 1,2-Dichlorobenzene UG/L 0.00% 5 00 0 99 3 1 U 1.11 1 U 1,2-Dichloroethane UG/L 0 0.00% 5 00 0.12 0 0 3 1 U 1 U 1 U 1,2-Dichloropropane UG/L 0.00% 5 00 0.99 1 U 1 U 1 U 1,3-Dichlorobenzene UG/L 0.00% 5 00 3200 00 1 U 1 U 1 U 1,4-Dichlorobenzene UG/L 0.00% 4 70 2.80 n n 3 1 U 1 U 1 U Acetone UG/L 61 100.00% 3650.00 52 61 36 UG/L 0 00% 0 70 0 36 Benzene 1 U 1 U 1 U 1 08 Bromochloromethane UG/L 0.00% 0 0 1 U 0 1 U 1 U Bromodichloromethane UG/L 33 33% 1 10 n 1 U 1 U Bromoform UG/L 0.00% 2.35 1 U 1 U 1 U 1042.86 UG/L 100 00% Carbon disulfide 0 3 2 2 4 5.00 Carbon tetrachloride UG/L 0.00% 0.16 n n 3 1 U 1 U 1 U Chlorobenzene UG/L 0.00% 5 00 39.43 0 0 1 U 1 U 1 U Chlorodibromomethane UG/L 33.33% 080 0 3 1 U 1 U 2 5.00 8591 77 UG/I 0.00% Chloroethane 0 0 3 1.0 1 U 1 U Chloroform UG/L 0.00% 7.00 0 15 0 0 3 1 U 1 U 1 U Cis-1,2-Dichloroethene UG/L 0 00% 5.00 0 1 U 1 U 1 U Cis-1,3-Dichloropropene UG/L 0.00% 5 00 1 U 1 U 0 3 1 [] Ω 0 1328 12 Ethyl benzene UG/L 0 0.00% 5 00 0 0 3 1 U 1 U 1 U Methyl bromide UG/L 0.00% 8.70 0 0 1 U 1 U 1 U Methyl butyl ketone UG/L 0.00% 0 3 5 U 5 U 5 U 5.00 UG/I 0.00% 1.44 1 U Methyl chloride 0 0 0 3 1 U 1 U Methyl ethyl kelone UG/L 0 0.00% 50 00 0 5 U 5 U 5 U 158 12 5 U Methyl isobutyl ketone UG/L 0.00% 0 5 U 5 U 5 00 Methylene chloride 0.00% UG/L 0 4 12 0 0 3 2 U 2 U 2 U Styrene UG/L 0.00% 0 0 3 1 U 1 U 1 U Tetrachloroethene UG/L 0.00% 5.00 1.07 1 U 1 U 1 U UG/I 33.33% 5.00 747.04 3 1 U 1 U Toluene 0 1 1 U **Total Xylenes** UG/L 0.00% 5.00 73000.00 0 0 3 1.11 1 U Trans-1,2-Dichloroethene UG/L 0 00% 5.00 0 1 U 1 U 1 U 1 U Trans-1,3-Dichloropropene UG/L 0 00% 5 00 0 0 3 1 U 1 U 0 1 56 0 02 0.00% 0 00% Trichloroethene Vinyl chloride UG/L UG/L 5.00 2.00 0 0 0 ## Table 28-11 S121C Volatiles in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT | | | | | | | | | | SEAD-121
DRMO Ya
MW121C-
EB023
DU | rd | SEAD-1210
DRMO Yaro
MW121C-1
EB153
SA | | SEAD-121C
DRMO Yard
MW121C-2
EB154
SA | | |--|--------|---------|-----------|--------------|----------------|--------|---------|---|----------|---|---------|---|--------|---|---------| | MATRIX | | | | | | | | | | GROUND | | GROUNDW | | GROUNDW | | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | NUMBER | 17 | -Mar-98 | 17- | Mar-98 | 17 | -Mar-98 | | | | | OF | | | ABOVE | OF | | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | | NYS CLASS GA | DRINKING WATER | TAGM | DETECTS | | ANALYSES | VALUE | Q | VALUÉ | Q | VALUE | Q | | 1.1.1-Trichloroethane | UG/L | 0 | 0.00% | 5 00 | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,1,2,2-Tetrachloroethane | UG/L | 0 | 0.00% | 5 00 | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,1,2-Trichloroethane | UG/L | 0 | 0.00% | | 0 19 | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,1-Dichloroethane | UG/L | 0 | 0 00% | 5.00 | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,1-Dichloroethene | UG/L | 0 | 0.00% | 5.00 | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,2-Dibromo-3-chloropropan | n UG/L | 0 | 0.00% | 5 00 | 0 12 | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,2-Dibromoethane | UG/L | 0 | 0 00% | 5 00 | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,2-Dichlorobenzene | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,2-Dichloroethane | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,2-Dichloropropane | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,3-Dichlorobenzene | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | 1,4-Dichlorobenzene | ŲĢ/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Acetone | UG/L | 61 | 100.00% | | 3650 00 | 0 00 | | 3 | | 3 | 52 | | 61 | | 36 | | Benzene | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Bromochloromethane | UG/L | 0 | 0 00% | | 1 08 | 0.00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Bromodichloromethane | UG/L | 1 | 33,33% | | 1 10 | 0.00 | | 1 | | 3 | 1 U | | 1 U | | 1 | | Bromoform | UG/L | 0 | 0 00% | | 2 35 | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Carbon disulfide | UG/L | 4 | 100 00% | | 1042 86 | 0 00 | | 3 | | 3 | 2 | | 2 | | 4 | | Carbon tetrachloride | UG/L | 0 | 0 00% | | | 0.00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Chlorobenzene | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | annestrone Material | 1 U | | Chlorodibromomethane | UG/L | 2 | 33.33% | | 0 8 0 | 1 00 | | 1 | | 3 | 1 U | | 1 U | 43,44 | 2 | | Chloroethane | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Chloroform | UG/L | 0 | 0.00% | | | 0.00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Cis-1,2-Dichloroethene | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Cis-1,3-Dichloropropene | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Ethyl benzene | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Methyl bromide | UG/L | 0 | 0.00% | | 8 70 | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Methyl butyl ketone | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 5 U | | 5 U | | 5 U | | Methyl chlonde | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Methyl ethyl ketone | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 5 U | | 5 U | | 5 U | | Methyl isobutyl ketone | UG/L | 0 | 0.00% | | 158 12 | 0.00 | | 0 | | 3 | 5 U | | 5 U | | 5 U | | Methylene chlonde | UG/L | 0 | 0.00% | | 4 12 | 0.00 | | 0 | | 3 | 2 U | | 2 U | | 2 U | | Styrene | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Tetrachioroethene | UG/L | 0 | 0 00% | | | 0.00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Toluene | UG/L | 1 | 33.33% | | | 0.00 | | 1 | | 3 | 1 U | | 1 | | 1 U | | Total Xylenes | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Trans-1,2-Dichloroethene | UG/L | 0 | 0.00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Trans-1,3-Dichloropropene | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | | Trichloroethene | UG/L | 0 | 0 00% | 5 00 | 1 56 | 0.00 | | 0 | | 3 | 1 U | | 1 U | | 1 U | #### Table 28-12 S121C - Semivolatiles in Groundwater vs. Class GA Non Evaluated Sites SITE SEAD-121C SEAD-121C SEAD-121C DRMO Yard DESCRIPTION DRMO Yard DRMO Yard MW121C-1
MW121C-1 MW121C-2 LOC ID SAMP ID EB023 EB153 EB154 QC CODE DU SA SA SAMP DETH TOP 0 2.1 1.6 SAMP DEPTH BOT 97 5.1 0 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 ABOVE OF OF OF DETECTS PARAMETER UNIT MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM ANALYSES VALUE Q VALUE Q VALUE Q 1.2,4-Trichlorobenzene UG/L 0 00% 5 00 194 60 0 11 U 1.1 U 268 16 1.2-Dichlorobenzene UG/L 0 0 00% 4 70 0 11 U 1 1 11 1,3-Dichlorobenzene UG/Ł 0 00% 5 00 3248 50 0 1.1 U 1.1 U 1,4-Dichlorobenzene UG/L 0 00% 4 70 2 80 0 3 11 U 1.1 U 0 3650 00 28 U UG/L 0.00% 0 2.7 U 2.4.5-Trichlorophenol 0 3 2,4,6-Trichlorophenol UG/L 0 00% 0 97 0 O 3 1.1 U 1.1 U 2,4-Dichlorophenol UG/L 0 0 00% 109 50 0 11 U 11 U UG/L 0.00% 5 00 730 00 0 1.1 U 2.4-Dimethylphenol 0 0 3 1.1 U 2,4-Dinitrophenol UG/L 0.00% 73 00 0 0 27 U 2.8 U 2,4-Dinitrotoluene UG/L 0 0 00% 5 00 73 00 0 0 11 U 11 U UG/L 0.00% 5 00 36 50 1.1 U 11 U 2.6-Dinitrotoluene 0 3 2-Chloronaphthalene UG/L 0 0.00% 0 0 11 U 1.1 U 2-Chlorophenol UG/L 0 0 00% 182 50 0 0 11 U 11 U 2-Methylnaphthalene UG/L 0 0.00% 1.1 U 1.1 U 5 00 1825.00 0 2-Methylphenol 0 1.1 U 1 1 U UG/I 0 0.00% 2-Nitroaniline UG/L 0 0 00% 0.35 0 0 27 U 2.8 U 2-Nitrophenol UG/L 0 0 00% 0 0 1.1 U 1 1 U 0 15 0 0 1.1 U 1 1 U 3.3° Dichlorobenzidine UG/L 0.00% Ω 2711 2 R I I 3-Nitroaniline UG/L 0 0 00% 109 50 0 Ω 4,6-Dinitro-2-methylphenol 0.00% 5.00 0 0 2.7 U 2.8 U 0 4-Bromophenyl phenyl ether UG/L ٥ 0.00% 2117.00 0 0 1.1 U 1.1 U 1 1 U 4-Chloro-3-methylphenol UG/L 0 0.00% 0 0 11 U 4-Chloroaniline 0 00% 5.00 146 00 0 0 3 1 1 U 1.1 U 0 0 1.1 U 1.1 U 4-Chlorophenyl phenyl ether UG/L 0 0.00% 5.00 1.1 U 1.1 U UG/L 0.00% 0 0 3 4-Methylphenol 0 4-Nitroaniline UG/L 0.00% 5.00 109.50 0 ٥ 3 27 U 28 11 0.00% 2190.00 0 0 3 2.7 U 2.8 U 4-Nitrophenol UG/L 0 0.00% 3 1.1 U 1.1 U Acenaphthene UG/L 0 1 1 U 1.1 U Acenaphthylene UG/L 0 0.00% 0 Ω 3 10950 00 1.1 U Anthracene UG/L 0 00% 0 0 3 1.1 U Benzo[a]anthracene UG/L 0 00% 0 02 1.1 U 1.1 U 10.00 0.00 0 0 1.1 U 1.1 U Benzo[a]pyrene UG/L 0 0.00% 3 11 U 1.1 U Benzo[b]fluoranthene UG/L 0.00% 0.02 0 0 0.00% 0 1.1 U 1.1 U Benzo[ghi]perylene UG/L 0.00% 0 17 0 0 1,1 U 1.1 U UG/L 0 Benzo[k]fluoranthene Bis(2-Chloroethoxy)methane UG/L 0 0.00% 0 0 1.1 U 1.1 U 0.00% 0 01 0 1.1 U 11 U Bis(2-Chloroethyl)ether UG/L 1.1 U 11 U 0.00% 0 26 0 0 Bis(2-Chloroisopropyl)ether UG/L 0 0.23 JB 0 4 JB Bis(2-Ethylhexyl)phthalate UG/L 0.4 200.00% 50 00 4.80 0 2 0.12 33.33% 7300 00 0 0.12 .1 1.1 U Butylbenzylphthalate UG/L UG/L 0.00% 3 36 0 0 1.1 U 11 U Carbazole 0 1.1 U 1.1 U Chrysene UG/L n 0.00% 1 68 0 0 0.79.1 17 Di-n-butylphthalate UG/L 1.7 66 67% 50 00 0 2 Di-n-octylphthalate UG/L 0.00% 730 00 0 0 1.1 U 1.1 U 0 1.1 U 11 U 0.00% 0.00 0 Dibenz[a,h]anthracene UG/L 0 Ω 1.1 U 11 U Dibenzofuran UG/L 0.00% 146.00 0 0 29200.00 0 0.057 J 11 U Diethyl phthalate UG/L 0.057 33.33% 365000.00 0 0 1.1 U 1.1 U 0.00% Dimethylphthalate UG/L 0 1.1 U 11 U Fluoranthene 0.00% 1460.00 0 0 3 UG/L 1460 00 0 1.1 U 0.48 J UG/L 0.48 33.33% Fluorene 1 1 U 0.35 0.01 0 0 3 1.1 U Hexachlorobenzene UG/L 0.00% 0.061 J 0 4 J Hexachlorobutadiene UG/L 0,4 66.67% 0 14 0 2 3 0.15 0 0 3 1.1 U 1 1 U 0.00% Hexachlorocyclopentadiene UG/L 0 1.1 U 1.1 U 0.75 0 0 3 Hexachloroethane UG/L 0 0.00% 11 U 0 00% 0.02 0 Ω 3 1.1 U Indeno[1,2,3-cd]pyrene UG/L 0 0 0 3 1.1 U 1.1 U UG/L 0.00% Isophorone 0 13 72 1.1 U 11 U N-Nitrosodiphenylamine UG/L 0.00% #### Table 28-12 S121C - Semivolaliles in Groundwater vs. Class GA Non Evaluated Sites | | | | | | | | | MW121C-1
EB023
DU | 0 | MW121C-1
EB153
SA | 2.1 | MW121C-2
EB154
SA | 1 6 | |---------|-----------|---|--|--|--|--|---|---|---|--|--|--|--| | | | | | | | | | 0.000 | 0 | 0.501.11.015 | | 000111014 | 5 1 | | | | | | | | | | | | | | | | | | FREQUENCY | | | NUMBER | NL | | | 17- | Mar-98 | 17 | -Mar-98 | 17 | 7-Mar-98 | | | OF | | | ABOVE | | OF | OF | | | | | | | | MAXIMUM | DETECTION | NYS CLASS GA | DRINKING WATER | TAGM | DE | TECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | 0 | 0 00% | | 0 01 | | 0 | 0 | | 3 | | | 1.1 U | | 1 1 U | | 0 | 0 00% | | 1460 00 | | 0 | 0 | | 3 | | | 1 1 U | | 1 1 U | | 0 | 0.00% | | 3 39 | | 0 | 0 | | 3 | | | 1.1 U | | 1 1 U | | 0 | | | 00 0 56 | | 0 | 0 | | 3 | | | 27 U | | 2.8 U | | 0.24 | | | | | 0 | 1 | | 3 | | | 1.1 U | | 0 24 J | | | | | 00 21900 00 | | 0 | 0 | | 3 | | | 1.1 U | | 1 1 U | | | | | | | 0 | 1 | | 3 | | | 1.1 U | | 0 13 J | | | | | | | n | | | 3 11 | | | | | 0 44 U | | | | MAXIMUM DETECTION 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.24 33.33% 0 0.00% 0.13 33.33% | OF DETECTION NYS CLASS GA 0 000% 0 000% 0 000% 0 000% 10 0.24 33 33% 0 000% 11 0.33 333% | OF MAXIMUM DETECTION NYS CLASS GA DRINKING WATER 0 00% 01 0 00% 1460 00 0 00% 1 00 056 0 24 33 33% 0 00% 1 00 21900 00 0 13 33 33% 1095 00 | MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM 0 000% 001 0 000% 1460 00 0 000% 339 0 0.00% 100 056 0.24 33 33% 0 000% 100 21900 00 0 13 33 33% 1095 00 | OF ABOVE MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DE 0 0 00% 0 00% 1460 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | OF ABOVE OF AMAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS 0 000% 001 1460 00 0 0 0 000% 3 3 39 0 0 0 0.00% 1 00 056 0 0 0 0.24 33 33% 0 1095 00 0 0 0 13 33 33% 1 095 00 0 1 | OF OF ABOVE OF OF OF ANALYSES MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES 0 000% 01460 00 0 0 0 0 000% 33 39 0 0 0 0 0.00% 1 00 0 56 0 0 0 0 24 33 33% 0 1095 00 0 1 0 0 00% 1 00 21900 00 0 0 0 13 33 33% 1 095 00 0 1 | FREQUENCY OF ABOVE OF | FREQUENCY OF | FREQUENCY OF | FREQUENCY OF | FREQUENCY OF | ~ rs ** . and the 4 11 25 14 ~ . .. #### Table 28-13 S121C - Semivolatiles/TPH in Ground Water vs. DRINKING WATER STANDARDS Non-Evaluated Sites SEAD-121C SEAD-121C SEAD-121C SITE DESCRIPTION DRMO Yard DRMO Yard DRMO Yard MW121C-1 MW121C-1 MW121C-2 LOC ID EB023 EB153 EB154 SAMP ID DU SA SA QC CODE SAMP DETH TOP 0 2 1 16 SAMP DEPTH BOT 0 97 5 1 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 SAMP DATE FREQUENCY 17-Mar-98 ABOVE OF OF OF DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE PARAMETER UNIT MAXIMUM 0 00 1,2,4-Trichlorobenzene UG/L 0 0.00% 5 00 194 60 0 1 1 U 11 U 0 00% 4 70 268 16 0 00 0 11 U 11 U UG/L 0 1.2-Dichlorobenzene 0.00% 5 00 3248 50 0.00 0 11 U 11 U 1.3-Dichlorobenzene UG/L 0 3 1,4-Dichlorobenzene UG/L 0 00% 4 70 2 80 0 00 0 1.1 U 11 U 0.00% 3650 00 0.00 0 3 2.7 U 2.8 U 2.4,5-Trichlorophenol UG/L 0 2,4,6-Trichlorophenol UG/L 0 0 00% 0.97 0.00 0 11 U 11 U 0 0.00% 109 50 0 00 11 U 11 U UG/L 2.4-Dichlorophenol 0.00 2,4-Dimethylphenol UG/L 0 0.00% 5.00 730 00 n 3 1.1 U 1 1 II UG/L 0 0 00% 73 00 0 00 0 2.7 U 28 U 2 4-Dinitrophenol 0.00% 5 00 73 00 0 00 1.1 U 11 U 0 0 3 2,4-Dinitrotoluene UG/L 2,6-Dinitrotoluene UG/L 0 0 00% 5 00 36 50 0.00 0 1.1 U 11 U 0 00 UG/L 0 0.00% 0 3 1.1 U 1 1 U 2-Chloronaphthalene 182 50 0.00 1.1 U 2-Chlorophenol UG/L 0 0 00% Λ 3 1.1 U 0.00 1.1 U 11 U UG/L 0 0.00% 2-Methylnaphthalene 5 00 1825 00 0.00 0 11 U 3 1.1 U 2-Methylphenol UG/L 0 0.00% 0.00% 0 35 0.00 0 3 2.7 U 28 U 2-Nitroaniline UG/L 0 0.00% 0.00 0 1.1 U 11 U 0 3 2-Nitrophenol UG/L 0.00% 0 15 0.00 n 11 U 1.1 U 3.3 - Dichlorobenzidine UG/L 0.00 3 2.7 U 28 U UG/L 0 0.00% 109.50 0 3-Nitroaniline 5 00 0.00 2.7 U 28 U 4,6-Dinitro-2-methylphenol UG/L 0 0 00% 0 3 2117.00 0.00 0 1.1 U 11 U 0 0.00% 4-Bromophenyl phenyl ether UG/L 0.00 0 1.1 U 1.1 U ٥ 0.00% 3 4-Chloro-3-methylphenol UG/L 0 0.00% 5 00 146 00 0.00 0 3 1.1 U 11 U UG/L 4-Chloroaniline 0 00 1.1 U 11 U 0 0.00% 4-Chlorophenyl phenyl ether UG/L 0 0.00% 5.00 0.00 0 3 1.1 U 1 1 U 4-Methylphenol UG/L 109 50 0 00 0 3 2.7 U 2.8 U UG/L 0 0.00% 5.00 4-Nitroaniline 2.7 U 28 U 2190 00 0.00 3 4-Nitrophenol UG/L 0 0.00% 0.00 0 1.1 U 11 U Acenaphthene 0 0.00% UG/L 0 00 0 3 1.1 U 11 U 0.00% Acenaphthylene UG/L Ω 10950 00 11 U 0 0.00% 0 00 Ω 3 11 U UG/L Anthracene 0.00% 0.02 0.00 1.1 U 1.1 U Benzo(a)anthracene UG/L Ω 11 U 10 00 0.00 Λ 3 1.1 U Benzo[a]pyrene UG/L 0 0.00% 0.00 Benzo[b]fluoranthene LIG/I 0 0.00% 0 02 0 00 0 3 1.1 U 11 U 0.00 3 1.1 U 11 U Benzo[ghi]perylene UG/L 0 0.00% 11 U UG/L 0 0.00% 0 17 0.00 Ω 3 1.1 U Benzo[k]fluoranthene 11 U 11 U 0.00 0 3 0 0.00% Bis(2-Chloroethoxy)methan UG/L 1.1 U 11 U UG/L 0 0.00% 0.01 0.00 0 3 Bis(2-Chloroethyl)ether 1.1 U 11 U 0.00% 0 26 0 00 Bis(2-Chloroisopropyl)ether UG/L Ω 0.23 JB 0.4 JB Bis(2-Ethylhexyl)phthalate UG/L 04 200 00% 50 00 4.80 0.00 2 0.12 33.33% 7300 00 0 00 3 0.12 J 11 U UG/L Butylbenzylphthalate 11 U 0.00 0 3 1.1 U UG/L 0 0.00% 3 36 Carbazole 1.1 U 1 68 0.00 0 3 1.1 U UG/I 0 0 00% Chrysene 1.7 0.79 J 50.00 0.00 3 17 66 67% Di-n-butylphthalate UG/L 730 00 1.1 U 1.1 U 0 00% 0.00 Ω 3 UG/L 0 Di-n-octylphthalate 1.1 U 11
U 0 00 0 00 0.00% Dibenz[a,h]anthracene UG/L 0 146.00 0.00 0 3 1.1 U 11 U 0 0.00% Dibenzofuran UG/L 0.057 33 33% 29200.00 0 00 3 0.057 J 1 1 U Diethyl phthalate UG/L 1.1 U 11 U 0 0.00% 365000 00 0.00 0 3 Dimethylphthalate UG/L 1460.00 0 00 Ω 1.1 U 11 U UG/L 0.00% Fluoranthene 0 0 48 J 0 00 3 1.1 U 1460 00 UG/L 0.48 33 33% Fluorene 0 35 0.01 0 00 0 3 1.1 U 11 U 0 00% Hexachlorobenzene UG/L 0 0.061 J 0.4 J 1 00 3 0.14 2 UG/L 0.4 66.67% Hexachlorobutadiene 0.15 0 00 0 3 1.1 U 1.1 IJ 0.00% Hexachlorocyclopentadiene UG/L 0 0 00 0 3 1.1 U 11 U 0.75 0 0.00% Page 1 s121cgw-dw s121cgw.xls Hexachloroethane UG/L ## Table 28-13 S121C Semivolatiles/TPH in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | | | | | | | | | SEAD-121C
DRMO Yard
MW121C-1
EB023
DU | | SEAD-121C
DRMO Yard
MW121C-1
EB153
SA | | SEAD-121C
DRMO Yard
MW121C-2
EB154
SA | | |---|------|---------|-----------|--------------|----------------|--------|---------|---|----------|---|-------|---|--------|---|----------| | SAMP DETH TOP | | | | | | | | | | | 0 | | 2 1 | | 16 | | SAMP DEPTH BOT | | | | | | | | | | | 0 | | 9 7 | | 5 1 | | MATRIX | | | | | | | | | | GROUNDWA | TER | GROUNDW | ATER | GROUNDWA | ATER | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | NUMBER | 17-M | ar-98 | 17-1 | Mar-98 | 17 | '-Mar-98 | | | | | OF | | | ABOVE | OF | | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | NYS CLASS GA | DRINKING WATER | TAGM | DETECTS | | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | Indeno[1,2,3-cd]pyrene | UG/L | 0 | 0 00% | | 0 02 | 0 00 | | 0 | | 3 | | | 11 U | | 1 1 U | | Isophorone | UG/L | 0 | 0 00% | | | 0 00 | | 0 | | 3 | | | 1 1 U | | 1 1 U | | N-Nitrosodiphenylamine | UG/L | 0 | 0 00% | | 13 72 | 0 00 | | 0 | | 3 | | | 11 U | | 1 1 U | | N-Nitrosodipropylamine | UG/L | 0 | 0 00% | | 0 01 | 0 00 | | 0 | | 3 | | | 1.1 U | | 1.1 U | | Naphthalene | UG/L | 0 | 0 00% | | 1460 00 | 0.00 | | 0 | | 3 | | | 1.1 U | | 1 1 U | | Nitrobenzene | UG/L | 0 | 0 00% | | 3 39 | 0 00 | | 0 | | 3 | | | 1.1 U | | 11 U | | Pentachlorophenol | UG/L | 0 | 0 00% | 1 00 | 0 56 | 0 00 | | 0 | | 3 | | | 2.7 U | | 28 U | | Phenanthrene | UG/L | 0 24 | 33 33% | | | 0 00 | | 1 | | 3 | | | 1.1 U | | 0 24 J | | Phenol | UG/L | 0 | 0 00% | 1.00 | 21900 00 | 0 00 | | 0 | | 3 | | | 11 U | | 11 U | | Pyrene | UG/L | 0 13 | 33 33% | | 1095 00 | 0 00 | | 1 | | 3 | | | 11 U | | 0 13 J | | TPH | MG/L | 0 | 0 00% | | 0 48 | 0 00 | | 0 | | 3 | | | 0 49 U | | 0 44 U | #### Table 28-14 S121C.- Pesticides/PCBs in Groundwater vs. Class GA Non Evaluated Sites SITE: SEAD-121C SEAD-121C SEAD-121C DESCRIPTION DRMO Yard DRMO'Yard DRMO Yard LOC ID: MW121C-1 MW121C-1 MW121C-2 SAMP_ID: EB023 EB153 EB154 QC CODE: DU SA SA SAMP DETH TOP: 2.1 1.6 SAMP DEPTH BOT 9.7 51 MATRIX: GROUNDWATER GROUNDWATER GROUNDWATER SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER DETECTION NYS CLASS GA UNIT MAXIMUM DRINKING WATER TAGM DETECTS ANALYSES VALUE VALUE Q Q VALUE Q 4,4'-DDD UG/L 0.9 66 67% 0.10 0 28 0.9 0.11 U 0.81 P 4.4 -DDE UG/L 100.00% 0.20 0.3 0.10 0.27 P 0.093 JP 0.3 P 4,4'-DDT UG/L 0.56 100.00% 0.10 0 03 0.29 P 1 0.56 P Aldrin UG/L 0 0.00% 0 06 0.00 0 0 3 0.057 U 0.057 U 0.054 U Alpha-BHC UG/L 0.059 66 67% 0 2 0.057 U 0.036 J 0.059 P Alpha-Chlordane UG/L 5.00 0 096 66.67% 0 0.096 0.068 0.054 U Aroclor-1016 UG/L 0 00% 2.56 0 0 1.1 U 1.1 U 1.1 U Aroclor-1221 UG/L 0 00% 0 0 0 2.3 U 2.3 U 2.2 U UG/L Aroclor-1232 0 0 00% 1.1 U 1.1 U 1.1 U Aroclor-1242 UG/L 0.00% 0 0 1.1 U 1.1 U 1.1 U Aroclor-1248 UG/L 0.00% 1.1 U 0 0 1.1 U 1.1 U UG/L Aroclor-1254 0 0.00% 0 10 0.73 0 0 1.1 U 1.1 U 1.1 U Aroctor-1260 UG/L 0 0.00% 0.10 1.1 U 1.1 U 1.1 U Beta-BHC UG/L 0.56 100.00% 5.00 0 0.56 P 0.096 P 3 0.061 P UG/L 0.23 100.00% Delta-BHC 0 0.23 P 0.094 0.16 P Dieldrin UG/L 0.2 66.67% 0.10 0,00 0.11 U 0.052 JP 8.1 P Endosulfan i UG/L 0.11 66 67% 219.00 0 0.11 P 0.08 P 0.054 U Endosulfan II UG/L 0.28 66.67% 219 00 Π 2 0.28 P 0.11 U 0.28 Endosulfan sulfate UG/L 0.69 100.00% 0 0.28 P 0.14 P 0.59 P Endrin UG/L 0.71 33.33% 0.10 10.95 0.11 U 0.11 U 0.71 P Endrin aldehyde UG/L 0.97 100.00% 5.00 10.95 0 3 0.22 P 0.073 JP 0.97 P 33.33% UG/L Endrin ketone 0.2 5.00 10 95 0 0.11 U 0.11 U 0.2 Gamma-BHC/Lindane UG/L 0.038 33.33% 5.00 0 05 0 0.057 U 0.057 U 0 038 JP Gamma-Chlordane UG/L 0.47 100.00% 0 0.47 0.086 P 0.17 P Heptachlor UG/L 0.23 66.67% 0.05 0.00 0.23 P 6.058 P 2 2 3 0.054 U Heptachlor epoxide UG/L 0.11 66.67% 0.05 0.00 2 2 0.057 U 0,072 P 0.11 P Methoxychlor UG/L 0 62 66.67% 35 00 182.50 0 2 0.57 0.57 U 3 0.62 P 0 5.7 U 5.7 U 5.4 U Toxaphene UG/L 0.00% ## Table 28-15 S121C - Pesticides/PCBs in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID. QC CODE. | | | | | | | | | SEAD-
DRMO
MW121
EB023
DU | Yard | SEAD-121
DRMO Yar
MW121C-1
EB153
SA | d | SEAD-1210
DRMO Yard
MW121C-2
EB154
SA | | |---|------|---------|-----------|--------------|----------------|--------|---------|---------|---------------------------------------|-----------|---|----------|---|----------| | SAMP DETH TOP | | | | | | | | | | 0 | | 2.1 | • | 1.6 | | SAMP DEPTH BOT | | | | | | | | | | 0 | | 9.7 | | 5 1 | | MATRIX | | | | | | | | | GROUI | NDWATER | GROUNDY | VATER | GROUNDW | VATER | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | 17-Mar-98 | 17 | -Mar-98 | 1 | 7-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | NYS CLASS GA | DRINKING WATER | TAGM | DETECTS | ANALYSE | VALUE | | VALUE | Q | VALUE | Q | | 4,4 -DDD | UG/L | 09 | 66.67% | 0.10 | 0.28 | 2.00 | 2 | | 3 | 0.9 | | 0.11 U | 御じ湯用子 | 0.81 P | | 4,4'-DDE | UG/L | 0.3 | 100.00% | 0 10 | 0.20 | 2.00 | 3 | | 3 | 0.27 P | | 0.093 JP | | 0,3 P | | 4.4 -DDT | UG/L | 0.56 | 100 00% | 0.10 | 0.03 | 3.00 | 3 | , | 3 | 0.29 P | 100 000 | 0.28 | | 0.56 P | | Aldrin | UG/L | 0 | 0.00% | 0.06 | 0 00 | 0.00 | 0 | • | 3 | 0.057 U | | 0.057 U | | 0.054 U | | Ałpha-BHC | UG/L | 0.059 | 66.67% | | | 0.00 | 2 | | 3 | 0.057 U | | 0.036 J | | 0.059 P | | Alpha-Chlordane | UG/L | 0.096 | 66 67% | 5.00 | | 0.00 | 2 | | 3 | 0.096 | | 0 068 | | 0.054 U | | Aroclor-1016 | UG/L | 0 | 0.00% | | 2 56 | 0.00 | (|) | 3 | 1.1 U | | 1.1 U | | 1 1 U | | Aroclor-1221 | UG/L | 0 | 0.00% | | | 0.00 | (|) | 3 | 2.3 U | | 2.3 U | | 22 U | | Aroclor-1232 | UG/L | 0 | 0.00% | | | 0.00 | (|) | 3 | 1.1 U | | 1.1 U | | 1 1 U | | Aroclor-1242 | UG/L | 0 | 0.00% | | | 0.00 | (|) | 3 | 1.1· U | | 1.1 U | | 1.1 U | | Aroclor-1248 | UG/L | 0 | 0.00% | | | 0 00 | (| | 3 | 1.1 U | | 1.1 U | | 1.1 U | | Aroclor-1254 | UG/L | 0 | 0.00% | | | 0.00 | (| | 3 | 1.1 U | | 1.1 U | | 11 U | | Aroclor-1260 | UG/L | 0 | 0.00% | 0.10 |) | 0.00 | (| | 3 | 1.1 U | | 1.1 U | | 1.1 U | | Beta-BHC | UG/L | 0 56 | 100.00% | 5.00 |) | 0.00 | 3 | | 3 | 0 56 P | | 0.096 P | | 0.061 P | | Delta-BHC | UG/L | 0.23 | 100.00% | | | 0.00 | 3 | | 3 | 0.23 P | | 0.094 | | 0.16 P | | Dieldnn | UG/L | 0.2 | 66.67% | 0.10 | 0.00 | 2.00 | 2 | | 3 | 0.11 U | - 2007 | 0.052 JP | 02 | 6.2 P | | Endosulfan I | UG/L | 0.11 | 66.67% | | 219.00 | 0.00 | 2 | | 3 | 0.11 P | | 0.08 P | | 0.054 U | | Endosulfan II | UG/L | 0.28 | 66.67% | | 219.00 | 0.00 | | | 3 | 0.28 P | | 0.11 U | | 0.28 | | Endosulfan sulfate | UG/L | 0.69 | 100.00% | | | 0.00 | 3 | 3 | 3 | 0.28 P | | 0.14 P | | 0.69 P | | Endrin | UG/L | 0.71 | 33.33% | 0.10 | 10.95 | 0.00 | 1 | | 3 | 0.11 U | | 0.11 U | | 0.71 P | | Endrin aldehyde | UG/L | 0.97 | 100.00% | 5.00 | 10.95 | 0.00 | 3 | 3 | 3 | 0.22 P | | 0.073 JP | | 0.97 P | | Endrin ketone | UG/L | 0.2 | 33.33% | 5 00 | 10 95 | 0.00 | • | | 3 | 0.11 U | | 0.11 U | | 0.2 | | Gamma-BHC/Lindane | UG/L | 0.038 | 33.33% | 5 00 | 0.05 | 0.00 | 1 | | 3 | 0.057 U | | 0.057 U | | 0.038 JP | | Gamma-Chlordane | UG/L | 0.47 | 100.00% | | | 0 00 | 3 | | 3 | 0.47 | | 0.066 P | | 0.17 P | | Heptachlor | UG/L | 0.23 | 66.67% | 0.05 | 0.00 | 2.00 | 2 | | 3 | 6,15 P | S13 (622) | 8.858 P | | 0.054 U | | Heptachlor epoxide | UG/L | 0.11 | 66.67% | | | 2.00 | 2 | | 3 | 0.057 U | A | 0.072 P | 10000 | 0.11 P | | Methoxychlor | UG/L | 0 62 | 66,67% | | 182.50 | 0 00 | 2 | | 3 | 0.57 | | 0.57 U | | 0.62 P | | Toxaphene | UG/L | 0 | 0.00% | | | 0.00 | (|) | 3 | 5.7 U | | 5.7 U | | 5.4 U | #### Table 28-16 S121C - Metals in Groundwater vs. Class GA Non Evaluated Sites SITE: SEAD-121C SEAD-121C SEAD-121C DESCRIPTION: DRMO Yard DRMO Yard DRMO Yard MW121C-2 MW121C-1 MW121C-1 LOC ID. SAMP ID: EB023 EB153 EB154 QC CODE: DU SA SA SAMP. DETH TOP: 2.1 1.6 0 SAMP DEPTH BOT: 0 9.7 5.1 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX: NUMBER NUMBER NUMBER SAMP DATE FREQUENCY 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE Q Aluminum UG/L 5350 100.00% 36500.00 0 3 133 B 738 5350 UG/L 0,00% 14,60 0 5.1 U 5.1 U · 5.1 U Antimony 0 0.01 0 UG/L 25.00 3.7 U 3.8 B 3.7 U 3.8 33.33% 3 Arsenic 1.04 39.5 B Barium UG/L 106 100.00% 1000.00 0 3 38 B 106 B UG/L 0.00% 0.00 0 0.1 U 0.1 U 0.1 U Beryllium 0 0 Cadmium UG/L 0.39 33.33% 10 00 0 00 0.39 B 0.3 U 0.3 U Calcium UG/L 172000 100 00% 0 3 172000 E 163000 E 162000 E Chromium UG/L 6.5 100.00% 50 00 0.00 0 3 1.2 B 2.4 B 6.5 B UG/L 3.6 66.67% 2190.00 0 2 1.4 U 1.6 B 3.6 B Cobalt UG/L 66.67% 200.00 1460.00 1.2 U 5.2 B 5.2 0 2 2 B Copper Cyanide UG/L 0 0.00% 100.00 0 0 5 U 5 U 5 U 5620 E UG/L 5620 100.00% 300.00 10950 00 3 346 € 1430 E Iron 1.8 U UG/L 0.00% 25.00 0 1.8 U 1.8 U Lead n UG/L 24100 100.00% 0 3 23800 24100 23200 Magnesium Manganese UG/L 1590 100.00%
300 00 0.10 3 W. Line attention makes 1100 0.1 U 0.1 U 0.1 U Mercury UG/L 0 0.00% 2.00 0.59 0 4.2 B UG/L 10.6 100.00% 730 00 0 3 2.8 B 10.6 B Nickel 21400 Potassium UG/L 21400 100.00% 0 3 7610 10900 UG/L 300.00% 10.00 182.50 3.7 B° 5.6 * 4.3 B° 5.6 Selenium UG/L 0.00% 50.00 182.50 0 0 1.3 U 1.3 U 1.3 U Silver 0 11200 95200 Sodium UG/L 95200 100.00% 20000.00 3 8920 Thallium UG/L 0.00% 2 92 0 3 6.7 U 6.7 U 6.7 U 0 UG/L 66.67% 255.50 0 2 3 1.5 U 2.4 B 6.5 B 6.5 Vanadium Page 1 3 300,00 100.00% 16.4 10950.00 2.4 B 9.3 B 16.4 B Zinc UG/L ## Table 28-17 S121C - Metals in Ground Water vs. DRINKING WATER STANDARDS Non-Evaluated Sites SITE SEAD-121C SEAD-121C SEAD-121C DESCRIPTION. DRMO Yard DRMO Yard **DRMO** Yard LOC ID. MW121C-1 MW121C-1 MW121C-2 SAMP ID EB023 EB153 EB154 QC CODE DU SA SAMP DETH TOP: 0 2.1 1.6 SAMP DEPTH BOT 0 9.7 5.1 GROUNDWATER MATRIX: GROUNDWATER GROUNDWATER NUMBER NUMBER SAMP DATE FREQUENCY NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF MAXIMUM PARAMETER DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS UNIT ANALYSES VALUE Q VALUE Q VALUE Q Aluminum UG/L 5350 100 00% 36500 00 0 00 3 133 B 738 5350 Antimony UG/L 0 14 60 0.00 0.00% 0 3 5.1 U 5.1 U 5.1 U Arsenic UG/L 3.8 33.33% 25 00 0 01 1 00 3 3.7 U ₩ J# B 3.7 U Barium UG/L 106 100.00% 1000 00 1.04 3.00 39.5 B 3 3 38 B 106 B Beryllium UG/L 0 0 00% 0.00 0 00 0 0.1 U 0.1 U 0 1 U Cadmium UG/L 0.39 33 33% 10 00 0 00 1.00 3 0.39 B 0.3 U 0.3 U Calcium UG/L 172000 100.00% 0.00 3 3 172000 E 163000 E 162000 E Chromium UG/L 6.5 100.00% 50 00 0 00 3.00 T. B B STATE OF B 3 6.5 B UG/L 66.67% 2190 00 0.00 3.6 Cobalt 3 1.4 U 1.6 B 3.6 B 200.00 Copper UG/L 5.2 66.67% 1460.00 0 00 3 1.2 U 2 B 52 B Cyanide UG/L 0 0.00% 100 00 0.00 0 3 5 U 5 U 5 U 5620 10950.00 0.00 iron UG/L 100.00% 300 00 3 3 346 E 1430 E 5620 E Lead UG/L 0 0.00% 25.00 0.00 0 3 1.8 U 1.8 U 1.8 U UG/L 24100 100.00% Magnesium 0.00 3 23800 24100 23200 Manganese UG/L 1590 100,00% 300 00 0 10 3 00 3 1590 1140 1100 Mercury 200 UG/L 0 0.00% 0.59 0.00 0 3 0.1 U 0.1 U 0.1 U Nickel UG/L 10.6 100.00% 730 00 0 00 3 3 2.8 B 4.2 B 10 6 B UG/L 21400 0.00 7610 Potassium 100.00% 3 3 10900 21400 UG/L 10 00 182 50 0.00 Selenium 56 300.00% 3 3.7 B* 5.6 * 43 B* Silver UG/L 0 0.00% 50 00 182 50 0.00 0 3 1.3 U 1.3 U 1.3 U UG/L 100.00% 20000 00 Sodium 95200 0.00 3 3 8920 11200 95200 Thallium UG/L 0 0.00% 2.92 0 00 0 3 67 U 6.7 U 6.7 U UG/L 66.67% 255.50 0.00 Vanadium 6.5 3 15 U 2.4 B 6.5 B 0 00 3 2.4 B 9.3 B 16.4 B 3 UG/L Zinc 100.00% 16.4 300 00 10950.00 ### SEAD-121D Building 306 and 308 Hazardous Materials Release Table 29-1 # Sample Collection Information SEAD-121D - Building 306 308 Hazardous Materials Release ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------------|----------|--------|--------|--------|--------|------|---| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL | SB121D-1 | EB220 | 3/8/98 | 0.00 | 0.20 | SA | Location is downgradient of Bldg. 306 in stressed vegatation area where rumored spill took place. | | SOIL | SB121D-1 | EB221 | 3/8/98 | 0.80 | 1.40 | SA | Same location as above. Sample taken near bedrock, (2.0 ft). No VOC's or impact to soils detected. | | SOIL | SB121D-2 | EB218 | 3/8/98 | 0.00 | 0.20 | SA | Location is downgradient of Bldg. 306 and a concrete pad. Stressed vegatation. | | SOIL | SB121D-2 | EB219 | 3/8/98 | 4.00 | 4.50 | SA | Same location as above. Sample taken near bedrock. (5.0 ft.). No VOC's or impact to soils detected. | | SOIL | SB121D-3 | EB222 | 3/8/98 | 0.00 | 0.20 | SA | Location is downgradient of Bldg. 308 and site of removed UST & existing AST. | | SOIL | SB121D-3 | EB223 | 3/8/98 | 2.30 | 2.50 | SA | Same location as above. Sample taken at top of water table. No VOC's or impact to soils detected. | | SURFACE SOIL | SS121D-1 | EB224 | 3/8/98 | 0.00 | 0.20 | SA | Sample taken at Bldg. 306 down gradient of a loading area where spills may of occured. Stressed vegatation. | | SURFACE SOIL | SS121D-2 | EB225 | 3/8/98 | 0.00 | 0.20 | SA | Sample taken SE corner Bldg. 306 near door.
