U.S. ARMY ENGINEER DIVISION HUNTSVILLE, ALABAMA

FINAL

INVESTIGATION OF ENVIRONMENTAL BASELINE SURVEY NON-EVALUATED SITES SEAD-199A, SEAD-122(A,B,C,D,E), AND SEAD-123(A,B,C,D,E,F) SEAD-46, SEAD-68, AND SEAD-120(A,B,C,D,E,F,G,H,I,J) SEAD-121(A,B,C,D,E,F,G,H,I,) SENECA ARMY DEPOT ACTIVITY

CONTRACT # DACA87-95-D-0031 DELIVERY ORDER #0010

FEBRUARY 1999

Investigation of

Environmental Baseline Survey

Non-Evaluated Sites

SEAD-119 (A), SEAD-122 (A,B,C,D,E), SEAD-123 (A,B,C,D,E,F), SEAD-46, SEAD-68, SEAD-120 (A,B,C,D,E,F,G,H,I,J), and SEAD-121 (A,B,C,D,E,F,G,H,I)

at

Seneca Army Depot Activity Romulus, New York 01454

FEBRUARY, 1999

Prepared for:

Department of the Army Huntsville Division Corps of Engineers Huntsville, Alabama 35807

Prepared by:

Parsons Engineering Science, Inc. 30 Dan Road Canton, Massachusetts 02021

Table of Contents

Section		Title	Page
1.0		Introduction	1
	1.1	Seneca Army Depot Activity	1
	1.2	BRAC and Environmental Baseline Survey	1
	1.3	Technical Approach for Investigation of Non-Evaluated EBS Sites	1
	1.4	Field Investigation Methods	4
2.0		SEAD 119A - Building 2049 Sewage Spill	5
	2.1	Site Information	5
	2.2	Investigation Summary	5
3.0		SEAD 122A - Skeet/Trap Range	5
	3.1	Site Information	5
	3.2	Investigation Summary	6
4.0		SEAD 122B - Building 2302 Small Arms Range	6
	4.1	Site Information	6
	4.2	Investigation Summary	7
5.0		SEAD 122C - Near Building 2311 Conex with Unknown Contents	7
	5.1	Site Information	7
	5.2	Investigation Summary	8
6.0		SEAD 122D - Hot Pad Spill	8
	6.1	Site Information	8
	6.2	Investigation Summary	8
7.0		SEAD 122E - Deicing Planes	9
	7.1	Site Information	9
	7.2	Investigation Summary	9
8.0		SEAD 123A - Building 744 Indoor Firing Range	11

ii

	8.1	Site Information	11
	8.2	Investigation Summary	11
9.0		SEAD 123B - Building 716 and 717 Petroleum Releases	12
	9.1	Site Information	12
	9.2	Investigation Summary	12
10.0		SEAD 123C - Building 747 Hazardous Materials Spills	13
	10.1	Site Information	13
	10.2	Investigation Summary	13
11.0		SEAD 123D - Area West of Building 715	14
	11.1	Site Information	14
	11.2	Investigation Summary	14
12.0		SEAD 123E - Rumored DDT Burial at Ice Rink	16
	12.1	Site Information	16
	12.2	Investigation Summary	16
13.0		SEAD 123F - Mound North of Post 3	17
	13.1	Site Information	17
	13.2	Investigation Summary	17
14.0		SEAD 46 - Small Arms Range	18
	14.1	Site Information	18
15.0		SEAD 68 - Old Pest Control Shop (Building S-335)	19
	15.1	Site Information	19
	15.2	Investigation Summary	19
16.0		SEAD 120A - 50 Area Dumping Areas	20
	16.1	Site Information	20
	16.2	Investigation Summary	21
17.0		SEAD 120B - Ovid Road Small Arms Range	23

iii

	17.1	Site Information	23
	17.2	Investigation Summary	23
18.0		SEAD 120C - Building 813-817 Paints and Solvents Disposal Areas	24
	18.1	Site Information	24
	18.2	Investigation Summary	25
19.0		SEAD 120D - MP Refueling Island in the Q	25
	19.1	Site Information	25
	19.2	Investigation Summary	25
20.0		SEAD 120E - Near Building 2131, Possible DDT Disposal	26
	20.1	Site Information	26
	20.2	Investigation Summary	27
21.0		SEAD 120F - Munitions Burial Sites, South End of the Main Depot	28
	21.1	Site Information	28
	21.2	Investigation Summary	28
22.0		SEAD 120G - Mounds at the Duck Pond	29
	22.1	Site Information	29
	22.2	Investigation Summary	30
23.0		SEAD 120H - Building 810	31
	23.1	Site Information	31
	23.2	Investigation Summary	31
24.0		SEAD 120I - Building 819, A010 and A0102	31
	24.1	Site Information	31
	24.2	Investigation Summary	31
25.0		SEAD 120J - Farmer's Dump	32
	25.1	Site Information	32
	25.2	Investigation Summary	32

26.0		SEAD 121A - USCG Halon Discharge	33
	26.1	Site Information	33
27.0		SEAD 121B - Building 325 PCB Oil Spill	34
	27.1	Site Information	34
	27.2	Investigation Summary	34
28.0		SEAD 121C - DRMO Yard	35
	28.1	Site Information	35
	28.2	Investigation Summary	36
29.0		SEAD 121D - Building 306 and 308 Hazardous Materials Release	38
	29.1	Site Information	38
	29.2	Investigation Summary	38
30.0		SEAD 121E - Building 127 UST Petroleium Release	40
	30.1	Site Information	40
	30.2	Investigation Summary	40
31.0		SEAD 121F - Building 135 Stained Soil	42
	31.1	Site Information	42
	31.2	Investigation Summary	42
32.0		SEAD 121G - Rumored Coal Ash Disposal Area	43
	32.1	Site Information	43
	32.2	Investigation Summary	43
33.0		SEAD 121H - Rumored Coal Disposal Area	46
	33.1	Site Information	46
	33.2	Investigation Summary	46
34.0		SEAD 121I - Rumored Cosmoline Oil Disposal Areas	47
	34.1	Site Information	47
	34.2	Investigation Summary	47

References 49

List of Tables

(Tables are included at the end of the text)

<u>Title</u>
Non-Evaluated EBS Sites (in body of text)
Sample Collection Information, SEAD-122A - Skeet/Trap Range
122A - Lead in Soil vs TAGMs
122A - Lead in Soil vs PRG-REC
Sample Collection Information, SEAD-122B - Building 2302 Small Arms Range
122B - Metals in Soil vs TAGMs
122B - Metals in Soil vs PRG-REC
Sample Collection Information, SEAD-122D - Hot Pad Spill
122D - Volatiles in Soil vs TAGMs
122D - Volatiles in Soil vs PRG-REC
122D - Semivolatiles and TPH in Soil vs TAGMs
122D - Semivolatiles and TPH in Soil vs PRG-REC
Sample Collection Information, SEAD-122E - Deicing Planes
122E - Semivolatiles in Soil vs TAGMs
122E - Semivolatiles in Soil vs PRG-REC
122E - Semivolatiles in Groundwater vs GA Standards
122E - Semivolatiles in Groundwater vs DW
Sample Collection information, SEAD-123B - Building 716 and 717 Petroleum Releases
123B - Volatiles in Soil vs TAGMs
123B - Volatiles in Soil vs PRG-RES
123B - Semivolatiles and TPH in Soil vs TAGMs
123B - Semivolatiles and TPH in Soil vs PRG-RES
123B - Volatile Organics in Sediment vs NYS Criteria

9-7	123B - Semivolailes in Sediment vs NYS Criteria
11-1	Sample Collection Information, SEAD-123D - Area West of Building 715
11-2	123D - Volatiles in Soil vs TAGMs
11-3	123D - Volatiles in Soil vs PRG-RES
11-4	123D - Semivolatiles and TPH in Soil vs TAGMs
11-5	123D - Semivolatiles and TPH in Soil vs PRG-RES
11-6	123D - Metals in Soil vs TAGMs
11-7	123D - Metals in Soil vs PRG-RES
11-8	123D - Pesticides/PCBs in Soil vs TAGMs
11-9	123D - Pesticides/PCBs in Soil vs PRG-RES
13-1	Sample Collection Information, SEAD-123F - Mound North of Post 3
13-2	123F - Volatiles in Soil vs TAGMs
13-3	123F - Volatiles in Soil vs PRG-RES
13-4	123F - Semivolatiles/TPH in Soil vs TAGMs
13-5	123F - Semivolatiles/TPH in Soil vs PRG-RES
13-6	123F - Metals in Soil vs TAGMs
13-7	123F - Metals in Soil vs PRG-RES
13-8	123F - Pesticides/PCBs in Soil vs TAGMs
13-9	123F - Pesticides/PCBs in Soil vs PRG-RES
15-1	Sample Collection Information, SEAD-68- Old Pest Control Shop (Bldg. S-335)
15-2	68 - Volatiles in Soil vs TAGMs
15-3	68 - Volatiles in Soil vs PRG-IND
15-4	68 - Semivolatiles in Soil vs TAGMs
15-5	68- Semivolatiles in Soil vs PRG-IND
15-6	68 - Pesticides in Soil vs TAGMs
15-7	68 - Pesticides in Soil vs PRG-IND

15-8	68 - Herbicides and Arsenic in Soil vs TAGMs
15-9	68 - Herbicides and Arsenic in Soil vs PRG-IND
16-1	Sample Collection Information, SEAD-120A - 50 Area Dumping Areas
16-2	120A - Volatiles in Soil vs TAGMs
16-3	120A - Volatiles in Soil vs PRG-REC
16-4	120A - Semivolatiles and TPH in Soil vs TAGMs
16-5	120A - Semivolatiles and TPH in Soil vs PRG-REC
16-6	120A - Metals in Soil vs TAGMs
16-7	120A - Metals in Soil vs PRG-REC
16-8	120A - Pesticides/PCBs in Soil vs TAGMs
16-9	120A - Pesticides/PCBs in Soil vs PRG-REC
16-10	120A - Herbicides in Soil vs TAGMs
16-11	120A - Herbicides in Soil vs PRG-REC
17-1	Sample Collection Information, SEAD-120B - Ovid Road Small Arms Range
17-2	120B - Explosives in Soil vs TAGMs
17-3	120B - Explosives in Soil vs PRG-REC
17-4	120B - Semivolatiles in Soil vs TAGMs
17-5	120B - Semivolatiles in Soil vs PRG-REC
17-6	120B - Metals in Soil vs TAGMs
17-7	120B - Metals in Soil vs PRG-REC
19-1	Sample Collection Information, SEAD-120D - MP Refueling Island in the Q
19-2	120D - Volatiles in Soil vs TAGMs
19-3	120D - Volatiles in Soil vs PRG-REC
19-4	120D - Semivolatiles and TPH in Soil vs TAGMs
19-5	120D - Semivolatiles and TPH in Soil vs PRG-REC

20-1	Sample Collection information, SEAD-120E - Near Building 2131, Possible DDT Disposal
20-2	120E - Pesticides in Soil vs TAGMs
20-3	120E - Pesticides in Soil vs PRG-REC
20-4	120E - Pesticides in Sediment vs NYS Criteria
22-1	Sample Collection Information, SEAD-120G - Mounds at the Duck Pond
22-2	120G - Volatiles in Soil vs TAGMs
22-3	120G - Volatiles in Soil vs PRG-REC
22-4	120G - Semivolatiles and TPH in Soil vs TAGMs
22-5	120G - Semivolatiles and TPH in Soil vs PRG-REC
22-6	120G - Metals in Soil vs TAGMs
22-7	120G - Metals in Soil vs PRG-REC
22-8	120G - Pesticides/PCBs in Soil vs TAGMs
22-9	120G - Pesticides/PCBs in Soil vs PRG-REC
25-1	Sample Collection Information, SEAD-120J - Farmer's Dump
25-2	120J - Volatiles in Soil vs TAGMs
25-3	120J - Volatiles in Soil vs PRG-REC
25-4	120J - Semivolatiles and TPH in Soil vs TAGMs
25-5	120J - Semivolatiles and TPH in Soil vs PRG-REC
25-6	120J - Metals in Soil vs TAGMs
25-7	120J - Metals in Soil vs PRG-REC
25-8	120J - Pesticides/PCBs in Soil vs TAGMs
25-9	120J - Pesticides/PCBs in Soil vs PRG-REC
25-10	120J - Herbicides in Soil vs TAGMs
25-11	120J - Herbicides in Soil vs PRG-REC
27-1	Sample Collection Information, SEAD-121B - Building 325 PCB Oil Spill

27-2	SEAD-121B - Volatiles in Soil vs NYTAGM
27-3	SEAD-121B - Volatiles in Soil vs PRG-IND
27-4	SEAD-121B - Semivolatiles and TPH in Soil vs NYTAGM
27-5	SEAD-121B - Semivolatiles and TPH in Soil vs PRG-IND
27-6	SEAD-121B - PCBs in Soil vs NYTAGM
27-7	SEAD-121B - PCBs in Soil vs PRG-IND
28-1	Sample Collection Information, SEAD-121C - DRMO Yard
28-2	SEAD-121C - Volatiles in Soil vs NYTAGM
28-3	SEAD-121C - Volatiles in Soil vs PRG-IND
28-4	SEAD-121C - Semivolatiles and TPH in Soil vs NYTAGM
28-5	SEAD-121C - Semivolatiles and TPH in Soil vs PRG-IND
28-6	SEAD-121C - Pesticides/PCBs in Soil vs NYTAGM
28-7	SEAD-121C - Pesticides/PCBs in Soil vs PRG-IND
28-8	SEAD-121C - Metals in Soil vs NYTAGM
28-9	SEAD-121C - Metals in Soil vs PRG-IND
28-10	SEAD-121C -Volatiles in Groundwater vs NY Class GA
28-11	SEAD-121C -Volatiles in Groundwater vs Drinking Water Standards
28-12	SEAD-121C - Semivolatiles and TPH in Groundwater vs NY Class GA
28-13	SEAD-121C - Semivolatiles and TPH in Groundwater vs Drinking Water Standards
28-14	SEAD-121C -Pesticides/PCBs in Groundwater vs NY Class GA
28-15	SEAD-121C -Pesticides/PCBs in Groundwater vs Drinking Water Standards
28-16	SEAD-121C -Metals in Groundwater vs NY Class GA
28-17	SEAD-121C -Metals in Groundwater vs Drinking Water Standards
29-1	Sample Collection Information, SEAD-121D - Building 306 and 308 Hazardous Materials Release
29-2	SEAD-121D - Volatiles in Soil vs NYTAGM

29-3	SEAD-121D - Volatiles in Soil vs PRG-IND
29-4	SEAD-121D - Semivolatiles and TPH in Soil vs NYTAGM
29-5	SEAD-121D - Semivolatiles and TPH in Soil vs PRG-IND
30-1	Sample Collection Information, SEAD-121E - Building 127 UST Petroleum Release
30-2	SEAD-121E - Volatiles in Soil vs NYTAGM
30-3	SEAD-121E - Volatiles in Soil vs PRG-IND
30-4	SEAD-121E - Semivolatiles, Lead, and TPH in Soil vs NYTAGM
30-5	SEAD-121E - Semivolatiles, Lead, and TPH in Soil vs PRG-IND
31-1	Sample Collection Information, SEAD-121F - Building 135 Stained Soil
31-2	SEAD-121F - Volatiles in Soil vs NYTAGM
31-3	SEAD-121F - Volatiles in Soil Vs PRG-IND
31-4	SEAD-121F - Semivolatiles, Lead, and TPH in Soil vs NYTAGM
31-5	SEAD-121F - Semivolatiles, Lead, and TPH in Soil vs PRG-IND
32-1	Sample Collection Information, SEAD-121G - Rumored Coal Ash Disposal Area
32-2	SEAD-121G - Semivolatiles in Soil vs NYTAGM
32-3	SEAD-121G - Semivolatiles in Soil vs PRG-RES
32-4	SEAD-121G - Metals in Soil vs NYTAGM
32-5	SEAD-121G - Metals in Soil vs PRG-RES
33-1	Sample Collection Information, SEAD-121H - Rumored Coal Disposal Area
33-2	SEAD-121H - Semivolatiles in Soil vs NYTAGM
33-3	SEAD-121H - Semivolatiles in Soil vs PRG-IND
33-4	SEAD-121H - Metals in Soil vs NYTAGM
33-5	SEAD-121H - Metals in Soil vs PRG-IND
34-1	Sample Collection Information, SEAD-121I - Rumored Cosmoline Disposal Areas

34-2	SEAD-121I - Semivolatiles and TPH in Soil vs TAGMs
34-3	SEAD-121I - Semivolatiles and TPH in Soil vs PRG-IND
34-4	SEAD-1211 - Semivolatiles and TPH in Sediment vs NYS Criteria

List of Figures

(Figures are included at the end of the text)

Number	<u>Title</u>
1-1	Location of 12 Priority Non-Evaluated Sites
1-2	Location of 12 Moderate Non-Evaluated Sites
1-3	Location of 9 Low Priority Non-Evaluated Sites
1-4	Decision Criteria Remediation Flow Chart
2-1	Buildings and Sanitary Sewers Near SEAD-119A
3-1	Site Features and Sample Locations at EBS Site 122A, Skeet/Trap Range
4-1	Site Features and Sample Locations at EBS Site 122B, Bldg. 2302 Small Arms Range
5-1	Site Features at EBS Site 122C, Near Bldg. 2311 Conex with Unknown Contents
6-1	Site Features and Sample Locations at EBS Site 122D, Hot Pad Spill
7-1	Site Features and Sample Locations at EBS Site 122E, Deicing Planes
8-1	Site Features at EBS Site 123A, Indoor Firing Range
9-1	Site Features and Sample Locations at EBS Site 123B, Bldg. 716 and 717 Petroleum Releases
10-1	Site Features at EBS Site 123C, Bldg. 747 HM Spill
11-1	Site Features and Sample Locations at EBS Site 123D, Area West of Bldg. 715
12-1	Site Features and Location of Geophysical Grid at EBS Site 123E, Rumored DDT Burial at Ice Rink
12-2	Apparent Ground Conductivity at EBS Site 123E Rumored DDT Burial at Ice Rink
12-3	In-Phase Response at EBS Site 123E Rumored DDT Burial at Ice Rink
13-1	Site Features, Sample Locations and Geophysical Grid at EBS Site 123F, Area North of Post 3
13-2	Apparent Ground Conductivity at EBS Site 123F Area North of Post 3
13-3	In-Phase Response at EBS Site 123F Area North of Post 3
14-1	Site Features at EBS Site SEAD-46, Small Arms Range

15-1	Site Features and Sample Locations at EBS Site SEAD-68, Old Pest Control Shop (Building S-335)
16-1	Site Features, Sample Locations, and Geophysical Grids at EBS Site 120A, 50 Area Dumping Areas
16-2	Apparent Ground Conductivity at EBS Site 120A, Areas 1 and 2, 50 Area Dumping Areas
16-3	In-Phase Response at EBS Site 120A, Areas 1 and 2, 50 Area Dumping Areas
16-4	Apparent Ground Conductivity at EBS Site 120A, Areas 3 and 4, 50 Area Dumping Areas
16-5	In-Phase Response at EBS Site 120A, Areas 3 and 4, 50 Area Dumping Areas
16-6	Apparent Ground Conductivity at EBS Site 120A, Area 5, 50 Area Dumping Areas
16-7	In-Phase Response at EBS Site 120A, Area 5, 50 Area Dumping Areas
16-8	Apparent Ground Conductivity at EBS Site 120A, Area 6, 50 Area Dumping Areas
16-9	In-Phase Response at EBS Site 120A, Area 6, 50 Area Dumping Areas
17-1	Site Features and Sample locations at EBS Site 120B, Ovid Road Small Arms Range
18-1	Site Features at EBS Site 120C, Building 813-817 Paints and Solvent Disposal Area
19-1	Site Features and Sample Locations at EBS Site 120D, MP Refueling Island in the $\ensuremath{\mathrm{Q}}$
20-1	Site Features, Sample Locations, and Geophysical Grid at EBS Site 120E, Near Building 2131, Possible DDT Disposal
20-2	Apparent Ground Conductivity at EBS Site 120E, Near Building 2131, Possible DDT Disposal
20-3	In-Phase Response at EBS Site 120E, Near Building 2131, Possible DDT Disposal
21-1	Site Features and Geophysical Grid at EBS Site 120F, Munitions Burial Sites, South End of the Main Depot
21-2	Apparent Ground Conductivity at EBS Site 120F; Munitions Burial Sites, South End of the Main Depot

21-3	In-Phase Response at EBS Site 120F, Munitions Burial Sites, South End of the Main Depot
22-1	Site Features and Sample Locations at EBS Site 120G, Mounds at the Duck Pond
23-1	Site Features at EBS Site 120H, Building 810
24-1	Site Features at EBS Site 120I, Building 819, A0101 and A0102
25-1	Site Features and Sample Locations at EBS Site 120J, Farmer's Dump
26-1	Site Features at EBS Site SEAD-121A, USCG Halon Discharge
27-1	Site Features and Sample Locations at EBS Site SEAD-121B, Building 325 PCB Oil Spill
28-1	Site Features and Sample Locations at EBS Site 121C, DRMO Yard
29-1	Site Features and Sample locations at EBS Site 121D, Building 306 and 308 Hazardous Materials Release
30-1	Site Features and Sample Locations at EBS Site 121E, Building 127 UST Petroleum Release
31-1	Site Features and Sample Locations at EBS Site 121F, Building 135 Stained Soil
32-1	Site Features, Sample Locations, and Geophysical Grid at EBS Site 121G, Rumored Coal Ash Disposal Area
32-2	Apparent Ground Conductivity at EBS Site 121G, Rumored Coal Ash Disposal Area
32-3	In-Phase Response at EBS Site 121G, Rumored Coal Ash Disposal Area
33-1	Site Features and Sample Locations at EBS Site 121H, Rumored Coal Disposal Area
34-1	Site Features and Sample Locations at EBS Site 121I, Rumored Cosmoline Oil Disposal Areas

Appendices

Letter Description

- A Soil Boring Logs
- B Test Pit Logs
- C Well Construction Diagrams
- D Geophysical Data
 - SEAD-123E
 - SEAD-123F
- E Chemical Analyses Data Qualifiers and QC Samples

Investigation of Environmental Baseline Survey Non-Evaluated Sites Acronym List

AOC Area Of Concern

BRAC Base Realignment and Closure Commission

CRDL Contract Required Detection Limit

DRMO Defense reutilization and Marketing Office

EBS Environmental Baseline Survey

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

EM Electromagnetic

FOST/FOSL Finding of Suitability to Transfer/Finding of Suitability to Lease

LRA Land Reuse Authority

MP Military Police

NYSDEC New York State

OVM Organic Vapor Meter

PAOC Possible Area of Concern

PRG Preliminary Remediation Goal

SCG Soil Cleanup Guidance

SEAD Seneca Army Depot

SEDA Seneca Army Depot Activity

SMWU Solid Waste Management Unit

STARS Spill Technology and Remediation Service

TAGM Technical Administrative Guidance Memorandum

UST Underground Storage Tank

UXO Unexploded Ordinance

XRF X-ray Fluorescence

1.0 INTRODUCTION

1.1 Seneca Army Depot Activity

Seneca Army Depot Activity (SEDA) is a U.S. Army facility located in Seneca County, New York. The Depot occupies approximately 10,600 acres. It is bounded on the east by Route 96 and on the west by Route 96A. Most of the surrounding land is used for farming.

Construction at SEDA began in 1941. Its mission included reception, storage, and distribution of ammunition and explosives, GSA and strategic materials and Office of Civil Defense engineering equipment. It also included providing receipt, storage and issue of items that supported special weapons activity and performance of depot-level maintenance, demilitarization and surveillance on conventional ammunition and special weapons.

1.2 BRAC and Environmental Baseline Survey

SEDA was included on the Federal Facilities National Priorities List on July 13, 1989. In March 1995, the Base Realignment and Closure Commission (BRAC) submitted its recommendation that SEAD be selected for closure. This recommendation was subsequently approved in 1996. The Base Realignment and Closure Act requires environmental issues to be investigated, pursuant to CERCLA.

An Environmental Baseline Survey Report (Woodward Clyde, 1996a) was prepared for SEDA. The EBS classified discrete areas of real property associated with the Depot, which are subject to transfer or lease, into standard environmental condition of property types. The determination that a specific property is environmentally suitable for transfer or lease is established under the FOST/FOSL guidance.

As part of continuing work after the completion of the EBS, additional sampling and analyses was necessary at selected non-evaluated sites at SEDA to determine their environmental condition. Most of the non-evaluated sites were initially identified in the EBS, however, some sites were added to the list to be evaluated because of rumor or speculation that a release(s) had occurred. The Land Reuse Authority (LRA) identified "SEAD" areas 119, 122, and 123 as priority status, "SEAD" areas 46, 68, and 120 as moderate priority status, and "SEAD" area 121 as low priority status, based on the need for transfer or lease of each area. Most of the "SEAD" area designations are actually composed of several individuals sites, which are designated by sequential letters of the alphabet (e.g., SEAD-122A, -122B, -122C, -122D, and -122E). The 33 Non-Evaluated EBS sites, whose locations within the Depot are shown on Figures 1-1 through 1-3, are listed in Table 1-1 (on the following page).

1.3 Technical Approach for Investigation of Non-Evaluated EBS Sites

The process by which the sites within these three areas were investigated is diagrammed in the Seneca Army Depot Decision Criteria Flow Chart (Figure 1-4). This flow chart provides the overall guidance for investigating and remediating sites at SEDA. The limited sampling and analyses was designed to provide initial data so that an impact analysis could be performed. The impact analysis involved a comparison to applicable NYSDEC standard/criteria or guidance (SCG) (Soil: TAGMs; Groundwater: GA; Sediment: Benthic Aquatic Life/Human Health). If the SCGs were exceeded, then a comparison to Preliminary Remediation Goals (PRG)s was performed. The type of PRG values used was based on the intended use of the property, which

was established in the EBS. At SEAD-122 (A,B,C,D,E) and SEAD-120 (A,B,C,D,E,F,G,H,I,J), "Recreational PRGs" were used. At SEAD-123 (A,B,C,D,E,F) and SEAD-121G, "Residential PRGs" were used. At SEAD-121 (B,C,D,E,F,H), "Industrial PRGs" were used. Note that no samples were collected at SEAD-119, SEAD-46, or SEAD-121A. Drinking Water (DW) PRGs were used for groundwater.

The samples were collected in source areas that were believed to have been most impacted (i.e., had the highest chemical concentrations) compared to other locations within the site. The evaluation at each site included collecting a limited amount of soil, sediment and/or groundwater data, as appropriate, to provide a basis of determining if the site has been environmentally impacted. Since many of these sites involved rumors, with no analytical data to support further evaluation, limited, but representative, data collection was deemed appropriate at these sites.

Table 1-1 Non-Evaluated EBS Sites

Number	SEAD Area Designation	Description	EBS Site Number
1	SEAD 119A	Building 2409 Sewage Spill	54(6)HR(P)
2	SEAD 122A	Skeet/Trap Range	115Q-X
3	SEAD 122B	Building 2302 Small Arms Range	114Q-X
4	SEAD 122C	Near Building 2311 Conex with Unknown Contents	107(7)
5	SEAD 122D	Hot Pad Spill	56(6)PR
6	SEAD 122E	Deicing Planes	6(2)PS, 7(2)PS, 8(2)PS
7	SEAD 123A	Building 744 Indoor Firing Range	125Q-X
8	SEAD 123B	Building 716 and 717 Petroleum Releases	102(6)PS/PR(P)
9	SEAD 123C	Building 747 HM Spills	100(6)PS/PR/HS/HR
10	SEAD 123D	Area West of Building 715	113(7)
11	SEAD 123E	Rumored DDT Burial at Ice Rink	Rumor
12	SEAD 123F	Mound North of Post 3	Rumor

13	SEAD 46	Small Arms Range	122Q-X
14	SEAD 68	Old Pest Control Shop (Building S-335)	108(7)HS(P)/HR(P)
15	SEAD 120A	50 Area Dumping Areas	56(6)PS/PR/HR
16	SEAD 120B	Ovid Road Small Arms Range	119Q-X
17	SEAD 120C	Building 813-817 Paints and Solvents Disposal Areas	98(6)PS/HS/HR
18	SEAD 120D	MP Refueling Island in the Q	99(6)PS/HR
19	SEAD120E	Near Building 2131, Possible DDT Disposal	106(6)HR
20	SEAD 120F	Munitions Burial Sites, South End of the Main Depot	117Q-X
21	SEAD 120G	Mounds at the Duck Pond	109(7), 110(7), 111(7), and 112(7)
22	SEAD 120H	Building 810	98(6)PS/HS/HR
23	SEAD 120I	Building 819, A0101, and A0102	98(6)PS/HS/HR
24	SEAD 120J	Farmer's Dump	Rumor
25	SEAD 121A	USCG Halon Discharge	44(3)HR
26	SEAD 121B	Building 325 PCB Oil Spill	
27	SEAD 121C	DRMO Yard	
28	SEAD 121D	Building 306 and 308 Hazardous Materials Release	
29	SEAD 121E	Building 127 UST Petroleum Release	
30	SEAD 121F	Building 135 Stained Oil	
31	SEAD 121G	Rumored Coal Ash Disposal Area	

32	SEAD 121H	Rumored Coal Disposal Area	
33	SEAD 121I	Rumored Cosmoline Oil Disposal Area	

Possible outcomes of the limited sampling and analyses program Impact Analysis, as indicated on Figure 1-4, are as follows:

- 1. Concentrations of constituents of concern are below the NYSDEC SCG (e.g., TAGMs), suggesting that the site has not affected the environment. The site will be designated as a "no further action" site with no reuse restrictions.
- 2. Concentrations of constituents of concern were above NYSDEC SCG (e.g., TAGMs), therefore, comparisons to PRGs are necessary. If concentrations are less than PRGs, but greater than TAGMs then additional sampling (possibly via an ESI) will be performed. If the concentrations exceed the PRGs, then a Hot Spot Analysis will be performed; this analysis will likely include additional sampling as well.

In addition, where the significance of the environmental impact is not definitive based strictly on the analytical data comparisons, professional judgment will be used to develop the final recommendations. Thus, in some instances slight exceedance of a TAGM does not automatically result in a recommendation for further investigation at the site.

The sections that describe the sites provide a summary of the investigation fieldwork and analytical results for each of the 33 Non-Evaluated EBS sites. The tables and figures are presented at the end of the text sections for clarity. Note that the analytical data tables present comparisons to both SCGs (e.g., TAGMs) and PRGs, where applicable. The results of these comparisons are presented in "bold and shade" format (i.e., the exceedences are bolded and shaded in the tables).

1.4 Field Investigation Methods

The field investigations were performed using the methods outlined in the Generic Installation Remedial Investigation/Feasibility Study Work Plan (Parsons, 1995). Specific notes regarding selected field investigation methods/procedures, which are not specifically covered in the Generic Workplan, are presented below.

The temporary wells were installed according to the permanent unconfined well installation methods outlined the Generic Workplan, except that no permanent surface completion was performed. The wells were decommissioned shortly after the groundwater sampling was performed using the "Casing Pulling" method outlined in "Groundwater Monitoring Well Decommissioning Procedures" (NYSDEC, 1996). Immediately after installation, the wells were purged of at least one borehole volume. On the following day, ground water samples were collected after at least one well casing volume had been purged from the well.

The analytical data included in this report has not been validated, but it will be validated in the near future, and the results/recommendations updated appropriately.

2.0 SEAD-119A - Building 2409 Sewage Spill

2.1 Site Information

This parcel is associated with a lift station located by Building 2409, which is a former pump house presently used for dry storage (Figure 2-1). A raw sewage release was observed on the east side of this building during the 1995 EBS visual inspection. The pump station receives wastes from multiple sources.

2.2 Summary of Investigation

No field sampling was performed at the site, because it was not considered necessary. Instead a review of the sewers systems specifications and sources was performed to demonstrate that there are no likely sources of hazardous substances that discharge waste into the lift (pump) station near Building 2409.

According to a General Sanitary Sewer Map of the Seneca Army Depot, there are nine buildings located along the small looping section of sanitary sewer pipe near Colonel Drive. The sanitary sewer pipe on Colonel Drive is the sole source for sewage discharge to the pump station near Building 2409 (Figure 2-1). The nine buildings include houses, garages and a dry storage area, and there is no reason to suspect that hazardous substances were discharged from them; there was no industrial use in this area. The building uses are as follows:

- Family Housing: 2401, 2403, 2404, 2406, and 2408
- Family Housing Garages (no sewer connection): S2402, S-2405, and S-2407
- Dry Storage Area (former pump house): 2409

The sewage from the residential houses is collected in 6-inch polyvinyl chloride (PVC) and bituminous non-perforated fiber pipe. Sewage waste collected at the pump station is pumped in a 1 1/2-inch PVC force main over Kendaia Creek and along East Lake Road, and eventually it discharges to the Seneca County District No. 1 Treatment Plant to the south.

Recommendation: Based on the additional information presented above, SEAD-119A should not be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site.

3.0 SEAD-122A - Skeet/Trap Range

3.1 Site Information

This parcel is associated with a former trap/skeet range located to the east of Building 2301 at the Airfield (Figure 3-1). This area was identified in a visual inspection and interview during the 1995 EBS.

The purpose of the investigation was to determine if surface soils have been impacted by the activities at the skeet shooting range. The constituent of concern is lead in soil.

3.2 Summary of Investigation

The skeet shooting area is behind brick farm house near the entrance to the air field (Figure 3-1). The entrance to skeet range is through a 4 foot high chain-link fence. A network of narrow asphalt walkways lead to five shooting stations that face an open field. A building that was used to launch clay pigeons is located approximately 25 feet north of the shooting stations. Two 20-foot tall buildings on either side of the shooting stations are used for launching targets. An area of clay target fragments and slightly stressed vegetation was observed approximately 200 feet downrange from the shooting stations, which indicated that this was the downrange distance where many of clay targets were hit by the shot.

A total of five surface soil samples were collected at downrange locations at the skeet/trap shooting range (Figure 3-1). The samples were collected at distances of 125 feet, 175 feet, 200 feet, 250 feet and 300 feet from the shooting stations; the 200-foot sample was in the area that contained a concentration of clay target fragments. The rationale for selecting the sample locations is provided in Table 3-1.

The results of the laboratory analyses are presented in Tables 3-2 and 3-3. These results were compared to the NYSDEC TAGM for lead. The results of the comparisons are given below.

Comparison to TAGM:

• Three of the five samples had concentrations that exceed the NYSDEC TAGM for lead, which is 24.4 mg/Kg, however many of these concentrations only slightly exceeded the TAGM and are likely due to natural variation in the concentration in the soil. These samples had lead concentrations that were less than two times the TAGM. The highest concentration (143 mg/Kg), which was found in the 250-foot downrange sample (SS122A-4), is approximately six times greater than the TAGM.

Comparison to Recreational PRG:

No Recreational PRG has been established for lead, although the site maximum value of 143 mg/Kg) is significantly below the agreed upon screening level of 400 mg/Kg for residential land use established by the EPA memorandum, "Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities" (9355.4-12, EPA/540/F-94/043, PB94-963282, August 1994).

Recommendation: Based on professional judgment it is recommended that final actions for SEAD-122A, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

4.0 SEAD-122B - Building 2302 Small Arms Range

4.1 Site Information

This parcel is associated with a firing range located in the area to the east of Building 2302 at the Airfield. This area was identified in a visual inspection and interview during the 1995 EBS.

The purpose of the investigation was to determine if surface soils have been impacted by the activities at the small arms firing range. The constituents of concern are metals in soil.

4.2 Investigation Summary

The site is comprised of a two adjacent small arms ranges (Range 1 and Range 2) (Figure 4-1). Range 1 has a concrete platform with 22 numbered shooting stations and a roof. A 3-sided berm, composed of dirt, encompasses the downrange area, which has rows of target mounting frames. The sides of the berm extend to the front edge of the shooting platform. Range 2 has only two shooting stations and it is smaller than Range 1. Its downrange area is also enclosed by a 3-sided berm. The shooting lanes are enclosed by concrete piping to prevent shooting above the berm (i.e., backstop).

A total of five surface soil samples were collected at downrange locations at the small arms range (Figure 4-1). The samples were collected at locations immediately downrange and in locations that were believed to be impact points for the shots. The rationale for selecting the sample locations is provided in Table 4-1.

The results of the laboratory analyses are presented in Tables 4-2 and 4-3. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

• Seven metals exceeded their respective TAGMs, however, some exceedences were more significant than others. Copper and lead were the only metals that were found at concentrations that exceeded their TAGMs in all five samples. The maximum concentrations of these metals exceeded their TAGMs by 15 times and 1,962 times, respectively. Less prevalent metals included silver, arsenic and antimony, which were found to exceed their TAGMs in two to three samples. Lastly, four metals (chromium, cyanide, magnesium, and zinc) exceeded their TAGMs in only one sample, and the exceedences were between 1.1 times and 3 times).

Comparison to Recreational PRGs:

- Only one metal exceeded its Recreational PRG. The metal was arsenic and it exceeded its PRG by 2.5 times. None of the other metals concentrations exceeded their respective Recreational PRG values.
- There is no Recreational PRG for lead, although in four of the five samples lead exceeded the agreed upon screening level of 400 mg/Kg for residential land use.

Recommendation: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from metals (particularly copper, lead, antimony, and

arsenic) at SEAD-122D, the Small Arms Range. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment.

5.0 SEAD-122C - Near Building 2311 Conex with Unknown Contents

5.1 Site Information

This parcel is associated with a vented conex near Building 2311 (Figure 5-1). This conex was observed during the 1995 EBS visual inspection, however, the contents of this conex was unknown at the time and, therefore, an accurate category designation could not be determined.

5.2 Investigation Summary

No field sampling was performed at the site, because it was not considered necessary. Instead a visual site inspection of the interior of the conex was performed to determine if there are likely sources of hazardous substances within the conex.

The inspection of the interior of the six foot by ten foot conex, which is vented at the top, revealed that it contained shooting targets (e.g., human profiles and bulls eyes) for use at the Small Arms Range. It also contained 30 to 40 sheets of plywood of various sizes for making targets. No containers were observed within the conex. No evidence of oil or hazardous materials storage or spills were observed. Reading of organic vapors using an OVM were at background concentrations within the conex during the inspection.

<u>Recommendation</u>: Based on the additional information presented above, SEAD-122C should not be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site.

6.0 SEAD-122D - Hot Pad Spill

6.1 Site Information

This parcel is the site of a JP-4 spill that occurred in 1990 and was revealed during an interview (Figure 6-1). The incident occurred on the "hot pad" located about 880 feet west of Building 2312. The spill involved more than 50 gallons of fuel, which ran off the pad into the grass. No records indicate that the spill was cleaned up.

The purpose of the investigation was to determine if surface soils on the perimeter of the pad have been impacted by the JP-4 fuel oil spill. The constituents of concern are volatile organics, semivolatile organics, and TPH in soil.

6.2 Investigation Summary

This area is comprised of an approximately 600-foot by 60-foot rectangular concrete pad located at the southern end of the SEDA airfield. The pad is bounded on the north, east and south by grass; an small asphalt roadway connects to the southern end of the pad. On the west side is a 400-foot by 400-foot grassy area with a central drainage area. Asphalt taxiways on the northern and southern sides of this square grassy area provide access to the refueling pad from the runway.

A total of four soil samples were collected from two soil borings at the Hot Pad Spill area (Figure 6-1). The soil borings were located in low areas on the downgradient (western) side of the concrete pad, which are likely to receive run-off if a spill occurred while a plane was being refueled on the concrete pad. The rationale for selecting the two sample locations is provided in Table 6-1.

The results of the laboratory analyses are presented in Tables 6-2 through 6-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- None of the volatile compounds exceeded their respective TAGMs. Acetone and toluene were detected in a few of the samples but at concentrations well below their TAGMs.
- None of the semivolatile organic compounds exceeded their TAGMs. The semivolatile compounds found included mostly phthalates, which were found in all of the samples, and eight PAH compounds, which were found in only one sample (SB122D-2).
- Sample SB122D-2 also contained a TPH concentration of 108 mg/Kg, but there is no TAGM for TPH. No TPH were found in the other samples.

Comparison to Recreational PRGs:

• None of the concentrations of volatile organics, semivolatile organics, exceeded their respective Recreational PRGs.

<u>Recommendation</u>: Based on professional judgment, it is recommended that final actions for SEAD-122D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

7.0 SEAD-122E - Deicing Planes

7.1 Site Information

This parcel is associated with the deicing of planes at three separate aircraft refueling areas in the airfield (Figure 7-1). Two of the refueling areas area located near the ends (west side) of the northwest- southeast runway (the are both labeled "aircraft refueling"), and the third is located at the end of a short taxi way west of the central portion of the runway (it is labeled "aircraft parking and refueling").

The purpose of the investigation was to determine if soils or groundwater on the perimeter of the three pads have been impacted by the deicing fluids used on the planes. The constituents of concern are semivolatile organics and principal components of deicing fluids (alcohols/glycols, i.e., ethylene glycol, propylene glycol, total unknown alkanes) in soil and groundwater.

7.2 Investigation Summary

This area is comprised of a three separate aircraft refueling/deicing areas. The areas are located along the length of the airfield. For ease of reference, these asphalt aircraft refueling platforms will be referred to as North, South, and Central, based on their relative position in the airfield (Figure 7-1).

Two soil samples were collected from a soil boring performed at the edge of each of the three aircraft/deicing areas (Figure 7-1). Each soil boring was located in the lowest area on the edge of the asphalt pad, which was likely to have received run-off during the aircraft deicing activities. The rationale for selecting the boring locations is provided in Table 7-1. Also, a temporary monitoring well was installed in each of the three borings so that a groundwater sample could be collected.

The results of the laboratory analyses are presented in Tables 7-2 through 7-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs and GA Standards:

- Seven semivolatile organic compounds exceeded their respective TAGMs in soil. These semivolatile compounds included mostly PAHs and one phthalate compound. Most of these exceedences occurred in the surface soil samples at the south area (SB122E-1) and the central area (SB122E-2), however, at the latter area, the number and magnitude of the exceedences in the surface soil sample were greater for all compounds. The greatest magnitude of TAGM exceedences were for benzo(a)pyrene (138 times) and dibenz(a,h)anthracene (136 times), which were at the central area. Only one semivolatile organic compound exceeded its TAGM at the north area (SB122E-3), but the exceedences in the two samples were only 1.1 and 1.6 times the TAGM.
- No propylene glycol or ethylene glycol was detected in the soil samples collected at this site. In soil, the estimated total concentration of unknown alkanes (≈TPH) was greatest in the surface soil sample (SB122E-2) from the central area. There is no TAGM for total alkanes in soil.
- There were five semivolatile organic compounds detected in groundwater and they were found predominantly in the central area (MW122E-2); the other two areas contained only an estimated concentration of one phthalate compound. All of the their concentrations, however, were below established NYSDEC GA groundwater standards.
- No propylene glycol or ethylene glycol was detected in the groundwater samples collected at
 this site. In groundwater, the estimated total concentration of unknown alkanes (≈TPH) was
 greatest in MW122E-3, which is at the north area. There is no NYSDEC GA groundwater
 standard for total alkanes in groundwater.

Comparison to Recreational PRGs and Drinking Water PRGs:

• In soil, none of the concentrations of semivolatile organics or glycols exceeded established Recreational PRGs.

• In groundwater, one semivolatile organic compounds (hexachlorobutadiene) was found at an estimated concentration that was 2.2 times the Drinking Water PRG.

Recommendation: As indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling to determine the extent of the impacts from semivolatile organic compounds (particularly PAHs) at the south and central pad areas at SEAD-122E. No further investigation of the north area is recommended. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment at this site.

8.0 SEAD-123A - Indoor Firing Range

8.1 Site Information

This parcel is associated with Building 744 (Figure 8-1). Building 744 was a physical activities center or health club facility. Interviews conducted during the 1995 EBS revealed that a shooting range existed in the basement of the facility. These interviews also reported that the shooting range was dismantled, but no records could be found documenting the cleaning process.

8.2 Investigation Summary

No field sampling was performed at the site, because it was not considered necessary. Instead the results of an inspection and field screening program will be used to demonstrate the environmental condition of the Indoor Firing Range at Building 744.

The Firing Range at Building 744 was decommissioned in 1992, when the military ceased using the north area of the Depot for army residences and as an administration area. After the firing range was decommissioned, a visual inspection and an XRF survey for lead impacts was performed by SEDA environmental staff. The XRF detector used was a model MAP 3 spectrum analyzer manufactured by Scitec Corporation. The results of the inspection and survey described below were provide by the SEDA environmental staff. The visual inspection was conducted starting at the bullet backstop and working back to the firing line area. The air duct for both the bullet trap area and the shooting line area were inspected. No visual evidence of lead was observed. The area behind the bullet trap was inspected. In this location, small amount of bullet fragments were observed. Also, bullet fragments were observed on the metal backstop.

The XRF survey consisted of field screening of many areas and surfaces within the decommissioned range. The surfaces/areas that were screened with the XRF detector were as follows: the bullet backstop, front surfaces and backside or underneath, wall, floor and ceiling of area directly adjacent to backstop, walls, floor and ceiling at random distances from backstop to the firing line area, the duct work exiting from the backstop and the duct work exiting from the firing line area. All results showed low or no lead with the exception of the area behind the backstop where there was visual evidence of bullet fragments. These screening results from this area (i.e., the bullet fragments) showed levels of lead between 19,304 ppm and 34,646 ppm.

<u>Recommendation</u>: Based on the additional information presented above, the small area of bullet fragments behind the backstop (which was visible in the inspection) should be removed. Following the removal, the area behind the backstop should be resurveyed with the XRF detector to ensure that the lead has been removed. Upon completing this action, SEAD-123A should not

be identified as a SWMU/PAOC and the final site classification should indicate that no further action is required and there are no reuse restrictions at this site.

9.0 SEAD-123B - Building 716 and 717 Petroleum Releases

9.1 Site Information

This parcel is associated with Buildings 716 and 717 (Figure 9-1). Specifically, this is a 40,600-gallon fuel oil above ground storage tank (SRN 188) that has been in service since 1956 and an associated fueling area. There has been no record of leaking or spilling of petroleum product at this location. However, based on a 1995 EBS visual inspection, the area directly around the fueling station exhibited staining. Also, during this inspection, water was observed to be flowing over the above ground storage tank containment berm into an adjacent drainage ditch. This particular tank has been out of service and empty since 1989. The berm drain has been kept open since that time. A visual inspection conducted by the Seneca army Depot Activity Environmental Department staff on April 24, 1996 revealed only small puddles of water inside of the berm.

The purpose of the investigation was to determine if soil in the immediate vicinity of the fueling station, and sediment in the nearby drainage ditch, have been impacted by petroleum products. The constituents of concern are volatile organics, semivolatile organics and TPH in soil and sediment.

9.2 Investigation Summary

The site is comprised of an approximately 240-foot by 140-foot rectangular area that is enclosed by a chain-link fence (Figure 9-1). In the east-central portion of this area there is an inactive 40,600-gallon above ground storage tank (Tank 188) within a containment berm. An outfall pipe leads from a drain in the floor of the bermed area around the tank to a drainage ditch, which is adjacent to the southern perimeter fence. The ditch directs flow to the west. There is also a centrally located shed and fuel off-loading/filling area, which is accessible by a gate on the west side of the site. An overhead transfer pipe extends from Tank 188, past the shed, and it ends at the edge of the asphalt immediately west of the shed.

The field program included three soil borings from which two soil samples were collected from each boring, three surface soil samples, and two sediment samples (Figure 9-1). The soil borings and surface soil samples were collected from within the fenced area around the above ground tank. The sediment samples were collected in two locations, one at the outfall pipe from Tank 188 and one immediately downgradient from this area. The rationale for these sample locations is provided in Table 9-1.

The results of the laboratory analyses are presented in Tables 9-2 through 9-7. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

• No volatile organic compounds were exceeded their respective TAGMs in surface and subsurface soil samples.

- No semivolatile organic compounds exceeded their respective TAGMs in surface or subsurface soil. The semivolatile compounds detected were mostly PAHs with some phthalate compounds.
- TPH were found in five out of the six surface soil samples, but not in the subsurface soil samples. The maximum TPH concentration was in surface soil sample SS123B-1 (2,880 mg/Kg). The next highest concentration was 179 mg/Kg in the surface soil samples SB123B-1. The other three TPH concentrations were less than 100 mg/Kg. There is no TAGM for TPH.
- No volatile organic compounds in the samples exceeded established New York State sediment criteria. One volatile organic compound (acetone) was found in both of the sediment samples. The detected concentrations were near the method detection limit.
- No semivolatile organic compounds exceeded established New York State sediment criteria. Semivolatile organic compounds were found in both sediment samples, although the numbers of compounds and their concentrations were higher in the sample beneath the outfall pipe (SD123B-1) than in the downstream sample (SD123B-2). The compounds detected were mostly PAHs, with a few phthalates.
- No TPH were found in either of the two sediment samples collected in the drainage ditch.

Comparison to Residential PRGs:

 None of the concentrations of volatile organics or semivolatile organics exceeded their respective PRGs in the soil samples.

Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-123B, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

10.0 SEAD-123C - Building 747 HM Spill

10.1 Site Information

This parcel is associated with Building 747 (Figure 10-1). A visual inspection was attempted at this building; however, access to the building and the surrounding areas was denied. The tank list shows that there is a 4,000 gallon fuel oil underground storage tank (SRN 44) associated with this building that has been in service since 1982. No release has been documented for this tank. An interview conducted during the mid-EBS meeting in January 1996 revealed that this building was been used for storage of battery acids and paints and that releases of petroleum product and solvents have occurred.

No sampling was performed at this site during the field program. The site was addressed in a Underground Storage Tank Closure Report prepared for Seneca Army Depot by Environmental Products and Services (1998). The pertinent findings of this report are described below.

10.2 Investigation Summary

The 4,000-gallon fiberglass underground fuel oil storage tank near Building 747 was removed as part of the closure of seven other tanks at SEDA. During the closure, six soil samples were collected from the floor and walls of the tank pit excavation. Analytical results of these soil samples showed that no volatile organics or semivolatile organics were detected in the samples.

Analytical results of a ground water sample collected from a monitoring well installed in the center of the excavation pit showed that 12 target analytes were detected. Five of these compounds were found at concentrations above guidance values set forth in NYSDEC STARS Memo #1. These five compounds, and their concentrations, are as follows: n-butylbenzene (9.3 ppb, naphthalene (43.0 ppb and 21 ppb), 1,2,4-trimethylbenzene (34.3 ppb), 1,3,5-trimethylbenzene (11.0 ppb), and total xylenes (14.5 ppb). Also, the concentrations of three of these compounds (total xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) are above their respective NYSDEC GA standards of 5 ppb.

According to a February 11, 1998 letter from NYSDEC, the status of the site (Spill No. 9712298 - Building 747) is that "groundwater contamination above STARS criteria" exists at the site. Furthermore, NYSDEC's status letter "requests that the tank pit well be resampled in May 1998 and ground water analyzed using Method 8021." They note that "further work, if any, will be determined upon receipt of the analytical results."

Recommendation: As indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that an additional groundwater sample be collected from the tank pit well at SEAD-123C and analyzed using methods specified by NYSDEC. The results should be submitted to NYSDEC and, after they have reviewed the results, a request of the status of the site should be made by SEDA.

11.0 SEAD-123D - Area West of Building 715

11.1 Site Information

This parcel is associated with open land north of Building 715 (Figure 11-1). A visual inspection of this area during the 1995 EBS revealed several suspected mounding areas and a rusty drum protruding from a mound of soil. No evidence of soil staining or groundwater contamination could be determined from the visual inspection. During the 1995 EBS, interviewees were asked if they had any knowledge of this area, but no one had any information.

The purpose of the investigation was to determine if the soils in the mounds or debris areas have been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil.

11.2 Investigation Summary

The site is comprised of a 4.6-acre triangular shaped area that is mostly wooded (Figure 11-1). Six locations within the area showed signs of disturbance. The disturbed areas consisted of either low mounds of dirt and/or surface debris consisting of construction material or rusted drum fragments.

A detailed visual inspection of the area west of Building 715 was performed and all of the mounds within this area were identified. Five areas/mounds that were considered most likely to

have been impacted based on visual inspection were identified in the area. Five test pits were excavated, one at each of the five areas/mounds, and two soil samples were collected from each pit (Figure 11-1). The rationale for the test pit sample locations is provided in Table 11-1.

The results of the laboratory analyses are presented in Tables 11-2 through 11-9. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- Two volatile organic compounds (acetone and methyl ethyl ketone) were found in the soils at the site. Acetone was found in six of the samples at concentrations below the TAGM (between 10 µg/Kg and 17 µg/Kg), however, in one sample it was found at 660 µg/Kg, which is 3.3 times the TAGM. Methyl ethyl ketone was found in only one sample at a concentration below the TAGM. It is likely that these compounds are laboratory artifacts and are not believed to be indicative of the true soil chemistry at SEAD-123D.
- No semivolatile organic compounds were found at concentrations that were above their respective TAGM values. The semivolatile organic compounds were mostly PAHs with a few phthalate compounds.
- TPH were found in soil samples at three of the five test pits excavated. At TP123D-2 and TP123D-3 TPH concentrations were between 22.1 mg/Kg and 39.4 mg/Kg only in near surface (0.5 foot depth) soil samples. At TP124D-4, the TPH concentrations of 115 mg/Kg and 221 mg/Kg were found in samples collected from 0.5-foot and 1.0-foot depths, respectively. There is no TAGM for TPH.
- Four metals were found in the soil samples at concentrations that were slightly above their respective TAGM values, however, these exceedences were only 1.1 to 1.8 times greater than the TAGMs for these metals. The relatively low magnitude of the exceedences suggests that they are likely to result because of natural variability in the metals concentrations in the soil, and not from impacts from on-site activities. Specifically, the metals that exceeded the TAGMs, and the magnitude of their exceedences (shown in parentheses), are as follows: lead (1.1 1.4 times); manganese (1.8 times); mercury (1.3 times); and zinc (1.5 times).
- No pesticides or PCBs were found at concentrations that exceeded TAGM values. The two pesticides that were found (4,4-DDE and 4,4-DDT) were detected at concentrations well below their respective TAGM values (two of the detections were estimated, because they were below the contract required detection limit).

Comparison to Residential PRGs:

- None of the concentrations of volatile organics, semivolatile organics, or pesticides/PCBs exceeded established PRGs in the soil samples.
- Three metals; Arsenic, Beryllium and Iron were detected at levels above their respective PRG, but were below their TAGM values.

• There is no Residential PRG value for lead, although the site maximum value of 31.4 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use.

Recommendation: Based on professional judgment it is recommended that final actions for SEAD-123D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

12.0 SEAD-123E - Rumored DDT Burial at Ice Rink

12.1 Site Information

This parcel is associated with an area that was rumored to have been used for the burial of empty DDT cans.

The purpose of this investigation was to perform an EM 31 Survey within the area. Upon completion of the survey, the data was reduced and likely EM anomalies (i.e., targets) identified.

12.2 Investigation Summary

The site is comprised of an approximately 300-foot by 200-foot area that contains an rectangular depression in the ground surface that is used seasonally for an ice skating rink; the rink is surrounded by grassy areas (Figure 12-1). A fenced water tower is on the west side of the area and fenced tennis courts exist on the east side.

An EM-31 survey was performed over a 300-foot by 240-foot area that encompassed the former ice rink. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was itself referenced to local anthropogenic features (such as corners in fences, building corners, etc.). Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 12-2 and Figure 12-3. Figure 12-2 shows the measured apparent ground conductivity and Figure 12-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the anomalous features observed in the EM data.

A prominent EM anomaly is visible in both the apparent ground conductivity data and in the inphase response data in the south central portion of the surveyed area, immediately south of the
former ice rink. This area is presumably associated with the suspected buried DDT drums.

Although this location is not below the former ice rink, the lack of an EM anomaly beneath the
rink and the size and amplitude of the EM anomaly immediately south of the rink indicate that
the suspected burial location is indeed south of the rink and that no burial occurred beneath the
rink itself. Two additional EM anomalies are prevalent along the western and eastern boundaries
of the surveyed area, and both are associated with chain-link fencing.

<u>Recommendation</u>: Based on the results of the geophysical survey, it is recommended that the geophysical anomaly south of the ice skating area at SEAD-123E be investigated, and the environmental impact from the anomaly be determined. This is in accordance with the actions defined by Decision No. D in the Decision Criteria Flowchart.

13.0 SEAD-123F - Mound North of Post 3

13.1 Site Information

This parcel is associated with a reported mound in an area north of the Post 3, in the Administration area (Figure 13-1).

The purpose of the investigation was to determine if soil in a mound north of Post 3 has been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil. An EM-31 geophysical survey was also performed.

13.2 Investigation Summary

The site consists of a gradually sloping mound that is approximately 200-feet long, 100 feet wide and 4.5 feet high (Figure 13-1). The mound is located in the northwest corner of a grassy field adjacent to the parking lot at Building 750. both the mound and the field are regularly mowed by SEDA maintenance staff.

A detailed visual inspection of the area north of Post 3 was performed and the mound was identified. A test pit was excavated and two soil samples were collected from the pit (Figure 13-1). The test pit was excavated at the north end of the mound where there were signs of past excavating activities and stressed vegetation. The rationale for the sample locations is provided in Table 13-1. In addition, a geophysical survey was performed at TP123F-1 to determine if there were any anomalies in the mound.

An EM-31 survey was performed over a 400-foot by 200-foot area that encompassed the soil mound near Post 3. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was itself referenced to local anthropogenic features (such as corners in fences, building corners, etc.) and to the staked boundaries of test pit TP123-F, which was excavated into the soil mound. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 13-2 and Figure 13-3. Figure 13-2 shows the measured apparent ground conductivity and Figure 13-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the anomalous features observed in the EM data.

No EM anomalies were observed that could be associated with buried metallic objects. A large amplitude anomaly is visible in both the apparent ground conductivity and the in-phase response data along the western boundary of the surveyed area, and is associated with a chain link fence. Intermittent medium amplitude anomalies are also observed along the northern boundary of the

surveyed area, and these too are associated with chain link fencing. A low amplitude apparent ground conductivity is visible over the area of the soil mound, but is a product of the EM-31 instrument being slightly higher above the local terrain while it was carried over this portion of the survey area. Since the EM-31's apparent ground conductivity response is proportional to the instrument's elevation above the local terrain, an increase in the instrument's height above the local terrain will result in a slightly reduced apparent ground conductivity measurement. (The EM-31 instrument is factory calibrated to measure apparent ground conductivity in a homogeneous space one meter below the instrument; by increasing the amount of open space below the instrument decreases the absolute conductivity of the space below the instrument that is being surveyed.)

The results of the laboratory analyses are presented in Tables 13-2 through 13-9. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- No volatile organic compounds were found at concentrations that exceeded their respective TAGMs. Only one compound (acetone) was found in one sample; it was found at an estimated concentration below the CRDL.
- No semivolatile organic compounds were found at concentrations that exceeded their respective TAGMs. The semivolatiles were mostly PAHs, although one phthalate compound was found. All of the compounds found were detected at estimated concentrations.
- No TPH were detected in the soil samples.
- No metals were found at levels that exceeded their respective TAGMs.
- No pesticides or PCBs were detected in any of the soil samples.

Comparison to Residential PRGs:

None of the concentrations of volatile organics, semivolatile organics, or pesticides/PCBs exceeded established Residential PRGs in the soil samples. Only two metals (arsenic and beryllium) exceeded their respective Residential PRGs. The exceedences were 8.6 times and 11.4 times for arsenic and 2.1 times and 1.7 times for beryllium.

Recommendation: Based on professional judgment it is recommended that final actions for SEAD-123F, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

14.0 SEAD-46 - Small Arms Range

14.1 Site Information

This parcel is associated with a small arms range that was used for testing firing tracers and 3-1/2-inch rockets. This area corresponds to one of the previously identified SWMUs (SEAD-46) (Figure 14-1).

This site was originally included in the list of moderate EBS sites, but work at this site was postponed because of specific UXO concerns.

15.0 SEAD-68 - Old Pest Control Shop (Building S-335)

15.1 Site Information

This parcel is associated with the reported former pest control shop in Building S-335. This site is one of the previously recognized SWMUs (SEAD-68) (Figure 15-1). No documented or visual evidence of a release has been discovered. However, NYSDEC has classified this area as an Area of Concern (AOC) and the Seneca Army Depot Activity agrees.

The purpose of the investigation was to determine if surface and subsurface soils around the Old Pest Control Shop have been impacted by the activities at the shop. The constituents of concern are volatile organics, semivolatile organics, pesticides (including organophosphorous pesticides), herbicides, and arsenic in soil.

15.2 Summary of Investigation

This area is comprised of a 100-foot by 40-foot single story wooden building, the Old Pesticide Control Shop, which is located on the corner of Avenue C and 3rd Street (Figure 15-1). The building is surrounded on the west, north and east sides by narrow grassy areas. There are doors located on these three sides of the building. A large garage (bay) door entrance is on the southern end of the building. Beyond the grassy areas to the north and east is an asphalt and gravel (i.e., crushed shale) area that is used for vehicle parking and staging. A 50-foot concrete driveway extends from the bay door to the intersection of Avenue C and 3rd Street.

Surface soil sampling and soil borings were performed at this site. A total of five surface soil samples were collected near doorways on the outside of the building (Figure 15-1). Three of the samples were collected near three doors on the west, north, and east sides of the building. The other two samples were collected from locations to the northwest and southeast of the large garage door. Two soil borings were performed on either side of the large garage door, beyond the surface soil sample locations mentioned above (Figure 15-1). The borings were in grassy areas that are likely disposal areas because of the good infiltration in the areas and because these areas are near drainage ditches. The rationale for selecting the sample locations is provided in Table 15-1.

The results of the laboratory analyses are presented in Tables 15-2 through 15-9. These results were compared to the NYSDEC TAGMs and the Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGM:

 Six volatile organic compounds were found in the soil at SEAD-68, however, their concentrations were all below their respective TAGMs. The two most frequently occurring compounds were acetone and toluene, which were present in a majority of the samples. These two compounds are common laboratory contaminants. The other compounds (benzene, chloroform, total xylenes, and trichloroethene) were found at estimated concentrations between 2 ug/Kg and 5 ug/Kg only in the two subsurface soil samples.

- The semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however, five phthalates were also found in the soil samples. Four of the PAH compounds exceeded their respective TAGMs in the surface soil samples collected immediately around Building S-335; one exceedence (1.2 times the TAGM) was found in the surface soil sample at SB68-2. The maximum exceedences for the PAHs were as follows: benzo(a)anthracene (4.1 times); benzo(b)pyrene (12.6 times); chrysene (2.5 times); and dibenz(a,h)anthracene (16 times).
- Six pesticide compounds were found in the soils at SEAD-68. They were found in all samples except for those collected at SB68-1. One of the compounds detected, 4,4'-DDT, was found at a concentration (4,000 ug/Kg) that was 2 times its TAGM in surface soil sample SS68-4, which is located outside a door on the northwest side of Building S-335. Also, three other compounds were found at their highest concentrations in this sample. The other compounds found in the samples collected on-site were 4,4'-DDE, alpha-chlordane, endrine ketone, gamma-chlordane, heptachlor epoxide.
- Two herbicide compounds (2,4,5-T and 2,4-DB) were found in one soil sample, SS68-4, which was collected outside the door on the northwestern side of the building. Both of these concentrations were well below their respective TAGMs.
- The concentrations of arsenic in were below the TAGM in all of the samples, except for one (SS68-4). In this sample the TAGM was exceedence was relatively low (1.3 times).

Comparison to Industrial PRGs:

• No Industrial PRGs were exceeded in the soil samples for the volatiles, semivolatiles, pesticides, and herbicides analyses. Arsenic exceeded the Industrial PRG in all but one of the soil samples, however, the exceedences were generally low, between 1.02 times and 3.0 times the PRG. In more than half the samples the arsenic exceedences were less than 2 times the PRG. The maximum exceedence (3.0 times) was in the surface soil sample SS68-4.

<u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from pesticides (particularly 4-4'-DDT) on the southwest side of the building at SEAD-68. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment.

16.0 SEAD-120A - 50 Area Dumping Areas

16.1 Site Information

This parcel is associated with dumping areas that are reported to exist in the "50 Area" west of Seneca Road and south of Indian Creek Road (Figure 16-1). Two of the dumping areas were

observed to contain concrete blocks and fill dirt. One had steel drums and one is believed to be a former railroad dump containing railroad ties and scrap metal.

The purpose of the investigation was to determine if subsurface soils have been impacted by the dumping that occurred in this area (the locations of these samples were not based upon the results of the geophysical survey). A geophysical investigation was used to identify other areas where material may have been buried. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, pesticides/PCBs, and herbicides in soil.

16.2 Investigation Summary

The site is comprised of an irregularly shaped area located in the southwestern corner of the Depot (Figure 16-1). It is comprised of mostly wooded land and low brush areas, and within these areas are railroad tracks, a dirt road, open areas and soil/debris mounds. Most of the woodlands are located in the central and southwestern portions of the site, and the remaining areas are dominated by low brush. A railroad line passes through the southern portion of the site and extends north through the north-central portion of the site; a dirt road parallels the railroad tracks that pass through the southern portion of the site. Several conspicuous, open areas are located on the eastern and western sides of the railroad tracks (in the western portion of the site), where they begin to head due north toward Indian Creek Road. The areas are generally lower in elevation than the surrounding terrain near the roadway and railroad tracks, and they are characterized by uneven ground. In addition, soil/debris mounds were identified along the perimeter of the site, near roads or railroad tracks. No roads that would provide access to interior locations of the site were identified during the inspection.

EM-31 geophysical surveys were performed to identify locations where oil or hazardous materials may have been buried. The geophysical surveys were performed in six different areas within site 120A. These locations were chosen because they are suspected staging areas or conspicuous open areas where access is provided to them by nearby roads and/or railroad tracks. These locations were identified based on a review of aerial photographs, site inspection information, and discussions with SEDA environmental personnel. Areas 1 and 2 are to the west and east of the railroad tracks, respectively, where the tracks begin to head due north toward Indian Creek Road. Areas 3 and 4 are located east of the railroad tracks, to the south and north, respectively, of the small pond that was associated with the munitions washout facility (SEAD-4). Area 5 is located near Seneca Road west of igloo E0801. The last area (Area 6) is located west of Silver Creek, approximately 500 feet south of igloo E0806.

An EM-31 survey was performed in the six different areas as previously described. All of these areas are believed to have been the most likely to have been used for disposal purposes, if disposal actions have actually occurred in SEAD-120A. The EM-31 survey was performed at each location by collecting EM measurements every one second along parallel survey lines. These lines were spaced 20 feet apart. The local survey grid that was established at each location was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after each survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 16-2 through 16-9. Figures 16-2, 16-4, 16-6 and 16-8 show the measured apparent ground conductivity at the various survey locations, and Figures 16-3, 16-5, 16-7 and 16-9 show the

measured in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data.

No EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data at any of the six areas surveyed. At each surveyed area, the apparent ground conductivity and in-phase response data are interpreted to be representative of natural site conditions. There are no indications that disposal of metallic debris has occurred at any of the six areas, nor is there any indication of soils with increased or decreased apparent ground conductivities that may have been caused by leaching or run-off from disposal materials.

A total of five test pits were performed within the site and two soil samples were collected at each test pit (Figure 16-1). The samples were collected at the locations of soil/debris mounds near roads and railroad tracks, which are areas that would allow easy access for dumping; these locations were not based on the results of the geophysical survey, which investigated material that may have been buried. The mounds that were investigated were those that were the most easily accessed and had signs that they contained debris (anything other than topsoil). The degree of accessibility, as well as the relative amount and type of debris in the mound, were the main criteria for choosing the mounds to be investigated. The rationale for selecting the sample locations is provided in Table 16-1.

The results of the laboratory analyses are presented in Tables 16-2 through 16-11. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- No volatile organic compounds were found at concentrations above their respective TAGMs. The volatiles that were found included acetone, chloroform, methylene chloride, and toluene, most of which were found at estimated concentrations in the samples
- The semivolatile organic compounds detected in the soils on-site were mostly PAHs and phthalates, however, none of these compounds were found at concentrations above their respective TAGMs. The concentrations for all of the semivolatile compounds were estimated. The PAHs, which comprised the majority of the compounds detected, were found mostly at TP120A-2 and TP120A-5.
- No TPH were found at concentrations above the detection limit at four of the five test pit locations; at one test pit location, TP120A-2, no TPH sample was collected due to an oversight in the field. No TAGM has been established for TPH.
- Five metals exceeded their respective TAGMs, however, these exceedences were mostly in the two samples collected at TP120A-2. The metals that exceeded the TAGMs were chromium (1.05 times), copper (1.7 times), iron (1.2 times), lead (2.8 times), and thallium (2.4 times). The magnitude of these metals exceedences suggests that they may be due to the natural variability of the concentrations of these metals in the soil.
- Four pesticide compounds were found at two test pit locations at SEAD-120A, however, the detected concentrations were well below their respective TAGMs. Estimated concentrations of 4,4'-DDT were found at TP120A-3 and TP120A-5. The subsurface soil sample at

TP120A-5 also contained the compounds alpha-BHC, Delta-BHC, and Gamma-BHC (Lindane). No PCBs were detected in the samples.

No herbicides were detected in the soil samples collected from the test pits in the mounds.

Comparison to Recreational PRGs:

- No Recreational PRGs were exceeded in the soil samples analyzed for volatile organics, semivolatile organics, metals, pesticides/PCBs, and herbicides.
- There is no Recreational PRG value for lead, although the site maximum of 68.3 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use.

Recommendation: Based on professional judgment it is recommended, as outlined under Decision No. B in the Decision Criteria Flowchart, that the final actions at SEAD-120A include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

17.0 SEAD-120B - Ovid Road Small Arms Range

17.1 Site Information

This parcel is associated with the location of a small arms range. Interviews during the 1995 EBS indicated that this area had been used a small arms range. During the EBS fieldwork, a visual inspection of the area revealed a 250-foot-long arcuate berm with a dirt track road leading to it (Figure 17-1).

The purpose of the investigation was to determine if subsurface soils in the former small arms range have been impacted by the activities at the range. The constituents of concern are semivolatiles, metals, and explosives in soil.

17.2 Investigation Summary

The site is comprised of a 200-foot long arcuate soil berm that opens to the southwest (Figure 17-1). There is an approximately 290-foot dirt road that leads from the patrol road to the base of the berm, which is covered with brush and vines. At the base of the berm, beneath the brush, there are three steel posts that are believed to be the supports for target mounting frames. Three buried 4-inch diameter clay pipes (which protruded a few inches above the ground surface) were also found at the base of the berm. Because these locations correspond with the identified target backstop locations, they may have been used as removable target post receptacles.

A total of six soil samples were collected at locations behind each of the target locations within the berm (Figure 17-1). The samples were collected at locations immediately behind the target posts; these locations are believed to be impact points for the shots. The impact points were verified by the presence of bullets, mostly copper jacketed 0.45 and 0.38 caliber, which are typically used with sidearms. There was also evidence of more recent activity at this site because two plastic ammo boxes and a 6-foot belt of live 5.56 NATO blank rifle rounds were found in front of the berm. Manufacturer markings and a lack of corrosion on these materials

Buildings 816 and 817 were associated with a classified mission. The majority of Building 816 was not available for inspection during the EBS. Interview with a radiation protection officer revealed that a potential release of radionuclides occurred within the area of these buildings. Two radiation screening rooms, both with venting leading directly outside the buildings, were also observed. Aerial photograph analysis during the 1995 EBS also revealed disturbed ground directly west of Building 816. A visual inspection of this area during the 1995 EBS confirmed that the area was disturbed. Interviews and records searches did not confirm or deny that burial activities had occurred in this area.

18.2 Investigation Summary

No sampling was conducted at this site (Buildings 813-817) because it is being investigated under the SEAD-12 RI/FS program.

19.0 SEAD-120D - MP Refueling Island in the Q

19.1 Site Information

This parcel is associated with a former Military Police (MP) refueling station located northwest of Building 810 (Figure 19-1). According to the EBS report, two above ground storage tanks (SRNs 50 and 51), which date to 1963, are presently located behind Building 810. Both of these tanks had a 550-gallon capacity and were used to store fuel oil. A visual inspection during the 1995 EBS did not reveal any staining or stressed vegetation. However, interviews with base personnel during the EBS revealed that the MPs fueled their vehicles in this area on daily basis. Interviewees were certain that they had witnessed frequent spilling of petroleum products.

According to SEDA personnel interviewed for this investigation of the moderate EBS sites, the MP refueling island is located approximately 250 feet northwest of Building 810 and, thus, the two above ground fuel oil storage tanks (SRNs 50 and 51) behind Building 810, which were mentioned in the EBS report, were not part of the MP refueling island. According to SEDA personnel, these two tanks are currently located behind Building 810, but they are scheduled to be removed later in 1998.

The purpose of the investigation was to determine if soils near the refueling island have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics and TPH in soil.

19.2 Investigation Summary

This site is comprised of a 100-foot by 50-foot former pumping island located at the intersection of the "Q" Partrol Road and Service Road #1, approximately 250 feet northwest of Building 810 (Figure 19-1). A 2,000-gallon gasoline underground storage tank and pumping station were located on this island to provide MPs with fuel for their vehicles if an extended "Q" area lock-up occurred. The underground storage tank and pump were removed in approximately 1988. The island is presently covered with low grass, low brush and gravel.