Stressed vegatation. | #### Table 29-2 SEAD-1210 Volables in Soil vs. Na TAGM Non Evaluated Sites | DESCRIPTION LOGIO SAMP_ID OC CODE SAMP DETH TOP SAMP DETH TOP SAMP DETH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD 1
Bldg 30
and 308
Release
SB1210
FR220
SA
SOIL
8 M | HM | SEAD-121D
Bldg 306
and 308 HM
Rojeake
SB121D 1
EB221
SA 0.8
1.4
SOIL
8-Mai 98 | SEAD 121D
Bidg 306
and 308 HM
Release
SB121D 2
EB218
SA
0
SOIL
8-Mar 9 | 0 2 | SEAD-121D
Bidg 306
and 308 MM
Release
SB121D-2
EB219
CA
4
5
SOIL
6-Mar-96 | SEAD-121D
Ridg 306
and 306 HM
Release
SB121D-3
EB222
SA
0
0 2
SOIL
6-Mar-98 | SEAD-1210
Bidg 306
and 308 HM
Release
SB1210-3
EB223
SA
23
75
SOIL
8-Mar 98 | SEAD-121D
Bidg 306
and 308 HM
Release
SS121D-1
EB224
SA
0
02
SOIL
B-Mai-98 | SEAD 1210
Bldg 306
and 308 HM
Refease
SS1210-2
E8225
SA 0 0 2
SOIL
8-Mar 98 | |--|----------------|---------|-----------------|------|--------------------|-----------------|--------------|--------------|---|--------------|--|---|-----|---|---|---|--|---| | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | 0 | VALUE O | VALUE | 0 | VALUE Q | | 1.1.1 Trichloroethane | UG/KG | 0 | 0.00% | 800 | 18396000 | 0 | | | 8 | 15 U | 12 U | | 10 | 12 U | 10 U | 12 U | 14 U | VALUE Q | | 1 1 2 2 Tehachloroethane | UG/kG | 0 | 0.00% | 600 | 286160 | 0 | | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | 1.1.2 Inchloroethane | UG/KG | 0 | 0.00% | | 100407 | 0 | C | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | 1.1 Dichloroethane | UG/KG | 0 | 0.00% | 200 | 52560000 | 0 | 0 | | 8 | 15 U | 12 U | 1 | 1.0 | 12 U | 10 U | 12 U | 14 U | tt U | | 1 1 Dichloroethene | UG/KG | 0 | 0.00% | 400 | 9539 | 0 | | | 8 | 15 U | 12 U | t | 1.0 | 12 U | 10 U | 12 U | 14 U | 11 U | | 1.2-Dichloroethane | UG/KG | 0 | 0.00% | 100 | 62892 | 0 | | | В | 15 U | 12 U | 1 | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | 1.2 Dir Horoethene (total) | UG/KG | 0 | 0.00% | | | 0 | | | 8 | 15 U | 12 U | 1 | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | 1.2 Dichloropropane | UG/KG | 0 | 0.00% | | 84165 | 0 | | | 8 | 15 U | 12 U | 1 | 1 U | 12 U | 10 U | 12 U | 14 U | n u | | Acetone | UG/KG | 11 | 50 00% | 200 | 52560000 | 0 | 4 | | 8 | 15 U | 12 U | 1 | 1 0 | 11 J | 7 J | 12 U | 7 JB | 5 JB | | Berizene | UG/KG | 0 | 0.00% | 60 | 197352 | 0 | | | В | 15 U | 12 U | 1 | 1 U | 12 U | 10 U | 12 U | 14 U | ti U | | Bromodir hloromethane | UG/KG | 0 | 0.00% | | 92310 | 0 | | | В | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Biomoform | UG/KG | 0 | 0.00% | | 724456 | 0 | | | В | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 52560000 | 0 | | | В | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Carbon tetrachloride
Chlorobenzene | UG/KG
UG/KG | 0 | 0.00% | 600 | 44025 | 0 | | | 8 | 15 U | 12 U | | 1.6 | 12 U | 10 U | 12 U | 14 U | 11 U | | Chlorodebromomethane | UG/KG | 0 | | 1700 | 10512000 | 0 | | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 17 U | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 68133
210240000 | 0 | | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Chloroform | UG/KG | 4 | 12 50% | 300 | 938230 | 0 | | | 8 | 15 U | 12 0 | | 1 0 | 12 U | 10 U | 12 U | 14 U | 11 U | | Cis-1.3-Dichloropropene | UG/KG | 0 | 0.00% | 300 | 330730 | 0 | | | 8 | 15 U
15 U | 12 U
12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 4 J | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 52560000 | | | | | 15 U | | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Methyl bromide | UG/KG | 0 | 0 00% | 3300 | 751608 | | | | 0 | 15 U | 17 U
12 U | | 1 U | 12 U
12 U | 10 U | 12 U | 14 U | 11 U | | Methyl bulyl ketone | UG/KG | 0 | 0 00% | | 737100 | | | | | 15 U | 12 U | | 1 U | 12 U | 10 U
10 U | 12 U | 14 U | 11 U | | Methyl chloride | UG/KG | o o | 0.00% | | 440246 | 0 | 0 | | 9 | 15 U | 17 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | | | | 8 | 15 U | 17 U | | 1 U | 12 U | 10 U | 12 U
12 U | 14 U | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 42048000 | 0 | 0 | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U
14 U | 11 U | | Methylane chloride | UG/KG | 1 | 12 50% | 100 | 763093 | 0 | 1 | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Styrene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 8 | 15 U | 12 U | | 1 U | 12 U | 10 U | 12 U | 14 U | 11 0 | | Tetrachioroethene | UG/KG | 0 | 0.00% | 1400 | 110062 | 0 | 0 | | 8 | 15 D | 12 U | 5 | 1.0 | 12 U | 10 U | 12 U | 14 U | 11 U | |
Toluene | UG/KG | 14 | 62 50% | 1500 | 105120000 | 0 | 5 | | 8 | 15 U | 12 U | | 2 J | 12 U | 14 | 4 J | 2 J | 4 J | | Total Xylenes | UG/KG | 2 | 12 50% | 1200 | 1051200000 | 0 | 1 | | 8 | 15 U | 12 U | | 1 U | 12 U | 2 J | 12 U | 14 U | 11 U | | Trans 1.3 Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 8 | 15 U | 12 U | 1 | 1 U | 12 U | 10 U | 12 U | 14 U | 11 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | 0 | 0 | | В | 15 U | 12 U | 1 | 1.0 | 12 U | 10 U | 12 U | 14 U | 11 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 3012 | 0 | 0 | | 8 | 15 U | 12 U | 1 | t U | 12 U | 10 U | 12 U | 14 U | 11 U | 1 | | SOUL SAND | - 4 | 18, 7, 7, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2.0 A M M M M M M M M M M M M M M M M M M | 11.23 | 2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 10.00 | 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9.00 | 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1 | 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |----------|---------------------------------------|--|---|--|--|--
--|--|--|--|--
--|--|--|---
---|---|---|--|---| | NOB 4 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 50 N. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SON | 4.4 Syn | 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 41 A A A A A A A A A A A A A A A A A A A | 2 | 2.5 P. | A MARKA SA | 2 | A COLOR OF THE CAME AND CAM | P P P P P P P P P P P P P P P P P P P | 2. 1 | T T T T T T T T T T T T T T T T T T T | P | | P | | P | | 5 | Net-9k NOB A | Na-98 N/16 N/16 N/16 N/16 N/16 N/16 N/16 N/16 | Name 98 × Name 1 | Name | Name of Action 1992 | 22 X W X X X X X X X X X X X X X X X X X | 2.0 V U I I I I I I I I I I I I I I I I I I | New XVIII | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | 2.0 | 2.0 | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | Name of the state | N N N N N N N N N N N N N N N N N N N | Name of the state | N N N N N N N N N N N N N N N N N N N | Name of the control o | X X X X X X X X X X X X X X X X X X X | | R-VIn 98 | > − | 2 :
2 : : | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 212112 | \$ 01001000
0 | 3
5 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | \$ 010010000000
0 | 8 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 0111111111111111111111111111111111111 | 2 | 0===================================== | 9 | 0 | 5 2122122222222222222222222222222222222 | 0 | 0 | 0 | 0 | 5 21011000000000000000000000000000000000 | 0 | | Z | NUMBER KYDER
OF
ANALYSES Y UTI | NUMBER K15H- OF ANALYSES (UII R R R | NUMBER K 1551- | NUMBER VIEW | NUMBER CATES AND CONTROL OF ANALYSES AUTION AUTION OF ANALYSES AUTION OF ANALYSES AUTI | NUMBER VALUE AND | | NUMBER CATES AND A STATE | NUMBER CATES AND | NUMBER CATES NU | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 10 | MANDER A. M. |
NUMBER CATTER CA | | MUMBER A. C. | AMABER A. C. | ADMORA STATE OF THE PROPERTY | AMALY (2015) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | AMALATION NO N | | | 6 | OETEG | DETEC | PETEC
PETEC | PETEG | DETEG | DE TEG | DETEG | 06 DETEC | 06 150 | 20 DETEC | 20 E E E E E E E E E E E E E E E E E E E | 90
00 TEG | OF DETEC | 2013 | E 23 | | | \$5
1- | <i>\$</i>) | | | | 68
69
70 | 640
10.7
10.9 | 60 E0 | 88 89 89 89 89 89 89 89 89 89 89 89 89 8 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 640
640
640
640
640
640
640
640
640
640 | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 88 89 99 99 99 99 99 99 99 99 99 99 99 9 | 7ACM | 7.62.44 1 1 1 1 1 1 1 1 1 | 7.62M | 7ACM 1 | 7,0,000 | 7,7,2,3,4 (19) (19) (19) (19) (19) (19) (19) (19) | | | PRG-tND
IX 199/2000 | K(S): | PRG-tND Kitte K-204-600 Gotto 286-1440 John C-346-1420 John C-346-1420 John O-34-142 | PRG-BHD RV94/mm RV94/mm RV94/mm PRG-BH PR 101 | PRG-N4D Revolution Revolu | PPG-64D PPG- | PRG-BID PRG- | PRG-BD P | PRG-MD | PRG-MD | PRG-840
 200 | PRG-640 | PRG-MD | PRG-BD | PRG-RED TAGAM | PRG-RD TAGAA | PRG-B10 TAGM | PRG-RD TAGAA | PRG-RD TAGAA | PRG-RD TAGAA | | | DETECTION TAGM PRG-IND | DETECTION TAGAS PROCERNO DE SENTINO SENTI | DETECTION 19.64P PROGNED 1 | DETECTION TAGE PROCESS 1 | DETECTION AGE PROCESS 1 | | TOTAL TACA TOTAL T | CONTINUENT ACAP PROCESSOR | DEFECTION AGAP PROCESSOR | COLUMN ALACA PROPERTY | CONTINUE | CONTINUE | 1 | Controlled Access Properties | | | | 100 | | | | ò | MAXIMUM DETECTION TAGM PRG-tND | MAXIMUM DETECTION TAGM PRC-1410 REN INVOLUMENT O GO GO PAN-140 | MAANUUU DETECTION TAGAN PRICARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | MAXIMUM DETECTOR TAQUE PRG-RDD 0 000 000 150- | MAXIMUM DETECTION TAGAN PRG-MDD 0 000 000 000 000 000 000 000 000 00 | MAXIMUM DETECTION TAGA PRG-800 1 | MAXAMUM DETECTOR TAGA PRG-MD (1994) 1 | MAXAMOUA DETECTOR TAQA PRG-ARD | MAXIMUM DETECTION TAQUE PRG-MID | MAXAMUM DETECTION TAGA PRIGARD 1 | MAXIMUM DETECTION TAGA PRG-AND | MAXAMUM DETECTOR TAGA PRG-MICH | MAXIMUM DETECTION TAGA PRE-AND | MAXIMUM DETECTION TAGAS PRE-AND | MAXIMUM DETECTION TAGA PRG-ABO TAGAM 100-101 | MAXIMUM DETECTOR TAGA PRG-ABO TAGAM AND TAGAMA PRG-ABO TAGAMA | MAXIMUM DETECTION TAGA PRG-ABO TAGA | MAXIMUM DETECTION TAGA PRG-ABD TAGA | MAXIMUM DETECTION TAGA PRG-ABD TAGA | MAXIMUM DETECTION TAGA PRG-ABD TAGA | #### Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM Non-Evaluated Sites SITE SEAD-121D SEAD-121D SEAD-121D Blda. 306 Bldg. 306 Bldg. 306 and 308 HM and 308 HM and 308 HM DESCRIPTION Release Release Release SB121D-1 SB121D-1 SB121D-2 LOC ID EB220 EB221 EB218 SAMP ID. QC CODE SA SA SA n SAMP DETH TOP 0.8 Ω 02 14 02 SAMP DEPTH BOT MATRIX SOIL SOIL SOIL FREQUENCY NUMBER NUMBER NUMBER SAMP DATE 8-Mar-98 8-Mar-98 8-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE 1,2,4-Trichlorobenzene UG/KG 0 0.00% 3400 5256000 0 0 8 91 U 72 U 76 7900 47304000 0 0 91 U 72 U 76 1.2-Dichlorobenzene UG/KG Ω 0.00% 8 1600 46778400 0 0 91 U 72 U 76 1,3-Dichlorobenzene UG/KG 0 0 00% 8 1,4-Dichlorobenzene UG/KG 0 0.00% 8500 238467 0 0 8 91 LJ 72 U 76 52560000 220 U 170 U 180 2.4.5-Trichlorophenol UG/KG 0 0.00% 100 0 0 8 0 00% 520291 0 0 91 U 72 U 76 2.4.6-Trichlorophenol UG/KG 0 2.4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 0 8 91 U 72 U 76 0 0.00% 10512000 0 0 8 91 U 72 U 76 2.4-Dimethylphenol UG/KG 0 0 00% 200 1051200 0 0 8 220 U 170 U 180 2.4-Dinitrophenol UG/KG 0 00% 1051200 91 U 72 U 76 2,4-Dinitrotoluene UG/KG 0 0 0 8 0.00% 1000 525600 0 0 91 U 72 U 76 2.6-Dinitrotoluene UG/KG 0 8 UG/KG 0 0 00% 0 0 8 91 U 72 U 76 2-Chloronaphthalene 76 800 2628000 0 Ω 8 91 U 72 U 2-Chlorophenoi UG/KG 0 0.00% 36400 91 U 72 U 76 UG/KG 40 25 00% 0 2 8 2-Methylnaphthalene UG/KG 0 0.00% 100 26280000 0 0 8 91 U 72 U 76 2-Methylphenol 220 U 170 U 180 0.00% 430 31536 0 0 8 2-Nitroaniline UG/KG 0 91 U 72 U 76 UG/KG 0.00% 330 0 0 2-Nitrophenol 0 UG/KG 0 0.00% 12718 0 0 8 91 U 72 U 76 3.3'-Dichlorobenzidine 500 220 U 170 U 180 0.00% 1576800 0 0 8 3-Nitroaniline UG/KG 0 0 220 U 170 U 180 UG/KG 0 0.00% 0 4,6-Dinitro-2-methylphenol 91 U 72 U 76 UG/KG 0 0.00% 30484800 0 0 Я 4-Bromophenyl phenyl ether 0.00% 240 0 8 91 U 72 U 76 UG/KG 0 4-Chloro-3-methylphenol 0 0 00% 2102400 0 0 91 U 72 U 76 UG/KG 0 220 4-Chloroaniline 8 91 U 72 U 76 4-Chlorophenyl phenyl ether UG/KG 0 0 00% Ω 0 72 U 76 0 0.00% 900 0 0 8 91 U UG/KG 4-Methylphenol 0 00% 1576800 0 0 8 220 U 170 U 180 UG/KG 0 4-Nitroaniline 100 220 U 170 U 180 4-Nitrophenol UG/KG 0 0.00% 31536000 0 0 8 72 U 76 25 25 00% 50000 n 2 8 91 U UG/KG Acenaphthene 79 41000 0 2 8 91 U 72 U 76 UG/KG 25 00% Acenaphthylene 91 11 72 U 76 157680000 8 Anthracene UG/KG 67 37.50% 50000 n 3 22 J 72 U 76 830 62.50% 224 7840 2 5 8 UG/KG Benzo[a]anthracene 72 U 76 UG/KG 890 62.50% 61 784 2 8 30 J Benzo[a]pyrene 45 J 72 U 76 Benzo[b]fluoranthene UG/KG 930 62.50% 1100 7840 Ω R 50000 5 32 J 72 U 76 62 50% Ω UG/KG 960 Benzo[ghi]perylene UG/KG 1000 62.50% 1100 78400 0 8 42 J 72 U 76 Benzo[k]fluoranthene R 91 U 72 U 76 0
Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 5203 0 8 91 U 72 U 76 0.00% Ω Bis(2-Chloroethyl)ether UG/KG 0 72 U 76 UG/KG 0 0.00% 81760 0 0 8 91 U Bis(2-Chloroisopropyl)ether 58 14 JB 13 JB UG/KG 25 87 50% 50000 408800 0 8 Bis(2-Ethylhexyl)phthalate 105120000 2 8 7.1 J 72 U 77 25.00% 50000 Butylbenzylphthalate UG/KG 7.7 Ω UG/KG 66 25 00% 286160 0 2 8 91 U 72 U 76 Carbazole 45.1 68.1 44 UG/KG 980 87.50% 400 784000 2 R Chrysene 2 8 47 JB 4.5 JB 76 8100 0 Di-n-butylphthalate UG/KG 47 25.00% 50000 10512000 91 U 72 U 76 22 25.00% 0 8 UG/KG Di-n-octylphthalate 72 U 76 370 50 00% 14 784 3 4 8 10 J Dibenz(a,h)anthracene UG/KG 76 91 U 72 U 2102400 0 UG/KG 0 0.00% 6200 0 8 Dibenzofuran 6 JB 6.7 JB 76 62.50% 7100 420480000 0 8 UG/KG 9.1 0 0 8 91 U 72 U 76 2000 5256000000 Diethyl phthalate Dimethylphthalate UG/KG 0 0.00% # Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs. NYTAGM Non-Evaluated Sites | DESCRIPTION. LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SEAD-1
Bidg. 30
and 308
Release
SB121D
EB220
SA | 6
HM | SEAD-121D
Bldg 306
and 308 HM
Release
SB121D-1
EB221
SA
0.8
1.4
SOIL
8-Mar-98 | | SEAD-121D
Bldg 306
and 308 HM
Release
SB121D-2
EB218
SA
0
0 2
SOIL
8-Mar-98 | |---|-------|---------|-----------------|-------|-----------|---------------|---------|----------|---|---------|---|---|---| | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | TAGM | PRG-IND | ABOVE
TAGM | OF | OF | | | 14444 | | | | | | | | | | | DETECTS | ANALYSES | VALUE | Q | | Q | VALUE | | Fluoranthene | UG/KG | 1800 | 87 50% | 50000 | 21024000 | 0 | / | | 8 | 53 J | 5.6 | - | 5.8 | | Fluorene | UG/KG | 29 | 25 00% | 50000 | 21024000 | 0 | 2 | | 8 | 91 U | 72 | | 76 | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 3577 | 0 | 0 | | 8 | 91 U | 72 | | 76 | | Hexachlorobutadiene | UG/KG | 0 | 0 00% | | 73374 | . 0 | 0 | | 8 | 91 U | 72 | | 76 | | Hexachlorocyclopentadiene | UG/KG | 0 | 0 00% | | 3679200 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | Hexachloroethane | UG/KG | 0 | 0 00% | | 408800 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | Indeno[1,2,3-cd]pyrene | UG/KG | 630 | 62 50% | 3200 | 7840 | 0 | 5 | | 8 | 28 J | 72 | U | 76 | | Isophorone | UG/KG | 0 | 0 00% | 4400 | | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 1168000 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 818 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | Naphthalene | UG/KG | 35 | 12 50% | 13000 | 21024000 | 0 | 1 | | 8 | 91 U | 72 | U | 76 | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | 0 | | 8 | 220 U | 170 | U | 180 | | Phenanthrene | UG/KG | 540 | 87 50% | 50000 | | 0 | 7 | | 8 | 19 J | 4.8 | J | 4.4 | | Phenol | UG/KG | 0 | 0 00% | 30 | 315360000 | 0 | 0 | | 8 | 91 U | 72 | U | 76 | | Pyrene | UG/KG | 1400 | 87.50% | 50000 | 15768000 | 0 | 7 | | 8 | 55 J | 5.5 | J | 5.2 | | TPH | MG/KG | 359 | 62 50% | | | 0 | 5 | | 8 | 55.3 | 15 | | 37.5 | svtagm Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM Non-Evaluated Sites | SITE | | | SEAD-121D
Bldg. 306
and 308 HM | SEAD-121D
Bidg 306
and 308 HM | SEAD-121D
Bldg 306
and 308 HM | SEAD-121D
Bldg 306
and 308 HM | SEAD-121D
Bldg. 306
and 308 HM | |-----------------------------|-------|-----|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | DESCRIPTION. | | | Release | Release | Release | Release | Release | | LOC ID: | | | SB121D-2 | SB121D-3 | SB121D-3 | SS121D-1 | SS121D-2 | | SAMP ID: | | | EB219 | EB222 | EB223 | EB224 | | | QC CODE: | | | | | | | EB225 | | | | | SA | SA | SA | SA | SA | | SAMP DETH TOP: | | | 4 | 0 | 2.3 | 0 | 0 | | SAMP, DEPTH BOT. | | | 4 5 | 0 2 | 25 | 0.2 | 0.2 | | MATRIX | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | | PARAMETER | UNIT | Q | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,2-Dichlorobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,3-Dichlorobenzene | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,4-Dichlorobenzene | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4,5-Trichlorophenol | UG/KG | Ŭ | 180 U | 840 U | 180 U | 180 U | 860 U | | 2,4,6-Trichlorophenol | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4-Dichlorophenol | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | | UG/KG | U | 75 U | 350 U | 74 U | | | | 2,4-Dimethylphenol | | | | | | 72 U | 350 U | | 2,4-Dinitrophenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 2,4-Dinitrotoluene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,6-Dinitrotoluene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Chloronaphthalene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Chlorophenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Methylnaphthalene | UG/KG | U | 75 U | 40 J | 74 U | 7 J | 350 U | | 2-Methylphenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Nitroaniline | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 2-Nitrophenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 3,3'-Dichlorobenzidine | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 3-Nitroaniline | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 4,6-Dinitro-2-methylphenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 4-Bromophenyl phenyl ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chloro-3-methylphenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chloroaniline | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chlorophenyl phenyl ether | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Methylphenol | UG/KG | Ŭ | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Nitroaniline | UG/KG | Ü | 180 U | 840 U | 180 U | 180 U | 860 U | | 4-Nitrophenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | Acenaphthene | UG/KG | Ü | 75 U | 25 J | 74 U | 72 U | 23 J | | • | UG/KG | U | 75 U | 79 J | 4.1 J | 72 U | 350 U | | Acenaphthylene | | U | | 45 J | | | | | Anthracene | UG/KG | | 75 U | 320
320 | 5.8 J | 72 U | 67 J | | Benzo[a]anthracene | UG/KG | U, | 75 U | | 48 J | 5 J | 830 | | Benzo[a]pyrene | UG/KG | U ´ | 75 U | 890 | 61 J | 6.7 J | 880 | | Benzo[b]fluoranthene | UG/KG | U | 75 U | 570 | 60 J | 7.9 J | 930 | | Benzo[ghi]perylene | UG/KG | U | 75 U | 960 | 57 J | 7.1 J | 570 | | Benzo[k]fluoranthene | UG/KG | U | 75 U | 760 | 56 J | 7 J | 1000 | | Bis(2-Chloroethoxy)methane | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Chloroethyl)ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Chloroisopropyl)ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | JB | 13 JB | 350 U | 9 JB | 11 JB | 25 JB | | Butylbenzylphthalate | UG/KG | J | 75 U | 350 U | 74 U | 72 U | 350 U | | Carbazole | UG/KG | U | 75 U | 350 U | 4.3 J | 72 U | 66 J | | Chrysene | UG/KG | J | 75 U | 720 | 56 J | ВЈ | San a. Shiz 1992. | | Di-n-butylphthalate | UG/KG | Ŭ | 75 U | 350 U | 74 U | 72 U | 350 U | | Di-n-octylphthalate | UG/KG | ŭ | 22 J | 350 U | 74 U | 8.2 J | 350 U | | Dibenz[a,h]anthracene | UG/KG | U | 75 U | 330 U | ≱ i J | 72 U | 330 0 | | Dibenzofuran | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | | UG/KG | U | 7 JB | 350 U | 9.1 JB | 6.4 JB | 350 U | | Diethyl phthalate | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Dimethylphthalate | UG/NG | Ų | 75 0 | 350 0 | 74 0 | 120 | 350 0 | Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM Non-Evaluated Sites | SITE | | | SEAD-121D
Bldg 306
and 308 HM | SEAD-121D
Bldg. 306
and 308 HM | SEAD-121D
Bldg 306
and 308 HM | SEAD-121D
Bldg 306
and 308 HM | SEAD-121D
Bldg. 306
and 308 HM | |---------------------------|-------|---|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | DESCRIPTION | | | Release | Release | Release | Release | Release | | LOC ID | | | SB121D-2 | SB121D-3 | SB121D-3 | SS121D-1 | \$\$121D-2 | | SAMP_ID | | | EB219 | EB222 | EB223 | EB224 | EB225 | | QC CODE | | | SA | SA | SA | SA | SA | | SAMP DETH TOP | | | 4 | 0 | 2 3 | 0 | 0 | | SAMP DEPTH BOT | | | 4.5 | 0 2 | 2 5 | 0 2 | 0 2 | | MATRIX | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP DATE | | | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | 8-Mar-98 | | PARAMETER | UNIT | Q | VALUE Q | | Fluoranthene | UG/KG | J | 75 U | 410 | 70 J | 86 J | 1800 | | Fluorene | UG/KG | Ü | 75 U | 29 J | 74 U | 72 U | 25 J | | Hexachlorobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 ∪ | | Hexachiorobutadiene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Hexachlorocyclopentadiene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Hexachloroethane | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Indeno[1,2,3-cd]pyrene | UG/KG | U | 75 U | 630 | 40 J | 62 J | 590 | | Isophorone | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | N-Nitrosodiphenylamine | UG/KG | U | 75 ∪ | 350 U | 74 U | 72 U | 350 U | | N-Nitrosodipropylamine | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Naphthalene | UG/KG | U | 75 U | 35 J | 74 U | 72 U | 350 ∪ | | Nitrobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Pentachlorophenol | UG/KG | U | 180 U
 840 U | 180 U | 180 U | 860 U | | Phenanthrene | UG/KG | J | 75 U | 200 J | 28 J | 46 J | 540 | | Phenol | UG/KG | U | 75 U | 350 U | | 72 U | 350 U | | Pyrene | UG/KG | J | 75 U | 1200 | 97 | 9.3 J | 1400 | | TPH | MG/KG | | 17 U | 359 | 18.4 U | 25.3 | 126 | # Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites | SITE | | | | | | | | | SEAD-1 |)6 | SEAD-121D
Bldg. 306 | SEAD-121D
Bldg, 306 | |---|----------------|-----------|--------------------|-------|-----------------|-----------|--------------|----------|---------|----------------|------------------------|------------------------| | DUGGELLENGT | | | | | | | | | and 308 | НМ | and 308 HM | and 308 HM | | DESCRIPTION: | | | | | | | | | Release | | Release | Release | | LOC ID: | | | | | | | | | SB1211 |)- [| SB121D-1 | SB121D-2 | | SAMP ID: | | | | | | | | | EB220 | | EB221 | EB218 | | QC CODE: | | | | | | | | | SΛ | | SA | SA | | SAMP. DETH TOP: | | | | | | | | | | 0 | 0.8 | 0 | | SAMP, DEPTH BOT: | | | | | | | | | | 0.2 | 1.4 | 0.2 | | MATRIX: | | | | | | | | | SOIL | | SOIL | SOIL | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 8-Ma | r-98 | 8-Mar-98 | 8-Mar-98 | | DADALADED | | | OF | TAGM | PRG-IND | ABOVE | OF | OF | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION
0.00% | 3400 | 5256000 | TAGM
0 | DETECTS
0 | ANALYSES | VALUE | Q | VALUE Q | VALUE | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 47304000 | 0 | 0 | | | 91 U | 72 U | 76 | | 1,2-Dichlorobenzene | UG/KG | 0 | | 1600 | 46778400 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | 1,3-Dichlorobenzene 1,4-Dichlorohenzene | UG/KG | 0 | 0.00%
0.00% | 8500 | 238467 | 0 | 0 | 8 | - | 91 U
91 U | 72 U
72 U | 76 | | 2,4,5-Trichlorophenol | UG/KG
UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | 0 | | | 220 U | 170 U | 76
180 | | | UG/KG | 0 | 0.00% | 100 | 520291 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | 2,4,6-Trichlorophenol
2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | 400 | 10512000 | 0 | 0 | | | 91 U | 72 U | 76 | | 2,4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | 0 | | | 220 U | 170 U | 180 | | 2,4-Dinitrotoluene | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | 0 | 8 | - | 91 U | 72 U | 76 | | 2.6 Dinitrotoluene | UG/KG | 0 | 0.00% | 1000 | 525600 | 0 | 0 | 3 | | 91 U | 72 U | 76 | | 2 Chloronaphthalene | UG/KG | 0 | 0.00% | 1000 | 02.000 | 0 | 0 | | | 91 U | 72 U | 76 | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 2628000 | 0 | 0 | è | | 91 U | 72 U | 76 | | 2-Methylnaphthalene | UG/KG | 40 | 25.00% | 36400 | 202000 | 0 | 2 | | | 91 U | 72 U | 76 | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100 | 26280000 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 31536 | 0 | 0 | 8 | | 220 U | 170 U | 180 | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 3,3'-Dichlorobenzidine | UG/KG | 0 | 0.00% | | 12718 | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 3-Nitroaniline | UG/KG | 0 | 0.00% | 500 | 1576800 | 0 | 0 | 8 | | 220 U | 170 U | 180 | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | 8 | 3 | 220 U | 170 U | 180 | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 30484800 | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 2102400 | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | 0 | 0 | 8 | 3 | 91 U | 72 U | 76 | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | 8 | | 91 U | 72 U | 76 | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 1576800 | 0 | 0 | 8 | | 220 U | 170 U | 180 | | 4 Nitrophenol | UG/KG | 0 | 0.00% | 100 | 31536000 | 0 | 0 | | 3 | 220 U | 170 U | 180 | | Acenaphthene | UG/KG | 25 | 25.00% | 50000 | | 0 | 2 | 8 | | 91 U | 72 U | 76 | | Acenaphthylene | UG/KG | 79 | 25.00% | 41000 | | 0 | 2 | 8 | | 91 U | 72 U | 76 | | Anthracene | UG/KG | 67 | 37.50% | 50000 | 157680000 | 0 | 3 | 8 | | 91 U | 72 U | 76 | | Benzolajanthracene | UG/KG | 830 | 62.50% | 224 | 7840 | 0 | 5 | 8 | | 22 J | 72 U | 76 | | Benzo[a]pyrene | UG/KG | 890 | 62.50% | 61 | 784 | 2 | . 5 | 8 | | 30 J | 72 U | 76 | | Benzo[b]fluoranthene | UG/KG | 930 | 62.50% | 1100 | 7840 | 0 | 5 | 8 | - | 45 J | 72 U | 76 | | Benzolghilperylene | UG/KG | 960 | 62.50% | 50000 | 70.400 | 0 | 5 | 8 | | 32 J | 72 U | 76 | | Benzo[k]fluoranthene | UG/KG | 1000 | 62.50% | 1100 | 78400 | 0 | 5 | 8 | | 42 J
91 U | 72 U
72 U | 76 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | 5202 | 0 | 0 | | | 91 U | 72 U | 76
76 | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | 50000 | 81760
408800 | 0 | 7 | | - | 91 U
14 JB | 13 JB | 5.8 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 25 | 87.50%
25.00% | 50000 | 105120000 | 0 | 2 | | 3 | 7.1 J | 72 U | 7.7 | | Butylbenzylphthalate | UG/KG | 7.7
66 | 25.00% | 20000 | 286160 | 0 | 2 | 8 | | 7.1 J
91 U | 72 U | 7.7 | | Carbazole | UG/KG | 980 | 25.00%
87.50% | 400 | 784000 | 0 | 7 | | | 91 U
45 J | 6.8 J | 4.4 | | Chrysene | UG/KG | | 87.50%
25.00% | 8100 | 704000 | 0 | 2 | | | 45 J
4.7 JB | 4.5 JB | 76 | | Di-n-butylphthalate | UG/KG | 4.7
22 | 25.00%
25.00% | 50000 | 10512000 | 0 | 2 | 8 | | 4.7 JB
91 U | 4.5 JB
72 U | 76 | | Di n-octylphthalate | UG/KG | 370 | 50.00% | 14 | 784 | 0 | 4 | 3 | | 10 J | 72 U | 76 | | Dibenz[a,h]anthracene | UG/KG | 370 | 0.00% | 6200 | 2102400 | 0 | 0 | 8 | | 91 U | 72 U | 76 | | Dibenzofuran | UG/KG
UG/KG | 9.1 | 62.50% | 7100 | 420480000 | 0 | 5 | 8 | | 6 JB | 6.7 JB | 76
76 | | Diethyl phthalate | UG/KG | 9.1 | 0.00% | 2000 | 5256000000 | 0 | 0 | | | 91 U | 72 U | 76 | | Dimethylphthalate | 00/KU | 0 | 0.0076 | 2000 | 32000000 | O . | Ü | , | - | 0 | | | # Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites | DESCRIPTION: LOC ID: SAMP ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: | | | | | | | | | SEAD-1
Bldg, 30
and 308
Release
SB121L
EB220
SA | 06
8 HM
0-1
0
0.2 | SEAD-121D
Bldg. 306
and 308 HM
Release
SB121D-1
EB221
SA
0.8
1.4 | SEAD-1211) Bldg, 306 and 308 HM Release SB12111-2 EB218 SA 0 0.2 SOIL | |---|-------|---------|-----------------|-------|-----------|-----------------|--------------|--------------|---|-------------------------------|--|--| | SAMP, DATE. | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 8-Ma | 11-98 | 8-Mar-98 | 8-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | 0 | VALUE O | VALUE | | Fluoranthene | UG/KG | 1800 | 87.50% | 50000 | 21024000 | 0 | 7 | | 8 | Q
53 J | VALUE Q
5.6 J | 5.8 | | Fluorene | UG/KG | 29 | 25.00% | 50000 | 21024000 | 0 | 2 | | | 91 U | 72 U | 76 | | Hexachlorobenzene | UG/KG | 0 | 0.00°i | 410 | 3577 | 0 | 0 | | | 91 U | 72 U | 76 | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | 710 | 73374 | 0 | 0 | | | 91 U | 72 U | 76 | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | 0 | | | 91 U | 72 U | 76 | | Hexachloroethane | UG/KG | 0 | 0.00% | | 408800 | 0 | 0 | | - | 91 U | 72 U | 76 | | Indeno[1,2,3-cd]pyrene | UG/KG | 630 | 62.50% | 3200 | 7840 | o o | 5 | | R | 28 J | 72 U | 76 | | Isophorone | UG/KG | 0.00 | 0.00% | 4400 | 71710 | 0 | 0 | | 8 | 91 U | 72 U | 76 | | N Nitrosodiphenylamine | UG/KG | 0 | 0.00% | | 1168000 | 0 | 0 | | | 91 U | 72 U | 76 | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | 0 | 0 | | _ | 91 U | 72 U | 76 | | Naphthalene | UG/KG | 35 | 12.50% | 13000 | 21024000 | 0 | 1 | | 8 | 91 U | 72 U | 76 | | Nitrobenzenc | UG/KG | 0 | 0.00% | 200 | 262800 | 0 | 0 | | 8 | 91 U | 72 U | 76 | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | 0 | 0 | | 8 | 220 U | 170 U | 180 | | Phenanthrene | UG/KG | 540 | 87.50% | 50000 | | 0 | 7 | | 8 | 19 J | 4.8 J | 4.4 | | Phenol | UG/KG | 0 | 0.00% | 30 | 315360000 | 0 | 0 | | 8 | 91 U | 72 U | 76 | | Pyrene | UG/KG | 1400 | 87.50% | 50000 | 15768000 | 0 | 7 | | 8 | 55 J | 5.5 J | 5.2 | | TPH | MG/KG | 359 | 62.50% | | | 0 | 5 | | R | 55.3 | 15 U | 37.5 | # Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites | OUTD | | | 0040 1310 | 011415 13115 | 0010 1010 | | anan tarn | |-----------------------------|-------|----|------------|--------------|------------|------------|------------| | SITE | | | SEAD-121D | SEAD-121D | SEAD-121D | SEAD-121D | SEAD-121D | | | | | Bldg. 306 | | | | | and 308 HM | | DESCRIPTION: | | | Release | Release | Release | Release | Release | | LOC ID: | | | SB121D-2 | SB121D-3 | SB121D-3 | SS121D-1 | SS121D-2 | | SAMP ID: | | | EB219 | EB222 | EB223 | EB224 | EB225 | | QC CODE: | | | SΛ | SA | SA | SA | SA | | SAMP. DETH TOP: | | | 4 | 0 | 2.3 | 0 | 0 | | SAMP, DEPTH BOT: | | | 4.5 | 0.2 | 2.5 | 0.2 | 0.2 | | MATRIX: | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP. DATE: | | | 8-Mar-98 | 8-Mar-98 | 8-Mar 98 | 8-Mar-98 | 8-Mar-98 | | PARAMETER | UNIT | Q | VALUE Q | VALUE Q | VALUE Q | VALUE O | VALUE O | | 1,2,4 Trichlorobenzene | UG/KG | Ŭ | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,2-Dichlorobenzene | UG/KG | Ü | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,3-Dichlorobenzene | | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 1,4-Dichlorobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4,5 Trichlorophenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 2,4,6-Trichlorophenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4-Dichlorophenol |
UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4-Dimethylphenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,4-Dinitrophenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 2,4-Dinitrophenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2,6-Dinitrotoluene | , | U | 75 U | 350 U | 74 U | 72 U | | | | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Chloronaphthalene | UG/KG | | | | | | 350 U | | 2-Chlorophenol | | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Methylnaphthalene | UG/KG | U | 75 U | 40 J | 74 U | 7 J | 350 U | | 2-Methylphenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 2-Nitroaniline | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 2 Nitrophenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 3,3'-Diehlorobenzidine | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 3-Nitroaniline | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 4,6-Dinitro-2-methylphenol | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 4-Bromophenyl phenyl ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chloro-3-methylphenol | | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chloroaniline | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Chlorophenyl phenyl ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Methylphenol | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | 4-Nitroaniline | UG/KG | U | 180 U | 840 U | 180 U | 180 U | 860 U | | 4-Nitrophenol | UG/KG | | 180 U | 840 U | 180 U | 180 U | 860 U | | Acenaphthene | UG/KG | U | 75 U | 25 J | 74 U | 72 U | 23 J | | Acenaphthylene | UG/KG | U | 75 U | 79 J | 4.1 J | 72 U | 350 U | | Anthracene | UG/KG | U | 75 U | 45 J | 5.8 J | 72 U | 67 J | | Benzo[a]anthracene | UG/KG | U | 75 U | 520 | 48 J | 5 J | 830 | | Benzo[a]pyrene | UG/KG | U | 75 U | 890 | 61 J | 6.7 J | 880 | | Benzo[b]fluoranthene | UG/KG | U | 75 U | 570 | 60 J | 7.9 J | 930 | | Benzo[ghi]perylene | UG/KG | U | 75 U | 960 | 57 J | 7.1 J | 570 | | Benzo[k]fluoranthene | UG/KG | U | 75 U | 760 | 56 J | 7 J | 1000 | | Bis(2-Chloroethoxy)methane | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Chloroethyl)ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Chloroisopropyl)ether | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | JB | 13 JB | 350 U | 9 JB | 11 JB | 25 JB | | Butylbenzylphthalate | UG/KG | J | 75 U | 350 U | 74 U | 72 U | 350 U | | Carbazole | UG/KG | U | 75 U | 350 U | 4.3 J | 72 U | 66 J | | Chrysene | UG/KG | J | 75 U | 720 | 56 J | 8 J | 980 | | Di-n butylphthalate | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Di n-octylphthalate | UG/KG | Ü | 22 J | 350 U | 74 U | 8.2 J | 350 U | | Dibenzla,hlanthracene | UG/KG | Ü | 75 U | 370 | 21 J | 72 U | 240 J | | Dibenzofuran | UG/KG | | 75 U | 350 U | 74 U | 72 U | 350 U | | Diethyl phthalate | UG/KG | | 7 JB | 350 U | 9.1 JB | 6.4 JB | 350 U | | Dimethylphthalate | UG/KG | | 75 U | 350 U | 74 U | 72 U | 350 U | | | 00/10 | 0 | , 3 0 | 000 | ,,, | 72 0 | 550 0 | Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs. PRG-IND Non-Evaluated Sites | SITE | | | SEAD-121D
Bldg, 306
and 308 HM | SEAD-121D
Bldg, 306
and 308 HM | SEAD-121D
Bldg, 306
and 308 HM | SEAD 121D
Bidg. 306
and 308 HM | SEAD-121D
Bldg, 306
and 308 HM | |---------------------------|-------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DESCRIPTION: | | | Release | Release | Release | Release | Release | | LOC ID: | | | SB121D-2 | SB121D 3 | SB121D:3 | SS121D-1 | SS121D-2 | | SAMP ID: | | | EB219 | EB222 | EB223 | EB224 | EB225 | | QC CODE: | | | SA | SA | SA | SA | SA | | SAMP. DETH TOP: | | | 4 | 0 | 2.3 | 0 | 0 | | SAMP, DEPTH BOT: | | | 4.5 | 0.2 | 2.5 | 0.2 | 0.2 | | MATRIX: | | | SOIL | SOIL | SOIL | SOIL | SOIL | | SAMP. DATE: | | | 8-Mar-98 | 8-Mar 98 | 8 Mar 98 | 8 Mar-98 | 8-Mar-98 | | PARAMETER | UNIT | Q | VALUE O | | Fluoranthene | UG/KG | J | 75 U | 410 | 70 J | 8.6 J | 1800 | | Fluorenc | UG/KG | U | 75 U | 29 J | 74 U | 72 U | 25 J | | Hexachlorobenzene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Hexachlorobutadiene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Hexachlorocyclopentadiene | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Hexachlorocthane | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Indeno[1,2,3-cd]pvrene | UG/KG | U | 75 U | 630 | 40 J | 6.2 J | 590 | | Isophorone | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | N-Nitrosodiphenylamine | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | N-Nitrosodipropylamine | UG/KG | U | 75 U | 350 U | 74 U | 72 U | 350 U | | Naphthalene | UG/KG | U | 75 U | 35 √ | 74 U | 72 U | 350 U | | Nitrobenzene | UG/KG | | 75 U | 350 U | 74 U | 72 U | 350 U | | Pentachlorophenol | UG/KG | | 180 U | 840 U | 180 U | 180 U | 860 U | | Phenanthrene | UG/KG | | 75 U | 200 J | 28 J | 4.6 J | 540 | | Phenol | UG/KG | | 75 U | 350 U | 74 U | 72 U | 350 U | | Pyrene | UG/KG | J | 75 U | 1200 | 97 | 9.3 J | 1400 | | TPH | MG/KG | | 17 U | 359 | 18.4 U | 25.3 | 126 | | | | | | | | | | ### SEAD-121E **Building 127 UST Petroleum Release** ### Table 30-1 ### Sample Collection Information SEAD-121E - Building 127 UST Petroleum Release ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |--------|----------------|--------------|----------------|---------------|------------------|------------|--| | SOIL | SB121E-1 | EB267 | 3/17/98 | 0.00 | 0.30 | SA | Location is N. of UST, on the S. edge of the railroad bed. This is downgradient of the filling area. Overhead lines, splitspoon hammered by hand. Surface soil sample, near water table. | | SOIL | SB121E-1 | EB268 | 3/17/98 | 0.80 | 1.10 | SA | Same location as above. Refusal at 1.1 ft. Both samples taken from one spoon. Slight odor, no VOC's or impact to soils detected. | | SOIL | SB121E-2 | EB256 | 3/17/98 | 0.00 | 0.70 | SA | Location is W. of UST. Parking area for tanker truck. Boring ajacent to small area of black stained soil. No VOC's or impact to soil detected. | | SOIL | SB121E-2 | EB257 | 3/17/98 | 5.10 | 5.50 | SA | Same location as above. Sample taken at interval with a 44 ppm VOC screen & petrolem odor. Top of water table. | Notes: SA = Sample #### Table 30-2 SEAD-121E Volatiles in Soil vs. NYTAGM Non-Evaluated Sites | SITE | | | | | | | | | | SEAD-12 | 1E | SEAD-12 | 1E | SEAD-121 | E | SEAD-1 | 21E | |---|-------|---------|-----------|------|------------|--------|------|------|----------|-----------|-------|-----------|--------|-----------|-------|---------------|--------| | 2 | | | | | | | | | | Bldg 127 | UST | Bldg. 127 | UST | Bldg 127 | UST | Bldg 12 | | | | | | | | | | | | | Petroleum | | Petroleum | | Petroleum | | Petroleu | | | DESCRIPTION. | | | | | | | | | | Release | | Release | | Release | | Release | | | LOC ID | | | | | | | | | | SB121E- | | SB121E-1 | 1 | SB121E-1 | | SB121E | | | SAMP ID | | | | | | | | | | EB267 | | EB256 | | EB268 | | EB257 | | | OC CODE | | | | | | | | | | SA | | SA | | SA | | SA | | | SAMP DETH TOP. | | | | | | | | | | 30 | 0 | 3/ | 0 | JA. | 0.8 | 3A | 5.1 | | SAMP DEPTH BOT | | | | | | | | | | | 0.3 | | 0.7 | | 11 | | 5.5 | | | | | | | | | | | | SOIL | 0.3 | SOIL | 0.7 | | 11 | | 5.5 | | MATRIX | | | | | | NUMBER | NUME | nen. | NUMBER | | 00 | | | SOIL | | SOIL | | | SAMP DATE | | | FREQUENCY | | | | | | | 17-N | ar-98 | 17-M | lar-98 | 17-Ma | ar-98 | 17- | Mar-98 | | | | | OF | | | ABOVE | OF | | OF | | _ | | _ | | _ | | | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG-IND | TAGM | DETE | | ANALYSES | VALUE | 0 | VALUE | Q | VALUÉ | Q | VALUE | | | 1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 18396000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 286160 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1.1.2-Trichloroethane | UG/KG | 0 | 0.00% | | 100407 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,1-Dichloroethene | UG/KG | 0 | 0.00% | 400 | 9539 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,2 Dichloroethane | UG/KG | 0 | 0.00% | 100 | 62892 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 84165 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Acctone | UG/KG | 400 | 100 00% | 200 | 52560000 | | 1 | 4 | | 4 | 39 | | 9 JB | | 18 B | effect of the | 400 | | Benzene | UG/KG | 0 | 0.00% | 60 | 197352 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Bromodichloromethane | UG/KG | 0 | 0.00% | | 92310 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Bromoform | UG/KG | 0 | 0.00% | | 724456 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Carbon disulfide | UG/KG | 2 | 50 00% | 2700 | 52560000 | | 0 | 2 | | 4 | 2 J | | 11 U | | 2 J | | 48 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 44025 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chlorobenzene | UG/KG | 4 | 25.00% | 1700 | 10512000 | | 0 | 1 | | 4 | 11 U | | 11 U | | 4 J | | 48 U | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 68133 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 210240000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chloroform | UG/KG | 4 | 25 00% | 300 | 938230 | | 0 | 1 | | 4 | 11 U |
| 11 U | | 4 JB | | 48 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 52560000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 751608 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl butyl ketone | UG/KG | 0 | 0 00% | | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 440246 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl isobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 42048000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methylene chloride | UG/KG | 0 | 0.00% | 100 | 763093 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Styrene | UG/KG | 0 | 0.00% | | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Tetrachloroethene | UG/KG | 0 | 0.00% | 1400 | 110062 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Toluene | UG/KG | 38 | 100 00% | 1500 | 105120000 | | 0 | 4 | | 4 | 27 | | 11 J | | 7 J | | 38 J | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | 1051200000 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0.00% | .230 | | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | | 0 | ō | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Vinyt chloride | UG/KG | 0 | 0 00% | 200 | 3012 | | 0 | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | *************************************** | 33/10 | · · | 0 0070 | 200 | | | - | • | | | | | - | | - | #### Table 30-3 SEAD 121E Volatiles in Soil vs. PRG IND Non Evaluated Sites | DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | NUMBER | SEAD-121
Bldg 127
Petroleum
Release
SB121E-1
EB267
SA | 0
03 | SEAD-121
Bldg 127
Petroleum
Release
SB121E-1
EB256
SA
SOIL | 0
0 7 | SEAD-121
Bidg 127 U
Petroleum
Release
SB121E-1
EB268
SA | 08
11 | SEAD-1
Bldg 12
Petroleu
Release
SB121E
EB257
SA | 27 UST
um
e | |--|-------|---------|-----------|------|------------|--------|---------|---|----------|---|---------|---|----------|---|----------|---|-------------------| | | | | OF | | | ABOVE | OF | | OF | | | | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG IND | TAGM | DETECTS | | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | 1 1.1 Trichloroethane | UG/KG | 0 | 0 00% | 800 | 18396000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1 1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 286160 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,1,2 Trichloroethane | UG/KG | 0 | 0 00% | | 100407 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,2 Dichloroethane | UG/KĢ | 0 | 0 00% | 100 | 62892 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1.2-Dichloroethene (total) | UG/KG | 0 | 0 00% | | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 84165 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Acetone | UG/KG | 400 | 100 00% | 200 | 52560000 | 0 | | 4 | | 4 | 39 | | 9 JB | | 18 B | | 400 | | Benzene | UG/KG | 0 | 0 00% | 60 | 197352 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 92310 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Bramoform | UG/KG | 0 | 0.00% | | 724456 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Carbon disulfide | UG/KG | 2 | 50.00% | 2700 | 52560000 | 0 | | 2 | | 4 | 2 J | | 11 U | | 2 J | | 48 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 44025 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chlorobenzene | UG/KG | 4 | 25.00% | 1700 | 10512000 | 0 | | 1 | | 4 | 11 U | | 11 U | | 4 J | | 48 U | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 68133 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 210240000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Chloroform | UG/KG | 4 | 25 00% | 300 | 938230 | 0 | | 1 | | 4 | 11 U | | 11 U | | 4 JB | | 48 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 52560000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl bromide | UG/KG | 0 | 0 00% | | 751608 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl chloride | UG/KG | 0 | 0.00% | | 440246 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl ethyl ketone | UG/KG | 0 | 0 00% | 300 | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methyl isobutyl ketone | UG/KG | 0 | 0 00% | 1000 | 42048000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Methylene chlonde | UG/KG | 0 | 0.00% | 100 | 763093 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Styrene | UG/KG | 0 | 0 00% | | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Tetrachloroethene | UG/KG | 0 | 0 00% | 1400 | 110062 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Toluene | UG/KG | 38 | 100 00% | 1500 | 105120000 | 0 | | 4 | | 4 | 27 | | 11 J | | 7 J | | 38 J | | Total Xylenes | UG/KG | 0 | 0.00% | 1200 | 1051200000 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0.00% | | | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 3012 | 0 | | 0 | | 4 | 11 U | | 11 U | | 11 U | | 48 U | SEAD-121E Release SB121E-1 Bldg. 127 UST Petroleum # Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites SITE: DESCRIPTION: LOC ID: SAMP_ID: QC CODE: | SAMP_ID: | | | | | | | | | EB267 | - | | |-----------------------------|-------|---------|-----------|-------|-----------|--------|---------|----------|-------|--------|--| | QC CODE: | | | | | | | | | SA | | | | SAMP. DETH TOP: | | | | | | | | | O/ 1 | 0 | | | SAMP, DEPTH BOT: | | | | | | | | | | 0.3 | | | MATRIX: | | | | | | | | | SOIL | 0.0 | | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | Mar-98 | | | J. 1111 . D. 11 L. | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 5256000 | 0 | 0 | | 4 | 750 U | | | 1,2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 47304000 | 0 | 0 | | 4 | 750 U | | | 1.3-Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 | 46778400 | 0 | 0 | | 4 | 750 U | | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | 0 | | 4 | 750 U | | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | 0 | | 4 | 1800 U | | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0.00% | | 520291 | 0 | 0 | | 4 | 750 U | | | 2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | 0 | | 4 | 750 U | | | 2,4-Dimethylphenol | UG/KG | 0 | 0 00% | | 10512000 | 0 | 0 | | 4 | 750 U | | | 2,4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | 0 | | 4 | 1800 U | | | 2,4-Dinitrotoluene | UG/KG | 0 | 0.00% | | 1051200 | 0 | 0 | | 4 | 750 U | | | 2,6-Dinitrotoluene | UG/KG | 0 | 0.00% | 1000 | 525600 | 0 | 0 | | 4 | 750 U | | | 2-Chloronaphthalene | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 750 U | | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 2628000 | 0 | 0 | | 4 | 750 U | | | 2-Methylnaphthalene | UG/KG | 260 | 100.00% | 36400 | | 0 | 4 | | 4 | 220 J | | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100 | 26280000 | 0 | 0 | | 4 | 750 U | | | 2-Nitroaniline | UG/KG | 9.7 | 25.00% | 430 | 31536 | 0 | 1 | | 4 | 1800 U | | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | | 0 | 0 | | 4 | 750 U | | | 3,3 -Dichlorobenzidine | UG/KG | 0 | 0.00% | | 12718 | 0 | 0 | | 4 | 750 U | | | 3-Nitroaniline | UG/KG | 0 | 0.00% | 500 | 1576800 | 0 | 0 | | 4 | 1800 U | | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 1800 U | | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 30484800 | 0 | 0 | | 4 | 750 U | | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | 4 | 750 U | | | 4-Chloroaniline | UG/KG | 0 | 0.00% | 220 | 2102400 | 0 | 0 | | 4 | 750 U | | | 4-Chlorophenyl phenyl ether | UG/KG | 7.6 | 25.00% | | | 0 | 1 | | 4 | 750 U | | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | 4 | 750 U | | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 1576800 | 0 | 0 | | 4 | 1800 U | | | 4-Nitrophenol | UG/KG | 0 | 0.00% | 100 | 31536000 | 0 | 0 | | 4 | 1800 U | | | Acenaphthene | UG/KG | 230 | 50.00% | 50000 | | 0 | 2 | | 4 | 750 U | | | Acenaphthylene | UG/KG | 120 | 50.00% | 41000 | | 0 | 2 | | 4 | 750 U | | | Anthracene | UG/KG | 630 | 75.00% | 50000 | 157680000 | 0 | 3 | | 4 | 750 U | | | Benzo[a]anthracene | UG/KG | 3900 | 100.00% | 224 | 7840 | 1 | 4 | | 4 | 53 J | | | Benzo[a]pyrene | UG/KG | 3600 | 75.00% | 61 | 784 | 2 | 3 | | 4 | 750 U | | | Benzo[b]fluoranthene | UG/KG | 3300 | 133.33% | 1100 | 7840 | 1 | 4 | | 3 | 180 YJ | | | Benzo[ghi]perylene | UG/KG | 2000 | 75.00% | 50000 | | 0 | 3 | | 4 | 750 U | | | Benzo[k]fluoranthene | UG/KG |
4800 | 75.00% | 1100 | 78400 | 1 | 3 | | 4 | 750 U | | | Bis(2-Chloroethoxy)methane | UG/KG | 6.2 | 25.00% | | | 0 | 1 | | 4 | 750 U | | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | | 4 | 750 U | | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | 81760 | 0 | 0 | | 4 | 750 U | | | Bis(2-Ethylhexyl)phthalate | UG/KG | 21 | 50.00% | 50000 | 408800 | 0 | 2 | | 4 | 750 U | | | Butylbenzylphthalate | UG/KG | 12 | 25.00% | 50000 | 105120000 | 0 | 1 | | 4 | 750 U | | | Carbazole | UG/KG | 420 | 50.00% | | 286160 | 0 | 2 | | 4 | 750 U | | | | | | | | | | | | | | | # Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites SITE: DESCRIPTION: LOC ID SAMP_ID: QC CODE: SAMP. DETH TOP; SAMP. DEPTH BOT MATRIX: SEAD-121E Bldg. 127 UST Petroleum Release SB121E-1 EB267 SA 0 0.3 | SAMP. DEPTH BOT: | | | | | | | | | | 0.3 | |---------------------------|-------|---------|-----------|-------|------------|--------|---------|----------|-------|---------| | MATRIX: | | | | | | | | | SOIL | 0.5 | | SAMP. DATE: | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | //ar-98 | | CAMI . DATE. | | | OF | | | ABOVE | OF | OF | 17-11 | nai-30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | | Chrysene | UG/KG | 4500 | 100.00% | 400 | 784000 | 1 | 4 | | 4 | 110 J | | Di-n-butylphthalate | UG/KG | 8.9 | 25.00% | 8100 | | 0 | 1 | | 4 | 750 U | | Di-n-octylphthalate | UG/KG | 16 | 25 00% | 50000 | 10512000 | 0 | 1 | | 4 | 750 U | | Dibenz[a,h]anthracene | UG/KG | 890 | 75.00% | 14 | 784 | 3 | 3 | | 4 | 750 U | | Dibenzofuran | UG/KG | 120 | 50.00% | 6200 | 2102400 | 0 | 2 | | 4 | 750 U | | Diethyl phthalate | UG/KG | 15 | 25.00% | 7100 | 420480000 | 0 | 1 | | 4 | 750 U | | Dimethylphthalate | UG/KG | 6.2 | 25.00% | 2000 | 5256000000 | 0 | 1 | | 4 | 750 U | | Fluoranthene | UG/KG | 6800 | 100.00% | 50000 | 21024000 | 0 | 4 | | 4 | 130 J | | Fluorene | UG/KG | 330 | 50.00% | 50000 | 21024000 | 0 | 2 | | 4 | 750 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 3577 | 0 | 0 | | 4 | 750 U | | Hexachlorobutadiene | UG/KG | 5.2 | 25.00% | | 73374 | 0 | 1 | | 4 | 750 U | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | 0 | | 4 | 750 U | | Hexachloroethane | UG/KG | 0 | 0.00% | | 408800 | 0 | 0 | | 4 | 750 U | | indeno[1,2,3-cd]pyrene | UG/KG | 1900 | 75.00% | 3200 | 7840 | 0 | 3 | | 4 | 750 U | | Isophorone | UG/KG | 0 | 0.00% | 4400 | | 0 | 0 | | 4 | 750 U | | N-Nitrosodiphenylamine | UG/KG | 6.2 | 25.00% | | 1168000 | 0 | 1 | | 4 | 750 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | 0 | 0 | | 4 | 750 U | | Naphthalene | UG/KG | 96 | 100.00% | 13000 | 21024000 | 0 | 4 | | 4 | 88 J | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 262800 | 0 | 0 | | 4 | 750 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | 0 | 0 | | 4 | 1800 U | | Phenanthrene | UG/KG | 4200 | 100.00% | 50000 | | 0 | 4 | | 4 | 130 J | | Phenol | UG/KG | 0 | 0.00% | 30 | 315360000 | 0 | 0 | | 4 | 750 U | | Pyrene | UG/KG | 6800 | 100.00% | 50000 | 15768000 | 0 | 4 | | 4 | 150 J | | TPH | MG/KG | 3780 | 75.00% | | | 0 | 3 | | 4 | 3780 | | Lead | MG/KG | 92.5 | 100.00% | 24.4 | | 2 | 4 | | 4, | 67.5 | | | | | | | | | | | | | Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites | SITE: | SEAD-121E
Bidg. 127 US
Petroleum | T. | SEAD-121
Bldg. 127
Petroleum | UST | SEAD-121E
Bldg. 127 UST
Petroleum | | | |-----------------------------|--|------------|------------------------------------|----------|---|----------|---------| | DESCRIPTION: | | Release | | Release | | Release | • | | LOC ID: | | SB121E-1 | | SB121E-1 | | SB121E-2 | 2 | | SAMP_ID: | | EB256 | | EB268 | | EB257 | 2 | | - | | | | SA | | SA SA | | | QC CODE: | | SA | • | SA | 0.0 | SA | 5.1 | | SAMP. DETH TOP: | | | 0 | | 0.8 | | | | SAMP. DEPTH BOT: | | | 0.7 | 2011 | 11 | 2011 | 5.5 | | MATRIX: | | SOIL | | SOIL | | SOIL | | | SAMP. DATE: | | 17-Mar- | 98 | 17-M | ar-98 | 17-1 | /lar-98 | | PARAMETER | UNIT | VALUE | Q | VALUE | Q | VALUE | Q | | 1,2,4-Trichlorobenzene | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 1,2-Dichlorobenzene | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 1,3-Dichlorobenzene | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 1,4-Dichlorobenzene | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 2,4,5-Trichlorophenol | UG/KG | 35 | 00 U | | 880 U | | 200 U | | 2,4,6-Trichlorophenol | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 2,4-Dichlorophenol | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 2,4-Dimethylphenol | UG/KG | 14 | 00 U | | 360 U | | 81 U | | 2,4-Dinitrophenol | UG/KG | | 00 U | | 880 U | | 200 U | | 2,4-Dinitrotoluene | UG/KG | | 00 U | | 360 U | | 81 U | | 2,6-Dinitrotoluene | UG/KG | | 00 U | | 360 U | | 81 U | | 2-Chloronaphthalene | ·UG/KG | | 00 U | | 360 U | | 81 U | | 2-Chlorophenol | UG/KG | | 00 U | | 360 U | | 81 U | | 2-Methylnaphthalene | UG/KG | | 76 J | | 260 J | | 9.8 J | | 2-Methylphenol | UG/KG | | 00 U | | 360 U | | 81 U | | 2-Nitroaniline | UG/KG | | 00 U | | 880 U | | 9.7 J | | 2-Nitrophenol | UG/KG | | 00 U | | 360 U | | 81 U | | 3,3'-Dichlorobenzidine | UG/KG | | 00 U | | 360 U | | 81 U | | | UG/KG | | 00 U | | 880 U | | 200 U | | 3-Nitroaniline | | | 600 U | | 880 U | | 200 U | | 4,6-Dinitro-2-methylphenol | UG/KG | | 00 U | | 360 U | | 81 U | | 4-Bromophenyl phenyl ether | UG/KG | | | | 360 U | | 81 U | | 4-Chioro-3-methylphenol | UG/KG | | 00 U | | | | | | 4-Chloroaniline | UG/KG | | 00 U | | 360 U | | 81 U | | 4-Chlorophenyl phenyl ether | UG/KG | | 00 U | | 360 U | | 7.6 J | | 4-Methylphenol | UG/KG | | 00 U | | 360 U | | 81 U | | 4-Nitroaniline | UG/KG | | 00 U | | 880 U | | 200 U | | 4-Nitrophenol | UG/KG | | 00 U | | 880 U | | 200 U | | Acenaphthene | UG/KG | | 30 J | | 360 U | | 7.6 J | | Acenaphthylene | UG/KG | | 20 J | | 360 U | | 6.4 J | | Anthracene | UG/KG | | 30 J | | 37 J | | 8.6 J | | Benzo[a]anthracene | UG/KG | 3 | 900 | | 93 J | | 17 J | | Benzo[a]pyrene | UG/KG | 36 | 500 | | 34 J | | 18 J | | Benzo[b]fluoranthene | UG/KG | 32 | loo | | 160 J | | 23 J | | Benzo[ghi]perylene | UG/KG | | 000 | | 81 J | | 17 J | | Benzo[k]fluoranthene | UG/KG | 14. 11. 15 | ios | | 110 J | | 22 J | | Bis(2-Chloroethoxy)methane | UG/KG | 14 | 00 U | | 360 U | | 6.2 J | | Bis(2-Chloroethyl)ether | UG/KG | 14 | 00 U | | 360 U | | 81 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 14 | 00 U | | 360 U | | 81 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | | 00 U | | 21 JB | | 14 JB | | Butylbenzylphthalate | UG/KG | | 00 U | | 360 U | | 12 J | | Carbazole | UG/KG | | 20 J | | 360 U | | 16 J | | | 0.00 | | | | -12V | | | Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites | SITE: | | SEAD-121E | | SEAD-12 | 1E | SEAD-12 | 1E | |---------------------------|-------|-------------|-------|-----------|--------|-----------|---------| | | | Bldg. 127 U | ST | Bldg. 127 | UST | Bldg. 127 | UST | | | | Petroleum | | Petroleum | 1 | Petroleur | n | | DESCRIPTION: | | Release | | Release | | Release | | | LOC ID: | | SB121E-1 | | SB121E-1 | 1 | SB121E- | 2 | | SAMP ID: | | EB256 | | EB268 | | EB257 | | | QC CODE: | | SA | | SA | | SA | | | SAMP, DETH TOP: | | | 0 | | 0.8 | | 5.1 | | SAMP, DEPTH BOT: | | | 0.7 | | 1.1 | | 5.5 | | MATRIX: | | SOIL | | SOIL | | SOIL | 0.0 | | SAMP, DATE: | | 17-Ma | r-98 | | lar-98 | | Mar-98 | | | | | | | | | viol 00 | | PARAMETER | UNIT | VALUE | Q | VALUE | Q | VALUE | Q | | Chrysene | UG/KG | 4 | 1500 | | 130 J | | 21 J | | Di-n-butylphthalate | UG/KG | 1 | 400 U | | 360 U | | 8.9 J | | Di-n-octylphthalate | UG/KG | 1 | 400 U | | 360 U | | 16 J | | Dibenz[a,h]anthracene | UG/KG | ELECTIVE DE | 890 J | | 36 J | 11000000 | 16 J | | Dibenzofuran | UG/KG | | 120 J | | 360 U | | 8.4 J | | Diethyl phthalate | UG/KG | 1 | 400 U | | 360 U | | 15 JB | | Dimethylphthalate | UG/KG | 1 | 400 U | | 360 U | | 6.2 J | | Fluoranthene | UG/KG | 6 | 800 | | 220 J | | 31 J | | Fluorene | UG/KG | | 330 J | | 360 U | | 8.9 J | | Hexachlorobenzene | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Hexachlorobutadiene | UG/KG | 1 | 400 U | | 360 U | | 5.2 J | | Hexachlorocyclopentadiene | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Hexachloroethane | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 1 | 900 | | 67 J | | 15 J | | Isophorone | UG/KG | 1 | 400 U | | 360 U | | 81 U | | N-Nitrosodiphenylamine | UG/KG | 1 | 400 U | | 360 U | | 6.2 J | | N-Nitrosodipropylamine | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Naphthalene | UG/KG | | 83 J | | 96 J | | 7 J | | Nitrobenzene | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Pentachlorophenol | UG/KG | 3 | 500 U | | 880 U | | 200 U | | Phenanthrene | UG/KG | 4 | 200 | | 210 J | | 21 J | | Phenol | UG/KG | 1 | 400 U | | 360 U | | 81 U | | Pyrene | UG/KG | 6 | 800 | | 230 J | | 23 J | | TPH | MG/KG | | 172 | | 2800 | | 18.3 U | | Lead | MG/KG | | 24.2 | | 92.5 | | 16.3 | | | | | | | | ~ | | ## Table 30-5 SEAD 121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites | SITE | | | | | | | | | | 0-121E
127 UST | SEAD-121E
Bldg 127 UST | SEAD-121E
Bldg 127 UST | SEAD-121E
Bldg, 127 UST | |---|----------------|----------|------------------|---|-------------------------|---------------|---------------|---------------|--------------------------------|-------------------|---|---|---| | DESCRIPTION
LOC ID.
SAMP_ID. | | | | | | | | | Petro
Relea
SB12
EB26 | sse
:1E-1 | Petroleum
Release
SB121E-1
EB256 | Petroleum
Release
SB121E-1
EB268 | Petroleum
Release
SB121E-2
EB257 | | OC CODE | | | | | | | | | SA | | SA | SA | SA | | SAMP DETH TOP:
SAMP DEPTH BOT | | | | | | | | | | 0 | 0
0.7 |
0.8
1 1 | 5 1
5 5 | | MATRIX | | | | | | | | | SOIL | | SQIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBE | R 1 | 17-Mar-98 | 17-Mar-98 | 17-Mar-98 | 17-Mar-98 | | PARAMETER | TINU | MAXIMUM | OF
DETECTION | TAGM | PRG-IND | ABOVE
TAGM | OF
DETECTS | OF
ANALYSI | ES VALU | JE O | VALUE Q | VALUE Q | VALUE | | Volatiles | 0.41. | 0 | 0 00% | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0 | 0 | 4 | | , | VACOL Q | VACOL Q | VALUE | | 1,1,1-Trichloroethane | UG/KG | 0 | 0.00% | 800 | 18396000 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | 1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane | UG/KG
UG/KG | 0 | 0.00%
0.00% | 600 | 286160
100407 | 0 | | 0 | 4 | 11 U
11 U | 11 U
11 U | 11 U
11 U | 48
48 | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | 1,1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | 1,2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 62892 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | 1,2-Dichloroethene (total) 1,2-Dichloropropane | UG/KG
UG/KG | 0 | 0.00% | | 84165 | 0 | | 0
0 | 4 | 11 U
11 U | 11 U
11 U | 11 U
11 U | 48
48 | | Acetone | UG/KG | 400 | 100.00% | 200 | 52560000 | 0 | | 4 | 4 | 39 | 9 JB | 18 B | 400 | | Benzene | UG/KG | 0 | 0.00% | 60 | 197352 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Bromodichloromethane | UG/KG | 0 | 0 00% | | 92310 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Bromoform
Carbon disulfide | UG/KG
UG/KG | 0 2 | 0.00%
50.00% | 2700 | 724456
52560000 | 0 | | 0
2 | 4 | 11 U
2 J | 11 U
11 U | 11 U | 48
48 | | Carbon letrachloride | UG/KG | 0 | 0.00% | 600 | 44025 | 0 | | 0 | 4 | 11 U | 11 U | 2 J
11 U | 48 | | Chlorobenzene | UG/KG | 4 | 25.00% | 1700 | 10512000 | 0 | | 1 | 4 | 11 U | 11 U | 4 J | 48 | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 68133 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Chloroethane | UG/KG | 0 | 0.00% | 1900 | 210240000 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Chloroform
Cis-1,3-Dichloropropene | UG/KG
UG/KG | 4 | 25.00%
0.00% | 300 | 938230 | 0 | | 0 | 4 | 11 U
11 U | . 11 U | 4 JB
11 U | 48
48 | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 52560000 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Methyl bromide | UG/KG | 0 | 0 00% | | 751608 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Methyl chloride
Methyl ethyl ketone | UG/KG
UG/KG | 0 | 0.00%
0.00% | 300 | 440246 | 0 | | 0 | 4 | 11 U
11 U | 11 U
11 U | 11 U
11 U | 48
48 | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 42048000 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Methylene chlonde | UG/KG | 0 | 0.00% | 100 | 763093 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Styrene | UG/KG | 0 | 0.00% | | | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Tetrachloroethene | UG/KG | 0
38 | 0.00%
100.00% | 1400
1500 | 110062 | 0 | | 0
4 | 4 | 11 U
27 | 11 U
11 J | 11 U
7 J | 48
38 | | Toluene
Total Xylenes | UG/KG
UG/KG | 38 | 0.00% | 1200 | 105120000
1051200000 | 0 | | 0 | 4 | 11 U | 11 J
11 U | 7 J
11 U | 48 | | Trans-1,3-Dichloropropene | UG/KG | ō | 0.00% | | | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Trichloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 3012 | 0 | | 0 | 4 | 11 U | 11 U | 11 U | 48 | | Semivolatiles
1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00%
0.00% | 3400 | 5256000 | 0 | | 0
0 | 4 | 750 U | 1400 ∪ | 360 U | 81 | | 1,2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 47304000 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 1,3-Dichlorobenzene | UG/KG | 0 | 0.00% | 1600 | 46778400 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 1.4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | | 0 | 4 | 750 U
1800 U | 1400 U | 360 U
880 U | 81 | | 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol | UG/KG
UG/KG | 0 | 0.00%
0.00% | 100 | 52560000
520291 | 0 | | 0
0 | 4 | 750 U | 3500 U
1400 U | 880 U
360 U | 200
81 | | 2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 2,4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | | 0 | 4 | 1800 U | 3500 U | 880 U | 200 | | 2,4-Dinfrotoluene 2,6-Dinfrotoluene | UG/KG
UG/KG | 0 | 0.00% | 1000 | 1051200
525600 | 0 | | 0
0 | 4 | 750 U
750 U | 1400 U
1400 U | 360 U
360 U | 81
81 | | 2.6-Dinirotottene
2-Chloronaphthalene | UG/KG | 0 | 0.00% | 1000 | 323000 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 2628000 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 2-Methylnaphthalene | UG/KG | 260 | 100.00% | 36400 | | 0 | | 4 | 4 | 220 J | 76 J | 260 J | 9 8 | | 2-Methylphenol | UG/KG | 0 | 0.00% | 100 | 26280000 | 0 | | 0 | 4 | 750 U
1800 U | 1400 U
3500 U | 360 U
880 ∪ | 81
9.7 | | 2-Nitroaniline 2-Nitrophenol | UG/KG
UG/KG | 9.7
0 | 25 00%
0.00% | 430
330 | 31536 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 9.7 | | 3,3'-Dichlorobenzidine | UG/KG | 0 | 0.00% | - | 12718 | 0 | | 0 | 4 | 750 U | 1400 U | 360 U | 81 | | 3-Nitroaniline | UG/KG | 0 | 0.00% | 500 | 1576800 | 0 | | 0 | 4 | 1800 U | 3500 U | 880 U | 200 | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0 00% | | 20101000 | 0 | | 0 | 4 | 1800 U | 3500 U | 880 U | 200 | | 4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol | UG/KG
UG/KG | 0 | 0.00% | 240 | 30484800 | 0 | | 0 | 4 | 750 U
750 U | 1400 U
1400 U | 360 U
360 U | 81
81 | | 4-Choro-3-methylphenor | UG/KG | U | 0,00% | 240 | | U | | • | 1 | ,300 | 1400 0 | 300 0 | 01 | ## Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs PRG-IND Non-Evaluated Sites SEAD-121E SITE SEAD-121E SEAD-121E SEAD-121E Bldg. 127 UST Bldg 127 UST Bldg. 127 UST Bldg 127 UST Petroleum Petroleum Petroleum Petroleum DESCRIPTION Release Release Release Release SB121E-1 SB121E-1 LOC ID SB121F-1 SB121E-2 SAMP ID EB267 EB256 EB268 EB257 QC CODE SA SA SA SA SAMP DETH TOP 8 0 5.1 SAMP DEPTH BOT 03 0.7 5 5 11 MATRIX SOIL SOIL SOIL SOIL NUMBER SAMP DATE FREQUENCY NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VALUE a VALUE Q VALUE 2102400 0 4-Chloroaniline UG/KG 0 00% 220 750 U 1400 U 360 U 81 4-Chlorophenyl phenyl ether UG/KG 76 25.00% 0 750 U 1400 U 360 U 76 900 4-Methylphenol UG/KG 0 0.00% 0 0 750 U 1400 U 360 U 81 4-Nitroaniline UG/KG 0 0.00% 1576800 0 1800 U 3500 U 880 U 200 4-Nitrophenol UG/KG 0.00% 100 31536000 0 1800 U 3500 U 880 U 200 Acenaphthene UG/KG 230 50 00% 50000 0 750 U 230 J 360 U 7.6 41000 UG/KG 120 50 00% 0 Acenaphthylene 750 U 120 J 360 U 6.4 LIG/KG 630 75.00% 50000 157680000 750 11 Anthracene O 630 J 37 J 86 Benzo(a)anthracene UG/KG 3900 100 00% 224 7840 0 53 J 3900 93 J 17 Benzo[a]pyrene UG/KG 3600 75.00% 61 784 750 U 3600 84 J 18 Benzo[b]fluoranthene UG/KG 3300 133 33% 1100 7840 0 3300 180 YJ 160 J 23 Benzo[ghi]perylene UG/KG 2000 75 00% 50000 0 750 U 2000 81 J 17 75 00% 78400 Benzo[k]fluoranthene UG/KG 4800 1100 750 U 4800 110 J 22 0 Bis(2-Chloroethoxy)methane UG/KG 6.2 25 00% 0 750 II 1400 U 360 U 62 Bis(2-Chloroethyl)ether UG/KG 0 0.00% 5203 0 750 U 1400 U 360 U 81 Bis(2-Chloroisopropyl)ether UG/KG 0 0.00% 81760 0 750 U 1400 U 360 U 81 Bis(2-Ethylhexyl)phthalate UG/KG 21 50.00% 50000 408800 0 750 U 1400 U 21 JB 14 Butylbenzylphthalate UG/KG 12 25 00% 50000 105120000 0 750 U 1400 U 360 U 12 UG/KG 420 50 00% 286160 0 750 U 420 J 360 U 16 Carbazole UG/KG 4500 400 784000 Chrysene 100 00% 0 110 J 4500 130 J 21 Di-n-butylphthalate UG/KG 8.9 25 00% 8100 0 750 U 1400 U 360 U 8 9 Di-n-octylphthalate UG/KG 16 25.00% 50000 10512000 0 750 U 1400 U 360 U 16 784 890 J Dibenz(a,h)anthracene UG/KG 890 75.00% 750 U 36 J 16 UG/KG 120 50.00% 6200 2102400 0 750 U 120 J 360 U 8 4 Dibenzofuran 420480000 UG/KG 25 00% 7100 750 U 360 U 15 15 0 1400 U Diethyl phthalate 5256000000 750 II 1400 LI Dimethylphthalate UG/KG 6.2 25.00% 2000 0 360 U 62 Fluoranthene UG/KG 6800 100.00% 50000 21024000 0 130 .1 6800 220 J 31 UG/KG 330 50.00% 50000 21024000 0 750 U 330 J 360 U 8.9 Fluorene 3577 750 U 1400 U 360 U 81 UG/KG 0 00% 410 0 Hexachlorobenzene Hexachlorobutadiene UG/KG 52 25.00% 73374 0 750 U 1400 U 360 U 52 3679200 1400 U Hexachlorocyclopentadiene UG/KG 0 0.00% 0 0 750 U 360 U 81 1400 U Hexachloroethane UG/KG 0.00% 408800 0 750 U 360 U 81 Indeno[1,2,3-cd]pyrene UG/KG 1900 75.00% 3200 7840 0 750 U 1900 67 J 15 Isophorone UG/KG 0.00% 4400 0 750 U 1400 U 360 U 81 1168000 N-Nitrosodiphenylamine UG/KG 62 25.00% 0 750 U 1400 U 360 U 62 LIG/KG 0 750 U 1400 U 360 U 81 0.00% 818 N-Nitrosodipropylamine Ω 0 13000 21024000 88 J 96 J Naphthalene UG/KG 96 100.00% 0 83 J 7 Nitrobenzene UG/KG 0 0 00% 200 262800 0 Π 750 LI 1400 U 360 LI 81 Pentachlorophenol UG/KG 0 00% 1000 47693 0 1800 U 3500 U 880 U 200 130 J 4200 210 J Phenanthrene UG/KG 4200 100 00% 50000 0 21 UG/KG 30 315360000 0 0 750 U 1400 U 360 U 81 Phenol 0 0.00% 6800 Pyréne UG/KG 6800 100 00% 50000 15768000 Ω 150 J 230 J 23 3780 172 TPH MG/KG 3780 75 00% 0 3 2800 183 Lead MG/KG 92 5 100.00% 24 4 0 67.5 24.2 92 5 163 #### Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT. MATRIX SAMP DATE | SAMP DATE | | | |---|----------------|---| | PARAMETER | UNIT | Q | | Volatiles | | | | 1,1,1-Trichloroethane | UG/KG | U | | 1,1,2,2-Tetrachloroethane | UG/KG | U | | 1 1,2-Trichloroethane | UG/KG | U | | 1.1-Dichloroethane | UG/KG | U | | 1,1-Dichloroethene | UG/KG | U | | 1,2-Dichloroethane | UG/KG | U | | 1,2-Dichloroethene (total) | UG/KG | U | |
1,2-Dichloropropane | UG/KG | U | | Acetone | UG/KG | | | Benzene | UG/KG | U | | Bromodichloromethane | UG/KG | U | | Bromoform | UG/KG | U | | Carbon disulfide | UG/KG | U | | Carbon letrachforide | UG/KG | U | | Chlorobenzene | UG/KG | U | | Chlorodibromomethane | UG/KG | U | | Chloroethane | UG/KG | U | | Chloroform | UG/KG | U | | Cis-1,3-Dichloropropene | UG/KG | U | | Ethyl benzene | UG/KG | U | | Methyl bromide | UG/KG | U | | Methyl butyl ketone | UG/KG | U | | Methyl chloride | UG/KG | U | | Melhyl ethyl ketone | UG/KG | U | | Methyl isobutyl ketone | UG/KG | U | | Methylene chloride | UG/KG | U | | Styrene | UG/KG | U | | Tetrachloroethene | UG/KG | U | | Toluene | UG/KG | J | | Total Xylenes | UG/KG | U | | Trans-1,3-Dichloropropene | UG/KG | U | | Trichloroethene | UG/KG | U | | Vinyl chloride | UG/KG | Ų | | Semivolatiles | | | | 1,2,4-Trichlorobenzene | UG/KG | U | | 1,2-Dichlorobenzene | UG/KG | U | | 1,3-Dichlorobenzene | UG/KG | U | | 1,4-Dichlorobenzene | UG/KG | U | | 2.4,5-Trichlorophenol | UG/KG | U | | 2,4,6-Trichlorophenol | UG/KG | U | | 2,4-Dichlorophenol | UG/KG
UG/KG | U | | 2.4-Dimethylphenol | | U | | 2.4-Dinitrophenol | UG/KG
UG/KG | U | | 2,4-Dinitrotoluene | UG/KG | U | | 2,6-Dinitrotoluene | UG/KG | U | | 2-Chloronaphthalene | UG/KG
UG/KG | U | | 2-Chlorophenol | UG/KG | | | 2-Methylnaphthalene | UG/KG | J | | 2-Methylphenol | UG/KG | | | 2-Nitroaniline 2-Nitrophenol | UG/KG | J | | | UG/KG | U | | 3,3'-Dichlorobenzidine | UG/KG | U | | 3-Nitroaniline
4,6-Dinitro-2-methylphenol | UG/KG | U | | 4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether | UG/KG | u | | 4-Chloro-3-methylphenol | UG/KG | u | | 4-Onoro-3-memyphenor | OGING | 0 | S121ef xls 3] syprg #### Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE | PARAMETER | UNIT | Q | |-----------------------------|-------|----| | 4-Chloroaniline | UG/KG | U | | 4-Chlorophenyl phenyl ether | UG/KG | J | | 4-Methylphenol | UG/KG | U | | 4-Nitroaniline | UG/KG | U | | 4-Nitrophenol | UG/KG | U | | Acenaphthene | UG/KG | J | | Acenaphthylene | UG/KG | J | | Anthracene | UG/KG | J | | Benzo[a]anthracene | UG/KG | J | | Benzo[a]pyrene | UG/KG | J | | Benzo(b)fluoranthene | UG/KG | J | | Benzolghilperylene | UG/KG | J | | Benzo[k]fluoranthene | UG/KG | J | | Bis(2-Chloroethoxy)methane | UG/KG | J | | Bis(2-Chloroethyl)ether | UG/KG | U | | Bis(2-Chloroisopropyl)ether | UG/KG | Ų | | Bis(2-Ethylhexyl)phthalate | UG/KG | JB | | Butyfbenzylphthalate | UG/KG | J | | Carbazole | UG/KG | J | | Chrysene | UG/KG | J | | Di-n-butylphthalate | UG/KG | J | | Di-n-octylphthalate | UG/KG | J | | Dibenz[a,h]anthracene | UG/KG | J | | Dibenzofuran | UG/KG | J | | Diethyl phthalate | UG/KG | JB | | Dimethylphthalate | UG/KG | J | | Fluoranthene | UG/KG | J | | Fluorene | UG/KG | J | | Hexachlorobenzene | UG/KG | U | | Hexachlorobutadiene | UG/KG | J | | Hexachtorocyclopentadiene | UG/KG | U | | Hexachloroethane | UG/KG | U | | Indeno[1,2,3-cd]pyrene | UG/KG | J | | Isophorone | UG/KG | U | | N-Nitrosodiphenylamine | UG/KG | J | | N-Nitrosodipropylamine | UG/KG | U | | Naphthalene | UG/KG | J | | Nitrobenzene | UG/KG | U | | Pentachlorophenol | UG/KG | U | | Phenanthrene | UG/KG | J | | Phenol | UG/KG | U | | Pyrene | UG/KG | J | | TPH | MG/KG | U | | Lead | MG/KG | | | | | | S121ef xls 4] sypro ## SEAD-121F Building 135 Stained Soil Table 31-1 ### Sample Collection Information SEAD-121F - Building 135 Stained Soil ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|---| | SURFACE SOIL | SS121F-1 | EB273 | 3/18/98 | 0.00 | 0.20 | SA | Sample location is in the NW area of Bldg. 135. Severe surface soil staining. | | SURFACE SOIL | SS121F-2 | EB274 | 3/18/98 | 0.00 | 0.20 | SA | Sample location is in the E. central area of Bldg. 135. Severe surface soil staining. | | SURFACE SOIL | SS121F-3 | EB275 | 3/18/98 | 0.00 | 0.20 | SA | Sample location is in the W. central area of Bldg. 135. Severe surface soil staining. | Notes: SA = Sample #### Table 31-2 SEAD-121F · Volatiles in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID: SAMP_ID QC CODE | | | | | | | | | | SEAD-12
Bldg. 135
Stained S
SS121F-1
EB273
SA | oil | SEAD-12
Bldg. 135
Stained S
SS121F-
EB274
SA | Soil
2 | Bldg | ied Soil
21F-3
75 | | |---|-------|---------|-----------|------|------------|--------|---------|---|----------|--|-------|---|-----------|------|-------------------------|------| | SAMP DETH TOP | | | | | | | | | | | 0 | | 0 | | | 0 | | SAMP DEPTH BOT
MATRIX | | | | | | | | | | SOIL | 0 2 | SOIL | 0.2 | SOIL | | 1.2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | NUMBER | 18-M | ar 08 | | ar-98 | | 18-Mar-9 | 00 | | SAME DATE | | | OF | | | ABOVE | OF | | OF | 10-1414 | a1-30 | 10-14 | a1-30 | | 10-14191-2 | 30 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | | ANALYSES | VALUE | Q | VALUE | Q | VALI | JE | Q | | 1,1,1-Trichloroethane | UG/KG | 0 | 0 00% | 800 | 18396000 | |) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | 1.1.2.2-Tetrachloroethane | UG/KG | 0 | 0.00% | 600 | 286160 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0.00% | | 100407 | (|) | 0 | | 3 | 11 U | | 12 U | | 1 | 11 U | | 1,1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | Ċ |) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | 1.1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | 1.2-Dichloroethane | UG/KG | 0 | 0.00% | 100 | 62892 | (|) | 0 | | 3 | 11 U | | 12 U | | 1 | 11 U | | 1.2-Dichloroethene (total) | UG/KG | 0 | 0.00% | | | (|) | 0 | | 3 | 11 U | | 12 U | | - | 11 U | | 1,2-Dichforopropane | UG/KG | 0 | 0 00% | | 84165 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Acetone | UG/KG | 75 | 100 00% | 200 | 52560000 | (|) | 3 | | 3 | 44 B | | 75 B | | 2 | 24 B | | Benzene | UG/KG | 0 | 0 00% | 60 | 197352 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Bromodichloromethane | UG/KG | 0 | 0.00% | | 92310 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Bromoform | UG/KG | 0 | 0 00% | | 724456 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Carbon disulfide | UG/KG | 0 | 0 00% | 2700 | 52560000 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 44025 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Chlorobenzene | UG/KG | 0 | 0 00% | 1700 | 10512000 | (|) | 0 | | 3 | 11 U | | 12 U | | 1 | 11 U | | Chlorodibromomethane | UG/KG | 0 | 0 00% | | 68133 | (|) | 0 | | 3 | 11 U | | 12 U | | 1 | 11 U | | Chloroethane | UG/KG | 0 | 0 00% | 1900 | 210240000 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Chloroform | UG/KG | 0 | 0 00% | 300 | 938230 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0 00% | | | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Ethyl benzene | UG/KG | 0 | 0 00% | 5500 | 52560000 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 751608 | (| | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Methyl butyl ketone | UG/KG | 0 | 0 00% | | | (| , | 0 | | 3 | 11 U | | 12 U | | , | 11 U | | Methyl chloride | UG/KG | 0 | 0 00% | | 440246 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Methyl ethyl ketone | UG/KG | 0 | 0.00% | 300 | | (| | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | 0.00% | 1000 | 42048000 | (| | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Methylene chloride | UG/KG | 0 | 0 00% | 100 | 763093 | (| | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Styrene | UG/KG | 0 | 0 00% | | | (| • | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Tetrachloroethene | UG/KG | 0 | 0 00% | 1400 | 110062 | (| - | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Toluene | UG/KG | 56 | 100 00% | 1500 | 105120000 | (| - | 3 | | 3 | 56 | | 56 | | | 32 | | Total Xylenes | UG/KG | 0 | | 1200 | 1051200000 | (| - | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | | | | (| - | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Tnchloroethene | UG/KG | 0 | 0.00% | 700 | 520291 | (| • | 0 | | 3 | 11 U | | 12 U | | | 11 U | | Vinyl chloride | UG/KG | 0 | 0.00% | 200 | 3012 | (|) | 0 | | 3 | 11 U | | 12 U | | | 11 U | ## Table 31-3 SEAD-121F - Volatiles in Soil vs PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP | | | | | | | | | SEAD-12
Bldg 135
Stained S
SS121F-1
EB273
SA | oil | SEAD-12
Bldg. 135
Stained S
SS121F-2
EB274
SA | orl | SEAD-1
Bidg 13
Stained
SS121F
EB275
SA | 5
Sorl | |--|----------------|-----------|-----------|------|------------|-----------------|--------------|--------------|---|-------|--|-------|---|-----------| | SAMP DETH TOP | | | | | | | | | | 0 2 | | 0.2 | | 0 2 | | MATRIX | | | | | | | | | SOIL | | SOIL | | SOIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 18-M | ar-98 | 18-M | ar-98 | 18-1 | Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | | 1.1.1-Trichloroethane | UG/KG | MAXIMUM 0 | 0 00% | 800 | 18396000 | 0
 0 | ANALIGES | 3 | 11 U | VALUE | 12 U | VALUE | 11 U | | 1,1,2,2-Tetrachloroethane | UG/KG | 0 | 0 00% | 600 | 286160 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1,1,2-Trichloroethane | UG/KG | 0 | 0 00% | 000 | 100407 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1.1-Dichloroethane | UG/KG | 0 | 0 00% | 200 | 52560000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1.1-Dichloroethene | UG/KG | 0 | 0 00% | 400 | 9539 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1.2-Dichloroethane | UG/KG | 0 | 0 00% | 100 | 62892 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1,2-Dichloroethene (total) | UG/KG | 0 | 0 00% | 100 | 02002 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | 1,2-Dichloropropane | UG/KG | 0 | 0 00% | | 84165 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Acetone | UG/KG | 75 | 100.00% | 200 | 52560000 | 0 | 3 | | 3 | 44 B | | 75 B | | 24 B | | Benzene | UG/KG | 0 | 0.00% | 60 | 197352 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Bromodichloromethane | UG/KG | 0 | 0 00% | 00 | 92310 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Bromoform | UG/KG | 0 | 0.00% | | 724456 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Carbon disulfide | UG/KG | 0 | 0.00% | 2700 | 52560000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Carbon tetrachloride | UG/KG | 0 | 0 00% | 600 | 44025 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Chlorobenzene | UG/KG | 0 | 0.00% | 1700 | 10512000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Chlorodibromomethane | UG/KG | 0 | 0.00% | 1700 | 68133 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | | UG/KG | 0 | 0.00% | 1900 | 210240000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Chloroethane | UG/KG
UG/KG | 0 | 0 00% | 300 | 938230 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Chloroform | | 0 | 0 00% | 300 | 930230 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Cis-1,3-Dichloropropene | UG/KG | 0 | 0.00% | 5500 | 52560000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Ethyl benzene | UG/KG | 0 | 0.00% | 5500 | 751608 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methyl bromide | UG/KG | 0 | 0.00% | | 731000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methyl butyl ketone | UG/KG | 0 | 0.00% | | 440246 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methyl chloride | UG/KG | 0 | 0.00% | 300 | 440246 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methyl ethyl ketone | UG/KG | • | 0 00% | 1000 | 42048000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methyl isobutyl ketone | UG/KG | 0 | | 100 | 763093 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Methylene chloride | UG/KG | 0 | 0 00% | 100 | /63093 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Styrene | UG/KG | • | 0 00% | 1400 | 110062 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Tetrachloroethene | UG/KG | 0 | | 1500 | 105120000 | 0 | 3 | | 3 | 56 | | 56 | | 32 | | Toluene | UG/KG | 56
0 | 100 00% | 1500 | 105120000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Total Xylenes | UG/KG | | 0 00% | 1200 | 1031200000 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Trans-1,3-Dichloropropene | UG/KG | 0 | 0 00% | 700 | 520291 | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Trichloroethene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 3 | 11 U | | 12 U | | 11 U | | Vinyl chloride | UG/KG | 0 | 0 00% | 200 | 3012 | U | U | | 3 | 11 0 | | 12 0 | | ,, 0 | #### Table 31-4 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites | DESCRIPTION. LOC ID SAMP_ID: QC CODE: | | | | | | | | | SEAD-1
Bldg. 13
Stained
SS121F
EB273
SA | Soil | SEAD-121F
Bldg. 135
Stained Soil
SS121F-2
EB274
SA | SEAD-121F
Bldg. 135
Stained Soil
SS121F-3
EB275
SA | |--|----------------|----------|-----------|-------|------------|-----------------|--------------|---|--|--------------|---|---| | SAMP, DETH TOP: | | | | | | | | | | 0 | 0 | 0 | | SAMP DEPTH BOT: | | | | | | | | | | 0.2 | 0.2 | 0.2 | | MATRIX: | | | | | | | | | SOIL | | SOIL | SOIL | | SAMP. DATE: | | | FREQUENCY | | | NUMBER
ABOVE | NUMBER
OF | | NUMBER 18-
OF | Mar-98 | 18-Mar-98 | 18-Mar-98 | | PARAMETER | UNIT | MUMIXAM | DETECTION | TAGM | PRG | TAGM | DETECTS | | ANALYSES VALUE | Q | VALUE Q | VALUE | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 5256000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 1,2-Dichlorobenzene | UG/KG | 0 | 0.00% | 7900 | 47304000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 1,3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 46778400 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0.00% | | 520291 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2,4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2.4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2,4-Dinitrophenol | UG/KG | 0 | 0 00% | 200 | 1051200 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 2,4-Dinitrotoluene | UG/KG | 0 | 0.00% | | 1051200 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2,6-Dinitrotoluene | UG/KG | 0 | 0 00% | 1000 | 525600 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2-Chloronaphthalene | UG/KG | 0 | | | | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2-Chlorophenol | UG/KG | 0 | | 800 | 2628000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2-Methylnaphthalene | UG/KG | 36 | 100.00% | 36400 | | 0 | | 3 | 3 | 17 J | 13 J | 36 | | 2-Methylphenol | UG/KG | 0 | | . 100 | 26280000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 2-Nitroaniline | UG/KG | 0 | 0 00% | 430 | 31536 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 2-Nitrophenol | UG/KG | 0 | 0.00% | 330 | | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 3,3 - Dichtorobenzidine | UG/KG | 0 | 0 00% | 1.000 | 12718 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 3-Nitroaniline | UG/KG | 0 | | 500 | 1576800 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0 00% | | | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 4-Bromophenyl phenyl ether | UG/KG | 0 | | | 30484800 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 4-Chloroaniline | UG/KG | 0 | | 220 | 2102400 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | | 200 | | 0 | | 0 | 3 | 75 U
75 U | . 69 U | . 72 | | 4-Methylphenol | UG/KG | 0 | | 900 | 1576800 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 4-Nitroaniline | UG/KG | 0 | | 100 | 31536000 | 0 | | 0 | 3 | 180 U | 170 U | 180 | | 4-Nitrophenol | UG/KG | 0
7.4 | 66,67% | 50000 | 31536000 | 0 | | 2 | 3 | 7.4 J | 69 U | 6.4 | | Acenaphthene | UG/KG | 7.4 | | 41000 | | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Acenaphthylene | UG/KG
UG/KG | 13 | | 50000 | 157680000 | 0 | | 2 | 3 | 13 J | 69 U | 13 | | Anthracene | UG/KG | 68 | | 224 | 7840 | 0 | | 3 | 3 | 56 J | 14 J | 68 | | Benzo[a]anthracene | UG/KG | 71 | 100.00% | 61 | 784 | 1 | | 3 | 3 | 58 J | 19 J | 71 | | Benzo[a]pyrene
Benzo[b]fluoranthene | UG/KG | 110 | | 1100 | 7840 | 0 | | 3 | 3 | 100 | 21 J | 110 | | Benzo[ghi]perylene | UG/KG | 60 | | 50000 | 7040 | 0 | | 3 | 3 | 60 J | 30 J | 58 | | Benzo[k]fluoranthene | UG/KG | 72 | | 1100 | 78400 | 0 | | 3 | 3 | 59 J | 16 J | 72 | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | | | 7-7-00 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Bis(2-Chloroethyl)ether | UG/KG | 0 | | | 5203 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | | | 81760 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 43 | | 50000 | 408800 | 0 | | 3 | 3 | 43 JB | 13 JB | 35 | | Butylbenzylphthelate | UG/KG | 22 | | 50000 | 105120000 | 0 | | 2 | 3 | 22 J | 69 U | 9.9 | | Carbazole | UG/KG | 21 | 66.67% | | 286160 | 0 | | 2 | 3 | 21 J | 69 U | 15 | | Chrysene | UG/KG | 94 | 100,00% | 400 | 784000 | 0 | | 3 | 3 | 82 | 21 J | 94 | | Di-n-butylphthalate | UG/KG | 8.1 | 100.00% | 8100 | | 0 | | 3 | 3 | 8.1 J | 4.8 J | 4.6 | | Di-n-octylphthalate | UG/KG | 7.5 | 33.33% | 50000 | 10512000 | 0 | | 1 | 3 | 7.5 J | 69 U | 72 | | Dibenz(a,h)anthracene | UG/KG | 23 | | 14 | 784 | 2 | | 2 | 3 5 1 | J | 69 U | 18 | | Dibenzofuran | UG/KG | 10 | | 6200 | 2102400 | 0 | | 2 | 3 | 10 J | 69 U | 9 | | Diethyl phthalate | UG/KG | 12 | | 7100 | 420480000 | 0 | | 2 | 3 | 12 J | 8.5 J | 72 | | Dimethylphthalate | UG/KG | 0 | | 2000 | 5256000000 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Fluoranthene | UG/KG | 140 | 100.00% | 50000 | 21024000 | 0 | | 3 | 3 | 130 | 24 J | 140 | | Fluorene | UG/KG | 9.2 | 33.33% | 50000 | 21024000 | 0 | | 1 | 3 | 9.2 J | 69 U | 72 | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 3577 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Hexachlorobutadiene | UG/KG | 0 | | | 73374 | 0 | | 0 | 3 | 75 U | 69 U | 72 | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | | 0 | 3 | 75 U | 69 U | 72 | # Table 31-4 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs NYTAGM Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | | | | | | | | SEAD-121F
Bldg 135
Stained Soil
SS121F-1
EB273
SA | SEAD-121F
Bldg 135
Stained Soil
SS121F-2
EB274
SA | SEAD-121F
Bldg 135
Stained Soil
SS121F-3
EB275
SA | |--|-------|---------|-----------|-------|-----------|--------|---------|----------|--|--|--| | SAMP DETH TOP | | | | | | | | | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | 0 2 | 0.2 | 0.2 | | MATRIX | | | | | | | | | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Mar-98 | 18-Mar-98 | 18-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | PARAMETER | ŲNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | | Q VALUE Q | VALUE Q | |
Hexachloroethane | UG/KG | 0 | 0 00% | | 408800 | 0 | 0 | | 3 75 | | 72 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 53 | 100.00% | 3200 | 7840 | 0 | 3 | | 3 53 | | 48 J | | Isophorone | UG/KG | 91 | 66 67% | 4400 | | 0 | 2 | | 3 91 | 69 U | 27 J | | N-Nitrosodiphenylamine | UG/KG | 6.2 | 33 33% | | 1168000 | 0 | 1 | | 3 6.2 | | 72 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | 0 | 0 | | 3 75 | U 69 U | 72 U | | Naphthalene | UG/KG | 14 | 100.00% | 13000 | 21024000 | 0 | 3 | | 3 10 | J 9 J | 14 J | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | 0 | | 3 75 | | 72 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | 0 | 0 | | 3 180 | U 170 U | 180 U | | Phenanthrene | UG/KG | 93 | 100 00% | 50000 | | 0 | 3 | | 3 75 | 21 J | 93 | | Phenol | UG/KG | 0 | 0 00% | 30 | 315360000 | 0 | 0 | | 3 75 | U 69 U | 72 U | | Pyrene | UG/KG | 230 | 100.00% | 50000 | 15768000 | 0 | 3 | | 3 150 | 61 J | 230 | | TPH | MG/KG | 419 | 100 00% | | | 0 | 3 | | 3 395 | 419 | 290 | | Lead | MG/KG | 318 | 100 00% | 24 4 | | 1 | 3 | | 3 31.8 | 11 1 | 24 3 | # Table 31-5 SEAD-121F · Semivolatiles/TPH and Lead in Soil vs PRG-IND Non-Evaluated Sites | SITE | | | | | | | | | SEAD-12 | F | SEAD-121F | SEAD-121F | |-----------------------------|-------|---------|-----------|-------|------------|--------|---------|----------|-----------|-------|--------------|--------------| | DESCRIPTION | | | | | | | | | Bldg. 135 | - 14 | Bldg. 135 | Bldg 135 | | LOC ID | | | | | | | | | Stained S | | Stained Soil | Stained Soil | | SAMP_ID | | | | | | | | | SS121F-1 | | SS121F-2 | SS121F-3 | | QC CODE | | | | | | | | | EB273 | | EB274 | EB275 | | SAMP DETH TOP | | | | | | | | | SA | | SA | ŞA | | | | | | | | | | | | 0 | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0 2 | 0.2 | 0 2 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-Ma | ir-98 | 18-Mar-98 | 18-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE Q | | 1.2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 5256000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 47304000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 1.3-Dichlorobenzene | UG/KG | 0 | 0 00% | 1600 | 46778400 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0.00% | 8500 | 238467 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0 00% | 100 | 52560000 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0 00% | | 520291 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2,4-Dichlorophenol | UG/KG | 0 | 0 00% | 400 | 1576800 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | | 10512000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2,4-Dinitrophenol | UG/KG | 0 | 0.00% | 200 | 1051200 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 2,4-Dinitrotoluene | UG/KG | 0 | 0.00% | | 1051200 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2,6-Dinitrotoluene | UG/KG | 0 | 0.00% | 1000 | 525600 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2-Chloronaphthalene | UG/KG | 0 | 0 00% | | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2-Chlorophenol | UG/KG | 0 | 0 00% | 800 | 2628000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2-Methylnaphthalene | UG/KG | 36 | 100.00% | 36400 | | 0 | 3 | | 3 | 17 J | 13 J | 36 J | | 2-Methylphenoi | UG/KG | 0 | 0 00% | 100 | 26280000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 2-Nitroaniline | UG/KG | 0 | 0 00% | 430 | 31536 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 2-Nitrophenol | UG/KG | 0 | 0 00% | 330 | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 3,3'-Dichlorobenzidine | UG/KG | 0 | 0 00% | | 12718 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 3-Nitroaniline | UG/KG | 0 | 0.00% | 500 | 1576800 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 30484800 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | 240 | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 4-Chloroaniline | UG/KG | 0 | 0 00% | 220 | 2102400 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | 4-Nitroaniline | UG/KG | 0 | 0.00% | | 1576800 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | 4-Nitrophenol | UG/KG | 0 | 0 00% | 100 | 31536000 | 0 | 0 | | 3 | 180 U | 170 U | 180 U | | Acenaphthene | UG/KG | 7.4 | 66.67% | 50000 | | 0 | 2 | | 3 | 7.4 J | 69 U | 6.4 J | | Acenaphthylene | UG/KG | 0 | 0 00% | 41000 | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Anthracene | UG/KG | 13 | 66.67% | 50000 | 157680000 | 0 | 2 | | 3 | 13 J | 69 U | 13 J | | Benzo[a]anthracene | UG/KG | 68 | 100 00% | 224 | 7840 | 0 | 3 | | 3 | 56 J | 14 J | 68 J | | Benzo[a]pyrene | UG/KG | 71 | 100.00% | 61 | 784 | 0 | 3 | | 3 | 58 J | 19 J | 71 J | | Benzo[b]fluoranthene | UG/KG | 110 | 100 00% | 1100 | 7840 | 0 | 3 | | 3 | 100 | 21 J | 110 | | Benzo[ghi]perylene | UG/KG | 60 | 100.00% | 50000 | | 0 | 3 | | 3 | 60 J | 30 J | 58 J | | Benzo(k)fluoranthene | UG/KG | 72 | 100.00% | 1100 | 78400 | 0 | 3 | | 3 | 59 J | 16 J | 72 J | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | 81760 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 43 | 100 00% | 50000 | 408800 | 0 | 3 | | 3 | 43 JB | 13 JB | 35 JB | | Butylbenzylphthalate | UG/KG | 22 | 66.67% | 50000 | 105120000 | 0 | 2 | | 3 | 22 J | 69 U | 9.9 J | | Carbazole | UG/KG | 21 | 66 67% | | 286160 | 0 | 2 | | 3 | 21 J | 69 U | 15 J | | Chrysene | UG/KG | 94 | 100.00% | 400 | 784000 | 0 | 3 | | 3 | 82 | 21 J | 94 | | Di-n-butylphthalate | UG/KG | 8 1 | 100.00% | 8100 | | 0 | 3 | | 3 | 8.1 J | 4.8 J | 46 J | | Di-n-octylphthalate | UG/KG | 7.5 | 33 33% | 50000 | 10512000 | 0 | 1 | | 3 | 75 J | 69 U | 72 U | | Dibenz[a,h]anthracene | UG/KG | 23 | 66 67% | 14 | 784 | 0 | 2 | | 3 | 23 J | 69 U | 18 J | | Dibenzofuran | UG/KG | 10 | 66.67% | 6200 | 2102400 | 0 | 2 | | 3 | 10 J | 69 U | 9 J | | Diethyl phthalate | UG/KG | 12 | 66 67% | 7100 | 420480000 | 0 | 2 | | 3 | 12 J | 8.5 J | 72 U | | Dimethylphthalate | UG/KG | 0 | 0.00% | 2000 | 5256000000 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Fluoranthene | UG/KG | 140 | 100.00% | 50000 | 21024000 | 0 | 3 | | 3 | 130 | 24 J | 140 | | Fluorene | UG/KG | 9.2 | 33.33% | 50000 | 21024000 | 0 | 1 | | 3 | 9.2 J | 69 U | 72 U | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 3577 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | | 73374 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Hexachloroethane | UG/KG | 0 | 0.00% | | 408800 | 0 | 0 | | 3 | 75 U | 69 U | 72 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 53 | 100.00% | 3200 | 7840 | 0 | 3 | | 3 | 53 J | 17 J | 48 J | | Isophorone | UG/KG | 91 | 66.67% | 4400 | | 0 | 2 | | 3 | 91 | 69 U | 27 J | | N-Nitrosodiphenylamine | UG/KG | 6.2 | 33 33% | | 1168000 | 0 | 1 | | 3 | 6.2 J | 69 U | 72 U | | | | | | | | | | | | | | | ## Table 31-5 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites | SITE DESCRIPTION LOC ID SAMP_ID QC CODE | | | | | | | | | SEAD-12
Bldg 135
Stained S
SS121F-1
EB273
SA | oil | SEAD-121F
Bldg. 135
Stained Soil
SS121F-2
EB274
SA | | SEAD-121F
Bldg 135
Stained Soil
SS121F-3
EB275
SA | |---|-------|---------|-----------|-------|-----------|--------|---------|----------|---|-------|---|------|--| | SAMP DETH TOP | | | | | | | | | | 0 | | 0 | 0 | | SAMP DEPTH BOT | | | | | | | | | | 0 2 | | 0 2 | 0 2 | | MATRIX | | | | | | | | | SOIL | | SOIL | | SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | 18-M | ar-98 | 18-Mar- | 98 | 18-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | TAGM | PRG | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE Q | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 818 | 0 | 0 | | 3 | 75 U | | 69 U | 72 U | | Naphthalene | UG/KG | 14 | 100 00% | 13000 | 21024000 | 0 | 3 | | 3 | 10 J | | 9 J | 14 J | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | 0 | | 3 | 75 U | | 69 U | 72 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | 0 | | 3 | 180 U | 1 | 70 U | 180 U | | Phenanthrene | UG/KG | 93 | 100.00% | 50000 | | 0 | 3 | | 3 | 75 | | 21 J | 93 | | Phenol | UG/KG | 0 | 0 00% | 30 | 315360000 | 0 | 0 | | 3 | 75 U | | 69 U | 72 U | | Pyrene | UG/KG | 230 | 100 00% | 50000 | 15768000 | 0 | 3 | | 3 | 150 | | 61 J | 230 | | TPH | MG/KG | 419 | 100 00% | | | 0 | 3 | | 3 | 395 | | 119 | 290 | | Lead | | | 00 00% | 24.4 | | 0 | 3 | | 3 | 31.8 | | 1.1 | 24.3 | # SEAD-121G Rumored Coal Ash Disposal Area Table 32-1 ### Sample Collection Information SEAD-121G - Rumored Coal Ash Disposal Area ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------|----------|--------|--------|--------|--------|------|--| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL | SB121G-1 | EB214 | 3/7/98 | 0.00 | 0.20 | SA | Location is on E. edge of rumored ash disposal area. Location recommended by SEDA personal. Surface soil sample. | | SOIL | SB121G-1 |
EB215 | 3/7/98 | 0.58 | 1.20 | SA | Same area as above. Sample interval contained ash. | | SOIL | SB121G-2 | EB216 | 3/7/98 | 0.00 | 0.20 | SA | Location in central area of rumored ash disposal area. Surface soil sample. | | SOIL | SB121G-2 | EB217 | 3/7/98 | 0.75 | 1.10 | SA | Same area as above. Sample interval contained ash. | SA = Sample Table 32-2 SEAD-121G- Serravolatiles in Soil vs. NYTAGM Non-Evaluated Sites | SITE. DESCRIPTION | ٠ | | | | | | | | | | | SEAD-1
Rumore
Ash Disp
Area | d Coal
oosal | SEAD-1:
Rumore:
Ash Dis
Area | d Coal
cosel | SEAD-12
Rumored
Ash Disp
Area | Coal | SEAD-1
Rumore
Ash Dis
Area | ed Coel
sposal | | |--|----------------|--------------|-------------------|------------------|----------------|----------------------|--------|---|---------------|---|----------------|--------------------------------------|-----------------|---------------------------------------|-----------------|---|---------------|-------------------------------------|-------------------|----| | FOC ID | | | | | | | | | | | | SB121G | -1 | SB121G | -1 | SB121G- | 2 | SB1210 | 3-2 | | | SAMP_ID | | | | | | | | | | | | EB214
SA | | EB215
SA | | EB216 | | EB217
SA | | | | QC CODE | | | | | | | | | | | | SA | 0 | SA | 0 58 | SA | 0 | SA | 0.75 | | | SAMP DETH TOP
SAMP DEPTH BOT | | | | | | | | | | | | | 0.2 | | 12 | | 0.2 | | 11 | | | MATRIX | | | | | | | | | | | | SOIL | 0.2 | SOIL | 12 | SOIL | 0.2 | SOIL | 11 | | | SAMP DATE | | | FREQUENCY | | | | NUMBER | | NUMBER | | NUMBER | | Mar-98 | | Mar-98 | | far-98 | | 7-Mar-98 | | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | NYSDEC TAGM 4046 | PRG-RES | | TAGM | | OF
DETECTS | | OF
ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | | Q | | 1 2,4-Trichlorobenzene | UG/KG | 0 | 0 00% | | 3400 | 10528846 | | 0 | 0 |) | | 4 | 76 U | | 85 U | J | 150 U ' | | 80 1 | U | | 1,2-Dichlorobenzene | UG/KG | 0 | 0 00% | | 7900 | 94759615 | | 0 | 0 |) | | 4 | 76 U | | 85 U | | 150 U | | 80 1 | | | 1,3-Dichlorobenzene | UG/KG | 0 | 0 00% | | 1600 | 93706731 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 1 | | | 1,4-Dichlorobenzene - | UG/KG | 0 | 0 00% | | 8500 | 2866186 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0 00% | | 100 | 105288462 | | 0 | 0 | | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | 2.4,6-Trichlorophenol | UG/KG | 0 | 0 00% | | | 6253497 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 (| | | 2,4-Dichlorophenol | UG/KG | 0 | 0 00% | | 400 | 3158654 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 (| | | 2,4-Dimethylphenol | UG/KG | 0 | 0.00% | | *** | 21057692 | | 0 | 0 | | | 4 | 78 U | | 85 U | | 150 U | | 80 | | | 2,4-Dintrophenol | UG/KG | 0 | 0.00% | | 200 | 2105769 | | 0 | 0 | | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | 2,4-Dinitrotoluene | UG/KG | 0 | 0 00% | | 1000 | 2105769 | | 0 | 0 | | | 1 | 76 U | | 85 U | | 150 U | | 80 | | | 2,6-Dinitrotoluene | UG/KG | 0 | 0 00% | | 1000 | 1052885 | | 0 | 0 | | | 1 | 76 U | | 85 U
85 U | | 150 U | | 80 | | | 2-Chloronaphthalene | UG/KG
UG/KG | 0 | 0.00% | | 800 | 5264423 | | 0 | 0 | | | 7 | 76 U | | 85 U | | 150 U | | 80 | | | 2-Chlorophenol | UG/KG | 96 | 25 00% | | 36400 | 5204423 | | 0 | 1 | _ | | 7 | 76 U | | 85 U | | 96 J | | 80 | | | 2-Methylnaphthalene
2-Methylphenol | UG/KG | 0 | 0.00% | | 100 | 52644231 | | 0 | | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | 2-Nitroankne | UG/KG | ō | 0.00% | | 430 | 63173 | | 0 | o | | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | 2-Nitrophenol | UG/KG | o | 0.00% | | 330 | 00110 | | 0 | 0 | | | 4 | 76 U | | 85 U | , | 150 U | | 80 | | | 3,3'-Dichlorobenzidine | UG/KG | 0 | 0.00% | | - | 152863 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | 3-Nrtroeniline | UG/KG | 0 | 0.00% | | 500 | 3158654 | | 0 | 0 | 9 | | 4 | 180 U | | 200 U | | 380 U | | 200 | | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | | | | | 0 | 0 | 0 | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | | 61067308 | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | U | | 4-Chloro-3-methylphenol | UG/KG | 0 | 0.00% | | 240 | | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | U | | 4-Chloroaniline | UG/KG | 0 | 0 00% | | 220 | 4211538 | | 0 | 0 | | | 4 | 78 U | | 85 U | | 150 U | | 80 | | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0 00% | | | | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | 4-Methylphenol | UG/KG | 0 | 0 00% | | 900 | | | 0 | 0 | | | 4 | 78 U | | 85 U | | 150 U | | 80 | | | 4-Nitroaniline | UG/KG | 0 | 0 00% | | | 3158654 | | 0 | 0 | | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | 4-Nrtrophenol | UG/KG | 0 | 0 00% | | 100 | 63173077 | | 0 | | 9 | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | Acenaphthene | UG/KG | 63 | 25 00% | | 50000 | | | 0 | 1 | | | 4 | 76 U | | 85 U | | 63 J | | 80 | | | Acenephthylene | UG/KG | 15 | 25 00% | | 41000 | | | 0 | 1 | | | 4 | 78 U | | 85 U | | 15 J | | 80 | | | Anthracene | UG/KG | 360 | 75.00% | | 50000 | 315865385
94231 | | 0 | 3 | | | 1 | 7.7 J
54 J | | 48 J | - | 360 E | | 80
26 . | | | Benzo[a]anthracene | UG/KG | 1800 | 100 00% | | 224
61 | 9423 | | 1 | - 2 | | | 1 | 54 J | | 24 J
25 J | 63,463 | 1500 E | | 26 . | | | Benzo(a)pyrene | UG/KG
UG/KG | 1500
1400 | 100 00% | | 1100 | 94231 | | 1 | - 4 | | | 4 | 69 J | | 25 J | 27,010 | 1,000 E | | 37 | | | Benzo(b)fluoranthene | UG/KG | 830 | 100 00% | | 50000 | 34231 | | o | 4 | - | | 4 | 39 J | | 19 J | | 830 | | 22 | | | Benzo(ghi)perylene
Benzo(k)fluoranthene | UG/KG | 1400 | 100 00% | | 1100 | 942308 | | 1 | 4 | | | 4 | 57 J | | 25 J | 277.7010 | TARK E | | 29 | | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0.2000 | | 0 | C | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | | 62535 | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | | 982692 | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | U | | Bis(2-Ethylhexyi)phthalate | UG/KG | 15 | 50 00% | | 50000 | 4913462 | | 0 | 2 | | | 4 | 76 U | | 12 JB | | 150 U | | 15 | JB | | Butylbenzylphthalata | UG/KG | 0 | 0.00% | | 50000 | 210576923 | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Carbazole | UG/KG | 100 | 50 00% | | | 3439423 | | 0 | 2 | | | 4 | 69 J | | 85 U | | 100 J | | 80 | | | Chrysene | UG/KG | 1600 | 100 00% | | 400 | 9423077 | | 1 | 4 | | | 4 | 74 J | | 28 J | 27 (200) | | | 34 . | | | Di-n-butylphthalate | UG/KG | 45 | 50.00% | | 6100 | | | 0 | 2 | | | 4 | 4 J | | 85 U | | 150 U | | 4.5 | | | Di-n-octylphthalate | UG/KG | 33 | 75 00% | | 50000 | 21057692 | | 0 | 3 | | | 4 | 4.9 J | | 13 J | 100000000000000000000000000000000000000 | 150 U | | 33 . | | | Dibenz(a,h)anthracene | UG/KG | 430 | 100 00% | | 14 | 9423 | | 2 | 4 | | | 451510 | 44.7 | | 12 J | 45 By 181 | TALAL CO. | | 12 . | | | Dibenzofuran | UG/KG | 32 | 25 00% | | 6200 | 4211538 | | 0 | 1 | | | 4 | 76 U | | 85 U | | 32 J | | 80 | | | Diethyl phthalate | UG/KG | 17 | 100 00% | | 7100 | 842307692 | | 0 | 4 | 0 | | 4 | 11 J
76 U | | 17 J
85 U | | 93 J
150 U | | 77 | | | Ormethylphthalate | UG/KG | 0 | 0 00% | | | 10528846150 | | | | | | 7 | | | | | 3700 E | | 52 . | | | Fluoranthene | UG/KG | 3700
82 | 100 00%
50 00% | | 50000
50000 | 42115385
42115385 | | 0 | 4 2 | | | 4 | 140
8 4 J | | 50 J
85 U | , | 82 J | | 80 | 0 | | Fluorene | UG/KG
UG/KG | 0 | 0 00% | | 410 | 42993 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Hexachlorobenzene
Hexachlorobutadene | UG/KG | 0 | 0.00% | | 410 | 210577 | | 0 | | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | | 7370192 | | 0 | | 0 | | 4 | 76 U | | 85 U | | 150 U | | 60 | | | Hexachloroethane | UG/KG | 0 | 0.00% | | | 1052685 | | o | | 0 | | 4 | 78 U | | 85 U | , | 150 U | | 80 | | | Indeno[1,2,3-cd]pyrene | UG/KG | 880 | 100.00% | | 3200 | 94231 | | 0 | 4 | | | 4 | 42 J | | 18 J | | 880 | | 20 | | | Isophorone | UG/KG | 0 | 0.00% | | 4400 | | | D | 0 | | | 4 | 78 U | | 85 U | | 150 U | | 80 | | | N-Nitrosodiphenylamine | UG/KG | 0 | 0.00% | | | 14038462 | | 0 | 0 | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | | 9827 | | 0 | C | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Naphthalene | UG/KG | 12 | 25 00% | | 13000 | 42115385 | | 0 | 1 | 1 | | 4 | 76 U | | 85 U | | 12 J | | 80 | | | Nrtrobenzene | UG/KG | 0 | 0 00% | | 200 | 526442 | | 0 | 0 | | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Pentachlorophenol | UG/KG | 0 | 0.00% | | 1000 | 573237 | | 0 | | 0 | | 4 | 180 U | | 200 U | | 360 U | | 200 | | | Phenanthrene | UG/KG | 1500 | 100 00% | | 50000 | | | 0 | 4 | | | 4 | 83 | | 25 J | | 1500 E | | 31 . | | | Phenol | UG/KG | 0 | 0.00% | | 30 | 631730769 | | 0 | | 0 | | 4 | 76 U | | 85 U | | 150 U | | 80 | | | Pyrene | UG/KG | 3200 | 100 00% | | 50000 | 31586538 | | 0 | 4 | 6 | | 4 | 120 | | 51 J | | 3200 E | | 61 . | J | # Table 32 3 SEAD-121G - Semivolatiles in Soil vs. PRG_RES Non Evaluated Sites | SITE DESCRIPTION. LOC ID. SAMP_ID: OC CODE | | | | | | | | | SEAD-1;
Rumored
SB121G
EB214
SA | Coal | SEAD-121G
Rumored Coal
SB121G-1
EB215
SA | SEAD-121G
Rumored Coal
SB121G-2
EB216
SA | SEAD-121G
Rumored Coal
SB121G-2
EB217
SA | |--|----------------|-------------|--------------------|--------------------|----------------------|---------------|---------------|---|---|----------------|--|--|--| | SAMP. DETH TOP: | | | | | | | | | |
0 | 0.58 | 0 | 0 75 | | SAMP. DEPTH BOT.