Two surface soil samples were collected from locations on the island (Figure 19-1). Also, one soil boring was performed on the western (downgradient) portion of the island; the groundwater flow direction is expected to be to the west based on the westwards slope of the ground surface

in the area of the refueling island. The rationale for selecting the surface soil and soil boring locations is provided in Table 19-1.

The results of the laboratory analyses are presented in Tables 19-2 through 19-5. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- Two volatile organic compounds, acetone and toluene, were detected in the soil samples. However, none of the concentrations of these volatiles were found above their respective TAGMs; while acetone did exceed the TAGM in one sample, its concentration in the duplicate sample was well below the TAGM. Both acetone and toluene are potential laboratory contaminants.
- The semivolatile organic compounds detected in the samples included mostly PAHs and three phthalate compounds. Two of the PAHs, benzo(a)pyrene and dibenz(a)anthracene, exceeded their respective TAGMs in soil. The exceedences for these compounds were found in both surface soil samples, however, only dibenz(a,h)anthracene exceeded the TAGM in the surface soil sample taken at the soil boring. The magnitudes of the two PAH exceedences were generally between 1.2 and 1.6 times in the samples, however, in the surface soil sample at SS120D-2 the exceedences were 3.3 times and 6.6 times the TAGM.
- TPH were found in the two surface soil samples and the surface sample collected at the soil boring; TPH was not found in the subsurface sample at the soil boring. The concentrations detected ranged from 43.6 mg/Kg to 181 mg/Kg. There is no TAGM for TPH.

Comparison to Recreational PRGs:

• None of the concentrations of volatile organics and semivolatile organics exceeded established Recreational PRGs.

Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120D, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

20.0 SEAD-120E - Near Building 2131, Possible DDT Disposal

20.1 Site Information

This parcel is associated with debris east of Booster Station 2131 and a possible DDT disposal area (Figure 20-1). This area corresponds with one of the previously identified SWMUs (SEAD-58). An ESI conducted by Engineering Science, Inc. indicates that the soils, groundwater, and surface water have not been impacted by any of the constituents for which analyses were conducted. The sediment in the drainage swales in the area is the only medium that has been impacted by releases of PAHs.

The purpose of the investigation was to use geophysics to locate an area that is the possible DDT disposal area and to determine if soil in this area has been impacted by pesticides. In addition, impacts to sediment in nearby drainage ditches were investigated. The constituents of concern are pesticides in soil and sediment.

20.2 Investigation Summary

This site is associated with Booster Station 2131, which is near the western boundary of the Depot (Figure 20-1). A visual inspection of the area verified the debris pile to the east of the building, which was described in the EBS report. The pile consisted of gravel and construction debris. Many underground utilities are located in the area immediately surrounding the building. A mowed area, which has traces of construction debris (e.g., scrap piping, lumber, concrete fragments) on the ground surface, extends approximately 50 feet north of the access road to Building 2131. The mowed area is bordered on the north side by a drainage ditch that is next to thick woods. The drainage ditch appeared to collect water from areas near Building 2131 and discharge it both to the east, toward a small brook, and to the west, toward another ditch along West Patrol Road. Surface water in the ditch along West patrol Road appeared to flow south along the road and discharge into Kendaia Creek.

An EM-31 survey was performed over an area approximately 200 feet long by 200 feet wide, located in the area surrounding Building 2131. This area is suspected to have been the site of DDT disposal. The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 20-2 and 20-3. Figure 20-2 shows the measured apparent ground conductivity and Figure 20-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data.

No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data that could be associated with disposal locations. A linear anomaly of high apparent ground conductivity and high in-phase response measurements is visible from the eastern wall of Building 2131 to the eastern boundary of the surveyed area. This anomaly is presumably associated with buried utilities, which are known to be present in the area of this feature. Variations in both the apparent ground conductivity and the in-phase response measurements observed in the vicinity of Building 2131 are caused by the building itself. Two additional anomalies, both in the southwestern portion of the surveyed area, are associated with anthropogenic features observed during the survey (a Kendaia Creek overpass for West Patrol Road and the SEDA property fence). No anomalies were observed that could be associated with the burial of metallic debris or the disposal of DDT.

Two soil samples were collected from a soil boring performed at a location north of Building 2131. The soil boring location was chosen because it was the only place where a small magnetic anomaly was found during a sweep of the open area north of the building using a Fisher TW6 hand-held metal detector. The instrument was set at maximum sensitivity and registered a small needle deflection in this location. The presence of the small anomaly, which was location in an

open grassy area that would have been easily accessible for digging, suggested that this location was the best candidate for potential burial of the DDT, given that no significant anomalies were found in the EM-31 survey. The potential that the DDT burial occurred in the immediate vicinity of the building and to the east of the building is low because of the buried utilities. In addition, three sediment samples were collected in the drainage ditches that surround the soil boring (Figure 20-1). The rationale for selecting the boring and sediment sample locations is provided in Table 20-1.

The results of the laboratory analyses are presented in Tables 20-2 through 20-4. These results were compared to NYSDEC TAGMs and NYS sediment criteria; no PRGs have been established for sediment. The results of the comparisons are given below.

Comparison to Soil TAGMs and Sediment Criteria:

- No pesticide compounds were found at concentrations above their respective TAGMs. However, four compounds (4,4'-DDT, alpha-chlordane, endosulfan II, and heptachlor expoxide) were found in the surface soil sample SB120E-1 at estimated concentrations that were well below the TAGMs.
- No pesticide compounds were found at concentrations above their respective NYS sediment criteria, however, three compounds (4,4'-DDD, 4,4'-DDE, and 4,4'-DDT) were detected, mostly at estimated concentrations.

Comparison to Recreational PRGs:

- None of the concentrations of pesticides found in the soil exceeded the Recreational PRGs.
- No Recreational PRGs have been established for sediment.

Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120E, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

21.0 SEAD-120F - Munitions Burial Sites, South End of the Main Depot

21.1 Site Information

This parcel is associated with an area that is suspected to be an ammunition burial/disposal area. Interviews conducted during the 1995 EBS identified that burial of ammunitions took place in this general location (Figure 21-1).

The purpose of the investigation was to use geophysics to identify potential munitions burial sites in the south end of the Main Depot. No sampling or analyses were proposed at the site or in the nearby areas (i.e., Silver Creek) for this field investigation because the potential munitions burial sites have not yet been identified by the geophysical survey.

21.2 Investigation Summary

The site is located in the southern portion of the Depot (Figure 21-1). The site is comprised of an approximately 1,300-foot by 600-foot rectangular area that trends southeast-northwest in an area of dense brush and other vegetation. This open area is bounded on the north by storage igloos, on the east by Sliver Creek, to the south by railroad tracks, and to the west by the Munitions Washout Facility (SEAD-4).

The field program consisted of an EM-31 geophysical survey of the rectangular area (approximately 600 feet by 1,400 feet) located to the east of the former munitions washout building (Figure 21-1). This area is suspected to have been the site of munitions burials. The EM-31 survey was performed by collecting EM measurements every one second along parallel, northeast-southwest oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figures 21-2 and 21-3. Figure 21-2 shows the measured apparent ground conductivity and Figure 21-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data.

No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data. Three areas with slightly increased apparent ground conductivity were identified, one in the northwestern corner of the surveyed area, one in the eastern-central portion of the surveyed area, and one in the southern corner of the surveyed area. There are no associated anomalies visible in the in-phase data for any of these areas, and these slight increases in the measured apparent ground conductivity are interpreted to be caused by an increase in the overburden thickness and/or by an increase in the soil moisture content. No anomalies were observed that could be associated with the burial of metal cased munitions.

Recommendation: Based on the results of the geophysical survey, it is recommended that final actions for SEAD-120F, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

22.0 SEAD-120G - Mounds at the Duck Ponds

22.1 Site Information

This parcel is associated with several areas of mounds located at the Duck Ponds area (Figure 22-1). One area [109(7))] consists of earthen mounds that may be related to a small arms range that was reported in this area. It could not be determined if these mounds were in fact the location of a small arms range that was reported in an interview during the 1995 EBS. Therefore, an accurate designation of this area could not be determined in the EBS.

The other three areas [110 (7), 111(7), and 112(7)] are suspected mounds in the Duck Ponds Area that were observed during the 1995 EBS. The contents of these mounds could not be determined during the EBS.

The purpose of the investigation was to determine if soils in the mounds at the Duck Ponds Area have been impacted by contaminants. Because there are numerous mounds at the Duck Ponds, the approach was to investigate 5 representative mounds, based on the potential for impacts given the observed surface indicators (i.e., debris and stressed vegetation), and secondly based on the geographic distribution within the Duck Ponds Area. Three of these mounds (mentioned above) were previously identified in the EBS report. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs in soil.

22.2 Investigation Summary

The site is comprised of a large area surrounding the Duck Ponds, which extends to the west to the Ammo Area perimeter. Throughout this area are numerous earthen mounds and berms ranging from minor ground disturbances to a pile of soil 30-feet high. According to SEDA personnel, these mounds were made during an extensive history of road building, land clearing and other excavation activities at the Depot over the past 45 years; included in this was the construction of the Duck Ponds. In interviews, SEDA personnel described a standard practice of skimming and stockpiling topsoil into mounds for future use during road and facility construction. Material excavated from the Duck Ponds was deposited to form some of the mounds in the area. In addition, staging areas were formed along East Patrol Road by grading the land surface, which formed berms on the flanks of the staging areas.

The field program included five test pits in five separate mounds. Two soil samples were collected from each pit (Figure 22-1). Three of the mounds chosen for test pitting were identified in the EBS report (and noted above), and the other two mounds/disturbed areas were identified during the site inspection. These two mounds/areas were chosen to be investigated because they were in areas of the site that would provide good geographic coverage of the Duck Ponds area, considering that no other mounds in the Duck Ponds area showed significantly greater evidence for impacts based on surface observations. All five of the mounds investigated are well distributed throughout the Duck Ponds Area. The rationale for choosing these sample locations is provided in Table 22-1.

No mounds were left uninvestigated that showed a greater potential for having impacts (based on observation of the surface of the mounds) so that better geographic coverage could be obtained. Geographic coverage was considered only after determining that there were no mounds believed to be more impacted than others, based on the types of surface debris noted of the presence of stressed vegetation.

The results of the laboratory analyses are presented in Tables 22-2 through 22-9. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- No volatile organic compounds were exceeded their respective TAGMs in the soil samples.
- No semivolatile organic compounds exceeded their respective TAGMs in surface or subsurface soil. The semivolatile compounds detected were mostly PAHs (nearly all at estimated concentrations). Also, several phthalate compounds were found in many of the samples (again, mostly at estimated concentrations).

- TPH concentrations were below the detection limit in all samples, with the exception of one sample. This sample had a concentration that was near the detection limit for the method. There is no TAGM for TPH.
- Five metals exceeded their respective TAGMs, however, the magnitudes of these exceedences were relatively low. The exceedences for the metals (aluminum, arsenic, lead, manganese, and thallium) were generally less than two times their respective TAGMs. The magnitude of these metals exceedences suggests that they may be due to natural variability of the concentrations of these metals in the soil.
- No pesticides or PCBs were detected in the soil samples collected at the mounds.

Comparison to Recreational PRGs:

- None of the concentrations of volatile organics, semivolatile organics, metals or pesticides and PCBs exceeded their respective Recreational PRGs in the soil samples.
- There is no Recreational PRG for lead, although the site maximum of 38 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use.

Recommendation: Based on professional judgment, it is recommended that final actions for SEAD-120G, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions.

23.0 SEAD-120H - Building 810

23.1 Site Information

Building 810 was not inspected during the 1995 EBS because access to the entire site was denied based on the classified mission of the building (Figure 23-1).

23.2 Investigation Summary

No sampling was performed at this site because it is being investigated under the SEAD-12 RI/FS program.

24.0 SEAD-120I - Building 819, A0101 and A0102

24.1 Site Information

During the EBS, a visual inspection of Building 819 was performed, but its mission could not be described (Figure 24-1). A visual inspection was attempted of the ammunition storage igloos A0101 and A0102 and the surrounding area, however, access to this area was denied based on the classified mission of the area.

24.2 Investigation Summary

No sampling was performed at this site. Building 819 is being investigated under the SEAD-12 RI/FS program. Igloos A0101 and A0102 are not currently included in the SEAD-12 RI/FS Workplan, but they will be added to the work to be conducted at SEAD-12.

25.0 SEAD-120J - Farmer's Dump

25.1 Site Information

This parcel is associated with a location that was reported to have been used for dumping by a local farmer (Figure 25-1). The dumping location was reported to be west of the main Depot along Kendaia Creek.

The purpose of the investigation was to determine if surface soils within the Farmer's Dump have been impacted by oil or hazardous materials. The constituents of concern are volatile organics, semivolatile organics, TPH, metals, pesticides/PCBs, and herbicides in surface soil.

25.2 Investigation Summary

The site is located on the north side of Kendaia Creek, approximately 1,800 feet west of Route 96A (Figure 25-1). It is characterized by a dumping area along an approximately 400-foot long section of an escarpment along Kendaia Creek; the dumping area was clearly apparent using visual observation. The debris in the dumping area, however, was generally concentrated in two areas, which are marked by an "x" on Figure 25-1. The dumping in the western location spans approximately 80 feet of a 28-foot-high wooded ravine along Kendaia Creek. The extent of the dumping in the eastern location was smaller. In these two locations, the debris consists of scattered bottles, cans, broken tools, construction debris, and animal carcasses (i.e., pig body parts). With the exception of some soda cans and the pig carcasses, the rest of the debris appeared to have been dumped at these locations at least several years ago; the pig carcasses are believed to have been dumped more recently based on the strong odor in the air. These dumping locations appear to have been chosen because the ravine is steeper and wider in these areas than in the surrounding areas, which allowed more debris to be dumped.

Five surface soil samples were collected from locations immediately downgradient of the dumping areas along the escarpment (Figure 25-1). The areas were chosen because they were locations where there was significantly more debris compared to other areas, and because the contents of the debris indicated that there was a potential for a release of oil or hazardous materials. The rationale for the sample locations is provided in Table 25-1.

The results of the laboratory analyses are presented in Tables 25-2 through 25-11. These results were compared to NYSDEC TAGMs and Recreational PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

 No volatile organic compounds were found at concentrations that exceeded their respective TAGMs. Only two compounds (acetone and toluene) were found in the samples. Acetone was found in one sample, but it was also found in the laboratory blank sample. Toluene was found at estimated concentrations in all of the samples. These two compounds are likely to be laboratory contaminants.

- No semivolatile organic compounds were found at concentrations that exceeded their respective TAGMs. The semivolatiles were mostly PAHs, although two phthalate compounds were found. All of the compounds found were detected at estimated concentrations.
- TPH were found in three of the four samples at concentrations that were between 23.7 mg/Kg and 71.4 mg/Kg. The one sample that did not contain detectable concentrations of TPH was SS120J-3. No TAGM has been established for TPH.
- Three metals were found at concentrations that exceeded their respective TAGMs. Among these, lead was found to exceed the TAGM in all four samples. Its TAGM exceedences ranged between 1.2 times and 5.9 times. The two other metals, copper and zinc, exceeded their TAGMs in only one sample (SS120J-3), and the exceedences were approximately 2 times the TAGM.
- None of the pesticides detected on the site were found at concentrations above their respective TAGMs. The pesticide compound 4,4'-DDT was detected in two of the soil samples (SS120J-2 and SS120J-3) at estimated concentrations that were well below the TAGM. The compound 4,4'-DDE was found in only one sample (SS120J-3), also at an estimated concentration that was well below the TAGM.
- No herbicides were found at concentrations above the detection limits.

Comparison to Recreational PRGs:

- None of the concentrations of volatile organics, semivolatile organics, metals, pesticides and PCBs, or herbicides exceeded established Recreational PRGs in the soil samples.
- There is no Recreational PRG for lead, although the site maximum value of 144 mg/Kg is below the agreed upon screening level of 400 mg/Kg for residential land use.

Recommendation: Based on professional judgment it is recommended that final actions for SEAD-120J, as outlined under Decision No. B in the Decision Criteria Flowchart, include: 1) a no action SMWU designation on all applicable permits and 2) that regulators be notified by SEAD that the site will be designated as no further action with no reuse restrictions. In addition, any future use of this site should consider the presence of the trash and animal carcasses (i.e., odor nuisance).

26.0 SEAD-121A - USCG HALON DISCHARGE

26.1 SITE INFORMATION

This parcel is the LORAN-C building (Figure 26-1). Interviews revealed that in 1995 there was a 100-pound accidental release of halon in the control room of this building. The control room was evacuated and ventilated, and the released materials were cleaned up. No other actions were taken.

No field work tasks were performed at this site.

27.0 SEAD-121B - BUILDING 325 PCB OIL SPILL

27.1 SITE INFORMATION

This parcel is an area to the north of Building 325 where PCBs were reported to have been spilled (Figure 27-1). An interview revealed that 55 gallons of PCB oil were dumped in this location, but the time period is uncertain. It was reported that there was no cleanup of this release, and there is no record that this spill was ever reported to NYSDEC.

The purpose of the investigation was to determine if surface and subsurface soils around Building 325 have been impacted by the spill of PCBs. The constituents of concern are volatile organics, semivolatile organics, TPH, and PCBs.

27.2 SUMMARY OF INVESTIGATION

A visual inspection was conducted at the north side of the warehouse Building 325. On the north side, there is a concrete loading ramp leading from where the trucks park on 4th Street to the concrete loading platform along the side of Building 325. The area west of the loading ramp, between 4th Street and the platform, is mostly gravel with some vegetation. The area east of the ramp slopes down to a shallow drainage area next to railroad tracks running north/south.

There were no signs of staining or stressed vegetation. Samples were collected in low spots and drainage areas in the proximity of the ramp, which were the most likely locations for accidental spills to have occurred.

Surface soil sampling and one soil boring were performed at this site. A total of three surface soil samples were collected from areas which may have been impacted by the release of PCBs. (Figure 27-1). Two of the samples were collected from drainage ditches located downgradient from Building 325. The third surface soil sample was collected next to the steps of the loading ramp at Building 325. The soil boring was performed in a potential run-off area next to the loading ramp to Building 325. The rationale for selecting the sample locations is provided in Table 27-1.

The results of the laboratory analyses are presented in Tables 27-2 through 27-7. These results were compared to the NYSDEC TAGMs and the Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGM:

- Two volatile organic compounds were found in the soil at SEAD-121B, however, their concentrations were all below their respective TAGMs. The two compounds were acetone and toluene. These two compounds are common laboratory contaminants. Toluene was detected in all of the soil samples.
- The semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however, one phthalate was also found in the soil samples. Seven of the PAH compounds exceeded their respective TAGMs in the soil samples collected from the site. The maximum exceedences for the PAHs were as follows: dibenz(a,h)anthracene (150 times); benzo(b)pyrene (149 times); benzo(a)anthracene (42 times); chrysene (30 times); benzo(b)fluoranthene (9 times); benzo(k)fluoranthene (8.8 times); and indeno(1,2,3-cd)pyrene (2 times).
- One PCB compound was found in the soils at SEAD-121B, however the concentration was below the TAGM.
- TPH were found in three soil samples at concentrations above the detection limit.
 Concentrations of TPH ranged from 109 mg/kg to 1360 mg/kg. No TAGM has been established for TPH.

Comparison to Industrial PRGs:

• No Industrial PRGs were exceeded in the soil samples for the volatiles and PCBs analyses. The semivolatile, benzo(a)pyrene, exceeded the Industrial PRG in three of the soil samples and the exceedences were between 1.9 times and 11.0 times the PRG. Benzo(a)anthracene, Benzo(b)fluoranthene, and Dibenzo(a,h)anthracene were found in one sample, SS121B-3 (0 to 0.2 feet) above the PRG.

<u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil sampling be performed to determine the extent of the impacts from semivolatiles at SEAD-121B. The results of this investigation indicate that a release has occurred at the site as evidenced by the presence of PAHs.

28.0 SEAD-121C - DRMO YARD

28.1 SITE INFORMATION

This parcel is associated with the DRMO yard to the west of Building 360 (Figure 28-1). Interviews revealed that hazardous materials such as solvents and PCB oil have been dumped in this area.

The purpose of the investigation was to determine if surface and subsurface soils as well as groundwater have been impacted by the dumping that occurred in this area (the locations of these samples were not based upon the results of the geophysical survey). The constituents of concern are volatile organics, semivolatile organics, TPH, metals, and pesticides/PCBs.

28.2 INVESTIGATION SUMMARY

The site is comprised of a triangularly shaped gravel lot located in the eastern portion of the Depot (Figure 28-1). Building 360 and the entrance gate are located on the eastern side of the area. Building T-355 is located in the central part of the yard and is used for storage. The south and northwest perimeters are fenced with adjacent drainage ditches outside the fences. The surface is graded to allow surface water to drain toward the ditches. Interviews with Depot personnel and review of aerial photographs indicate a history of rapid turnaround of material and vehicles stored in this area. At the time of this investigation, vehicles including military trailers, trucks, and heavy equipment were parked along the south and northwest fences and in the central area. A 70-foot by 20-foot concrete barrier containment area was located at the southwest corner of the site and was filled with material scraped from the north end of the yard. This material consisted of dirt and gravel with scrap metal, wood debris, ordnance components, batteries, tiles, oil filters, auto parts, paint cans, and other debris. Several days later this debris was returned to the north side of the yard. Aerial photographs show that this area was used for the storage of old tires. Storage cells made of concrete blocks were located in the northeastern portion of the site.

A total of four surface soil samples, four soil borings, and two monitoring wells were performed in areas that were suspected to be impacted (Figure 28-1). The surface soil samples were collected at locations downgradient of parking and storage areas and near the storage cells. One soil boring was performed along the northwest fence where surface water flows into a drainage ditch. The second soil boring was located near the storage cells and the third soil boring was located in the south west corner of Building T-355 where the spills may have occurred. The fourth soil boring was performed downgradient of the parking/storage area in the south west corner of the site. One monitoring well was located downgradient of surface water drainage and the containment area in the southwestern corner of the site. The second monitoring well was located downgradient of Building T-355 and the parking area. The rationale for selecting the sample locations is provided in Table 28-1.

The results of the laboratory analyses are presented in Tables 28-2 through 28-17. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGMs and GA Standards:

- No volatile organic compounds were found at concentrations above their respective TAGMs. The volatiles that were found included acetone, benzene, chloroform, and toluene.
- The semivolatile organic compounds detected in the soils on-site were mostly PAHs and phthalates. Four of these compounds were found at concentrations above their respective TAGMs. The maximum concentration of Dibenz(a,h)anthracene was detected at 10.7 times the TAGM and the maximum concentration of Benzo(a)pyrene was detected at 6 times the TAGM. Benzo(a)anthracene and chrysene were detected slightly above their respective TAGMs.
- TPH were found in 12 soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 18.5 mg/kg to 482 mg/kg. No TAGM has been established for TPH.
- Thirteen pesticide/PCB compounds were found in the soil samples at SEAD-121C, however, the detected concentrations were below their respective TAGMs.
- Thirteen metals exceeded their respective TAGMs in the soil samples. Exceedences were found in all the soil samples except SB121C-1 (0 to 0.2 feet) and SB121C-1 (2.5 to 3 feet). One exceedence was detected in the samples SB121C-3 (0 to 0.2 feet), SB121C-3 (2.5 to 3 feet), and SB121C-4 (0 to 0.2 feet). The maximum concentration of copper was detected at 295 times the TAGM and the maximum concentration of lead was detected at 216.4 times the TAGM.
- Five volatile organic compounds were found in the groundwater at SEAD-121C, however, their concentrations were all below their respective NYSDEC GA groundwater standards.
- There were eight semivolatile organic compounds detected in groundwater, however, all of their concentrations were below established NYSDEC GA groundwater standards.
- TPH was not detected in the groundwater samples.
- Nineteen pesticides were detected in the groundwater. No PCBs were detected. Seven pesticides were detected at concentrations above their respective NYSDEC GA groundwater standards. The maximum concentration of 4,4-DDD was 9 times the GA standard, the maximum concentration of Endrin was 7.1 times the GA standard, and the maximum concentration of 4,4-DDT was 5.6 times the GA standard.
- Three metals were detected in the groundwater at concentrations exceeding their respective NYSDEC GA standards. The metals are iron, manganese, and sodium.

Comparison to Industrial PRGs:

- In soil, the Industrial PRG for arsenic was the only PRG exceeded in the soil samples analyzed for volatile organics, semivolatile organics, metals, and pesticides/PCBs. Exceedences of arsenic were found in all the soil samples except SB121C-3 (0 to 0.2 feet) and SB121C-4 (0 to 0.2 feet). The concentrations for arsenic exceeded the PRG between 1.1 and 2.0 times. There is no Industrial PRG for lead, although three samples exceed the agreed upon screening value of 400 mg/Kg for residential land use. The maximum value was 12.7 times the screening level.
- In groundwater, one volatile organic compound (Chlorodibromomethane) and one semivolatile organic compound (hexachlorobutadiene) were found at concentrations that exceeded the Drinking Water PRG. Six pesticides (4,4-DDD, 4,4-DDE, 4,4-DT, Dieldrin, Heptachlor, and Heptachlor epoxide) were found at concentrations exceeding their respective Drinking Water PRG. Five metals (arsenic, barium, cadmium, chromium, and manganese) exceeded their respective Drinking Water PRGs.

Recommendation: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil and groundwater sampling be performed to determine the extent of the impacts from semivolatiles, pesticides, and metals at SEAD-121C. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment.

29.0 SEAD-121D - BUILDING 306 AND 308 HAZARDOUS MATERIALS RELEASE

29.1 SITE INFORMATION

This parcel is associated with Building 306, an inspector's workshop, and Building 308, a boiler house (Figure 29-1). Records indicate that a 1,000-gallon fuel oil under ground storage tank (SRN 20) is located at Building 308. This tank has been in service since 1942. Interviews conducted during the 1995 EBS revealed that petroleum has been released in the area of Building 306. The interviews also revealed that paints and solvents have been stored in this building and may have been released.

The purpose of the investigation was to determine if surface and subsurface soils in the areas associated with Building 306 and Building 308 have been impacted. The constituents of concern are volatile organics, semivolatiles, and TPH.

29.2 INVESTIGATION SUMMARY

A visual inspection was conducted to identify sample locations. Building 308 is a small boiler plant located in the north west corner of the SEAD boundary. SEAD personnel provided information to locate the site of a removed UST on the north side of the building.

Building 306 is 155 feet long (north to south) with loading bays and platforms on the east and west sides. The building is 55 feet wide with a door on the north end. There are asphalt parking and loading areas (approximately 0.5 acre) on the east, north, and west sides of the building with a gravel railroad loading area off the south west corner of the building.

Recent rains showed runoff to be in a westerly direction from these loading areas. Surface and subsurface samples were collected off the edge of the asphalt in areas of stressed vegetation and low spots. No signs of staining were observed.

A total of three soil borings and two surface soil samples were performed at locations near the buildings suspected of being spill locations (Figure 29-1). Two soil borings were located downgradient of Building 306 in areas rumored to be spill locations and having stressed vegetation based on the visual inspection. One soil boring (SB121D-3) was conducted approximately 30 feet west of the former UST in a small surface depression. Two surface soil samples were collected near Building 306 in areas of stressed vegetation. The rationale for selecting the sample locations is provided in Table 29-1.

The results of the laboratory analyses are presented in Tables 29-2 through 29-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- Five volatile organic compounds were found in the soil at SEAD-121D, however, their concentrations were all below their respective TAGMs. The five compounds were acetone, chloroform, methlene chloride, toluene, and xylene.
- Semivolatile organic compounds found in the soil samples consisted mostly of PAHs, however five phthalate compounds were also found in the samples. Four of the detected concentrations were above the TAGMs. The compounds Dibenz(a,h)anthracene (26.4 times), Benzo(a)pyrene (14.6 times), Benzo(a)anthracene (3.7 times), and Chrysene (2.5 times), and were detected above their respective TAGM values.

TPH were found in five soil samples at concentrations above the detection limits.
 Concentrations of TPH ranged from 25.3 mg/kg to 359 mg/kg. No TAGM has been established for TPH.

Comparison to Industrial PRGs:

 No Industrial PRGs were exceeded in the soil samples analyzed for volatile organics. One semivolatile organic compound, Benzo(a)pyrene was detected at a concentration 1.1 times the Industrial PRG.

<u>Recommendation</u>: Based on professional judgment, and as outlined under Decision No. B in the Decision Criteria Flowchart, it is recommended that no further action be taken at this site.

30.0 SEAD-121E - BUILDING 127 UST PETROLEUM RELEASE

30.1 SITE INFORMATION

This parcel is associated with an underground storage tank and stained mound located near Building 127 (Figure 30-1). The tank (SRN 177) has a 12,000 gallon capacity and is used to store diesel fuel. It has been in service since 1985. A visual inspection of this tank during the 1995 EBS documented some discoloration of the concrete at the base of the pump. The visual inspection also noted an earthen mound with oil or hydraulic fluid staining to the southwest of Building 127.

The purpose of the investigation was to determine if surface and subsurface soils near the underground storage tank have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics, lead, and TPH in soil.

30.2 INVESTIGATION SUMMARY

The site is located near the locomotive garage bay on the eastern portion of the Depot. (Figure 30-1). A small unnumbered building is located between the UST and the railroad tracks. The site is mostly paved with asphalt, with the exception of the area directly above the UST, the track bed, and a parking area in the southwestern portion of the site. This parking area is for tanker trucks that transport fuel from the UST to other locations on the Depot. The only signs of spills were small stains in the parking area.

A total of four soil samples were collected from two soil borings located near the UST. One soil boring was located north of the UST and the second soil boring was located to the west. The rationale for selecting the sample locations is provided in Table 30-1.

The results of the laboratory analyses are presented in Tables 30-2 and 30-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- Five volatile organic compounds were detected in the soil at SEAD-121E, however, only one compound, acetone, was detected at a concentration above the TAGM. The exceedence was 2 times the TAGM value in SB121E-3 (5.1 to 5.5 feet).
- The semivolatile organic compounds found in the soil samples at SEAD-121E consisted mostly of PAHs, however six phthalate compounds were also found in the soil sample SB121E-2 (5.1 to 5.5 feet). Six of the detected concentrations were above the TAGMs primarily in the soil sample SB121E-1 (0 to 0.7 feet). The maximum concentrations of Dibenz(a,h)anthracene was detected at 63.6 times the TAGM; the maximum concentration of Benzo(a)pyrene was 59 times the TAGM; and the maximum concentration of Benzo(a)anthracene was 17.4 times the TAGM.
- Lead was detected in all four soil samples. The maximum concentration of lead exceeded the TAGM by 3.8 times.
- TPH were found in three soil samples at concentrations above the detection limit.
 Concentrations of TPH ranged from 172 mg/kg to 3780 mg/kg. No TAGM has been established for TPH.

Comparison to Industrial PRGs:

- No Industrial PRGs were exceeded in the soil samples analyzed for volatile organic compounds. The Industrial PRGs for Benzo(a)pryrene and Dibenz(a,h)anthracene were exceeded in one sample, SB121E-1(0 to 0.7 feet).
- There is no Industrial PRG for lead, although the site maximum value of 92.5 mg/Kg is significantly below the agreed upon screening level of 400 mg/Kg for residential land use.

<u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional surface soil sampling be performed to determine the extent of the impacts from semivolatile organic compounds and lead at SEAD-

121E. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment.

31.0 SEAD-121F - BUILDING 135 STAINED SOIL

31.1 SITE INFORMATION

This parcel is associated with Building 135 (Figure 31-1). This building has been used for vehicle storage over the last 25 years. A visual inspection during the 1995 EBS documented that the dirt floor was extensively stained with oil, fuel, and hydraulic fluid. An interview for the 1995 EBS revealed that this building had been used for acid storage. This interview also documented the release of acids in the building.

The purpose of the investigation was to determine if surface soils within and immediately around the building have been impacted by contaminants. The constituents of concern are volatile organics, semivolatile organics, TPH, and lead in soil.

31.2 INVESTIGATION SUMMARY

This site is comprised of Building 135, which is an open garage type building with a gravel floor. Visual inspection of the building indicated that the gravel floor had extensive staining. Several pieces of equipment such as tractors, a lawn mower, a large generator, and various types of heavy machinery on pallets were stored in the building (Figure 31-1). Sorbent pillows, pallets of silica, construction materials, and hay were also stored in the building.

Three surface soil samples were collected from locations inside the building near areas of the most severe surface soil staining (Figure 31-1). The rationale for selecting the surface soil and soil boring locations is provided in Table 31-1.

The results of the laboratory analyses are presented in Tables 31-2 through 31-5. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

Two volatile organic compounds, acetone and toluene, were detected in the soil samples.
 However, none of the concentrations of these volatiles were found above their respective TAGMs. Both acetone and toluene are potential laboratory contaminants.

- The semivolatile organic compounds detected in the samples included mostly PAHs and five phthalate compounds. Two of the PAHs, benzo(a)pyrene and dibenz(a)anthracene, exceeded their respective TAGMs in soil. The magnitudes of the two PAH exceedences were between 1.2 and 1.6 times in the samples.
- TPH were found in three soil samples at concentrations above the detection limit.
 Concentrations of TPH ranged from 290 mg/kg to 419 mg/kg. No TAGM has been established for TPH.
- Lead was detected at concentrations that exceeded the TAGM in one soil sample. The maximum concentration of lead was detected at 1.3 times the TAGM.

Comparison to Industrial PRGs:

- None of the concentrations of volatile organics and semivolatile organics exceeded established Industrial PRGs.
- There is no Industrial PRG for lead, although the site maximum value of 31.8 mg/Kg is significantly below the agreed upon screening value of 400 mg/Kg for residential land use.

<u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. B in the Decision Criteria Flowchart, it is recommend that no further action be taken at this site.

32.0 SEAD-121G - RUMORED COAL ASH DISPOSAL AREA

32.1 SITE INFORMATION

This parcel is associated with an area south of Building 123 that was rumored to have been used for coal ash disposal (Figure 32-1).

The purpose of the investigation was to determine the location of the coal ash disposal areas reported to be south of Building 123 in an area that is now utilized partially as a playground and to determine if soil in this area has been impacted by coal ash. In addition, geophysics were used to determine the location of any anomalies to be investigated. The constituents of concern are semivolatiles and metals in soil.

32.2 INVESTIGATION SUMMARY

This site is the playground on the eastern portion of the Depot in the Administrative Area (Figure 32-1). SEDA personnel indicated that areas directly under the playground equipment (jungle gym and slide) were the location of the coal ash disposal areas. Sand had been placed

underneath the equipment. Ash was visible in the ruts of the drill rig. Based upon the soil sampling, the disposal of ash took place over a period of time. Ash appeared in veins in the split spoon samples from approximately 0.5 inches to one foot.

An EM-31 survey was performed over those areas of SEAD-121G that were accessible. These included a 400 foot by 500 foot area located east of Administration Avenue and south of South Avenue, and a 350 foot by 400 foot area south of the maintenance area parking pad (Figure 32-2).

The EM-31 survey was performed by collecting EM measurements every one second along parallel, north-south oriented survey lines. These lines were spaced 20 feet apart. The local grid system that was used to reference the EM-31 survey was surveyed and referenced to the New York State Plane coordinate system. Once the EM-31 data were collected, they were corrected for instrument drift using instrument function check data that were collected before and after the survey. Finally, the data were reduced to produce pseudo-color maps of the measured EM responses. These maps are presented in Figure 32-2 and 32-3. Figure 32-2 shows the measured apparent ground conductivity and Figure 32-3 shows the in-phase response. In each figure, the range of measured values has been mapped to an arbitrary color scale, which was chosen to highlight the variations observed in the EM data.

Several localized, high amplitude anomalies are visible in the apparent ground conductivity data and the in-phase response data in the northwest portion of the site (the area of the playground). These are all associated with metallic objects in the playground. Though not all of these localized anomalies occur immediately adjacent to a mapped metallic object (each "X" in the figures represents the location of a metallic surface object), most of the surface objects are large in size (only the center of the objects are mapped), and some objects were not mapped because they did not obstruct a survey line.

A large area, low amplitude anomaly is observed in the apparent ground conductivity data in the central and south-central portion of the playground area (Figure 32-3). This anomaly is interpreted as an area having a slightly different near-surface soil make-up. Possible causes of this anomaly include elevated soil moisture content (the survey was performed in early spring, and groundwater may have been pooled in a topological low area), or the presence of slightly conductive material. The slightly conductive material could be a concentration of soils with naturally occurring high conductivity, or it could be due to buried coal ash. Since it is possible for the coal ash to have high concentrations of inorganic elements, and/or for the porosity of the coal ash to be such that it will have a higher moisture content, there is a good probability that this anomaly is associated with the disposed coal ash. There is no evidence of this large area,

low amplitude anomaly in the in-phase data. This is to be expected as the in-phase response is very sensitive to smaller objects with high metal content and is typically insensitive to broad, low-level apparent ground conductivity anomalies.