MATRIX: | | | | | | | | | SOIL | 0.2 | 1.2
SOIL | 0 2
SOIL | 1 1
SOIL | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | | Mar 98 | 7-Mar-98 | 7-Mar-98 | 7-Mar-98 | | PARAMETER | UNIT | MAXIMUM | OF
DETECTION | NYSDEC TAGM 4046 F | PRG-RES | ABOVE
TAGM | OF
DETECTS | OF
ANALYSES | VALUE | 0 | VALUE Q | VALUE O | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | 0 | 0.00% | 3400 | 10528846 | 0 | 0 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 4 | 76 U | 85 U | 150 U | 80 U | | 1.2-Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 94759615 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 1,3-Dichlorobenzene
1,4-Dichlorobenzene | UG/KG
UG/KG | 0 | 0 00% | 1600
8500 | 93706731
2866186 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | 80 U
80 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 105288462 | 0 | 0 | | 4 | 180 U | 200 U | 360 U | 200 U | | 2,4,6-Trichlorophenol | UG/KG | 0 | 0.00% | 400 | 6253497
3158654 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 2,4-Dichlorophenol 2,4-Dimethylphenol | UG/KG
UG/KG | 0 | 0.00% | 400 | 21057692 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | 80 U
80 U | | 2.4-Dinitrophenol | UG/KG | 0 | 0 00% | 200 | 2105769 | 0 | 0 | | 4 | 180 U | 200 U | 360 U | 200 U | | 2,4-Dinitrotoluene 2.6-Dinitrotoluene | UG/KG
UG/KG | 0 | 0 00%
0 00% | 1000 | 2105769
1052885 | 0 | 0 | | 4 | 76 U | 85 U
85 H | 150 U
150 U | 80 U
80 U | | 2-Chloronaphthalene | UG/KG | 0 | 0.00% | 1000 | 1032003 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 2-Chlorophenol | UG/KG | 0 | 0.00% | 800 | 5264423 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 2-Methylnaphthalene
2-Methylphenol | UG/KG
UG/KG | 9.6
0 | 25 00%
0 00% | 36400
100 | 52644231 | 0 | 1 0 | | 4 | 76 U
76 U | 85 U
85 U | 9.6 J
150 U | 80 U
80 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 63173 | 0 | 0 | | 4 | 180 U | 200 U | 360 U | 200 U | | 2-Nitrophenol | UG/KG | 0 | 0 00% | 330 | | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 3,3 -Dichlorobenzidine 3-Nitroaniline | UG/KG
UG/KG | 0 | 0 00% | 500 | 152863
3158654 | 0 | 0 | | 4 | 76 U
180 U | 85 U
200 U | 150 U
360 U | 80 U
200 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 0 | 0.00% | 300 | 3130034 | 0 | 0 | | 4 | 180 U | 200 U | 360 U | 200 U | | 4-Bromophenyl phenyl ether | UG/KG | 0 | 0.00% | | 61067308 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 4-Chloro-3-methylphenol 4-Chloroaniline | UG/KG
UG/KG | 0 | 0.00% | 240
220 | 4211538 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | 80 U
80 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | LLO | 4211000 | 0 | ō | | 4 | 76 U | 85 U | 150 U | 80 U | | 4-Methylphenol | UG/KG | 0 | 0.00% | 900 | ****** | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | 4-Nitroaniline
4-Nitrophenol | UG/KG
UG/KG | 0 | 0.00%
0.00% | 100 | 3158654
63173077 | 0 | 0 | | 4 | 180 U
180 U | 200 U
200 U | 360 U
360 U | 200 U
200 U | | Acenaphthene | UG/KG | 63 | 25.00% | 50000 | 00170077 | ō | 1 | | 4 | 76 U | 85 U | 63 J | 80 U | | Acenaphthylene | UG/KG | 15 | 25.00% | 41000
50000 | 315865385 | 0 | 1 | | 4 | 76 U | 85 U | 15 J | 80 U | | Anthracene
Benzo[a]anthracene | UG/KG
UG/KG | 360
1800 | 75 00%
100,00% | 224 | 94231 | 0 | 3 4 | | 4 | 7.7 J
54 J | 4.8 J
24 J | 360
1800 E | 80 U
26 J | | Benzo[a]pyrene | UG/KG | 1500 | 100.00% | 61 | 9423 | 0 | 4 | | 4 | 54 J | 25 J | 1500 E | 26 J | | Benzo(b)fluoranthene | UG/KG
UG/KG | 1400
830 | 100.00%
100.00% | 1100
50000 | 94231 | 0 | 4 | | 4 | 39 J | 25 J
19 J | 1400 E
830 | 37 J
22 J | | Benzo(ghi)perylene
Benzo(k)fluoranthene | UG/KG | 1400 | 100.00% | 1100 | 942308 | 0 | 4 | | 4 | 57 J | 25 J | 1400 E | 22 J
29 J | | Bis(2-Chloroethoxy)methane | UG/KG | 0 | 0.00% | | | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Bis(2-Chloroethy!)ether
Bis(2-Chloroisopropyl)ether | UG/KG
UG/KG | 0 | 0.00%
0.00% | | 62535
982692 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | U 08
U 08 | | Bis(2-Ethylhexyl)phthalate | UG/KG | 15 | 50 00% | 50000 | 4913462 | 0 | 2 | | 4 | 76 U | 12 JB | 150 U | 15 JB | | Butylbenzylphthalate | UG/KG | 0 | 0.00% | 50000 | 210576923 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Carbazole | UG/KG
UG/KG | 100
1600 | 50 00%
100,00% | 400 | 3439423
9423077 | 0 | 2 | | 4 | 6.9 J
74 J | 85 U
28 J | 100 J
1600 E | 80 U
34 J | | Chrysene
Di-n-butylphthalate | UG/KG | 4 5 | 50.00% | 8100 | 5425077 | 0 | 2 | | 4 | 4 J | 85 U | 150 U | 4.5 J | | Di-n-octylphthalate | UG/KG | 33 | 75 00% | 50000 | 21057692 | 0 | 3 | | 4 | 4.9 J | 13 J | 150 U | 33 J | | Dibenz[a,h]anthracene
Dibenzofuran | UG/KG
UG/KG | 430
32 | 100.00%
25 00% | 14
6200 | 9423
4211538 | 0 | 4 | | 4 | 17 J
76 U | 12 J
85 U | 430
32 J | 12 J
80 U | | Diethyl phthalate | UG/KG | 17 | 100 00% | 7100 | 842307692 | 0 | 4 | | 4 | 11 J | 17 J | 9.3 J | 7.7 J | | Dimethylphthalate | UG/KG | 0 | 0.00% | 2000 | 10528846150 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Fluoranthene
Fluorene | UG/KG
UG/KG | 3700
82 | 100 00%
50 00% | 50000
50000 | 42115385
42115385 | 0 | 4 2 | | 4 | 140
6 4 J | 50 J
85 U | 3700 E
82 J | 52 J
80 U | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 42993 | ō | ō | | 4 | 76 U | 85 U | 150 U | 80 U | | Hexachlorobutadiene | UG/KG | 0 | 0.00% | | 210577 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Hexachlorocyclopentadiene
Hexachloroethane | UG/KG
UG/KG | 0 | 0.00% | | 7370192
1052885 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | 80 U
80 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 880 | 100.00% | 3200 | 94231 | 0 | 4 | | 4 | 42 J | 18 J | 880 | 20 J | | Isophorone | UG/KG | 0 | 0.00% | 4400 | | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | N-Nitrosodiphenylamine | UG/KG
UG/KG | 0 | 0.00%
0.00% | | 14038462
9827 | 0 | 0 | | 4 | 76 U
76 U | 85 U
85 U | 150 U
150 U | ₩ 08
U 08 | | N-Nitrosodipropylamine
Naphthalene | UG/KG | 12 | 25.00% | 13000 | 42115385 | 0 | 1 | | 4 | 76 U | 85 U | 12 J | 80 U | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 526442 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Pentachlorophenol | UG/KG
UG/KG | 0
1500 | 0.00%
100.00% | 1000
50000 | 573237 | 0 | 0 | | 4 | 180 U
83 | 200 U
25 J | 360 U
1500 E | 200 U
31 J | | Phenanthrene
Phenol | UG/KG | 1500 | 0.00% | 30 | 631730769 | 0 | 0 | | 4 | 76 U | 85 U | 150 U | 80 U | | Pyrene | UG/KG | 3200 | 100,00% | 50000 | 31586538 | 0 | 4 | | 4 | 120 | 51 J | 3200 E | 61 J | #### Table 32-4 SEAD 1210: Metals in Soil vs. NYTAGM Non Evaluated Sites | SITE | | | | | | | | | SEAD-121G | SEAD-121G | SEAD-121G | SEAD-121G | |----------------|-------|---------|-----------|----------------------|----------|--------|---------|--------------|---------------|--------------|---------------------|-------------------| | | | | | | | | | | Rumored Coal | Rumored Coal | Rumored Coal | Rumored Coal | | | | | | | | | | | Ash Disposal | Ash Disposal | Ash Disposal | Ash Disposal | | DESCRIPTION | | | | | | | | | Area | Area | Area | Area | | LOC ID | | | | | | | | | SB121G 1 | SB121G-1 | SB121G-2 | SB121G-2 | | SAMP, ID | | | | | | | | | EB214 | EB215 | EB216 | EB217 | | QC CODE | | | | | | | | | SA | SA | SA | SA SA | | SAMP DETH TOP | | | | | | | | | 0 | 0.58 | 0 | 0.75 | | SAMP DEPTH BOT | | | | | | | | | 0.2 | 1.2 | 0.2 | 11 | | MATRIX | | | | | | | | | SOIL | SOIL | \$DIL | | | SAMP DATE | | | FREQUENCY | , | | NUMBER | NUMBER | NUMBER | 7-Mar-98 | 7-Mar-98 | 7-Mar-98 | SOIL | | | | | OF | | | ABOVE | OF | OF | 7 - WAT - 200 | 7-Mai-30 | /-Mar-98 | 7-Mar-98 | | PARAMETER | UNIT | MAXIMUM | | NYSDEC TAGM 4046 PRO | 3 RES | TAGM | DETECTS | ANALYSE'S | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | Aluminum | MG/KG | 11500 | 100 00% | 19520 | 1052885 | 0 | 4 | 711971 100 3 | 10900 | 832 | 11500 | VALUE Q
8660 | | Antimony | MG/KG | 0.9 | 100 00% | 6 | 421 | 0 | 2 | | 2 08 UN | 0.87 UN | 0.72 BN | 0.9 BN | | Arsenic | MG/KG | 4.8 | 75 00% | 8.9 | 46 | 0 | 3 | | 4 1 | 09 1 | 43 | 4.8 | | Barium | MG/KG | 82 | 100 00% | 300 | 73702 | 0 | 4 | - | 814 | 17 B | 82 | 4 8
68 4 | | Beryllium | MG/KG | 0.46 | 100 00% | 1 13 | 16 | 0 | 4 | , | 0 42 B | 0 08 B | 0.46 B | | | Cadmium | MG/KG | | 0.00% | 2 46 | 526 | 0 | 0 | 7 | 007 0 | 0.07 U* | 0.09 N _e | 0.34 B
0.07 U* | | Calcium | MG/KG | 44800 | 100 00% | 125300 | | 0 | 4 | | 44800 | 801 B | 23600 | 8950 | | Chromium | MG/KG | 17.8 | 133 33% | 30 | 1052885 | 0 | 4 | | 159 | 11 B* | 178 * | | | Cobalt | MG/KG | | 100 00% | 30 | 63173 | 0 | 4 | 7 | 73 B | 0 87 B | 8.6 | 128 * | | Copper | MG/KG | 21 4 | 100 00% | 33 | 42115 | 0 | 4 | - | 193 | 66 * | 21 4 * | 6 B
19 2 * | | Cyanide | MG/KG | 0 | 0.00% | 0 35 | | 0 | 'n | 7 | 0 63 U | 0 66 U | 0 67 U | | | Iron | MG/KG | 20100 | 100 00% | 37410 | 315865 | 0 | 4 | | 1 17100 | 780 | 20100 | 0 64 U
13500 | | Lead | MG/KG | 45.9 | 100 00% | 24.4 | 0.11.000 | 2 | 4 | - | 30.8 | 1.4 | 46.9 | 20.9 | | Magnesium | MG/KG | 5810 | 133 33% | 21700 | | n | 4 | | 3 4880 ° | 109 B* | 5810 * | 3210 * | | Manganese | MG/KG | 378 | 100 00% | 1100 | 24216 | ů. | 4 | 7 | 354 | 31.5 | 378 | 284 | | Mercury | MG/KG | 0.06 | 50 00% | 0.1 | 316 | | 2 | - | 0.06.8 | 0.05 U | 0.06 8 | 0.05 U | | Nickel | MG/KG | 23 | 133 33% | 50 | 21058 | o o | 4 | - | 20 5 E* | 25 BE* | 23 E* | 18 7 E* | | Potassium | MG/KG | 1900 | 100 00% | 2623 | | 0 | 4 | - | 1900 | 157 B | 1470 | 1130 B | | Selenium | MG/KG | 0 | 0.00% | 2 | 5264 | 0 | 0 | | 1 1 UN | 1 2 UN | 0 92 UN | 11 UN | | Silver | MG/KG | 0 | 0.00% | 0.8 | 5264 | 0 | 0 | | 0 48 U | 0 52 U | 0 41 U | 05 U | | Sodium | MG/KG | 0 | 0.00% | 188 | | 0 | 0 | 4 | 1 139 U | 152 U | 119 U | 144 U | | Thallium | MG/KG | 16 | 25 00% | 0 855 | 84 | 1 | 1 | | 14 U | 16 U | 12 U | 1.6 B | | Vanadium | MG/KG |
20 6 | 100 00% | 150 | 7370 | 0 | 4 | | 1 195 E | 3 2 BE | 20 6 E | 162 E | | Zinc | MG/KG | 79 9 | 100 00% | 115 | 315865 | ō | 4 | - | 1 742 | 54 | 79 9 | 50 2 | | | | | | | | - | • | | | 3.4 | , 3 3 | 30 2 | # Table 32-5 SEAD 121G Metals in Soil vs PRG_RES Non-Evaluated Sites | SITE. DESCRIPTION LOC ID. SAMP_ID: QC CODE | | | | | | | | | SEAD-121G
Rumored Co
SB121G-1
EB214
SA | | SEAD-121G
Rumored Coal
SB121G-1
EB215
SA | SEAD-121G
Rumored Coal
SB121G-2
EB216
SA | SEAD-121G
Rumored Coal
SB121G-2
EB217
SA | |--|-------|---------|-----------------|--------------------|---------|-----------------|--------------|--------------|--|--------|--|--|--| | SAMP DETH TOP | | | | | | | | | | 0 | 0.58 | 0 | 0.75 | | SAMP DEPTH BOT | | | | | | | | | | .2 | 1 2 | 0 2 | 1.1 | | MATRIX | | | | | | | | | SOIL | | SOIL | SOIL | SOIL | | SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | 7-Mar- | 98 | 7-Mar-98 | 7-Mar-98 | 7-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | NYSDEC TAGM 4046 F | PRG RES | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE Q | VALUE Q | VALUE Q | | Aluminum | MG/KG | 11500 | 100.00% | 19520 | 1052885 | 0 | 4 | | 4 109 | 00 | 832 | 11500 | 8660 | | Antimony | MG/KG | 0.9 | 100.00% | 6 | 421 | 0 | 2 | | 2 (| .8 UN | 0 87 UN | 0.72 BN | 0.9 BN | | Arsenic | MG/KG | 4 8 | 75.00% | 8 9 | 46 | 0 | 3 | | 4 4 | 1 | 0.9 U | 4.3 | 4.8 | | Barrum | MG/KG | 82 | 100.00% | 300 | 73702 | 0 | 4 | | 4 81 | 4 | 17 B | 82 | 68 4 | | Beryllium | MG/KG | 0 46 | 100.00% | 1 13 | 16 | 0 | 4 | | 4 0. | 42 B | 0.08 B | 0.46 B | 0 34 B | | Cadmium | MG/KG | 0 | 0 00% | 2 46 | 526 | 0 | 0 | | 4 0. | 07 U* | 0.07 U* | 0 06 U* | 0.07 U* | | Calcium | MG/KG | 44800 | 100.00% | 125300 | | 0 | 4 | | 4 448 | 00 | 801 B | 23600 | 8950 | | Chromium | MG/KG | 17 8 | 133 33% | 30 | 1052885 | 0 | 4 | | 3 15 | .9 * | 1 1 B* | 178 * | 12.8 * | | Cobalt | MG/KG | 8 | 100.00% | 30 | 63173 | 0 | 4 | | 4 7 | '.3 B | 0.87 B | 8 B | 6 B | | Copper | MG/KG | 21.4 | 100.00% | 33 | 42115 | 0 | 4 | | 4 19 | 1.3 * | 6.6 * | 21.4 * | 19.2 * | | Cyanide | MG/KG | 0 | 0 00% | D 35 | | 0 | 0 | | 4 0. | 63 U | 0.66 U | 0.67 U | 0.64 U | | Iron | MG/KG | 20100 | 100 00% | 37410 | 315865 | 0 | 4 | | 4 171 | 00 | 780 | 20100 | 13500 | | Lead | MG/KG | 45 9 | 100.00% | 24.4 | | 0 | 4 | | 4 30 | | 1.4 | 45.9 | 20 9 | | Magnesium | MG/KG | 5810 | 133.33% | 21700 | | 0 | 4 | | | 80 * | 109 B* | 5810 * | 3210 * | | Manganese | MG/KG | 378 | 100 00% | 1100 | 24216 | 0 | 4 | | | 54 | 31.5 | 378 | 284 | | Mercury | MG/KG | 0.06 | 50.00% | 0.1 | 316 | 0 | 2 | | | 06 B | 0.05 U | 0.06 B | 0.05 U | | Nickel | MG/KG | 23 | 133.33% | 50 | 21058 | 0 | 4 | | |),5 E* | 2.5 BE* | 23 E* | 18.7 E* | | Potassium | MG/KG | 1900 | 100 00% | 2623 | | 0 | 4 | | 4 19 | 00 | 157 B | 1470 | 1130 B | | Setenium | MG/KG | 0 | 0 00% | 2 | 5264 | 0 | 0 | | 4 1 | .1 UN | 1.2 UN | 0.92 UN | 1 1 UN | | Silver | MG/KG | | 0 00% | 0.8 | 5264 | 0 | 0 | | | 48 U | 0 52 U | 0.41 U | 0.5 U | | Sodium | MG/KG | | 0 00% | 188 | | 0 | 0 | | | 39 U | 152 U | 119 U | 144 U | | Thallium | | | 25.00% | 0 855 | 84 | 0 | 1 | | | .4 U | 1.6 U | 1 2 U | 16 B | | Vanadium | MG/KG | 20 6 | 100 00% | 150 | 7370 | 0 | 4 | | | 5 E | 3 2 BE | 20.6 E | 16.2 E | | Zinc | MG/KG | 79 9 | 100 00% | 115 | 315865 | 0 | 4 | | 4 74 | 2 | 5.4 | 79.9 | 50 2 | ## SEAD-121H Rumored Coal Disposal Area Table 33-1 ### Sample Collection Information SEAD-121H - Rumored Coal Disposal Area ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION | SAMPLE | SAMPLE | TOP | BOTTOM | QC | RATIONALE FOR SAMPLE | |--------|----------|--------|---------|--------|--------|------|---| | | ID | ID | DATE | (feet) | (feet) | CODE | LOCATION | | SOIL | SB121H-1 | EB254 | 3/16/98 | 0.00 | 0.90 | SA | Rumored location verified by SEDA personal. The site has been covered by a roadsalt storage dome. Boring was done on the NE perimeter of the dome. Sample interval included coal. | | SOIL | SB121H-1 | EB255 | 3/16/98 | 6.90 | 7.50 | SA | Same location as above. Sample taken at only other boring interval to contain coal. | | SOIL | SB121H-2 | EB252 | 3/16/98 | 0.00 | 0.30 | SA | Rumored location verified by SEDA personal. The site has been covered by a roadsalt storage dome. Boring was done on the South perimeter of the dome. Surface soil sample. | | SOIL | SB121H-2 | EB253 | 3/16/98 | 7.30 | 7.70 | SA | Same location as above. Sample taken at just above bedrock. (near water table). No detected VOC's or impact to soils. | Notes: SA = Sample ## Table 33.2 SEAD-121H Semivolatiles in Soil vs. NYTAGM Non Evaluated Sites | SITE | | | | | | | | | | SEAD-12 | 1H | SEAD-1 | 21H | SEAD | >121H | s | EAD-12 | 1H | |--|----------------|--------------|----------------|---------------------|--------------------|--------|---|--------------|-----------|------------------|----------------|-----------------|----------------|--------------|----------------|-----|--------|---------------| | DEADDELON | | | | | | | | | | Rumored | | Rumore | | Rumo | red Coal | R | umored | Coal | | DESCRIPTION
LOC ID | | | | | | | | | | Disposal | | Disposa | | | sal Area | | sposal | | | SAMP ID | | | | | | | | | | SB121H-
EB252 | 1 | SB121H
EB254 | 1-7 | S812
EB25 | | | B121H- | 2 | | QC CODE | | | | | | | | | | SA | | SA SA | | SA | 5 | E S | B253 | | | SAMP DETH TOP | | | | | | | | | | 0-1 | 0 | 3/ | 0 | 3.4 | 6.9 | 3 | M | 7.3 | | SAMP DEPTH BOT | | | | | | | | | | | 03 | | 0.9 | | 7.5 | | | 7 7 | | MATRIX | | | | | | | | | | SOIL | | SOIL | | SOIL | | s | OIL | | | SAMP DATE | | | FREQUENCY | | | NUMBER | | NUMBER | NUMBER | | 16-Mar 98 | 16-8 | Mar-98 | 18 | 6-Mar-98 | | 16-M | ar-98 | | DARAMETER | | | QF | WARE THEM | DDC NO | ABOVE | | OF | OF | | | | | | | | | | | PARAMETER 1 2 4-Trichlorobenzene | UNIT
UG/KG | MAXIMUM
0 | | VYSDEC TAGM
3400 | PRG IND 5256000 | TAGM | 0 | DETECTS
0 | ANAL YSES | VALUE
4 | 2
72 U | VALUE | | VALU | | V | ALUE | _ Q | | 1.2-Dichlorobenzene | UG/KG | 0 | | 7900 | 47304000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U
72 U | | | 79 U
79 U | | 1.3-Dichlorobenzene | UG/KG | 0 | | 1600 | 46778400 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 1,4-Dichlorobenzene | UG/KG | 0 | | 8500 | 238467 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2,4,5-Trichlorophenol | UG/KG | 0 | 0 00 10 | 100 | 52560000 | | 0 | 0 | | 4 | 170 U | | 170 U | | 180 U | | | 190 U | | 2,4,6-Trichlorophenal | UG/KG | 0 | | | 520291 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2,4 Dichlorophenol | UG/KG | 0 | | 400 | 1576800 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2.4 Dimethylphenol | UG/KG | 0 | | | 10512000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2,4-Dinitrophenol 2,4-Dinitrotoluene | UG/KG
UG/KG | 0 | 0 00 70 | 200 | 1051200
1051200 | | 0 | 0 | | 4 | 170 U
72 U | | 170 U | | 180 U | | | 190 U | | 2,6-Dinitratoluene | UG/KG | 0 | | 1000 | 525600 | | 0 | 0 | | 4 | 72 U | | 69 U
69 U | | 72 U
72 U | | | 79 U
79 U | | 2-Chloronaphthalene | UG/KG | 0 | | 1000 | 525000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2-Chlorophenol | UG/KG | ō | | 800 | 2628000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2-Methylnaphthalene | UG/KG | 20 | | 36400 | | | 0 | 2 | | 4 | 72 U | | 20 J | | 16 J | | | 79 U | | 2-Methylphenol | UG/KG | 0 | | 100 | 26280000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 2 Ndroaniline | UG/KG | 0 | | 430 | 31536 | | 0 | 0 | | 4 | 170 U | | 170 U | | 180 U | | | 190 U | | 2-Nitrophenol | UG/KG | 0 | | 330 | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 3,3 -Dichlorobenzidine 3-Nitroaniline | UG/KG
UG/KG | 0 | | 500 | 12718
1576800 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 4.6-Dintro-2-methylphenol | UG/KG | 0 | 0 00%
0 00% | 500 | 1370000 | | 0 | 0 | | 4 | 170 U
170 U | | 170 U
170 U | | 180 U
180 U | | | 190 U | | 4 Bromophenyl phenyl ether | UG/KG | 0 | | | 30484800 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 190 U
79 U | | 4-Chloro-3-methylphenol | UG/KG | 0 | | 240 | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 4-Chloroaniline | UG/KG | 0 | 0 00% | 220 | 2102400 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | | | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 4-Methylphenol | UG/KG | 0 | | 900 | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | 4-Nitroaniline | UG/KG | . 0 | | 400 | 1576800 | | 0 | 0 | | 4 | 170 U | | 170 U | | 180 U | | | 190 U | | 4-Nitrophenol Acenaphthene | UG/KG
UG/KG | 0 | | 100
50000 | 31536000 | | 0 | 0 | | 4 | 170 U
72 U | | 170 U
69 U | | 180 U
72 U | | | 190 U
79 U | | Acenaphthylene | UG/KG | 0 | | 41000 | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Anthracene | UG/KG | ō | | 50000 | 157680000 | | 0 | ō | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Benzo[a]anthracene | UG/KG | 12 | | 224 | 7840 | | 0 | 4 | | 4 | 7 2 J | | 12 J | | 4.2 J | | | 98 J | | Benzo(a)pyrene | UG/KG | 10 | | 61 | 784 | | 0 | 3 | | 4 | 10 J | | 8.6 J | | 72 U | | | 8 J | | Benzo(b)fluoranthene | UG/KG | 15 | | 1100 | 7840 | | 0 | 4 | | 3 | 15 J | | 15 J | | 7 2 JY | | | 9 J | | Benzo(ghi)perylene | UG/KG
UG/KG | 13
16 | | 50000
1100 | 78400 | | 0 | 4 | | 4 | 13 J | | 94 J | | 47 J | | | 83 J | | Benzo(k)fluoranthene
Bis(2-Chloroethoxy)methane | UG/KG | 0 | | 1100 | 76400
 | 0 | 0 | | 4 | 16 J
72 U | | 10 J
69 U | | 72 U
72 U | | | 86 J
79 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | | | 5203 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0 00% | | 81760 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 8 4 | | 50000 | 408800 | | 0 | 4 | | 4 | 5 2 JB | | 8 4 JB | | 7 4 JB | | | 69 JB | | Butylbenzylphthalate | UG/KG | 4 4 | | 50000 | 105120000 | | 0 | 1 | | 4 | 72 U | | 4 4 J | | 72 U | | | 79 U | | Carbazole | UG/KG | 0 | | | 286160 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Chrysene
Dun hydrolehthadata | UG/KG
UG/KG | 18
3 5 | | 400
8100 | 784000 | | 0 | 4 | | 4 | 12 J | | 18 J
3 5 J | | 7 2 J | | | 12 J | | Di-n-butylphthalate Di-n-octylphthalate | UG/KG | 0 | | 50000 | 10512000 | | 0 | 0 | | 4 | 72 U
72 U | | 69 U | | 72 U
72 U | | | 79 U
79 U | | Dibenz[a,h]anthracene | UG/KG | 76 | | 14 | 784 | | Ô | 2 | | 4 | 76 J | | 64 J | | 72 U | | | 79 U | | Dibenzoluran | UG/KG | 7 8 | | 6200 | 2102400 | | 0 | 2 | | 4 | 72 U | | 7 8 J | | 49 J | | | 79 U | | Diethyl phthalate | UG/KG | 13 | 100 00% | 7100 | 420480000 | | 0 | 4 | | 4 | 5 4 JB | | 13 JB | | 9 4 JB | | | 12 JB | | Dimethylphthalate | UG/KG | 0 | | 2000 | 5256000000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Fluoranthene | UG/KG | 33 | | 50000 | 21024000 | | 0 | 4 | | 4 | 15 J | | 33 J | | 10 J | | | 23 J | | Fluorene | UG/KG | 0 | | 50000 | 21024000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Hexachlorobenzene
Hexachlorobutadiene | UG/KG
UG/KG | 0 | | 410 | 3577
73374 | | 0 | 0 | | 4 | 72 U
72 U | | 69 U | | 72 U
72 U | | | 79 U
79 U | | Hexachlorocyclopentadiene | UG/KG | 0 | | | 3679200 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Hexachloroethane | UG/KG | 0 | | | 408800 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 13 | | 3200 | 7840 | | 0 | 3 | | 4 | 13 J | | 8 1 J | | 72 U | | | 83 J | | Isapharane | UG/KG | 0 | | 4400 | | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | N-Nitrosodiphenylamine | UG/KG | 0 | | | 1168000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | N-Nitrosodipropylamine | UG/KG | 0 | | | 818 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Naphthalene | UG/KG | 12 | | 13000 | 21024000 | | 0 | 2 | | 4 | 72 U | | 12 J | | 89 J | | | 79 U | | Nitrobenzene | UG/KG | 0 | | 200
1000 | 262800
47693 | | 0 | 0 | | 4 | 72 U
170 U | | 69 U
170 U | | 72 U | | | 79 U | | Pentachlorophenol Phenanthrene | UG/KG
UG/KG | 0
34 | | 50000 | 4/693 | | 0 | 0 | | 4 | 170 U
7 1 J | | 170 U
34 J | | 180 U
15 J | | | 190 U
13 J | | Phenoi | UG/KG | 0 | | 30 | 315360000 | | 0 | 0 | | 4 | 72 U | | 69 U | | 72 U | | | 79 U | | Pyrene | UG/KG | 22 | | 50000 | 15768000 | | 0 | 4 | | 4 | 10 J | | 22 J | | 75 J | | | 17 J | ## Table 33-3 SEAD-121H Semivolatiles in Soil vs. PRG IND Non Evaluated Sites | SITE | | | | | | | | | SEAD-
Rumor | -121H
red Coal | SEAD-121H
Rumored Coal | SEAD-121H
Rumored Coal | SEAD-121H
Rumored Coal | |--|----------------|---------|-----------|-------|------------|--------|---------|----------|----------------|-------------------|---------------------------|---------------------------|---------------------------| | DESCRIPTION | | | | | | | | | Dispos | sal Area | Disposal Area | Disposal Area | Disposal Area | | LOC ID | | | | | | | | | SB121 | | SB121H-1 | SB121H-2 | SB121H-2 | | SAMP_ID | | | | | | | | | EB252 | 2 | EB254 | EB255 | EB253 | | QC CODE | | | | | | | | | SΛ | | SA | SA | SA | | SAMP DETH TOP | | | | | | | | | | 0 | 0 | 6 9 | 7 3 | | SAMP DEPTH BOT | | | | | | | | | | 0 3 | 0.9 | 7.5 | 7 7 | | MATRIX
SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | NUMBER | SOIL | 16-Mar-98 | SOIL
16-Mar-98 | SOIL
16-Mar-98 | SOIL
16-Mar-98 | | | | | OF | | | ABOVE | OF | OF | | | | | | | PARAMETER | TIMU | MUMIXAM | | | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | | VALUE Q | VALUE Q | VALUE Q | | 1.2 4-Trichlorobenzene | UG/KG | 0 | 0 00% | 3400 | 5256000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 1.2 Dichlorobenzene | UG/KG | 0 | 0 00% | 7900 | 47304000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 1 3 Dichlarabenzene | UG/KG | 0 | 0.00% | 1600 | 46778400 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 1,4-Dichlorobenzene | UG/KG | 0 | 0 00% | 8500 | 238467 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2 4,5 Trichlorophenol | UG/KG | 0 | 0.00% | 100 | 52560000 | 0 | 0 | | 4 | 170 U | 170 U | 180 U | 190 U | | 2.4 6 Trichlorophenol | UG/KG | 0 | 0 00% | | 520291 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2 4-Dichlorophenol | UG/KG | 0 | 0.00% | 400 | 1576800 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2.4 Dimethylphenol | UG/KG | 0 | 0 00% | | 10512000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2.4-Dinitrophenal | UG/KG | 0 | 0 00% | 200 | 1051200 | 0 | 0 | | 4 | 170 U | 170 U | 180 U | 190 U | | 2 4-Dinitrotoluene | UG/KG | 0 | 0 00% | | 1051200 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2.6-Dinitrotoluene | UG/KG | 0 | 0 00% | 1000 | 525600 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2 Chloronaphthalene | UG/KG | 0 | 0.00% | 000 | 202222 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | 2-Chlorophenol | UG/KG | 0 | 0 00% | 900 | 2628000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2-Methylnaphthalene | UG/KG | 20 | 50 00% | 36400 | 26280000 | 0 | 2 | | 4 | 72 U | 20 J | 16 J | 79 U | | 2-Methylphenol | UG/KG | 0 | 0 00% | 100 | | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 2-Nitroaniline | UG/KG | 0 | 0.00% | 430 | 31536 | 0 | 0 | | 4 | 170 U
72 U | 170 U | 180 U | 190 U | | 2 Nitrophenol | UG/KG
UG/KG | 0 | 0 00% | 330 | 12718 | 0 | 0 | | 4 | 72 U | 69 U
69 U | 72 U
72 U | 79 U | | 3.3 -Dichlorobenzidine | | | | 500 | | 0 | 0 | | 4 | | | | 79 U | | 3-Nitroankine | UG/KG | 0 | 0 00% | 500 | 1576800 | 0 | 0 | | 4 | 170 U | 170 U | 180 U | 190 U | | 4,6-Dinitra 2-methylphenol | UG/KG
UG/KG | 0 | 0 00% | | 30484800 | 0 | 0 | | 4 | 170 U
72 U | 170 U | 72 11 | 190 U
79 U | | 4-Bromophenyl phenyl ether | UG/KG
UG/KG | 0 | 0.00% | 240 | 30484800 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 4-Chloro-3 methylphenol
4-Chloroaniline | UG/KG | 0 | 0 00% | 720 | 2102400 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 4-Chlorophenyl phenyl ether | UG/KG | 0 | 0.00% | 120 | 2102400 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 4-Onlorophenyl phenyl emer
4-Methylphenol | UG/KG | 0 | 0 00% | 900 | | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | 4-Nitroaniline | UG/KG | 0 | 0 00% | 900 | 1576800 | 0 | 0 | | 4 | 170 U | 170 U | 180 U | 190 U | | 4-Nitrophenol | UG/KG | 0 | 0 00% | 100 | 31536000 | 0 | 0 | | 4 | 170 U | 170 U | 180 U | 190 U | | | UG/KG | 0 | 0.00% | 50000 | 31536000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 190 U | | Acenaphthene
Acenaphthylene | UG/KG | 0 | 0.00% | 41000 | | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Anthracene | UG/KG | 0 | 0 00% | 50000 | 157680000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Benzo(a)anthracene | UG/KG | 12 | 100 00% | 224 | 7840 | 0 | 4 | | 4 | 7 2 J | 12 J | 42 J | 98 J | | Benzo(a)pyrene | UG/KG | 10 | 75 00% | 61 | 784 | 0 | 3 | | 4 | 10 J | 86 J | 72 U | 8 J | | Benzo[b]fluoranthene | UG/KG | 15 | 133 33% | 1100 | 7840 | 0 | 4 | | 3 | 15 J | 15 J | 7 2 JY | 9 3 | | Benzo(ghi)perylene | UG/KG | 13 | 100 00% | 50000 | 1040 | 0 | 4 | | 4 | 13 . | 9 4 J | 47 J | 83 J | | Benzo[k]fluoranthene | UG/KG | 16 | 75 00% | 1100 | 78400 | 0 | 3 | | 4 | 16 J | 10 J | 72 U | 86 J | | Bis(2 Chloroethoxy)methane | UG/KG | 0 | 0 00% | | | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Bis(2-Chloroethyl)ether | UG/KG | 0 | 0.00% | | 5203 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 0 | 0.00% | | 81760 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Bis(2 Ethylhexyl)phthalate | UG/KG | 8.4 | 100 00% | 50000 | 408800 | 0 | 4 | | 4 | 5 2 JB | 8 4 JB | 7 4 JB | 69 JB | | Butylbenzylphthalate | UG/KG | 4.4 | 25 00% | 50000 | 105120000 | 0 | 1 | | 4 | 72 U | 4 4 J | 72 U | 79 ∪ | | Carbazole | UG/KG | 0 | 0 00% | | 286160 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Chrysene | UG/KG | 18 | 100 00% | 400 | 784000 | 0 | 4 | | 4 | 12 J | 18 J | 7 2 J | 12 J | | Di-n-buty/phthalate | UG/KG | 35 | 25 00% | 8100 | | 0 | 1 | | 4 | 72 U | 35 J | 72 U | 79 U | | Di-n-octylphthalate | UG/KG | 0 | 0 00% | 50000 | 10512000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Dibenz(a,h)anthracene | UG/KG | 76 | 50 00% | 14 | 784 | 0 | 2 | | 4 | 76 J | 64 J | 72 U | 79 U | | Dibenzofuran | UG/KG | 7 8 | 50 00% | 6200 | 2102400 | 0 | 2 | | 4 | 72 U | 78 J | 49 J | 79 ∪ | | Diethyl phthalate | UG/KG | 13 | 100 00% | 7100 | 420480000 | 0 | 4 | | 4 | 5 4 JB | 13 JB | 9 4 JB | 12 JB | | Dimethylphthalate | UG/KG | 0 | 0 00% | 2000 | 5256000000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Ftuoranthene | UG/KG | 33 | 100 00% | 50000 | 21024000 | 0 | 4 | | 4 | 15 J | 33 J | 10 J | 23 J | | Fluorene | UG/KG | 0 | 0.00% | 50000 | 21024000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Hexachlorobenzene | UG/KG | 0 | 0 00% | 410 | 3577 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Hexachlorobutadiene | UG/KG | 0 | 0 00% | | 73374 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | Hexachloroethane | UG/KG | 0 | 0.00% | | 406800 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | Indena(1 2 3-cd)pyrene | UG/KG | 13 | 75 00% | 3200 | 7840 | 0 | | | 4 | 13 J | 81 J | 72 U | 83 J | | Isophorone | UG/KG | 0 | 0 00% | 4400 | | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 1168000 | 0 | 0 | | 4 | 72 U | 69 U | 72 U | 79 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 818 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | |
Naphthalene | UG/KG | 12 | 50 00% | 13000 | 21024000 | 0 | | | 4 | 72 U | 12 J | 8 g J | 79 U | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | | | 4 | 170 U | 170 U | 180 U | 190 U | | Phenanthrene | UG/KG | 34 | 100 00% | 50000 | | 0 | | | 4 | 71 J | 34 J | 15 J | 13 J | | Phenol | UG/KG | 0 | 0 00% | 30 | 315360000 | 0 | | | 4 | 72 U | 69 U | 72 U | 79 U | | Pyrene | UG/KG | 22 | 100 00% | 50000 | 15768000 | 0 | 4 | | 4 | 10 J | 22 J | 75 J | 17 J | | | | | | | | | | | | | | | | #### Table 33-4 SEAD-121H - Metals in Soil vs NYTAGM Non-Evaluated Sites SITE SEAD-121H SEAD-121H SEAD-121H SEAD-121H Rumored Coal Rumored Cost Rumored Coal Rumored Coal DESCRIPTION Disposal Area Disposal Area Disposel Area SB121H-2 Disposal Area SB121H-2 LOC ID SB121H-1 SB121H-1 SAMP_ID EB252 EB254 EB255 EB253 OC CODE SAMP DETH TOP SA SA SA SA 69 73 SAMP DEPTH BOT 03 09 75 77 MATRIX SOIL SOIL SOIL SOIL SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 16-Mar-98 16-Mar-98 16-Mar-98 16-Mar-98 ABOVE OF PARAMETER UNIT MAXIMUM DETECTION NYSDEC TAGM PRG-IND TAGM DETECTS ANALYSES VALUE VALUE Q a VALUE a VALUE Q Aluminum MG/KG 12400 100 00% 19520 525600 3610 1570 6570 12400 Antimony MG/KG 0 00% 210 24 11 U 0 99 U 1 U 12 U Arsenic MG/KG 4.5 100 00% 3 815466667 89 34 45 Barrum MG/KG 83 1 100 00% 300 36792 23.5 B 17.7 B 53 6 83 1 MG/KG 0 48 MG/KG 0 1 13 Beryllium 100 00% 1 330976744 0 17 B 0.11 B 0 24 B 0.48 B Cadmium 2 46 125300 0.00% 262 B 0.06 U 0.06 U 0.06 U 0.07 U MG/KG 246000 Calcium 100 00% 227000 E "WENTE 102000 E 17400 E Chromium MG/KG 19.3 100 00% 30 30 33 525600 69 11.5 19.3 Cobalt MG/KG 10 5 100 00% 31536 57 B 47 B 6.9 B 10 5 B MG/KG 20 2 MG/KG 0 Copper 100 00% 21024 13.8 87 149 20 2 0 23600 0 35 37410 Cyanide 0 00% 0 55 U 0.55 U 0.58 U 0 65 U MG/KG 100 00% 157680 8390 4400 14800 23600 Lead MG/KG 12.6 100 00% 24 4 9.7 49 76 12 6 MG/KG MG/KG 15400 495 Magnesium 100 00% 21700 13500 13900 15400 5820 1100 0 1 50 Manganese 12088 8 100 00% 308 337 321 495 Mercury MG/KG 0 27.7 0 00% 157 68 0 04 U 0 04 U 0 06 U 0 05 U Nickel MG/KG 100 00% 10512 14.1 10 20.5 277 Potassium MG/KG 1370 MG/KG 1.1 100 00% 2623 1090 881 B 1060 1370 Selenium 1.1 25.00% 2628 0 93 U 0.87 U 0.9 U 1.1 B MG/KG Silver 08 0 00% 2628 0.27 U 0.25 U 0.26 U 03 U Sodium MG/KG 611 188 100 00% 14 U 83 B 611.0 BANK BURNER B 377 B Thallium MG/KG 0 0 00% 0 855 42 048 13 U 1.5 U Vanadium MG/KG 21 3 MG/KG 67 1 100 00% 150 3679 2 5.4 B 11.4 47.6 21 3 67 1 Zinc 115 33 1 23.5 157680 100 00% #### Table 33-5 SEAD-121H - Metals in Soil vs PRG-IND Non-Evaluated Siles | DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE | | | FREQUENCY
OF | | | NUMBER
ABOVE | NUMBER
OF | NUMBER
OF | SEAD-12
Rumored
Disposal
SB121H-
EB252
SA | i Coal
Area | SEAD-1211
Rumored C
Disposal A
SB121H-1
EB254
SA
SOIL
16-Ma | oal
rea
0
0 9 | | 5.9 | SEAD-
Rumore
Disposi
SB1211
EB253
SA
SOIL | ed Coal
al Area
H-2 | |---|-------|---------|-----------------|-------------|---------|-----------------|--------------|--------------|--|----------------|--|------------------------|-------|-------|---|---------------------------| | PARAMETER | UNIT | MAXIMUM | DETECTION | NYSDEC TAGM | PRG-IND | TAGM | DETECTS | ANALYSES | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | | Aluminum | MG/KG | 12400 | 100.00% | 19520 | 525600 | 0 | 4 | | 4 | 3610 | 1 | 570 | 65 | 70 | | 12400 | | Antimony | MG/KG | 0 | 0 00% | 6 | 210 | 0 | 0 | | 4 | 11 U | | 99 U | | 1 U | | 1.2 U | | Arsenic | MG/KG | 4 5 | 100.00% | 8 9 | 4 | 2 | 4 | | 4 | 4.3 | | 3.1 | : | 3.4 | | 4.5 | | Barium | MG/KG | 83.1 | 100.00% | 300 | 36792 | 0 | 4 | | 4 | 23.5 B | | 17 7 B | 5.5 | 3.6 | | 83 1 | | Beryllium | MG/KG | 0.48 | 100.00% | 1 13 | . 1 | 0 | 4 | | 4 | 0.17 B | + | 11 B | 0 | 24 B | | 0.48 B | | Cadmium | MG/KG | 0 | 0 00% | 2.46 | | 0 | 0 | | 4 | 0.06 U | | 0.06 U | 0. | .06 U | | 0 07 U | | Calcium | MG/KG | 246000 | 100 00% | 125300 | | 0 | 4 | | 4 | 227000 E | | 000 E | 1020 | 00 E | | 17400 E | | Chromium | MG/KG | 19 3 | 100.00% | 30 | | 0 | 4 | | 4 | 6 9 | | 3.7 | | 1.5 | | 19 3 | | Cobalt | MG/KG | 10.5 | 100 00% | 30 | 31536 | 0 | 4 | | 4 | 5.7 B | | 4.7 B | | 5.9 B | | 10.5 B | | Copper | MG/KG | 20.2 | 100.00% | 33 | | 0 | 4 | | 4 | 13.8 | | 8.7 | | 4.9 | | 20.2 | | Cyanide | MG/KG | | 0.00% | 0.35 | | 0 | 0 | | 4 | 0 55 U | | 0.55 U | | .58 U | | 0 65 U | | Iron | MG/KG | 23600 | 100.00% | 37410 | | 0 | 4 | | 4 | 8390 | | 400 | 148 | | | 23600 | | Lead | MG/KG | 126 | 100.00% | 24.4 | | 0 | 4 | | 4 | 9.7 | | 4.9 | | 7.6 | | 12 6 | | Magnesium | MG/KG | 15400 | 100 00% | 21700 | | 0 | 4 | | 4 | 13500 | | 900 | 154 | | | 5820 | | Manganese | MG/KG | | 100 00% | 1100 | | 0 | 4 | | 4 | 308 | | 337 | | 321 | | 495 | | Mercury | MG/KG | | 0 00% | 0 1 | 158 | 0 | 0 | | 4 | 0 04 U | | 0.04 U | | .06 U | | 0 05 U | | Nickel | MG/KG | 27 7 | 100.00% | 50 | | 0 | 4 | | 4 | 14.1 | | 10 | | 0.5 | | 27 7 | | Potassium | MG/KG | 1370 | 100 00% | 2623 | | 0 | 4 | | 4 | 1090 | | 881 B | | 60 | | 1370 | | Selenium | MG/KG | 1 1 | 25.00% | 2 | | 0 | 1 | | 4 | 0.93 U | | 0.87 U | | 0.9 U | | 1 1 B | | Silver | MG/KG | | 0.00% | 0.8 | | 0 | 0 | | 4 | 0.27 U | | 0.25 U | | .26 U | | 0.3 U | | Sodium | MG/KG | | 100.00% | 188 | | 0 | 4 | | 4 | 328 B | | 611 B | | 35 B | | 377 B | | Thallium | MG/KG | | 0.00% | 0 855 | | 0 | 0 | | 4 | 1.4 U | | 1.3 U | | 1.3 U | | 1.5 U | | Vanadium | MG/KG | 21.3 | 100 00% | 150 | | 0 | 4 | | 4 | 8.3 B | | 5.4 B | | 1.4 | | 21.3 | | Zinc | MG/KG | 67 1 | 100 00% | 115 | 157680 | 0 | 4 | | 4 | 33 1 | | 23,5 | 4 | 7.6 | | 67 1 | ## SEAD-121I Cosmoline Oil Disposal Areas Table 34-1 ### Sample Collection Information SEAD-1211 - Cosmoline Oil Disposal Areas ### 9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity | MATRIX | LOCATION
ID | SAMPLE
ID | SAMPLE
DATE | TOP
(feet) | BOTTOM
(feet) | QC
CODE | RATIONALE FOR SAMPLE
LOCATION | |--------------|----------------|--------------|----------------|---------------|------------------|------------|--| | SURFACE SOIL | SS121I-1 | EB147 | 3/10/98 | 0 | 0.2 | SA | Location is in a depressed ground surface area adjacent to warehouse Bldg. 343 where cosmoline may of been deposited during equipment unpacking and cleaning activities. | | SURFACE SOIL | SS121I-2 | EB150 | 3/10/98 | 0 | 0.2 | SA | Location is in a depressed ground surface area adjacent to warehouse Bldg.342 where cosmoline may of been deposited during equipment unpacking and cleaning activities. | | SURFACE SOIL | SS1211-3 | EB149 | 3/10/98 | 0 | 0.2 | SA | Location is in a depressed ground surface area adjacent to warehouse Bldg.341 where cosmoline may of been deposited during equipment unpacking and cleaning activities. | | SURFACE SOIL | SS1211-4 | EB148 | 3/10/98 | 0 | 0.2 | SA | Location is in a depressed ground surface area adjacent to warehouse Bldg.340 where cosmoline may of been deposited during equipment unpacking and cleaning activities. | | SEDIMENT | SD121I-1 | EB151 | 3/10/98 | 0 | 0.2 | SA | Location is a drainage culvert downgradient of the material staging area between warehouse Bldgs. 343 & 331, near a railway dock, where cosmoline may of been deposited from surface water runoff. Standing water was present. | | SEDIMENT | SD121I-2 | EB152 | 3/10/98 | 0 | 0.2 | SA | Location is a drainage culvert downgradient of the material staging area between warehouse Bldgs. 329 & 341, near a railway dock, where cosmoline may of been deposited from surface water runoff. Standing water was present. | Notes: SA = Sample Q #### Table 34-2 SEAD-1211 - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites SEAD-1211 SEAD-1211 SITE: DESCRIPTION: SS121I-1 SS121I-2 LOC ID: EB147 EB150 SAMP_ID: QC CODE: SA SA SAMP, DEPTH TOP: 0 0 0.2 0.2 SAMP. DEPTH BOT: MATRIX: SOIL SOIL NUMBER SAMP. DATE: **FREQUENCY** NUMBER NUMBER 10-Mar-98 10-Mar-98 OF **ABOVE** OF OF DETECTION NYSDEC TAGM PRG-IND PARAMETER UNIT MAXIMUM TAGM DETECTS ANALYSES VALUE VALUE Ω 1,2,4-Trichlorobenzene UG/KG Ω 0.00% 3400 5256000 0 0 470 U 7400 U UG/KG 0.00% 7900 47304000 0 0 470 U 7400 U 1,2-Dichlorobenzene 0 46778400 0 UG/KG 0.00% 1600 0 470 U 7400 U 1,3-Dichlorobenzene 0 238467 0 UG/KG 0 0.00% 8500 0 470 U 7400 U 1,4-Dichlorobenzene 52560000 0 1100 U 2,4,5-Trichlorophenol UG/KG 0 0.00% 100 0 18000 U UG/KG 520291 0 0 470 U 7400 U 2,4,6-Trichlorophenol 0 0.00% 0 2.4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 470 U 7400 U 2,4-Dimethylphenol UG/KG 0 0.00% 10512000 0 0 470 U 7400 U 0 0 2,4-Dinitrophenol UG/KG 0 0.00% 200 1051200 1100 U 18000 U 0 0 2,4-Dinitrotoluene UG/KG 0 0.00% 1051200 470 U 7400 U 0 1000 525600 0 470 U 2,6-Dinitrotoluene UG/KG 0 0.00% 7400 U 0 0 470 U 0 0.00% 7400 U 2-Chloronaphthalene UG/KG 800 2628000 0 0 470 U UG/KG 0 0.00% 7400 U 2-Chlorophenol 54 25.00% 36400 0 470 U 7400 U 2-Methylnaphthalene UG/KG 1 2-Methylphenol UG/KG 0 0.00% 100 26280000 0 0 470 U 7400 U UG/KG 0 0.00% 430 31536 0 0 1100 U 18000 U 2-Nitroaniline 0 0 470 U 7400 U 2-Nitrophenol UG/KG 0 0.00% 330 3,3'-Dichlorobenzidine UG/KG 0 0.00% 12718 0 0 470 U 7400 U 3-Nitroaniline UG/KG 0 0.00% 500 1576800 0 0 1100 U 18000 U 4,6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 1100 U 18000 U UG/KG 0 0.00% 30484800 0 0 470 U 7400 U 4-Bromophenyl phenyl ether 470 U 4-Chloro-3-methylphenol UG/KG 0 0.00% 240 0 0 7400 U 470 U 4-Chloroaniline UG/KG 0 0.00% 220 2102400 0 0 7400 U
0 0 470 U 7400 U 4-Chlorophenyl phenyl ether UG/KG 0 0.00% 470 U 7400 U 0.00% 900 0 0 4-Methylphenol UG/KG 0 0.00% 1576800 0 0 1100 U 18000 U UG/KG 0 4-Nitroaniline UG/KG 0.00% 100 31536000 0 0 1100 U 18000 U 0 4-Nitrophenol UG/KG 1900 100.00% 50000 0 4 170 J 1900 J Acenaphthene 0.00% 41000 0 0 470 U 7400 U Acenaphthylene UG/KG 0 UG/KG 2600 100.00% 50000 157680000 0 170 J 2600 J Anthracene UG/KG 13000 100.00% 224 7840 1400 13000 Benzo[a]anthracene 100.00% 784 1300 13000 UG/KG 13000 61 Benzo[a]pyrene 12000 100.00% 1100 7840 4 1500 12000 UG/KG Benzo[b]fluoranthene 100.00% 50000 0 4 4 820 8100 Benzo[ghi]perylene UG/KG 8100 1500 15000 15000 100.00% 1100 78400 4 Benzo[k]fluoranthene UG/KG 0 470 U 7400 U Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 0 470 U 7400 U Bis(2-Chloroethyl)ether UG/KG 0 0.00% 5203 0 0 0 470 U 7400 U Bis(2-Chloroisopropyl)ether UG/KG 0 0.00% 81760 0 51 JB 7400 U 408800 3 Bis(2-Ethylhexyl)phthalate UG/KG 230 75.00% 50000 470 U 7400 U 0 0 UG/KG 0 0.00% 50000 105120000 Butylbenzylphthalate 230 J 3100 J 0 UG/KG 3100 100.00% 286160 4 Carbazole 1700 16000 400 784000 4 4 Chrysene UG/KG 16000 100.00% 0 45 JB 7400 U Di-n-butylphthalate UG/KG 45 25.00% 8100 1 7400 U 50000 10512000 0 0 470 U Di-n-octylphthalate UG/KG 0 0.00% 4 4 350 J J 14 784 Dibenz[a,h]anthracene UG/KG 4600 100.00% 440 J 6200 2102400 n 29 J 100.00% Dibenzofuran UG/KG 440 #### Table 34-2 SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites | SITE. DESCRIPTION: | | | | | | | | | | | SEAD-12 | 211 | SEA | D-121I | | |---------------------------|-------|---------|-----------|-------------|------------|--------|---|---------|---|----------|----------|---------|------|-----------|-----| | LOC ID: | | | | | | | | | | | SS121I-1 | | SS1 | 211-2 | | | SAMP_ID ⁻ | | | | | | | | | | | EB147 | | EB1 | 50 | | | QC CODE. | | | | | | | | | | | SA | | SA | | | | SAMP DEPTH TOP: | | | | | | | | | | | | 0 | | (| 0 | | SAMP. DEPTH BOT: | | | | | | | | | | | | 0.2 | | 0.3 | 2 | | MATRIX | | | | | | | | | | | SOIL | | SOIL | | | | SAMP DATE | | | FREQUENCY | | | NUMBER | | NUMBER | | NUMBER | _ | /lar-98 | | 10-Mar-91 | 8 | | | | | OF | | | ABOVE | | OF | | OF | | | | | | | PARAMETER | UNIT | MAXIMUM | DETECTION | NYSDEC TAGM | PRG-IND | TAGM | | DETECTS | | ANALYSES | VALUE | Q | VAL | JE | Q | | Diethyl phthalate | UG/KG | 0 | 0.00% | 7100 | 420480000 | | 0 | | 0 | | 4 | 470 U | | 740 | | | Dimethylphthalate | UG/KG | 0 | 0.00% | 2000 | 5256000000 | | 0 | | 0 | | 4 | 470 U | | | 0 U | | Fluoranthene | UG/KG | 35000 | 100.00% | 50000 | 21024000 | | 0 | | 4 | | 4 | 3200 | | 3500 | - | | Fluorene | UG/KG | 1100 | 100.00% | 50000 | 21024000 | | 0 | | 4 | | 4 | 83 J | | 110 | | | Hexachlorobenzene | UG/KG | 0 | 0.00% | 410 | 3577 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Hexachlorobutadiene | UG/KG | 0 | 0 00% | | 73374 | | 0 | | 0 | | 4 | 470 U | | | 0 U | | Hexachlorocyclopentadiene | UG/KG | 0 | 0.00% | | 3679200 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Hexachloroethane | UG/KG | 0 | 0.00% | | 408800 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 8000 | 100.00% | 3200 | 7840 | | 1 | | 4 | | 4 | 760 | | 800 | 0 | | Isophorone | UG/KG | 0 | 0.00% | 4400 | | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | N-Nitrosodiphenylamine | UG/KG | 0 | 0.00% | | 1168000 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | N-Nitrosodipropylamine | UG/KG | 0 | 0.00% | | 818 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Naphthalene | UG/KG | 51 | 25.00% | 13000 | 21024000 | | 0 | | 1 | | 4 | 470 U | | 740 | 0 U | | Nitrobenzene | UG/KG | 0 | 0.00% | 200 | 262800 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Pentachlorophenol | UG/KG | 0 | 0.00% | 1000 | 47693 | | 0 | | 0 | | 4 | 1100 U | | 1800 | 0 U | | Phenanthrene | UG/KG | 15000 | 100.00% | 50000 | | | 0 | | 4 | | 4 | 1200 | | 1500 | 0 | | Phenol | UG/KG | 0 | 0.00% | 30 | 315360000 | | 0 | | 0 | | 4 | 470 U | | 740 | 0 U | | Pyrene | UG/KG | 23000 | 100.00% | 50000 | 15768000 | | 0 | | 4 | | 4 | 2700 | | 2300 | 0 | | TPH | MG/KG | 452 | 75.00% | | | | 0 | | 3 | | 4 | 43.9 | | 10 | 8 | Table 34-2 SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites | SITE: | | SEAD-121I | SEAD-1211 | |-----------------------------|-------|-----------|-----------| | DESCRIPTION: | | | | | LOC ID: | | SS121I-3 | SS121I-4 | | SAMP_ID: | | EB149 | EB148 | | QC CODE: | | SA | SA | | SAMP. DEPTH TOP: | | 0 | 0 | | SAMP. DEPTH BOT: | | 0.2 | 0.2 | | MATRIX: | | SOIL | SOIL | | SAMP. DATE: | | 35864 | 35864 | | PARAMETER | UNIT | VALUE Q | VALUE Q | | 1,2,4-Trichlorobenzene | UG/KG | 770 U | 550 U | | 1,2-Dichlorobenzene | UG/KG | 770 U | 550 U | | 1,3-Dichlorobenzene | UG/KG | 770 U | 550 U | | 1,4-Dichlorobenzene | UG/KG | 770 U | 550 U | | 2,4,5-Trichlorophenol | UG/KG | 1900 U | 1300 U | | 2,4,6-Trichlorophenol | UG/KG | 770 U | 550 U | | 2,4-Dichlorophenol | UG/KG | 770 U | 550 U | | 2,4-Dimethylphenol | UG/KG | 770 U | 550 U | | 2,4-Dinitrophenol | UG/KG | 1900 U | 1300 U | | 2,4-Dinitrotoluene | UG/KG | 770 U | 550 U | | 2,6-Dinitrotoluene | UG/KG | 770 U | 550 U | | 2-Chloronaphthalene | UG/KG | 770 U | 550 U | | 2-Chlorophenol | UG/KG | 770 U | 550 U | | 2-Methylnaphthalene | UG/KG | 54 J | 550 U | | 2-Methylphenol | UG/KG | 770 U | 550 U | | 2-Nitroaniline | UG/KG | 1900 U | 1300 U | | 2-Nitrophenol | UG/KG | 770 U | 550 U | | 3,3'-Dichlorobenzidine | UG/KG | 770 U | 550 U | | 3-Nitroaniline | UG/KG | 1900 U | 1300 U | | 4,6-Dinitro-2-methylphenol | UG/KG | 1900 U | 1300 U | | 4-Bromophenyl phenyl ether | UG/KG | 770 U | 550 U | | 4-Chloro-3-methylphenol | UG/KG | 770 U | 550 U | | 4-Chloroaniline | UG/KG | 770 U | 550 U | | 4-Chlorophenyl phenyl ether | UG/KG | 770 U | 550 U | | 4-Methylphenol | UG/KG | 770 U | 550 U | | 4-Nitroaniline | UG/KG | 1900 U | 1300 U | | 4-Nitrophenol | UG/KG | 1900 U | 1300 U | | Acenaphthene | UG/KG | 140 J | 320 J | | Acenaphthylene | UG/KG | 770 U | 550 U | | Anthracene | UG/KG | 220 J | 230 J | | Benzo[a]anthracene | UG/KG | " 1600 B | 1700 | | Benzo[a]pyrene | UG/KG | 1800 B | 1600 | | Benzo[b]fluoranthene | UG/KG | 2100 B | 1700 | | Benzo[ghi]perylene | UG/KG | 1600 B | 940 | | Benzo[k]fluoranthene | UG/KG | 2500 B | 1800 | | Bis(2-Chloroethoxy)methane | UG/KG | 770 U | 550 U | | Bis(2-Chloroethyl)ether | UG/KG | 770 U | 550 U | | Bis(2-Chloroisopropyl)ether | UG/KG | 770 U | 550 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | 230 J | 47 JB | | Butylbenzylphthalate | UG/KG | 770 U | 550 U | | Carbazole | UG/KG | 320 J | 380 J | | Chrysene | UG/KG | 2000 B | 1900 | | Di-n-butylphthalate | UG/KG | 770 U | 550 U | | Di-n-octylphthalate | UG/KG | 770 U | 550 U | | Dibenz[a,h]anthracene | UG/KG | 720 J | 720 J | | Dibenzofuran | UG/KG | 42 J | 63 J | | DIDENZUMAN | COING | 42 3 | 00 0 | Table 34-2 SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites | SITE: | | SEAD-121I | SEAD-121I | |---------------------------|-------|-----------|-----------| | DESCRIPTION: | | | | | LOC ID: | | SS121I-3 | SS121I-4 | | SAMP_ID: | | EB149 | EB148 | | QC CODE: | | SA | SA | | SAMP, DEPTH TOP: | | 0 | 0 | | SAMP. DEPTH BOT. | | 0.2 | 0.2 | | MATRIX: | | SOIL | SOIL | | SAMP. DATE: | | 35864 | 35864 | | | = | | | | PARAMETER | UNIT | VALUE Q | VALUE Q | | Diethyl phthalate | UG/KG | 770 U | 550 U | | Dimethylphthalate | UG/KG | 770 U | 550 U | | Fluoranthene | UG/KG | 4000 B | 4100 | | Fluorene | UG/KG | 98 J | 160 J | | Hexachlorobenzene | UG/KG | 770 U | 550 U | | Hexachlorobutadiene | UG/KG | 770 U | 550 U | | Hexachlorocyclopentadiene | UG/KG | 770 U | 550 U | | Hexachloroethane | UG/KG | 770 U | 550 U | | Indeno[1,2,3-cd]pyrene | UG/KG | 1600 B | 950 | | Isophorone | UG/KG | 770 U | 550 U | | N-Nitrosodiphenylamine | UG/KG | 770 U | 550 U | | N-Nitrosodipropylamine | UG/KG | 770 U | 550 U | | Naphthalene | UG/KG | 770 U | 51 J | | Nitrobenzene | UG/KG | 770 U | 550 U | | Pentachlorophenol | UG/KG | 1900 U | 1300 U | | Phenanthrene | UG/KG | 1400 B | 1800 | | Phenol | UG/KG | 770 U | 550 U | | Pyrene | UG/KG | 3000 B | 3200 | | TPH | MG/KG | 452 | 20.3 U | | | | | | Table 34-3 SEAD-121I - Semivolatiles/TPH in Soil vs PRG-IND Non Evaluated Sites **SEAD-1211** 4 4 4 350 J 29 J 470 U 470 U 83 J 470 U 470 U 3200 SEAD-1218 DESCRIPTION-SS121I-1 SS121I-2 LOC ID: SAMP_ID: EB147 EB150 QC CODE: SA SA SAMP. DEPTH TOP: 0 0 SAMP. DEPTH BOT: 0.2 0.2 MATRIX SOIL SOIL NUMBER NUMBER NUMBER SAMP. DATE: FREQUENCY 10-Mar-98 10-Mar-98 ABOVE OF OF OF PARAMETER UNIT MAXIMUM DETECTION NYSDEC TAGM PRG-IND TAGM DETECTS **ANALYSES** VALUE Q VALUE 3400 5256000 0 470 U 7400 1,2,4-Trichlorobenzene UG/KG 0.00% 0 UG/KG 0 0.00% 7900 47304000 0 0 470 U 7400 1,2-Dichlorobenzene 46778400 7400 1,3-Dichlorobenzene UG/KG 0 0.00% 1600 0 0 4 470 U UG/KG 0.00% 8500 238467 0 0 470 U 7400 0 1.4-Dichlorobenzene 2,4,5-Trichlorophenol **UG/KG** 0 00% 100 52560000 0 0 1100 U 18000 0 0.00% 520291 0 0 4 470 U 7400 UG/KG 2,4,6-Trichlorophenol 2,4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 0 470 U 7400 UG/KG 0 0.00% 10512000 0 0 470 U 7400 2,4-Dimethylphenol 2,4-Dinitrophenol UG/KG 0.00% 200 1051200 0 0 1100 U 18000 0 1051200 0 4 470 U 7400 2,4-Dinitrotoluene UG/KG 0.00% 0 UG/KG 0 0.00% 1000 525600 0 0 470 U 7400 2.6-Dinitrotoluene 0 470 U 7400 0.00% 2-Chloronaphthalene UG/KG 0 0 800 2628000 0 0 470 U 7400 2-Chlorophenol UG/KG 0 0.00% 4 470 U 7400 54 36400 0 2-Methylnaphthalene UG/KG 25.00% 0 26280000 0 470 U 7400 2-Methylphenol UG/KG 0.00% 100 0 1100 U 18000 430 2-Nitroaniline UG/KG 0 0.00% 31536 0 0 4 470 U 7400 2-Nitrophenol UG/KG 0 0.00% 330 12718 0 4 470 U 7400 3,3'-Dichlorobenzidine UG/KG 0 0.00% 0 UG/KG 0 0.00% 500 1576800 0 0 1100 U 18000 3-Nitroaniline 4,6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 4 1100 U 18000 30484800 470 U 7400 UG/KG 0 0.00% 0 0 4-Bromophenyl phenyl ether 470 U 7400 4-Chloro-3-methylphenol UG/KG 0 0.00% 240 0 0 470 U 7400 UG/KG 0 0.00% 220 2102400 0 0 4 4-Chloroaniline 7400 470 U **UG/KG** 0 0.00% 0 0 4-Chlorophenyl phenyl ether 470 U 7400 UG/KG 0.00% 900 0 0 0 4-Methylphenol
1100 U 18000 UG/KG 0 0.00% 1576800 0 0 4-Nitroaniline 1100 U 18000 100 31536000 0 0 4 UG/KG 0 0.00% 4-Nitrophenol UG/KG 1900 100.00% 50000 0 4 170 J 1900 Acenaphthene 0 470 U 7400 UG/KG 0.00% 41000 0 Acenaphthylene 0 2600 100.00% 50000 157680000 0 4 170 J 2600 Anthracene UG/KG 13000 100.00% 224 7840 4 1400 Benzo[a]anthracene UG/KG UG/KG 13000 100.00% 61 784 4 4 1300 Benzo[a]pyrene 1500 Benzo[b]fluoranthene UG/KG 12000 100.00% 1100 7840 0 820 8100 Benzo[ghi]perylene UG/KG 8100 100.00% 50000 1500 15000 78400 0 4 Benzo[k]fluoranthene UG/KG 15000 100.00% 1100 0 4 470 U 7400 UG/KG 0.00% 0 Bis(2-Chloroethoxy)methane 0 470 U 7400 5203 4 UG/KG 0 0.00% 0 0 Bis(2-Chloroethyl)ether 470 U 7400 UG/KG 0.00% 81760 0 0 Bis(2-Chloroisopropyl)ether 7400 0 51 JB UG/KG 230 75.00% 50000 408800 3 Bis(2-Ethylhexyl)phthalate 470 U 7400 50000 105120000 0 0 UG/KG 0.00% Butylbenzylphthalate 0 230 J 3100 UG/KG 3100 100.00% 286160 0 4 Carbazole 784000 0 1700 16000 UG/KG 16000 100.00% 400 Chrysene 25.00% 8100 0 45 JB 7400 Di-n-butylphthalate UG/KG 45 470 U 7400 50000 10512000 0 0 4 Di-n-octylphthalate UG/KG 0 0.00% 784 2102400 420480000 5256000000 21024000 21024000 3577 73374 1 0 0 0 0 0 0 4 0 4 0 440 7400 7400 35000 1100 7400 7400 Dibenz[a,h]anthracene Dibenzofuran Fluoranthene · Fluorene Diethyl phthalate Dimethylphthalate Hexachlorobenzene Hexachlorobutadiene UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG 4600 440 0 0 0 0 35000 1100 100.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 14 6200 7100 2000 50000 50000 410 SITE: ## Table 34-3 SEAD-121I - Semivolatiles/TPH in Soil vs PRG-IND Non Evaluated Sites | SITE
DESCRIPTION
LOCID | | | | | | | | | | SEAD-1 | | SEAD-121I | |------------------------------|-------|---------|-----------|---------------|-----------|--------|---------|---|----------|---------|---------|-----------| | SAMP_ID | | | | | | | | | | SS121I- | .1 | SS121I-2 | | QC CODE | | | | | | | | | | EB147 | | EB150 | | SAMP DEPTH TOP | | | | | | | | | | SA | | SA | | SAMP DEPTH BOT | | | | | | | | | | | 0 | 0 | | MATRIX | | | | | | | | | | SOIL | 0.2 | 0 2 | | SAMP DATE | | | FREQUENCY | | | NUMBER | NUMBER | | NUMBER | | Mar-98 | SOIL | | | | | OF | | | ABOVE | OF | | OF | 10-1 | viai-96 | 10-Mar-98 | | PARAMETER | UNIT | MAXIMUM | DETECTION | NYSDEC TAGM F | RG-IND | TAGM | DETECTS | | ANALYSES | VALUE | Q | VALUE | | Hexachlorocyclopentadiene | UG/KG | 0 | 0 00% | | 3679200 | 0 | | 0 | WALL DES | 4 | 470 U | 7400 | | Hexachloroethane | UG/KG | 0 | 0 00% | | 408800 | 0 | | 0 | | 4 | 470 U | 7400 | | Indeno[1,2,3-cd]pyrene | UG/KG | 8000 | 100 00% | 3200 | 7840 | 1 | | 4 | | 4 | 760 | 8000 | | Isophorone | UG/KG | 0 | 0 00% | 4400 | | 0 | | 0 | | 4 | 470 U | 7400 | | N-Nitrosodiphenylamine | UG/KG | 0 | 0 00% | | 1168000 | 0 | | 0 | | 4 | 470 U | 7400 | | N-Nitrosodipropylamine | UG/KG | 0 | 0 00% | | 818 | 0 | | 0 | | 4 | 470 U | 7400 | | Naphthalene | UG/KG | 51 | 25 00% | 13000 | 21024000 | 0 | | 1 | | 4 | 470 U | 7400 | | Nitrobenzene | UG/KG | 0 | 0 00% | 200 | 262800 | 0 | | 0 | | 4 | 470 U | 7400 | | Pentachlorophenol | UG/KG | 0 | 0 00% | 1000 | 47693 | 0 | | 0 | | 4 | 1100 U | 18000 | | Phenanthrene | UG/KG | 15000 | 100 00% | 50000 | | 0 | | 4 | | 4 | 1200 | 15000 | | Phenol | UG/KG | 0 | 0.00% | 30 | 315360000 | 0 | | 0 | | 4 | 470 U | 7400 | | Pyrene | UG/KG | 23000 | 100 00% | 50000 | 15768000 | 0 | | 4 | | 4 | 2700 | 23000 | | TPH | MG/KG | 452 | 75 00% | | | 0 | | 3 | | 4 | 43 9 | 108 | Table 34-3 SEAD-1211 - Semivolatiles/TPH in Soil vs. PRG-IND Non Evaluated Sites | SITE | | | SEAD-121I | SEAD-121I | |---|----------------|--------|-----------------|-----------------| | DESCRIPTION | | | SEAD-1211 | SEAD-1211 | | LOCID | | | S\$121I-3 | SS121I-4 | | SAMP ID | | | EB149 | EB148 | | QC CODE | | | SA | SA | | SAMP DEPTH TOP | | | 0 | 0 | | SAMP DEPTH BOT | | | 0 2 | 0 2 | | MATRIX | | | SOIL | SOIL | | SAMP DATE | | | 35864 | 35864 | | PARAMETER | UNIT | Q | VALUE Q | VALUE Q | | 1.2.4-Trichlorobenzene | UG/KG | U | 770 U | 550 U | | 1.2-Dichlorobenzene | UG/KG | U | 770 U | 550 U | | 1,3-Dichlorobenzene | UG/KG | U | 770 U | 550 U | | 1,4-Dichlorobenzene 2,4,5-Trichlorophenol | UG/KG
UG/KG | U | 770 U
1900 U | 550 U
1300 U | | 2.4.6-Trichlorophenol | UG/KG | u | 770 U | 550 U | | 2.4-Dichlorophenol | UG/KG | Ü | 770 U | 550 U | | 2.4-Dimethylphenol | UG/KG | ŭ | 770 U | 550 U | | 2.4-Dinitrophenol | UG/KG | Ü | 1900 U | 1300 U | | 2,4-Dinitrotoluene | UG/KG | U | 770 U | 550 U | | 2,6-Dinitrotoluene | UG/KG | U | 770 U | 550 U | | 2-Chloronaphthalene | UG/KG | U | 770 U | 550 U | | 2-Chlorophenol | UG/KG | U | 770 U | 550 ∪ | | 2-Methylnaphthalene | UG/KG | U | 54 J | 550 U | | 2-Methylphenol | UG/KG | U | 770 U | 550 U | | 2-Nitroaniline
2-Nitrophenol | UG/KG
UG/KG | U | 1900 U
770 U | 1300 U
550 U | | 3,3°-Dichlorobenzidine | UG/KG | U | 770 U | 550 U | | 3-Nitroaniline | UG/KG | U | 1900 U | 1300 U | | 4,6-Dinitro-2-methylphenol | UG/KG | Ü | 1900 U | 1300 U | | 4-Bromophenyl phenyl ether | UG/KG | Ŭ | 770 U | 550 U | | 4-Chloro-3-methylphenol | UG/KG | Ü | 770 U | 550 U | | 4-Chloroaniline | UG/KG | U | 770 U | 550 U | | 4-Chiorophenyl phenyl ether | UG/KG | U | 770 U | 550 U | | 4-Methylphenol | UG/KG | U | 770 U | 550 U | | 4-Nitroaniline | UG/KG | U | 1900 U | 1300 U | | 4-Nitrophenol | UG/KG | U | 1900 U | 1300 U | | Acenaphthene | UG/KG | J | 140 J
770 U | 320 J
550 U | | Acenaphthylene
Anthracene | UG/KG
UG/KG | n
U | 220 J | 230 J | | Benzo[a]anthracene | UG/KG | J | 1600 B | 1700 | | Benzo(a)pyrene | UG/KG | | 1800 B | 1600 | | Benzolbifluoranthene | UG/KG | | 2100 B | 1700 | | Benzo[ghi]perylene | UG/KG | | 1600 B | 940 | | Benzo[k]fluoranthene | UG/KG | | 2500 B | 1800 | | Bis(2-Chloroethoxy)methane | UG/KG | U | 770 U | 550 U | | Bis(2-Chloroethyl)ether | UG/KG | U | 770 U | 550 U | | Bis(2-Chloroisopropyl)ether | UG/KG | U | 770 U | 550 U | | Bis(2-Ethylhexyl)phthalate | UG/KG | U | 230 J | 47 JB | | Butylbenzylphthalate | UG/KG | 7
U | 770 U
320 J | 550 U
380 J | | Carbazole
Chrysene | UG/KG
UG/KG | J | 2000 B | 1900 | | Di-n-butylphthalate | UG/KG | U | 770 U | 550 U | | Di-n-octylphthalate | UG/KG | Ü | 770 U | 550 U | | Dibenz[a,h]anthracene | UG/KG | ľ | 720 J | 420 J | | Dibenzofuran | UG/KG | J | 42 J | 63 J | | Diethyl phthalate | UG/KG | Ū | 770 U | 550 U | | Dimethylphthalate | UG/KG | U | 770 U | 550 ∪ | | Fluoranthene | UG/KG | | 4000 B | 4100 | | Fluorene | UG/KG | J | 98 J | 160 J | | Hexachlorobenzene | UG/KG | U | 770 U | 550 U | | Hexachlorobutadiene | UG/KG | U | 770 U | 550 U | Table 34-3 SEAD-121I - Semivolatiles/TPH in Soil vs. PRG-IND Non Evaluated Sites | SITE
DESCRIPTION | | | SEAD-121I | SEAD-1211 | |---------------------------|-------|---|-------------------|-------------------| | LOC ID
SAMP, ID | | | SS121I-3
EB149 | SS121I-4
EB148 | | QC CODE | | | SA | SA SA | | SAMP DEPTH TOP | | | 0 | 0 | | SAMP DEPTH BOT | | | 02 | 0 2 | | MATRIX | | | SOIL | SOIL | | SAMP DATE | | | 35864 | 35864 | | PARAMETER | UNIT | Q | VALUE Q | VALUE Q | | Hexachlorocyclopentadiene | UG/KG | U | 770 U | 550 U | | Hexachioroethane | UG/KG | U | 770 U | 550 U | | Indeno[1,2,3-cd]pyrene | UG/KG | | 1600 B | 950 | | Isophorone | UG/KG | U | 770 U | 550 U | | N-Nitrosodiphenylamine | UG/KG | U | 770 U | 550 U | | N-Nitrosodipropylamine | UG/KG | U | 770 U | 550 U | | Naphthalene | UG/KG | U | 770 U | 51 J | | Nitrobenzene | UG/KG | U | 770 U | 550 ∪ | | Pentachlorophenol | UG/KG | U | 1900 U | 1300 U | | Phenanthrene | UG/KG | | 1400 B | 1800 | | Phenol | UG/KG | U | 770 U | 550 U | | Pyrene | UG/KG | | 3000 B | 3200 | | TPH | MG/KG | | 452 | 20 3 U | ## Table 34-4 SEAD-121I -Semivolatile/TPH in Sediment vs. NYS Criteria Non-Evaluated Sites SEAD-121 SEAD-1211 DESCRIPTION SS121I-1 SS1211-2 LOC ID SAMP_ID EB151 EB152 QC CODE SA SA SAMP DEPTH TOP SAMP DEPTH BOT 02 0.2 SEDIMENT SEDIMENT MATRIX SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 10-Mar-98 10-Mar-98 ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION CRITERIA TYPE LEVEL TAGM DETECTS ANALYSES VALUE VALUE 480 II 4400 11 1,2,4-Trichlorobenzene **UG/KG** 0.00% 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 12000 1.2-Dichlorobenzene UG/KG 480 U 4400 U 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 1.3-Dichlorobenzene UG/KG 12000 480 U 4400 U 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA UG/KG 12000 480 U 4400 U 1.4-Dichlorobenzene 2,4,5-Trichlorophenol UG/KG 0 00% 1200 U 11000 U 2,4,6-Trichlorophenol UG/KG 0 00% 4400 U 2,4-Dichlorophenol UG/KG 0 00% 480 U 4400 U 2,4-Dimethylphenol UG/KG 0 00% 480 U 4400 U 2,4-Dinitrophenol UG/KG 0 0 00% 1200 U 11000 U 2 4-Dmitrotohiane UG/KG 0.00% 480 U 4400 U 480 U 4400 U UG/KG 2 6-Dintrotoluene 0.00% 480 U 4400 U 2-Chloronaphthalene UG/KG 0 00% UG/KG 0 00% 480 U 4400 U 2-Chlorophenol 2-Methylnaphthalene UG/KG 33 50 00% 33 J 4400 U 4400 U 2-Methylphenol UG/KG ٥ 0.00% 480 U UG/KG 0.00% 1200 U 11000 U 2-Nitroaniline 480 U 4400 U 2-Nitrophenol UG/KG 0 00% 3,3'-Dichlorobenzidine UG/KG 0.00% 480 U 4400 U 3-Ndroanihne UG/KG 0.00% 1200 U 11000 D 4,6-Dinitro-2-methylphenol UG/KG 0 00% 1200 U 11000 U 4400 U 480 U 4-Bromophenyl phenyl ether HG/KG 0 0.00% UG/KG 480 U 4400 U 0.00% 4-Chloro-3-methylphenol 4400 U UG/KG 4-Chloroanilme 0 00% UG/KG 480 U 4400 U 4-Chlorophenyl phenyl ether 0 00% 4-Methylphenol UG/KG 0 00% 480 U 4400 11 11000 U 4-Nitroaniline UG/KG 0.00% 1200 11 4-Nitrophenol UG/KG 0.00% 1200 U 11000 U 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 140000 140 J 390 J UG/KG 390 Acenaphthene 480 U 420 J UG/KG 420 50 00% Acenaphthylene UG/KG 1800 100.00% 260 J 1800 J Anthracene 14000 B 16000 B 22000 B Benzo[a]anthracene UG/KG 14000 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 1300 B 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA UG/KG 16000 1300 1300 B Benzo(a)pyrene 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 Benzo[b]fluorenthene UG/KG 22000 12000
B Benzo[ghi]perylene UG/KG 12000 100 00% 840 E 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 2 KJ Jan + B 23600 B Benzo[k]fluoranthene UG/KG 23000 4400 U Bis(2-Chloroethoxy)methane UG/KG 0.00% 480 U 4400 U Brs(2-Chloroethyl)ether UG/KG 0.00% Brs(2-Chlororsopropyl)ether UG/KG 0 00% 480 U 4400 U 50.00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 4400 U Brs(2-Ethylhexyl)phthalate UG/KG 25 200000 25 J 480 U 4400 U Butylbenzylphthalate UG/KG 0.00% 410 J 1600 J UG/KG 1600 100 00% Carbazole UG/KG 25000 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 5. B B Chrysene 480 U 4400 U Di-n-butylphthalate UG/KG 0.00% UG/KG 0 00% 480 U 4400 U Di-n-octylphthalate 5000 400 J Dibenz[a,h]enthracene UG/KG 5000 100.00% 4400 U 58 J Dibenzofuran UG/KG 58 50 00% 4400 U Diethyl phthalate UG/KG 0 00% 480 U 4400 U UG/KG 0.00% Dimethylphthalate UG/KG 24000 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 102000 3400 B 24000 B Fluoranthene UG/KG 360 130 J 360 .1 Fluorene 4400 U UG/KG 0.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 150 480 U Hexachlorobenzene 480 U 4400 U Hexachlorobutadiene UG/KG 0.00% 4400 U 480 U Hexachlorocyclopentadiene UG/KG 0 00% 480 U 4400 U Hexachloroethane UG/KG 0.00% 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 850 B B B Indeno[1,2,3-cd]pyrene UG/KG 12000 480 U 4400 U UG/KG 0.00% Isophorone 4400 U 480 U N-Nitrosodiphenylamine UG/KG 0 00% N-Nitrosodipropylamine UG/KG 0 00% 480 U 4400 U 480 U 4400 U UG/KG 0 00% Naphthalene 4400 U 480 U Nitrobenzene UG/KG 0 00% 1200 U 11000 U Pentachlorophenol UG/KG 0.00% 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 120000 1600 B 4400 JB Phenanthrene UG/KG 4400 480 U 4400 U Phenot UG/KG 0.00% 2700 B 17000 B 100.00% 17000 Pyrene UG/KG MG/KG 370 100 00% 136 370 SITE ## **FIGURES** # SENECA ARMY DEPOT ACTIVITY Decision Criteria Flowchart # SENECA ARMY DEPOT ACTIVITY Decision Criteria Flowchart BASELINE **FINAL** SUPPLEMENTARY **ACTIONS ACTIONS ACTIONS** DECISION ACTION NO NO -CONDUCT RI/BRA 13 NO FURTHER ACTION REUSE RESTRICTION MAY BE REQUIRED Η 14 RI/FS/RD/RA I **PHASE** YES 15 PREPARE EE/CA DO REMOVAL ACTION 16 NO FURTHER ACTION REUSE RESTRICTION MAY BE REQUIRED J NO 17 PREPARE FS K SELECT REMEDY PREPARE PRAP/ROD 18 19 PERFORM RD/RA NO FURTHER ACTION O:\AV GIS30\SIKORSKYNP1S4\GEOLOGY\.ISOPATCHAPR # RESPONSE TO ARMY COMMENTS ### Comments from the Department of the Army on the ## Draft Investigation of Environmental Baseline Survey Non-Evaluated Sites #### Comments by Keith Hoddinott Comment #1 Page 5, Section 3.2 SEAD-122A, Summary of Investigation In the comparison of the soil results to the recreational PRG it is stated that no PRGs were established for the lead (the primary COC). This explanation should be expanded to indicate that the maximum soil concentration of 143 mg/kg is less than half the residential criteria USEPA recommends for 0-6 year old children (a classical sensitive sub-population). Recommendation: Expand the discussion of the PRG comparison for this site. Response #2 Agreed. The PRG comparison has added a comparison for lead to the agreed upon screening level of 400 mg/Kg for residential land use established by the EPA memorandum <u>"Revised Interim Soil Guidance for CERCLA Sites and RCRA Corrective Action Facilities"</u> 9355.4-12, EPA/540/F-94/043, PB94-963282. August 1994. Comment #2 Page 9, Section 8.0 SEAD- 123A, Indoor Firing Range I believe we can concur with the action taken and the conclusions, however, if further evaluation becomes necessary, we have recently developed a method of risk assessing wipe sample results. Recommendation: Consider performing a wipe sample risk assessment if further evaluation is required. Response #2 Agreed. If the EPA requires that wipe samples be collected, a Risk Assessment will be performed. Comment #3 Page 17, Section 13.2 SEAD 123F We can not agree with the conclusion that no further action is justified at this site. While the sampling was limited and biased to the conservative side, an exceedance of the residential PRG should be justification to investigate how extensive the elevated metals are. Recommendation: Provide further justification why additional investigation is not necessary or perform some further investigation. Response #3 Agreed. Although the levels exceed the residential PRG they do not exceed the TAGM for elevated metals. Therefore no further action for these sites is justified. #### **Comments From Healy** Comment #1 Section 1.3, Page 3 In Bullet two at the top of the page, we state that "If Concentrations are less than PRG's, then additional sampling (possibly via an ESI) will be performed." Regardless of the NYSDEC's reluctance to accept PRG's this reviewer would prefer not to see the Army make a blanket promise to commit more effort /finding to studies simply because TAGM's were exceeded (even though PRG's were not). Would prefer to "soften" this statement by saying that any follow-on effort will be negotiated if the "greater than TAGM's but less than PRG's" situation should arise. Response #1 Acknowledged. The text already includes a paragraph stating that the significance of environmental impact is not strictly based on analytical data comparison, and that professional judgment will be used to develop the final recommendations. Comment #2 Section 2.1, Page 4 In the first full sentence at the top of this page, we state "the pump station receives wastes potentially containing hazardous wastes. This would seem to be an incredibly inflammatory statement to make (did we do enough sampling/ what did we sample for, etc.) and possibly cast aspersions on the favorable conclusion drawn in the following paragraph. Recommended that the references to "potentially containing hazardous wastes" be removed. Response #2 Agreed. The reference to "potentially containing hazardous wastes", has been removed. Comment #3 Section 2.2, Page 4 In the Recommendations we use the acronym "PAOC". Since there is no section defining this and other acronyms, kindly define this here and throughout the document. Response #3 Agreed. Will add fly sheet defining all acronyms. Comment #4 Section 3.2, Page 5 In the Recommendation we use the acronym "AOC". Since there is no section defining this and other acronyms, Kindly define this here and throughout the document. "AOC" has a specific meaning in the Seneca program; however, the context suggests that this occurrence is meant differently. Response #4 Agreed. Will add fly sheet defining all acronyms. Comment #5 Section 4.1, Page 5 Please correct "This area was". Response #5 Acknowledged. #### Comments from Scott Bradley Comment #1 Section 1.3, Page 1 Discussion of the Seneca Army Depot Criteria Flow Chart must be expanded to rationalize the decision which are applied to sites "...as outlined under Decision No. (sic) XX in the Decision Criteria...". This flow chart should be described in the text along with more detailed rationales for decision actions and subsequent responses required by the table at each decision point. Discussions of decision criteria and prescribed responses that are defined by regulatory criteria should include a citation to the applicable regulation. The methodology to perform the "mini risk assessment" must be described. Regulatory concurrence with this chart should be noted if it exists, or achieved if it has not been formally accepted by regulators. #### Response #1 Acknowledged. The process of the Criteria Flow Chart has essentially been agreed on by the regulators. #### Comment #2 Figure 1-2 The decision process identified should be revised (unless already accepted by the regulators) to allow performance of Time Critical Removal Actions at sites with immediate property transfer needs. The argument that potential exposures to site contaminants by property recipients justifies the need for Time Critical actions has been accepted by Region II BRAC RPMs. Additionally, or as an alternative to TCRA, a Probablistic Risk Assessment methodology could be proposed in lieu of the ESI/Mini RA process identified by this figure to speed up the onset of remediation and or transfer. #### Response #2 Acknowledged. The process of the Criteria Flow chart has essentially been agreed on by regulators. 40CFR300.415 does not mention that the transfer of property changes a Non-time Critical Removal Action to a Time Critical Removal Action. #### Comment #3 Section 3.2, Invest'n Sumry, Page 5 Is this data sufficient for a mini risk assessment? #### Response #3 While the protocol for performing a mini risk assessment has not been finalized, it is believed that preliminary risk screening, through the mini risk assessment process can be performed with these data. # APPENDIX A. Soil Boring Logs PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 123 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 12 DEPTH TO WATER: 3.3 BORING LOCATION: 1014587.4801 ft NORTH 741275.0416 ft EAST Sheet 1 of 2 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 632.5536 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | NSCS | |------------------|---------------------------------|----------|----------|----------------------|----------|------------|-----------------
--|------| | | | | | | | | | DESCRIPTION | | | EB242 | 27
7
12
12 | | 1.7 | 0 | -1 | 1. | 200 | Brown to Dark Gray medium SAND, some silt, little coarse Sand, little fine to medium Gravel, trace Cobble, moist. | GN | | | | | | | | 1. | · 1 | Fine to medium SAND, trace medum Gravel, tight till, moist. No Recovery. | ļ | | EB243 | 14
12
14
19 | | 1.5 | 0 | -3 | ∑ 3. | 5 6 7 6 | Fine to medium SAND, trace medium Gravel, tight till, saturated. | SN | | 1 | | | | | | | | No Recovery. | | | | 20
20
10
100/.2 | | 1.7 | 0 | -4
-5 | 5. | | Fine to medium SAND, trace medium Gravel, tight till, trace cobble, saturated. | SM | | | | <u> </u> | | | -6 | | 6 | No Recovery. | | | İ | 28
100/.5 | | 1 | 0 | | | 7 | Weathered SHALE. | BRI | | | | | | | -7 | | | No Recovery. | | | | 42
100/.1 | I | 0.6 | 0 | -8 | 8. | 8 | Weathered SHALE. | BRI | | | | _ | | | -9 | | | No Recovery. | | | NOTES |
S: | | | | | | | | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 123 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 **DRILLING CONTRACTOR: Nothnagle** DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 12** DEPTH TO WATER: 3.3 BORING LOCATION: 1014587.4801 ft NORTH 741275.0416 ft EAST **COORDINATE SYSTEM: NAD83** **GROUND SURFACE ELEVATION: 632.5536 ft ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION | nscs | |------------------|---------------------------------|--------------------|----------------------|-----------------|-----------------|---|------| | | 17 | | 0 | 10 10 | | No Recovery. | | | | 22
100/. 4 | | | -11
12 | | | | | | | | | -12 | | Auger Refusal at 12'. | - | NOTES | ∟
S: | | |
 | | | | | | | | · |
 | | JNITED STATES ARMY LOG OF BORING 123B-1 | | | | | | | | F | JNITED STATES ARMY LOG OF BORING 123B-1 CORPS OF ENGINEERS Seneca Army Depot Romulus, New York Sheet 2 of | 2 | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 123 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 4.3 DEPTH TO WATER: BORING LOCATION: 1014559.4334 ft NORTH 741258.2016 ft EAST Sheet 1 of 1 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 631.4866 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------|---------------------------------|--------------------|----------------------|------------------|-----------------|--|------| | EB244 | 7 | 1 | 0 | | | DESCRIPTION Dark Gray, SILT and Sand, little cobble, moist, frozen. | SM | | | 14
24
14 | | | 0.5 | | Olive Gray to Brown SILT and coarse Gravel, some fine to medium Sand, little Cobble, trace fine Sand, moist. No Recovery. | | | EB245 | 21 100/.4 | 0.9 | 0 | -2 2.9 | | Olive Gray to Brown, SILT and coarse Gravel, some fine to medium Sand, little Cobble, trace fine Sand, moist. | GN | | _ | 100/.3 | 0.3 | 0 | -3 3.2
-4 4.3 | | Fragments of Competant SHALE. No Recovery. | BR | | | | | | | | Auger Refusal at 4.3'. | | | NOTES | S : | | | | | INITED STATES ARMY LOG OF BORING 123B- | | Seneca Army Depot Romulus, New York PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 123 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 6.3 DEPTH TO WATER: 0 BORING LOCATION: 1014635.869 ft NORTH 741331.8431 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 632.4337 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE STARTED: 3/05/98 DATE COMPLETED: 3/05/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 13.9 DEPTH TO WATER: 12.5 BORING LOCATION: 987911.494 ft NORTH **LOG OF BORING 122D-1** Sheet 1 of 2 741222.1228 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 644.8973 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID
(ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION | nscs | |------------------|---------------------------------|--------------------|-------------------------|---------------|-----------------|---|------| | EB201 | 6
7
7
8 | 1.5 | 0 | -1 | 1.5 | Light Brown, CLAY, some Silt, little +fine to coarse Gravel, moist. Roots in top 2" | CL | | | 5
9
15
20 | 1.3 | 0 | -3 | 1.3 | No Recovery Light Brown to Greenish Gray, CLAY, and -Silt, trace -fine Sand, little fine to coarse Gravel, moist. No Recovery | CL | | | 9
15
25
27 | 1.8 | 0 | -4
-5 | | Light Brown to Greenish Gray, SILT, some +Clay, little -fine Sand, little fine to coarse Gravel, moist. | ML | | EB202 | 13
25
25
25 | 1.7 | 0 | -6
6
-7 | | No Recovery Light Brown, CLAY, some Silt, trace fine Sand, little +Gravel, moist. Light Brown to Greenish Gray, SILT, little +fine Sand, some -fine to coarse Gravel, trace Clay, wet. | CL | | | 19
33
41
50 | | 0 | -8 | | No Recovery Light Brown, Silt, trace fine Sand, some fine to coarse Gravel, wet. | ML | UNITED STATES ARMY CORPS OF ENGINEERS PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE STARTED: 3/05/98 DATE COMPLETED: 3/05/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 13.9 **DEPTH TO WATER: 12.5** BORING LOCATION: 987911.494 ft NORTH 741222.1228 ft EAST Sheet 2 of 2 COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 644.8973 ft** ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE STARTED: 3/05/98 DATE COMPLETED: 3/05/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 14 DEPTH TO WATER: 8 BORING LOCATION: 987799.2085 ft NORTH 741278.0134 ft EAST Sheet 1 of 2 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 643.8361 ft **ELEVATION DATUM: NAVD88** INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID
(ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | SOSI | |------------------|---------------------------------|---------------|----------|-------------------------|------------|------------|-----------------
--|------| | | | | | | | | ,,,,,, | DESCRIPTION | | | E <u>B</u> 203 | 8
9
10
13 | | 1.5 | 0 | -1 | 1.5 | | Light Brown, CLAY, and Silt, moist, roots. Olive Gray, fine to coarse GRAVEL, some fine to coarse Sand, trace +Silt, wet. | C | | | | - | | | | 1 | | No Recovery | | | | 14
14
13 | | 1.3 | 0 | -3 | 3.3 | | Olive Gray, fine to coarse GRAVEL, and fine to coarse Sand, trace Silt, wet. | TI | | | | | | | | | 20/884 | No Recovery | | | | 9
12
18
12 | | 1.5 | 0 | -4 | 5.5 | | Light Brown, SILT, little fine to coarse Gravel, moist. | MI | | | | | | | | | ~~~ | No Recovery | | | | 12
12
16
16 | | 1.8 | 0 | -6
-7 | 7.8° | | Light Brown, SILT, little fine to coarse Gravel, trace coarse Sand, moist. | MI | | EB204 | 30 | <u>+</u>
⊤ | 16 | , | -8 Z | Z a | 7777A | No Recovery | ML | | | 40
52
100/.1 | | | | - g | | | Light Brown, SILT, and -fine to coarse Gravel, little -fine to medium sand, saturated. | IVII | | _ | | Τ | | | | 9.0 | 777/84 | No Recovery | + | | NOTES | | | | | | | | | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York **ASSOCIATED AREA/UNIT: SEAD 122** PROJECT NO: 733193-01001 DATE STARTED: 3/05/98 DATE COMPLETED: 3/05/98 **DRILLING CONTRACTOR: Nothnagle** DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 14 DEPTH TO WATER: 8** BORING LOCATION: 987799.2085 ft NORTH 741278.0134 ft EAST COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 643.8361 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: MW **CHECKED BY: ITR** | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION | nscs | |------------------|---------------------------------|--------------------|----------------------|-------------------------|-----------------|---|------| | | 28
46
80
100/.5 | 1.3 | 0.2 | -11 | .8 | Light Brown, SILT, and -fine to coarse Gravel, little -fine to coarse Sand, saturated. | ML | | | 29
43
100/.3 | 1.3 | 0.2 | -12
-13
13
-14 | | No Recovery Olive Gray, fine to coarse GRAVEL, some Silt, trace +fine to coarse Sand, saturated. Weathered SHALE. Auger Refusal at 14.0'. | GM | | NOTE | S: | | | | | UNITED STATES ARMY LOG OF BORING 122D-2 | 2 | | | | | | | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 122D-2 LOG OF BORING 122D-2 Sheet 2 | of 2 | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98 **DRILLING CONTRACTOR: Nothnagle** DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 9.1** **DEPTH TO WATER: 7.2 BORING LOCATION: 987033.7607 ft NORTH** 740754.7201 ft EAST **COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 638.9787 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: DRG **CHECKED BY: ITR** | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------|---------------------------------|--------------------|----------------------|-------------------|-----------------|--|------| | E8 <u>2</u> 05 | 4
14
8
14 | 1.9 | 5 0 | -1 | | DESCRIPTION Olive Gray, SILT, little coarse Sand, trace fine Gravel, moist. | OL | | | 10 | 1.8 | 0 | -2 | 1.5 | No Recovery Olive Gray, SILT, some Clay, little fine Sand, trace Cobble, wet. | CL | | | 15
30 | | | -3 | 3.8 | | | | | 20 | 0.6 | 0 | -4
-5 | 4.6 | No Recovery Olive Gray, fine SAND, some medium Gravel, little Cobble, trace Silt, moist. No Recovery | SP | | EB207 | 22
87
100/.5 | 1.5 | 0 | -6
-7 <u>⊽</u> | 7.5 | Brown fine to medium, SAND, some finer to coarse Gravel, some Cobble, trace Silt, saturated. | TL | | ⊥ | 100/.5 | 0.5 | 0 | -8 | 8
8.2
8.5 | No Recovery. Olive Gray, SILT, Shale fragments. Competant Shale. No Recovery. | TL | | NOTES | 6 : | | | | | Auger Refusal at 9.0'. JNITED STATES ARMY LOG OF BORING 122E-1 | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon DATE STARTED: 3/06/98 TOTAL DEPTH: 12.5 DEPTH TO WATER: 2.2 BORING LOCATION: 988958.412 ft NORTH 739018.1027 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 602,0001 ft **ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|------------|----------|----------------|---------------------|-----------------|--|-------| | | | | | | | | DESCRIPTION | | | E <u>₿</u> 208 | 7
11
11
14 | | 1.5 | 0 | -1 | | Brown, SILT, trace fine Sand, little organics, trace coarse Gravel, trace Cobble, moist. | FL | | | | | | | 1.5 | \bowtie | Olive Gray, fine SAND, little coarse Sand to fine Gravel, trace Cobble, trace Silt, iron oxide viens, moist. | | | | | _ | | | | XXXX | No Recovery. | | | EB209 | 13
13
21 | | 0.8 | 0 | -2 \(\sum_{2.6} \) | | Brown, coarse SAND and fine GRAVEL, little fine to medium Sand, trace Cobbles, wet to saturated. | FL | | | 13 | - - | | | -3 | | No Recovery | | | | 7
7
8
22 | | 1.5 | 0 | 5 5 | | Brown, coarse SAND and fine GRAVEL, little fine to medium Sand, trace Cobbles, wet to saturated. | FL | | | | | | | 5.5 | | Olive Gray, SILT and very fine SAND, little coarse Sand to fine Gravel, trace Cobble, iron oxide veins, saturated. | | | | | | | | | | No Recovery. | | | | 32
100/.5 | | 0.5 | 0 | -6
6.5 | | Olive Gray, SILT and very fine SAND, little coarse Sand to fine Gravel, trace Cobble, iron oxide veins, saturated. No Recovery. | TL | | | | | | | -7 | | | | | | 100/.5 | Т | 0.3 | 0 | -8 | | Olive Gray, SHALE chips, some Silt and fine Sand, weathered Shale, wet. | BRK | | | 1001.0 | _ | | | 8.3 | | No Recovery. | DIXIX | | | | | | | -9 | | | | | NOTES | S: | | | | | | | | | | | | | | | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 PROJECT NO: 733193-01001 DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 12.5 DEPTH TO WATER: 2.2 BORING LOCATION: 988958.412 ft NORTH 739018.1027 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 602.0001 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number
Blow Counts | (# Blows per 6") | Sample
Recovery | VOC Screen-PID
(ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |---------------------------------|------------------|--------------------|-------------------------|------------|-----------------|--|------| | | 12 | 0.4 | 0 | 10 10 | | DESCRIPTION Olive Gray, SHALE chips, some Silt and fine Sand, weathered Shale,
wet. | BRK | | 6 | 22 666 007.4 | - | | -11 | | No Recovery. | | | | | | | 12 | | , | | | 100 | 00/.5 | | 0 | 12.5 | | No Recovery | | | | | | | | | Auger refusal at 12.5'. | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York **LOG OF BORING 122E-2** Sheet 2 of 2 PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.8 DEPTH TO WATER: 2.4 BORING LOCATION: 991432.0738 ft NORTH 738522.1617 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 609.7340 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: JTR | Sample
Number | Blow Counts
(# Blows per 6") | Ѕащре | Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------|---------------------------------|-------|----------|----------------------|----------|-------------|-----------------|--|----------| | | | L | | | | | | DESCRIPTION | | | EB210 | 20
18
7
7 | | 1.2 | 0 | -1 | 1. | 2 | Dark Brown to reddish Brown, SILT, Some fine to medium sand, littlefine Gravel, trace Clay and Cobbles, moist. | MI | | | | | | | | | | No Recovery. | | | EB211 | 15
13
8 | I | 0.5 | 0 | -2 | <u>∑</u> 2. | 2 | Light Brown, fine GRAVEL and Coarse SAND, little fine Sand, little coarse Gravel, little Cobble, wet. No Recovery. | GP | | | 16
18
12
100/.2 | | 1.5 | O | -4
-5 | 4.3 | | Light Brown, fine GRAVEL and coarse SAND, little fine to medium Sand,, little coarse Gravel, little Cobble, wet. Olive Gray to Brown, SILT, little coarse Sand to medium Gravel, trace cobbles, very tight till, iron oxide nodes. | GF | | | | _ | | | -6 | 6 | | No Recovery. | <u> </u> | | | 18
43
22
11 | | 1 | 0 | -7 | 7 | | Olive Gray to Brown, SILT, little coarse Sand to medium Gravel, trace Cobbles, very tight till, iron oxide nodes. No Recovery. | TL | | | | | | | | | | | | | | 100/.4 | Τ | 0.4 | 0 | -8 | 8.4 | | Weathered SHALE. | BRH | | | | _ | | | -9 | | | No Recovery. | | | | | | | | | | | | | | NOTES | 5 : | | | | | | 1 | INITED STATES ARMY LOG OF BORING 122E-3 | | | | | | | | | | C | ORPS OF ENGINEERS | | | | | | | | | | 5 | Seneca Army Depot
Comulus, New York Sheet 1 | of 2 | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York **ASSOCIATED AREA/UNIT: SEAD 122** PROJECT NO: 733193-01001 DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle **DRILLING METHOD: HSA 8"** SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 11.8** DEPTH TO WATER: 2.4 BORING LOCATION: 991432.0738 ft NORTH 738522.1617 ft EAST COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 609.7340 ft ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID
(ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | VOVI | |--------|---------------------------------|--------------------|-------------------------|-----|------------|-----------------|--|------| | | | | | 10 | - 47 | | DESCRIPTION | BF | | | 100/.3 | 0.3 | 3 0 | | 10
10.3 | | Compensant SHALE. No Recovery. | ВГ | | | | | | -11 | 11.8 | | | | | | | | | | | | Auger Refusal at 11.8'. | _ | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York **LOG OF BORING 122E-3** Sheet 2 of 2 ### LOG OF BORING 68-1 PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 68 PROJECT NO: 733193-01001 DATE STARTED: 16/03/98 DATE COMPLETED: 16/03/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 4.8 **DEPTH TO WATER:** BORING LOCATION: 751298.2143 ft NORTH 995650.4533 ft EAST Sheet 1 of 1 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 744.1963 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID
(ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |--------------------|---------------------------------|--------|----------|-------------------------|------------|-----------------|--|------| | EDAGO | | | | | | | DESCRIPTION | | | EB250 | 4
8
4
1 | | 1.1 | 0 | -1 1 | | Light brown, fine to coarse GRAVEL, little fine to coarse Sand, trace+ Silt, wet. Olive gray, fine to coarse GRAVEL, lttle fine to coarse Sand, moist. No Recovery. | GW | | | 4
8
9
4 | | 0.9 | 0 | -2
-3 | 2 | Light brown to olive gray, fine to coarse GRAVEL, some- fine to coarse Sand, trace Silt, moist to wet. No Recovery. | GV | | É B25 1 | 15
100/.2 | | 0.6 | 0 | -4 | | Olive gray, fine to coarse GRAVEL, some fine to coarse Sand, trace Silt, moist. Auger Refusal, at 4.8' | GV | | OTES | 6: | | | | | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Denot | | #### LOG OF BORING 68-2 PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 68 PROJECT NO: 733193-01001 DATE STARTED: 16/03/98 DATE COMPLETED: 16/03/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon BS Sites TOTAL DEPTH: 4.5 DEPTH TO WATER: BORING LOCATION: NORTH EAST COORDINATE SYSTEM: GROUND SURFACE ELEVATION: ELEVATION DATUM: INSPECTOR: MW CHECKED BY: ITR PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 120 PROJECT NO: 733193-01001 DATE STARTED: 17/03/98 DATE COMPLETED: 17/03/98 DRILLING CONTRACTOR: Nothnagie DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.4 DEPTH TO WATER: 8.3 BORING LOCATION: 743060.6715 ft NORTH 1015618.692 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 635.2835 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | (1000) | VOC Screen-PID
(ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------|---------------------------------|--------|--------|-------------------------|-------------|-----------------|--|------| | | | , | | | | | DESCRIPTION | 014 | | EB258 | 8
9
10
18 | | 1.3 | 0 | 0.3 | | Olive gray, fine to coarse SAND, little fine Gravel, trace Silt, wet. Olive gray, SILT, trace +fine to coarse Gravel, trace fine to coarse Sand, moist. | SW | | | | | | | | | No Recovery. | | | | 8
15
16
15 | 1 | 1.4 | 0 | -2 | | Olive Gray, fine to coarse GRAVEL, little+ Silt, little- fine to coarse Sand, moist. | GM | | | | | | | 3.4 | 94090 | No Recovery. | + | | | 20
24
50
100/.5 | | 2 | 0 | -5 | | Olive gray, SILT, little -fine to coarse Gravel, trace- fine to coarse Sand, moist. | ML | | EB⊋59 | 7
19
40
85 | | .7 | 0 | 77 | | Olive gray, SILT, some+ fine to coarse Gravel, trace fine to coarse Sand, moist. | ML | | | 18
33
53
50 | T | 2 | 0 | -8 <u>\</u> | | No Recovery Dark gray, SILT, some fine to coarse Gravel, trace fine to coarse Sand, saturated. | ML | | | | | | | 6.2 | X/72/X | Dark gray, SHALE bedrock, fractured. | | | NOTE | S: | | | | | | | | | | | | | | | | INITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 120D- | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION:
Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 120 PROJECT NO: 733193-01001 DATE STARTED: 17/03/98 DATE COMPLETED: 17/03/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.4 DEPTH TO WATER: 8.3 BORING LOCATION: 743060.6715 ft NORTH 1015618.692 ft EAST Sheet 2 of 2 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 635,2835 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------------|---------------------------------|--------------------|----------------------|-------------|------------|-----------------|--|------| | | 50 | 1 0.4 | 0 | | 10 1 | 0 | DESCRIPTION Dark gray, SHALE bedrock, fractured. | - | | | 100/.1 | Τ | | | -11
11. | | Auger Refusal at 11.4'. | diameter of the second | OTES | | | | | | <u></u> | | | CORPS OF ENGINEERS PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 120 PROJECT NO: 733193-01001 DATE STARTED: 17/03/98 DATE COMPLETED: 17/03/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 6.5 DEPTH TO WATER: 4 BORING LOCATION: 738814.9635 ft NORTH 999752.4051 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 609.5927 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 7/3/98 DATE COMPLETED: 7/3/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.3 DEPTH TO WATER: 4 BORING LOCATION: 750819.9713 ft NORTH 994880.8121 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 739,0833 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------|----------|----------------------|---------------------------|-----------------|--|-----------| | EB212 | 4 | | 1.4 | 0 | 0 | ×××× | DESCRIPTION Brown, SILT, some very fine Sand, little roots, organic material, trace coarse | OL | | <u> </u> | 8
10
16 | | 1.4 | U | -1 | 1.4 | Sand to fine Gravel, trace Cobble. moist. | | | | | _ | | | | | No Recovery. | | | | 13
25
30
100/.3 | T | 1.5 | 0 | -3 | 2 | OLive gray to yellowish orange, SILT and very fine SAND, little medium Sand, trace coarse Sand, tarce fine to coarse Gravel, trace Cobble, trace iron-oxide nodes, moist, tight Till. | M | | | | 1 | | | | | No Recovery. | \dagger | | EB213 | 34
40
44
40 | I | 0.5 | 0 | -4 \ \\ \ \ -5 | 4.5 | Olive gray to yellowish orange, SILT and very fine SAND, little medium Sand, trace coarse Sand, trace fine to coarse Gravel, trace Cobble, trace iron-oxide nodes, moist, tight Till. No Recovery. | M | | | 13
100/.3 | | | 0 | -6 | 6 | No Recovery. | | | | | | | | -7 | 6.8 | No Recovery. | | | | 14
100/.4 | T | 0.9 | 0 | -8 | | Yellowish orange to light brown, SILT, some fine to coarse Sand, little fine to coarse Gravel, little Cobble. | TI | | | | 1 | | | -9 | V. 34/7/XA | No Recovery. | | | NOTE | S: | | | | | | | | | | | | | | | (| UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121B- | 1 | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 7/3/98 DATE COMPLETED: 7/3/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.3 DEPTH TO WATER: 4 BORING LOCATION: 750819.9713 ft NORTH 994880.8121 ft EAST Sheet 2 of 2 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 739.0833 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample Number Blow Counts (# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION | nscs | |--|--------------------|----------------------|------------|-----------------|---|------| | 100/.4 | | 0 | 10 10 | | No Recovery. | | | | | ŀ | 10.4 | | No Recovery. | | | | | | -11 | | | | | | | | 11.3 | | Auger Refusal at 11.3'. | BRK | | | | | | | | | | NOTES: | | | | | | | | | | | | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Denot | | ## **LOG OF BORING 121C-1** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 4.3** **DEPTH TO WATER: 2** BORING LOCATION: 997305.3484 ft NORTH 749798.8895 ft EAST COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 729.2438 ft** **ELEVATION DATUM: NAVD88 INSPECTOR: DRF** CHECKED BY: ITR | Brown to Olive Gray SILT, some fine Sand, little medium Gravel, trace Cobble, trace Clay, trace Debris, moist. No Recovery | Sample
Number
Blow Counts | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |--|---------------------------------|--------------------|----------------------|---|-----------------|--|------| | Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace Cobble, wet to saturated. Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace Cobble, wet to saturated. Weathered Shale No Recovery Weathered Bedrock BR | 14 42 | 1.5 | 5 0 | -1 | 1.2 | | FL | | Weathered Shale No Recovery 100/3 0.3 0 4.3 Weathered Bedrock BF | 36 | | 3 0 | - ₂ \(\frac{\text{\sqrt}}{2}\) | 2 | Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace | Т | | Weathered Bedrock End of Boring | 100 | | | -3 | 3.3 | | BF | | | | 0.3 | | | 4.3 | | | Romulus, New York ## **LOG OF BORING 121C-2** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/9/98 DATE COMPLETED: 3/9/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 7.2 DEPTH TO WATER: 2.1 BORING LOCATION: ft NORTH ft EAST **LOG OF BORING 121C-2** Sheet 1 of 1 COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID
(ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other
locations. | USCS | |------------------|---------------------------------|---------|----------|-------------------------|----|------------|-----------------|--|------| | | | | | | | ** | | DESCRIPTION | | | E <u>B</u> 226 | 10
12
9 | | 1.2 | 0 | | 0 | .7 | Dark Gray-Reddish Brown Coarse SAND and fine Gravl, little fine to medium Sand. | FL | | | 11 | | | | -1 | 1 | 2 | Olive Gray SILT, some fine Sand, little coarse Sand, trace fine Gravel, wet. | TL | | | | | | | | | | No Recovery | | | B <u>2</u> 28 | 9
12
43
100/.3 | | 1.5 | 0 | -3 | Ţ | | Olive Gray SILT, some fine Sand, little coarse Sand, trace fine Gravel, wet. | TL | | | | _ | | | | 3. | 2000 | No Recovery | | | | 85
100/.2 | T | 0.7 | 0 | -4 | 4 | | Weathered Bedrock | BRI | | | | <u></u> | | | -5 | 4. | | No Recovery | | | | 21
100/.3 | T | 0.8 | 0 | -6 | | | Weathered Bedrock | BRI | | | | 1 | | | -7 | 6. | | No Recovery | | | | | | | | | 7. | 2 | Auger Refusal | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York ## **LOG OF BORING 121C-3** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York **ASSOCIATED AREA/UNIT: SEAD 121** PROJECT NO: 733193-01001 DATE STARTED: 3/9/98 DATE COMPLETED: 3/9/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 7.7 **DEPTH TO WATER: 0.2** BORING LOCATION: ft NORTH ft EAST **COORDINATE SYSTEM: NAD83** GROUND SURFACE ELEVATION: ft **ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID
(ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------|----------|-------------------------|---------------|-----------------|--|-------------| | EB233 | 11 | | 1.4 | 0 | • <u>\</u> | XXXX | DESCRIPTION Olive Gray medium to coarse GRAVEL, some fine Gravel, little fine to | FL | | EĐĐ | 22
7
11 | | 1.4 | | -1 | | coarse Sand, trace Cobble, saturated. | | | | | _ | | | | | No Recovery | | | EB <u>2</u> 34 | 19
19 | T | 1 | 0 | -2 | 2 | Olive Gray medium to coarse GRAVEL, some fine Gravel, little fine to coarse Sand, trace Cobble, saturated. | Fl | | | 16
20 | | | | -3 | | Dark Gray to Brown SILT, trace medium Sand, trace medium to coarse Gravel, saturated. No Recovery | + | | | 16
20
24 | T | 0.8 | 0 | 4 | | Weathered Bedrock | BR | | | 100/.3 | _ | | | -5 | | No Recovery | | | | 100/.2 | I | 0.2 | 0 | -6 6 . | 6 | Weathered Bedrock No Recovery | BR | | | | | | | -7 | | , | | | | | | | | 7. | 7 | Auger Refusal at 7.7' | NOTE | S: | | | | | 1 | UNITED STATES ARMY LOG OF BORING 1210 | 7_2 | | | | | | | | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 1210 | J -3 | | | | | | | | j | Romulus, New York Sheet | l of l | ### **LOG OF BORING 121C-4** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/9/98 DATE COMPLETED: 3/9/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 7.1 DEPTH TO WATER: 2 BORING LOCATION: 996868.9407 ft NORTH 749628.1538 ft EAST **COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 728.1890 ft ELEVATION DATUM: NAVD88** INSPECTOR: DRG **CHECKED BY: ITR** | | , | 1 | | | | | | | | |------------------|---------------------------------|--------|----------|----------------------|----------|------------|-----------------|--|------| | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | SOSI | | | | | | | | | | DESCRIPTION | | | EB229 | 10