No prominent EM anomalies are visible in either the apparent ground conductivity data or in the in-phase response data in the southeastern portion of the site. A linear anomaly of high apparent ground conductivity and high in-phase response measurements is visible along the northern boundary of the this area, and is associated with anthropogenic features. A single, localized, small amplitude anomaly is visible near the center of the northern boundary of this area, and is presumably associated with a small buried metallic object. This anomaly is expected to be shallow (due to its small area extent) and small (due to its low amplitude). This anomaly is interpreted to be an object that is smaller than a 55 gallon drum.

Four soil samples were collected from two soil borings performed on the eastern edge and in the center of the rumored ash disposal area. The locations were recommended by SEDA personnel (Figure 32-1). The rationale for selecting the soil boring locations is provided in Table 32-1.

The results of the laboratory analyses are presented in Tables 32-2 through 32-5. These results were compared to NYSDEC TAGMs and Residential PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- The semivolatile organic compounds detected in the soils were mostly PAHs and four phthalates. Six of these compounds were found at concentrations above their respective TAGMs. Most of the exceedences were found in soil sample SB121G-2(0 to 0.2 feet). The maximum concentration of Diben(a,h)anthrancene was 30.7 times the TAGM and the maximum concentration of Benzo(a)pyrene was 24.6 times the TAGM.
- Lead and thallium were found at concentrations above their respective TAGMs. The maximum concentration of both lead and thallium was 1.9 times the respective TAGM.

Comparison to Residential PRGs:

- None of the concentrations of semivolatile organic compounds and metals found in the soil exceeded the Residential PRGs.
- There is no Residential PRG for lead, although the site maximum value of 45.9 mg/Kg is significantly below the agreed upon screening value of 400 mg/Kg for residential land use.

<u>Recommendation</u>: Based on professional judgment, it is recommended that no further action be taken for SEAD-121G, as outlined under Decision No. B in the Decision Criteria Flowchart.

33.0 SEAD-121H - RUMORED COAL DISPOSAL AREA

33.1 SITE INFORMATION

This parcel is associated with an area near Building S-131 where coal was stored (Figure 33-1). The purpose of the investigation was to identify the location of the coal storage areas and to determine if subsurface soils in the area have been impacted by contaminants. The constituents of concern are semivolatile organics and metals.

33.2 INVESTIGATION SUMMARY

SEDA personnel indicated that the site is located in the eastern portion of the Depot (Figure 33-1). The site is comprised of a salt storage dome located northeast of Building 128. The dome was filled with salt and sampling was restricted to the outside perimeter of the structure. Visual inspection of the site did not indicate any signs of coal. Soil samples were collected on opposite sides of the dome.

A total of four soil samples were collected from two soil borings at locations on the northeastern and southern perimeter of the storage dome. The rationale for selecting the sample locations is provided in Table 33-1.

The results of the laboratory analyses are presented in Tables 33-2 through 33-4. These results were compared to NYSDEC TAGMs and Industrial PRGs. The results of the comparisons are given below.

Comparison to TAGMs:

- The semivolatile organic compounds found in the soil samples consisted mostly of PAHs however four phthalates were also found in the samples. None of the detected concentrations were above the TAGMs.
- Two metals, calcium and sodium, exceeded their respective TAGMs. Calcium exceeded the TAGM in two sample locations. Sodium exceeded in all the sample locations.

Comparison to Industrial PRGs:

• No Industrial PRGs were exceeded in the soil samples analyzed for semivolatile organics. The maximum concentration of arsenic was 1.1 times the Industrial PRG.

<u>Recommendation</u>: Based on professional judgment, it is recommended that no further action be taken for SEAD-121H, as outlined under Decision No. B in the Decision Criteria Flowchart.

34.0 SEAD-121I - RUMORED COSMOLINE OIL DISPOSAL AREA

34.1 SITE INFORMATION

This parcel is associated with four rectangular grassy areas between two rows of warehouse buildings between Avenues C and D (Figure 34-1). It was reported that upon receipt of machinery that was packed in Cosmoline (oil), the oil from the packing was dumped in the rectangular grassy areas outside of the warehouses between Avenues C and D and 3rd Street and 7th Street. Also, some of this oil may have been washed down storm drains in this area.

The purpose of the investigation was to determine if soils in the four areas have been impacted by contaminants and if sediment from two storm drains that are located in areas which may have received sediment (run-off) from any of these areas have also been impacted. The constituents of concern are semivolatile organics and TPH.

34.2 INVESTIGATION SUMMARY

The sampling locations were based on possible loading and unloading sites near adjacent warehouses.

The field program included the collection of four surface soil samples and two sediment samples. One surface soil sample was collected from depressed areas in each of the four rectangular areas. One sediment sample was collected from a drainage culvert downgradient of the materials staging area between Building 343 and Building 331. The second sediment sample was collected from a drainage culvert downgradient of the staging area between Building 329 and 341. The rationale for choosing these sample locations is provided in Table 34-1.

The results of the laboratory analyses are presented in Tables 34-2 and 34-7. These results were compared to NYSDEC TAGMs, NYS sediment criteria, and Industrial PRGs. No PRGs have been established for sediment. The results of the comparisons are given below.

Comparison to Soil TAGMs and Sediment Criteria:

- The semivolatile compounds detected were mostly PAHs and one phthalate. Seven semivolatile organic compounds exceeded their respective TAGMs in the soil samples. The maximum concentration of Dibenz(a,h)anthracene was 328.6 times the TAGM; the maximum concentration of Benzo(a)pyrene was 213 times the TAGM; and the maximum concentration of Benzo(a)anthracene was 58 times the TAGM.
- TPH were found in three soil samples at concentrations above the detection limit. Concentrations of TPH ranged from 43.9 mg/kg to 452 mg/kg. There is no TAGM for TPH.
- Six semivolatile organic compounds were found at concentrations above their respective NYS sediment criteria. The maximum concentration of Chrysene was 19.2 times the NYS criteria; the maximum concentration of Benzo(k)fluoranthene was 17.7 times the NYS criteria; and the maximum concentration of Benzo(b)fluoranthene was 16.9 times the criteria.
- TPH were found in both the sediment samples. The concentrations ranged from 136 mg/kg to 370 mg/kg. There is no NYS sediment criteria for TPH.

Comparison to Industrial PRGs:

- Five of the concentrations of semivolatile organics exceeded their respective Industrial PRGs in the soil samples. Benzo(a)pyrene was detected at concentrations exceeding the Industrial PRG in all four soil samples. The remaining semivolatile organic compounds exceedences were found in one soil sample, SS121I-2.
- No Industrial PRGs have been established for sediment.

<u>Recommendation</u>: Based on professional judgment, and as indicated at Decision No. D in the Decision Criteria Flowchart, it is recommend that additional soil sampling be performed to determine the extent of the impacts from semivolatiles. At this time, there are an insufficient number of data points to perform a Mini Risk Assessment.

References

- Environmental Products & Services, January 1998, Underground Storage Tank Closure Report.
- NYSDEC, 1996, Groundwater Monitoring Well Decommissioning Procedures, Division of Environmental Remediation (May 1995, revised October 1996).
- NYSDEC February 11, 1998 letter to Seneca Army Depot regarding Spill No. 9709544 Building 732, Spill No. 9712296 Building 816, Spill No. 9712297 Building 812, and Spill No. 9712298 Building 747.
- Parsons ES, 1995, Generic Installation Remedial Investigation/Feasibility Study (RI/FS) Workplan for Seneca Army Depot Activity.
- Woodward Clyde Federal Services, 1996a, U.S. Army Base Realignment and Closure Program, Environmental Baseline Survey Report, Seneca Army Depot Activity, New York, Draft Final.
- Woodward Clyde Federal Services, 1996b, U.S. Army Base Realignment and Closure Program, Sampling and Analysis Recommendations, Seneca Army Depot, New York

TABLES

SEAD-122A

Skeet/Trap Range

Table 3-1

Sample Collection Information SEAD-122A - Skeet/Trap Range

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION			QC	RATIONALE FOR SAMPLE					
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION			
SURFACE SOIL	SS122A-1	EB130	3/8/98	0.0	0.2	SA	Immediate downrange location at 125 ft. If short range target was launched it would be left of center to avoid hitting target launch site.			
SURFACE SOIL	SS122A-2	EB131	3/8/98	0.0	0.2	SA	Moderate downrange location at 175 ft. Likely location for lead pellet shot at low flying targets.			
SURFACE SOIL	SS122A-3	EB132	3/8/98	0.0	0.2	SA	Location downrange at 200 ft. It was chosen due to presence of clay target fragments and slightly stressed vegetation.			
SURFACE SOIL	SS122A-4	EB133	3/8/98	0.0	0.2	SA	Location is 250 ft downrange and is likely lead pellet landing area.			
SURFACE SOIL	SS122A-5	EB134	3/8/98	0.0	0.2	SA	Location is 300 ft downrange and is likely lead pellet landing area.			

Notes:

SA = Sample

Table 3-2 122A - Lead in Soil vs TAGMS Non-Evaluated EBS Sites

SITE: LOC ID: DESCRIPTION: SAMP ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE:			FREQUENCY OF DETECTION	TAGM	PRG	ABOVE	OF	NUMBER OF ANALYSES	8-N	-1	SEAD-1 SS1224 Skeet/T Range EB131 SA	-2	SEAD-12 SS122A- Skeet/Tra Range EB132 SA SOIL 8-Ma	3 ap 0 0.2	SEAD-12 SS122A-Skeet/Tra Range EB133 SA	0 0.2	SEAD-1 SS122A Skeet/Ti Range EB134 SA SOIL 8-M	-5
PARAMETER	UNIT	IN OTHER	DETECTION	17.00			52.201		VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Aluminum	MG/KG			19520	1053000				VALUE.	Q	VALUE.	· ·	VALUE	Q	AVEOR	Q	AVEOL	Q
Antimony	MG/KG			6	421													
Arsenic	MG/KG			8.9	46													
Barium	MG/KG			300	73702													
Beryllium	MG/KG			1.13	16													
Cadmium	MG/KG			2.46	526													
Calcium	MG/KG			125300														
Chromium	MG/KG			30	1052885													
Cobalt	MG/KG			30	63173													
Copper	MG/KG			33	42115													
Cyanide	MG/KG			0.35														
Iron	MG/KG			37410	315865													
Lead	MG/KG	134	100.00%	24.4		3	5		5	37.7 *		24.2 *		22.7 *	102.000	134 -	1000	41.2
Magnesium	MG/KG			21700														
Manganese	MG/KG			1100	24216													
Mercury	MG/KG			0.1	316													
Nickel	MG/KG			50	21058													
Potassium	MG/KG			2623														
Selenium	MG/KG			2	5264													
Silver	MG/KG			0.8	5264													
Sodium	MG/KG			188														
Thallium	MG/KG			0.855	84													
Vanadium	MG/KG			150	7370													
Zinc	MG/KG			115	315865													

Table 3-3 122A - Lead in Soil vs PRG-RECs Non-Evaluated EBS Sites

SITE LOC ID DESCRIPTION									SEAD- SS122 Skeet/I	A-1	SS122A	SEAD-122A SS122A-2 Skeet/Trap Range		SEAD-122A SS122A-3 Skeet/Trap Range		SEAD-122A SS122A-4 Skeet/Trap Range		22A -5 ap
SAMPID									EB130		EB131		EB132		EB133		EB134	
QC CODE									SA		SA		SA		SA		SA	
SAMP DETH TOP										0		0		0		0		0
SAMP DEPTH BOT										0.2		0 2		0 2		0.2		0 2
MATRIX.			FREQUENCY			NUMBER	NUMBER	NUMBER			SOIL		SOIL		SOIL		SOIL	
SAMP DATE			OF			ABOVE	OF	OF	8-Mar-98		8-Mar-98		8-Mar-98		8-Mar-98		8-Mar-98	
		MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSE										
PARAMETER	UNIT			TAGM					VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Aluminum	MG/KG			19520	1053000													
Antimony	MG/KG			6	421													
Arsenic	MG/KG			8 9	46													
Barium	MG/KG			300	73702													
Beryllium	MG/KG			1 13	16													
Cadmium	MG/KG			2 46	526													
Calcium	MG/KG			125300														
Chromium	MG/KG			30	1052885													
Cobalt	MG/KG			30	63173													
Copper	MG/KG			33	42115													
Cyanide	MG/KG			0.35														
Iron	MG/KG			37410	315865				-	377 *		242 *		22 7 *		134 *		41.2 *
Lead	MG/KG	134	100 00%	24 4		0			5	3//		24 2		221		134		41.2
Magnesium	MG/KG			21700 1100	0.4046													
Manganese	MG/KG			0.1	24216 316													
Mercury	MG/KG MG/KG			50	21058													
Nickel	MG/KG			2623														
Potassium Selenium	MG/KG			2023														
Silver	MG/KG			08														
Sodium	MG/KG			188														
Thallium	MG/KG			0 855														
Vanadium	MG/KG			150	7370													
Zinc	MG/KG			115														

SEAD-122B

Building 2302 Small Arms Range

Table 4-1

Sample Collection Information SEAD-122B - Building 2302 Small Arms Range

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS122B-1	EB125	3/8/98	0.0	0.2	SA	Range 1:Immediate downrange location two feet in front concrete pad at shooting lane #10. This is a likely location for firearm discharge
SURFACE SOIL	SS122B-2	EB126	3/9/98	0.0	0.2	SA	Range 1: Downrange berm location 187 feet in front of shooting concrete pad at lane #4 This is an impact point for bullets.
SURFACE SOIL	SS122B-3	EB127	3/8/98	0.0	0.2	SA	Range 1: Downrange berm location 187 feet in front of shooting concrete pad at lane #12. This is an impact point for bullets.
SURFACE SOIL	SS122B-4	EB128	3/8/98	0.0	0.2	SA	Range 2 : Downrange berm location at left shooting lane. Impact area for bullets.
SURFACE SOIL	SS122B-5	EB129	3/8/98	0.0	0.2	SA .	Range 2 : Downrange berm location at right shooting lane. Impact area for bullets.
SURFACE SOIL	SS122B-2	EB015	3/9/98	0.0	0.2	DU	Not Applicable
WATER	SS122B-1	EB018	3/9/98	0.0	0.0	RB	Not Applicable

Notes.

SA = Sample

DU = Duplicate

RB = Rinse Blank

Table 4-2 122B - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: LOC ID:									SEAD-122B SS122B-1	SEAD-122B SS122B-2	SEAD-122B SS122B-3	SEAD-122B SS122B-4	SEAD-122B SS122B-5	SEAD-122B SS122B-2
DESCRIPTION:									Bldg. 2302					
									Small Arms					
									Range	Range	Range	Range	Range	Range
SAMP ID:									EB125	EB126	EB127	EB128	EB129	EB015
QC CODE:									SA	SA	SA	SA	SA	DU
SAMP, DETH TOP.									0	0	0	0	0	0
SAMP DEPTH BOT	,								02	02	0 2	0.2	0.2	0.2
MATRIX.			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			OF			ABOVE	OF	OF	8-Mar-98	9-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98	9-Mar-98
ONIN DATE		MAXIMU	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		3-14141-50	0-Mai-30	0-Mai-30	0-Mai-30	3-Mai-30
PARAMETER	UNIT	Ten Othero	BETCOTION	17.0111		1710111	02.20.0	7114121020	VALUE Q					
Aluminum	MG/KG	6910.0	100.00%	19520	1053000	0	6	6		4550	4270	2660	4320	4720
Antimony	MG/KG	393.0		6	421	3	6		3 3.2 B*	24.1	226 *	3.5 B*	3.6 B*	393 -
Arsenic	MG/KG	117.0		8.9	46	2	6		5 3.6 N°	84 N°	39.6 N°	2.3 N°	3.6 N*	117 N°
Barium	MG/KG	107.0		300	73702	0	6			25 B	25.5 B	13.6 B		
Beryllium	MG/KG	02		1.13	16	0	6		6 0.2 B	0.11 B	0.09 B	0.04 B	25.9 B 0.06 B	25.2 B
Cadmium	MG/KG	1.1	33 33%	2.46	526	0	2		6 1.1	0.06 U	0.09 B			0.12 B
Calcium	MG/KG	54800.0	100.00%	125300	526	0	6		5 54800	31100	37000	0.06 U 26000	0.07 U	0.18 B
	MG/KG		100.00%		1052885	4	6		6 11.4 *	8.4 *			22400	34600
Chromium Cobalt	MG/KG	69.8	100.00%	30 30	63173	0	6		6 66 B		9.4 *	3.1 *	4.6 *	69.8
						6	6			4.2 B	4 B	2.3 B	2.9 B	4.1 B
Copper	MG/KG	380 0	100.00%	33	42115	6	6		6 81.3 N	121 N*	380 N*	N.	156 N*	N.
Cyanide	MG/KG	8.0		0.35		1	1	(0.6 U	0.61 U	0.57 U	0.62 U	0.6 U
tron	MG/KG	12900.0	100.00%	37410	315865	0	6		6 12900	8740	8550	4940	6430	8970
Lead	MG/KG	42900.0	100.00%	24 4		6	6	(e.w.e.	4260 *	30700 *	. 669	at. Affile.	CASE OF THE PARTY
Magnesium	MG/KG	15100.0	100.00%	21700		0	6		6 15100	10700	11300	6340	8690	10300
Manganese	MG/KG	379.0		1100	24216	0	6		6 379	332	306	231	353	290
Mercury	MG/KG	0.0		0.1	316	0	0	•	6 0 05 U	0.04 U	0.05 U	0.05 U	0.06 U	0.05 U
Nickel	MG/KG	15.3	100.00%	50	21058	0	6		6 15.3	7.3 B	8.4 B	4.1 B	5.5 B	8.6 B
Potassium	MG/KG	1180.0		2623		0	6		6 1180	975 B	799 B	506 B	634 B	989 B
Selenium	MG/KG	0.0		2	5264	0	0	(6 0,95 U	0.93 U	1 U	1 U	1.1 U	1 U
Silver	MG/KG	1.4	33.33%	0.8	5264	2	2	(6 0.42 U	0.41 U	6.92 B	0.45 U	0.47 U	1.4 B
Sodium	MG/KG	0.0		188		0	0	(6 122 U	120 U	133 U	131 U	136 U	134 U
Thallium	MG/KG	0.0		0.855	84	0	0		6 1.3 U	1.2 U	1.4 U	1.4 U	1.4 U	139 U
Vanadium	MG/KG	12.0		150	7370	0	6	(6 12	9.7 B	7.7 B	5.1 B	6.7 B	8.8 B
Zinc	MG/KG	96.5	100.00%	115	315865	0	6	(55,9 *	48.9 *	96.5 *	34 °	445 *	70 *

Table 4-3 122B - Metals in Soil vs PRG-RECs Non-Evaluated EBS Sites

SITE LOC ID DESCRIPTION									SEAD-122B SS122B-1 Bidg 2302 Small Arms Range	SEAD-122B SS122B-2 Bldg 2302 Small Arms Range	SEAD-122B SS122B-3 Bldg 2302 Small Arms Range	SEAD-122B SS122B-4 Bldg. 2302 Small Arms Range	SEAD-122B SS122B-5 Bidg, 2302 Small Arms Range	SEAD-122B SS122B-2 Bldg 2302 Small Arms Range
SAMP ID									EB125	EB126	EB127	EB128	EB129	EB015
QC CODE									SA	SA	SA	SA SA	SA	DU
SAMP DETH TOP									0	0	0	0	0	0
SAMP DEPTH BOT									0.2	0 2	0.2	0.2	0.2	0.2
MATRIX			REQUENCY			NUMBER	NUMBER	NUMBER		SOIL	SOIL	SOIL	SOIL	SOIL
SAMP. DATE:			OF			ABOVE	OF	OF	8-Mar-98	9-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98	9-Mar-98
		AXIMU [DETECTIO	TAGM	PRG	TAGM		ANALYSES		0 14101 00	0 14101 00	0-14161-30	0-14141-20	5-19121-50
PARAMETER	UNIT						02.20.0		VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	6910	100 00%	19520	1053000	0	' 6	6	6910	4550	4270	2660	4320	4720
Antimony	MG/KG	393	200 00%	6	421	ō		3	3 2 B*	24 1 *	226 *	3.5 B*	3.6 B*	393 *
Arsenic	MG/KG	117	100.00%	8 9	46	1	6	6	36 N*	8 4 N*	39.6 N°	2.3 N°	3.6 N*	117 N°
Barium	MG/KG	107	100 00%	300	73702	0	6	6	107	25 B	25 5 B	13.6 B	25.9 B	25.2 B
Beryllium	MG/KG	0.2	100.00%	1 13	16	0	6	6	0 2 B	0 11 B	0 09 B	0.04 B	0 06 B	0 12 B
Cadmium	MG/KG	11	33.33%	2.46	526	0	2	6	1.1	0 06 U	0 07 U	0.06 U	0.07 U	0 18 B
Calcium	MG/KG	54800	100 00%	125300		0	6	6	54800	31100	37000	26000	22400	34600
Chromium	MG/KG	69 8	100 00%	30	1052885	0	6	6	11.4 *	84 *	94 *	3,1 *	4.6 *	69.8 *
Cobalt	MG/KG	6.6	100.00%	30	63173	0	6	6	6.6 B	4 2 B	4 B	2.3 B	2.9 B	4 1 B
Copper	MG/KG	380	100 00%	33	42115	0	6	6	81 3 N°	121 N*	380 N*	144 N*	156 N*	239 N*
Cyanide	MG/KG	0 75	16 67%	0 35		0	1	6	0 75	06 U	0.61 U	0.57 U	0.62 U	06 U
Iron	MG/KG	12900	100.00%	37410	315865	0	6	6	12900	8740	8550	4940	6430	8970
Lead	MG/KG	42900	100 00%	24 4		0	6	6	52 5 *	4260 *	30700 *	690 *	1060 *	42900 °
Magnesium	MG/KG	15100	100 00%	21700		0	6	6	15100	10700	11300	6340	8690	10300
Manganese	MG/KG	379	100.00%	1100	24216	0	6	6	379	332	306	231	353	290
Mercury	MG/KG	0	0 00%	0.1	316	0	0	6	0 05 U	0 04 U	0.05 U	0.05 U	0 06 U	0.05 U
Nickel	MG/KG	15.3	100.00%	50	21058	0	6	6	15 3	73 B	8.4 B	4.1 B	5.5 B	86 B
Potassium	MG/KG	1180	100.00%	2623		0	6	6	1180	975 B	799 B	506 B	634 B	989 B
Selenium	MG/KG	0	0 00%	2	5264	0	0	6	0 95 U	0 93 U	1 U	1 U	1.1 U	1 U
Silver	MG/KG	1 4	33.33%	8.0	5264	0	2	6	0.42 U	0 41 U	0.92 B	0.45 U	0.47 U	1.4 B
Sodium	MG/KG	0	0 00%	188		0	0	6	122 U	120 U	133 U	131 U	136 U	134 U
Thallium	MG/KG	0	0.00%	0.855	84	0	0	-	13 U	1.2 U	14 U	1.4 U	1.4 U	139 U
Vanadium	MG/KG	12	100 00%	150	7370	0	6	6	12	97 B	77 B	5.1 B	6.7 B	8.8 B
Zinc	MG/KG	96 5	100 00%	115	315865	0	6	6	55 9 *	48.9 *	96 5 *	34 *	44 5 *	70 *

SEAD-122D

Hot Pad Spill

Table 6-1

Sample Collection Information SEAD-122D - Hot Pad Spill

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB122D-1	EB201	3/5/98	0.0	0.2	SA	Location is a potential run-off area while plane was being refueled. Surface soil sample.
SOIL	SB122D-1	EB202	3/5/98	6.0	8.0	SA	Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils.
SOIL	SB122D-2	EB203	3/5/98	0.0	0.2	SA	Location is a potential run-off area (low spot) while plane was being refueled. Stressed vegetation was also noted at this location. Surface soil sample.
SOIL	SB122D-2	EB204	3/5/98	8.0	10.0	SA	Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because of a 0.2 ppm PID reading in the saturated zone.

Notes:

SA = Sample

Table 6-2 122D - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			REQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-1: Hot Pad SB122D EB201 SA	Spill	SEAD-12 Hot Pad S SB122D- EB202 SA SOIL 5-Mai	Spill 1 6 8	SEAD-12: Hot Pad S SB122D-2 EB203 SA SOIL 5-Ma	5pill ? 0 0 2	SEAD-1: Hot Pad SB122D EB204 SA	8 10
Origin Britis		MAXIMU	DETECTIO	TAGM	PRG	TAGM	DETECTS	ANALYSES	3-14	141-50	J-IVI di	1-90	3-Ma	1-90	5-Mi	lar-98
PARAMETER	UNIT								VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	36850962	0	0	4	1	12 U		11 U		13 U		11 Ū
1,1,2,2-Tetrachloroethane	UG/KG	0	0.00%	600	3439423	0	0	4	1	12 U		11 U		13 U		11 U
1,1,2-Trichloroethane	UG/KG	0	0.00%		1206815	0	0	4	1	12 U		11 U		13 U		11 U
1.1-Dichloroethane	UG/KG	0	0 00%	200	105288462	0	0	4	1	12 U		11 U		13 U		11 U
1,1-Dichloroethene	UG/KG	0	0.00%	400	114647	0	0	4	1	12 U		11 U		13 U		11 U
1,2-Dichloroethane	UG/KG	0	0 00%	100	105288462	0	0	4	\$	12 U		11 U		13 U		11 U
1,2-Dichloroethene (total)	UG/KG	0	0.00%			0	0	4	\$	12 U		11 U		13 U		11 U
1,2-Dichloropropane	UG/KG	0	0 00%		1011595	0	0	4	1	12 U		11 U		13 U		11 U
Acetone	UG/KG	34	50.00%	200	105288462	0	2	4	1	12 U		34		13 U		18
Benzene	UG/KG	0	0 00%	60	2372016	0	0	4	1	12 U		11 U		13 U		11 U
Bromodichloromethane	UG/KG	0	0,00%		1109491	0	0	4	\$	12 U		11 U		13 U		11 U
Bromoform	UG/KG	0	0.00%		8707400	0	0	4	1	12 U		11 U		13 U		11 U
Carbon disulfide	UG/KG	0	0 00%	2700	105288462	0	0	4	1	12 U		11 U		13 U		11 U
Carbon tetrachlonde	UG/KG	0		600	529142	0	0	4	\$	12 U		11 U		13 U		11 U
Chlorobenzene	UG/KG	0		1700	21057692	0	0	4	\$	12 U		11 U		13 U		11 U
Chlorodibromomethane	UG/KĢ	0	0.00%		818910	0	0	4	\$	12 U		11 U		13 U		11 U
Chloroethane	UG/KG	0	0.00%	1900	421153846	0	0	4	\$	12 U		11 U		13 U		11 U
Chloroform	UG/KG	0	0.00%	300	10528846	0	0	4	1	12 U		11 U		13 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%			0	0	4	1	12 U		11 U		13 U		11 U
Ethyl benzene	UG/KG	0		5500	105288462	0	0	4	1	12 U		11 U		13 U		11 U
Methyl bromide	UG/KG	0	0.00%		1505625	0	0	4	1	12 U		11 U		13 U		11 U
Melhyl butyl ketone	UG/KG	0	0.00%			0	0	4	1	12 U		11 U		13 U		11 U
Methyl chloride	UG/KG	0	0.00%		5291420	0	0	4	\$	12 U		11 U		13 U		11 U
Methyl ethyl ketone	UG/KG	0	0.00%	300		0	0	4	\$	12 U		11 U		13 U		11 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	84230769	0	0	4	1	12 U		11 U		13 U		11 U
Methylene chloride	UG/KG	0	0.00%	100	9171795	0	0	4	\$	12 U		11 U		13 U		11 U
Styrene	UG/KG	0	0.00%			0	0	4	1	12 U		11 U		13 U		11 U
Tetrachloroethene	UG/KG	0	0.00%	1400	1322855	0	0	4	1	12 U		11 U		13 U		11 U
Toluene	UG/KG	10	75 00%	1500	210576923	0	3	4	\$	3 J		3 J		13 U		10 J
Total Xylenes	UG/KG	0	0.00%	1200	2105769000	0	0	4	1	12 U		11 U		13 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0	0 00%			0	0	4	1	12 U		11 U		13 U		11 U
Trichloroethene	UG/KG	0		700	6253497	0	0	4	1	12 U		11 U		13 U		11 U
Vinyl chloride	UG/KG	0	0 00%	200	36204	0	0	4	1	12 U		11 U		13 U		11 U

Table 6-3
122D - Volatiles in Soil vs PRG-RECs
Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-12 Hot Pad (SB122D- EB201 SA SOIL	Spill	SEAD-12 Hot Pad SB122D- EB202 SA SOIL 5-M	Spill	SEAD-12: Hot Pad \$ SB122D-7 EB203 SA SOIL 5-Mi	Bpill	SEAD-12 Hot Pad SB122D EB204 SA SOIL	Spill
		MAXIMU	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES								
PARAMETER	UNIT								VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	36850962	0	0		4	12 U		11 U		13 U		11 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	3439423	0	0		4	12 U		11 U		13 U		11 U
1,1,2-Trichloroethane	UG/KG	0	0 00%		1206815	0	0		4	12 U		11 U		13 U		11 U
1,1-Dichloroethane	UG/KG	0	0 00%	200	105288462	0	0		4	12 U		11 U		13 U		11 U
1,1-Dichloroethene	UG/KG	0	0 00%	400	114647	0	0		4	12 U		11 U		13 U		11 U
1,2-Dichloroethane	UG/KG	0	0 00%	100	105288462	0	0		4	12 U		11 U		13 U		11 U
1,2-Dichloroethene (total)	UG/KG	0	0 00%			0	0		4	12 U		11 U		13 U		11 U
1.2-Dichloropropane	UG/KG	0	0 00%		1011595	0	0		4	12 U		11 U		13 U		11 U
Acetone	UG/KG	34	50 00%	200	105288462	0	. 2		4	12 U		34		13 U		18
Benzene	UG/KG	0	0 00%	60	2372016	0	0		4	12 U		11 U		13 U		11 U
Bromodichloromethane	UG/KG	0	0 00%		1109491	0	0		4	12 U		11 U		13 U		11 U
Bromoform	UG/KG	0	0 00%		8707400	0	0		4	12 U		11 U		13 U		11 U
Carbon disulfide	UG/KG	0	0 00%	2700	105288462	0	0		4	12 U		11 U		13 U		11 U
Carbon tetrachloride	UG/KG	0	0 00%	600	529142	0	0		4	12 U		11 U		13 U		11 U
Chlorobenzene	UG/KG	0	0.00%	1700	21057692	0	0		4	12 U		11 U		13 U		11 U
Chlorodibromomethane	UG/KG	0	0.00%		818910	0	0		4	12 U		11 U		13 U		11 U
Chloroethane	UG/KG	0	0 00%	1900	421153846	0	0		4	12 U		11 U		13 U		11 U
Chloroform	UG/KG	0	0 00%	300	10528846	0	0		4	12 U		11 U		13 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%			0	0		4	12 U		11 U		13 U		11 U
Ethyl benzene	UG/KG	0	0 00%	5500	105288462	0	0		4	12 U		11 U		13 U		11 U
Methyl bromide	UG/KG	0	0 00%		1505625	0	0		4	12 U		11 U		13 U		11 U
Methyl butyl ketone	UG/KG	0	0.00%			0	0		4	12 U		11 U		13 U		11 U
Methyl chloride	UG/KG	0	0 00%		5291420	0	0		4	12 U '		11 U		13 U		11 U
Methyl ethyl ketone	UG/KG	0	0.00%	300		0	0		4	12 U		11 U		13 U		11 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	84230769	0	0		4	12 U		11 U		13 U		11 U
Methylene chloride	UG/KG	0	0.00%	100	9171795	0	0		4	12 U		11 U		13 U		11 U
Styrene	UG/KG	0	0 00%			0	0		4	12 U		11 U		13 U		11 U
Tetrachloroethene	UG/KG	0	0.00%	1400	1322855	0	0		4	12 U		11 U		13 U		11 U
Toluene	UG/KG	10	75.00%	1500	210576923	0	3		4	3 J		3 J		13 U		10 J
Total Xylenes	UG/KG	0	0.00%	1200	2105769000	0	0		4	12 U		11 U		13 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0	0.00%			0	0		4	12 U		11 U		13 U		11 U
Trichloroethene	UG/KG	0	0.00%	700	6253497	0	0		4	12 U		11 U		13 U		11 U
Vinyl chloride	UG/KG	0	0 00%	200	36204	0	0		4	12 U		11 U		13 U		11 U

Table 6-4 122D - Semivolatiles/TPH in Soit vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT.									SEAD-122D Hot Pad Spill SB122D-1 EB201 SA		SEAD-12 Hot Pad S SB122D- EB202 SA	Spill	SEAD-12 Hot Pad SB122D EB203 SA	Spill	SEAD- Hot Pa SB122 EB204 SA	d Spill D-2
MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SOIL 5-Mar-98		SOIL 5-Ma	r-98	SOIL 5-Ma	ar-98	SOIL 5-	Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	_		_		_		
1.2.4-Trichlorobenzene	UG/KG	0	0 00%	3400	10528846	0	0		4 77	Q 11	VALUE	Q 74 U	VALUE	Q 69 U	VALUE	≣ Q 73 U
1,2-Dichlorobenzene	UG/KG	0	0 00%	7900	94759615	0	0		4 77			74 U		69 U		73 U
1,3-Dichlorobenzene	UG/KG	0	0 00%	1600	93706731	0	0		4 77	U		74 U		69 U		73 U
1.4-Dichlorobenzene	UG/KG	0	0 00%	8500	2866186	0	0		4 77	U		74 U		69 U		73 U
2.4,5-Trichlorophenol	UG/KG	0	0.00%	100	105288462	0	0		4 190			180 U		170 U		180 U
2.4.6-Trichlorophenol	UG/KG	0	0 00%	400	6253497	0	0		4 77			74 U		69 U		73 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/KG UG/KG	0	0 00% 0 0 0 %	400	3158654 21057692	0	0		4 77 4 77			74 U 74 U		69 U		73 U 73 U
2,4-Dinitrophenol	UG/KG	o	0 00%	200	2105769	0	0		4 190			180 U		170 U		180 U
2,4-Dinitrotoluene	UG/KG	ō	0 00%	200	2105769	0	0		4 77			74 U		69 U		73 U
2,6-Dinitrotoluene	UG/KG	0	0 00%	1000	1052885	0	0		4 77	U		74 U		69 U		73 U
2-Chloronaphthalene	UG/KG	0	0.00%			0	0		4 77	U		74 U		69 U		73 U
2-Chlorophenol	UG/KG	0	0 00%	800	5264423	0	0		4 77			74 U		69 U		73 U
2-Methylnaphthalene	UG/KG	0	0 00%	36400		0	0		4 77			74 U		69 U		73 U
2-Methylphenol 2-Nitroaniline	UG/KG UG/KG	0	0.00%	100 430	52644231 63173	0	0		4 77 4 190			74 U 180 U		69 U 170 U		73 U 180 U
2-Nitrophenol	UG/KG	0	0.00%	330	03173	0	0		4 190			74 U		69 U		73 U
3,3'-Dichlorobenzidine	UG/KG	0	0.00%	000	152863	0	0		4 77			74 U		69 U		73 U
3-Nitroaniline	UG/KG	0	0 00%	500	3158654	0	0		4 190			180 U		170 U		180 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0		4 190	U		180 U		170 U		180 U
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		61067308	0	0		4 77			74 U		69 U		73 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0		4 77			74 U		69 U		73 U
4-Chloroaniline	UG/KG UG/KG	0	0.00%	220	4211539	0	0		4 77 4 77	_		74 U 74 U		69 U 69 U		73 U
4-Chlorophenyl phenyl ether 4-Methylphenol	UG/KG	0	0.00%	900		0	0		4 77			74 U		69 U		73 U 73 U
4-Nitroaniline	UG/KG	0	0.00%	300	3158654	0	0		4 190			180 U		170 U		180 U
4-Nrrophenol	UG/KG	0	0.00%	100	63173077	0	0		4 190			180 U		170 U		180 U
Acenaphthene	UG/KG	0	0.00%	50000		0	0		4 77	_		74 U		69 U		73 U
Acenaphthylene	UG/KG	0	0 00%	41000		0	0		4 77			74 U		69 U		73 U
Anthracene	UG/KG	0	0.00%	50000	315865385	0	0		4 77			74 U		69 U		73 U
Benzo(a)anthracene Benzo(a)pyrene	UG/KG UG/KG	0	0.00% 25.00%	224 61	94231 9423	0	0		4 77 4 77			74 U 74 U		69 U 6 J		73 U 73 U
Benzo[b]fluoranthene	UG/KG	7 2	25,00%	1100	94231	0	i		4 77			74 U		7.2 J		73 U
Benzo(ghi]perylene	UG/KG	7.7	25.00%	50000	0.40.	0	1		4 77			74 U		7.7 J		73 U
Benzo[k]fluoranthene	UG/KG	4 7	25 00%	1100	942308	0	1		4 77	U		74 U		4.7 J		73 U
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0	0		4 77			74 U		69 U		73 U
Bis(2-Chloroethyf)ether	UG/KG	0	0 00%		62535	0	0		4 77			74 U		69 U		73 U
Bis(2-Chloroisopropyl)ether	UG/KG UG/KG	0 16	0 00% 50.00%	50000	982692 4913462	0	0		4 77			74 U 74 U		69 U 69 U		73 U 14 J
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	UG/KG	5 9	25 00%	50000	210576923	0	2		4 16 4 77			59 J		69 U		73 U
Carbazole	UG/KG	0	0 00%	00000	3439423	0	0		4 77			74 U		69 U		73 U
Chrysene	UG/KG	5.7	25.00%	400	9423077	0	1		4 77			74 U		5.7 J		73 U
Dr-n-bulylphthalate	UG/KG	4 5	25.00%	8100		0	1		4 77	U		74 U		69 U		4.5 J
Di-n-octylphthalate	UG/KG	140	50 00%	50000	21057692	0	2		4 77			74 U		140		11 J
Dibenz[a,h]anthracene	UG/KG	0	0 00%	14	9423	0	0		4 77			74 U		69 U		73 U
Dibenzofuran Diethyl phthalate	UG/KG UG/KG	0 17	0 00% 100 00%	6200 7100	9827 842307692	0	0		4 77 4 11			74 U 17 JB		69 U 9 JB		73 U 13 JB
Dimethylphthalate	UG/KG	0	0 00%	2000	10530000000	0	0					74 U		69 U		73 U
Ethylene Glycol	MG/KG	0	0.00%	2000	2106000000	0	0		4	•		, , ,				
Fluoranthene	UG/KG	4.4	25 00%	50000	42115385	0	1		4 77	U		74 U		4.4 J		73 U
Fluorene	UG/KG	0	0 00%	50000	42115385	0	0		4 77			74 U		69 U		73 U
Hexachlorobenzene	UG/KG	0	0.00%	410	42993	0	0					74 U		69 U		73 U
Hexachlorobutadiene	UG/KG	0	0 00%		210577	0	0					74 U		69 U		73 U
Hexachlorocyclopentadiene	UG/KG UG/KG	0	0.00% 0.00%		7370192 1052885	0	0		4 77 4 77			74 U 74 U		69 U 69 U		73 U 73 U
Hexachloroethane Indeno[1,2,3-cd]pyrene	UG/KG UG/KG	66	25.00%	3200	94231	0	1					74 U		6.6 J		73 U
Isophorone	UG/KG	0	0.00%	4400	54631	0	o					74 U		69 U		73 U
N-Nitrosodiphenylamine	UG/KG	0	0 00%		14038462	0	0					74 U		69 U		73 U
N-Nitrosodipropylamine	UG/KG	0	0 00%		10000	0	0		4 77	U		74 U		69 U		73 U