14
14
8 | | 1.5 | 0 | -1 | 1.0 | | Dark Gray Gravel and COBBLE, some fine to medium Sand, little coarse Sand, trace SILT, moist. | Fi | | | | | İ | | | 1.4 | 10000 | No Recovery | 1 | | EB231 | 40 | _ | | | -2 | Ž į | **** | Date One Completed CORRIES and State Conditions Conditions | FI | | EB231 | 10 | | 1 | 0 | | | | Dark Gray Gravel and COBBLE, some fine to medium Sand, little coarse Sand, trace SILT, wet. | ן ר' | | Τ | 8 | | | | -3 | 2.6 | | Olive Gray to Brown SILT, trace fine Sand, trace roots, organic material. | T | | | 30
42
100/.3 | | 1.3 | 0 | -4
-5 | 5.3 | | Olive gray to dark gray SILT, trace Clay, trace coarse Gravel, trace Cobble, trace organics, trace medium to coarse Sand, Saturated. | T | | | | _ | | | | | | No Recovery | | | | | _ | | | | 6 | | | | | | 100/.3 | | 0.4 | 0 | F-6 | 6.4 | | Weathered Bedrock | BR | | | | | | | | | | No Recovery | | | | | | | | -7 | 7.1 | | | _ | | | | | | | | | | Auger Refusal at 7.1'. | | | | | | | | | | | | | | NOTE | S. | | | | | | | | | | | | | | | | | J | JNITED STATES ARMY LOG OF BORING 121C CORPS OF ENGINEERS Seneca Army Depot Somulus, New York Sheet 1 | -4 | | | | | | | | | 5 | Seneca Army Depot Complus New York Sheet 1 | of 1 | Romulus, New York PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 3 **DEPTH TO WATER: 0.9** BORING LOCATION: 999369.1146 ft NORTH 747882.6307 ft EAST **COORDINATE SYSTEM: NAD83** **GROUND SURFACE ELEVATION: 721.9356 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Brown SILT, little fine Sand, trace roots, wet to saturated. Sand S | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION | | nscs | |--|------------------|---------------------------------|--------------------|----------------------|-------|------------|-----------------
---|--------|------| | No Recovery No Recovery No Refusal at 3.0'. | | 13
18 | 1.7 | | -1 -2 | <u> </u> | | | | FL | | No Recovery Auger Refusal at 3.0'. | 1 | | | | , | 1.2 | | Cobble, saturated. | e | TL | | Auger Refusal at 3.0°. | | 100/.5 | | 0 | -2 | 2 | | | | | | | | | | | | | | | | | | | NOTE | S: | | |
 | | | | | _ | | UNITED STATES ARMY CORPS OF ENGINEERS LOG OF BORING 121D-1 | | | | | | | (| UNITED STATES ARMY LOG OF BORING CORPS OF ENGINEERS Seneca Army Depot Romulus, New York | 121D-1 | | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE COMPLETED: 3/8/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon DATE STARTED: 3/8/98 TOTAL DEPTH: 5.4 **DEPTH TO WATER: 4** BORING LOCATION: 999469.3345 ft NORTH 747872.8964 ft EAST **COORDINATE SYSTEM: NAD83** **GROUND SURFACE ELEVATION: 722.2865 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Kecovery | VOC Screen-PID
(ppm) | Denth (A) | (a) index | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | 11676 | |------------------|---------------------------------|--------|----------|-------------------------|-------------------|-----------|-----------------|--|-------| | EB218 | 5 | | 1.5 | 0 | | | *** | DESCRIPTION Olive gray to brown SILT, some coarse Gravel, some Cobbles, trace fine | F | | _ | 9
9
12 | | | | -1 | 1.5 | | Sand, moist. No Recovery | | | | 18 | _ | 0.5 | 0 | -2 | 2 | *** | Olive gray to brown SILT, some coarse Gravel, some Cobbles, trace fine | F | | | 30 | | 0.5 | | | 2.5 | \bowtie | Sand, moist. No Recovery | | | | 22 | | | | -3
-4 \sqrt{2} | . 4 | | | | | B219 | 15
18 | T | 0.5 | 0 | -4 - 2 | 4.5 | | Olive gray SILT, some very fine Sand, little coarse Sand, little fine to coarse Gravel, trace Cobble, saturated. | ٦ | | _ | 100.2 | | | | -5 | 5.4 | 2//2/ | No Recovery | | | | | | | | | | | Auger Refusal at 5.4'. | | | NOTE | S: | | | | | | | | | | | | | | | | | J
(| UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121D- Sheet 1 of Shee | 2 | | | | | | | | | | Seneca Army Depot Somulus New York Sheet 10 | of I | PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 5.9 DEPTH TO WATER: 2.4 **BORING LOCATION: 999499.2027 ft NORTH** **LOG OF BORING 121D-3** Sheet 1 of 1 748148.2246 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 724.7897 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------------------|----------------------|----------------------------|--|------| | | | | | | DESCRIPTION | | | EB222 | 28
32
16
17 | 1.8 | 0 | -1 12 | Olive gray, GRAVEL, some fine to coarse Sand, little Cobble, trace Asphalt pieces, trace Silt, dry. | FL | | | | 5 | | 1.5 | Brown to olive gray, SILT, and fine Sand, little medium to coarse Sand, tarce medium to coarse Gravel, moist. | TL | | EB <u>₹</u> 23 | 30
36
40
46 | 1.5 | 0 | -2 2 | No Recovery. Brown to olive gray, SILT and fine sand, little medium to coarse Sand, trace medium to coarse Gravel, wet. | TL | | | | | | | No Recovery. | T | | | 17
18
17
100/.2 | 17 | 0 | -5
57 | Brown to olive gray, SILT and fine Sand, little medium to coarse sand, trace medium to coarse Gravel, little Cobble, saturated. | TL | | | | | | 5 g | No Recovery. Auger refusal at 5.9'. | | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/17/98 DATE COMPLETED: 3/17/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 2.5 DEPTH TO WATER: 1.1 BORING LOCATION: 999162.3325 ft NORTH **LOG OF BORING 121E-1** Sheet 1 of 1 750936.1244 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 740.1209 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------------------|----------------------|---------------|----------------|-----------------|--|------| | EB268 | | 1.1 | | | -i <u>√</u> 1. | 1 | DESCRIPTION Olive gray fine SAND, some fine to coarse Gravel, little Silt, wet. No Recovery | SM | | | | | | | 2. | 5 | End of Boring | | | | | | | | | | | | | | | | | ven by sledge | | | | | UNITED STATES ARMY **CORPS OF ENGINEERS** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/17/98 DATE COMPLETED: 3/17/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 8.6 DEPTH TO WATER: 6.7 BORING LOCATION: 999127.1644 ft NORTH 750864.1559 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 743,1674 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample
Recovery | VOC Screen-PID | Donth (A) | Depui (ii) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------------------
----------------|----------------|------------|-----------------|--|------| | EB256 | 14 | 1. | 5 0 |
• | | ×××× | DESCRIPTION Olive Gray, SILT, little fine Gravel, trace fine to medium Sand, moist, roots in | ML | | | 16 | | | | 0.3 | XXX | top 1". | GM | | Τ | 16
14 | | | -1 | 1.5 | | OLive Gray fine to coarse GRAVEL, little Silt, trace fine Sand, moist. | | | | | | | | | | No Recovery | | | | 9
9
14
20 | 1. | 1 0 | - ₂ | 3.1 | | Light brown Silt, trace fine to coarse Gravel, trace fien Sand, moist. | ML | | | | _ | | | | 7.7.7.7. | No Recovery | | | EB257 | 8
12
15
29 | | 2 44 | ~4 | 4 | | Olive gray Silt, little fine to coarse Gravel, trace fine Sand, moist.(Petroleum Odor) | ML | | | 5 | + 1. | 7 | -6 | 6 | | Olive Gray SILT, trace fine Gravel, trace fine Sand, moist. | ML | | | 8 | | | | | | onto oray oray, trace fine oraye, trace fine oara, motor. | | | | 100/.5 | | | $\bar{\Delta}$ | 6.7 | | Olive gray SILT, some fine to coarse Saand, trace fine Gravel, saturated. | ML | | | | | | -7 | 7.1 | | Olive gray SILT, trace fine to coarse Gravel, trace fine Sand, wet. | ML | | | | ⊥. | | | 7.4 | 1280 | No Recovery | | | | 100/.3 | | | -8 | 8 | _ | No Recovery | | | | 100.10 | | | | 8.6 | | NO RECOVERY | | | | | | | | | | Auger Refusal at 8.6'. | | | NOTE | S: | | | | | | | | | | | | |
 | | | JNITED STATES ARMY LOG OF BORING 121E-2 |) | | | | | | | | (| JNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121E-2 | | | | | | | | | - 2 | Somulus New York Sheet Lot | ٠, | ### **LOG OF BORING 121G-1** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 7/3/98 DATE COMPLETED: 7/3/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 5 DEPTH TO WATER: 4.4 BORING LOCATION: 998769.4389 ft NORTH **LOG OF BORING 121G-1** Sheet 1 of 1 751317.7683 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 741.7422 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRG INSPECTOR: DRG CHECKED BY: ITR | Number Number Blow Counts | Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |---------------------------|--------------------|----------------------|--------------|-----------------|--|------| | | 1 | | | | DESCRIPTION | | | B214 4
6
6 | 1.5 | 0 | 0. | | Brown, SILT, little fine Sand, trace roots, trace Gravel, moist. | FL | | 3215 7 | | | -1 1. | **** | Black, orange, and white, layer of gravel size Coal Ash fragments. | FL | | _ | | | 1.3 | ₩ | Brown, SILT, little fine Sand, trace roots, trace Gravel, moist. | FL | | | | | | 2 | No Recovery. | | | 13
13
13 | 1.8 | 0 | 2. | | Brown, SILT, Ittle fine Sand, trace Gravel, moist. | FL | | 15 | | | -3 | | Yellowish to orange, very fine SAND, some Silt, trace coarse Sand. | Fl | | 13 | 0 6 | 0 | -4 | | No Recovery. Yellowish to orange, very fine SAND, some Silt, trace coarse Sand. | FL | | 100/.1 | | ! | ∑ 4.4
4.6 | | Olive gray, SILT and fine Sand, little coarse Sand, little fine Gravel, trace | TL | | | | | | | coarse Gravel, trace Cobble, saturated. | | | | | | -5 | 1 | No Recovery. | | | | | | | | Auger Refusal at 5.0'. | | **UNITED STATES ARMY** **CORPS OF ENGINEERS** ### **LOG OF BORING 121G-2** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 7/3/98 DATE COMPLETED: 7/3/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 5.8** **DEPTH TO WATER: 5.1** BORING LOCATION: 998762.8739 ft NORTH 751344.6764 ft EAST **COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 744.8884 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: DRG CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Recovery | VOC Screen-PID (ppm) | | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | nscs | |------------------|---------------------------------|--------|----------|----------------------|----------|------------|-----------------|--|------| | EB216 | 4 | | 1.4 | 0 | • | | XXXX | DESCRIPTION Brown SILT, little fine Sand, trace coarse Sand to fine Gravel, moist. | FL | | _ | 8
12 | | | | | | | | | | EB217 | 12 | | | 0 | -1 | 0.9
1.4 | | Gray to Brown to Orange to Black Gravel size fragments of COAL ASH, moist. | FL | | | | | | | | 2 | | No Recovery | | | | 30
38 | T | 0.5 | 0 | -2 | 2.5 | | Brown SILT, little fine Sand, trace coarse Saand to fine Gravel, moist. | FL | | | 38
42 | | | | -3 | | | No Recovery | | | | 15
16
15
100/.2 | T | 1.3 | 0 | -4
-5 | .4
∑.53 | | Olive gray to yellowish Orange SILT, some fine to coarse Sand, little fine to coarse Gravel, Ironoxide nodes, wet to saturated. | TL | | | | | | | | 5.8 | 68/38/ | No Recovery | | | | | | | | | | | Auger Refusal at 5.8'. | | | NOTES | c. | | | | | | | | 1 | | NOTE | s: | | | <u></u> | | | Į
(| JNITED STATES ARMY LOG OF BORING 121G- CORPS OF ENGINEERS Seneca Army Depot | 2 | | | | | | | | | Ī | Seneca Army Depot Romulus, New York Sheet 1 of | of 1 | ## **LOG OF BORING 121H-1** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE STARTED: 3/16/98 DATE COMPLETED: 3/16/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 9.2 DEPTH TO WATER: BORING LOCATION: 999025.081 ft NORTH 750752.5813 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 741.3367 ft ELEVATION DATUM: NAVD88 INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") | Sample | Necovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | NSCS | |------------------|---------------------------------|----------|----------|----------------------|--------------|-----------------|--|------| | EB254 | 4.1 | | | ō | 0 | XXXX | DESCRIPTION Links Brown for Assess Sand little Fire County trees Silk and | SW | | EB234 | 14
28
36 | | 4 | | 0.1 | | Light Brown fine to coarse Sand, little Fine Gravel, trace Silt, wet. | 34 | | 1 | 28 | | | | 0.9 | | Dark gray COAL, some Gravel, dry. | ML | | | | | | | | | Olive gray SILT and Gravel, moist. | MIL | | | 28
28
23
21 | | 1 | 0 | | | Olive gray fine to coarse GRAVEL, little Silt, little fine Sand, moist. | GN | | | 21 | _ | | | _3 | | No Recovery | | | | 11
15
18
21 | | 1.5 | 0 | -5 | | Light brown SILT, little, fine to coarse Gravel, trace fine to coarse, Sand, moist. | ML | | | | _ | | | 6 | | No Recovery | | | EB255 | 4
10
18
22 | | 2 | 0 | -6
-7 | | Light Brown SILT, little fine to coarse Gravel, trace fine to coarse Sand, moist. Zone from 6.9' to 7.5' is stained dark gray and includes coal ash fragments. | MI | | | 22
40
100/.2 | + | 1.2 | 0 | -8
-9 9.2 | | Light brown SILT, little fine to coarse Gravel, trace Sand, moist. | MI | | | | <u> </u> | | | | | Auger Refusal at 9.2'. | | | NOTE | S: | | | 1 | | <u> </u> | | _1 | | | | | | | | J
) | UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121H | -1 | ### **LOG OF BORING 121H-2** PROJECT: Seneca Non-evaluated EBS Sites PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 DATE COMPLETED: 3/16/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon DATE STARTED: 3/16/98 TOTAL DEPTH: 7.7 **DEPTH TO WATER:** BORING LOCATION: 999094.7882 ft NORTH 750689.3504 ft EAST Sheet 1 of 1 COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 740.7130 ft** **ELEVATION DATUM: NAVD88** INSPECTOR: MW CHECKED BY: ITR | Sample
Number | Blow Counts
(# Blows per 6") |
Sample
Recovery | VOC Screen-PID (ppm) | Depth (ft) | Macro Lithology | This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. | USCS | |------------------|---------------------------------|--------------------|----------------------|------------|-----------------|--|----------| | | | | | | NAAAA | DESCRIPTION | - | | EB252 | 23 | 1 5 | 0 | 0. | . | Olive gray fine to coarse SAND, some fine to coarse Gravel, trace Silt, wet. | SV | | | 23
23 | | | -1 | | Dark gray fine to coarse GRAVEL, little fine to coarse Sand, little Silt, moist. | GN | | | | _ | | | | No Recovery | T | | | 15
15
23
15 | 1.3 | o | -2 | | Light Brown fine to coarse GRAVEL, trace fine to coarse Sand, little Silt, moist. | GM | | | | 1 | | 3.3 | **** | No Recovery | | | | 8
17
20
30 | 2 | 0 | -5 | | Light Brown Silt, some fine to coarse Gravel, little fine Sand, moist. | ML | | EB253 | 7
53 | 1 | 0 | -6 | | Light brown SILT, little fine Gravel, little fine Sand, moist. | Mi | | | 100/.3 | | | | | | | | | | _ | | -7 | | No Recovery | | | | | | | 7.7 | | Auger Refusal at 7.7'. | | | | | | | | | August Nordean act 7.7 | | | NOTE | e. | | | | | | | # APPENDIX B. Test Pit Logs | | | | | NGINEERING SCIENTEST PIT RECORD | CE, INC. | |-------------------|---------------------|-------------|---|---|--| | | Projec | t Name: | Seneca EBS Non-evai | uated Sites | TEST PIT NO. TP123D-1 | | | Project f | | 733193-01001 | | Location: SEAD-123D | | | Date / Tin | | 3/5/98 1130 | | | | | Date / Time | e Finish: | 3/5/98 1200 | | | | | | Veather: | Partly cloudy, 30's | | | | | | ntractor: | Nothnagle Drilling Inc. | | | | | Insp | ector(s): | DRG | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFI | CATION OF MATERIAL | COMMENTS | | | FILL | SC | Brown SAND and SILT
Gravel, trace Cobbles, | Γ, little- Clay, little coarse
moist. | Fill, No staining or debris evident. | | | | OL | Sand, trace coarse Sa | T and CLAY, little medium
nd, trace fine to coarse
d organic material, wet to | Undisturbed soil, no evidence of staining or debris. | | | TL | ML. | | SILT, some Clay, little fine t
lium Gravel, trace Cobbles,
s mm in diameter. | Undisturbed Till, no evidence of staining or debris. | | EXCAV/ | ATION DIMEN | SIONS | (Length X Width | X Depth) 14' X 3' X 1'-2.2 | ?' | | | NITORING DA | | Background OVM | | | | | | | m Breathing Zone OVN | | | | 71145 | CAMPI | | LOCATION | | ROSS SECTION | | 1140 | SAMPLI
EBC02 MRD | - I.D. | 5 south of north end | | pproximate dimensions) | | 1140 | EDUOZ MIKU | | 0.5 depth | (iiioiuuc a | rp. ominion aminimus) | | 1150 | EB-109 | | at North end | | | | , , , | | | 1.0' in depth | South | North | | | | | | | 6 6302 | | | | | | E3'09 22 | X | | | | | | - 1 | PARSONS E | NGINEERING SCIENC | E, INC. | | | |-------------------|--------------|-----------|---|--|--|--|--| | | | | | EST PIT RECORD | | | | | | Projec | t Name: | Seneca EBS Non-eval | uated Sites | TEST PIT NO. TP123D- | | | | | Project N | Number: | 733193-01001 | | Location: SEAD-123D | | | | | Date / Tim | ne Start: | 3/5/98 1000 | | | | | | | Date / Time | e Finish: | 3/5/98 1100 | | | | | | | | Veather: | Snow showers, heavy | at times, 30's | | | | | | | ntractor: | Nothnagle Drilling Inc. | | | | | | | Inspe | ector(s): | DRG | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFI | CATION OF MATERIAL | COMMENTS | | | | 0.5 | FL | ML | Dark brown SILT, some
roots and organic mate | e Clay, little fine Sand, trace
erial, moist. | 1/2 Drum on surface 5.5' north of south end of trench, no staining or ground surface or sub-surface evident. | | | | 0.0 | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | | | TL | CL | | y to reddish brown SILT and | Undisturbed Till, No staining or | | | | | | ļ | | coarse Sand, trace coarse | debris evident. | | | | | | | Gravel, trace Cobbles, | wet to saturated. | | | | | | | | | | | | | | 1.5 | Į | | | | | | | | | | | | | | | | | | 1 | EXCAV/ | ATION DIMEN | ISIONS: | (Length X Width | X Depth) 15' X 3' X 1.5' | | | | | | NITORING DA | | Background OVM | | | | | | | | Maximu | m Breathing Zone OVM | Reading: 0.0 ppm | | | | | TIME | SAMPLE | E I.D. | LOCATION | CRO | OSS SECTION | | | | 1020 | EB106 | | 5.5' north of south end, | | roximate dimensions) | | | | | | | beneath drum, .5' deep | | | | | | 1040 | EB107 | | 5.5' north of south end, | South | North | | | | | | | beneath drum, 1.5' deep | Drum S | ection | | | | | | | | | | | | | | | | | 5.5' | 1 | | | | | | | | X EB 10% | | | | | | E | | | ¥ :3 0 [±] | | | | | | | | | | _ * | | | | | | | | | 12 | | | | | | | | | 15 | | | | | | | | | 15 ' | | | | | | | PARSONS E | | RING SCIEN
RECORD | CE, INC. | | |-------------------|---|--------------|---|--|----------------------|------------------------|-------------| | | Proiec | t Name: | Seneca EBS Non-eval | | NECURD | TEST PIT NO. | TP123D-3 | | | Project I | | 733193-01001 | | | Location: SEAD-123 | | | | Date / Tim | | 3/4/98 1635 | | | · <u> </u> | | | | Date / Time | | 3/4/98 1715 | | | | | | | ٧ | Veather: | Overcast, windy, 30's | | | | | | | | ntractor: | Nothnagle Drilling Inc. | | | | | | | Insp | ector(s): | | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFI | CATION OF | MATERIAL | COMMENTS | S | | | FL | CL | trace Cobbles, trace m
trace roots and organic
Olive gray to brown SII
Sand, trace fine to coa | Olive gray to brown SILT, some Clay, little fine Sand, trace Cobbles, trace medium to coarse Gravel, trace roots and organic material, moist. Olive gray to brown SILT and CLAY, little medium Sand, trace fine to coarse Gravel, trace roots and organic material, wet to saturated. | | | ning or | | | LTION DIMEN
NITORING DA | | (Length X Width
Background OVM | | 16' X 3' X 0'-3' | | | | | | | m Breathing Zone OVM | | 0.0 ppm | | | | TIME | SAMPLE | I D | LOCATION | <u> </u> | | ROSS SECTION | | | ************ | EB102 | - 1.U. | At north end | | | pproximate dimensions) | | | 1650 | ED (U2 | | 0.5' deep | | ्मारायपट ब | | | | 1700 | EB001 | | 4' north of south end | South | | | Nath | | | EB103 | | 2' deep | | | | | | | | ************ | | | | | | | | | | | | . | | | | | | | •••••••••••••••••• | / | 3 | | , | | | | | | | EB103 | | * EB 102 | | | *************************************** | | *************************************** | | | | | | | | | | | /6 | | - | | | | ••••• | *************************************** | | | | | | | *************************************** | ************ | | | | | | | | | | PARSONS E | NGINEER
EST PIT F | | CE, INC. | | | |-------------------|--------------|-----------|--|----------------------|------------------|--|-----------------------------|--| | | Projec | t Name: | Seneca EBS Non-eval | uated Sites | | TEST PIT | NO | TP123D-4 | | | Project N | | 733193-01001 | | | | SEAD-1 | | | | Date / Tim | | 3/5/98 0815 | | | - 200000000000000000000000000000000000 | <u> </u> | 200 | | | Date / Time | | 3/5/98 0845 | | <u> </u> | - | | | | | | Veather: | Overcast, snow, heavy | at times, 20' | S | - | - | | | | | ntractor: | Nothnagle Drilling Inc. | | | - | | , | | | Inspe | ector(s): | DRG | | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFIC | CATION OF | MATERIAL | | COMME | NTS | | 0.5 | FL | CL | Dark brown SILT and CLAY, some roots and organic material, little Cobble, moist. | | | | culvert sec | ground surface
tions, cable,
cing. | | | FL | CL | Olive gray to brown SIL
trace medium to coarse | e Sand, mois | t. | copper an
steel cable | d steal wir
e. No staini | lepth including:
e, steel pipe,
ing evident. | | | | OL | Olive gray to brown SIL
Sand, trace coarse Sar
material. | | | | mound. No | und surface
o staining of | | EXCAV/ | ATION DIMEN | JSIONS: | (Length X Width | X Denth) 1 | 13' X 3' X 0'-2. | 1' | | | | | NITORING DA | | Background OVM | _ | 0.0 ppm | | | | | MIK MOI | ALLOKING DE | | ım Breathing Zone OVM | | | | | | | | | | 1 | rtouring | | | | | | TIME | SAMPLE | I.D. | LOCATION | | | ROSS SECTIO | | | | 825 | EB104 | | 2' south of north end | | (Include a | pproximate dir | nension <u>s)</u> | | | | ED405 | |
0.5' deep | , | d. | | | . | | 835 | EB105 | 1 | at south end | > > | outh | | | North | | | | | 1' deep | T | 2.1 | | | | | | | | - | * FB 105 | | F3104 | _ | | | | | | | 4 | | | — → | | | Banasa | | | | | 13 | | - | | ., | ### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP123D-5 733193-01001 Project Number: Location: SEAD-123D Date / Time Start: 3/4/98 1510 Date / Time Finish: 3/4/98 1600 Weather: Overcast, windy, 30's Contractor: Nothnagle Drilling Inc. Inspector(s): **DRG/KKS** DEPTH Stratigraphy FIELD IDENTIFICATION OF MATERIAL COMMENTS Macro (ft bgs) CL Dark brown SILT and CLAY, some roots and Several pieces of light copper wire FL organic material, little Cobble, moist. on ground surface, no staining. 0.5 CL FL Olive gray to brown SILT and CLAY, little fine to Fill, no evidence of staining coarse Sand, little- fine to coarse Gravel, moist or debris. **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 17' X 3' X 0'-4.2' Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm LOCATION TIME SAMPLE I.D. **CROSS SECTION** (Include approximate dimensions) 2' south of north end 1530 EB100 1.5' deep South North 1540 EB101 1' north of south end 4.1' deep 4.2 | | | | | | RING SCIENCE
RECORD | E, INC. | |---|----------------------------|-------|--|------------------------------|--|--| | Project Name: Seneca EBS Non-e Project Number: 733193-01001 Date / Time Start: 3/5/98 1330 Date / Time Finish: Weather: Contractor: Contractor: Inspector(s): DRG | | | | | | TEST PIT NO. TP123F-1 Location: SEAD-123F | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFICATION OF MATERIAL | | | COMMENTS | | 0.5 | FL | CL | Dark brown SILT, some Clay, little fine to medium
Sand, trace coarse Gravel, cobbles, roots, moist | | | Vegitation stressed on surface, no evidence of staining or debris. | | 3 3.7 | FL | CL | Dark brown SILT, some
Sand, trace coarse Gra
Dark brown SILT, some
Sand, little cobbles, little
to medium Gravel, trac | e Clay, little
e coarse G | e fine to medium | Fill, no evidence of staining or debris. Probably former ground surface predating mound, no evidence of staining or debris. | | | ATION DIMEN
NITORING DA | ATA: | (Length X Width
Background OVM
Im Breathing Zone OVM | Reading: | 21' X 3' X 0.5'-3.7'
0.0 ppm
0.0 ppm | | | TIME | SAMPLE | I.D. | LOCATION | | CRO | SS SECTION | | 1350 | EB110
EB111 | | 4' south of north end 0.5' deep 5' north of south end 1.5' deep | 3 D | (Include app | Veg. tal and | | | | | | L | 2 | · · · · · · · · · · · · · · · · · · · | | | PARSONS ENGINEERING SCIENCE, INC. | | | | | | | | | | |------------------------|-----------------------------------|-----------|-------------------------|--------------|------------------|---------------------|----------|--|--|--| | | | | | | | E, INC. | | | | | | | | | Ţ | EST PIT | RECORD | | | | | | | | Projec | t Name: | Seneca EBS Non-eval | uated Sites | 3 | TEST PIT NO. | TP120A-1 | | | | | | Project N | | 733193-01001 | | | Location: SEAD | -120 | | | | | l | Date / Tim | | 3/30/98 | 1450 | | | | | | | | | Date / Time | e Finish: | 3/30/98 | 1530 | | | | | | | | | | Veather: | | | | | | | | | | | Cor | ntractor: | Nothnagle Drilling Inc. | | | | | | | | | | Inspe | ector(s): | ITR | | | | | | | | | | o | | FIELD IDENTIFIE | OATION O | EMATERIAL | 001111 | NTO | | | | | DEPTH | Stratigraphy | Macro | FIELD IDENTIFI | CATION O | FMATERIAL | СОММЕ | :NIS | | | | | (ft bgs) | | | | | | | | | | | | | | | | | dan Keela Gaa ka | l | | | | | | 1 | | | Green to light brown, S | | | | | | | | | | | | coarse Gravel, moist ro | ots in top (| J-6". | | | | | | | 2 | | | | | | | | | | | | , | | | | | | ! | | | | | | 3 | | ĺ | | | | 1 | | | | | | | | | | | 1 | | | | | | | 4 | | | | | | 1 | | | | | | _ | | | | | | 1 | | | | | | 5 | | | | | | j | | | | | | _ | | | | | | | | | | | | 6 | | | | | | | | | | | | 7 | | | | | | | | | | | | ' | | | Ì | | | | | | | | | 8 | | | | | | l . | | | | | | ° | | | | | | 1 | | | | | | 9 | | | | | | | | | | | | —" <u> </u> | | | 1 | | | | | | | | | 10 | | | | | | | | | | | | '° | | | | | |] | | | | | | | | | | | | | | | | | | = \(\(\) \(\) \(\) | TION 5:: 4=: | 1010115 | // // 3/ 18 // 18 | V D = #13 | 0.01 01 41 | | | | | | | | ATION DIMEN | | (Length X Width | | 6.2' x 2' x 4' | | | | | | | AIR MOI | NITORING DA | | Background OVM | | 0.0 ppm | | | | | | | | | Maximu | ım Breathing Zone OVM | 1 Reading: | 0.0 ppm | | | | | | | TIME | SAMPLE | E I.D. | LOCATION | | CRO | OSS SECTION | | | | | | 1500 | EB155 | | .5' from top of mound. | 1 | | proximate dimension | s) | | | | | | | | 06" deep | | • | | • | | | | | 1510 | EB156 | | 2.5' from top of mound. | N | | | S | | | | | l . | | | 2-2.5' deep | | 6.2' | | | | | | | | | | • | | | | | | | | | l | | | | ,
A' | | | | | | | | l | | | | 4'
 | المراجين كر | EB155 | | | | | | l | | | | l – | EB156 | | | | | | | | | | | | ED 100 | 1 | | | | | | | | | | | #### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites Project Name: TEST PIT NO. TP120A-2 733193-01001 Project Number: Location: SEAD-120 Date / Time Start: 3/31/98 0810 3/31/98 0835 Date / Time Finish: Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL **COMMENTS** (ft bgs) FILL Dark brown, SAND, little Gravel, some Clay, Building material debris found, 1 moist, debris (glass, metal). concrete, glass, metal, water pump handle. 2 3 4 5 6 8 9 10 (Length X Width X Depth) 5.2' x 2' x 4' **EXCAVATION DIMENSIONS:** AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) .5' from top of mound. 0810 EB157 0-.6" deep S Ν 0835 EB158 2.5' from top of mound. ~5.2' 2-2.5' deep EB157 EB158 ### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120A-3 Project Name: 733193-01001 Location: SEAD-120 Project Number: 0810 Date / Time Start: 3/31/98 Date / Time Finish: 3/31/98 0835 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): FIELD IDENTIFICATION OF MATERIAL COMMENTS **DEPTH** Stratigraphy Macro (ft bgs) Gray to brown CLAY, little coarse Gravel, moist, 1 roots in top 0-6". 2 3 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 5.2' x 2' x 4' AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm LOCATION **CROSS SECTION** TIME SAMPLE I.D. (Include approximate dimensions) 1350 EB159 1' from top of mound. 0-.6" deep W Ε EB160 2' from top of mound. 1400 - 8.**8'** -2-2.5' deep EB159 **EB160** ### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120A-4 Project Name: 733193-01001 Location: SEAD-120 Project Number: Date / Time Start: 3/31/98 0810 Date / Time Finish: 3/31/98 0835 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) FILL Greenish brown to dark brown, SILT and CLAY, Empty drums and drum pieces some coarse Gravel, very little cobbles, moist. were located at base of mound. 2 3 4 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 9' x 2' x 6' AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 1' from top of pit. 1220 EB161 S Ν 0-.6" deep 1240 EB162 3' from top of pit. 2-2.5' deep EB161 EB162 drums | | PARSONS ENGINEERING SCIENCE, INC. TEST PIT RECORD | | | | | | | | | | |-------------------|---|---------------|-------------------------------|------------|--------------|---|----------|--|--|--| | | Projec | t Name: | Seneca EBS Non-eval | | KECUKD | TEST PIT NO. | TP120A-5 | | | | | | Project N | | 733193-01001 | | | Location: SEAD | 120 | | | | | | Date / Tim | | 3/30/98 | 1025 | | | | | | | | | Date / Time | e Finish: | 3/30/98 | 1100 | | | | | | | | | Weather: | | | | | | | | | | | | Cor | ntractor: | Nothnagle Drilling Inc. | | | | | | | | | Inspector(s): ITR | | | ITR | | | | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFI | CATION OF | СОММЕ | NTS | | | | | | (11231) | | | | | | | | | | | | 1 | FILL | | Brown to dark brown, 0 | CLAY and S | AND, little | | | | | | | | | | coarse gravel, moist. | | | | | | | | | 2 | | | | | | | | | | | | 3 | 4 | | | | | | | | | | | | 5 | | | | | | | | | | | | 6 | | | | | | | | | | | | 7 | | | | | | | | | | | | 8 | | | | | | | | | | | | 9 | | | | | | | | | | | | 4.0 | | | | | | | | | | | | 10 | EXC \\// | ATION DIMEN | ISIONS | (Length X Width | Y Denth) | 9' x 2' x 6' | | | | | | | | NITORING DA | | Background OVM | | 0.0 ppm | | | | | | | | VITORING DA | | ım Breathing Zone OVM | _ | 0.0 ppm | | | | | | | 70.45 | OALID: 7 | | | | | DEC SECTION | | | | | | <u>TIME</u> | SAMPLE | <u>: I.D.</u> | 0.6' from top of pit. | | | <u>OSS SECTION</u>
proximate dimension | e) | | | | | 1030 | EB163 | | 0.6
from top of pit. 06" deep | | (include app | MOXIIIIALE GIIIIENSION | , | | | | | 1040 | EB164 | | 1.8' from top of pit. | W | | | E | | | | | 1040 | 20104 | | 1-1.2' deep | | 1 | | | | | | | | | | | | 6. | 2' | | | | | | | | | | | | • EB163 | | | | | | | | | | _ | E. 5 | <i>?</i> ! | | | | | | | | | | 4. | 5 | * EB164 | | | | | | | | | | | | سم- سر | <u>-</u> | | | | DINIO 60171167 | | | |----------|--------------|---------------------------------------|------------------------------------|--------------|--------------------|-------------------------------|----------------| | | | | | | RING SCIENCE | E, INC. | | | | Duning | . N.I | | | RECORD | TEST DIT NO | TD420D 4 | | | Project N | t Name: | 733193-01001 | Jated Sites | | TEST PIT NO. Location: SEAD- | TP120B-1 | | | Date / Tim | | 3/31/98 | 1055 | ···· | Location. SEAD- | 120 | | | Date / Time | | 3/31/98 | 1130 | | | | | | | /eather: | | | | | | | | Cor | ntractor: | Nothnagle Drilling Inc. | | | | | | | Inspe | ector(s): | ITR | | | | | | DEPTH | Stratigraphy | Macro | FIELD IDENTIFIC | CATION OF | MATERIAL | COMME | NTS | | (ft bgs) | | | | | | | | | 1 | FILL | | Greenish brown, SILT a | and Clay ve | any little fine to | Small arms bullets o | of various cal | | ' | FILL | | coarse Gravel, moist. | and Clay, ve | ery indice fine to | were lodged in mou | | | 2 | | | _ | | | | | | 3 | | | | | | | | | | | | | | | | | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | 7 | | | | | | | | | 8 | | | | | | | | | 9 | | | | | | | | | 10 | | | | | | | | | | | | | | | | | | EXCA)// | ATION DIMEN | ISIONS: | (Length X Width | X Denth) | 7' x 2' x 4' | | | | | NITORING DA | | Background OVM | | 0.0 ppm | | | | , | | | m Breathing Zone OVM | | 0.0 ppm | | | | TIME | SAMPLE | I.D. | LOCATION | | CRO | SS SECTION | | | 1100 | EB165 | · · · · · · · · · · · · · · · · · · · | 3' from top of pit. | | | roximate dimensions | 5) | | 1105 | ED466 | | 06" deep | s | | | N | | 1125 | EB166 | | 4' from top of pit.
2-2.2' deep | | <u> </u> | | | | | | | | 4 ' | | B165
B166 | No. | | | | | | | | | | ### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120B-2 Project Name: Project Number: 733193-01001 Location: SEAD-120 Date / Time Start: 3/31/98 1145 Date / Time Finish: 3/31/98 1210 Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) **FILL** Greenish brown, SILT and Clay, very little fine to Small arms bullets of various cal. coarse Gravel, moist. were lodged in mound. 2 3 4 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 6.8' x 2' x 3.5' Background OVM Reading: AIR MONITORING DATA: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 3.5' from top of pit. 1200 EB167 .8-1' deep Ν S 1210 EB168 4' from top of pit. _ 6.8' ___ 2-2.2' deep EB167 3.5' **EB168** #### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** TEST PIT NO. Seneca EBS Non-evaluated Sites TP120B-3 Project Name: 733193-01001 Location: SEAD-120 Project Number: Date / Time Start: 3/31/98 1300 3/31/98 1400 Date / Time Finish: Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** FIELD IDENTIFICATION OF MATERIAL COMMENTS Stratigraphy Масго (ft bgs) Small arms bullets of various cal. Greenish brown, SILT and Clay, very little fine to **FILL** 1 coarse Gravel, moist. were lodged in mound. 2 3 4 5 6 7 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 7' x 2' x 3.5 AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. LOCATION **CROSS SECTION** (Include approximate dimensions) 0' from top of pit. 1305 EB169 1-1.5' deep Ν S 3.5' from top of pit. EB170 1310 2.2-3' deep EB169 3.51 EB170 #### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP120G-1 733193-01001 Location: SEAD-120 Project Number: 1510 Date / Time Start: 5/3/98 5/3/98 1600 Date / Time Finish: Weather: Nothnagle Drilling Inc. Contractor: DRG, KKS Inspector(s): **DEPTH** FIELD IDENTIFICATION OF MATERIAL **COMMENTS** Stratigraphy Macro (ft bgs) FILL Light brown, SILT and fine Sand, little coarse Sand and fine Gravel, trace coarse Gravel, 2 trace cobbles, moist. 3 5 6 7 Light, reddish brown, SILT and CLAY, trace fine TILL No man-made debris or staining. Sand, trace coarse Sand, wet. 8 9 _10 (Length X Width X Depth) 13' x 3' x 7.5' **EXCAVATION DIMENSIONS:** Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm SAMPLE I.D. **LOCATION** TIME **CROSS SECTION** 5.0' south of north end. (Include approximate dimensions) 1540 EB112 0.5' deep. --- 13' --EB113 directly below north end. 1550 2.0' deep. S Ν 7.5' **EB112 EB113** | | | | | | RING SCIENC | E, INC. | | | |---|---|------------------------|--|----------------------------------|---------------------------------------|-----------------------------------|---------------|--| | | Project N
Date / Time
Date / Time | ne Start: | Seneca EBS Non-evalue
733193-01001
6/3/98
6/3/98 | | | TEST PIT NO. Location: SEAD | TP120G-2 | | | | | ntractor:
ector(s): | Nothnagle Drilling Inc. | | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFIC | FIELD IDENTIFICATION OF MATERIAL | | | COMMENTS | | | 12345678 | FILL | | Dark brown, SILT, som
trace fine to coarse Gra | | | Native soil appears
of trench. | wet at bottom | | | 9
10 | | | | | | | | | | | ATION DIMEN
NITORING DA | ATA: | (Length X Width
Background OVM
ım Breathing Zone OVM | Reading: | 14' x 3' x 4.7'
0.0 ppm
0.0 ppm | | | | | <u>TIME</u> | SAMPLE | I.D. | LOCATION | | | OSS SECTION | | | | 1015 | EB114 | | south side
I.5' deep | | (Include ap | proximate dimension | s) | | | 1030 | EB115 | | south side
3.0'deep | E
 | | GS EB114 EB115 | w | | | *************************************** | | | | | <i></i> | | | | | | PARSONS ENGINEERING SCIENCE, INC. TEST PIT RECORD | | | | | | | | | | |--|---|--------------|----------------------------------|---|------------------|-----------------------|----------|--|--|--| | | Project | t Name: | Seneca EBS Non-evalu | | RECORD | TEST PIT NO. | TP120G-3 | | | | | | - | | 733193-01001 | Jaleu Oiles | | Location: SEAD | | | | | | | Project N
Date / Tim | | 3/9/98 | 1445 | | Location. SEAD | -120 | | | | | | | | 3/9/98 | 1500 | | | | | | | | | Date / Time Finish: 3/9/98 15 Weather: | | | | | | | | | | | Contractor: Nothnagle Drilling Inc. | | | | | | | | | | | | | | ector(s): | MW | | | | | | | | | | Поре | citor(s). | IVIVV | | | | | | | | | DEPTH
(ft bgs) | Stratigraphy | Macro | FIELD IDENTIFICATION OF MATERIAL | | | COMME | ENTS | | | | | (1113-) | | | | | | | | | | | | 1 | FILL | | Olive gray, SILT, trace | coarse San | d, little fine | | | | | | | | | | | ravel (Sand and Gravel are Slate chips), moist. | | | | | | | | 2 | | | ` | | , ,, | | | | | | | _ | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | 5 | | | | | | | | | | | | 6 | | | | | | | | | | | | 7 | | | | | | | | | | | | ' | | | | | | | | | | | | 8 | | | | | | | | | | | | 9 | | | | | | | | | | | | 10 | İ | EXCAV/ | ATION DIMEN | ISIONS: | (Length X Width | X Denth) | Hand auger was u | ised | | | | | | | NITORING DA | | Background OVM | | 0.0 ppm | 1004. | | | | | | AII WO | VITORINO DA | | ım Breathing Zone OVM | | | | | | | | | | | | | | | OCCUPATION. | | | | | | TIME | SAMPLE | <u> I.D.</u> | LOCATION | | | OSS SECTION | | | | | | 1445 | EB135 | | 1' deep | | (Include app | roximate dimension | s) | | | | | 1550 | EB136 | | 2' deep | | (Hand Auger wee | used no erose section | m.) | | | | | (Hand Auger was used, no cross-section.) | | | | | | n.) | 1 | | | | | | | | | | | | I | | | | 1 | | | | | | | | | | | | ENGINEERING SCIENCE, INC. | | |----------|----------------------------|---|--|---|-------------| | | | | T | TEST PIT RECORD | | | | Project | t Name: | Seneca EBS Non-eval | luated Sites TEST PIT NO. | TP120G-4 | | | Project N | | 733193-01001 | Location: SEAD-12 | 0 | | | Date / Tim | ie Start: | 6/3/98 | 1310 | | | | Date / Time | e Finish: | 6/3/98 | 1450 | | | | | /eather: | | | | | | | ntractor: | Nothnagle Drilling Inc. | | | | | Inspe | ector(s): | MW | | | | DEPTH | Stratigraphy | Macro | FIELD IDENTIFIC | ICATION OF MATERIAL COMMENT | ī S | | (ft bgs) | | | | | | | | | | | | | | 1 | FILL | | Dark brown, SILT, som | | mound. | | | | | | vel to 18" Boulders, moist, | | | 2 | | | roots in upper 6". | | | | 3 | | | | | | | 4 | | i | | | | | 5 | | | | | | | 6 | | | | | | | _ | | | | | | | 7 | | | | | | | 8 | l i | | | | | | | | | | | | | 9 | | | ĺ | | | | | | | | | | | 10 | | | | | | | | | | | | | | =><- | | | /I / / × \ \ / \ / \ / \ / \ / \ / \ / \ / | V D (1) 401 01 71 | | | | ATION DIMEN
VITORING DA | | (Length X Width
Background OVM | | | | AIR MOI | VITORING DA | | Im Breathing Zone OVM | | | | TIME | CAMP | | , | | | | TIME | SAMPLE | <u>: I.D.</u> | LOCATION
south side | <u>CROSS SECTION</u> (Include approximate dimensions) | | | 1345 | EB118 | | south side
18" deep | (include approximate dimensions) | Е | | 1420 |
EB119 | | south side | *** | _ | | 1420 | 25110 | | 3.5' deep | ì | | | | | | | | | | | | | | ● EB118 | | | | | | | 7' • EB119 | | | | | | | | | | | | | | | 6 | | | | *************************************** | <u>}</u> | 13' | | | | | | | | | | | 5 | | ····· | | | #### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP120G-5 733193-01001 Location: SEAD-120 Project Number: 1540 Date / Time Start: 6/3/98 Date / Time Finish: 6/3/98 1635 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): MW **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) 1 FILL Dark brown, SILT, little Clay, trace fine Sand, Observed piece of metal banding in moist. top of mound. Also, there are at 2 least 20 large boulders (up to 4' in diameter) in the mound. 3 Greenish gray, to reddish orange, SILT and 4 Clay, moist to wet. 5 6 7 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 14' x 3' x 3' Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 1550 EB120 east side. N 1' deep S 1555 EB121 east side 3.5' deep EB120 EB121 _ 14' ____ # APPENDIX C. Well Construction Diagrams PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 WELL INSTALLATION STARTED: 3/06/98 WELL INSTALLATION COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 9.1 DEPTH TO WATER: 7.2 BORING LOCATION: 987033.7607 ft NORTH 740754.7201 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 638.9787 ft ELEVATION DATUM: NAVD88 PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 WELL INSTALLATION STARTED: 3/06/98 WELL INSTALLATION COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 12.5 DEPTH TO WATER: 2.2 BORING LOCATION: 988958.412 ft NORTH 739018.1027 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 602.0001 ft ELEVATION DATUM: NAVD88 PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 122 PROJECT NO: 733193-01001 WELL INSTALLATION STARTED: 3/06/98 WELL INSTALLATION COMPLETED: 3/06/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.8 DEPTH TO WATER: 2.4 BORING LOCATION: 991432.0738 ft NORTH 738522.1617 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 609.7340 ft ELEVATION DATUM: NAVD88 PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 WELL INSTALLATION STARTED: 3/11/98 WELL INSTALLATION COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon GROU DEPTH TO WATER: 2 **TOTAL DEPTH: 4.3** BORING LOCATION: 997305.3484 ft NORTH 749798.8895 ft EAST COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 729.2438 ft ELEVATION DATUM: NAVD88 INSPECTOR: DRF INSPECTOR: DRF PROJECT LOCATION: Seneca Army Depot, Romulus, New York ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001 WELL INSTALLATION STARTED: 3/9/98 WELL INSTALLATION COMPLETED: 3/9/98 DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 7.2 DEPTH TO WATER: 2.1 BORING LOCATION: ft NORTH ft EAST COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: ft** **ELEVATION DATUM: NAVD88** # APPENDIX D. Geophysical Data | | SEDA EBS | | In Division | |----------------------------|----------------------------|------------------------|-----------------------| | Easting | Northing | Quadrature
Response | In-Phase
Response | | Easting LINE 0 | Northing | Kesponse | Response | | 741620.6784 | 1016112.929
1016108.173 | 23.834
24.108 | 0.49
0.525 | | 741620.9152
741621.1521 | 1016103.416 | 23.896 | 0.497 | | 741621.3889 | 1016098.66 | 23.406 | 0.409 | | 741621.6258
741621.8626 | 1016093.904
1016089.148 | 23.284
23.346 | 0.679
0.735 | | 741622.0994 | 1016084.393 | 23.04 | 0.705 | | 741622.3363
741622.5732 | 1016079.637
1016074.881 | 22.95
22.828 | 0.56
0.415 | | 741622.81 | 1016070.125 | 22.584 | 0.49 | | 741623.0469
741623.2837 | 1016065.369
1016060.613 | 22.522
22.46 | 0.457
0.538 | | 741623.5206 | 1016055.856 | 22.888 | 0.593 | | 741623.7574
741623.9943 | 1016051.1
1016046.344 | 22.736
22.706 | 0.617
0.47 | | 741624.2312 | 1016041.588 | 22.98
22.766 | 0.31 | | 741624.468
741624.7048 | 1016036.833
1016032.077 | 22.766
22.858 | 0.648
0.657 | | 741624.7048 | 1016027.321 | 23.102 | 0.683 | | 741625.1785
741625.4154 | 1016022.565
1016017.809 | 23.162
23.986 | 0.784
0.641 | | 741625.6522 | 1016013.052 | 24.108 | 0.727 | | 741625.8891 | 1016008.296
1016003.54 | 25.3
27.374 | 0.907
1.056 | | 741626.126
741626.3628 | 1015998.784 | 33.082 | 1.198 | | 741626.5997 | 1015994.028 | 47.364 | 1.887
4.466 | | 741626.8365
741627.0733 | 1015989.272
1015984.517 | 84.32
118.744 | 5.76 | | 741627.3102 | 1015979.761 | 118.256 | 5.141 | | 741627.547
741627.7839 | 1015975.005
1015970.248 | 172.698
208.74 | | | 741628.0208 | 1015965.492 | 149.506 | 6.647 | | 741628.2576
741628.4945 | 1015960.736
1015955.98 | 163.208
170.502 | 8.544
7.871 | | 741628.7313 | 1015951.224 | 186.248 | 5.69 | | 741628.9682
741629.205 | 1015946.468
1015941.712 | 74.616
60.546 | 1.808
1.074 | | 741629.4418 | 1015936.957 | 85.206 | 0.883 | | 741629.6787
741629.9156 | 1015932.201
1015927.445 | 85.48
116.912 | 0.281
0.2 4 | | 741630.3893 | 1015917.932 | 129.242 | 3.654 | | 741630.6261 | 1015913.176
1015908.42 | 142.394
209.382 | 6.794
15.796 | | 741630.863
741631.0998 | 1015903.664 | 241.424 | 16.926 | | 741631.3367 | 1015898.908 | 211.426 | 10.469 | | 741631.5735
741631.8104 | 1015894.152
1015889.396 | 162.11
139.924 | 6.146
6.763 | | 741632.0472 | 1015884.641 | 138.61 | 13.628 | | 741632.2841
741632.5209 | 1015879.884
1015875.128 | 119.11
83.558 | 11.072
1.164 | | 741632.7578 | 1015870.372 | 48.462 | -1.899 | | 741632.9946
741633.2315 | 1015865.616
1015860.86 | 41.718
29.206 | 3.777
2.124 | | 741633.4683 | 1015856.104 | 26 | 1.041 | | 741633.7052
741633.9421 | 1015851.348
1015846.592 | 25.726
25.512 | 0.834
0.826 | | 741634.1789 | 1015841.836 | 25.422 | 0.863 | | 741634.4157
741634.6526 | 1015837.081
1015832.324 | 25.39
25.482 | 1.014
1.144 | | 741634.8894 | 1015827.568 | 25.544 | 1.005 | | 741635.1263
741635.3631 | 1015822.812
1015818.056 | 25.788
25.878 | 0.999
1.036 | | 741635.6 | 1015813.3 | 25.878 | 0.92 | | LINE 20
741655,5752 | 1015814.295 | 25.086 | 0.644 | | 741655.3384 | 1015819.051 | 24.902 | 0.694 | | 741655.1015
741654.8647 | 1015823.807
1015828.563 | 24.872
24.994 | 0.817
1.006 | | 741654.6278 | 1015833.319 | 24.964 | 1.176 | | 741654.391 | 1015838.075 | 24.902 | 0.92 | | 741654.1542
741653.9173 | 1015842.83
1015847.587 | 24.81
24.536 | 0.944
0.957 | | 741653.6804 | 1015852.343 | 24.566 | 0.994 | | 741653.4436
741653.2067 | 1015857.099
1015861.855 | 24.506
24.598 | 0.819
0.821 | | 741652.9699 | 1015866.611 | 24.476 | 0.942
0.775 | | 741652.733
741652.4962 | 1015871.367
1015876.123 | 24.322
24.75 | 0.79 | | 741652.2593 | 1015880.879 | 25.268 | 0.872 | | 741652.0225
741651.7856 | 1015885.635
1015890.39 | 26.276
27.344 | 1.192
1.19 | | 741651.5488 | 1015895,147 | 27.344
27.192 | 0.834 | | 741651.3119
741651.0751 | 1015899.903
1015904.659 | 27.13
27.222 | 0.718
0.747 | | 741650.8382 | 1015909.415 | 27.558 | 0.78 | | 741650.6014
741650.3753 | 1015914,171
1015918.71 | 28.32
29 114 | 0.672
0.819 | | 741650.1492 | 1015923.251 | 29.51 | 1.06 | | 741649.9231
741649.697 | 1015927.79
1015932,33 | 29.968
30.274 | 1.126
1.028 | | 741649.471 | 1015936.87 | 30.854 | 1.133 | | 741649.2448
741649.0188 | 1015941 41
1015945.95 | 31.464
31.738 | 1.093
1.185 | | 741649.0188 | 1015950.49 | 31.738 | 1.185 | | 741648.5666 | 1015955.029 | 31,158 | 1.091 | | 741648 3405
741648 1144 | 1015959.57
1015964.109 | 30.854
30.578 | 0 979
0.874 | | 741647.8884 | 1015968.648 | 30.426 | 0.922 | | 741647.6622
741647.4362 | 1015973 189
1015977.728 | 30.06
29.632 | 1.051
0.903 | | 741647.2101 | 1015982.269 | 29.572 | 0 856 | | 741646.984
741646.7579 | 1015986 808
1015991.348 | 29.266
28.412 | 0 992
1.023 | | 741646.5318 | 1015995.888 | 27.588 | 0.841 | | 741646 3057
741646 0797 | 1016000.428
1016004.967 | 27.038
26.642 | 0.913
0.865 | | 741645.8535 | 1016009.508 | 26.032 | 0.788 | | | | | | | | OLDA LDO | Quadrature | In-Phase | |-------------|-------------|------------|----------------| | Easting | Northing | Response | Response | | 741645.6275 | 1016014.047 | 25.422 | 0.992 | | 741645.3906 | 1016018.803 | 25.3 | 1.087 | | 741645.1538 | 1016023.559 | 25.422 | 0.898 | | 741644.9169 | 1016028.316 | 25.208 | 0.891 | | 741644.6801 | 1016033.072 | 24.78 | 0.869 | | 741644.4432 | 1016037.828 | 23.53 | 1.047 | | 741644.2064 | 1016042.583 | 22.644 | 0.933 | | 741643.9695 | 1016047.339 | 22.858 | 0.722 | | 741643.7327 | 1016052.095 | 22.918 | 0.797 | | 741643.4958 | 1016056.851 | 22.858 | 0.823 | | 741643.259 | 1016061.607 | 22.98 | 1.006 | | 741643.0221 | 1016066.363 | 23.01 | 1.091
1.062 | | 741642.7853 | 1016071.119 | 23.194 | 0.795 | | 741642.5484 | 1016075.876 | 23.284 | | | 741642.3115 | 1016080.632 | 22.95 | 0.611 | | 741642.0747 | 1016085.388 | 23.072 | 0.749 | | 741641.8379 | 1016090.143 | 22.828 | 0.769 | | 741641.601 | 1016094.899 | 23.01 | 0.845 | | 741641.3642 | 1016099.655 | 23.132 | 0.962 | | 741641.1273 | 1016104.411 | 23.102 | 1.093 | | 741640.8905 | 1016109.167 | 23.01 | 1,166
 | 741640.6536 | 1016113.923 | 23.742 | 1,041 | | LINE 40 | | | | | 741660.6288 | 1016114.918 | 23.56 | 0.852 | | 741660.8657 | 1016110.162 | 23.498 | 0.927 | | 741661.1026 | 1016105.406 | 23.926 | 0.747 | | 741661.3394 | 1016100.65 | 23.498 | 0.595 | | 741661.5763 | 1016095.894 | 23.62 | 0.701 | | 741661.8131 | 1016091.138 | 23.132 | 0.858 | | 741662.0499 | 1016086.383 | 22.98 | 1.017 | | 741662.0499 | 1016081.626 | 22.918 | 0.916 | | 741662.5236 | 1016076.87 | 23.162 | 0.802 | | 741662.7605 | 1016072.114 | 22.674 | 0.661 | | 741662.7003 | 1016067.358 | 23.53 | 0.744 | | 741663.2342 | 1016062.602 | 23.284 | 0.903 | | 741663.4711 | 1016057.846 | 23.072 | 0.957 | | 741663.7079 | 1016053.09 | 23.53 | 0.955 | | 741663.9448 | 1016048.334 | 23.956 | 0.836 | | 741664.1816 | 1016043.578 | 23.56 | 0.777 | | 741664.4184 | 1016038.823 | 22.95 | 0.867 | | 741664.6553 | 1016034.066 | 23.926 | 1.159 | | 741664.8922 | 1016029.31 | 24.688 | 0.997 | | 741665.129 | 1016024.554 | 24.688 | 0.824 | | 741665.3659 | 1016019.798 | 25.33 | 0.753 | | 741665.6027 | 1016015.042 | 25.024 | 0.681 | | 741665.8396 | 1016010.286 | 25.238 | 0.909 | | 741666.0764 | 1016005.53 | 24.81 | 0.975 | | 741666.3133 | 1016000.774 | 24.598 | 0.858 | | 741666.5502 | 1015996.018 | 24.872 | 0.795 | | 741666.787 | 1015991.261 | 25.054 | 1.076 | | 741667.0238 | 1015986.506 | 24.994 | 1.027 | | 741667.2607 | 1015981.75 | 24 78 | 0.795 | | 741667.4975 | 1015976.994 | 24.932 | 0.779 | | 741667.7344 | 1015972.238 | 25.3 | 0.858 | | 741667.9712 | 1015967.482 | 25.086 | 0.992
0.975 | | 741668.2081 | 1015962.726 | 25.238 | 0.839 | | 741668.445 | 1015957.97 | 25.33 | | | 741668.6818 | 1015953.214 | 25.238 | 0.848 | | 741668.9187 | 1015948.458 | 25.452 | 0.689 | | 741669.1555 | 1015943.701 | 25.422 | 0.889 | | 741669.3923 | 1015938.946 | 25.422 | 0.85 | | 741669.6292 | 1015934.19 | 25.634 | 0.836 | | 741669.866 | 1015929.434 | 24.23 | 0.747 | | 741670.1029 | 1015924.678 | 24.018 | 0.786 | | 741670.3398 | 1015919.922 | 23.712 | 0.804 | | 741670.5766 | 1015915.166 | 23.834 | 0.881 | | 741670.8135 | 1015910.41 | 24.17 | 0.87 | | 741671.0503 | 1015905.654 | 24.17 | 1.008 | | 741671.2872 | 1015900.897 | 24.2 | 0.951 | | 741671.524 | 1015896.141 | 24.108 | 0.81 | | 741671.7609 | 1015891.385 | 24.2 | 0.845 | | 741671.9977 | 1015886.63 | 24.658 | 0.966 | | 741672.2346 | 1015881.874 | 25.024 | 1.128 | | 741672.4714 | 1015877.118 | 24.872 | 0.894 | | 741672.7083 | 1015872.362 | 24.078 | 0.926 | | 741672.9451 | 1015867.606 | 23.62 | 0.953 | | 741673.182 | 1015862.85 | 23.376 | 1.049 | | 741673.4188 | 1015858.094 | 23.53 | 1.15 | | 741673.6557 | 1015853.337 | 23.896 | 1.032 | | 741673.8925 | 1015848.581 | 23.926 | 1.109 | | 741674.1294 | 1015843.825 | 23.896 | 1.21 | | 741674.3662 | 1015839.07 | 24.354 | 1.062 | | 741674.6031 | 1015834.314 | 24.476 | | | 741674.8399 | 1015829.558 | 24.506 | | | 741675.0768 | 1015824.802 | 24.536 | | | 741675.3136 | 1015820.046 | 24.658 | 0.861 | | 741675.5505 | 1015815.29 | 25.024 | 1.168 | | LINE 60 | | | | | 741695.5257 | 1015816.284 | 24.964 | 0.584 | | 741695.2889 | 1015821.04 | 25.176 | 0.709 | | 741695.052 | 1015825.797 | 25.3 | 0.834 | | 741694.8152 | 1015830.553 | 24.902 | 0.889 | | 741694.5783 | 1015835.309 | 24.292 | 1.177 | | 741694.3415 | 1015840.065 | 24 14 | 1.089 | | 741694.1046 | 1015844.82 | 24.018 | | | 741693 8678 | 1015849.576 | 24.23 | | | 741693 6309 | 1015854.332 | 24.444 | 0.841 | | 741693.3941 | 1015859.088 | 24.292 | 1.038 | | 741693.1572 | 1015863.844 | 24.17 | 1.065 | | 741692.9204 | 1015868.6 | 24.23 | 1 039 | | 741692.6835 | 1015873 357 | 24.566 | 0 937 | | 741692 4467 | 1015878 113 | 26 124 | 1.006 | | 741692 2098 | 1015882.869 | 27.74 | 1 284 | | 741691 9729 | 1015887 625 | 25.208 | 1 039 | | 741691.7361 | 1015892.38 | 24.566 | 0.878 | | 741691 4993 | 1015897,136 | 24 414 | 0.999 | | 741691 2624 | 1015901,892 | 23 834 | 0.896 | | 741691.0256 | 1015906 648 | 23 742 | 0 722 | | | | | | # Site: Ice Rink | Site: Ice Rink | | | | |----------------------------|----------------------------|------------------|----------------| | SEDA EBS Sites | | | | | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | 741690 7887 | 1015911.404 | 23.498 | 0.852 | | 741690.5519
741690.315 | 1015916.161
1015920.917 | 23.56
23.468 | 0.933
0.981 | | 741690.0781 | 1015925.673 | 23.346 | 0.982 | | 741689.8413 | 1015930.429 | 23.284 | 0.848 | | 741689.6044
741689.3676 | 1015935,185
1015939,941 | 23.132
24.018 | 1.003
0.975 | | 741689.1308 | 1015944.696 | 25.054 | 0.76 | | 741688.8939 | 1015949.452 | 25.116 | 0.887 | | 741688.6571
741688.4202 | 1015954.208
1015958.965 | 24.842
24.688 | 0.876
0.837 | | 741688.1833 | 1015963.721 | 24.81 | 0.812 | | 741687.9465
741687.7096 | 1015968.477
1015973.233 | 24.81
24.81 | 0.997
0.988 | | 741687.7030 | 1015977.989 | 24.75 | 0.894 | | 741687.2359 | 1015982.745 | 24.262 | 0.942 | | 741686.9991
741686.7623 | 1015987.501
1015992.256 | 24.262
24.384 | 0.852
0.795 | | 741686.5254 | 1015997.012 | 24.414 | 0.863 | | 741686.2885
741686.0517 | 1016001.768
1016006.525 | 24.17
24.14 | 0.942
0.817 | | 741685.8148 | 1016011.281 | 24.048 | 0.841 | | 741685.578 | 1016016.037 | 24.14 | 0.731
0.793 | | 741685.3411
741685.1043 | 1016020.793
1016025.549 | 24.658
24.476 | 0.793 | | 741684.8674 | 1016030,305 | 24.444 | 0.949 | | 741684.6305
741684.3937 | 1016035.061
1016039.817 | 24.842
24.506 | 0.986
1.032 | | 741684.1569 | 1016044.572 | 23.53 | 0.852 | | 741683.92 | 1016049.329 | 23.284
23.53 | 0.779 | | 741683.6832
741683.4463 | 1016054.085
1016058.841 | 23.406 | 0.874
1.021 | | 741683.2095 | 1016063.597 | 23.56 | 0.973 | | 741682.9726
741682.7357 | 1016068.353
1016073.109 | 23.316
23.04 | 0.975
0.845 | | 741682,7337 | 1016073.103 | 23.162 | 0.902 | | 741682.262 | 1016082.621 | 23.132 | 0.903 | | 741682.0252
741681.7884 | 1016087.377
1016092.132 | 23.072
22.888 | 1.062
0.994 | | 741681.5515 | 1016096.889 | 23.284 | 1.01 | | 741681.3147 | 1016101.645 | 23.986
23.53 | 1.146
1.017 | | 741681.0778
741680.841 | 1016106.401
1016111.157 | 23.682 | 1.122 | | 741680.6041 | 1016115.913 | 23.498 | 1.242 | | LINE 80
741700.6291 | 1016115.909 | 23.712 | 0.597 | | 741700.8883 | 1016110.704 | 23.316 | 0.874 | | 741701.1474
741701.4066 | 1016105.501
1016100.296 | 22.492
22.736 | 0.823
0.757 | | 741701.4000 | 1016095.093 | 23.04 | 0.737 | | 741701.9249 | 1016089.888 | 22.858 | 1.172 | | 741702.1841
741702.4433 | 1016084.685
1016079.48 | 22.95
22.766 | 1.22
0.997 | | 741702.7024 | 1016074.277 | 23.194 | 0.749 | | 741702.9616
741703.2207 | 1016069.072
1016063.869 | 23.162
23.438 | 0.826
0.918 | | 741703.2207 | 1016058.664 | 23.498 | 1.021 | | 741703.739 | 1016053.46 | 22.95 | 1.047 | | 741703.9982
741704.2574 | 1016048.256
1016043.052 | 23.406
23.926 | 1.03
0.909 | | 741704.5166 | 1016037.848 | 23.62 | 0.96 | | 741704.7757 | 1016032.644
1016027.44 | 23,774
25,054 | 0.992
1.065 | | 741705.0349
741705.294 | 1016022.236 | 25.116 | 1.073 | | 741705.5532 | 1016017.032 | 24.566 | 1.049 | | 741705.7901
741706.0269 | 1016012.275
1016007.519 | 23.864
23.986 | 0.83
0.903 | | 741706.2638 | 1016002.763 | 23.926 | 1.006 | | 741706.5006 | 1015998.007 | 23.712 | 0.881
0.935 | | 741706.7375
741706.9743 | 1015993.251
1015988.496 | 23.774
24.414 | 1.065 | | 741707.2112 | 1015983.74 | 24.994 | 1.062 | | 741707.448
741707.6849 | 1015978.984
1015974.228 | 24.628
24.658 | 0.994
0.933 | | 741707.9217 | 1015969.471 | 24.932 | 1.051 | | 741708.1586
741708.3954 | 1015964.715
1015959.959 | 24.506
24.17 | 1.065
0.935 | | 741708.6323 | 1015955.203 | 24.688 | 0.887 | | 741708.8692 | 1015950.447 | 23.986 | 1.016 | | 741709.106
741709.3428 | 1015945.691
1015940.936 | 24.598
24.688 | 1.063
0.938 | | 741709.5797 | 1015936.18 | 24.414 | 1.194 | | 741709.8165
741710.0534 | 1015931.424
1015926.668 | 22.796
22.308 | 1.35
0.981 | | 741710.0334 | 1015921.911 | 23.162 | 0.955 | | 741710.5271 | 1015917.155 | 23.316 | 1.096 | | 741710.7758
741711.0245 | 1015912.162
1015907.168 | 23.498
23.774 | 1.051
1.221 | | 741711.2732 | 1015902.174 | 24.018 | 1.207 | | 741711.5219 | 1015897.18 | 25.33 | 1.199
1.223 | | 741711.7706
741712.0193 | 1015892.186
1015887.192 | 26.824
31.982 | 1.418 | | 741712.268 | 1015882.199 | 44 19 | 1.39 | | 741712.5167
741712 7653 | 1015877.205
1015872.211 | 34.394
32.226 | 1.124
1.058 | | 741713 014 | 1015867.217 | 35.43 | 1.12 | | 741713.2627 | 1015862.223 | 30 396 | 1.034 | | 741713.5114
741713.7601 | 1015857.23
1015852.236 | 27.192
26 032 | 0 893
1.085 | | 741714.0088 | 1015847.242 | 25.36 | 1.352 | | 741714.2575
741714.5062 | 1015842.248
1015837.254 | 24.902
24.932 | 1.179
1 091 | | 741714.7549 | 1015837.254 | 24.598 | 1.223 | | 741715 0036 | 1015827.267 | 24.536 | 1 15 | | 741715.2523
741715.501 | 1015822.273
1015817.279 | 24 658
24.688 | 1 225
1 223 | | LINE 100 | | | | | 741735.4762 | 1015818.274 | 25.39 | 0.369 | | | | | | | | SLUA LBS | | In Disease | |-------------------------------|----------------------------|--------------------|-------------------| | E 41 | N141 7 | Quadrature | In-Phase | | Easting
741735.2502 | Northing
1015822.813 | Response
25.146 | Response
0.389 | | 741733.2302 | 1015831.893 | 24.872 | 0.622 | | 741734.5719 | 1015836.433 | 24.658 | 0.749 | | 741734.3458 | 1015840.973 | 24.506 | 1.074 | | 741734.1197
741733.8936 | 1015845.513
1015850.052 | 24.688
25.086 | 1.126
0.87 | | 741733.6675 | 1015854.593 | 25.726 | 0.944 | | 741733.4415 | 1015859.132 | 26.948 | 1.249 | | 741733.2153 | 1015863.673 | 28.748 | 1.306 | | 741732.9893
741732.7632 | 1015868.212
1015872.751 | 32.99
42.938 | 1.218
1.267 | | 741732.5371 | 1015877.292 |
66.102 | 1.569 | | 741732.311 | 1015881.831 | 44.982 | 1.418 | | 741732.0849
741731.8589 | 1015886.371
1015890.911 | 36.834 | 1.21 | | 741731.6328 | 1015895.451 | 41.32
35.4 | 1.096
1.03 | | 741731.4067 | 1015899.991 | 30.152 | 0.942 | | 741731.1806 | 1015904.531 | 27.282 | 0.994 | | 741730.9545
741730.7284 | 1015909.07
1015913.611 | 25.756
24.932 | 1.062
1.085 | | 741730.5023 | 1015918.15 | 24.566 | 1.069 | | 741730.2537 | 1015923.144 | 23.986 | 1.039 | | 741730.005
741729.7563 | 1015928.138
1015933.132 | 23.53
23.284 | 1.03
1.137 | | 741729.5076 | 1015938.125 | 22.828 | 1.093 | | 741729.2589 | 1015943.119 | 23.284 | 1.005 | | 741729.0102 | 1015948.113 | 25.116 | 1.023 | | 741728.7615
741728.5128 | 1015953.107
1015958.101 | 25.268
24.658 | 0.791
0.992 | | 741728.2641 | 1015963.094 | 23.986 | 1.124 | | 741728.0154 | 1015968.088 | 24.2 | 1.28 | | 741727.7667
741727.518 | 1015973.082
1015978.076 | 24.536
24.536 | 1.096
1.08 | | 741727.2693 | 1015983.07 | 24.842 | 1.045 | | 741727.0206 | 1015988.063 | 24.902 | 0.959 | | 741726.7719 | 1015993.057 | 24.994 | 1.056 | | 741726.5232
741726.2745 | 1015998.051
1016003.045 | 24.262
24.2 | 1.177
1.144 | | 741726.0259 | 1016008.039 | 24.262 | 1.021 | | 741725.7772 | 1016013.033 | 24.14 | 0.957 | | 741725.5285
741725.2916 | 1016018.026 | 24.2 | 0.935 | | 741725.2916 | 1016022.782
1016027.539 | 24.108
24.078 | 0.883
0.984 | | 741724.8179 | 1016032.295 | 23.926 | 1.071 | | 741724.581 | 1016037.051 | 24.108 | 1.159 | | 741724.3442
741724.1074 | 1016041.807
1016046.562 | 24.2
23.194 | 1.128
0.973 | | 741723.8705 | 1016051.318 | 22.584 | 0.83 | | 741723.3968 | 1016060.83 | 23.072 | 1.216 | | 741723.16 | 1016065.586 | 23.072 | 1.161 | | 741722.9231
741722.6862 | 1016070.342
1016075.099 | 22.858
23.01 | 1.005
1.124 | | 741722.4494 | 1016079.855 | 22.858 | 1.271 | | 741722.2125 | 1016084.611 | 22.828 | 1.199 | | 741721.9757
741721.7389 | 1016089.367
1016094.122 | 22.736
22.828 | 1.056
1.093 | | 741721 7303 | 1016094.122 | 22.4 | 0.973 | | 741721.2652 | 1016103.634 | 22.492 | 1.076 | | 741721.0283 | 1016108.39
1016113.146 | 22.766 | 1.265 | | 741720.7914
741720.5546 | 1016117.903 | 23.01
23.59 | 1.288
1.212 | | LINE 120 | | | | | 741740.5298 | 1016118.897 | 23.774 | 0.773 | | 741740.7371
741740.9443 | 1016114.735
1016110.575 | 24.14
24.048 | 1 196
1.17 | | 741741.1516 | 1016106.413 | 23.774 | 1.106 | | 741741.3588 | 1016102.251 | 23.56 | 1.014 | | 741741.566
741741.7733 | 1016098.09
1016093.928 | 23.254
23.132 | 1.051
1.201 | | 741741.9806 | 1016089.766 | 23.498 | 1.207 | | 741742.1878 | 1016085.606 | 23,468 | 1.234 | | 741742.395
741742.6023 | 1016081.444 | 23.132 | 1.115 | | 741742.8095 | 1016077.282
1016073.121 | 23.316
23.62 | 1.122
1.288 | | 741743.0168 | 1016068.959 | 23.682 | 1.22 | | 741743.224 | 1016064.797 | 23.53 | 1.128 | | 741743.4312
741743.6385 | 1016060.637
1016056.475 | 23.406
23.406 | 1,157
1,198 | | 741743.8458 | 1016052.313 | 23.896 | 1.073 | | 741744.053 | 1016048.152 | 23.498 | 1.177 | | 741744.2602
741744.4675 | 1016043.99
1016039.828 | 23.316
23.406 | 1.15
1.091 | | 741744.6747 | 1016035.667 | 24.384 | 1.31 | | 741744.882 | 1016031.506 | 24.994 | 1.315 | | 741745.0892
741745.2964 | 1016027.344
1016023.183 | 24.688
24.536 | 1.115
1.069 | | 741745.2964 | 1016023.183 | 24.872 | 0.972 | | 741745.711 | 1016014.859 | 24.932 | 1.065 | | 741745.9182 | 1016010.698 | 25.238 | 1.095 | | 741746.1254
741746.3327 | 1016006.537
1016002.375 | 25.146
25.086 | 1.069
1.113 | | 741746.5399 | 1015998.214 | 25.3 | 1.089 | | 741746.7472 | 1015994.052 | 25.176 | 1.095 | | 741746.9544
741747.1617 | 1015989.89
1015985 729 | 24 994
24 964 | 1.271
1.26 | | 741747.3689 | 1015981.568 | 25.146 | 1.163 | | 741747.5762 | 1015977.406 | 25.544 | 1.049 | | 741747 7834 | 1015973.245 | 25.116 | 1.028 | | 741747.9907
741748 1979 | 1015969.083
1015964.921 | 25.146
25.422 | 1 095
1.03 | | 741748.4051 | 1015960 76 | 25.634 | 1 095 | | 741748.6124 | 1015956.598 | 25.33 | 1 166 | | 741748 8196
741749 0269 | 1015952.437
1015948.276 | 25 452
25 726 | 1.093 | | 741749 0269 | 1015948.276 | 25.024 | 1 034
1 164 | | 741749 4414 | 1015939 952 | 24.598 | 1 08 | | 741749.6486 | 1015935.791 | 23.926 | 0 924 | | 741749.8559 | 1015931 629 | 23 346 | 0 979 | | | | | | | | SEDA EBS | | I- Dhana | |-------------------------------|----------------------------|--------------------|-------------------| | Easting | Northing | Quadrature | In-Phase | | Easting
741750.0631 | 1015927.468 | Response
23.316 | Response
1.034 | | 741750.2703 | 1015923.307 | 23.376 | 1.163 | | 741750.4776
741750.6939 | 1015919.145
1015914.802 | 24.322
25.116 | 1.264
1.24 | | 741750.9335 | 1015910.46 | 25.33 | 1.242 | | 741751.1263 | 1015906.118 | 26 | 1.124 | | 741751.3426
741751.5589 | 1015901.775
1015897.433 | 26.886
27.588 | 1.188
1.185 | | 741751.7751 | 1015893.09 | 29,114 | 1.142 | | 741751.9914 | 1015888.748 | 33.234 | 1.201 | | 741752.2077
741752.4239 | 1015884.405
1015880.063 | 43.792
73.944 | 1.396
1.969 | | 741752.6401 | 1015875.721 | 89.722 | 2.113 | | 741752.8564
741753.0727 | 1015871.378
1015867.035 | 36.682
55.848 | 1.363
1.367 | | 741753.2889 | 1015862.693 | 49.652 | 1.418 | | 741753.5052 | 1015858.35 | 37.69 | 1.265 | | 741753.7214
741753.9377 | 1015854.009
1015849.666 | 31.922
29.388 | 1.201
1.159 | | 741754.1539 | 1015845.323 | 27.802 | 1.159 | | 741754.3702
741754.5865 | 1015840.981
1015836.638 | 26.794
26.124 | 1.28
1.209 | | 741754.8027 | 1015832.296 | 25.544 | 1.216 | | 741755.0189 | 1015827.954 | 25.512 | 1.155 | | 741755.2352
741755.4515 | 1015823.611
1015819.269 | 25.33
25.604 | 1.096
1.295 | | LINE 140 | | | | | 741775.4267
741775.2195 | 1015820.263
1015824.425 | 25.666
25.422 | 1.117
1.13 | | 741775.2195 | 1015828.586 | 25.422 | 1.084 | | 741774.805 | 1015832.748 | 25.36 | 0.933 | | 741774.5977
741774.3905 | 1015836.91
1015841.071 | 25.238
25.33 | 1.08
1.014 | | 741774.1832 | 1015845.232 | 25.788 | 1.058 | | 741773.7688 | 1015853.555 | 27.436 | 1.258 | | 741773.5615
741773.3542 | 1015857.717
1015861.879 | 29.724
34.79 | 1.348
1.525 | | 741773.147 | 1015866.04 | 46.814 | 1.479 | | 741772.9398
741772.7325 | 1015870.202
1015874.363 | 80.413
71.594 | 1.765
1.534 | | 741772.5253 | 1015878.524 | 50.934 | 1.344 | | 741772.318 | 1015882.686 | 54.046 | 1.231 | | 741772.1108
741771.9036 | 1015886.848
1015891.009 | 42.266
33.936 | 1.164
1.17 | | 741771.6963 | 1015895.171 | 30.7 | 1,176 | | 741771.489
741771.2818 | 1015899.332
1015903 493 | 28.962
27.314 | 1.262
1.102 | | 741771.0746 | 1015907.655 | 26.276 | 1.027 | | 741770.8673 | 1015911.817 | 25.696 | 1.006 | | 741770.6601
741770.4528 | 1015915.978
1015920.14 | 25.086
24.658 | 1.093
1.049 | | 741770.0203 | 1015928.825 | 24.78 | 1.111 | | 741769.8041 | 1015933.167 | 24.262 | 1.177 | | 741769.5878
741769.3716 | 1015937.509
1015941.852 | 23.834
23.346 | 1.293
1.012 | | 741769.1553 | 1015946.194 | 24.476 | 0.898 | | 741768.939
741768.5066 | 1015950.537
1015959.221 | 26.276
26.124 | 0.828
0.689 | | 741768.2903 | 1015963.564 | 25.696 | 1.014 | | 741768.074
741767.8578 | 1015967.906 | 25.482 | 1.111
0.942 | | 741767.6415 | 1015972.249
1015976.592 | 25.116
24.872 | 1.019 | | 741767.4252 | 1015980.934 | 25.086 | 1.115 | | 741767.209
741766.9928 | 1015985.276
1015989.619 | 25.452
25.452 | 1,155
1,043 | | 741766.7765 | 1015993.961 | 24.902 | 1.003 | | 741766.5602 | 1015998.304
1016002.646 | 24.658 | 1.043
1.03 | | 741766.344
741766.1277 | 1016002.646 | 24.598
24.628 | 1.03 | | 741765.9115 | 1016011.331 | 24.354 | 1.168 | | 741765.6952
741765.479 | 1016015.673
1016020.016 | 24.262
24.292 | 1.089
1.01 | | 741765.2717 | 1016024.178 | 24.414 | 1.032 | | 741765.0645 | 1016028.339 | 24.628 | 1.021 | | 741764.8572
741764.65 | 1016032.5
1016036.662 | 24.566
24.536 | 1.087
1.032 | | 741764.2355 | 1016044.985 | 24.322 | 0.962 | | 741764.0282
741763.821 | 1016049.147
1016053.308 | 23.346
22.766 | 0 486
0.733 | | 741763.6138 | 1016057.469 | 22.918 | 0.96 | | 741763.4065
741763.1993 | 1016061.631 | 23.01 | 1.047
1.146 | | 741763.1993 | 1016065.792
1016069.954 | 23.132
23.132 | 1.15 | | 741762.5775 | 1016078.277 | 23.04 | 1.144 | | 741762.3703
741762.163 | 1016082.439
1016086.6 | 23.254
23.254 | 1.091
1.063 | | 741761.9558 | 1016090.761 | 22.95 | 1.176 | | 741761.7485 | 1016094.923 | 22.888 | 1.142 | | 741761.5413
741761.3341 | 1016099.085
1016103.246 | 23.132
23.194 | 1.198
1.282 | | 741761.1268 | 1016107.408 | 22.888 | 1.15 | | 741760.9195
741760.7123 | 1016111.569 | 22.918 | 1.139 | | 741760.7123 | 1016115.73
1016119.892 | 23 01
23.346 | 1 152
1.124 | | LINE 160 | | | | | 741780.4803
741780.6876 | 1016120.887
1016116.725 | 24 018
23 986 | 1.172
1.137 | | 741780.8948 | 1016112.564 | 23.712 | 1.062 | | 741781.1021
741781.3093 | 1016108 402
1016104 241 | 23.59
23.04 | 1 095
1.096 | | 741781.3093 | 1016100 08 | 22 95 | 1 082 | | 741781.7238 | 1016095 918 | 23.224 | 1 096 | | 741781 9311
741782 1383 | 1016091 756
1016087.595 | 23 132
22 766 | 1 054
1 051 | | 741782.3455 | 1016083 433 | 22.918 | 1 185 | | 741782 5528 | 1016079 271
1016075 111 | 23.102 | 1 192 | | 741782 76
741782 9673 | 1016075 111 | 23.072
22.828 | 1 102
1.089 | | | | | | | | SEDA EBS | | | |----------------------------|----------------------------|--------------------|-------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response
22.736 | Response
1.198 | | 741783.1745
741783.589 |
1016066.787
1016058.464 | 23.316 | 1.144 | | 741783.7963 | 1016054.302 | 22.736 | 1.065 | | 741784.0035 | 1016050.142 | 22.43 | 1.107 | | 741784.2107
741784.418 | 1016045.98
1016041.818 | 22.492
23.316 | 1,12
1,139 | | 741784.6252 | 1016037.657 | 24,262 | 1.176 | | 741784.8325 | 1016033.495 | 24.322 | 0.841 | | 741785.0397
741785.2469 | 1016029.333
1016025.173 | 23.834
23.804 | 1.008
1.076 | | 741785.4542 | 1016021.011 | 23.864 | 1.082 | | 741785.6705 | 1016016.668 | 23.774 | 1.027 | | 741785.8867
741786.1029 | 1016012.325
1016007.984 | 23.864
24.262 | 1.047
1.078 | | 741786.3192 | 1016003.641 | 24.384 | 1.111 | | 741786.5355 | 1015999.299 | 24.566 | 1.098 | | 741786.7517
741786.968 | 1015994.956
1015990.613 | 24.566
24.506 | 1.115
1.12 | | | 1015986.271 | 24.598 | 1.062 | | 741787.1843
741787.4005 | 1015981.929 | 24.354 | 1.119 | | 741787.6167
741787.833 | 1015977.586
1015973.244 | 24.658 | 1.093
1.091 | | 741788.0493 | 1015968.901 | 24.81
24.78 | 1.005 | | 741788.2655 | 1015964.559 | 24.872 | 1.06 | | 741788.698 | 1015955.874 | 25.238 | 1.034 | | 741788.9143
741789.1305 | 1015951.532
1015947.189 | 25.208
25.238 | 1.01
1.179 | | 741789.3468 | 1015942.847 | 24.658 | 1.137 | | 741789.5631 | 1015938.504 | 23.712 | 1.146 | | 741789.7793
741789.9956 | 1015934.161
1015929.82 | 23.652
23.896 | 1.177
1.085 | | 741790.2118 | 1015925.477 | 24.078 | 1.074 | | 741790.4281 | 1015921.134 | 24.566 | 1.343 | | 741790.6443
741790.8606 | 1015916.792
1015912.449 | 24.964
25.208 | 1,363
1,185 | | 741791.0768 | 1015908.108 | 25.238 | 1.332 | | 741791.2931 | 1015903.765 | 25.39 | 1.253 | | 741791.5094
741791.7256 | 1015899.422
1015895.08 | 25.756
26.124 | 1.185
1.341 | | 741791.9419 | 1015890.737 | 26.612 | 1.295 | | 741792.1581 | 1015886.394 | 27.618 | 1.225 | | 741792.3744
741792.5906 | 1015882.053
1015877.71 | 29.754
33.906 | 1.247
1.245 | | 741792.8069 | 1015873.368 | 47.028 | 1.289 | | 741793.0232 | 1015869.025 | 67.75 | 1.361 | | 741793.2394 | 1015864.682 | 40.374
40.924 | 1.236
1.065 | | 741793.4557
741793.6719 | 1015860.34
1015855.998 | 36.164 | 1.047 | | 741793.8882 | 1015851.656 | 30.456 | 1.096 | | 741794.1044 | 1015847.313 | 27.68 | 1.085 | | 741794.3207
741794.537 | 1015842 97
1015838.628 | 26.428
25.788 | 1.107
1.185 | | 741794.7532 | 1015834.285 | 25.33 | 1.236 | | 741794.9694 | 1015829.943 | 25.146 | 1.221 | | 741795,1857
741795,402 | 1015825.601
1015821.258 | 25.146
25.268 | 1.168
1.225 | | LINE 180 | 1010021.200 | 20.200 | | | 741815.3772 | 1015822.253 | 25.452 | 1.062 | | 741815.1783
741814.9793 | 1015826.248
1015830.243 | 25.634
25.512 | 1.082
1.117 | | 741814.7803 | 1015834.238 | 25.208 | 1.098 | | 741814.5814 | 1015838.233 | 25.146 | 1.063 | | 741814.3824
741814.1835 | 1015842.228
1015846.223 | 25.208
25.422 | 1.034
1.1 | | 741813.9845 | 1015850.218 | 25.422 | 1.12 | | 741813.7856 | 1015854.213 | 25.848 | 1.142 | | 741813.5866
741813.3877 | 1015858.208
1015862.203 | 26.246
26.398 | 1.06
1.012 | | 741813.1887 | 1015866.199 | 26.612 | 1.014 | | 741812.9897 | 1015870.194 | 25.91 | 1.073 | | 741812.7908
741812.5918 | 1015874.189
1015878.184 | 26
26,458 | 1.054
1.128 | | 741812.3929 | 1015882.179 | 26.52 | 1.063 | | 741812.1939 | 1015886.174 | 26.276 | 1.03 | | 741811.995
741811.796 | 1015890.169
1015894.164 | 26.368
26.246 | 0.973
1.028 | | 741811.796 | 1015894.164 | 26.246 | 1.109 | | 741811.3981 | 1015902.154 | 26.246 | 1.056 | | 741811.1991 | 1015906.149 | 25.91
25.146 | 0.999
1.089 | | 741811.0002
741810.8012 | 1015910.144
1015914.139 | 24.932 | 1.209 | | 741810.6023 | 1015918.134 | 25.116 | 1.119 | | 741810.4033 | 1015922.129 | 25.024 | 1.012 | | 741810.212
741810.0207 | 1015925.97
1015929.812 | 25.024
25.116 | 0.986
1.021 | | 741809.8294 | 1015933.653 | 24.72 | 1.08 | | 741809.6381 | 1015937.495 | 23.956 | 1 137 | | 741809.4468
741809.2555 | 1015941.336
1015945.178 | 23.59
24.2 | 1.109
1.15 | | 741809.0642 | 1015949.019 | 25.94 | 1.37 | | 741808.6816 | 1015956.701 | 26.246 | 1.093 | | 741808.4903
741808.299 | 1015960.544
1015964.385 | 25.94
25.666 | 1.063
1.08 | | 741808.1077 | 1015968.226 | 25.512 | 1.041 | | 741807.9164 | 1015972 067 | 25.36 | 1.056 | | 741807.7251
741807.5338 | 1015975.909
1015979.75 | 25.268
24.932 | 1.023
0,913 | | 741807.3338 | 1015983 591 | 24.932 | 1.095 | | 741807 1512 | 1015987.433 | 24.536 | 1 124 | | 741806 7686 | 1015995 116 | 24.598 | 1 054
0.994 | | 741806.5773
741806.386 | 1015998 957
1016002.798 | 24.536
24.262 | 1.051 | | 741806.1947 | 1016006 639 | 23.986 | 1.137 | | 741806.0033 | 1016010.482 | 23.956 | 11 | | 741805 812
741805 4294 | 1016014.323
1016022.005 | 24.23
24.23 | 1.109
0.995 | | 741805.2222 | 1016026 167 | 24.262 | 1 126 | | 741805.015 | 1016030.328 | 24.018 | 1.157 | | | SEDA EBS | | | |-------------------------------|----------------------------|------------------|-------------------------| | | | Quadrature | In-Phase | | Easting
741804.8077 | Northing
1016034.49 | Response
24.2 | Response
1.03 | | 741804.6004 | 1016038.652 | 23.926 | 0.858 | | 741804.3932
741804.186 | 1016042.813
1016046.974 | 23.438
22.46 | 0.975
1.089 | | 741803.9787 | 1016051.136 | 22.37 | 1.071 | | 741803.7715 | 1016055.297
1016059.459 | 22.4
22.614 | 1.028
1.03 | | 741803.5642
741803.357 | 1016063.621 | 22.98 | 1.179 | | 741803.1498 | 1016067.782 | 23.132 | 1.062 | | 741802.9425
741802.7352 | 1016071.944
1016076.105 | 23.224
22.918 | 1.106
1.12 | | 741802.528 | 1016080,266 | 22.888 | 1.148 | | 741802.3208
741801.9063 | 1016084.428
1016092.751 | 22.98
22.888 | 1.194
1.159 | | 741801.699 | 1016096.913 | 22.918 | 1.102 | | 741801.4918
741801.2846 | 1016101.074
1016105.235 | 23.438
22.918 | 1.135
1.157 | | 741801.0773 | 1016109.397 | 23.864 | 1.106 | | 741800.87
741800.6628 | 1016113,559
1016117,72 | 24.262
24.292 | 1.209
1.295 | | 741800.4556 | 1016121.882 | 24.078 | 1.242 | | LINE 200
741820.4308 | 1016122.876 | 24.536 | 1.003 | | 741820.6381 | 1016118.715 | 25.024 | 1.001 | | 741820.8453
741821.0525 | 1016114.554
1016110.392 | 24.018
24.476 | 1.028
1.117 | | 741821.2598 | 1016106.23 | 24.444 | 1.177 | | 741821.467
741821.6743 | 1016102.069
1016097.907 | 23.498
23.986 | 1.196
1.236 | | 741821.8815 | 1016093.746 | 23.56 | 1.146 | | 741822.0888
741822.296 | 1016089.585
1016085.423 | 23.04
23.62 | 1.03
1.073 | | 741822.5033 | 1016081.261 | 23.62 | 1.277 | | 741822.7105 | 1016077.1
1016072.938 | 23.406
23.498 | 1.258
1.243 | | 741822.9178
741823.125 | 1016068.776 | 24 17 | 1.225 | | 741823.3322 | 1016064.616 | 24.414
23.652 | 1.205 | | 741823.5395
741823.7467 | 1016060,454
1016056,292 | 23.712 | 1.218
1.229 | | 741823.954 | 1016052.131 | 23.254 | 1.168 | | 741824.1612
741824.3685 | 1016047.969
1016043.807 | 22.858
23.56 | 1 155
1.12 | | 741824.5757 | 1016039.647 | 22.278 | 1.155 | | 741824.783
741824.9902 | 1016035.485
1016031.323 | 21.576
22.248 | 1.192
1.164 | | 741825.1974 | 1016027.162 | 21.79 | 1.255 | | 741825.4047
741825.612 | 1016023
1016018.838 | 21.026
20.996 | 1.109
1.069 | | 741825.8192 | 1016014.678 | 21.21 | 1.087 | | 741826.0264
741826.2337 | 1016010.516
1016006.354 | 21.362
21.302 | 1.027
1.106 | | 741826.4409 | 1016002.193 | 21.514 | 1.131 | | 741826.6482
741826.8554 | 1015998.031
1015993.869 | 21.392
21.546 | 1.073
1.172 | | 741827.0626 | 1015989.708 | 21.606 | 1.185 | | 741827.2699
741827.4772 | 1015985.547
1015981.385 | 21.698
22.094 | 1.089
1. 15 9 | | 741827.6844 | 1015977.224 | 22.308 | 1.245 | | 741827.8916
741828.0989 | 1015973.062
1015968.9 | 23.284
24.108 | 1.1
1.032 | | 741828.3061 | 1015964.739 | 21.454 | 0.674 | | 741828.5134
741828.7206 | 1015960.578 | 23.194
24.658 | 1.049
1.26 | | 741828.9278 | 1015956.416
1015952.255 | 23.986 | 1.122 | | 741829.1351 | 1015948.093 | 23.742 | 1.047
1.12 | | 741829.3424
741829.5496 | 1015943.931
1015939.77 | 24.292
24.81 | 1.218 | | 741829.7568 | 1015935.609 | 25.146 | 1.35 | | 741829.9641
741830.1713 | 1015931.447
1015927.286 | 25.696
25.91 | 1,256
1,334 | | 741830.3786 | 1015923.124 | 26.398 | 1.232 | | 741830.5948
741830.8111 | 1015918.781
1015914.439 | 26.428
26.428 | 1.146
1.067 | | 741831.0273 | 1015910.097 | 26.458 | 1.089 | | 741831.2436
741831.4598 | 1015905.755
1015901.412 | 26.856
26.734 | 1.131
1.199 | | 741831.6761 | 1015897.069 | 26.764 | 1.1 | | 741831.8924
741832.1086 | 1015892.727
1015888.384 | 26.764
26.58 | 1.089
1.023 | | 741832.3249 | 1015884.042 | 26.734 | 1.126 | | 741832,5411
741832,7574 | 1015879.7
1015875.357 | 26.398
26.428 | | | 741832.9736 | 1015871.015 | 26.368 | 1.153 | | 741833.1899
741833.4062 | 1015866.672
1015862.329 | 26.52
26.978 | | | 741833.6224 | 1015857.988 | 26.824 | | | 741833.8387 | 1015853.645 | 26.276 | | | 741834.0549
741834.2712 | 1015849.302
1015844.96 | 25.482
25.512 | 0.986
1.192 | | 741834.4874 | 1015840.617 | 25.756 | | | 741834.7037
741834.9199 | 1015836.275
1015831.933 | 25.726
25.696 | | | 741835 1362 | 1015827.59 | 25.756 | 1.085 | | 741835.3525
LINE 220 | 1015823.248 | 26.154 | 1 104 | | 741855.3277 | 1015824.243 | 26.52 | 1.398 | | 741855.1016
741854.8755 | 1015828.782
1015833.322 | 26.49
26.52 | 1.442
1.4 | | 741854.6495 | 1015837.862 | 26.824 | 1 385 | | 741854.4233
741854 1973 | 1015842.402
1015846.941 | 27 558
28 748 | 1 446
1 664 | | 741853.9712 | 1015851.482 | 30.64 | 1.898 | | 741853 7451
741853 519 | 1015856 021
1015860 562 | 33 752
32 868 | 2 568
0 92 | | 741853 2929 |
1015865.101 | 27.71 | -1.262 | | 741853 0668
741852.8408 | 1015869.641
1015874.181 | 33.448
33.722 | 1 433
2.675 | | 741852.6147 | 1015878.72 | 28.87 | 0.96 | | | | | | # Site: Ice Rink | Site: Ice Rink | | | | |----------------------------|----------------------------|--------------------|------------------| | | SEDA EBS | Sites | | | | | Quadrature | In-Phase | | Easting 741852,3886 | Northing | Response | Response | | | 1015883.26 | 24.108 | -1.139 | | 741852,1625 | 1015887.8 | 19.744 | -2.081 | | 741851.9364 | 1015892.34 | 18.31 | -1.833 | | 741851.7103 | 1015896.88 | 18.554 | -1.802 | | 741851.2582 | 1015905.959 | 18.036 | -1.898 | | 741851.0321 | 1015910.5 | 19.744 | -1.635 | | 741850.806 | 1015915.039 | 23.376 | -1.166 | | 741850.5799 | 1015919.579 | 27.68 | 0.624 | | 741850.3538 | 1015924.119 | 30.334 | 1.582 | | 741850.1549 | 1015928,114 | 31.678 | 2.015 | | 741849.9559 | 1015932,109 | 32.348 | 2.276 | | 741849.757 | 1015936,104 | 32.074 | 2.395 | | 741849.558 | 1015940.099 | 31.25 | 1.927 | | 741849.1601 | 1015948.089 | 29.908 | | | 741848,9611 | 1015952.084 | 29.908 | 1.1
1.089 | | 741848.7622 | 1015956.079 | 29.846 | 1.346 | | 741848.5632 | 1015960.074 | 29.296 | 1.315 | | 741848.3643 | 1015964.069 | 28.84 | 1.277 | | 741848.1653 | 1015968.064 | 28.26 | 1.225 | | 741847.9664 | 1015972.059 | 28.016 | 1.363 | | 741847,7674 | 1015976.054 | 27.924 | 1.372 | | 741847,5684 | 1015980.049 | 27.924 | 1.277 | | 741847.3695 | 1015984.044 | 27.526 | 1.278
1.131 | | 741847.1705 | 1015988.04 | 26.856 | 1.115 | | 741846.9716 | 1015992.035 | 26.092 | | | 741846.7726 | 1015996.03 | 25.878 | 1.106 | | 741846.3747 | 1016004.02 | 24.566 | 1.005 | | 741846.1758 | 1016008.015 | 24.322 | 1.113 | | 741845.7778 | 1016016.005 | 24.17 | 1.096 | | 741845.3799 | 1016023.995 | 24.444 | 1.3 | | 741845.1431 | 1016028.751 | 24.81 | 1.107 | | 741844.9062 | 1016033.507 | 24.598 | 1.324 | | 741844.6694 | 1016038.263 | 23.194 | 1.444 | | 741844.4325 | 1016043.019 | 22.614 | 1.308 | | 741844.1957 | 1016047.776 | 22.766 | 1.304 | | 741843.9588 | 1016052.531 | 23.254 | 1.265 | | 741843.722 | 1016057.287 | 23.804 | 1.166 | | 741843.4851 | 1016062.043 | 23.986 | 1.179 | | 741843.2483 | 1016066.799 | 23.804 | 1.236 | | 741843.0114 | 1016071.555 | 23.742 | 1.157 | | 741842.7746 | 1016076.311 | 23.224 | 0.898 | | 741842.5377 | 1016081.067 | 23.376 | 1.041 | | 741842.3009 | 1016085.823 | 23.376 | 1.223 | | 741842.064 | 1016090.579 | 23.284 | 1.288 | | 741841.8271 | 1016095.336 | 23.04 | 1.28 | | 741841.5903 | 1016100.091 | 22.828 | 1.346 | | 741841.3535 | 1016104.847 | 23.102 | 1.183 | | 741841.1166 | 1016109.603 | 23.376 | 1.324 | | 741840.8798 | 1016114.359 | 23.682 | 1.385 | | 741840.6429 | 1016119.115 | 23.59 | 1.468 | | 741840.4061 | 1016123.871 | 23.59 | 1.372 | | LINE 240
741860.3813 | 1016124.866 | 24.292 | 1.186 | | 741860.6182 | 1016120.11 | 24.444 | 1.218 | | 741860.855 | 1016115.354 | | 1.172 | | 741861.0919 | 1016110.598 | 24.23
23.712 | 1.277 | | 741861.3287 | 1016105.842 | 24.078 | 1.289 | | 741861.5656 | 1016101.085 | 24.17 | 1.245 | | 741861.8024 | 1016096.33 | 24.384 | 1.328 | | 741862.0392 | 1016091.574 | 24.476 | 1.339 | | 741862.2761 | 1016086.818 | 24.292 | 1.13 | | 741862.513 | 1016082.062 | 24.262 | 0.938 | | 741862.7498 | 1016077.306 | 24.322 | 1.142 | | 741862.9867 | 1016072.55 | 24.566 | 1.337 | | 741863.2235 | 1016067.794 | 24.354 | 1.291 | | 741863.4604 | 1016063.038 | 24.414 | 1.282 | | 741863.6972 | 1016058.282 | 24.628 | 1.453 | | 741863.9341 | 1016053.525 | 24.506 | 1.411 | | 741864.1709 | 1016048.77 | 24.292
24.262 | 1.286 | | 741864.4078 | 1016044.014 | 24.292 | 1.212 | | 741864.6446 | 1016039.258 | | 1.295 | | 741864.8815 | 1016034.502 | 23.926 | 1.334 | | 741865.1183 | 1016029.746 | 23.652 | 1.255 | | 741865.3552 | 1016024.99 | 23.59 | 1.164 | | 741865.5865 | 1016020.345 | 23.742 | 1.102 | | 741865.8179 | 1016015 699 | 24.384 | 1.381 | | 741866.0492 | 1016011.054 | 25.054 | 1.466 | | 741866.2806 | 1016006.408 | 26.398 | 1.515 | | 741866.5119 | 1016001.763 | 29.938 | 2.1 | | 741866.7432 | 1015997.117 | 40.924 | 5.83 | | 741866.9746 | 1015992.472 | 68.97 | 14.041 | | 741867.2059 | 1015987.827 | 169.006 | 33.676 | | 741867.4372 | 1015983.182 | 238.738 | 33.676 | | 741867.6686 | 1015978.535 | 289.428 | 33.68 | | 741867.9 | 1015973.89 | 302.276 | 33.678 | | 741868.1313 | 1015969.245 | 277.1 | 33.676 | | 741868.3626 | 1015964.6 | 246.704 | 33.676 | | 741868.594 | 1015959.954 | 289.948 | 33.68 | | 741868 8253 | 1015955.309 | 301.972 | 33.678 | | 741869.0567 | 1015950.663 | 302.308 | 33.676 | | 741869.288 | 1015946.018 | 302.704 | 33.673 | | 741869.5194
741869.7507 | 1015941.372
1015936.727 | 303.254 | 33.676 | | 741869.982 | 1015932.082 | 286.622
208.832 | 33.678
33.678 | | 741870.2134 | 1015927.437 | 210.938 | 33.676 | | 741870.4448 | 1015922.79 | 195.892 | 33.678 | | 741870 6761 | 1015918 145 | 175 72 | 33.68 | | 741870 9074 | 1015913.5 | 167.51 | 33.676 | | 741871 1388 | 1015908 855 | 185.394 | 33.678 | | 741871 3701 | 1015904.209 | 165.04 | 33 678 | | 741871 6014 | 1015899 564 | 173.31 | 33.671 | | 741871 8328 | 1015894.918 | 154 694 | 26.641 | | 741872.0642 | 1015890.273 | 160 888 | 30.299 | | 741872.2955 | 1015885 627 | 150.024 | 25.862 | | 741872 5268 | 1015880 982 | 89 08 | 8.02 | | 741872 7582 | 1015876 337 | 64 91 | 4.911 | | 741872.9895 | 1015871.692 | 49.682 | 4 503 | | 741873.2209 | 1015867.046 | 35 92 | 0 183 | | | | Quadrature | in-Phase | |-------------|-------------|------------|----------| | Easting | Northing | Response | Response | | 741873.4522 | 1015862.4 | 26.154 | -2.011 | | 741873 6835 | 1015857.755 | 17.456 | -3.006 | | 741873.9149 | 1015853.11 | 9.49 | -5.953 | | 741874.1462 | 1015848.465 | -5.432 | -19.524 | | 741874.3776 | 1015843.819 | -12.97 | -18,153 | | 741874.6089 | 1015839.173 | -4.944 | -5.324 | | 741874.8403 | 1015834.528 | 5.126 | 1.953 | | 741875.0716 | 1015829.883 | 7.294 | 1.587 | | 741875.3029 | 1015825.237 | 10.59 | 1.001 | | | SEDA EBS | Sites | | |----------------------------|----------------------------|--------------------|------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | LINE 0
740206.1 | 1015640.6 | 19.406 | 8.492 | | 740205.9552 | 1015644.764 | 103.852 | 7.41 | | 740205.8103
740205.6655 | 1015648.928
1015653.092 | 105.408
105.224 | 8.38
9.959 | | 740205.5207 | 1015657.257 | 108.552 | 8.005 | | 740205.3758 | 1015661.42 | 114.074 | 9.826 | | 740205.231
740205.0862 | 1015665.585
1015669.749 | 144.5
158.326 | 19.737
23.392 | | 740204.9413 | 1015673.913 | 197.602 | 33.612 | | 740204.7965 | 1015678.077 | 212.31 | 33.744 | | 740204.6517
740204.5068 | 1015682.242
1015686.405 | 184.876
192.26 | 32.987
33.744 | | 740204.362 | 1015690.57 | 199.158 | 33.746 | | 740204.2172
740204.0723 | 1015694.734
1015698.898 | 239.014
242.34 | 33.746
33.744 | | 740203.9275 | 1015703.062 | 205.78 | 32.17 | | 740203.7827 | 1015707.227
1015711.39 | 179.108
218.414 | 23.57
33.744 | | 740203.6378
740203.493 | 1015711.39 | 251.678 | 33.744 | | 740203.3482 | 1015719.719 | 194.092 | 33.744 | | 740203.2033
740202.9137 | 1015723.883
1015732.212 | 244.904
257.904 | 33.744
33.744 | | 740202.7688 | 1015736.375 | 224.396 | 33.746 | | 740202.624 | 1015740.54 | 234.162 | 33.742
33.742 | | 740202.466
740202.308 | 1015745.082
1015749.625 | 244.294
209.93 | 28.046 | | 740202.15 | 1015754.167 | 185.15 | 22.304 | | 740201.992
740201.834 | 1015758.711
1015763.253 | 198.638
252.9 | 26.315
33.744 | | 740201.676 | 1015767.796 | 239.44 | 33.744 | | 740201.518 | 1015772.338 | 165.496 | 33.746 | | 740201.202
740201.044 | 1015781.424
1015785.967 | 97.87
172.546 | 1.343
4.97 | | 740200.886 | 1015790.509 | 197.114 | 16.52 | | 740200.728 | 1015795.052 | 176.484
135.132 | 15.577
10.721 | | 740200.57
740200.412 | 1015799.595
1015804.137 | 166.596 | 19.708 | | 740200.254 | 1015808.68 | 179.87 | 20.575 | | 740200.096 | 1015813.223
1015817.766 | 200.928
235.626 | 29.834
33.744 | | 740199.938
740199.78 | 1015822.308 | 237.732 | 32.173 | | 740199.622 | 1015826.851 | 250.396 | 30.823 | | 740199.464
740199.306 | 1015831.394
1015835.937 | 234.284
246.49 | 28.528
33.744 | | 740199.148 | 1015840.479 | 203.156 | 25.744 | | 740198.99 | 1015845.021 | 181.182 | 27.569
23.613 | | 740198.832
740198.674 | 1015849.565
1015854.107 | 162.812
158.448 | 22.609 | | 740198.516 | 1015858.65 | 146.332 | 17.837 | | 740198.358
740198.2 | 1015863.192
1015867.736 | 143.218
146.668 | 15.046
18.58 | | 740198.042 | 1015872.278 | 146.088 | 16.968 | | 740197.884 | 1015876.821 | 123.382 | 11.456 | | 740197.726
740197.568 | 1015881.363
1015885.907 | 102.294
96.192 | 7.726
6.504 | | 740197.41 | 1015890.449 | 92.956 | 6.734 | | 740197.252
740197.094 | 1015894.991
1015899.534 | 108.428
122.528 | 11.675
15.09 | | 740196.936 | 1015904.077 | 130.34 | 7.544 | | 740196.778 | 1015908.62 | 117.432 | 7.127 | | 740196.62
740196.462 | 1015913.162
1015917.705 | 129.486
121.094 | 12.094
13.486 | | 740196.304 | 1015922.248 | 120.85 | 12.209 | | 740196.146
740195.988 | 1015926.791
1015931.333 | 130.004
125.854 | 15.702
13.925 | | 740195.83 | 1015935.876 | 113.708 | 12.715 | | 740195.672 | 1015940.419 | 101.47 | 11.373 | | 740195.341
740195.1754 | 1015949.937
1015954.696 | 93.14
92.194 | 7.899
8.288 | | 740195.0099 | 1015959.455 | 80.474 | 6.649 | | 740194.8444 | 1015964.214 | 77.728
82.856 | 5.901
7.656 | | 740194.6789
740194.5134 | 1015968.972
1015973.732 | 80.658 | 7.202 | | 740194.3478 | 1015978.491 | 71.656 | 5.786 | | 740194.1823
740194.0168 | 1015983.25
1015988.009 | 66.498
65.978 | 5.13
5.177 | | 740193.6857 | 1015997.527 | 64.698 | 5.391 | | 740193.5202 | 1016002.286 | 64.056 | 4.876
5.659 | |
740193.3547
740193.1891 | 1016007.045
1016011.805 | 71.198
78.124 | 6.469 | | 740193.0237 | 1016016.563 | 82.642 | 7.055 | | 740192.8581
740192.6926 | 1016021.322
1016026.081 | 82.154
83.19 | 6.842
6.765 | | 740192.3615 | 1016035.599 | 82.214 | 7.364 | | 740192.196 | 1016040.358 | 88.074 | 8.011 | | LINE 20
740212.1839 | 1016041.053 | 47.364 | 2.094 | | 740212.3495 | 1016036.294 | 44.28 | 1.763 | | 740212.515
740212.6805 | 1016031.535
1016026.776 | 39.978
36.346 | 1.433
1.164 | | 740212.846 | 1016028.776 | 35.096 | 1.122 | | 740213.0116 | 1016017.258 | 33.722 | 0.667 | | 740213.1771
740213.3426 | 1016012.5
1016007.741 | 32.41
32.104 | 0.606
0.749 | | 740213.5081 | 1016002.981 | 31.342 | 0.804 | | 740213.6736
740213.8392 | 1015998.222
1015993.463 | 31.036
30 152 | 0.655
0.415 | | 740213.6392 | 1015988.704 | 30.456 | 0.387 | | 740214.1702 | 1015983 945 | 29.998 | | | 740214.3357
740214 5013 | 1015979.186
1015974 427 | 29.816
30.242 | | | | | | | | | SEDA EBS | | | |----------------------------|----------------------------|------------------|------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | 740214 8323 | 1015964.91 | 30.03
29.754 | 0.49
0.417 | | 740214.9978
740215.1633 | 1015960.15
1015955.391 | 29.296 | 0.24 | | 740215.3289 | 1015950.632 | 28.87 | 0.396 | | 740215.4944 | 1015945.873 | 28.992 | 0.4 | | 740215.6599 | 1015941.114 | 28.656 | 0.255 | | 740215.8255 | 1015936.355 | 28.594 | 0.24 | | 740215.991
740216.322 | 1015931.596
1015922.077 | 28.594
28.962 | 0.251
0.209 | | 740216.4876 | 1015917.318 | 29.114 | 0.222 | | 740216.6531 | 1015912.56 | 28.84 | 0.453 | | 740216.8186 | 1015907.801 | 28.84 | 0.422 | | 740216.9841 | 1015903.042 | 28.9 | 0.42
0.474 | | 740217.1496
740217.3152 | 1015898.283
1015893.524 | 29.144
29.084 | 0.474 | | 740217.4807 | 1015888.765 | 29.266 | 0.409 | | 740217.6462 | 1015884.005 | 28.87 | 0.134 | | 740217.8117 | 1015879.246 | 28.686 | 0.135 | | 740217.9773 | 1015874.487 | 29.388 | 0.27
0.235 | | 740218.1428
740218.3083 | 1015869.728
1015864.97 | 30.12
30.334 | 0.251 | | 740218.4738 | 1015860.211 | 31.524 | 0.266 | | 740218.6393 | 1015855.452 | 30.944 | 0.417 | | 740218.8049 | 1015850.693 | 29.51 | 0.262 | | 740218.9704
740219.1359 | 1015845.933
1015841.174 | 29.542
29.266 | 0.071
0.066 | | 740219.1339 | 1015836.632 | 28.93 | 0.011 | | 740219.4519 | 1015832.089 | 28.442 | 0.099 | | 740219.6099 | 1015827.547 | 28.076 | 0.036 | | 740219.7679 | 1015823.003 | 27.618 | -0.077 | | 740219.9259
740220.0839 | 1015818.461
1015813.918 | 27.436
26.856 | -0.082
-0.045 | | 740220.0639 | 1015809.376 | 26.368 | -0.121 | | 740220.5579 | 1015800.29 | 26.612 | -0.2 | | 740220,7159 | 1015795.747 | 26.612 | -0.034 | | 740220.8739 | 1015791.205 | 26.642 | 0.121 | | 740221.0319 | 1015786.662 | 26.856
27.008 | 0.174
-0.211 | | 740221.1899
740221.3479 | 1015782.119
1015777.577 | 27.07 | -0.053 | | 740221.5059 | 1015773.034 | 27.282 | 0.174 | | 740221.6639 | 1015768.491 | 27.436 | 0.056 | | 740221.8219 | 1015763.948 | 27.374 | 0.055
0.075 | | 740221.9799
740222.1379 | 1015759.406
1015754.863 | 27.404
27.77 | 0.18 | | 740222,1379 | 1015750.32 | 27.984 | 0 154 | | 740222.4539 | 1015745.777 | 28.046 | 0.281 | | 740222.6119 | 1015741.235 | 28.046 | 0.248 | | 740222.9595 | 1015731.241 | 27.862
28.35 | 0.615
0.745 | | 740223.1333
740223.3071 | 1015726.244
1015721.247 | 28.686 | 0.319 | | 740223.4809 | 1015716.25 | 28.382 | 0.297 | | 740223.6547 | 1015711.253 | 27.618 | 0.251 | | 740223.8285 | 1015706.256 | 27.558
27.984 | 0.095
0.161 | | 740224.0023
740224.1761 | 1015701.259
1015696.262 | 28.046 | 0.374 | | 740224.3499 | 1015691.265 | 27.984 | 0.374 | | 740224.5237 | 1015686.268 | 27.618 | 0.056 | | 740224.6975 | 1015681.271 | 27.984 | -0.167 | | 740224.8713 | 1015676.274
1015671.277 | 27.71
27.74 | -0.069
0.012 | | 740225.0451
740225.2189 | 1015666.28 | 27.68 | 0.051 | | 740225.3927 | 1015661.283 | 27.466 | -0.152 | | 740225.5665 | 1015656.286 | 27.74 | -0.145 | | 740225.9141 | 1015646.292
1015641.295 | 27.07
26.916 | -0.477
-0.275 | | 740226.0879
LINE 40 | 1013041.233 | 20.510 | 4.275 | | 740246.0758 | 1015641.99 | 25.33 | -0.509 | | 740245.9247 | 1015646.336 | 25.36 | -0.433 | | 740245.7736 | 1015650.681 | 24.72 | -0.391
-0.514 | | 740245.6225
740245.4713 | 1015655.026
1015659.371 | 24.536
24.048 | -0.514
-0.661 | | 740245.3202 | 1015663.716 | 24.14 | -0.505 | | 740245.169 | 1015668.062 | 24.048 | -0.676 | | 740245.0179 | 1015672.407 | 23.986 | -0.705 | | 740244.8668
740244.7157 | 1015676.752
1015681.097 | 23.926
23.926 | -0.554
-0.67 | | 740244.5645 | 1015685.442 | 23.896 | -0.716 | | 740244.4134 | 1015689.787 | 23.896 | -0.639 | | 740244.2623 | 1015694.133 | 23.468 | -0.507 | | 740244 1111 | 1015698.478 | 23.254 | -0.758 | | 740243.96
740243.8089 | 1015702.824
1015707.168 | 23.406
23.56 | -0.81
-0.659 | | 740243.6578 | 1015711.513 | 23.438 | -0.65 | | 740243.5066 | 1015715.859 | 23.438 | -0.486 | | 740243.3555 | 1015720.204 | 23.346 | -0.525 | | 740243.2043
740243.0532 | 1015724.549
1015728.895 | 23.102
22.95 | -0.681
-0.657 | | 740243.0532
740242.9021 | 1015728.895 | 22.584 | -0.037
-0.918 | | 740242.5998 | 1015741.93 | 21.972 | -0.771 | | 740242.4343 | 1015746.689 | 21.972 | -0.532 | | 740242.2688 | 1015751.448 | 22.492
22.522 | -0.608
-0.571 | | 740242.1033
740241.9377 | 1015756.207
1015760.966 | 22.522 | -0.571
-0.551 | | 740241.9377 | 1015765.726 | 22.522 | -0.667 | | 740241.6067 | 1015770.484 | 22.522 | -0.942 | | 740241.4412 | 1015775.243 | 22.46 | -1.052 | | 740241.1101 | 1015784.761
1015789.52 | 22.644
22.584 | -0.83
-0.859 | | 740240.9446
740240.7791 | 1015789.52 | 22.492 | -0.863 | | 740240.6135 | 1015799.038 | 22 43 | -0.784 | | 740240 448 | 1015803.798 | 22.278 | -0.812 | | 740240.2825 | 1015808 557 | 22.278 | -0 87 | | | | | | | | SEDA EDO | Oites | | |-------------------------------------|----------------------------|------------------|------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | 740240.117 | 1015813 316 | 22.43 | -0.791 | | 740239.9515 | 1015818.074 | 22.278 | -0.617 | | 740239.7859 | 1015822.833 | 22.186 | -0.744 | | 740239.6204 | 1015827.592 | 22.46 | -0.633 | | 740239.4549 | 1015832.351 | 22.584 | -0.518 | | 740239.2894 | 1015837.11
1015841.87 | 22.492
22.766 | -0.556
-0.681 | | 740239.1238 | 1015846.629 | 23.102 | -0.406 | | 740238.9583
740238.7928 | 1015851.388 | 23.284 | -0.424 | | 740238.6273 | 1015856.147 | 23.652 | -0.297 | | 740238.4617 | 1015860.906 | 23.59 | -0.327 | | 740238.2962 | 1015865.665 | 23.926 | -0.519 | | 740238.1307 | 1015870.423 | 24.14 | -0.569 | | 740237.9652
740237.7997 | 1015875.182 | 24.262 | -0.49 | | 740237.7997 | 1015879.942 | 24.354 | -0.433 | | 740237.6341 | 1015884.701 | 24.688
25.33 | -0.301
-0.266 | | 740237.4686
740237.3031 | 1015889.46
1015894.219 | 25.36 | -0.395 | | 740237.1375 | 1015898.978 | 25.176 | -0.589 | | 740236.972 | 1015903.737 | 25.238 | -0.834 | | 740236.8065 | 1015908.496 | 24.994 | -0.712 | | 740236.641 | 1015913.255 | 24.964 | -0.494 | | 740236.4755 | 1015918.013 | 24.444 | -0.723 | | 740236.3099 | 1015922.773 | 24.078 | -0.824 | | 740236.1444 | 1015927.532
1015932.291 | 24.23
24.444 | -0.602
-0.613 | | 740235.9789
7402 3 5.8134 | 1015937.05 | 24.476 | -0.622 | | 740235.6478 | 1015941.809 | 24.476 | -0.569 | | 740235.474 | 1015946,806 | 24.384 | -0.608 | | 740235.3002 | 1015951.803 | 24.414 | -0.725 | | 740235.1264 | 1015956.8 | 24.384 | -0.687 | | 740234.9526 | 1015961.797 | 24.354 | -0.602 | | 740234.7788 | 1015966.794 | 24.506 | -0.685
-0.657 | | 740234.4312 | 1015976.788 | 24.964 | | | 740234.2574
740234.0836 | 1015981.785
1015986.782 | 24.932
24.75 | -0.639
-0.466 | | 740234.0636 | 1015991.779 | 24.75 | -0.56 | | 740233.736 | 1015996.776 | 24.688 | -0.622 | | 740233.5622 | 1016001.773 | 24.598 | -0.711 | | 740233.3884 | 1016006.77 | 24.658 | -0.547 | | 740233.2146 | 1016011.767 | 24.628 | -0.531 | | 740233.0408 | 1016016.764 | 25.086 | -0.586 | | 740232.867 | 1016021.761 | 25.666 | -0.523