Table 6-4 122D - Semivolatiles/TPH in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID: SAMP ID QC CODE									SEAD-12 Hot Pad S SB122D- EB201 SA	Spill	SEAD-12 Hot Pad S SB122D-1 EB202 SA	Spill	SEAD-122 Hot Pad S S8122D-2 E8203 SA	pill	SEAD-12 Hot Pad S SB122D- EB204 SA	Spill
SAMP DETH TOP										0		6		0		8
SAMP DEPTH BOT										0 2		8		0 2		10
MATRIX			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL		SOIL		SOIL		SOIL	
SAMP DATE			OF			ABOVE	OF	OF	5-Ma	r-98	5-Ma	r-98	5-Mar	-98	5-Ma	ar-98
		MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES								
PARAMETER	UNIT								VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Naphthalone	UG/KG	0	0 00%	13000	42115385	0	0		4	77 U		74 U		69 U		73 U
Nitrobenzene	UG/KG	0	0 00%	200	526442	0	0		4	77 U		74 U		69 U		73 U
Pentachlorophenol	UG/KG	0	0 00%	1000	573237	0	0		4	190 U		180 U		170 U		180 U
Phenanthrene	UG/KG	4 3	25 00%	50000		0	1		4	77 U		74 U		4.3 J		73 U
Phenol	UG/KG	0	0 00%	30	631730769	0	0		4	77 U		74 U		69 U		73 U
Propylene Glycol	MG/KG	0	0 00%			0	0		4							
Pyrene	UG/KG	4 4	25 00%	50000	31586538	0	1		4	77 U		74 U		44 J		73 U
TPH	MG/KG	188	25 00%			0	1		4	16 5 U		17 4 U		188		17 1 U
Alkanes - Unknown (Iotal)	UG/KG	0	0.00%			0	0		4							

Table 6-5 122D - Semivolatiles/TPH in Soil vs PRG-RECs Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX			FREQUENCY			NUMBER	NUMBER	NUMBER	SEAD-122I Hot Pad Sp SB122D-1 EB201 SA		SEAD-12 Hot Pad : SB122D- EB202 SA	Spill	SEAD-1 Hot Pad SB122D EB203 SA	Spill	SEAD-1: Hot Pad SB122D EB204 SA	Spill
SAMP DATE		MAXIMU	OF DETECTION	TAGM	PRG	ABOVE TAGM	OF DETECTS	OF ANALYSES	5-Mar-	98		ar-98		far-98		lar-98
PARAMETER	UNIT		00.00				00.00.0		VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,2,4-Trichlorobenzene	UG/KG	0	0 00%	3400	10528846	0	0		4	77 U		74 U		69 U		73 U
1,2-Dichlorobenzene	UG/KG	0		7900	94759615	0	0	4		77 U		74 U		69 U		73 U
1,3-Dichlorobenzene	UG/KG	0		1600	93706731	0	0			77 U		74 U		69 U		73 U
1.4-Dichlorobenzene	UG/KG	0		8500	2866186	0	0			77 U		74 U		69 U		73 U
2,4,5-Trichlorophenol	UG/KG UG/KG	0		100	105288462	0	0	•		90 U		180 U		170 U		180 U
2,4,6-Trichlorophenol	UG/KG	0		400	6253497	0	0	:		77 U 77 U		74 U		69 U		73 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/KG	0		400	3158654 21057692	0	0			77 U		74 U 74 U		69 U		73 U
2,4-Dinitrophenol	UG/KG	0		200	21057692	0	0			90 U		180 U		69 U 170 U		73 U 180 U
2,4-Dinitrotoluene	UG/KG	0		200	2105769	0	0			77 U		74 U		69 U		73 U
2,6-Dinitrotoluene	UG/KG	ő		1000	1052885	0	0			77 U		74 U		69 U		73 U
2-Chloronaphthalene	UG/KG	0		1000	7002000	0	0			77 U		74 U		69 U		73 U
2-Chlorophenol	UG/KG	0		800	5264423	0	0			77 U		74 U		69 U		73 U
2-Methylnaphthalene	UG/KG	0		36400		0	0			77 U		74 U		69 U		73 U
2-Methylphenol	UG/KG	0		100	52644231	0	0			77 U		74 U		69 U		73 U
2-Nitroaniline	UG/KG	0	0.00%	430	63173	0	0		4 1	90 U		180 U		170 U		180 U
2-Nitrophenol	UG/KG	0		330		0	0		4	77 U		74 U		69 U		73 U
3.3 -Dichlorobenzidine	UG/KG	0			152863	0	0		4	77 U		74 U		69 U		73 U
3-Nitroaniline	UG/KG	0		500	3158654	0	0		4 1	90 U		180 U		170 U		180 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0 00 10			0	0			90 U		180 U		170 U		180 U
4-Bromophenyl phenyl ether	UG/KG	0			61067308	0	0			77 U		74 U		69 U		73 U
4-Chloro-3-methylphenol	UG/KG	0		240	4044530	0	0	•		77 U		74 U		69 U		73 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/KG UG/KG	0		220	4211539	0	0 0			77 U 77 U		74 U 74 U		69 U		73 U
4-Methylphenol	UG/KG	0		900		0	0			77 U		74 U		69 U		73 U 73 U
4-Nitroaniline	UG/KG	0		300	3158654	0	0			90 U		180 U		170 U		180 U
4-Nitrophenol	UG/KG	0		100	63173077	0	ō			90 U		180 U		170 U		180 U
Acenaphthene	UG/KG	0		50000		0	ō			77 U		74 U		69 U		73 U
Acenaphthylene	UG/KG	0		41000		0	0			77 U		74 U		69 U		73 U
Anthracene	UG/KG	0	0 00%	50000	315865385	0	0		4	77 U		74 U		69 U		73 U
Benzo[a]anthracene	UG/KG	0	0.00%	224	94231	0	0			77 U		74 U		69 U		73 U
Benzo[a]pyrene	UG/KG	6	20.00.0	61	9423	0	1			77 U		74 U		6 J		73 U
Benzo[b]fluoranthene	UG/KG	7.2		1100	94231	0	1			77 U		74 U		7.2 J		73 U
Benzo[ghi]perylene	UG/KG	7 7		50000		0	1			77 U		74 U		7.7 J		73 U
Benzo[k]fluoranthene	UG/KG	4.7		1100	942308	0	1			77 U		74 U		4.7 J		73 U
Bis(2-Chloroethoxy)methane	UG/KG	0			*****	0	0			77 U		74 U		69 U		73 U
Bis(2-Chloroethyl)ether	UG/KG UG/KG	0			62535 982692	0	0			77 U 77 U		74 U 74 U		69 U 69 U		73 U 73 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG	16		50000	4913462	0	2			16 J		74 U		69 U		14 J
Butylbenzylphthalate	UG/KG	5 9		50000	210576923	0	1		•	77 U		5.9 J		69 U		73 U
Carbazole	UG/KG	0		30000	3439423	0	0			77 U		74 U		69 U		73 U
Chrysene	UG/KG	5 7		400	9423077	0	1			77 U		74 U		5.7 J		73 U
Di-n-butylphthalate	UG/KG	4 5		8100		0	1			77 U		74 U		69 U		4.5 J
Di-n-octylphthalate	UG/KG	140	50 00%	50000	21057692	0	2		4	77 U		74 U		140		11 J
Dibenz[a,h]anthracene	UG/KG	0	0.00%	14	9423	0	0			77 U		74 U		69 U		73 U
Dibenzofuran	UG/KG	0	0.00%	6200	9827	0	0		4	77 U		74 U		69 U		73 U
Diethyl phlhalate	UG/KG	17		7100	842307692	0	4			11 JB		17 JB		9 JB		13 JB
Dimethylphthalate	UG/KG	0		2000	10530000000	0	0			77 U		74 U		69 U		73 U
Ethylene Glycol	MG/KG	0			2106000000	0	0		•							
Fluoranthene	UG/KG	4 4		50000	42115385	0	1			77 U		74 U		4 4 J		73 U
Fluorene	UG/KG	0		50000	42115385 42993	0	0			77 U 77 U		74 U		69 U		73 U
Hexachlorobenzene	UG/KG		0.00.0	410		0	0	,		77 U		74 U		69 U		73 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG UG/KG	0			210577 7370192	0	0		•	77 U		74 U 74 U		69 U 69 U		73 U 73 U
Hexachlorocyclopentagiene Hexachloroethane	UG/KG	0			1052885	0	0			77 U		74 U		69 U		73 U
	UG/KG	66		3200	94231	0	1			77 U		74 U		6.6 J		73 U
Indeno[1,2,3-cd]pyrene Isophorone	UG/KG	0		4400	54231	0	0			77 U		74 U		69 U		73 U
N-Nitrosodiphenylamine	UG/KG	0		4400	14038462	0	0			77 U		74 U		69 U		73 U
N-Nitrosodipropylamine	UG/KG	0			10000	0	0			77 U		74 U		69 U		73 U
		·				-	•							-		

Table 6-5 122D - Semivolatiles/TPH in Soil vs PRG-RECs Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE		MAXIMU	FREQUENCY OF DETECTION	TAGM	PRG	NUMBER ABOVE TAGM	NUMBER OF DETECTS	NUMBER OF ANALYSES	SEAD-12 Hot Pad 3 SB122D- EB201 SA SOIL 5-Ma	Spill	SEAD-122 Hot Pad S SB122D-1 EB202 SA SOIL 5-Ma	pilt 6 8	SEAD-122D Hot Pad Sp SB122D-2 EB203 SA (SOIL 5-Mar-	0 0 0 2	SEAD-12 Hot Pad SB122D- EB204 SA SOIL 5-M	Spill
PARAMETER	UNIT								VALUE	Q	VALUÉ	Q	VALUE	Q	VALUE	Q
Naphthalenc	UG/KG	0	0 00%	13000	42115385	0	0		4	77 U		74 U		69 U		73 U
Nitrobenzene	UG/KG	0	0 00%	200	526442	0	0		4	77 U		74 U		69 U		73 U
Pentachlorophenoi	UG/KG	0	0.00%	1000	573237	0	0		4	190 U		180 U		70 U		180 U
Phenanthrene	UG/KG	4 3	25.00%	50000		0	1		4	7 7 U		74 U	4	1.3 J		73 U
Phenol	UG/KG	0	0 00%	30	631730769	0	0		4	77 U		74 U		69 U		73 U
Propylene Glycol	MG/KG	0	0 00%			0	0		4							
Pyrone	UG/KG	4 4	25 00%	50000	31586538	0	1		4	77 U		74 U	4	44 J		73 ∪
TPH	MG/KG									16 5 U		174 U	1	08		17 1 U
Alkanes - Unknown (total)	UG/KG															

SEAD-122E

Deicing Planes

Table 7-1

Sample Collection Information SEAD-122E - Deicing Planes

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB122E-1	EB205	3/6/98	0.0	0.2	SA	South Pad: Location is a potential run-off area (i.e., low spot) on SW corner of asphalt deicing pad. Surface soil sample.
SOIL	SB122E-1	EB207	3/6/98	6.0	7.5	SA	Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils.
SOIL	SB122E-2	EB208	3/6/98	0.0	0.2	SA	Center Pad: Location is a potential run-off area (i.e., low spot) on the NW corner of asphalt deicing pad. Surface soil sample.
SOIL	SB122E-2	EB209	3/6/98	2.0	2.3	SA	Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils.
SOIL	SB122E-3	EB210	3/6/98	0.0	0.2	SA	North pad: Location is a potential run-off area (i.e., low spot) on west side of asphalt deicing pad. Surface soil sample.
SOIL	SB122E-3	EB211	3/6/98	2.0	2.5	SA	Same location ID as above. Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils.
GROUND WATER	MW122E-1	EB122	3/8/98	9.5	9.5	SA	Location is a potential run-off area (i.e., low spot) on SW corner of asphalt deicing pad. Installed in same boring as SB122E-1 above.
GROUND WATER	MW122E-2	EB123	3/8/98	9.0	9.0	SA	Location is a potential run-off area (i.e., low spot) on NW corner of asphalt deicing pad. Installed in same boring as SB122E-2 above.

Table 7-1

Sample Collection Information SEAD-122E - Deicing Planes

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
GROUND WATER	MW122E-3	EB124	3/8/98	8.5	8.5	SA	Location is a potential run-off area (i.e., low spot) on west side of asphalt deicing pad. Installed in same boring as SB122E-3 above.
WATER	SB122E	EB004	3/6/98	0.0	0.0	RB	Not Applicable
SOIL	SB122E	EB005	3/6/98	0.0	0.2	DÜ	Not Applicable
WATER	MW122E-1	EB010	3/8/98	0.0	0.0	RB	Not Applicable
WATER	MW122E-1	EB011	3/8/98	9.5	9.5	DU	Not Applicable

Notes:

SA - Sample

DU = Duplicate

RB = Rinsc Blank

Table 7-2 122E - Semivolatiles in Soil vs TAGMs Non-Evaluated EBS Sites

									00.0								
SITE DESCRIPTION									SEAD-122 Descing Pla		SEAD-122E Deicing Planes	SEAD-122E		SEAD-122E	SEAD-122E	SEAD-122E	SEAD-122E
LOC ID									SB122E-1		SB122E-1	Delcing Pla SB122E-1	nes	Deicing Planes SB122E-2	Deicing Planes SB122E-2	Deicing Planes SB122E-3	Deicing Planes SB122E-3
SAMP ID									EB005		EB205	EB207					
QC CODE									DU		SA	SA SA		EB208 SA	E8209	EB210	E8211
									DU					40.4		SA	SA
SAMP DETH TOP SAMP DEPTH BOT									,	0	0		6	0	2	0	2
MATRIX									SOIL	02	0 2 SOIL	SOIL 7	5	0.2	23	02	2.5
SAMP DATE			REQUENCY			NUMBER	NUMBER	NUMBER	6-Mar-	09	6-Mar-98	SOIL 6-Mar-9	0	SOIL 6-Mar-98	SOIL 6-Mar-98	SOIL 6-Mar-98	SOIL
SAMP DATE		,	OF			ABOVE	OF	OF	0-Mar-	90	0-Mat-30	0-M91-8	8	0-Mat-ag	6-Mar-98	6-Mar-98	6-Mar-98
PARAMETER	LINIT	MAXIMU	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	0	VALUE O	VALUE	0	VALUE O	VALUE Q	VALUE Q	. VALUE O
1,2,4-Trichlorobenzene	UG/KG	0	0 00%	3400	10528846	0	0		7	_	150 U		1 U	3000 U	71 U	77 U	80 U
1,2-Dichlorobenzene	UG/KG	0	0 00%	7900	94759615	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
1.3-Dichlorobenzene	UG/KG	0	0 00%	1600	93706731	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
1.4-Dichlorobenzene	UG/KG	0	0 00%	8500	2866186	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2,4,5-Trichlorophenol	UG/KG	0	0 00%	100	105288462	0	0		7		370 U		0 U	7300 U	170 U	190 U	190 U
2,4,6-Trichlorophenol	UG/KG	0	0 00%	100	6253497	0	0		7		150 U		1 U	3000 11	71 U	77 U	80 U
2,4-Dichlorophenol	UG/KG	0	0 00%	400	3158654	. 0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2,4-Dimethylphenol	UG/KG	0	0 00%	400	21057692	. 0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2,4-Dinitrophenol	UG/KG	0	0 00%	200	2105769	0	0		7		370 U		o U	7300 U	170 U	190 U	_ 190 U
2.4-Dintrotoluene	UG/KG	0	0 00%	200	2105769	0	0		7		150 U		1 U	3000 U	71 U	77 U	. 80 U
2,6-Dintrotoluene	UG/KG	o	0 00%	1000	1052885	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2-Chloronaphthalene	UG/KG	0	0 00%	1000	1032003	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2-Chlorophenol	UG/KG	0	0 00%	800	5264423	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2-Methylnaphthalene	UG/KG	0	0 00%	36400	0204420	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2-Methylphenol	UG/KG	0	0 00%	100	52644231	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
2-Methylphenol 2-Nitroaniline	UG/KG	0	0 00%	430	63173	0	0		7		370 U		0 0	7300 U	170 U	190 U	
	UG/KG	0	0 00%		031/3	, 0	0		7		150 U		1 U	3000 U	71 U	100 0	190 U
2-Nitrophenol	UG/KG	0	0 00%	330	152863	, 0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
3,3"-Dichlorobenzidme 3-Nitroanilme	UG/KG	0	0 00%	500	3158654	0	0		7		370 U		OU	7300 U	170 U	190 U	80 U 190 U
	UG/KG	0	0 00%	500	3130034	0	0		7		370 U		0 U	7300 U	170 U	190 U	190 U
4,6-Dintro-2-methylphenol	UG/KG	0	0 00%		61067308	0	0		7		150 U		1 11	3000 U	71 U	77 U	
4-Bromophenyl phenyl ether	UG/KG	0	0 00%	240	01007300	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U 80 U
4-Chloro-3-methylphenol	UG/KG	0	0 00%	220	4211539	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
4-Chloroaniline		0	0.00%	220	4211539	0	0		7		150 U		1 0	3000 U	71 U	77 11	
4-Chloropheny! pheny! ether	UG/KG			200		0	0		7		150 U			0000	,,,		80 U
4-Methylphenol	UG/KG	0	0 00%	900	3158654	-	0		7		370 U		1 U	3000 U	71 U	77 U	80 U
4-Nitroaniline	UG/KG	0	0.00%	400		0			7		370 U		0 0	7300 U	170 U	190 U	190 U
4-Nitrophenol	UG/KG	0	0.00%	100 50000	63173077	0	0		7		10 J		1 U	340 J	71 U	190 U 77 U	190 U
Acenaphthene	UG/KG	340	28 57%	00000		0	0		7		150 U		1 0				80 U
Acenaphthylene	UG/KG UG/KG	0 890	0.00% 57 14%	41000 50000	315865385	0	4		7		37 J		1 U	3000 U	71 U	77 U	80 U
Anthracene		000				-	-		7								
Benzo[a]enthracene	UG/KG	6600	71 43%	224	94231	2	5		7		276		1 U	5,600	40 J	43 J	31 J
Benzo[a]pyrene	UG/KG	11000	71 43% 71 43%	1100	9423 94231	2	5		7		370		1 0	11000	49 J 56 J	61 J 86	41 J
Benzo[b]fluoranthene	UG/KG			50000	94231	0	5		7		250		1 U	5500	41 J	52 J	52 J 30 J
Benzo[ghr]perylene	UG/KG	5500	71 43%		0.40200	1	5		7		300				41 J 76	52 J 61 J	
Benzo(k)fluoranthene	UG/KG	11000	71 43%	1100	942308	0	0		7		150 U		1 U	3000 U	71 U	77 U	61 J 80 U
Bis(2-Chloroethoxy)methane	UG/KG	0	0 00 10		62535	0	0		7		150 U		1 0	3000 U	71 U	77 U	80 U
Bis(2-Chloroethyl)ether	UG/KG UG/KG	0	0 00%		982692	0	0		7		150 U		1 U	3000 U	71 U	77 U	
Bis(2-Chlorosopropyl)ether	UG/KG	11	71 43%	50000	4913462	0	5		7		11 J		6 J	3000 U	10 J	5,3 J	80 U 68 J
Bis(2-Ethylhexyl)phthalate					210576923	0	1		7		150 U		8 JB	3000 U	71 U	77 U	80 U
Butyfbenzylphthalate	UG/KG	5 8	14.29%	50000	3439423	0	5		7		64 J		1 U	2000 J	23 J	14 J	82 J
Carbazole	UG/KG UG/KG	2000 10000	71 43% 71 43%	400	9423077	2	5		7		7810		1 0	2000 3	63 J	76 J	64 J
Chrysene	UG/KG	0000	0 00%	8100	9423077	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
Di-n-butylphthalate					21057692	0	1		7		150 U		1 U	3000 U	71 U	64.1	80 U
Di-n-octylphthalate	UG/KG UG/KG	6 4	14 29% 71 43%	50000 14	9423	5	5		7		1100, 1		1 U	3000 O	16 J	San San J	J. Santal J
Dibenz(a,h)anthracene	UG/KG	240	28 57%	6200	9827	0	2		7		83 J		1 U	240 J	71 U	77 U	U 08
Dibenzofuran				7100	842307692	0	5		7		18 J		F 91	3000 U	14 JB	8 J	19 J
Diethyl phthalate	UG/KG UG/KG	36	71 43%	2000	10530000000	0	0		7		15 J		1 U	3000 U	71 U	77 U	80 N
Dimethylphthalate	MG/KG	0	0 00%	2000	2106000000	0	0		7	58 U	59 U		1 0	69 U	57 U	58 U	62 U
Ethylene Glycol				50000	42115385	0	6		7	36 0	800		6.1	22000	130	150	120
Fluoranthene	UG/KG	22000	85 71%			0	2		7		16 J	-	6 J	22000 440 J	71 U	77 U	80 U
Fluorene	UG/KG	440	28.57%	50000	42115385	0	2		7		16 J 150 U		1 U	3000 U	71 U	77 U	80 U
Hexachlorobenzene	UG/KG	0	0 00%	410	42993 210577	0	0		7		150 U		1 0	3000 U	71 U	77 U	80 U
Hexachlorobutadiene	UG/KG	0	0 00%			0	0		7		150 U		1 0	3000 U	71 U	77 U	80 U
Hexachlorocyclopentadiene	UG/KG	_	0 00%		7370192	0	0		7		150 U		1 0		71 U	77 U	
Hexachloroethane	UG/KG	0	0 00%	3200	1052885	0	5		7		240		1 0	3000 U	36 J	45 J	80 U 29 J
Indeno[1,2,3-cd]pyrene	UG/KG	5300	71 43%		94231	0	0		7		150 U		1 0	3000 U	71 U	77 U	80 U
Isophorone	UG/KG	0	0 00%	4400	14030400	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
N-Nitrosodiphenylamine	UG/KG	0	0 00%		14038462				7		150 U		1 U	3000 U	71 U	77 U	80 U
N-Nitrosodipropylamine	UG/KG	0	0 00%	40000	10000	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
Naphthalene	UG/KG	0	0 00%	13000	42115385												
Nitrobenzane	UG/KG	0	0.00%	200	526442	0	0		7		150 U 370 U		1 U	3000 U	71 U	77 U	80 U
Pentachlorophenol	UG/KG	0	0 00%	1000	573237	0	0		7		0.00	***		7300 U	170 U	190 U	190 U
Phenanthrene	UG/KG	10000	71.43%	50000		0	5		7		380		1 U	10000	66 J	77	55 J
Phenol	UG/KG	0	0 00%	30	631730769	0	0		7		150 U		1 U	3000 U	71 U	77 U	80 U
Propylene Glycol	MG/KG	0	0 00%			0	0			58 U	59 U		1 U	69 U	57 U	58 U	62 U
Pyrene	UG/KG	18000	71.43%	50000	31586538	0	5		7		530	7	1 U	18000	100	110	91
TPH	MG/KG																
														5.00			
Alkanes - Unknown (total)	UG/KG										2550	3	6	3200	1189	1321	198

Table 7-3 122E Semivolatiles in Soll vs PRG-RECs Non-Evaluated EBS Sites

2 1 1 1 1 1 2 2 2 2	SHI DESCRIPTION									Derci	D 1221 ing Planes		ng Planes	SEAD-I Descing	Planes	SLAD- Determ	Planes	SI-AD-12 Descring 1	Planes	SFAD-12 Deicing F	lanes		ng Planes
Part															1		2		2		3		
Second column	1.0																						
Section Sect											()		0		fs		()		2		()		2
Part													0.2		7.5		(+ 2		2 3		D 2		2.5
1 1 1 1 1 2 2 2 2 2													Mar-08		ar 98		4.ir-98		lar-98		r-9X		-Mar-98
1 1 1 1 1 2 2 2 2 2								DEFICES	ANALYSI	LS VAL	td O	VAI1		VALUE		VALUE		VALUE		VALUE		VALU	
Section Sect								4		7													80-17
1. Machine Michael									1	-													
1										7													80 ()
2.1 A Lingshelped		UG/KG	1)	0.00%	100	105288462	()		n	7			370 (1		170 11								190 U
2 Manuelpine			()				0		n	7							3000 []		71 TJ		77 U		80 11
1 Househout 1545 10					400			,	1	7													11 08
1					2000				0														80 U
2- Manufactione Market 10 10					200		.,,																
Second content					1000																		80 U
Second Control Contr					,		0		D	7													80 U
Secondary Control Co	2-Chlorophenol	UG/KG	(1	O DO%	800	5264423	0		D	7			Iso ti		71 17		3000 U		71 U				80 (1
Secondarian Cickid 0 000									,,								3000 U		71 ()		77 U		80 E1
Control Cont																							80.11
Control Cont						63[73																	
March Marc					330	152863				7													
4. Homels-and-hybrid EGAC,					500					7													190 ()
4-Chime-marked plane 154CeC 0 0.005 20 221 211 50 0 7 19 19 19 19 77 19 19							(1)		13	7			370 11										190 U
4-Champelment (10KK) 0 0 00% 20 29 11/19/ 0 0 0 7 1 10 11 10 100 1 71 U 77 U 77 U						61067308	()		13	7													80 U
Second personage of classes Control Cont										7													80 U
Marked M					220	4211539													. ,				11 08
Abstrace 157KG 0					900					,													
A-temple Corner					7.11	3158654																	190 U
Allersense Kicker					100		n		D	7							7300 U						190 U
Markene NCKK 690 71 590 59 54 51 50 50 5 51 51 51 50 50									2	7													80 U
Restrict plumbared UCKG 640 71 40% 224 9.211 0 5 7 200 71 11 8600 40 1 64 1 14 14 15 15 15 15 15									1)														80 U
Blood playerse UCKG 1000 71 475 100 04211 0 0.5 7 7 7 7 7 7 7 7 7									4	7													80 ()
Bestero B									ς.	7													
Benefishershere 156KG 1960 71 44% 45000 5 7 450 6 1970 71 44% 1970 72 1970 71 45% 1970 72 1970 71									5	7													52 J
Beg Chloresches Chloresc		UG/KG	5500		50000		0		5	7											52 J		30 1
Boly Colhenembly Debre 16/KG 0 0.00% 6.25% 0 0 7 150 1 10 10 17 10 100 1 17 10 10	Benzo k fluoranthene	UG/KG			1100	942308			5														6 J
He-Q-2-1 Merosephished HGAG 10 10 10 10 10 11 10 10 11 10 10 11 10									D														80 U
Hard-Part Hard										7													80 U
Housebox-phintalate UGARG VAR 14 29% S0000 21077073 0 1 7 150 1 58 JB 3000 1 71 U 77 U 30 Carbarole UGARG					Samo				5	7													
Carbonic UC/KG 2000 7 1 48% 400 921077 0 5 7 480 71 U 2000 J 23 J 14 J 8.2 Clavene UC/KG 100 0 7 4 400 921077 0 5 7 480 71 U 10000 63 J 76 J 64 Dr. n.burk.phihalate UC/KG 6 0 0.00% 810 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 4 14 29% 6000 2105/092 0 1 7 150 U 71 U 3000 U 71 U 600 U 71 U 600 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 1 14 0 14 14 14 14 14 14 14 14 15 U 71 U 3000 U 71 U 77 U 80 Dr. n.burk.phihalate UC/KG 6 1 14 0 14 14 14 14 14 14 14 14 14 14 14 14 14									i														80 U
Description			2000	71 43%		3439423	0		5	7			64 J		71 U		2000 J		23 J		14 J		8 2 J
Do note by bubbalise						9423077			5	7													64 J
District									n)	7													11 08
Declar plate									l e														
Deside Publish Publi									,	7													80 U
Dimensis plantalate							D		5	7													19 3
Harmithene		UG/KG	0		2000				n	7													80 17
Hexachloroshure				-9 1111 111					0	7	58 U												62 U
Hexakhrorheavene										7													
Hexablorobundence KGKG 0 0.00% 210577 0 0 7 150 1 71 U 3000 U 71 U 77 U 80 Hexablorobundence KGKG 0 0.00% 77010/2 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Hexablorobundence KGKG 0 0.00% 0.									-														
Hexablorox Corporatione					4117					7													80 U
Hexal bitrochance				0.00%			0		0	7			150 11		71 []		3000 TJ		71 U		77 U		80 (1
Nephrone UCKG 0 0.00% 4400 0 0 0 7 150 U 71 U 1000 U 71 U 77 U 80		UG/KG	0	0.00%		1052885	0		D	7			150 11		71 U								RO U
N-Nirrosulphens lumine UGAG 0 0.00% 14038462 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 NAtirnosulphens lumine UGAG 0 0.00% 10000 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Naphthalene UGAG 0 0.00% 200 \$2115385 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 170 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 \$26412 0 0 7 170 U 77 U 80 Nirrosulphens UGAG 0 0.00% 200 Nirrosulphens UGAG 0 0.00% 200 Nirrosulphens UGAG 10000 71 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 40000 0 7 1 47% 55 Nirrosulphens UGAG 0 0.00% 20 Nirrosulphens UGAG 0 Nirrosulph	Indeno[12,3-cd]pyrene					94231	0		5	7													29 J
N-Nurrosulprops lumine UG/KG 0 0 049% 1000 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Naphthalene UG/KG 0 0 00% 200 \$2.6412 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Nitrobenene UG/KG 0 0 00% 200 \$2.6412 0 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Penashbrophenal UG/KG 0 0 00% 1000 571277 0 0 0 7 150 U 71 U 3000 U 71 U 100 U 170 U 190 U 190 Penashbrophenal UG/KG 0 0 00% 1000 571277 0 0 5 7 370 U 170 U 3700 U 170 U 190 U 19					4400		0			7													
Naphthalene UGAG 0 0.00% 13000 42115385 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 U 170 U 77 U 80 U 170 U 170 U 190 U 190 Pentachforphend UGAG 0 0.00% 200 576412 0 0 7 150 U 71 U 3000 U 71 U 190 U							.,			7			1 11 11										80 U
Nurrehenzene UG/KG 0 0.00% 200 52/6442 0 0 7 150 U 71 U 3000 U 71 U 77 U 80 Pentachlorophenol UG/KG 0 0.00% 1000 57\277 0 0 0 7 370 U 170 U 7300 U 170 U 190					13000		.,			7													80 U
Pentachlorophenol UGKG 0 0 000% 1000 57\\277 0 0 0 7 370 U 170 U 730 U 170 U 190																							80 U
Phononthrene UGAG 10000 71 41% 60000 0 5 7 380 71 U 10000 66 I 77 55. Phonol UGAG 0 0.00% 3U 631740769 0 0 7 150 U 71 U 3000 T 71 U 77 U 80 Propslenc Giscol MGAG 0 0.00% 0 0 7 58 U 59 U 61 U 60 U 57 U 58 U 62 U Props Circol UGAG 18000 71 43% 50000 31586538 0 5 7 530 71 U 18000 100 110 91 TPH MGAG		UG/KG	0	0.00%	1000																		190-13
Props lenc Giscol MG/KG 0 0.00% 0 0 7 \$8.U 59.U 61.U 60.U 57.U 58.U 62. Ps renc UG/KG 18000 71.4 % 50000 31586538 0 5 7 530 71.U 18000 100 110 91 TPH MG/KG	Phenanthrene								,														55 1
Pyrric UKUKG 18000 71 41% 50000 31 586538 0 5 7 530 71 U 18000 100 110 91 TPH MG/KG					3()	63 [730769																	80 U
TPII MC/KG					\$rava-	21586576			5		'N ()												
	t, touc	DONE	(M(X H)	71 4 5%	-(R#R)	11,780,718	0		-	,			. 117		71 0		140007		11/1/2		.10		1
	וויוד	MG/KG																					
													2550		36		3200		1189		1321		198

Table 7-4
122E Semivolatiles and Glycols in Groundwater vs GA Standards
Non-Evaluated EBS Sites

			9	= =	= :	==	= :	= =	= :	= =	=:	= =		: 5	==	:==	===		£	D D		==	: =	D :	==	12	==		= E	= =	= =	==	==	: 5	==	==	2:	==	= :	= =	=	= =		==	==	5 E		= -
SFAD-1221: Deteng Planes MW122F-3 FB12d	2.8	DWATER 8-Mar 98			_	7 <			2.5		= :			, -		2 \$			_	2 5	2.5			-		_		-	- ;	0.21						05.					_		_		2.5		50	7
SFAID-L Deter MW1221 FB124	Ş,	GROUN	VALIG																											<u>~</u>																		
	27	GROUNDWATTR 8-Mar-98		= =	-	2 4 10	= :	= =	2 4 U		5		100		1 0	2.5 U			n I	2.5 10	2.5 U		= =			-			1 70	- C						. 05	0.26 J		0.11		_		-		25 U	0 16 1	105	0.21 0 51 J
SEAD-122b Descing Planes MW1221-2 FB123	ź	GROUND	VALUE																																													
limes	9 9	WALFR 8-Mar 98	o:	= =	= :	3 4 11	= :	= =	2 5 13	= =	= :		11.0	-	11 11	25 U	2 2		Δ.	25 10	2 5 11	2 2	2 2	= :		2	= =	=	_ S	¥ = -	_ :	= =	= =		= =	; ;; - ;;	= =	= =	D :	= =	-		5	2 2				-
SEAD-1223 Deceme Planes WW1221 1 13011		GROBINDWALFR 8-Mar ^o	MALIF																																													
á	4 8 - ×	VATER 8-Mar 98	0	= =	<u>=</u> :	25.11	=:	= =	2 5 11	= =	= =	= =	= = = = = = = = = = = = = = = = = = = =	=	1 1 2	2 4 10	= =	==	= :	2.5 U	2.5 U	===	==	= :	==	11	= =	; D	= :	11.11	2 :		D :		= =	20 05	2 :	= =	2 .	==	0	==	<u> </u>	==	25 U	= =	50 (1	123
SI AD-122F Detering Planes AIW1221-1 118122	2 T T S S T S S S S S S S S S S S S S S	ROUNDWA.	VALUE																																													
<u> </u>	,	×	VALYSIS V					÷ ↔	→ ·				-, -			-			-		-	7 -		7	T T	=	7 1		÷ •	+ +	·	. 4		* **	47 -	* **	4 4	4 4	4	- 4	7		-	7 -		Ç 7	**	7
				989	00.0	8 8	0.00	000	0.00	90 00	80 0	000	900	000	900	000	000	000	00.0	8 8	000	9 9	000	000	G 0	00.0	9 9	900	000	900	0000	600	900	0.08	6 6	000	00 1	8 6	1.00	000	000	000	0.00	900	000	ê 8	000	8
		NUMBER	DE 11 C ES			8 8	9 3	8 8	â	£ £	000		900	: 2	0, 5	0.00	5 5	0.00	10	9 9	1000	9.5	000	000	9 0 0	0.00	800	000	000	880	000	2 2	990	900	0.00	9 9	0,	900	0.	8 8	0.00	989		9. 9.	800	999	0.00	900
		MINI R	LYGM	3 3	Ξ	3 3	= 3	ĒĞ	ě	ĕĕ	ŏ	ēē	ē 3	ě	00.0	ō	000	Ē	ū	9 8	ā	980	3 3	ā	5 5	č	2 2	ē	ě ě	ěě	ž:	ēē	2 3	ēē	3 3	3 2	ā	ēē	ā	ĒĒ	ā	ēē	ē	5 5	ēĕ	ēē	ā	ē
		ž			_							_					_			-	_		_		~ ~			_		_		,	_	_			٠.	~ _		<i>c</i> .c	~		,	<u>~ -</u>		_		
			GWAITR	7.897	2 18 4	7.50 HQ	600	02 U/01	73 00	77 08 76 05 03	07.000	7	200	,			2117 00	146 00		109 50	2190.00		10950 00		000		0.17	10.0	52	7100 00	3.16	vo i	730.00	146.00	29200 00	7300000	0.000	00	0.14	0 0	0.0	13.73	-	1460 00	95.0	31900.08		1095 (M)
			DRINKIN	′ :	v I			~		, ,			.,			·/		,,							10					7		95						51.0							_	_		
			CLASS GA	-	,	-																																٥										
		II NC Y	DITTECTION NYSCLASSICA DRINKING WATER	0.000	"OO O	0.0075	0.00%	0.00%	0.00%	0 (K)"; (1 (K)";	5,0000	0.000	0.00%	0.00%	0.000%	9,0000	0.000%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	93000	0.00%	0.00%	0.00%	0.000%	0 000	00.00%	0.000%	0.00%	0.00%	0.00%	0.00%	0.00%	25 00%	0.00%	25 (X1%	0.00%	0.00%	0.00%	0.00%	0.000%	0.00%	25 00%	0.00%	25 00%
		I RITOTII NOY			0	c =	0 :		0		0 0		0 0		c c	. 0	00		0	0 0	c	0 0		0	0 0	. c	0 0		= /	7 0	c :		c 6		c :	= =	0.26	c =	11 0	c =	. =	5 5		0 0	2 2	0.16	: 0	0.23
			MAXIMU																																		С		-							0		9
			INI	35	E-0.7	55	No.	1881	DCM	55E	TIGAL TIGAL	100	1163	150 0.00	550	tie.	15h	555	LC/J	555	tien.	UGA.	HCM	tic.il	555	HCJ.	525	Tich Tich	DCM	near.	t)CM	100	NGA 11CA	E LOI	HC5	NG./	11031	55.5	LC:VI	500	[10]	HC5/I	150	DOM:	100	ESSE ESSE	MC./I	1621
	10			nzene ene	che	cne	enol	loi loi	_	נו ט	ene	lene			zdine	thylphenol	hend other	ribiletooi	heavl other					ne	hene	20	hene	Nether Dether	ropy1)ether	Johilialate Jate		de	alc.	ar che		<u>.</u>		200	iche	pentadiene	wrene		lamine		-			an (total)
SHII DI SCRIPTION TOC ID SAMP ID	SAMP DEPTEROR	MATHELY SAMIP DATE	PVRAMI II R	 J. Dickhorobences 	13 Du Minobenzeue	1.1 Prehlorobenzene 2.1 5. Tre filorophenol	2.4.6 Irachlorophenol	2 4-Direftorophenol 2 4-Dimethy fiberial	2.4 Dimitroplicad	2.4 Durtrotolucue 2.6 Durtrotolucue	2 Chloronaphthatene	2 - Methylmethyl 2 - Methylmaphthalene	2-Methylphenol	2 Nitrophenol	3.3. On biorobenzidine 3. Nationalises	to-Dinitro 2-methylphenol	4 Bromophenyl phenyl ether	 Characteristine 	4-C blorophens! phens! ether	4-Methylphenol	4-Nitrophenol	Accumplishene	Anthra ene	Benzofalanthracene	Benzolufpyrene Benzolbillnoranthene	Benzolghilperstene	Renzofkjilioranthene	Bed2-CirloroethyDether	Be-(2 Chlororsopropyl)ether	Bas(2-1-thy lbesy Upbil Buty Ibenzy Iphthalate	Carbazole	Chrysene Din-butylphthalaic	Di-n-octylphthalate	Dibenzofuran	Diethyl phthalate	Filiviene Giyeol	Fluoranthene	Fluorene Hexachlorobenzene	Heyachlorobutadiene	Hevachloric velopentadiene Hevachloriethane	Indeno(1.2.3-ed/pyrene	Feaphurone M. Mitrogradinham lumana	N-Natrosadipropylamine	Nuphthalone	Nitrobenzene Pentachlorophennl	Phenanthrene	Propy lene Glycol	Pyrene Alkanes - Unknown (total)
E E S S	3 % %	NA AN	7.	: 5	-		7	4 7		4 5	5 5	7 Z	2-M	Z	- 2	÷	<u>=</u> :	7	+	2 Z	ž	7 .	April	Ben.	<u> </u>	Pen	Hell Hell	Z]F-(But 1	3	žá	ā	Dik	Die	ΞÉ	Ħ.	E E	He	5 5	Inch	Feel	Z	ž	Z Z	Phenuni	Prof	ŽŽ

ebssvw - 122E GA

Table 7-5 122E - Semivolatiles and Glycols in Groundwater vs DW Standards Non Evaluated EBS Sites

SITH DESCRIPTION TOTAL SAMP ID									SI AD-1221 Decume Plantes MW1221-1 F13122	SI AD-1221- Derent Planes AW1221-1 (1001)	SI AD-1221 Det one Planes MW1221-2 ER123	SFAD 1221 Determe Planes MW/221 3 FH124	
SAMP DEPHEROL									8.8 8.8 8.8 8.8	0 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	2.7	2.8	
SAMP DAD		Ξ	I'RI QUI NCY			NUMBER R	NUMBER N	NIMBIR	N NLa 98	S-Mai 98	S-Mar-98	8-Mar-18	
		AXIMIT D	NYS CLASS GA	DRINKINGWALLR			<u>×</u>	<u>x</u>	VALUE 0	VALUE Q	VALUE	O WIWA	
1.2.4 Inchlorobenzene 1.2.Du blembenzene	116.7	= =	0.00%	٠. ا	[2] ed	0.00	00.00		= =	= =	= =	= =	
	1167	=			32 18 40	000	0.00	-	= =	Ξ	==		
1 I-Du hlorobenzene 2 I S. Leo blorombood	Tie.7	0 0		1.1	2 80	0.00	000		=== ;	1 []	0 1	10	
ž %	1671	= =	0.00%		26.0	000	000	- +-	2 .	367	1.1		
	116.7	С	200.0		05 601	000	00 0	•	10	= :		1 10	
2.4-Dimethylphenol 2.4-Dimethylphenol	11671.	c :	0.00%	.,	730.00	0 00	(10.0)	÷ :	1 2 2 2	= - 2	1111	11 1 1	
	1167	: :	9,000	**	00 1	0.00	600	, -	0.1		0.1	11.1	
2 6-Dinitrateluene	1107	= :	0 (20%)	.,	1/1 5(1)	000	000	- 4	0 :	= =	0.1	= :	
	55	2 0	0.00%		182 50	000	800	4 41	2 2		2 2	2 2 -	
2-Methy happithulene	1107	c :	0.00%	**		00.0	000			= :		2:	
	IKM IKM	0 0	0.00%	,	55 0	0000	0000	7 7		2 4 11	2 5 13	25 (1)	
	1/:71	0	D (N)**			(6.0)	0.00	7	= :	2	<u> </u>	n :	
3.3 Dachlarobenzahne	. LICAL LICAL	c c	0.00%		100 50	680	800	7 7	1 1 2	= = ; (1 2 4	1111	
	N:3/1	. 0	O DOP"	• *		0.00	00.0	-	25.0	25 U	25 U	25 (1)	
ē	Licin Licin	c :	C) (MPG)		2117 00	0.00	000		= =	= :	= :	= :	
4-Chloroundine	1007	= 0	0.00%	.,	146 00	0.000	00 0	. 47			3 2	= =	
	1303/1	О	() (N)"%			DO 0	11 (30)	7	11 12	2.1	1.1	=	
4 Methylphenol	17.7	0 0	71 (X).//	·/· ·/	100 \$0	000	(X) U	- -	11	11 1	1 1 1	11 10	
4-Nirophenol	(363)	0	0.00%		2190.00	000	000	7 77	25.0	2 5 11	2 4 11	250	
Acenaphthene	1/011	c	0.00%			000	00.0		= :	= :	2	0.1	
Acenaphtiviene	NO.1	c :	0.00%		1005001	000	000	7 9	= =	2 -	= =	= =	
Nenzulajanthracene	551		, (N) %			900	000	-	= =	2 2		3 5	
Benzalallyvene	Dest.	С	6) DQP4	Ξ.	00 00	00 0	0.00	-	2 .	0.1	2 :	2 :	
Benzolbiliumanhene Benzolehilmen lene	11CM	c c	0 N/%		0.02	200	000	7			0 1	= =	
Renzo(k)flunranthene	U:0:1	С	0.00%		71.0	0.00	0.10	7	1.0	0.1	0-	=======================================	
Brs(2-Chlornethovy)methane	11637	0 0	0.00%		100	0000	000	~ ~	111			D	
Big. Chlororopropylether	UCM		5,400 O		0.26	0.00	(X) (I)	-	11	= =	9 -	2	
Bi-(2-1 th/thex/l)phthalute	1767	1.2	100 00%	d>	100	000	4 (K)	4.	12 h	8f 6l 0	0 61 JB	0.21 JB	
Huty Benzy Iphiladake Carbazole	IKM.	cc	0.00%		37.5	000	0.00	7 17	==	2 2	0		
Chrysene	T(571)	С	0 (K)%		1 58	0000	0.00	4	= :	2	2 :	0.1	
Don butylphthalate	V:31	00	0 (87%	ς,	730.00	900	0000	7 0	= =	= =	= =		
Dibenzju Manthracene	100	: с	50000			0.00	00.0	- 4	= =	= =	0	0	
Dibenzolum	TIGAL.	0 0	%IN 0		146.00	8 8	900	₹ ₹	= =	= =	11	D = -	
Dimethy Inhibitate	HGZ.		0.00°s		10,5006,00	0000	000		2 1	0 - 0		2 11	
I thelene Glycol	MCJ	0	0.00%		73000 00	00 0	00 0	4	0.05	Sn tJ	1) 05	0.00	
Inoranthene	107	0.26	25 00%		1.160.00	900	(8) (7 7	= =	= =	0.26 J		
Finorene Hexachlorobenzene	1631	0		0.15	100	000	0000	4	==	= =	=		
Hexachlorobutadiene	I/O/I	0.11	25 (X)%		110	1 00	00	77	= :	0 :	(10)	D 1	
Hexachlorocyclopentadiene	000	c 0	0.00%		>10	000	0000	गण					
nevacinjornemane Indenol 1.2 3 collevrene	UGAL.	С	0.00%		0.02	000	000	4		= =	2 -	11	
Lephornic	116.7	0	() ()() _m ,			0 (8)	00.0	÷		= -	D I	1.1	
N-Nitrosodiphenylamine	1067	c :	(1 (H)" 5		11.72	000	000	-		= =	0 = -	= =	
N-Mitrosodipropytamine Nachthalene	500	o =	*		1460.00	000	900	. 4	-	2 -		2 2	
Nitrohenzene	11637	=	%00.0		110	00.0	0.00	4	-	n -	ΩΙ	1.11	
Pentuchlorophenul	Ltc.yl	0	%(00) ()	_	0.56	00.0	000	7 1	2.5	2 4 ()	250	250	
Phenasthrene	11G/L	9 0	25 DO%	-	21900 00	000	(X) ()	7 47			n -	0 0	
Propytene Giveni	MKVI.	0	0 DXP%			0.00	0.00	47	50 U	(1 0)	11 05	00 03	
Pyrene Alkanes Toknova (total)	UCAL.	021	2< 100%		1095.00	0.00	1 (30)	4	1 1 1 1 1 1 1 1 1 1 1 1	1 1	0.23 J 0.51 J	1 0	
Alkibics thanner trent	147.1								!				

ebssvw - 122E DW

SEAD-123B

Building 716 and 717 Petroleum Releases

Table 9-1

Sample Collection Information SEAD-123B - Building 716 and 717 Petroleum Releases

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SURFACE SOIL	SS123B-1	EB139	3/9/98	0.0	0.2	SA	Location is next to building beneath "T" junction of 3-in steel pipe that runs from the pump house to the filling station Nearby valves showed signs of past leakage
SURFACE SOIL	SS123B-2	EB140	3/9/98	0.0	0.2	SA	Location is on south side of asphalt entrance way i low area that is downgradient of filling station Downgradient location based on surface water flow patterns established by using a bucket filled with water
SURFACE SOIL	SS123B-3	EB141	3/9/98	0.0	0.2	SA	Location is 20 ft south of the filling station area in an area that showed signs of stressed vegetation
SOIL	SB123B-1	EB242	3/11/98	0.0	0.2	SA	Location is on south side of asphalt entrance way i low area that is downgradient of filling station Downgradient location based on surface water flow patterns established by using a bucket filled with water
SOIL	SB123B-1	EB245	3/11/98	2.6	2.9	SA	Same location ID as above Approx. mid-depth (near water table) sample chosen in bore hole because no VOC hits or other indications of impacts to soils
SOIL	SB123B-2	EB246	3/11/98	0.0	0.2	, SA	Location is on south side of asphalt entrance way i low area that is downgradient of filling station. Downgradient location based on surface water flow patterns established by using a bucket filled with water
SOIL	SB123B-2	EB243	3/11/98	3.2	3.5	SA	Same location ID as above Approx mid-depth sample chosen in bore hole (near water table) because no VOC hits or other indications of impacts to soils.

Table 9-1

Sample Collection Information SEAD-123B - Building 716 and 717 Petroleum Releases

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
ID	ID I	DATE	(feet)	(feet)	CODE	LOCATION
SB123B-3	EB244	3/11/98	0.0	0.2	SA	Location is a potential run-off area (i.e., low spot) north of the filling station. Pooled water nearby Surface soil sample
SB123B-3	EB247	3/11/98	2.6	2.9	SA	Same location ID as above Approx mid-depth (near water table) sample chosen in bore hole hecause no VOC hits or other indications of impacts to soils
SD123B-1	FB137 .	3/9/98	0.0	0.2	SA	l ocation in drainage ditch 1 ft downsteam of outfall pipe from Tank 188
SD123B-2	EB138	3/9/98	0.0	0.2	SA	Location in drainage ditch 11 ft downsteam of outfall pipe from Tank 188
SS123B-1	EB016	3/9/98	0.0	0.2	DU	Not Applicable
SS123B-1	EB017	3/9/98	0.0	0.0	RB	Not Applicable
	SB123B-3 SB123B-3 SD123B-1 SD123B-2 SS123B-1	ID ID SB123B-3 EB244 SB123B-3 EB247 SD123B-1 EB137 SD123B-2 EB138 SS123B-1 EB016	ID ID DATE SB123B-3 EB244 3/11/98 SB123B-3 EB247 3/11/98 SD123B-1 FB137 3/9/98 SD123B-2 EB138 3/9/98 SS123B-1 EB016 3/9/98	ID ID DATE (feet) SB123B-3 EB244 3/11/98 0.0 SB123B-3 EB247 3/11/98 2.6 SD123B-1 FB137 3/9/98 0.0 SD123B-2 EB138 3/9/98 0.0 SS123B-1 EB016 3/9/98 0.0	ID ID DATE (feet) (feet) SB123B-3 EB244 3/11/98 0.0 0.2 SB123B-3 EB247 3/11/98 2.6 2.9 SD123B-1 FB137 3/9/98 0.0 0.2 SD123B-2 EB138 3/9/98 0.0 0.2 SS123B-1 EB016 3/9/98 0.0 0.2	ID ID DATE (feet) CODE SB123B-3 EB244 3/11/98 0.0 0.2 SA SB123B-3 EB247 3/11/98 2.6 2.9 SA SD123B-1 EB137 3/9/98 0.0 0.2 SA SD123B-2 EB138 3/9/98 0.0 0.2 SA SS123B-1 EB016 3/9/98 0.0 0.2 DU

Notes

SA Sample

DU - Duplicate

RB - Rinse Blank

Table 9-2 123B · Volatiles in Soils vs TAGMs Non-Evaluated EBS Sites

LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DETH TOP SAMP DETH TOP SAMP DEATH SOT			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBFR OF	SEAD-1: Bldg 71i and 717 Petroleu Release SB123B EB242 SA SOIL 11-Ma	6 m s -1 0	BI ar Pr Ri SI EI	EAD-123B ldg 716 nd 717 etroleum eleases B123B 1 B245 A 2 6 2 9	9	Bild and Pel Rei SB EB SA	C	0 0 2	Bidg and 7 Petro Relea SB12 EB24 SA	17 eum ses 3B-2	SEAD-12 Bidg 716 717 Petroleur Releases SB123B- EB244 SA	6 and 7 3 0 0 2	Bldg and Petr Rele SB1 EB2 SA	2 6 2 9	SEAD- Bldg 7 and 71 Petrole Releas SS123 EB016 DU	716 7 7 8 um ses 8-1 0	SEAD-1. Bidg 71 and 717 Petroleu Release SS123B EB139 SA SOIL 9 Mi	im
PARAMETER	UNIT	AXIMU	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	V	ALUE	Q	VA.	LUE	Q	VALU	E Q	VALUE	Q	VAL	UE Q	VALUE	. 0	VALUE	Q
1.1.Trichloroethane	UG/KG	0		800	2737500	0	0	10		11 11			2 U	***		14 U	VACO	11 U	VALUE	12 U	VAL	12 U	VALUE	13 U	VALUE	13 U
1, 1, 2.2-Tetrachloroethane	UG/KG	0		600	31938	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
1,1,2-Trichloroethane	UG/KG	0	0 00%		11206	0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
1,1-Dichloroethane	UG/KG	0	0 00%	200	7821429	0	0	10	0	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
1,1-Dichloroethene	UG/KG	0	0 00%	400	1065	0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
1,2 Dichloroethane	UG/KG	0		100	7821429	0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
1.2 Oichloroethene (total)	UG/KG	0				0	-	10		11 U			2 U			14 U		‡1 U		12 U		12 U		13 U		13 U
1,2-Dichloropropane	UG/KG	0			9393	0		10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Acetone	UG/KG	140		200	7821429	0	3	10		11 U			7 J			40		11 U		12 U		12 U		13 U		6 J
Benzene	UG/KG	0		60	22026	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Bromodichloromethane	UG/KG	0			10302	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Bromoform	UG/KG	0			80854	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Carbon disulfide	UG/KG	0		2700	7821429	0	0	10	-	11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Carbon tetrachloride Chlorobenzene	UG/KG UG/KG	0		600 1700	4913 1564286	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Chlorodenzene	UG/KG	0		1700	7604	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Chloroethane	UG/KG	0		1900	31285714	0	_	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Chloroform	UG/KG	0		300	104713	0		10		11 U			2 U			14 U		11 U		12 U 12 U		12 U 12 U		13 U		13 U 13 U
Cis 1,3-Dichloropropene	UG/KG	0		300	104713	0		1(11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Ethyl benzene	UG/KG	0		5500	7821429	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methyl bromide	UG/KG	0		0000	111846	0	0	10	-	11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methyl butyl ketone	UG/KG	0				0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methyl chloride	UG/KG	0			49135	0	0	10	5	11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methyl ethyl ketone	UG/KG	0	0 00%	300		0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methyl sobutyl ketone	UG/KG	0	0 00%	1000	6257143	0	0	10	3	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
Methylene chloride	UG/KG	0	0 00%	100	85167	0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
Styrene	UG/KG	0				0	0	10)	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U
Tetrachloroethene	UG/KG	10		1400	12284	О	1	10		11 U			J			14 U		11 U		12 U		12 U		13 U		13 U
Toluene	UG/KG	14		1500	15642857	0	6	10		ВJ			5 U			14 U		3 J		3 J		12 U		13 U		3 J
Total Xylenes	UG/KG	0		1200		0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Trans-1,3-Dichloropropene	UG/KG	0				0	0	10		11 U			5 N			14 U		11 U		12 U		12 U		13 U		13 U
Trichloroethene	UG/KG	0		700	58068	0	0	10		11 U			2 U			14 U		11 U		12 U		12 U		13 U		13 U
Vmyl chloride	UG/KG	0	0 00%	200	336	0	0	10	3	11 U		12	2 U			14 U		11 U		12 U		12 U		13 U		13 U

Table 9 2 123B Volatiles in Soils vs TAGMs Non Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DETH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NLIMBER OF	NUMBER OF	SEAD-1238 Bldg 716 and 717 Petroleum Releases SS1238-2 EB140 SA 0 0 2 SOIL 9-Mar 98		SOIL 9-Mar-	0 2 98
PARAMETER	UNIT	AXIMU	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSÉS	VALUE	Q	VALUE	Q
1 1 1 Trichforgethane	UG/KG	0	0 00%	800	2737500	0	0	10	11	U		12 U
1 1 2,2-Tetrachloroethane	UG/KG	0	0 00%	600	31938	0	0	10	11	U		12 U
1.1,2-Trichloroethane	UG/KG	0	0 00%		11206	0	0	10	11	U		12 U
1 1 Dichloroethane	UG/KG	0	0 00%	200	7821429	0	0	10	11			12 U
1 1-Dichloroethene	UG/KG	0	0 00%	400	1065	0	0	10	11			12 U
1 2-Dichlorgethane	UG/KG	0	0 00%	100	7821429	0	0	10	11			12 U
1,2-Dichlornethene (total)	UG/KG	0	0 00%			0	0	10	11	-		12 U
1,2-Dichloroprnpane	UG/KG	0	0 00%		9393	0	0	10	11			12 U
Acetone	UG/KG	140	30 00%	200	7821429	0	3	10	11			12 U
Benzene	UG/KG	0	0 00%	60	22026	0	0	10	11			12 U
Brornodichloromethane	UG/KG	0	0 00%		10302	0	0	10	11			12 U
Bromoform	UG/KG	0	0 00%		80854	0	0	10	11			12 U
Carbon disulfide	UG/KG	0	0 00%	2700	7821429	0	0	10	11			12 U
Carbon tetrachloride	UG/KG	0	0 00%	600	4913	0	0	10	11			12 U
Chlorobenzene	UG/KG	0	0 00%	1700	1564286	0	0	10	11	-		12 U
Chlorodibromomethane	UG/KG	0	0 00%		7604	0	0	10	11			12 U
Chloroethane	UG/KG	0	0 00%	1900	31285714	0	0	10	11			12 U
Chlaroform	UG/KG	0	0 00%	300	104713	0	0	10	11			12 U
Cis 1 3 Dichloropropene	UG/KG	0	0 00%			0	0	10	11			12 U
Ethyl benzene	U G /KG	0	0 00%	5500	7821429	0	0	10	11			12 U
Methyl bromide	UG/KG	0	0 00%		111846	0	0	10	11			12 U
Methyl bulyl ketone	UG/KG	0	0 00%			0	0	10	11			12 U
Methyl chloride	UG/KG	0	0 00%		49135	0	0	10	11			12 U
Methyl ethyl ketone	UG/KG	0	0 00%	300	0053440	0	0	10	11			12 U
Methyl isobutyl ketone	UG/KG	0	0 00%	1000	6257143	0	0	10	11			12 U
Methylene chloride	UG/KG UG/KG	0	0 00%	100	85167	0	0	10	11			12 U
Styrene Tetrachloroethene	UG/KG	10	10 00%	1400	12284	0	1	10	11			12 U
Toluene	UG/KG	14	60 00%			0	6	10	11	U		12 U
Total Xylenes	UG/KG	14	0.00%	1500 1200	15642857	0	0	10 10	14			3 J
Trans-1.3-Dichloropropene	UG/KG	0	0.00%	1200		0	0	10	11			12 U
Trichloroethene	UG/KG	0	0.00%	700	58068	0	0	10	11			12 U
Vinyl chloride	UG/KG	0	0.00%	200	336	0	0	10				12 U
enier change	JUNG	U	0 00%	200	336	U	0	10	11	U		12 U

Table 9-3 123B - Volatiles in Soils vs PRG-RES Non-Evaluated EBS Sites

SITE DESIGRIPTION LOC ID SAMP ID QC CODE SAMP DETHIOP									SEAD-123B Bidg 716 and 717 Petroleum Releases SB123B-1 EB242 SA		SEAD-123B Bldg 716 and 717 Petroleum Releases SB123B 1 EB245 SA	SEAD-123B Bldg 716 and 717 Petroleum Releases SB123B-2 EB246 SA	0	SEAD-123B Bldg 716 and 717 Petroleum Releases SB123B-2 EB243 SA		0		n 3		0	SEAD-12 Bldg 716 and 717 Petroleur Releases SS123B- ER139 SA	6 m s -1
SAMP DEPTH BOT MATRIX									0 2 SOIL		2 9 SOIL	0.2	2	3.5	0	2		29	0	2		0.2
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	11 Mar-98		11-Mar 98	SOIL 11 Mar 98	8	SOIL 11 Mar 98	SOIL 11-Mar-9	10	SOIL 11-Mai	. 00	SOIL 9-Mar-9	.0	SOIL 9-Ma	. 09
SMAIL (SM) E		,	OF			ABOVE	OF	OF	I I MAIN 30		TINIAI 30	II Mai 30		II Mai 30	II-Mar-s	10	11-Mai	-96	9-Mar-s	В	a-ma	1-40
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	a '	VALUE Q	VALUE	Q	VALUE Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1 1 1-Trichloroethane	UG/KG	0	0 00%	800	2737500	0	0		11		12 U	14	4 U	11 U	1	12 U		12 U	1	3 U		13 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	31938	0	0		11		12 U		4 U	11 U	1	12 U		12 U	1	3 U		13 U
1 1,2 Trichloroethane	UG/KG	0	0 00%		11206	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
1,1 Dichloroethane	UG/KG	0	0 00%	200	7821429	0	0			-	12 U		4 U	11 U		12 U		12 U		3 U		13 U
1 1-Dichloroethene	UG/KG	0	0 00%	400	1065	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
1.2 Dichloroethane	UG/KG	0	0.00%	100	7821429	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
1,2-Dichloroethene (total)	UG/KG	0	0 00%			0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
1,2-Dichloropropane	UG/KG	0	0 00%		9393	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Acetone	UG/KG	140	30 00%	200	7821429	0	-				7 J	140		11 U		12 U		12 U		3 U		6 J
Benzene	UG/KG	0	0 00%	60	22026	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Bromodichloromethane Bromoform	UG/KG UG/KG	0	0 00%		10302 80854	0	0		11		12 U 12 U		4 U 4 U	11 U		12 U		12 U		3 U		13 U
Carbon disulfide	UG/KG UG/KG	0	0 00%	2700	7821429	0	0				12 U		4 U	11 U 11 U		12 U		12 U		3 U		13 U
Carbon disunde Carbon tetrachloride	UG/KG	0	0 00%	600	4913	0	0				12 U		4 U	17 U		12 U		12 U		3 U		13 U
Carbon terrachioride Chlorobenzene	UG/KG	0	0 00%	1700	1564286	0	0				12 U		4 U	11 U		12 U 12 U		12 U		3 U		13 U
Chlorodenzene	UG/KG	0	0 00%	1700	7604	0	0				12 U		4 U	11 U		12 U		12 U 12 U		3 U		13 U 13 U
Chloroethane	UG/KG	0	0 00%	1900	31285714	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Chloroform	UG/KG	0	0 00%	300	104713	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Cis-1,3-Dichloropropene	UG/KG	0	0 00%	300	104711	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Ethyl benzene	UG/KG	0	0.00%	5500	7821429	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methyl bromide	UG/KG	0	0 00%	3300	111846	0	o o				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methyl butyl ketone	UG/KG	o o	0 00%		1110411	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methyl chloride	UG/KG	0	0 00%		49135	0	Ö				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methyl ethyl ketone	UG/KG	0	0 00%	300		0	C				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methyl isobutyl ketone	UG/KG	0	0 00%	1000	6257143	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Methylene chloride	UG/KG	0	0.00%	100	85167	0	0	10	11	U	12 U		4 U	11 U		12 U		12 U		3 U		13 U
Styrene	UG/KG	0	0.00%			0	0	10	11	ป	12 U	14	4 U	11 U		12 U		12 U	1	3 U		13 U
Tetrachloroethene	UG/KG	10	10 00%	1400	12284	0	1	10	11	U	10 J	14	4 U	11 U		12 U		12 U	1	3 U		13 U
Toluene	UG/KG	14	60 00%	1500	15642857	0	6	10	8	J	12 U	14	4 U	3 J		3 J		12 U	1	3 U		3 J
Total Xylenes	UG/KG	0	0 00%	1200		0	0	10	11	U	12 U	14	4 U	11 U	1	12 U		12 U	1	3 U		13 U
Trans-1,3-Dichloropropene	UG/KG	0	0 00%			0	0	10	11	U	12 U	14	4 U	11 U	1	12 U		12 U	1	3 U		13 U
Trichloroethene	UG/KG	0	0 00%	700	58068	0	0				12 U		4 U	11 U		12 U		12 U		3 U		13 U
Vinyl chloride	UG/KG	0	0 00%	200	336	0	0	10	11	U	12 U	14	4 U	11 U	1	12 U		12 U	1	3 U		13 U

Table 9 3 123B · Volatiles in Soils vs PRG-RES Non-Evaluated EBS Sites

aute.									SEAD-123	n D	SEAD 1	าวอ
DESCRIPTION									Bldg 716	nen	8ldg 71	
DESCRIPTION									and 717		and 717	0
									Petroleum		Petroleu	m
									Releases		Reicase	
LOC ID									SS1238-2	,	SS123B	
SAMP ID									EB140		EB141	5
QC CODE									SA		SA	
SAMP DETH TOP									13/1	0	J.	0
SAMP DEPTH BOT										0.2		0.2
MATRIX									SOIL	0.8	SOIL	0.2
SAMP DATE			FREQUENCY			NUMBER	NUMPER	NUMBER	9-Mar	.98	9 Ma	ar. 98
JAME DATE			OF			ABOVE	OF	QF		,,,		
PAPAMETER	UNIT	MAXIMUM	DETECTION.	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1.1.1 Trichloroethane	UG/KG	0	0.00%	800	2737500	0	()	10		11 U		12 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	31938	0	0	10		11 U		12 U
1, 1, 2- Trichloroethane	UG/KG	0	0 00%		11206	0	0	10		11 U		12 U
1 1-Dichloroethane	UG/KG	0	0 00%	200	7821429	0	0	10		11 U		12 U
1.1-Dichloroethene	UG/KG	0	0 00%	400	1065	0	0	10		11 U		12 U
1.2-Dichloroethane	UG/KG	0	0 00%	100	7821429	0	0	10		11 U		12 U
1.2-Dichloroethene (total)	UG/KG	0	0 00%			0	0	10		11 U		12 U
1.2 Dichloropropane	UG/KG	0	0 00%		9393	0	0	10		11 U		12 U
Acetone	UG/KG	140	30 00%	200	7821429	0	3	10		11 U		12 U
Benzene	UG/KG	0	0 00%	60	22026	0	0	10		11 U		12 U
Bromodichloromethane	UG/KG	0	0 00%		10302	0	0	10		11 U		12 U
Bromoform	UG/KG	0	0 00%		80854	0	0	10		11 U		12 U
Carbon disulfide	UG/KG	0	0 00%	2700	7821429	0	0	10		11 U		12 U
Carbon tetrachloride	UG/KG	0	0 00%	600	4913	0	0	10		11 U		12 U
Chlorobenzene	UG/KG	0	0 00%	1700	1564286	0	0	10		11 U		12 U
Chlorodibromomethane	UG/KG	0	0 00%		7604	0	0	10		11 U		12 U
Chloroethane	UG/KG	0	0 00%	1900	31285714	0	0	10		11 U		12 U
Chloroform	UG/KG	0	0 00%	300	104713	0	0	10		11 U		12 U
Cis-1,3-Dichloropropene	UG/KG	0	0 00%			0	0	10		11 U		12 U
Ethyl benzene	UG/KG	0	0.00%	5500	7821429	0	0	10		11 U		12 U
Methyl bromide	UG/KG	0	0 00%		111846	0	0	10		11 U		12 U
Methyl butyl ketone	UG/KG	0	0 00%			0	0	10		11 U		12 U
Methyl chloride	UG/KG	0	0 00%		49135	0	0	10		11 U		12 U
Methyl ethyl ketone	UG/KG	0	0 00%	300		0	0	10		11 U		12 U 12 U
Methyl isobutyl ketone	UG/KG	0	0 00%	1000	6257143	0	0	10		11 U		12 U
Methylene chloride	UG/KG	0	0 00%	100	85167	0	0	10		11 U		12 U
Styrene	UG/KG	0	0 00%	4 400	40004	0	1	10		11 U		12 U
Tetrachloroethene	UG/KG	10	10 00%	1400 1500	12284 15642857	0	6	10		14		3 J
Toluene	UG/KG UG/KG	14 0	60 00% 0 00%	1200	13042857	0	0	10		11 U		12 U
Total Xylenes	UG/KG	0	0 00%	1200		0	0	10		11 U		12 U
Trans-1,3-Dichloropropene Trichloroethene	UG/KG	0	0 00%	700	58068	0	0	10		11 U		12 U
	UG/KG	0	0 00%	200	336	0	0	10		11 U		12 U
Vinyl chloride	JONG	0	0 00%	200	3 10	0	0	10				.2 0