-0.562 | | 740232.6932 | 1016026.758
1016031.755 | 25.818
26.336 | -0.369 | | 740232.5194
740232.3456 | 1016031.753 | 27.374 | -0.121 | | 740232.1718 | 1016041.749 | 28.87 | 0.157 | | LINE 60 | | | | | 740252.1598 | 1016042.444 | 30.334 | -0.45 | | 740252.4758 | 1016033.358 | 28.32 | -0.448 | | 740252.6337 | 1016028.816 | 26.428 | -0.457 | | 740252.7918 | 1016024.273 | 25.634 | -0.474
-0.556 | | 740253.1078 | 1016015.187 | 24.75
24.384 | -0.927 | | 740253.2658
740253.4238 | 1016010.645
1016006.102 | 24.018 | -0.874 | | 740253.5818 | 1016001.56 | 23.804 | -0.78 | | 740253.7398 | 1015997.016 | 23.438 | -0.916 | | 740253.8978 | 1015992.474 | 23.162 | -0.61 | | 740254.0557 | 1015987.932 | 22.858 | -0.791 | | 740254.2138 | 1015983.389 | 22.522 | -0.946 | | 740254.3717 | 1015978.846 | 22.308
21.942 | -0.795
-0.711 | | 740254.5298
740254.6877 | 1015974.303
1015969.761 | 21.972 | -0.876 | | 740254.8458 | 1015965.218 | 22.338 | -0.951 | | 740255.0037 | 1015960.675 | 22.552 | -0.889 | | 740255.1618 | 1015956.132 | 22.766 | -0.621 | | 740255.3198 | 1015951.59 | 22.828 | -0.845 | | 740255.4778 | 1015947.047 | 22.918 | -0.887 | | 740255.6358 | 1015942.504 | 22.796
22.98 | -0.938
-0.69 | | 740255.9518
740256.1097 | 1015933.419
1015928 877 | 23.132 | -0.655 | | 740256.1057 | 1015924 333 | 23.406 | -0.711 | | 740256.4257 | 1015919.791 | 23.438 | -0.9 | | 740256.5838 | 1015915.248 | 23.194 | -0.63 | | 740256.8998 | 1015906.162 | 22.796 | -0.839 | | 740257.0577 | 1015901.62 | 22.828
22.584 | -0.903
-0.874 | | 740257.2158 | 1015897.077 | | -0.986 | |
740257.3738
740257.5317 | 1015892.535
1015887.992 | 22.278
22.186 | -0.878 | | 740257.5517 | 1015883.449 | 21.972 | -0.927 | | 740257 8477 | 1015878.907 | 21.882 | -0.352 | | 740258.0058 | 1015874.364 | 21.972 | -0.424 | | 740258.1637 | 1015869.821 | 21.82 | -1.082 | | 740258.3218 | 1015865.278 | 21.698 | -1.225 | | 740258.4797 | 1015860.736 | 21.698 | -1.089
-1.014 | | 740258.6378
740258.7957 | 1015856.192
1015851.65 | 21.668
21.514 | -0.955 | | 740258.7957 | 1015847.107 | 21,088 | -1.01 | | 740259.1118 | 1015842.565 | 21.302 | -1.045 | | 740259.2773 | 1015837 806 | 21.576 | -1 071 | | 740259.4428 | 1015833.046 | 21.514 | -1.054 | | 740259.6083 | 1015828.287 | 21.728 | -0.771 | | 740259.7739 | 1015823.528 | 21.668 | -0.731 | | 740259.9394 | 1015818.769 | 21.576 | -0.905
-0.96 | | 740260.1049 | 1015814.011
1015809.252 | 21.636
21.82 | -0.96 | | 740260.2704
740260.4359 | 1015809.252 | 21.912 | -1.122 | | 740260.4339 | 1015799.734 | 21.912 | -0.929 | | 740260.767 | 1015794 975 | 21.912 | -0.795 | | 740260.9325 | 1015790.215 | 22.156 | -0.911 | | 740261.098 | 1015785 456 | 22.126 | -1 146 | | 740261.2636 | 1015780 697 | 22.186 | -0 817 | | | | | | | | SEDA EBS | | | |----------------------------|----------------------------|--------------------|---------------------------------| | | | Quadrature | In-Phase | | Easting
740261.4291 | Northing
1015775.938 | Response
22.216 | Response
-1.153 | | 740261.4291 | 1015771.179 | 22.338 | -0.915 | | 740261.7601 | 1015766.421 | 22.37 | -0.874 | | 740261.9256
740262.0912 | 1015761.662
1015756.903 | 22.522
22.552 | -1.069
-0.949 | | 740262.2567 | 1015752.143 | 22.522 | -0.633 | | 740262.4222
740262.5877 | 1015747.384
1015742.625 | 22.46
22.43 | -0.674
-0.712 | | 740262.7533 | 1015742.625 | 22.338 | -0.821 | | 740262.9188 | 1015733.107 | 22.186 | -0.444 | | 740263.0843
740263.2499 | 1015728.348
1015723.589 | 22.156
22.216 | -0.569
-0.758 | | 740263.4154 | 1015718.83 | 22.004 | -0.661 | | 740263.5809 | 1015714.071 | 21.76
21.942 | -0. 63 7
-0 .6 | | 740263.7464
740263.9119 | 1015709.312
1015704.553 | 22.004 | -0.885 | | 740264.0775 | 1015699.794 | 22.126 | -1.085 | | 740264.243
740264.4085 | 1015695.035
1015690,276 | 22.248
22.37 | -0.736
-0.299 | | 740264.574 | 1015685.517 | 22.43 | -0.477 | | 740264.7396 | 1015680.758
1015675.998 | 22.552
22.614 | -0.913
-0.946 | | 740264.9051
740265.0706 | 1015671.239 | 22.644 | -0.964 | | 740265.2361 | 1015666,481 | 22.552 | -0.758 | | 740265.4016
740265.5672 | 1015661.722
1015656.963 | 22.584
22.888 | -1.01
-1,354 | | 740265.7327 | 1015652.204 | 23,406 | -0.933 | | 740265.8982 | 1015647.445 | 23.774 | -0.898 | | 740266.0637
LINE 80 | 1015642.686 | 24.018 | -0.823 | | 740286.0517 | 1015643.381 | 23.956 | -1.093 | | 740285.9005 | 1015647.726 | 23.896 | -1.076 | | 740285.7494
740285.5983 | 1015652.072
1015656.416 | 23.59
23.53 | -1.236
-1.159 | | 740285.4471 | 1015660.761 | 23.346 | -1.126 | | 740285.296
740285.1449 | 1015665.107
1015669.452 | 23.102
22.918 | -1,458
-1, 3 61 | | 740285.1449 | 1015673.797 | 22.674 | -1.216 | | 740284.8426 | 1015678.143 | 22.278 | -1.111 | | 740284.6915
740284.5404 | 1015682.487
1015686.833 | 21.942
21.79 | -1.016
-1.091 | | 740284.3892 | 1015691.178 | 21.698 | -1.155 | | 740284.2381 | 1015695.523 | 21.82
21.728 | -1.148
-1.065 | | 740284.087
740283.9358 | 1015699.869
1015704.214 | 21.726 | -1.31 | | 740283.7847 | 1015708.558 | 21.728 | -1.251 | | 740283.6336
740283.4824 | 1015712.904
1015717.249 | 22.094
22.308 | -1.153
-1.15 | | 740283.3313 | 1015721.595 | 22.004 | -1.282 | | 740283.029 | 1015730.285 | 21.698 | -1.422 | | 740282.8779
740282.5757 | 1015734.63
1015743.32 | 21.484
20.996 | -1.076
-1.181 | | 740282.4245 | 1015747.666 | 20.996 | -1.084 | | 740282.2734 | 1015752.011
1015756.355 | 21.026
21.454 | -1.01
-1.19 | | 740282.1223
740281.9711 | 1015750.701 | 21.484 | -1.146 | | 740281.82 | 1015765.046 | 21.606 | -1.313 | | 740281.6689
740281.5177 | 1015769.392
1015773.737 | 21.302
21.21 | -1.063
-0.964 | | 740281.3666 | 1015778.082 | 21.148 | -1.22 | | 740281.2155 | 1015782.427
1015786.772 | 20.996
20.782 | -1.379
-1.335 | | 740281.0644
740280.9132 | 1015791.117 | 20.66 | -1.249 | | 740280.7621 | 1015795.463 | 20.6 | -1.198 | | 740280.611
740280.3087 | 1015799,808
1015808,498 | 20.69
20.538 | -1.326
-1.245 | | 740280.3007 | 1015812 843 | 20.69 | -1.157 | | 740280.0064 | 1015817.189 | 20.722 | -1.096 | | 740279.8553
740279.7042 | 1015821.534
1015825.879 | 21.026
21.118 | -1.021
-1.047 | | 740279.553 | 1015830.225 | 21.24 | -1.056 | | 740279.4019
740279.2508 | 1015834.569
1015838.915 | 21 088
20.996 | -1.01
-1.172 | | 740279.2508 | 1015843.26 | 21.058 | -1.028 | | 740278.9341 | 1015848.019 | 21.148 | -1.172 | | 740278.7686
740278.6031 | 1015852.778
1015857.537 | 21.332
21.362 | -1.051
-0 .975 | | 740278.4376 | 1015862.296 | 21.24 | -0.898 | | 740278.272 | 1015867.056 | 21.21 | -0.931
-0.994 | | 740278.1065
740277.941 | 1015871.814
1015876.573 | 21.148
21.118 | -0.85 | | 740277.7755 | 1015881.332 | 21.118 | -0.714 | | 740277 61
740277 4444 | 1015886.091
1015890.85 | 21.302
21.728 | -0.758
-0.791 | | 740277.2789 | 1015895.609 | 22.064 | -0.768 | | 740277.1134 | 1015900.368 | 22.338 | -0.749 | | 740276.9478
740276.7823 | 1015905.128
1015909.887 | 22.584
22.706 | -0.839
-0.887 | | 740276.6168 | 1015914.646 | 22.766 | -0.903 | | 740276.4513 | 1015919.404
1015924.163 | 23.01
22.95 | -0.834
-0.817 | | 740276.2858
740276.1202 | 1015924.103 | 22.796 | -1.08 | | 740275.9547 | 1015933.681 | 22.766 | -1.262 | | 740275.7892
740275.6237 | 1015938 44
1015943.2 | 22.706
22.492 | -1.146
-1.166 | | 740275.4581 | 1015947.959 | 22.522 | -1.03 | | 740275.2926 | 1015952.718
1015957 477 | 22.4
22.156 | -0.915
-0.962 | | 740275.1271
740274.9616 | 1015957 477 | 21 82 | -1 036 | | 740274 796 | 1015966.995 | 21.668 | -1.113 | | 740274 6305
740274 2995 | 1015971 753
1015981 271 | 21 424
21 484 | -1.12
-0.619 | | 1 4021 4.2333 | .0.0001271 | 21 404 | 5013 | | | SEDA EBS | Sites | | |----------------------------|----------------------------|------------------|--------------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | 740274.134
740273.9684 | 1015986.031
1015990.79 | 21.76
21.972 | -0.848
-1.381 | | 740273.8029 | 1015995.549 | 21.76 | -1.155 | | 740273.4719 | 1016005.067 | 21.942
22.064 | -0.994 | | 740273.3063
740273.1408 | 1016009.826
1016014.585 | 22.064 | -0.99
-0.891 | | 740272.9753 | 1016019.343 | 22.37 | -1.032 | | 740272.8098 | 1016024.103 | 22.766 | -1.028
-0.775 | | 740272.6443
740272.4787 | 1016028.862
1016033.621 | 23.04
23.102 | -0.788 | | 740272.3132 | 1016038.38 | 23.468 | -0.758 | | 740272.1477
LINE 100 | 1016043.139 | 24.994 | -0.705 | | 740292.1356 | 1016043.834 | 26.092 | -0.632 | | 740292.2936 | 1016039.292 | 25.878 | -0.674 | | 740292.4516
740292.6096 | 1016034.749
1016030.207 | 25.176
23.926 | -0.716
-0.8 26 | | 740292.7676 | 1016025.663 | 23.406 | -1.051 | | 740292.9256 | 1016021.121 | 23.162 | -1.177 | | 740293.0836
740293.2416 | 1016016.578
1016012.035 | 22.828
23.01 | -1.201
-0.968 | | 740293.3996 | 1016007.492 | 22.614 | -1.049 | | 740293.5576 | 1016002.95 | 22.156 | -1.218
-1.306 | | 740293.8736
740294.0316 | 1015993.864
1015989.322 | 22.126
22.064 | -1.19 | | 740294.1896 | 1015984.779 | 22.094 | -1.062 | | 740294.3476 | 1015980.237 | 21.79
21.972 | -1.177
-1.24 | | 740294.5056
740294.6636 | 1015975.693
1015971.151 | 22.156 | -1.367 | | 740294.8216 | 1015966.608 | 22.338 | -1.403 | | 740294.9796 | 1015962.066 | 22.248
22.094 | -0.905
-1.034 | | 740295.2956
740295.4536 | 1015952.98
1015948.437 | 21.85 | -1.326 | | 740295.6116 | 1015943.895 | 21.576 | -1.074 | | 740295.7696 | 1015939.352 | 21.606 | -1.113
-1.223 | | 740295.9276
740296.0856 | 1015934.809
1015930.267 | 21.698
22.004 | -1.109 | | 740296.2436 | 1015925.724 | 22.43 | -1.133 | | 740296.4016
740296.5596 | 1015921.181
1015916.638 | 22.46
22.644 | -1.394
-1.306 | | 740296.7176 | 1015912.096 | 22.46 | -1.08 | | 740296.8756 | 1015907.553 | 22.094 | -1.273 | | 740297.0336
740297.1916 | 1015903.01
1015898.467 | 21.942
22.278 | -1.161
-1.124 | | 740297.3496 | 1015893.925 | 22.004 | -1.1 | | 740297.5076 | 1015889.383 | 21.76 | -1.37 | | 740297.6656
740297.8236 | 1015884.839
1015880.297 | 21.484
21.302 | -1.299
-1.21 | | 740297.9816 | 1015875.754 | 21.27 | -1.139 | | 740298.1396 | 1015871.212 | 20.904 | -1.306 | | 740298.2976
740298.4556 | 1015866.668
1015862.126 | 20.69
20.568 | -1.232
-1.139 | | 740298.6136 | 1015857.583 | 20.416 | -1.128 | | 740298.7716 | 1015853.041 | 20.478 | -1.198 | | 740298.9296
740299.0876 | 1015848.497
1015843.955 | 20.446
20.478 | -1.192
-1.288 | | 740299.2531 | 1015839.196 | 20.782 | -1.045 | | 740299.4186
740299.5842 | 1015834.437
1015829.678 | 20.782
20.63 | -0.999
-1.01 | | 740299.7497 | 1015824.919 | 20.936 | -1.13 | | 740299.9152 | 1015820.16
1015815.401 | 21.27
21.24 | -1.148
-1.058 | | 740300.0807
740300.2462 | 1015810.642 | 21.546 | -1.407 | | 740300.4118 | 1015805.883 | 21.76 | -1.098 | | 740300.5773 | 1015801.124
1015796.365 | 22.004
22.37 | -0.852
-0.808 | | 740300.7428
740300.9083 | 1015791.606 | 22.156 | -0.823 | | 740301.0739 | 1015786.847 | 22.46 | -1.144 | | 740301.2394
740301.4049 | 1015782.088
1015777.328 | 22.888
22.766 | -1.069
-0.949 | | 740301.5704 | 1015772.569 | 22.644 | -0.709 | | 740301.7359 | 1015767.811 | 22.584 | -0.668 | |
740301.9015
740302.067 | 1015763.052
1015758.293 | 22.828
22.95 | -0.962
-1.508 | | 740302.2325 | 1015753.534 | 22.98 | -1.176 | | 740302.398 | 1015748.775 | 22.98 | -1.262 | | 740302.5636
740302.8946 | 1015744.016
1015734.497 | 22.888
22.552 | -1.096
-1.093 | | 740303.0602 | 1015729.738 | 22.46 | -0.977 | | 740303.2257 | 1015724.979
1015720.22 | 22.278
22.126 | -1.199
-1.267 | | 740303.3912
740303.5567 | 1015720.22 | 21.85 | -1.227 | | 740303.7222 | 1015710.703 | 21.82 | -1.08 | | 740303,8878
740304,0533 | 1015705.944
1015701.184 | 22.126
22.248 | -1.001
-1.027 | | 740304.0333 | 1015696.425 | 22.126 | -1.115 | | 740304.3843 | 1015691 666 | 22.126 | -1.115 | | 740304.5499
740304.7154 | 1015686.907
1015682.148 | 22.034
22.094 | -1.196
-1.19 | | 740304.8809 | 1015677.389 | 22.308 | -1.26 | | 740305.0464 | 1015672.63 | 22.522 | -1.174 | | 740305.2119
740305.3775 | 1015667 872
1015663 112 | 22.644
22.706 | -1.152
-1.017 | | 740305.7085 | 1015653.594 | 22.766 | -1.082 | | 740305.874 | 1015648.835 | 22.98 | -1.424 | | 740306.0396
LINE 120 | 1015644.076 | 23.04 | -1.379 | | 740326.0275 | 1015644.771 | 24.414 | -1.28 | | 740325.8884
740325 7494 | 1015648.769
1015652.766 | 24.354
24 048 | -1.256
-1.225 | | 740325.6104 | 1015656.764 | 23.254 | -1.234 | | 740325 4713 | 1015660 762 | 23 04 | -1 212 | | | | | | | | SEDA EBS | | | |----------------------------|----------------------------|--------------------|------------------------------| | | | Quadrature | In-Phase | | Easting
740325.3323 | Northing
1015664.759 | Response
23.102 | Response
-1,236 | | 740325.3323 | 1015668 757 | 23.224 | -1.109 | | 740325.0542 | 1015672.754 | 23.132 | -1.15 | | 740324.9152 | 1015676.752 | 22.98
22.828 | -1.24
-1.203 | | 740324.7761
740324.6371 | 1015680.749
1015684.747 | 22.918 | -1.196 | | 740324.498 | 1015688.745 | 22.888 | -1.19 | | 740324.359 | 1015692.742 | 22.736 | -1.073 | | 740324.22
740324.0809 | 1015696.74
1015700.737 | 22.584
22.522 | -1.005
-1.03 | | 740323.9419 | 1015704.735 | 22.766 | -1.188 | | 740323.6638 | 1015712.73 | 22.552 | -1.242 | | 740323.5248 | 1015716.728
1015720.725 | 22.674
22.46 | -1.236
-1.247 | | 740323.3857
740323.2467 | 1015724.723 | 22.4 | -1.177 | | 740323.1076 | 1015728.72 | 22.522 | -1.098 | | 740322.9686 | 1015732.718 | 22.796
22.858 | -1.1 6 6
-1.17 | | 740322.8296
740322.6905 | 1015736.716
1015740.713 | 22,888 | -1.227 | | 740322.5515 | 1015744.711 | 22.95 | -1.289 | | 740322.4066 | 1015748.875
1015753.039 | 23.132
23.224 | -1.302
-1.238 | | 740322.2618
740322.117 | 1015757.203 | 23.162 | -1.21 | | 740321.9721 | 1015761.368 | 23.316 | -1.313 | | 740321.8273 | 1015765.531 | 23.284 | -1.251
-1.251 | | 740321.6825
740321.3928 | 1015769.696
1015778.024 | 23.162
22.338 | -1.321 | | 740321.248 | 1015782.188 | 21.912 | -1.359 | | 740321.1031 | 1015786.353 | 21.698
21.514 | -1.295 | | 740320.9583
740320.8135 | 1015790.516
1015794.681 | 21.576 | -1.236
-1.168 | | 740320.6686 | 1015798.845 | 21.484 | -1.06 | | 740320.5238 | 1015803.009 | 21.332 | -1.141 | | 740320.379
740320.2341 | 1015807.173
1015811.337 | 21.302
21.362 | -1.179
-1.253 | | 740320.2341 | 1015815.501 | 21.484 | -1.282 | | 740319.9445 | 1015819.665 | 21.546 | -1.111 | | 740319.7996
740319.6548 | 1015823.83
1015827.993 | 21.76
21.972 | -1.172
-1.223 | | 740319.6546 | 1015832.158 | 22.004 | -1.209 | | 740319.3651 | 1015836.322 | 22.004 | -1.214 | | 740319.2203 | 1015840.486 | 22.004 | -1.277
-1.159 | | 740319.0755
740318.9244 | 1015844.65
1015848.996 | 22.216
22.37 | -0.946 | | 740318.7732 | 1015853.341 | 22.37 | -0.975 | | 740318.6221 | 1015857.685 | 22.156 | -1.089 | | 740318.471
740318.3198 | 1015862.031
1015866.376 | 22.064
22.186 | -1.074
-1.159 | | 740318,1687 | 1015870.722 | 22.308 | -1.166 | | 740318.0176 | 1015875.067 | 22.308 | -1.24 | | 740317.8664
740317.7153 | 1015879.412
1015883.757 | 22.094
22.034 | -1.13
-1.196 | | 740317.7133 | 1015888.102 | 22.216 | -1.186 | | 740317.4131 | 1015892.447 | 22.522 | -1.139 | | 740317.2619 | 1015896.793
1015901.138 | 22.614
22.828 | -1.06
-0.986 | | 740317.1108
740316.9597 | 1015905.484 | 22.766 | -1.115 | | 740316,8086 | 1015909.828 | 22.95 | -1.135 | | 740316.6574 | 1015914,173
1015918,519 | 23.01
23.162 | -1.194
-1.183 | | 740316.5063
740316.3551 | 1015922.864 | 23.346 | -1.188 | | 740316.204 | 1015927.209 | 23.04 | -1.126 | | 740316.0529 | 1015931.555 | 22.95
23.01 | -1.223
-1.209 | | 740315.9018
740315.7506 | 1015935.899
1015940.245 | 22.95 | -1.19 | | 740315.5995 | 1015944.59 | 22.888 | -1.209 | | 740315.4415 | 1015949.132
1015953.675 | 23.102
23.194 | -1.243
-1.19 | | 740315.2835
740315.1255 | 1015958.218 | 23.284 | -1.223 | | 740314.9675 | 1015962.761 | 23.346 | -1.238 | | 740314.8095 | 1015967.303
1015971.846 | 23.284
23.162 | -1.146
-1.164 | | 740314.6515
740314.4935 | 1015971.040 | 22.98 | -1.194 | | 740314.3355 | 1015980.932 | 23.01 | -1.186 | | 740314.1775 | 1015985.474 | 23.316 | -1.12 | | 740314.0195
740313.8615 | 1015990.017
1015994.56 | 23.162
22.98 | -1.177
-1.19 | | 740313.7035 | 1015999 102 | 23.102 | -1.183 | | 740313.5455 | 1016003.645 | 22.918 | -1.273 | | 740313.3875
740313.2295 | 1016008.187
1016012.731 | 22.766
22.888 | -1.33
-1.192 | | 740313.0715 | 1016017.273 | 23.04 | -1.176 | | 740312.9135 | 1016021.816 | 23.224 | -1.159 | | 740312.7555
740312.4395 | 1016026.358
1016035.444 | 23.346
23.56 | -1.107
-1.141 | | 740312.4395 | 1016039.987 | 23.804 | -1.019 | | 740312.1235 | 1016044.529 | 24.262 | -0.863 | | LINE 140
740332,1114 | 1016045 225 | 25.024 | -0.784 | | 740332,1114 | 1016040 879 | 24.78 | -0 7 | | 740332.4137 | 1016036 534 | 24 078 | -0.872 | | 740332.5648
740332.7159 | 1016032 19
1016027.844 | 23.56
23.498 | -0.975
-1.076 | | 740332.7159 | 1016027.844 | 23.102 | -1.221 | | 740333.0182 | 1016019.153 | 23.102 | -1.19 | | 740333.1693 | 1016014.808
1016010.463 | 23.162
23.194 | -1 172
-1.212 | | 740333.3205
740333.4716 | 1016006.118 | 23.102 | -1.212 | | 740333.6227 | 1016001 773
1015997 428 | 23 01 | -1.185 | | 740333.7738 | 1015997.428
1015993.082 | 23.04 | -1.22
-1.328 | | 740333.925
740334.0761 | 1015993 082 | 23 162
23 224 | -1.328
-1.271 | | | | | | | | SEDA EBS | | | |----------------------------|----------------------------|--------------------|------------------| | | | Quadrature | in-Phase | | Easting | Northing | Response
23,132 | Response | | 740334.2273
740334.3784 | 1015984.391
1015980.047 | 23.132 | -1 363
-1 363 | | 740334.5295 | 1015975.702 | 23.376 | -1.37 | | 740334.6806 | 1015971.356 | 23.56 | -1.253 | | 740334.8318 | 1015967 011 | 23.62
23.468 | -1.264
-1.376 | | 740334.9829
740335.134 | 1015962.666
1015958.32 | 23.468 | -1.398 | | 740335.2851 | 1015953.976 | 23.406 | -1.328 | | 740335.4363 | 1015949.63 | 23.682 | -1.304 | | 740335.5874
740335.7385 | 1015945.285
1015940.94 | 23.468
23.284 | -1.359
-1.284 | | 740335.8897 | 1015936.594 | 23.406 | -1.232 | | 740336.0408 | 1015932.25 | 23,468 | -1.311 | | 740336.1919 | 1015927.905
1015923.559 | 23.682
23.742 | -1.293
-1.352 | | 740336.3431
740336.4942 | 1015919.214 | 23.652 | -1.315 | | 740336.6453 | 1015914.868 | 23.04 | -1.357 | | 740336.9476 | 1015906.179 | 22.828 | -1.418
-1.302 | | 740337.0987
740337.2498 | 1015901.833
1015897.488 | 22.736
22.706 | -1.401 | | 740337.401 | 1015893.143 | 22,766 | -1.493 | | 740337.5521 | 1015888.797 | 22.552 | -1.442 | | 740337.7032
740337.8544 | 1015884.452
1015880.108 | 22.4
22.736 | -1.299
-1.273 | | 740338.0055 | 1015875.762 | 22.766 | -1.341 | | 740338.1566 | 1015871.417 | 22.888 | -1.359 | | 740338.3078
740338.4589 | 1015867.071
1015862.726 | 22.766
22.552 | -1.381
-1.352 | | 740338.61 | 1015858.381 | 22.522 | -1.249 | | 740338.7611 | 1015854.036 | 22.126 | -1.255 | | 740338.9123 | 1015849.691 | 21.882 | -1.322
-1.337 | | 740339.0634
740339.2289 | 1015845.346
1015840.586 | 21.942
21.882 | -1.337 | | 740339.3945 | 1015835.827 | 22.004 | -1.13 | | 740339.56 | 1015831.068 | 21.882 | -1.198 | | 740339.7255
740339.891 | 1015826.309
1015821.55 | 21.942
21.942 | -1.334
-1.508 | | 740340.0565 | 1015816.792 | 22.126 | -1.357 | | 740340.2221 | 1015812.033 | 22.37 | -1.142 | | 740340.3876
740340.5531 | 1015807.274
1015802.514 | 22.614
22.766 | -1.199
-1.324 | | 740340.7186 | 1015797.755 | 22.674 | -1.324 | | 740340.8842 | 1015792,996 | 22,766 | -1.282 | | 740341.0497 | 1015788.237
1015783.478 | 22.796
22.736 | -1.293
-1.335 | | 740341.2152
740341.3807 | 1015783.478 | 22.796 | -1.33 | | 740341.5463 | 1015773.96 | 23.316 | -1.387 | | 740341.7118 | 1015769.202 | 23.284 | -1.265 | | 740341.8773
740342.0428 | 1015764.442
1015759.683 | 23.316
23.284 | -1.326
-1.341 | | 740342.2083 | 1015754.924 | 23.224 | -1.431 | | 740342.3739 | 1015750.165 | 22.98 | -1.433 | | 740342.5394
740342.6905 | 1015745.406
1015741.061 | 22.828
22.552 | -1.306
-1.367 | | 740342.8417 | 1015736.715 | 22.796 | -1.363 | | 740342.9928 | 1015732.371 | 22.674 | -1.335 | | 740343.1439 | 1015728.025
1015723.68 | 22.796
22.796 | -1.124
-1.282 | | 740343.295
740343.4462 | 1015719.335 | 22.644 | -1.166 | | 740343.5973 | 1015714.989 | 22.614 | -1.282 | | 740343.7485 | 1015710.644 | 22.918
22.706 | -1.332
-1.326 | | 740343.8996
740344.0507 | 1015706.3
1015701.954 | 22.492 | -1.26 | | 740344,2018 | 1015697.609 | 22.46 | -1.221 | | 740344.353 | 1015693.263 | 22.522 | -1.286
-1.236 | | 740344.5041
740344.6552 | 1015688.918
1015684.573 | 22.674
22.338 | -1.361 | | 740344.9575 | 1015675.883 | 22.492 | -1 319 | | 740345.1086 | 1015671.538 |
22.614 | -1.387 | | 740345.2597
740345.4109 | 1015667 192
1015662.847 | 22.766
22.766 | -1.306
-1.291 | | 740345.562 | 1015658.502 | 22.796 | -1.135 | | 740345.7131 | 1015654.157 | 22.98 | -1.076
-1.107 | | 740345.8643
740346.0154 | 1015649.812
1015645.466 | 23.072
23.072 | -1.107
-1.299 | | LINE 160 | | | | | 740366.0033 | 1015646.162 | 23.864 | -1.232 | | 740365.8585
740365.7137 | 1015650.326
1015654.49 | 23.834
23.59 | -1.238
-1.255 | | 740365.5688 | 1015658.654 | 23.59 | -1.242 | | 740365.424 | 1015662.819 | 23.346 | -1 225 | | 740365.2792
740364.9895 | 1015666.982
1015675.311 | 22.95
22.522 | -1.356
-1.245 | | 740364.8447 | 1015679,474 | 22.338 | -1.214 | | 740364.6998 | 1015683.639 | 22.308 | -1 291 | | 740364.555 | 1015687.803
1015691.967 | 22.522
22.584 | -1.321
-1.141 | | 740364.4102
740364.2653 | 1015696.131 | 22.46 | -1.234 | | 740364.1205 | 1015700.296 | 22.248 | -1.348 | | 740363.9757 | 1015704.459 | 22.186
22.156 | -1.425
-1.477 | | 740363.8308
740363.5412 | 1015708.624
1015716.952 | 22.150 | -1.477 | | 740363.3963 | 1015721.116 | 22.522 | -1.644 | | 740363.2515 | 1015725.281 | 22.736 | -1 517 | | 740363.1067
740362.9618 | 1015729.444
1015733.609 | 22.766
22.95 | -1 335
-1,374 | | 740362.9616 | 1015737.773 | 22.584 | -1.464 | | 740362.5273 | 1015746.101 | 22.522 | -1.515 | | 740362.3762
740362.225 | 1015750 447
1015754 792 | 22.614
22.492 | -1.449
-1.361 | | 740362.223 | 1015759 136 | 22.278 | -1.326 | | 740361.9228 | 1015763 482 | 22 46 | -1 427 | | | | | | | | SEDA EBS | Sites | | |----------------------------|----------------------------|------------------|------------------| | | | Quadrature | In-Phase | | Easting | Northing | Response | Response | | 740361.7717 | 1015767.827 | 22.492 | -1.477 | | 740361.4694
740361.3183 | 1015776.518
1015780.863 | 22.034
21.606 | -1.574
-1.471 | | 740361.1672 | 1015785.208 | 21.576 | -1.433 | | 740361.016 | 1015789.553 | 21.546 | -1.442 | | 740360.8649 | 1015793.898 | 21.332
21.546 | -1.488
-1.495 | | 740360.7137
740360.5626 | 1015798.244
1015802.589 | 21.606 | -1.495 | | 740360.1092 | 1015815.624 | 21.606 | -1.565 | | 740359.9581 | 1015819.969 | 21.576 | -1.537 | | 740359.807
740359.6558 | 1015824.315
1015828.66 | 21.76
21.85 | -1.447
-1.585 | | 740359.5047 | 1015833.006 | 22.004 | -1.576 | | 740359.3536 | 1015837 35 | 22.004 | -1.479 | | 740359.0513
740358.9002 | 1015846.041
1015850.386 | 21.942
22.4 | -1.482
-1.622 | | 740358.749 | 1015854.731 | 22.644 | -1.519 | | 740358.5979 | 1015859.076 | 22.736 | -1. 46 8 | | 740358.4468 | 1015863.421
1015867.767 | 22.584
22.37 | -1.447
-1.526 | | 740358.2957
740358.1445 | 1015872.112 | 22.4 | -1.525 | | 740357.9934 | 1015876.457 | 22.644 | -1.578 | | 740357.8423 | 1015880.803 | 22.552 | -1.526
-1.552 | | 740357.6912
740357.54 | 1015885.147
1015889.492 | 22.552
22.614 | -1.515 | | 740357.3889 | 1015893.838 | 22.644 | -1.504 | | 740357.2378 | 1015898.183 | 22.614 | -1.631 | | 740357.0866
740356.9355 | 1015902.529
1015906.874 | 22.522
22.492 | -1.732
-2.127 | | 740356,7844 | 1015911.218 | 22.584 | -1.719 | | 740356.6332 | 1015915.564 | 22.674 | -1.565 | | 740356.4821 | 1015919.909
1015924.254 | 22.736
22.828 | -1.69
-1.673 | | 740356.331
740356.1798 | 1015924.254 | 22.736 | -1.495 | | 740355.8776 | 1015937.29 | 22,492 | -1.572 | | 740355.7265 | 1015941.635 | 22.278 | -1.526 | | 740355.5753
740355.4242 | 1015945.98
1015950.326 | 22.584
22.918 | -1.598
-1.558 | | 740355.2731 | 1015954.671 | 22.828 | -1.561 | | 740355.1219 | 1015959.015 | 22.706 | -1.565 | | 740354.9708
740354.8197 | 1015963.361
1015967.706 | 22.736
22.4 | -1.598
-1.532 | | 740354.6685 | 1015972.052 | 22.338 | -1.572 | | 740354.5174 | 1015976.397 | 22.278 | -1.591 | | 740354.3663 | 1015980.742
1015985.087 | 22.37
22.644 | -1.534
-1.521 | | 740354.2152
740354.064 | 1015989.432 | 22.46 | -1.605 | | 740353.6106 | 1016002.468 | 22.674 | -1.486 | | 740353.4595
740353.3084 | 1016006.814
1016011.158 | 22.736
22.828 | -1.482
-1.517 | | 740353.3064 | 1016015.503 | 22.796 | -1.42 | | 740353.0061 | 1016019.849 | 22.796 | -1.344 | | 740352.855 | 1016024.194
1016028.539 | 22.706
22.858 | -1.501
-1.471 | | 740352.7038
740352.5527 | 1016032.885 | 22.828 | -1.381 | | 740352.4016 | 1016037.229 | 22.98 | -1.328 | | 740352.2505 | 1016041.574
1016045.92 | 22.918
23.498 | -1.416
-1.3 | | 740352.0993
LINE 180 | 1010045.92 | 23.430 | | | 740372.0872 | 1016046 615 | 25.208 | -1.229 | | 740372.2384 | 1016042.27
1016037.924 | 24.872 | -1.258
-1.245 | | 740372.3895
740372.5406 | 1016037.924 | 24.108
23.62 | -1.405 | | 740372.6918 | 1016029.235 | 23.56 | -1.447 | | 740372.8429 | 1016024.889 | 23.254 | -1.387 | | 740372.994
740373.1452 | 1016020.544
1016016.198 | 22.828
22.552 | -1.396
-1.462 | | 740373.2963 | 1016011.853 | 22.37 | -1.556 | | 740373.4474 | 1016007.509 | 22.126 | -1.664 | | 740373.5985
740373.9008 | 1016003.163
1015994.473 | 22.308
22.248 | -1.591
-1.519 | | 740373.9008 | 1015990.127 | 22.43 | -1.442 | | 740374 2031 | 1015985.782 | 22.46 | -1.493 | | 740374 3542
740374 5053 | 1015981.437
1015977.092 | 22.43
22.37 | -1 653
-1.624 | | 740374.6565 | 1015972.747 | 22.278 | -1.528 | | 740374.8076 | 1015968.401 | 22.492 | -1.556 | | 740374 9587 | 1015964.056
1015959.711 | 22.43
22.584 | -1 471
-1.615 | | 740375.1099
740375.261 | 1015955.366 | 22.796 | -1.701 | | 740375.4121 | 1015951.021 | 22,644 | -1.694 | | 740375.5632 | 1015946.675 | 22.614 | -1.741
-1.701 | | 740375 7081
740375 8529 | 1015942.511
1015938.348 | 22.552
22.522 | -1.697 | | 740375 9977 | 1015934 183 | 22.278 | -1.692 | | 740376.1426 | 1015930.019
1015925.855 | 22.248
22.46 | -1.688
-1.714 | | 740376.2874
740376.4322 | 1015925.855 | 22.338 | -1.683 | | 740376 5771 | 1015917 526 | 22.46 | -1.548 | | 740376 7219 | 1015913 363 | 22.248 | -1.635
-1.528 | | 740376.8667
740377 0116 | 1015909 198
1015905 034 | 22.216
22.186 | -1.528
-1.488 | | 740377 1564 | 1015900 87 | 22.126 | -1.582 | | 740377 1564
740377 3012 | 1015896.706 | 22.308 | -1 635 | | 740377 4461
740377 5909 | 1015892.541
1015888.378 | 22.522
22.552 | -1 644
-1.62 | | 740377.7357 | 1015884 213 | 22,156 | -1.73 | | 740377 8806 | 1015880 049 | 22.216 | -1.716 | | 740378.0254
740378.1702 | 1015875.885
1015871.721 | 22.46
22.584 | -1.679
-1.683 | | 740378.1702 | 1015867 556 | 22 492 | -1 633 | | 740378.4599 | 1015863 393 | 22 644 | -1 681 | | | | | | | | SEDA EDS SILES | | | | | |----------------------------|----------------------------|------------------|------------------------------|--|--| | | | Quadrature | in-Phase | | | | Easting | Northing | Response | Response | | | | 740378.6047 | 1015859.228 | 22.522
22.216 | -1.712
-1.64 | | | | 740378.7496
740379.0392 | 1015855.064
1015846.736 | 22.004 | -1.602 | | | | 740379.0392 | 1015842.391 | 22.248 | -1.618 | | | | 740379.3415 | 1015838.045 | 22.338 | -1.616 | | | | 740379.4926 | 1015833.701 | 22.492 | -1.776 | | | | 740379.6437 | 1015829.355 | 22.156
22.278 | -1.675 | | | | 740379,7949
740379,946 | 1015825.01
1015820.665 | 22.278 | -1,648
-1,666 | | | | 740379.940 | 1015816.319 | 22.004 | -1.596 | | | | 740380.2483 | 1015811.974 | 22.216 | -1.554 | | | | 740380.3994 | 1015807.63 | 22.216 | -1.62 | | | | 740380.5505 | 1015803.284 | 22.186 | -1.622 | | | | 740380.7017 | 1015798.939
1015794.593 | 22.216
22.308 | -1.644
-1.624 | | | | 740380.8528
740381.0039 | 1015790.248 | 22.46 | -1.583 | | | | 740381.1551 | 1015785.903 | 22.614 | -1.931 | | | | 740381.3062 | 1015781.558 | 22.614 | -1.907 | | | | 740381.4573 | 1015777.213 | 22.46 | -1.69 | | | | 740381.6084 | 1015772.868
1015768.522 | 22.552
22.706 | -1.62 9
-1.708 | | | | 740381.7596
740381.9107 | 1015764.177 | 23.01 | -1.629 | | | | 740382.0619 | 1015759.831 | 23.376 | -1.596 | | | | 740382.213 | 1015755.487 | 23.162 | -1.668 | | | | 740382.3641 | 1015751.142 | 23.102 | -1.673 | | | | 740382.5152 | 1015746.796
1015742.254 | 23.132
22.95 | -1.657
-1.56 | | | | 740382.6732
740382.8312 | 1015742.234 | 22.736 | -1.554 | | | | 740382.9892 | 1015733.169 | 22.888 | -1.679 | | | | 740383.1472 | 1015728.625 | 22.796 | -1.646 | | | | 740383.3052 | 1015724.083 | 22.706 | -1.694
-1.653 | | | | 740383.4632 | 1015719.54
1015714.998 | 22.552
22.584 | -1.653
-1.705 | | | | 740383.6212
740383.7792 | 1015714.996 | 22.308 | -1.657 | | | | 740383.7792 | 1015705.912 | 22.004 | -1.547 | | | | 740384.0952 | 1015701.369 | 22,156 | -1.572 | | | | 740384.2532 | 1015696.827 | 22.278 | -1.572 | | | | 740384.4112 | 1015692.284 | 21.912 | -1.738
-1.683 | | | | 740384.5692
740384.7272 | 1015687.741
1015683.199 | 21.576
21.668 | -1.552 | | | | 740384.8852 | 1015678.656 | 21.85 | -1.436 | | | | 740385.0432 | 1015674.113 | 22.064 | -1.512 | | | | 740385.2012 | 1015669.57 | 22.216 | -1.534 | | | | 740385.3592 | 1015665.028 | 22.308
22.4 | -1.519
-1.563 | | | | 740385.5172
740385.6752 | 1015660.485
1015655.942 | 22.216 | -1,451 | | | | 740385.8332 | 1015651.399 | 22.064 | -1.464 | | | | 740385.9912 | 1015646.857 | 22.46 | -1.534 | | | | LINE 200 | | | 4.500 | | | | 740405.9791 | 1015647.552
1015651.55 | 22.796
22.828 | -1.532
-1.526 | | | | 740405.8401
740405.7011 | 1015655.547 | 22.674 | -1.582 | | | | 740405.562 | 1015659.545 | 22.706 | -1.501 | | | | 740405.423 | 1015663.542 | 22.552 | -1.398 | | | | 740405.2839 | 1015667.54 | 22.186 | -1.368 | | | | 740405.1449 | 1015671.537
1015675.535 | 21.79
21.882 | -1,486
-1,536 | | | | 740405.0059 | | | -1.447 | | | | 740404.8668 | 1015679.533 | 22.094
21.942 | | | | | 740404.7278 | 1015683.53 | | -1.442 | | | |
740404.5887 | 1015687.528 | 21.942 | -1 532 | | | | 740404.4497 | 1015691.525 | 21.972 | -1.526 | | | | 740404.3107 | 1015695.523 | 21.728 | -1.503 | | | | 740404.1716 | 1015699.521 | 21.79 | -1 541 | | | | 740404.0326 | 1015703.518 | 21.76 | -1 488 | | | | 740403.7545 | 1015711.513 | 21.912 | -1.602 | | | | 740403.6155 | 1015715.511 | 21.912 | -1.651 | | | | 740403 4764 | 1015719.508 | 21.882 | -1 585 | | | | 740403.3374 | 1015723.506 | 21.912 | -1.639 | | | | 740403.1983 | 1015727.504 | 22.004 | -1.692 | | | | 740403.0593 | 1015731.501 | 21.972 | -1.64 | | | | 740402.9203 | 1015735.499 | 22.064 | -1.523 | | | | | 1015739.496 | 22.094 | -1 582 | | | | 740402.7812 | 1015743.494 | 21.942 | -1.627 | | | | 740402.6422 | | | | | | | 740402.5031 | 1015747.492 | 22.064 | -1.626 | | | | 740402.3583 | 1015751.656 | 22.338 | -1.675 | | | | 740402.2135 | 1015755.82 | 22.552 | -1.521 | | | | 740402.0686 | 1015759.984 | 22.584 | -1.574 | | | | 740401 9238 | 1015764 148 | 22.644 | -1 515 | | | | 740401.6341 | 1015772.476 | 22.156 | -1 642 | | | | 740401 4893 | 1015776.641 | 21.882 | -1.6 | | | | 740401.3445 | 1015780.804 | 22.156 | -1.537 | | | | 740401.1996 | 1015784 969 | 22 46 | -1.616 | | | | 740401.0548 | 1015789 133 | 22.43 | -1.743 | | | | 740400.91 | 1015793.297 | 22.308 | -1.642 | | | | 740400 7651 | 1015797 461 | 21 85 | -1.723 | | | | 740400 6203 | 1015801.626 | 22.034 | -1 729 | | | | 740400 6203 | 1015805.789 | 22.278 | -1.78 | | | | | 1015809 954 | 22.278 | -1 721 | | | | 740400.3306 | | 22.306 | -1 721
-1 585 | | | | 740400.1858 | 1015814.118 | | | | | | 740400 041 | 1015818.282 | 21 79 | | | | | 740399 8961 | 1015822 446 | 21 698 | -1 605 | | | | | | | | | | Site: SEAD-123F SEDA EBS Sites | | | Quadrature | In-Phase | |-----------|------------|--------------|----------| | Easting | Northin | g Response | Response | | 740399.75 | 101582 | 5.611 21.698 | -1.646 | | 740399.46 | 101583 | 4.939 21.728 | -1.732 | | 740399.31 | 68 1015839 | 9.103 21.606 | -1.591 | | 740399.1 | 72 1015843 | 3.267 21.514 | -1.593 | | 740399.02 | 71 101584 | 7.431 21.636 | -1.596 | | 740398.8 | 76 101585 | 1.777 21.79 | -1.558 | | 740398.72 | 49 101585 | 5.122 21.728 | -1.583 | | 740398.57 | 38 101586 | 0.466 21.882 | -1.681 | | 740398.42 | 26 101586 | 4.812 21.942 | -1.604 | | 740398.27 | 15 1015869 | 9.157 21.76 | -1.536 | | 740398.12 | 04 101587 | 3.502 21.728 | -1.539 | | 740397.96 | 92 101587 | 7.848 21.698 | -1.46 | | 740397.81 | 81 101588 | 2.193 21.576 | -1.547 | | 740397.6 | 67 101588 | 5.537 21.606 | -1.633 | | 740397.21 | 36 1015899 | 9.574 21.82 | -1.604 | | 740397.06 | 24 101590 | 3.919 21.942 | -1.683 | | 740396.91 | 13 101590 | 8.264 21.85 | -1.734 | | 740396.76 | 02 101591 | 2.609 21.302 | -1.556 | | 740396.60 | 91 101591 | 5.954 21.302 | -1.481 | | 740396.45 | 79 101592 | 1.299 21.392 | -1.637 | | 740396.30 | 68 101592 | 5.645 21.454 | -1.653 | | 740396.15 | 57 101593 | 29.99 21.606 | -1.462 | | 740396.00 | 45 101593 | 4.336 21.79 | -1.56 | | 740395.85 | 34 101593 | 38.68 21.82 | -1.582 | | 740395.70 | 23 101594 | 3.025 21.79 | -1.57 | | 740395.55 | | 7.371 21.668 | -1.556 | | 740395.40 | | 1,535 21.636 | -1.605 | | 740395.26 | | 5.699 21.76 | -1.526 | | 740394.97 | | 4.028 21.85 | -1.576 | | 740394.8 | | 3.191 21.972 | -1.58 | | 740394.68 | | 2.356 21.942 | -1,526 | | 740394.53 | | | -1.611 | | 740394.39 | | | -1.653 | | 740394.24 | | 4.848 21.79 | -1.539 | | 740394.10 | | 9.013 21.76 | -1.547 | | 740393.9 | | 3.176 21.698 | -1.598 | | 740393.66 | | 1.505 21.698 | -1.648 | | 740393.52 | | | -1.589 | | 740393.37 | | 9.833 21.912 | -1.582 | | 740393.23 | | 3.997 22.034 | -1.532 | | 740393.0 | | | -1.602 | | 740392.94 | | 2.325 22.766 | -1.585 | | 740392.79 | | | -1.462 | | 740392.65 | | | -1.491 | | 740392.50 | | | -1.396 | | 740392.36 | | | -1.188 | | 740392 | | | -1.12 | | | | | | # APPENDIX E. Chemical Analyses Data Qualifiers and QC Samples ### **Laboratory Qualifiers for Chemical Data** ### (not all qualifiers apply) # Organics Qualifiers (GC/HPLC) - U Indicates compound was analyzed for but not detected above the reporting limits - J Indicates an estimated value. This flag is used when the result is less than he reporting limit, but greater than or equal to one half the reporting limit. - P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 25.0% difference for detected concentrations between the two analytical columns. The lower of the two values is reported on the Form I and flagged with a P. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag applies when the analyte is found in the associated method blank as well as in the sample. It indicates a possible/probable blank contamination and warns the data user to take appropriate action. On the samples get a B flag. The method blank does not. - D This flag identifies all compounds identified in an analysis at a secondary dilution factor. This flag alerts the data users that any discrepancies between the concentrations reported for the dilutions may be due to dilution of the sample extract. It additionally indicates that spike recoveries may have been diluted below quantifiable levels. - E This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of calibration range, the extract shall be diluted and re-analyzed. - Y Laboratory-defined flag for semivolatile reporting. Qantitation of benzo(b/k)fluoranthene is based on the combined instrument response of the unresolved isomer peaks. The combined response has been quantified as benzo(b)fluoranthene. - Z The reported result is based on the combined response from coeluting compounds. ### Organics Qualifiers (GC/HPLC) - A The reported Tentatively Identified Compound (TIC) is a suspected aldol-condensate product. - B The reported analyte was detected in the associated method blank as well as the sample. - D Compound is identified in an analysis which occurred at a dilution. - E Compound quantitation is above the instrument's calibration range for this analysis. - J Indicates an estimated quantitation value below reporting limit. - U Compound was analyzed for but not detected. - X The reported compound is a suspected laboratory contaminant. - Z The reported results is based on the combined responses from coeluting compounds. ### Metals Qualifiers - U Entered if the analyte was analyzed for but not detected. - N Matrix spike sample recovery not within control limits. - B Entered if the reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL). - E (ICP) The reported value is estimated because of the presence of interference. - * Duplicate analysis not within the control limits. - M Duplicate injection precision not met. - S The reported value was determined by the Method of Standard Additions. - W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample concentration is less than 50% of spike concentration. - I Correlation coefficient for the MSA is less than 0.995. ### SENECA EBS QC SAMPLES VOLATILES | | | | *** | E TILLO | | |--|------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------| | SITE:
LOC ID:
SAMP ID:
QC CODE: | | EBS-SITE
SITE
EB003
TB | EBS-SITE
SITE
EB019
TB | SEAD-123B
SS123B-1
EB017
RB | SEAD-123D
TP123D-1
EB002
RB | | | | | | | | | SAMP. DETH TOP: | | 0 | 0 | 0 | 0 | | SAMP. DEPTH BOT: | | 0 | 0 | 0 | 0 | | MATRIX: | | GROUNDW | GROUNDW | GROUNDW | GROUNDW | | SAMP. DATE: | | 2-Mar-98 | 2-Mar-98 | 9-Mar-98 | 5-Mar-98 | | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | | 1,1,1-Trichloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,1,2,2-Tetrachloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,1,2-Trichloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,1-Dichloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,1-Dichloroethene | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,2-Dichloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,2-Dichloroethene (total) | UG/L | 10 U | 10 U | 10 U | 10 U | | 1,2-Dichloropropane | UG/L | 10 U | 10 U | 10 U | 10 U | | Acetone | UG/L | 10 U | 10 U | 10 U | 10 U | | Benzene | UG/L | 10 U | 10 U | 10 U | 10 U | | Bromodichloromethane | UG/L | 10 U | 10 U | 10 U | 10 U | | Bromoform | UG/L | 10 U | 10 U | 10 U | 10 U | | Carbon disulfide | UG/L | 10 U | 10 U | 10 U | 10 U | | Carbon tetrachloride | UG/L | 10 U | 10 U | 10 U | 10 U | | Chlorobenzene | UG/L | 10 U | 10 U | 10 U | 10 U | | Chlorodibromomethane | UG/L | 10 U | 10 U | 10 U | 10 U | | Chloroethane | UG/L | 10 U | 10 U | 10 U | 10 U | | Chloroform | UG/L | 10 U | 10 U | 10 U | 10 U | | Cis-1,3-Dichloropropene | UG/L | 10 U | 10 U | 10 U | 10 U | | Ethyl benzene | UG/L | 10 U | 10 U | 10 U | 10 U | | Methyl bromide | UG/L | 10 U | 10 U | 10 U | 10 U | | Methyl butyl ketone | UG/L | 10 U | 10 U | 10 U | 10 U | | Methyl chloride | UG/L | 10 U | 10 U | 10 U | 10 U | | Methyl ethyl ketone | UG/L | 10 U | 10 U | 10 U | 10 U | | Methyl isobutyl ketone | UG/L | 10 U | 10 U | 10 U | 10 U | | Methylene chloride | UG/L | 10 U | 10 U | 10 U | 10 U | | Styrene | UG/L | 10 U | 10 U | 10 U | 10 U | | Tetrachloroethene | UG/L | 10 U | 10 U | 10 U | 10 U | | Toluene | UG/L | 10 U | 10 U | 10 U | 10 U | | | UG/L | 10 U | 10 U | 10 U | 10 U | | Total Xylenes | | 10 U | 10 U | 10 U | 10 U | | Trans-1,3-Dichloropropene | UG/L | 10 U | 10 U | 10 U | 10 U | | Trichloroethene | UG/L | | | | | | Vinyl chloride | UG/L | 10 U | 10 U | 10 U | 10 U | #### SENECA EBS QC SAMPLES SEMIVOLATILES | SITE. | | | | EBS-SITE | SEAD- | 122E | SEAD-122 | E | SEAD-122 | SEAD-1238 | | SEAD-123 | D |
---|--------------|--------------|--------------------|-------------|-------|--------------|-----------|--------------|-------------------|-----------------------------------|----------------|--------------------|------------| | PERCENTION | | | | | Deici | ing Planes | Deicing P | Planes | Deicing
Planes | Bidg. 716 a
Patroles
Releas | ım | Area We
Bldg. 7 | | | DESCRIPTION
LOC ID. | | | | SITE | MW12 | 2E-1 | MW122E-1 | 1 | SB122E-1 | SS123B-1 | | TP123D-1 | | | SAMP ID: | | | | EB006 | EB010 |) | EB122 | | EB004 | EB017 | | EB002 | | | QC CODE: | | | | TB 0 | RB | 0 | SA | 4.1 | RB
0 | RB | 0 | RB | 0 | | SAMP DETH TOP:
SAMP, DEPTH BOT: | | | | 0 | | 0 | | 4.1
8.8 | 0 | | 0 | | 0 | | MATRIX: | | | | GROUNDWATER | GROU | NDWATER | GROUNDV | | GROUND | GROUNDW | | GRQUNDV | | | SAMP. DATE | | | | 2-Mar-98 | | 8-Mar-98 | 8- | Mar-98 | 6-Mar-98 | 9-1 | Mar-98 | 5- | -Mar-98 | | PARAMETER | UNIT | NYS CLASS GA | DRINKING WATER | VALUE C | VALUE | | VALUE | Q | VALUE Q | VALUE | Q | VALUE | Q | | 1,2,4-Trichlorobenzene | UG/L | 5 | 194.60 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 1,2-Dichlorobenzene | UG/L | 4.7 | 268.16 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 1,3-Dichlorobenzene 1.4-Dichlorobenzene | UG/L
UG/L | 5
4.7 | 3248.50
2.80 | | | 1 U | | 1 U | | | 1 U | | 1 U
1 U | | 2,4,5-Trichlorophenol | UG/L | *** | 3650.00 | | | 25 U | | 2.5 U | | | 2.6 U | | 2.6 U | | 2.4.6-Trichlorophenol | UG/L | | 0.97 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 2,4-Dichlorophenol 2,4-Dimethylphenol | UG/L
UG/L | 5 | 109.50
730.00 | | | 1 U
1 U | | 1 U
1 U | | | 1 U
1 U | | 1 U | | 2,4-Dinitrophenol | UG/L | 5 | 73.00 | | | 2.5 U | | 2.5 U | | | 2.6 U | | 2.6 U | | 2,4-Dinitrotoluene | UG/L | 5 | 73.00 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 2,6-Dinitrotoluene | UG/L | 5 | 36.50 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 2-Chloronaphthalene | UG/L | | 100.50 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 2-Chlorophenol 2-Methylnaphthalene | UG/L
UG/L | | 182.50 | | | 1 U
1 U | | 1 U
1 U | | | 1 U
1 U | | 1 U
1 U | | 2-Methylphenol | UG/L | 5 | | | | 1 U | | 1 U | | | 1 U | | 1 U | | 2-Nitroaniline | UG/L | _ | 0.35 | | | 2.5 ∪ | | 2.5 U | | | 2.6 U | | 2.6 U | | 2-Nitrophenol | UG/L | | | | | 1 U | | 1 U | | | 1 U | | 1 U | | 3,3'-Dichlorobenzidine 3-Nitroantine | UG/L
UG/L | | 109.50 | | | 2.5 U | | 2.5 U | | | 2.6 U | | 2.6 U | | 4,6-Dinitro-2-methylphenol | UG/L | 5 | 100.00 | | | 2.5 U | | 2.5 U | | | 2.6 U | | 2.6 U | | 4-Bromophenyl phenyl ether | UG/L | | 2117.00 | | | 1 U | | 1 U | | | 1 U | | 1 U | | 4-Chloro-3-methylphenol | UG/L | | 440.00 | | | 1 0 | | 1 U | | | 1 U | | 1 U | | 4-Chloroaniline 4-Chlorophenyl phenyl ether | UG/L
UG/L | 5 | 146.00 | | | 1 U
1 U | | 1 0 | | | 1 U | | 1 U | | 4-Methylphenol | UG/L | 5 | | | | 1 U | | 1 U | | | 1 U | | 1 U | | 4-Nitrosniline | UG/L | 5 | 109.50 | | | 2.5 U | | 2.5 U | | | 2.6 U | | 2.6 U | | 4-Nitrophenol | UG/L | | 2190.00 | | | 2.5 U | | 2.5 U | | | 2.6 U | | 2.6 U | | Acenaphthene
Acenaphthylene | UG/L
UG/L | | | | | 1 U
1 U | | 1 0 | | | 1 U | | 1 U | | Anthracene | UG/L | | 10950.00 | | | 1 0 | | 1 U | | | 1 U | | 1 U | | Benzo(a)anthracene | UG/L | | | | | 1 U | | 1 U | | | 1 U | | 1 U | | Benzo[a]pyrene | UG/L
UG/L | 10 | 0.00
0.02 | | | 1 U
1 U | | 1 0 | | | 1 U
1 U | | 1 U
1 U | | Benzo[b]fluoranthene
Benzo[gh]perylene | UG/L | | 0.02 | | | 1 U | | 1 0 | | | 1 U | | 1 0 | | Benzo[k]fluoranthene | UG/L | | 0.17 | | | 1 U | | 1 U | | | 1 U | | 1 U | | Bis(2-Chloroethoxy)methane | UG/L | | | | | 1 U | | 1 U | | | 1 U | | 1 U | | Bis (2-Chloroethyl) ether | UG/L
UG/L | | 0.01
0.26 | | | 1 U
1 U | | 1 U
1 U | | | 1 U
1 U | | 1 U | | Bis(2-Chloroisopropyl)ether
Bis(2-Ethylhexyl)phthalate | UG/L | 50 | 0.26 | | | 1 U | | 1.2 B | | | 0.31 J | | 1 0 | | Butylbenzylphthalate | UG/L | | 7300.00 | | | 1 U | | 1 U | | | 0.13 JB | | 1 U | | Carbazole | UG/L | | 3.36 | | | 1 0 | | 1 U | | | 1 U | | 1 U | | Chrysene
Di-n-butylphthalate | UG/L
UG/L | 50 | 1.68 | | | 1 U | | 1 U | | | 1 U
0.068 J | | 1 U | | Di-n-octylphthalate | UG/L | 30 | 730.00 | | | 1 U | | 1 U | | | 1 U | | 1 U | | Dibenz(a,h)anthracene | UG/L | | | | | 1 U | | 1 U | | | 1 U | | 1 U | | Dibenzofuran | UG/L
UG/L | | 146.00
29200.00 | | | 1 U
1 U | | 1 U
1 U | | | 1 U
0.28 J | | 1 U
1 U | | Diethyl phthalate
Dimethylphthalate | UG/L | | 365000.00 | | | 1 U | | 1 U | | | 1 U | | 1 U | | Ethylene Glycol | MG/L | | 73000.00 | 50 U | J | 50 U | | 50 U | 50 U | | | | | | Fluoranthene | UG/L | | 1460.00 | | | 1 U | | 1 U | | | 1 0 | | 1 U | | Fluorene
Hexachlorobenzene | UG/L
UG/L | 0.35 | 1460.00 | | | 1 U | | 1 U | | | 1 0 | | 10 | | Hexachlorobutadiene | UG/L | 0.33 | 0.14 | | | 1 0 | | 1 U | | | 1 U | | 1 U | | Hexachlorocyclopentadiene | UG/L | | 0.15 | | | 1 U | | 1 U | | | 1 U | | 1 U | | Hexachloroethene | UG/L | | 0.75 | | | 1 U | | 1 U | | | 1 U
1 U | | 1 U
1 U | | Indeno[1,2,3-cd]pyrene
Isophorone | UG/L
UG/L | | 0,02 | | | 1 U
1 U | | 1 U | | | 1 U | | 1 0 | | N-Nitrosodiphenylamine | UG/L | | 13.72 | | | 1 U | | 1 U | | | 1 U | | 1 U | | N-Nitrosodipropylamine | UG/L | | | | | 1 U | | 1 U | | | 1 U | | 1 U | | Naphthalene | UG/L | | 1460.00 | | | 1 U
1 U | | 1 U
1 U | | | 1 U
1 U | | 1 U
1 U | | Nitrobenzene
Pentschlorophenol | UG/L
UG/L | 1 | 3.39
0.56 | | | 1 U
2.5 U | | 1 U
2.5 U | | | 2.6 U | | 2.6 U | | Phenanthrene | UG/L | ' | 0.50 | | | 1 U | | 1 U | | | 1 U | | 1 U | | Phenol | UG/L | 1 | 21900.00 | _ | | 1 U | | 1 U | | | 1 U | | 1 U | | Propylene Glycol | MG/L
UG/L | | 1095.00 | 50 L | J | 50 U
1 U | | 50 U
1 U | 50 U | | 1 U | | 1 U | | Pyrene | UG/L | | 1095.00 | | | , 0 | | , 5 | | | , , | | , 5 | | | SENECA | |-----|------------| | EBS | QC SAMPLES | | | METALS | | SITE: | SEAD-123B | SEAD-123D | |----------|-----------|-----------| | LOC ID: | SS123B-1 | TP123D-1 | | SAMP ID: | EB018 | EB002 | | QC CODE: | RB | RB | | | | | | SAMP. DETH TOP: | Ü | 0 | |------------------|------------|-------------| | SAMP. DEPTH BOT: | 0 | 0 | | MATRIX: | GROUNDWATE | GROUNDWATER | | SAMP. DATE: | 9-Mar-98 | 5-Mar-98 | | PARAMETER | UNIT | VALUE | Q | VALUE | Q | |-----------|------|-------|--------|-------|--------| | Aluminum | UG/L | | 18.5 B | | 15.1 B | | Antimony | UG/L | | 3.5 U | | 3.5 U | | Arsenic | UG/L | | 3.6 U | | 3.6 U | | Barium | UG/L | | 4.2 U | | 4.2 U | | Beryllium | UG/L | | 0.1 U | | 0.1 U | | Cadmium | UG/L | | 0.3 U | | 0.3 U | | Calcium | UG/L | | 106 U | | 106 U | | Chromium | UG/L | | 1.1 U | | 1.1 U | | Cobalt | UG/L | | 1.7 U | | 1.7 U | | Copper | UG/L | | 2.3 U | | 2.3 U | | Cyanide | UG/L | | 5 U | | 5 U | | Iron | UG/L | | 34.7 B | | 25.8 B | | Lead | UG/L | | 2.4 B | | 1.8 U | | Magnesium | UG/L | | 127 U | | 127 U | | Manganese | UG/L | | 0.48 B | | 0.42 B | | Mercury | UG/L | | 0.1 U | | 0.1 U | | Nickel | UG/L | | 2.1 U | | 2.1 U | | Potassium | UG/L | | 220 U | | 354 B | | Selenium | UG/L | | 4.7 U | | 4.7 U | | Silver | UG/L | | 2.1 U | | 2.1 U | | Sodium | UG/L | | 607 U | | 607 U | | Thallium | UG/L | | 6.3 U | | 6.3 U | | Vanadium | UG/L | | 1.6 U | | 1.6 U | | Zinc | UG/L | | 4.6 B | | 14.2 B | | | | | | | |