Table 9-4 1238 - Semivolatiles/TPH in Soll vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123B Bldg 716 and 717 Petroleum	SEAD-123 Bldg 716 : 717 Petroleum		SEAD-123 Bldg 716 717 Petro Releases	and	SEAD-12 Bldg 716 717 Patro Releases	and leum	SEAD 12 Bldg 716 717 Petroleur	6 and	SEAD-1 Bidg 7° 717 Petrolei	16 and	SEAD-1238 Bidg 716 a 717 Petroleum		SEAD-123B Bidg 716 and 717 Petroleu Releases
LOC ID									Releases 5B123B 1	Releases SB1238 1		S8123B-2	,	SB123B-	2	Release: SB123B-		Release SB1238		Releases SS123B-1		SS1238-1
SAMP ID QC CODE									E8242	E8245		EB246		EB243		EB244	-3	EB247		EB016		EB139
SAMP DETH TOP									SA 0	SA	26	SA	0	SA	32	SA	0	SA	26	DU	0	SA 0
SAMP DEPTH BOT MATRIX									0 2 SOIL	SOIL	29	SON	0.2	SOIL	35		02		29		0 2	0 2
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER	NUMBER	11 Mar 98	11-Mar	98	11-Ma	ır-98		ar-98	SOIL 11-M	ar-98	SOIL 11-8	Aar-98	SOIL 9-Mar-	98	SOIL 9-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG	TAGM	DETECTS	OF ANALYSES		VALUE	Q	VALUE	Q	VALUE	۵	VALUE	Q	VALUE	Q	VALUÉ	Q	VALUE
1.2-Dichlorobenzene 1.2-Dichlorobenzene	UG/KG UG/KG	0	0 00%	3400 7900	782143 7039286	0	0				73 U		82 U		75 U 75 U		71 U 71 U		85 U 85 U		100 U	3900
1 3-Dichlorobenzene	UG/KG	0	0.00%	1600	6961071	0	ō	10	72 U		73 U		82 U		75 U		71 U		85 U		100 U 100 U	3900 3900
1 4-Dichlorobenzene 2,4 5-Trichlorophenol	UG/KG UG/KG	0	0 00%	8500 100	26615 7821429	0	0				73 U 180 U		82 U 200 U		75 U		71 U		85 U	38	100 U	3900
2.4 5-Trichlorophenol	UG/KG	0	0.00%	100	7821429 58068	. 0	0				73 U		82 U		180 U 75 U		170 U 71 U		200 U 85 U		100 U	9400 3900
2 4-Dichlaraphenal	UG/KG	0	0.00%	400	234643	0	0		72 U		73 U		82 U		75 U		71 U		85 U		100 U	3900
2.4-Dimethylphenol 2.4-Dinitrophenol	UG/KG UG/KG	0	0.00%	200	1564286 156429	0	0				73 U 180 U		82 U 200 U		75 U 180 U		71 U 170 U		85 U 200 U		900 U 900 U	3900 9400
2 4-Dinitrotoluene	UG/KG	ō	0 00%		156429	ō	ō	,,,			73 U		82 U		75 U		71 U		85 U		900 U	3900
2,6-Dinitratoluene	UG/KG	0	0.00%	1000	78214	0	0				73 U		82 U		75 U		71 U		85 U	38	300 U	3900
2 Chloronaphthalene 2 Chlorophenol	UG/KG UG/KG	0	0 00%	800	391071	0	0				73 U 73 U		82 U 82 U		75 U 75 U		71 U 71 U		85 U 85 U		300 U 300 U	3900 3900
2-Methylnaphthalene	UG/KG	49	20 00%	36400		0	2	10	45 J		73 U		82 U		75 U		71 U		85 U		300 U	3900
2-Methylphenol 2 Netrosoline	UG/KG UG/KG	0	0.00%	100 430	3910714 4693	0	0				73 U 180 U		82 U 200 U		75 U		71 U		85 U		300 U	3900
2-Nitrophenol	UG/KG	0	0.00%	330	4921	0	0				73 U		82 U		180 U 75 U		170 U		200 U 85 U		100 U 100 U	9400 3900
3 3 - Dichlorobenzidine	UG/KG	0	0 00%		1419	0	0	10	72 U		73 U		82 U		75 U		71 U		85 U	38	300 U	3900
3-Nitroaniline 4 6-Dinitro-2-methylphenol	UG/KG UG/KG	0	0.00%	500	234643	0	0				180 U 180 U		200 U 200 U		180 U 180 U		170 U 170 U		200 U 200 U		100 U 100 U	9400 9400
4-Bromophenyl phenyl ether	UG/KG	ō	0.00%		4536429	0	0				73 U		82 U		75 U		71 U		85 U		100 U	3900
4-Chloro-3-methylphenol	UG/KG UG/KG	0	0.00%	240		0	0				73 U		82 U		75 U		71 U		85 U		300 U	3900
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/KG UG/KG	0	0 00%	220	312857	0	0				73 U 73 U		82 U 82 U		75 U 75 U		71 U		85 U 85 U		300 U 300 U	3900 3900
4-Methylphenol	UG/KG	0	0 00%	900		0	ō	10	72 U		73 U		82 U		75 U		71 U		85 U		900 U	3900
4-Nitroaniline 4-Nitrophenol	UG/KG UG/KG	0	0.00%	100	234643 4692857	0	0				180 U 180 U		200 U 200 U		180 U 180 U		170 U		200 U		100 U	9400
Acenaphthene	UG/KG	0	0.00%	50000	4092837	0	0				73 U		82 U		75 U		170 U 71 U		200 U 85 U		300 U 300 U	9400 3900
Acenaphthylene	UG/KG	0	0.00%	41000		0	0				73 U		82 U		75 U		71 U		85 U	38	300 U	3900
Anthracene Benzo[a]anthracene	UG/KG UG/KG	0 18	0 00% 40 00%	50000 224	23464286 875	0	0	10 10			73 U 73 U		82 U 82 U		75 U 75 U		71 U 18 J		85 U		300 U 300 U	3900 3900
Benzo[a]pyrene	UG/KG	19	40 00%	61	88	0	4		97 J		38 J		82 U		7 J		19 J		85 U		800 U	3900
Benzo(b)fluoranthene	UG/KG UG/KG	29 18	71 43%	1100 50000	875	0	5	7	20 01		43 J		82 U		75 U		29 J		85 U		100 U	3900
Benzo(gh/)perylene Benzo(k)fluoranthene	UG/KG	23	40 00% 20 00%	1100	8750	0	2	10 10			73 U 5 4 J		82 U 82 U		99 J 75 U		18 J 23 J		85 U 85 U		100 U	3900 3900
Bis(2-Chloroethoxy)methane	UG/KG	0	0 00%			0	0				73 U		82 U		75 U		71 U		85 U	38	00 U	3900
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether	UG/KG UG/KG	0	0 00%		581 9125	0	0				73 U 73 U		82 U 82 U		75 U 75 U		71 U 71 U		85 U 85 U		100 U	3900 3900
Bis(2-Ethylhexyl)phthalate	UG/KG	68	87 50%	50000	45625	ō	7	8			94 J		82 U		12 J		14 J		31 J		X00 U	3900
Butylbenzylphthalate	UG/KG	13	60 00%	50000	15642857	0	6		72 U		75 JB		97 JB		96 JB		13 JB		10 JB	38	00 U	3900
Carbazole Chrysene	UG/KG UG/KG	7 5 26	10 00% 80 00%	400	31938 87500	0	1 6	10			73 U		82 U 82 U		75 U 4.8 J		75 J 26 J		85 U 85 U		1000 U	3900 3900
Di-n-butylphthalate	UG/KG	0	0.00%	8100		0	ō	10	72 U		73 U		82 U		75 U		71 U		85 U		100 U	3900
Di-n-octylphthalate	UG/KG UG/KG	9.5	20 00%	50000 14	1564286	0	2				5 2 J		82 U		75 U		71 U		85 บ 85 ป		100 U	3900
Dibenz[a,h]anthracene Dibenzofuran	UG/KG	13	20 00% 0 00%	6200	312857	0	0	10			73 U 73 U		82 U 82 U		10 J 75 U		13 J 71 U		85 U		100 U 100 U	3900 3900
Diethyl phthalate	UG/KG	44		7100	62571429	0	7	9	98 JB		44 JB		24 JB		29 JB		76 JB		12 JB	38	100 U	3900
Dimethylphthalate Ethylene Giycol	UG/KG MG/KG	0	0.00%	2000	782142857 156428571	0	0				73 U		82 U		75 U		71 U		85 U	38	100 U	3900
Fluoranthene	UG/KG	43	50 00%	50000	3128571	0	5	10	18 J		63 J		82 U		75 U		43 J		85 U	38	100 U	3900
Fluorene	UG/KG	0	0 00%	50000	3128571	0	0				73 U		82 U		75 U		71 U		85 U		100 U	3900
Hexachlorobenzene Hexachlorobutadiene	UG/KG UG/KG	0	0.00%	410	399 8189	0	0				73 U 73 U		82 U 82 U		75 U 75 U		71 U 71 U		85 U 85 U		100 U 100 U	3900 3900
Hexachlorocyclopentadiene	UG/KG	0	0 00%		547500	0	0	10	72 U		73 U		82 U		75 U		71 U		85 U	38	100 U	3900
Hexachloroethane	UG/KG	0	0 00%	2000	45625 875	0	0				73 U		82 U		75 U		71 U		85 U		100 U	3900
Indeno[1,2 3-cd]pyrene Isophorone	UG/KG UG/KG	16	40 00% 0 00%	3200 4400	6/5	0	0				73 U		82 U 82 U		92 J 75 U		16 J 71 U		85 U 85 U		100 U 100 U	3900 3900
N-Nitrosodiphenylamine	UG/KG	0	0 00%		130357	0	0	10	72 U		73 U		82 U		75 U		71 U		85 U	38	00 U	3900
N-Nitrosodipropylamine Naphthalene	UG/KG UG/KG	0	0.00%	13000	3128571	0	0				73 U 73 U		82 U 82 U		75 U 75 U		71 U 71 U		85 U 85 U		100 U	3900 3900
Naphthalene Nitrobenzene	UG/KG UG/KG	0	0.00%	200	31285/1	0	0				73 U		82 U		75 U		71 U		85 U		100 U	3900 3900
Pentachlorophenol	UG/KG	0	0 00%	1000	5323	0	0		170 U		180 U		200 U		180 U		170 U		200 U	93	00 U	9400
Phenanthrene Phenol	UG/KG UG/KG	44	40 00%	50000 30	46928571	0	4	10			73 U 73 U		82 U 82 U		75 U 75 U		25 J 71 U		85 U 85 U		00 U 00 U	3900 3900
Propylene Glycal	MG/KG	0	0.00%	~	10000071	0	ō				.50		52 U		150		77 0		ω (30	~~ 0	3500
Pyrene	UG/KG	790	70 00%	50000	2346429	0	7	10	26 J		55 J		82 U		75 U		47 J		85 U	4	40 J	790
ТРН	MG/KG								179	1	68 U		158 U		15 1 U		68		21 5 U	16	50	2880

Table 9-4 123B Semivolatiles/TPH in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123B Bldg 716 and 717 Petroleum	SEAD-123B Bidg 716 and 717 Petroleum
									Reinases	Releases
LOC ID SAMP ID									SS123B-2	SS123B-3
QC CODE									FB140 SA	EB141 SA
SAMP DETH TOP									0	0
SAMP DEPTH BOT MATRIX									0.2	0.2
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL 9-Mar 98	SOIL 9 Mar-98
			OF			AROVE	OF	QF		
PARAMETER 1 2 4-Trichlorobenzene	UNIT UG/K G	MAXIMUM 0	DETECTION 0 00%	TAGM 3400	PRG 782143	TAGM 0	DÉTECTS	ANALYSES Q 10 U	VALUE Q 74 U	VALUE Q 80 U
1,2-Dichlorobenzene	UG/KG	0	0.00%	7900	7039286	0	0		74 U	90 U
1,3 Dichlorobenzene	UG/KG	0	0.00%	1600	6961071	0	D		74 U	80 U
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	26615	0	0		74 U	BO U
2 4 5 Trichlorophenol 2 4 6-Trichlorophenol	UG/KG UG/KG	0	0 00%	100	7821429 58068	0	0		180 U 74 U	190 U 80 U
2.4-Dichlorophenol	UG/KG	0	0 00%	400	234643	0	0		74 U	80 U
2 4-Dimethylphenol	UG/KG	0	0 00%		1564286	0	0		74 U	80 U
2.4 Dinitrophenol	UG/KG UG/KG	0	0 00%	200	156429	0	0		180 U	190 U
2,4-Dinitrotoluene 2.6-Dinitrotoluene	UG/KG UG/KG	0	0 00%	1000	156429 78214	0	0		74 U 74 U	80 U 80 U
2-Chloronaphthalene	UG/KG	0	0 00%			0	0	10 U	74 U	80 U
2 Chlorophenol	UG/KG	0	0 00%	800	391071	0	0		74 U	80 U
2-Methylnaphthalene 2-Methylphenol	UG/KG UG/KG	49	20 00%	36400 100	3910714	0	2		49 J 74 U	80 U 80 U
2-Nitroaniline	UG/KG	0	0.00%	430	4693	0	0	10 U	180 U	190 U
2-Nitrophenol	UG/KG	0	0 00%	330		0	0	10 U	74 U	80 U
3 3 - Dichlorobenzidine 3 Nitroaniline	UG/KG UG/KG	0	0 00%	500	1419 234643	0	0		74 U 180 U	80 U 190 U
4 6-Dinitro-2-methylphenol	UG/KG	0	0.00%	500	234643	0	0		180 U	190 U
4 Bromophenyl phenyl ether	UG/KG	ō	0 00%		4536429	0	0	10 U	74 U	80 U
4-Chloro-3-methylphanal	UG/KG	0	0.00%	240		0	0		74 U	80 U
4-Chlorophenyl phenyl ether	UG/KG UG/KG	0	0 00%	220	312857	0	0		74 U 74 U	80 U 80 U
4-Methylphenol	UG/KG	0	0.00%	900		0	0		74 U	U 08
4 Nitroaniline	UG/KG	0	0 00%		234643	0	0		180 U	190 U
4-Nitrophenol	UG/KG UG/KG	0	0.00%	100 50000	4692857	0	0		180 U 74 U	190 U 80 U
Acenaphthene Acenaphthylene	UG/KG UG/KG	0	0 00%	41000		0	0		74 U	80 U
Anthracene	UG/KG	0	0 00%	50000	23464286	0	0	10 U	74 U	80 U
Benzo[a]anthracene	UG/KG	18	40 00%	224	875	0	4	10 U	49 J	5 4 J
Benzo(a)pyrene Benzo(b)ffuoranthene	UG/KG UG/KG	19 29	40 00% 71 43%	61 1100	88 875	0	5		74 U 12 JY	80 U 12 JY
Benzo(ghi)perylene	UG/KG	18	40 00%	50000	0,,	0	4		12 J	80 U
Benzo(k)fluoranthene	UG/KG	23	20 00%	1100	8750	0	2		74 U	80 U
Bis(2 Chloroethoxy)methane Bis(2-Chloroethyl)ether	UG/KG	0	0 00% 0 00%		581	0	0		74 Ư 74 U	80 U 80 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0 00%		9125	0	0		74 U	80 U
Bis(2-Ethylhexyl)phthalate	UG/KG	68	67 50%	50000	45625	0	7	8 U	14 BJ	11 BJ
Butylbenzylphthalate	UG/KG	13 7.5	60 00%	50000	15642857	0	6	10 U	5 4 J 74 U	80 U
Carbazole Chrysene	UG/KG UG/KG	7 5 26	10 00% 60 00%	400	31938 87500	0	6		74 U 12 J	80 U 97 J
Di-n-butylphthalate	UG/KG	0	0 00%	8100		0	0	10 U	74 U	80 U
Di-n-or-tylphthalate	UG/KG	9.5	20 00%	50000	1564286	0	2	10 U 10 U	74 U 74 U	80 U
Dibenz(a,h)anthracene Dibenzofuran	UG/KG UG/KG	13	20 00%	14 6200	312857	0	0		74 U 74 U	80 U 80 U
Diethyl phthalate	UG/KG	44	77 78%	7100	62571429	ō	7	9 U	8 3 BJ	80 U
Dimethylphthalate	UG/KG	0	0 00%	2000	782142857	0	0		74 U	80 U
Ethylene Glycol Fluoranthene	MG/KG UG/KG	0 43	0 00% 50 00%	50000	156428571 3128571	0	0		11 .3	12 J
Fluorene	UG/KG	0	0.00%	50000	3128571	0	0	10 U	74 U	80 U
Hexachlorobenzene	UG/KG	0	0 00%	410	399	0	0		74 U	80 U
Hexachlorobutadiena Hexachlorocyclopentadiene	UG/KG UG/KG	0	0 00%		8189 547500	0	0		74 U 74 U	80 U 80 U
Hexachlorocyclopentadiene Hexachloroethane	UG/KG	0	0.00%		45625	0	0		74 U	80 U
Indeno[1,2,3-cd]pyrene	UG/KG	16	40 00%	3200	875	0	4	10 U	8 5 J	80 U
Isophorone	UG/KG UG/KG	0	0.00%	4400	130357	0	0		74 U 74 LI	80 U 80 U
N-Nitrosodipheriylamine N-Nitrosodipropylamine	UG/KG UG/KG	0	0.00%		130357	0	0		74 U	80 U
Naphthalene	UG/KG	0	0 00%	13000	3128571	0	0	10 U	74 U	80 U
Nitrobenzene	UG/KG	0	0.00%	200	39107	0	0		74 U	80 U
Pentachlorophenol Phenanthrene	UG/KG UG/KG	0	0 00%	1000 50000	5323	0	0	10 U 10 U	180 U 10 J	190 U 12 J
Phenol Phenol	UG/KG	0	0 00%	30	46928571	0	0		74 U	80 U
Propylene Glycol	MG/KG	0	0.00%			0	0	10		
Pyrene	UG/KG	790	70 00%	50000	2346429	0	7	10 J	11 J	14 J
ТРН	MG/KG								83 9	35

Table 9-5 1238 Semivolatiles/TPH in Soil vs PRG-RES Non-Evaluated EBS Sites

SITE									SEAD-1		SEAD 1238	SEAD-123B	SEAD-123B	SEAD-123B	SEAD-123B	SEAD-123B	SEAD 123B
DECCRIPTION									Bldg 71	16 and	Bldg 715 and	Bldg 716 and	Bldg 716 an	Bldg 716 and	Bldg 716 and	Bldg 716 and	Bldg 716 an
									717		717	717	717	717	717	717	717
									Petroles		Petroleum	Petroleum	Petroleum	Petroleum	Petroleum	Petroleum	Petroleum
									Release	rs	Releases	Releases	Releases	Releases	Releases	Releases	Releases
LOC ID									5B123B	3 1	SB123B 1	SB123B-2	SB123B-2	SB1238-3	SB123B-3	SS123B-1	SS123B-1
SAMP 1D									EB242		EB245	E8246	EB743	EB244	EB247	EB016	EB139
QC CODE									SΑ		SA	SA	SA	SA	SA	DU	SA
SAMP DETH TOP										0	26	0	3.2	0	26	0	0
SAMP DEPTH BOT										0.2	29	0.2	3.5	0.2	29	0.2	0.2
MATRIX									SOIL		SOIL	SOIL	SOIL	SOIL	SQIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	11 N	Mar-98	11-Mar-98	11 Mar-98	11-Mar 98	11-Mar-98	11-Mar-98	9-Mar-98	9 Mar 98
			QF			ABOVE	OF	OF									
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSE5	VALUE		VALUE 0	VALUE 0	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1 2 4-Trichlorobenzene	UG/KG	0	0.00%	3400	782143	0	0	1	0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
1 2 Dichlorobenzene	UG/KG	0	0 00%	7900	7039286	0	0			72 U	73 U	82 U	75 ⊍	71 U	85 U	3800 U	3900 U
1 3-Dichlorobenzene	UG/KG	0	0 00%	1600	6961071	0	0	1	0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
1 4-Dichlorobenzene	UG/KG	0	0 00%	8500	26615	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2 4 5-Trichlorophenol	UG/KG	0	0.00%	100	7821429	0	0		0	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
2 4 6-Trichlorophenol	UG/KG	0	0 00%		58069	0	0			72 U	73 U	87 U	75 U	71 U	85 U	3800 U	3900 U
2 4 Dichlarophenol	UG/KG	0		400	734643	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2 4-Dimethylphenol	UG/KG	0	0 00%		1564286	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2 4 Dinitrophenol	UG/KG	0		200	156429	0	0		0	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
2.4 Dinitrotoluene	UG/KG	0	0 00%		156429	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
7.5 Dinitrotoluene	UG/KG	0		1000	78214	0	0		0	72 tJ	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2-Chloronaphthalene	UG/KG	0	0 00%			0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2-Chlorophenal	UG/KG	0	0.00%	800	391071	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2 Methylnaphthalene	UG/KG	4 9		36400		0	2		0	45 J	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
? Methylphenol	ng/kg	0	0 00%	100	3910714	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
2 Nitroaniine	UG/KG	0	0 00%	430	4693	0	0		10	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
2 Nitraphenol	UG/KG	0	0 00%	330		0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
3 3 -Dichlorobenzidine	UG/KG	0	0 00%		1419	0	0		0	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
3 Nitroantine	UG/KG	0		500	234643	0	0		10	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
4 6-Dinitra-2-methylphenal	UG/KG	0				0	0		0	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
4-Bramophenyl phenyl ether	UG/KG	0	0.00%		4536429	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
4 Chlara-3-methylphenol	UG/KG	0	0 00%	240		0	0		10	72 U	73 U	82 U	75 U	71 U 71 U	85 U 85 U	3800 U	3900 U 3900 U
4 Chloroaniline	UG/KG	0	0.40.0	220	317857	0	0		10	72 U	73 U	82 U	75 U			3800 U	
4-Chiorophenyl phenyl ether	UG/KG	0				0	0		10	72 U	73 U	82 U	75 U 75 U	71 U 71 U	85 U	3800 U	3900 U 3900 U
4-Methylphenol	UG/KG	0		900		0	0		10 10	72 U 170 U	73 U 180 U	82 U 200 U	180 U	170 U	85 U 200 U	3800 U 9300 U	9400 U
4-Nitroaniline	UG/KG	0			234643	0	0		-			200 U	180 U	170 U	200 U	9300 U	9400 U
4 Nitrophenol	UG/KG	0		100	4692857	0	0		10	170 U	180 U	82 U	75 U	71 U	200 U	3800 U	3900 U
Acenaphthene	UG/KG	0		50000			-		10 10	72 U 72 U	73 U 73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Acenaphthylene	UG/KG	0		41000 50000	23464286	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Anthracene	UG/KG	0			23464286	0	0		10	87 J	73 U	82 U	75 U	18 J	85 U	3800 U	3900 U
Benzo(a)anthracene	UG/KG	18	40 00% 40 00%	224 61	88	0	4		10	97 J	38 J	82 U	73 0	19 J	85 U	3800 U	3900 U
Benzo(a)pyrene	UG/KG	19	71 43%	1100	875	0	4	,	7	23 JY	43 J	82 U	75 U	29 J	85 U	3800 U	3900 U
Benzo(b)fluoranthene	UG/KG	18		50000	6/3	0	4		0	12 J	73 U	82 U	99 J	18 J	85 U	3800 U	3900 U
Benzo(ghi)perylene Benzo(kiffuoranthene	UG/KG	23		1100	8750	0	2		10	72 U	54 J	82 U	75 U	23 J	85 U	3800 U	3900 U
Bis(2-Chloroethoxy)methane	UG/KG	23		1100	0730	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Bis(2-Chloroethyl)ether	UG/KG	0			581	o	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Bis(2 Chloroisopropyl)ether	UG/KG	0			9125	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Bis(2-Ethylhexyl)phthalate	UG/KG	68		50000	45625	0	7		В	68 J	9 4 J	82 U	12 J	14 J	31 J	3800 U	3900 U
Butylbenzylphthalate	UG/KG	13		50000	15642857	0	6	1	10	72 U	7.5 JB	9.7 JB	9 6 JB	13 JB	10 JB	3800 U	3900 U
Carbazole	UG/KG	7.5			31938	0	1	1	10	72 U	73 U	82 U	75 U	75 J	85 U	3800 U	3900 U
Chrysene	UG/KG	26		400	87500	0	6	1	10	12 J	37 J	82 U	48 J	26 J	85 U	3800 U	3900 U
Di-n-butylphthalate	UG/KG	0		8100		0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 t/	3900 U
Di-n-octylphthalate	UG/KG	9 5		50000	1564286	0	2		10	95 J	5 2 J	82 U	75 U	71 U	85 U	3800 ↓	3900 U
Dibenz(a,h)anthracene	UG/KG	13		14		0	2	1	10	72 U	73 U	82 U	10 J	13 J	85 U	3800 U	3900 U
Dibenzofuran	UG/KG	0	0.00%	6200	312857	0	0	1	10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Diethyl phthalate	UG/KG	44		7100	62571429	0	7		9	98 JB	44 JB	24 JB	29 JB	7 6 JB	12 JB	3800 U	3900 U
Dimethylphthalate	UG/KG	٥	0 00%	2000	782142857	0	0	1	10	72 U	73 U	82 U	75 U	71 U	85 U	3800 ∪	3900 U
Ethylene Glycol	MG/KG	0	0 00%		156428571	o	0	1	10								
Fluoranthene	UG/KG	43	50 00%	50000	3128571	0	5	1	10	18 J	63 J	82 U	75 U	43 J	85 U	3800 U	3900 U
Fluorene	UG/KG	0		50000	3178571	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 ∪	3900 U
Hexachlorobenzene	UG/KG	0	0.00%	410	399	0	0	1	10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Hexachlorobutadione	UG/KG	0			6189	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Hexachlorocyclopentadiene	UG/KG	٥			547500	0			10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Hexachloroethane	UG/KG	0			45625	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Indeno[1 2,3-cd]pyrene	UG/KG	16		3200	875	0	4		10	81 J	73 U	82 U	9 2 J	16 J	85 U	3800 U	3900 U
Isophorone	UG/KG	0		4400		0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
N-Nitrosodiphenylamine	UG/KG	0			130357	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
N-Nitrosodipropylamine	UG/KG	0				0	0		10	72 U	73 U	82 U	75 U	7t U	85 U	3800 U	3900 U
Naphthalene	UG/KG	0		13000	3128571	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Nitrobanzane	UG/KG	0		200	39107	0	0		10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Pentachlorophenol	UG/KG	0		1000	5323	0	0		10	170 U	180 U	200 U	180 U	170 U	200 U	9300 U	9400 U
Phenanthrene	UG/KG	44		50000		0			10	44 J	73 U	82 U	75 U	25 J	85 U	3800 U	3900 U
Phenol	UG/KG	0		30	46928571	0			10	72 U	73 U	82 U	75 U	71 U	85 U	3800 U	3900 U
Propylane Glycol	MG/KG	0				0	0		10			na · ·	25	47 J	85 U	440 J	790 J
Pyrene	UG/KG	790	70 00%	50000	2346429	0	7	1	10	26 J	55 J	82 U	75 U	47 J	85 U	440 J	/90 J
***										179	16.8 U	15.8 U	15 1 U	68	21 5 U	1850	2680
TPH	MG/KG									31.8	10 8 U	15.6 U	15 1 0	bd	2150	1030	2000

Table 9-5 123B - Semivolatiles/TPH in Soil vs PRG-RES Non-Evaluated EBS Sites

SITE									SEAD 123B	SEAD-123B
DESCRIPTION									Bidg 716 and	Bldg 716 and
DESCRIPTION									717	717 Petroleum
									Petroleum	Releases
									Releases	
LOC 1D									SS123B-2	SS123B-3
SAMP ID									EB140	EB141
QC CODE									SA	SA
SAMP DETH TOP									0	0
SAMP DEPTH BOT									0.2	0.2
MATRIX									SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	9 Mar-98	9 Mar-98
			OF			ABOVE	OF	OF		
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		VALUE Q
1 2 4 Trichlorobenzene	UG/KG	0	0.00%	3400	782143	0	0	10	74 U	80 U
1 2-Dichlarobenzene	UG/KG	0	0 00%	7900	7039286	0	0	10	74 U	80 U
1 3-Dichlorobenzene	UG/KG	0	0.00%	1600	6961071	0	0	10	74 U	80 U
1 4-Dichlorobenzene	UG/KG	0	0.00%	8500	26615	0	0	10	74 U	80 U
2 4.5-Trichlorophenol	UG/KG	0	0.00%	100	7821429	0	0	10	180 U	190 U
2,4 5-Trichlorophenol	UG/KG	0			58068	0	0	10		80 U
2 4 Dichlorophenol	UG/KG	0	0.00%	400	234643	0	0	10		80 U
	UG/KG	0		400	1564286	0	0	10		80 U
2.4 Dimethylphenol	UG/KG	0	0.00%	200	156429	0	0	10		
2 4 Dinitrophenol				200						190 ປ
2 4-Dinitrotoluene	UG/KG	0	0 00%		156429	0	0	10		80 U
2 6-Dinitrotniuene	UG/KG	0	0 00%	1000	78214	0	0	10		80 U
2 Chloronaphthalene	UG/KG	0				0	0	10		80 U
2-Chlorophenal	UG/KG	0	0 00%	800	391071	0	0	10		80 U
2-Methylnaphthalene	UG/KG	49	20 00%	36400		0	2	10	49 J	80 17
2-Methylphenol	UG/KG	0	0.00%	100	3910714	0	D	10	74 U	80 U
2 Nitroandine	UG/KG	0		430	4693	0	0	10	180 U	190 U
2-Nitrophenol	UG/KG	o		330		0	0	10		80 U
3.3 -Dichlorobenzidine	UG/KG	0	0.00%	330	1419	0	0	10		80 U
3-Nitroaniline	UG/KG	0		500	234643	0	0	10		190 U
	UG/KG UG/KG	0	0.00%	500	234643	0	0	10		190 U
4.6-Dinitro-2-methylphenol										
4-Bramophenyl phenyl ether	UG/KG	0			4536429	D	0	10		80 U
4-Chloro-3-methylphenol	UG/KG	0	0 00%	240		D	D	10		80 U
4-Chloroaniline	UG/KG	0	0.00%	220	312857	D	D	10		80 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%			D	0	10		80 U
4-Methylphenol	UG/KG	0	0 00%	900		0	0	10	74 U	80 U
4-Nitroaniline	UG/KG	0	0.00%		234643	0	0	10	180 U	190 U
4-Nitrophenal	UG/KG	0	0.00%	100	4692857	0	0	10	180 U	190 U
Acenaphthene	UG/KG	0	0.00%	50000		0	D	10		80 U
Acenaphthylene	UG/KG	0		41000		0	0	10		80 U
Anthracene	UG/KG	ō	0.00%	50000	23464286	0	n	10		80 U
Benzolalanthracene	UG/KG	18		224	875	0	4	10		54 J
and the first of the second			40 00%	61	88	0	4	10		80 U
Benzo[a]pyrene	UG/KG	19								
Benzo[b]fluoranthene	UG/KG	29	71 43%	1100	875	D	5	7		
Benzo(ghi)perylene	UG/KG	18		50000		D	4	10		80 U
Benzo[k]fluoranthene	UG/KG	23	20 00%	1100	8750	.D	5	10		80 U
Bis(2-Chloroethoxy)methane	UG/KG	0				0	0	10		80 U
Bis(2-Chloroethyl)ether	UG/KG	0	0 00%		581	0	0	10	74 U	80 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0 00%		9125	0	0	10	74 ()	80 U
Bis(2-Ethylhexyl)phthalate	UG/KG	68	87 50%	50000	45625	0	7	Ε	14 BJ	11 BJ
Butylbenzylphthalate	UG/KG	13	60 00%	50000	15642857	0	6	10	54 J	80 U
Carbazole	UG/KG	7.5	10 00%		31938	0	1	10	74 U	80 U
Chrysene	UG/KG	26		400	87500	0	6	10	12 J	9.7 J
Di-n-butylphthalate	UG/KG	0	0.00%	8100	0.000	0	n	10		80 U
Di-n octylohthalate	UG/KG	9.5		50000	1564286	0	2	10		80 U
Dibenz(a h)anthracene	UG/KG	13		14	150~200	n	2	10		80 U
Dibenzofuran	UG/KG	0		6200	312857	0	0	10		80 U
							7	10		
Diethyl phthalate	UG/KG	44		7100	62571429	0				
Dimethylphthalate	UG/KG	0		2000	782142857	0	0	10		80 U
Ethylene Glycol	MG/KG	0			156428571	0	0	10		
Fluoranthene	UG/KG	43	50 00%	50000	3128571	0	5	10		12 J
Fluorene	UG/KG	0		50000	3128571	D	0	10		80 U
Hexachlorobenzene	UG/KG	0	0.00%	410	399	0	0	10		80 U
Hexachlorobutadiene	UG/KG	0	0.00%		8189	0	0	10	74 U	80 U
Hexachlorocyclopentadiene	UG/KG	0	0.00%		547500	0	0	10	74 U	80 U
Hexachloroethane	UG/KG	0	0.00%		45625	0	0	10	74 U	80 1)
Indeno[1 2,3-cd]pyrene	UG/KG	16		3200	875	D	4	10		80 U
Isophorone	UG/KG	0		4400	2.0	0	0	10		80 U
N-Nitrosodiphenylamine	UG/KG	0		50	130357	0	0	10		80 U
	UG/KG UG/KG	0	0.00%		.50557	0	0	10		80 U
N Nitrosodipropylamine	0.01			40000	943067		0			80 U
Naphthalene	UG/KG	0		13000	3128571	0		10		
Nitrobenzene	UG/KG	0	0.00%	200	39107	0	0	10		80 U
Pentachlorophenol	UG/KG	0		1000	5323	0	0	10		190 U
Phenanthrene	UG/KG	44	40 00%	50000		0	4	10		12 J
Phenol	UG/KG	0	0 00%	30	46928571	0	0	10		80 U
Propylene Glycol	MG/KG	0	0.00%			0	0	10		
Pyrene	UG/KG	790	70 00%	50000	2346429	0	7	10	11 J	14 J
				-						
TPH	MG/KG								83 9	35
										-

Table 9-6 123B - Volatile Organics in Sediment vs Criteria Non-Evaluated EBS Sites

SITE: DESCRIPTION:								SEAD-123 Bidg. 716 717 Petrol Releases	and	SEAD-12 Bldg. 716 717 Petroleun Releases	and n
LOC ID: SAMP ID								SD123B-1 EB137		SD123B-: EB138	2
QC CODE:								SA	0	ŞA	0
SAMP. DETH TOP. SAMP. DEPTH BOT									0.2		0 0.2
MATRIX:								SEDIMEN		SEDIMEN	
SAMP. DATE			FREQUENCY		NUMBER	NUMBER	NUMBER		ar-98		ar-98
O/ IIII : O/ II E			OF		ABOVE	OF	OF			0 1110	
PARAMETER	UNIT	MAXIMU	DETECTION	CRITERIA	TAGM	DETECT	ANALYSES	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0.00%		0	0	2		20 U		15 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0.00%	300 (2)	0	0	2		20 U		15 U
1,1,2-Trichloroethane	UG/KG	0	0.00%		0	0	2		20 U		15 U
1,1-Dichloroethane	UG/KG	0			0	0	2		20 U		15 U
1,1-Dichloroethene	UG/KG	0		20 (2)	0	0	2		20 U		15 U
1,2-Dichloroethane	UG/KG	0		700 (2)	0	0	2		20 U		15 U
1,2-Dichloroethene (total)	UG/KG	0			0	0	2		20 U		15 U
1,2-Dichloropropane	UG/KG	0			0	0	2		20 U		15 U
Acetone	UG/KG	28			0	2	2		28		15 J
Benzene	UG/KG	0		600 (2)	0	0	2		20 U		15 U
Bromodichloromethane	UG/KG	0			0	0	2		20 U		15 U
Bromoform	UG/KG	0			0	0	2		20 U		15 U
Carbon disulfide	UG/KG	0		000 (0)	0	0	2		20 U		15 U
Carbon tetrachloride	UG/KG	0		600 (2)	0	0	2		20 U		15 U
Chlorobenzene	UG/KG	0		3500 (1)	0	0	2		20 U		15 U 15 U
Chlorodibromomethane	UG/KG	0			0	0	2 2		20 U 20 U		15 U
Chloroethane	UG/KG	0			0	0	2		20 U		15 U
Chloroform	UG/KG	0			0	0	2		20 U		15 U
Cis-1,3-Dichloropropene	UG/KG UG/KG	0			0	0	2		20 U		15 U
Ethyl benzene	UG/KG	0			0	0	2		20 U		15 U
Methyl bromide Methyl butyl ketone	UG/KG	0			0	0	2		20 U		15 U
Methyl chloride	UG/KG	0			0	0	2		20 U		15 U
Methyl ethyl ketone	UG/KG	0			0	0	2		20 U		15 U
Methyl isobutyl ketone	UG/KG	0			0	0	2		20 U		15 U
Methylene chloride	UG/KG	0			0	0	2		20 U		15 U
Styrene	UG/KG	0			0	0	2		20 U		15 U
Tetrachloroethene	UG/KG	0		800 (2)	0	0	2		20 U		15 U
Toluene	UG/KG	0		(-/	0	0	2		20 U		15 U
Total Xylenes	UG/KG	0			0	0	2		20 U		15 U
Trans-1,3-Dichloropropene		0			0	0	2		20 U		15 U
Trichloroethene	UG/KG	0		2000 (2)	0	0	2		20 U		15 U
Vinyl chloride	UG/KG	0		70 (2)	0	0	2		20 U		15 U
,			/0	(-)							

SOURCE:

(1) NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA

(2) NYS HUMAN HEALTH BIOACCUMULATION CRITERIA

Table 9.7 1238: Semivolatiles in Sediment vs Criteria Non-Ezaluated EBS Sites

SITE DESCRIPTION								SEAD-123B Bldg 716 and	SEAD-123B Bldg 716 and
								717 Petroleum Releases	717 Petroleum Releases
								0040004	554000 0
LOC IO SAMP ID								SD123B-1 EB137	\$D123B-2 EB138
OC CODE								SA	SA
SAMP DETH TOP								0	0
SAMP DEPTH BOT								0.2	0 2
MATRIX								SEDIMENT	SEDIMENT
SAMP DATE			FREQUENCY		BMUN JORA	ER NUMBE	R NUMBER	9 Mar-98	9-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	CRITERIA	TAGI		IS ANALYSES	VALUE 0	VALUE Q
1 2 4-Trichlorobenzene	UG/KG	0	0.00%	CKITCKIA	0	0	2	130 U	97 U
1 2-Dichlorobenzene	UG/KG	0	0 00%	12000 (1)	0	0	2	130 U	97 U
1 3 Dichlorobenzene	UG/KG	0	0 00%	12000 (1)		0	2	130 U	97 U
1,4-Dichlorobenzene	UG/KG	0	0 00%	12000 (1)		0	2	130 U	97 U
2.4 5-Trichlorophenol	UG/KG UG/KG	0	0 00%		0	0	2	330 U 130 U	240 U 97 U
2,4,6-Trichlorophenal 2,4-Dichlorophenal	UG/KG	0	0 00%		0	0	2	130 U	97 U
2.4-Dimethylphenal	UG/KG	0	0.00%		0	0	2	130 U	97 U
2 4-Dinitrophenol	UG/KG	0	0 00%		0	0	2	330 U	240 U
2 4-Dinitrataluene	UG/KG	0	0.00%		0	0	2	130 U	97 U
2,6-Dinitrataluene	UG/KG	0	0.00%		0	0	2	130 U	97 U
2-Chloronaphthalene	UG/KG	0	0 00%		0	0	2	130 U	97 U
2-Chlorophenol 2-Methylnaphthalene	UG/KG UG/KG	0	0 00%		0	0	2	130 U 130 U	97 U 97 U
2-Methylphenol	UG/KG	0	0 00%		0	0	2	130 U	97 U
2-Nitroaniline	UG/KG	0	0.00%		0	0	2	330 U	240 U
2-Nitrophenol	UG/KG	0	0 00%		0	0	2	130 U	97 U
3.3 -Dichlorobenzidine	UG/KG	0	0 00%		0	0	2	130 U	97 U
3-Nitroanikne	UG/KG	0	0 00%		0	0	2	330 ∪	240 U
4,6-Dinitro-2-methylphenol	UG/KG UG/KG	0	0 00%		0	0	2	330 U 130 U	240 U 97 U
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	UG/KG	0	0.00%		0	0	2	130 U	97 U
4-Chloroaniline	UG/KG	0	0 00%		0	0	2	130 U	97 U
4-Chlorophanyl phenyl ather	UG/KG	0	0 00%		0	0	2	130 U	97 U
4-Methylphenol	UG/KG	0	0 00%		0	0	2	130 U	97 U
4-Nitroaniline	UG/KG	0	0 00%		0	0	2	330 U	240 U
4-Nitrophenol	UG/KG UG/KG	0	0 00%	140000 (1	0	0	2	330 U 130 U	240 U 97 U
Acenaphthene Acenaphthylene	HG/KG	0	0.00%	140000 (1)	, 0	0	2	130 U	97 1
Anthracene	UG/KG	0	0 00%		0	0	2	130 U	97 U
Benzo(a)anthracene	UG/KG	9 2	50 00%	1300 (2		1	2	9 2 J	97 U
Benzo[a]pyrene	UG/KG	13	50 00%	1300 (2		1	2	13 J 21 J	97 U 97 U
Benzo(b)fluoranthene Benzo(ghi)perylene	UG/KG UG/KG	21 14	50 00% 50 00%	1300 (2	0	1	2	21 J 14 J	97 U
Benzo(k)fluoranthene	UG/KG	14	50 00%	1300 (2		1	2	14 J	97 U
Bis(2 Chloroethoxy)methane	UG/KG	0	0 00%		0	0	2	130 U	97 U
Brs(2-Chloroethyl)ether	UG/KG	0	0 00%		0	0	2	130 U	97 U
Bis(2 Chloroisopropyl)ather	UG/KG UG/KG	0 16	0 00% 200 00%	200000 (1	0	0 2	2	130 U 16 BJ	97 U 15 JB
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	UG/KG	16	200 00% 50 00%	200000 (1) 0	1	2	11 J	97 U
Carbazole	UG/KG	0	0 00%		0	ò	2	130 U	97 U
Chrysene	UG/KG	16	100 00%	1300 (2		2	2	16 J	67 J
Di-n-buty!phthalate	UG/KG	0	0.00%		0	0	2	130 U	97 U
Di-n-octylphthalate	UG/KG	0	0 00%		0	0	2	130 U	97 U
Dibenz(a,h)anthracene	UG/KG UG/KG	0	0 00%		0	0	2	130 U 130 U	97 U 97 U
Dibenzofuran Diethyl phthalate	UG/KG	32	200 00%		0	2	1	32 BJ	15 JB
Dimethylphthalate	UG/KG	0	0 00%		0	0	2	130 U	97 U
Fluoranthene	UG/KG	21	100 00%	1020000 (1		2	2	21 J	89 J
Fluorene	UG/KG	0	0 00%		0	0	2	130 U	97 U
Hexachlorobenzene	UG/KG	0	0.00%	150 (2	0	0	2	130 U 130 U	97 U 97 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG UG/KG	0	0 00%		0	0	2	130 U	97 U
Hexachlorocyclopeniagiene Hexachloroethane	UG/KG	0	0.00%		0	0	2	130 U	97 U
Indeno[1,2 3-cd]pyrene	UG/KG	13	50 00%	1300 (2		1	2	13 J	97 Ų
Isophorone	UG/KG	0	0 00%		0	0	2	130 U	97 U
N Nitrosodiphenylamine	UG/KG	0	0 00%		0	0	2	130 U 130 U	97 U 97 U
N-Nitrosodipropylamine Naphthalene	UG/KG UG/KG	0	0 00%		0	0	2	130 U	97 U
Naphthalene	UG/KG	0	0 00%		0	0	2	130 U	97 tJ
Pentachlorophenol	UG/KG	0	0 00%		0	0	2	330 U	240 U
Phenanthrene	UG/KG	9	100 00%	120000 (1		2	2	9 J	5 J
Phenol	UG/KG	0	0 00%		0	0	2	130 U	97 U
Pyrene TPH	UG/KG MG/KG	16	100 00%		0	2	2	16 J 33 2 U	97 J 27 9 U
100	MOING							55 , 5	2. 0 0

SOURCE

⁽¹⁾ NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA
(2) NYS HUMAN HEALTH BIOACCUMULATION CRITERIA

SEAD-123D

Area West of Building 715

Table 11-1

Sample Collection Information SEAD-123D - Area West of Building 715

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	TP123D-1	EB108	3/5/98	0.5	0.5	SA	Located in small mound 2 ft to 2.5 ft tall with a diameter of 6 ft. The mound had no vegetation on it, with a depression in the center. Near surface sample.
SOIL	TP123D-1	EB109	3/5/98	1.0	1.0	SA	Same location ID as above. Approx. mid-point sample chosen because no VOC hits or indications of impact to soils.
SOIL	TP123D-2	EB106	3/5/98	0.5	0.5	SA	Located on the ground surface where a drum fragment was protruding from the ground; the location was not a mound. Near surface sample from under drum fragment.
SOIL	TP123D-2	EB107	3/5/98	1.5	1.5	SA	Same location ID as above. Sample was taken 1.0 ft. below drum fragment. There were no VOC hits or other indications of impact to soils.
SOIL	TP123D-3	EB102	3/4/98	0.5	0.5	SA	Located in 3 ft high mound, by 7 ft wide and 20 ft long. No vegetation was observed on the mound. Mound is in location that has very easy access from road for dumping. Near surface sample.
SOIL	TP123D-3	EB103	3/4/98	2.0	2.0	SA	Same location ID as above. Approx. mid-depth sample taken because no VOC hits or other indications of impact to soils.
SOIL	TP123D-4	EB104	3/5/98	0.5	0.5	SA	Located in 3 ft high mound with 8 ft diameter. Debris (e.g., steel pipes, cable, sections of culvert) was observed on the surface of the mound. Near surface sample taken.
SOIL	TP123D-4	EB105	3/5/98	1.0	1.0	SA	Same location ID as above. Sample taken below piece of cable and wire. There were no VOC hits or indications of impact to soils.

Table 11-1

Sample Collection Information SEAD-123D - Area West of Building 715

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	TP123D-5	EB100	3/4/98	1.5	1.5	SA	Located in the center of a mound where evidence of debris (e.g., wire) were observed protruding from the ground surface. Near surface sample.
SOIL	TP123D-5	EB101	3/4/98	4.1	4.1	SA	Same location ID as above. Approx. mid-point sample chosen because of no VOC hits or indications of impact to soils.
SOIL	TP123D-3	EB001	3/4/98	0.5	0.5	DU	Not Applicable
WATER	TP123D-1	EB002	3/5/98	0.0	0.0	RB	Not Applicable

Notes:

SA · Sample

DU - Duplicate

RB = Rinse Blank

Table 11-2 123D - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SHI DESCRIPTION				SIAD-123D Vica West of Bldg-715		SEAD-123D Aren West of Bldg 718	SLAD 123D Area West of Bldg 715	SI AD-123 Aren West of Bldg. 715	SEAD-123D Aren West of Bldg 715		SEAD-123D Area West of Bldg 745		SUAD-123D Area West of Bldg 715		SEAD-123D Area West of Bldg 715						
LOCAD SAMPAD OC. CODE									1P123D-1 1B108		1P123D-1 1B109	FP123D-2 FB106	IP123D-2 LB107	TP123D-3 FB001		P123D-3 -B102		IP123D-3 FB103		IP123D FB104	4
SAMP DETILIOP									SA		SA	SA	SA	DO	.5	šΛ		SA		SA	
SAMP DEPTIEBOT										0.5		0.5	1.5	0.5		0.5			2		() 5
MATRIX										0.5	1	0.5	1.5	0.4		0.5			2		0.5
SAMP DATI			TREQUENCY			NUMBI R	NUMBER	NUMBI R	SOIL		SOII	SOII	SOIL	SOIL.	.5	OII		SOII		SOH	
VAISH 15444		,	Ol			ABOVI			`.p	Mar - 98	5-Mar-98	5-Mar 98	5-Mar-98	4-Mar-98		4-Mar-98		4-Mar-9	8	5-Ma	ar-98
PARAMETER	UNIT	MAXIMUM		TAGM	PRG		OJ.	()}													
1.1. Frieddotoethane	UG/KG	0.0	0.00%	800	2717500	LAGM	DITICIS	ANALYSIS			VALUE Q	VALUE Q	VALUI Q				U	VALUE	Q	WILVE	Q.
1.1.2.2- Jetrachloroethane	UG/KG	0.0	0.00%	600	31938			11		12. 0	12 ()	15.11	12 U	16		13			3 ()		14 U
1,1,2-Trichloroethane	UG/kG	0.0		(101)		0	0	11		12 U	12 11	15 U	12 U	16		13		1	3 ()		14 U
1.1-Dichloroethane	UG/KG	0.0	0.00%	200	11200	0	0			12 U	12 11	15 11	12 U	16		13	U	1	3 U		14 17
1.1-Dichloroethene	UG/KG	0.0	0.00%	200 400	7821429	0	0			12 11	12 (1	15 U	12 U	16		13			T U		14 U
1.2-Dichloroethane	UG/kG					0	0			12.0	12 ti	15.47	12 U	16		13	U	1	3 []		14 17
		0.0	0.00%	100	7821429	(1)	0			12 1)	12 11	15 U	12 17	16	O.	13	Į)	1	3 ()		14 11
1.2-Drchloroethene (total)	UG/KG	0.0	0.00%			0	0			12 11	12 17	15.41	12 U	16	U	13	U	1	3 U		[4 U
1 2-Dichloropropane	UG/KG	0.0	0.00%		9393	0	0			12 U	12 11	15 U	12 U	16	t?	13	U		3 ()		14 17
Acetone	UG/KG	660.0	54 550%	200	7821429	1	6	11		12 ()	12 11	660 I	10 3	1.1	J	17		1	2 J		14 11
Benzene	UG/KG	0.0	0.00%	(4)	22026	()	0			12/10	12 11	15 0	12 U	16	U	13	U	1	3 ()		14 U
Bromodichloromethane	UG/KG	0.0	D 00%		10302	0	0			12 0	12 11	15 (1)	12 T)	16	D.	13	U	3	3 11		14 U
Bromolonn	UG/KG	0.0	0.00%		80854	()	Ð			12 (1)	12 11	15.10	12 17	16	U	13	U	1	3 U		14 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	7821429	- 11	D			12/11	12 tl	15 17	12 tJ	16	U	[3	1 1	1	3 (1		14 U
Carbon tetrachloride	UG/KG	0.0	0.00%	6(8)	4913	0	D			12/1/	12 11	15 U	12 U	16	U	13	U	1	3 U		14 U
Chlorohenzene	UG/KG	0.0	0.0055	1700	1564286	n	Ð			12 U	12 11	15 U	12 17	16	U	[3	U	i	3 11		14 U
Chlorodibromomethane	UG/KG	0.0	0.00%		7604	0	D	3.1		12 ()	12 U	12.41	12 U	16	()	[3	U	i	3 U		14 U
Chloroethane	UG/KG	0.0	0.00%	1900	31285714	n	Ð	11		12 U	12 []	15 U	12 U	16	U	13	U	i	3 U		14 11
Chloroform	UG/KG	0.0	0.00%	300	104713	0	()	11		12 17	12 17	15 U	12 U	16	U	13	U	i	3 U		14 U
Cis-L3-Dichloroptopene	UG/KG	0.0	0.00%			0	0	11	l	12 U	12 17	15 ()	12 TI	16	U	13	U	1	3 U		14 U
1 thy 1 benzene	UG/KG	0.0	0.00%	5500	7821429	0	13	- 11		12.11	12 U	15 U	12 U	16	U	1.3	ŧ1	1	3.11		14 U
Methyl bromide	UG/KG	0.0	0.00%		111846	0	()	- 11		12 11	12 U	15 ()	12 U	16	t i	13	U	i	3 U		14 U
Methyl hulyl ketone	UG/KG	0.0	0.00%			0	0	- 11		12/11	12 U	15 U	12 U	16	[J	13	U		3 U		14 U
Methyl chloride	UG/KG	0.0	0.00%		49135	0	0	H		12 17	12 17	15 11	12 U	16	U	13	t1	1	3 U		14 U
Methyl ethyl ketone	UG/KG	58.0	9.09%	3(X)		0	- 1	11		12 U	12 1/	58	12 U	16	l t	13	U	1	3.17		14 ()
Methyl (sobutyl ketone	UG/KG	0.0	0.00%	1000	6257143	()	0	- 11		12 U	12 U	15 U	12 U	16	U	13	U	ı	3 ()		14 12
Methylene chloride	UG/KG	0.0	0.00%	100	85167	0	0	11		12 ()	12 U	15 U	12 U	16	U	13	U	i	3 U		14 17
Styrene	UG/KG	0.0	0.00%			0	0	11		12 U	12 17	15-17	12 11	16	11	13	U	1	3 ()		14 17
Tetrachloroethene	UGÆG	0.0	0.00%	1400	12284	O	0	11		12 U	12.11	15 U	12 17	16	[]	13	U		3 ()		14 U
Inluenc	PG/KG	0.0	0.00%	15(10)	15642857	G	0	11	l	12 17	12 17	15 U	12 U	16	U	13			3 U		[4 U
Intal Xvienes	UG/KG	0.0	0.00%	1200		Ω	0	11	!	12 U	12 t7	15 U	12 17	16		13			3 1)		14 U
Trans-1.3-Dichloropropene	UG/KG	0.0	() (K) ⁴ %			0	0	13	1	12 U	12 U	15 U	12 U	16		11			3 U		14 U
Trichloroethene	UG/KG	0.0	(1.00%	700	58068	(1	0	11		12 U	12 11	15.0	12 U	16		13			3 ()		14 U
Vinyl chloride	UG/KG	0.0	() (ዚምሬ	200	336	(1	0	11		12.11	12 11	15 (1)	12 13	16		13			3 U		14 11

Table 11-2 123D Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

1230 Estat	÷ =	-	1 M.n. 98	0° = =	1 -	13 11		= =	13 11	13	13 (1	13 12	13 []	13.11	13 13	13.17	13.11	13 13	11 11	= =	= =	13.01	11 11	11 11	11 11	13.13	13 11	13.11	13	13.11	13 11	11 11	13 11	13.13	3 11	13 11
SFAD-123D Area West of Bilde 215	F123058 UBf01 SA	Soll	~	VALIS																																
SLAD 123 Vies West of Bide	18100 5.0 5.1	; = = ;	Man ak	0 5117	13 61		13 41	13 (1	13 =	13 6	17.1	4	11.1	11 13	13 61	13.11	וזנו	13 (1	13 13	11 11	13 17	2 5	1	13.11	13 13	12 51	13 61	13.0	11 11	13 11	13.13	13 11	11 11	13 13	11 11	חוו
SLAB-123D Mea West of Bible 218	F1230 1	SOIL	2-Mar-98	VALUE O	11.11	13 17	13.13	11	13.12	13.17	13 43	13.61	13.11	13.41	13.0	13.11	13 11	13 11	11 (1	13.11	111	11 11	11 11		13.6	13 (1	13.1	13 11	11 11	13 13	11 11	13.13	13 (1	13.61	13 11	11 (1
			NIMIN R	ANALYSIS VALUE	=	=	=	=	=	=	Ξ	=		***	Ξ	=	Ē	=	=	=	=	Ξ	=	Ξ	Ξ	-	=	=	=	=	Ξ	Ξ	=	Ξ	=	=
			NUMBUR Of	DE 11.C TS	σ	c	=	=	0	=	c	٤	C	G	С	\$	\$	\$	=	c	0	0	c	c	0	0	-	c	0	0	0	0	۵	-	_	ď
			NI-MBI R	I NeM 0				0	٥	G	2	-	Ġ	G	C)	\$	£	\$	٥	С	С	0	0	С	O	0	0	Q	С	0		u	C	0	0	С
				PRG.	31038	11206	0C11c8c	tou!	7821429		1616	7821129	22026	10302	SDS	7821129	1013	1564286	Traba	31285714	101713		7821429	111846		10116		6257143	85167		12284	15642847			\$8008	116
				1ACiM 800	COD		200	900	100			2130	(Ju)			2700	(90)	17(9)		(K)(1	()()()		5500				300	0001	(K))		14(%)	1300	1200		700	200
			FRI QUI NCY Of	MAXIMUM DITECTION 0.0 0.00	4,000	0.00%	0.00%	0.00%	0 (Ky"''	0.00%	ORY	44 5500	D DO"	0.00%	O DO%	0.00%	2000	0.00%	0 00°4	0.000%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	5,600 6	0.00%	0.000%	0.00%	%(00.0)	% (O O) %	O 000"	5,000 0	0.00%	0.00%
				MAXINIUM	0.0	0.0	00	00	00	U U	00	II (IV)	0.0	0.0	0.0	0.0	0.0	0.0	9.0	9	0.0	0	0.0	0	00	0.0	98.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0
				TORG	DG/NG	(TC)/NC)	HG/KG	HGANG	LCARG	DG/KG	UCARG	PG/KG	UCAC	UGAKG	DC/AC	DG/PG	UCASG	UGARG	OGWG	UGAG	TGAKG	UGAG	UGAKG	UCAS	UGAG	UGARG	UGAG	DGARG	DCAC	1367/563	UGARG	DG/KG	1107/03	DCARG	UGAKG	DC/AG
SH11 DISCRIPTION	FOCID SAMP ID QC CODE SAMP DI HEIOP	SAMP DEFITIOR	SAMP DAII	PARAMITTER 111 Pachdonethane	1.1.2.2. Letrachloroethane	1.1.2 - Frachiornethanc	1.1 Dichlorivethane	1 I-Dichloriethene	1 2-Dichloroethane	1.2-Dichloroethene (10fal)	1.2 Dichloropropane	Acctone	Benzene	Bromodichloromethine	Bremeferm	Carbon disuffide	Carbon tetrachlorale	Chlorobenzene	Chlorodibromomethane	Chloroethane	Chloroform	Cis.1 3.Dalbloropropene	Ethyl benzene	Methyl brounde	Methyl butyl ketone	Methy chloride	Methyl ethyl ketone	Methyl pobutyl ketone	Methylene chloride	Styrche	Tetrachloroethene	Lotuene	fotal Xylenes	Irans-1, 3-Dichloropropene	Tric Morocthene	Vinctablende

Ebs-123v xfs

123D-TAGM

Table 11-3 123D - Volatiles in Soll vs PRG-RES Non-Evaluated EBS Sites

SITE									SEAD 1		SEAD 12		SEAD-12		SEAD 123		SEAD-12		SEAD-12		SEAD-123	3D	SEAD-123D	SEAD-123D
DESCRIPTION									Area We		Area Wes		Area We		Area Wes		Area We		Area Wes		Area Wes		Area West of	Area West of
LOC ID									Rldg 71		Bldg 715		Bldg 715		Bldg 715		Bldg 715		Bldg 715		Bldg 715		Bldg 715	6ldg 715
SAMP ID									TP1230 EB108	1-1	TF123D EB109	7	TP123D-	2	TP123D-2	2	TP123D-	3	TP123D-3	3	TP123D-3	3	TP123D-4	TP123D-4
OC CODE									SA				EB106		EB107		E9001		EB102		EB103		EB104	EB105
SAMP DETH TOP									SA	0.5	SA		SA		SA		DU		SA		SA		SA	SA
SAMP DEPTH BOT										05		1		0.5		15		0.5		0.5		2	0.5	1
MATRIX									SOIL	0.5		1		0.5		1.5		0.5		05		2	0.5	1
SAMP DATE		-	REQUENCY			NUM8ER	NUMBER	NUMBER		1ar-98	SOIL 5 Ma	00	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	SOIL
SAMI. DATE			OF			ABOVE	OF	OF	n-W	121-315	5 Ma	1.98	5-M:	ar 98	5 Mar	r-98	4-Ma	r-98	4-Ma	r-98	4-Ma	r-98	5-Mar-98	5-Mar-98
PARAMETER	UNIT	MAXIMUM D		TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	0	VALUE	0	VALUE	Q	VALUE	0	VALUE			_		_		
1.1.1-Trichloroethane	UG/KG	0.0	0.00%	800	2737500	0	DETECTO	MINNE T-SES		12 U	AWFOL	12 U	VALUE	15 U	VALUE		VALUE	Q	VALUE	Q	VALUE	Q	VALUE Q	VALUE
1 1 2 2-Tetrachloroethane	UG/KG	0.0	0.00%	600	31938	0	0	1.		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
1 1 2-Trichloroethane	UG/KG	0.0	0.00%	600	11206	0	0	1.		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
1 1-Dichloroethane	UG/KG	0.0	0.00%	200	7821429	0	0	1		12 U		12 U		15 U		12 U 12 U		16 U		13 U		13 U	14 U	13
1.1-Dichlornethene	UG/KG	00	0.00%	400	1065	0	0	1		12 U		12 U		15 U				16 U		13 U		13 U	14 U	13
1.2-Dichloroethane	UG/KG	0.0	0.00%	100	7821429	0	0	1.		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
1.2-Dichloroethene (total)	UG/KG	00	0.00%	100	7021423	0		1.		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
1 2-Dichloropropane	UG/KG	00	0.00%		9393	0	0	1.		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Acetone	UG/KG	660 0	54 55%	200	7821429	0				12 U		12 U		660 E		12 U		16 U 11 J		13 U		13 U	14 U	13
Benzene	UG/KG	0.0	0.00%	60	22026	0	0			12 U		12 U		15 U		12 U				17		12 J	14 U	13
Bromodichloromethane	UG/KG	00	0.00%	00	10302	0	0	1		12 U		12 U		15 U		12 U		16 U 16 U		13 U		13 U	14 U	13
Bromoform	UG/KG	00	0.00%		60854	0	0	5.		12 U		12 U		15 U		12 U		16 U		13 U		13 U 13 U	14 U	13
Carbon disulfide	UG/KG	0.0	0.00%	2700	7821429	0	n n	1:		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Carbon tetrachloride	UG/KG	00	0.00%	600	4913	ő	n	1		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13 13
Chlorobenzene	UG/KG	00	0 00%	1700	1564286	0	n	,		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	
Chlorodibromomethane	UG/KG	0.0	0.00%		7604	o	n	11		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13 13
Chloroethane	UG/KG	0.0	0.00%	1900	31285714	0	n	1		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Chloroform	UG/KG	0.0	0.00%	300	104713	0	0	1.	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Cis 1 3-Dichloropropene	UG/KG	0.0	0.00%			0	0	1		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Ethyl benzene	UG/KG	0.0	0.00%	5500	7821429	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Methyl bromide	UG/KG	0.0	0.00%		111846	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Methyl chloride	UG/KG	0.0	0.00%		49135	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Methyl ethyl ketone	UG/KG	58 0	9 09%	300		0	1	11	1	12 U		12 U		58		12 U		16 U		13 U		13 U	14 U	13
Methyl isobutyl ketone	UG/KG	0.0	0 00%	1000	6257143	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Methylene chloride	UG/KG	0.0	0.00%	100	85167	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Styrene	UG/KG	0.0	0.00%			0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Tetrachloroethene	UG/KG	0.0	0.00%	1400	12284	0	0	11	t	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Toluens	UG/KG	0.0	0.00%	1500	15642857	0	0	13	F	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Total Xylenes	UG/KG	0.0	0.00%	1200		0	0	11	f	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Trans 1 3-Dichloropropene	UG/KG	0.0	0.00%			0	0	11	ī	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Trichlorosthene	UG/KG	0.0	0.00%	700	58068	0	0	11		12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13
Vinyl chlaride	UG/KG	0.0	0.00%	200	336	0	0	11	1	12 U		12 U		15 U		12 U		16 U		13 U		13 U	14 U	13

Table 11-3 123D Volatiles in Soll vs PRG-RES Non-Evaluated EBS Sites

SITE									SEAD-123D	SEAD 123D
DESCRIPTION									Area West of	Area West of
THE TOTAL PROPERTY.									Bldg 715	Bldg 715
LOC ID									TP123D-5	TP123D-5
SAMP ID									EB100	FB101
OC CODE									SA	SA
SAMP DETH TOP									1.5	4.1
SAMP DEPTH BOT									1.5	4.1
MATRIX									SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	4 Mar 98	4 Mar-98
SAME DATE			OF			ABOVE	OF	OF	4 MAT 10	4 MAL-383
PARAMETER	UNIT	MAXIMUM	DETLCTION	TAGM	PRG	TAGM	DETECTS	ANALYSES Q	VALUE Q	VALUF Q
1 1 1 Trichloroethane	UG/KG	0.0	0.00%	800	2737500	0	0	11 U	13 U	13 U
1 1 2 2 Tetrachloroethane	UG/KG	0.0	0.00%	600	31938	0	0	11 U	13 U	13 U
1 1 2 Trichloroethane	UG/KG	0.0	0.00%	0.0	11206	0	0	11 U	13 U	13 U
1.1-Dichloroethane	UG/KG	0.0	0.00%	200	7821429	0	0	11 U	13 U	13 U
1.1 Dichloroethene	UG/KG	0.0	0.00%	400	1065	0	0	11 U	13 U	13 U
1.2 Dichloroethane	UG/KG	0.0	0.00%	100	7821429	0	0	11 U	13 U	13 U
1.2 Dichloroethene (total)	UG/KG	0.0	0.00%		1027120	0	0	11 U	13 U	13 U
1.2 Dichloropropane	UG/KG	0.0	0.00%		9393	0	0	11 U	13 U	13 U
Acetone	UG/KG	660 0	54 55%	200	7821429	0	6	11 U	16	13 U
Benzene	UG/KG	0.0	0.00%	60	22026	0	0	11 U	13 U	13 U
Bromodichloromethane	UG/KG	0.0	0.00%		10302	0	0	11 U	13 U	13 U
Bromoform	UG/KG	0.0	0.00%		80854	0	0	11 U	13 U	13 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	7821429	0	0	11 U	13 U	13 U
Carbon tetrachloride	UG/KG	0.0	0.00%	600	4913	0	0	11 U	13 U	13 U
Chlorobenzene	UG/KG	0.0	0.00%	1700	1564286	0	0	11 U	13 U	13 U
Chlorodibromomethane	UG/KG	0.0	0.00%		7604	0	0	11 U	13 U	13 U
Chloroethane	UG/KG	0.0	0.00%	1900	31285714	0	0	11 U	13 U	13 U
Chloroform	UG/KG	0.0	0.00%	300	104713	0	0	11 U	13 U	13 U
Cis-1.3 Dichloropropene	UG/KG	0.0	0.00%			0	0	11 U	13 U	13 U
Ethyl benzene	UG/KG	0.0	0.00%	5500	7821429	0	0	tt U	13 U	13 U
Methyl bromide	UG/KG	0.0	0.00%		111846	0	0	11 U	13 U	13 U
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	11 U	13 U	13 U
Methyl chloride	UG/KG	0.0	0.00%		49135	0	0	11 U	13 U	13 U
Methyl ethyl ketone	UG/KG	58 0	9 09%	300		0	1	11 U	13 U	13 ປ
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	6257143	0	0	11 U	13 U	13 U
Mathylene chloride	UG/KG	0.0	0.00%	100	85167	0	0	11 U	13 U	13 U
Styrene	UG/KG	0.0	0.00%			0	0	11 U	13 U	13 U
Tetrachloroethene	UG/KG	0.0	D 00%	1400	12284	0	0	11 U	13 U	13 U
Toluene	UG/KG	0.0	0.00%	1500	15642857	0	0	11 U	13 U	13 U
Total Xylenes	UG/KG	0.0	0.00%	1200		0	0	11 U	13 U	13 U
Trans 1 3-Dichloropropene	UG/KG	0.0	0.00%			0	0	11 U	13 U	13 U
Trichloroethene	UG/KG	0.0	0.00%	700	58068	0	0	11 U	13 U	13 U
Vinyl chloride	UG/KG	0.0	0 00%	200	336	0	0	11 U	13 U	13 U

Table 11-4 123D - Semivolatiles/TPH in Solls vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123D Area West of Bldg 715		SEAD-123D Area West of Bldg 715						
LOC ID SAMP ID QC CODE									TP123D-1 EB108 SA		TP123D-1 EB109 SA	TP123D-2 EB106 SA	TP123D-2 E8107 SA	TP123D-3 EB001 DU	TP123D-3 EB102 SA	TP123D-3 EB103 SA	TP123D-4 EB104 SA
SAMP DETH TOP SAMP DEPTH BOT									0.5 0.5		1	05 05	1.5 1.5	0 5 0 5	0 5 0 5	2 2	0.5 0.5
MATRIX SAMP DATE		•	REQUENCY			NUMBER	NUMBER	NUMBER	SOIL 5-Mar-98		SOIL 5-Mar-98	SOIL 5 Mar-98	SOIL 5-Mar-98	SOIL 4-Mar-98	SDIL 4-Mar-98	SOIL 4-Mar-98	SQIL 5-Mar-98
PARAMETER	UNIT		OF	TAGM	PRG	ABOVE	QF DETFCTS	OF ANALYSES		0	VALUE Q						
1,2.4 Trichlorobenzene	UG/KG	MAXIMUM I	DETECTION 0 0%	3400	782143	IAGM	0 0	ANALTSES			B1 U	VALUE Q 88 U	VALUE Q 83 U	VALUE Q 88 U	VALUE Q 89 U	VALUE Q 88 U	VALUE 97
1,2-Dichlorobenzene	UG/KG	0.0	0.0%	7900	7039286	(1			81 U	8B U	83 U	88 U	89 U	88 U	97
1 3-Dichlorobenzene 1 4-Dichlorobenzene	UG/KG UG/KG	00	0 0% 0 0%	1600 8500	6961071 26615	(1			81 U 81 U	88 U 88 U	83 U 83 U	88 U 88 U	89 U 89 U	88 U 88 U	97 97
2 4.5-Trichlorophenol	UG/KG	00	0.0%	100	7821429	,	-	i			200 U	210 U	200 U	210 U	220 U	210 U	240
2 4 6 Trichlorophenal	UG/KG	0.0	0.0%		58068	(0	1			B1 1J	86 U	83 U	88 U	89 U	88 U	97
2 4-Dichlarophenol	UG/KG	0.0	0 0%	400	234643	(1			Bt U	88 U	83 U	88 U	89 U	88 U	97
2 4-Dimethylphenol 2 4-Dinitrophenol	UG/KG UG/KG	00	0 0%	200	1564286 156429	(-	1		-	81 U 200 U	88 U 210 U	83 U 200 U	88 U 210 U	89 U 220 U	88 U 210 U	97 240
2 4-Dinitrophenol	UG/KG	00	0.0%	200	156429	,		1			200 U	210 U	200 U	210 U	220 U 89 U	210 U RA U	240 97
2 5-Dinitrotoluene	UG/KG	0.0	0.0%	1000	78214		0	1			81 U	88 U	83 U	88 U	89 U	88 U	97
2-Chloronaphthalene	UG/KG	0.0	0.0%					1			81 U	68 U	83 U	88 U	89 U	88 U	97
2 Chlorophenol	UG/KG UG/KG	00	0 0% 9 1%	800 36400	391071	(1			81 U 81 U	68 U 68 U	83 U 83 U	88 U 88 U	89 U '	88 U	97
2 Methylnaphthalene 2-Methylphenol	UG/KG	54	0.0%	100	3910714		0				81 U	88 U	83 U	88 U	89 U 89 U	17 88 17 88	5 4 97
2-Nitroanline	UG/KG	0.0	0.0%	430	4693			1	1 200		200 U	210 U	200 U	210 U	220 U	210 U	240
2 Nitrophenol	UG/KG	0.0	0.0%	330		(1			81 U	88 U	83 U	88 U	89 U	88 U	97
3 3 -Dichtorobenzidine 3-Nitroamline	UG/KG UG/KG	00	0.0%	500	1419 234643	(1			81 U 200 U	88 U 210 U	83 U 200 U	88 U 210 U	89 U 220 U	88 U 210 U	97 240
3-Niπoaniine 4 6-Dinitro-2-methylphenol	UG/KG	00	0.0%	900	234543	,		1			200 U	210 U	200 U	210 U	220 U	210 U	240
4 Bromophenyl phenyl ether	UG/KG	00	0.0%		4536429		0	1			81 U	88 U	83 U	88 U	89 U	88 U	97
4-Chloro-3-methylphenol	UG/KG	0.0	0.0%	240				1			81 U	88 U	83 U	88 U	89 U	88 U	97
4-Chloroaniline	UG/KG UG/KG	0.0	0.0%	220	312857			1			81 U 81 U	88 U 88 U	83 U 83 U	88 U 88 U	89 U 89 U	88 U 88 U	97 97
4-Chlorophenyl phenyl ether 4-Methylphenol	UG/KG	00	0.0%	900		,		1			81 U	88 U	83 U	88 U	89 U	88 U	97
4-Nitroaniline	UG/KG	0.0	0.0%		234643	(1	1 200	U	200 U	210 U	200 U	210 U	220 U	210 U	240
4 Nitrophenol	UG/KG	00	0.0%	100	4692857	(1			200 U	210 U	200 U	210 U	220 U	210 U	240
Acenaphthene Acenaphthylene	UG/KG	00	0.0%	50000 41000		(1			81 U 81 U	88 U 88 U	83 U 83 U	88 U 88 U	89 U 89 U	88 U 88 U	97 97
Anthracene	UG/KG	00	0.0%	50000	23464286	·		,			81 U	88 U	83 U	88 U	89 U	88 U	97
Benzo[a]anthracene	UG/KG	120	36 4%	224	875			1	1 96	1	81 U	88 U	83 U	47 J	89 U	88 U	12
Benzo[a]pyrene	UG/KG	27 0	63 6%	61	88	(1			49 J	88 U	83 U	52 J	48 J	88 U	27
Benzo(b)fluoranthene Benzo(gh)perylene	UG/KG UG/KG	35 0 26 0	100 0% 45 5%	1100 50000	875	(1	0 12 1 86		57 J 65 J	85 J 88 U	83 U 83 U	94 J 88 U	51 J 48 J	6.3 J 88 U	35 26
Benzo[k]/fluoranthene	UG/KG	31 0	72 7%	1100	8750			1			45 J	88 U	83 U	59 J	67 J	5 2 J	31
8is(2-Chloroethoxy)methane	UG/KG	0.0	0.0%					1			81 U	88 U	83 U	88 U	89 U	88 U	97
8is(2-Chloroethyf)ether	UG/KG	00	0.0%		581 9125			1			81 U 81 U	88 U 88 U	83 U 83 U	. 88 U 88 U	89 U 89 U	88 U 88 U	97 97
8is(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG UG/KG	28 0	63.6%	50000	45625	,		1			95 J	88 U	83 U	13 J	89 U	12 J	28
Butylbenzylphthalate	UG/KG	8 1	18 2%	50000	15642857	·		1			81 U	88 U	83 U	88 U	8 1 JB	88 U	97
Carbazole	UG/KG	0.0	0.0%		31938	(1			81 U	88 U	83 U	88 U	89 U	88 U	97
Chrysene Di-n-butylphthalate	UG/KG UG/KG	25 0 9 8	72 7% 18 2%	400 8100	87500	(1			81 U 81 U	88 U 88 U	83 U 83 U	8 J 5 7 J	6 J	6 4 J 88 U	25 9.8
Di-n-octylphthalate	UG/KG	00	0.0%	50000	1564286	,					81 U	88 U	83 U	88 U	89 U	88 U	97
Dibenz(a,h)anthracene	UG/KG	14 0	18 2%	14			2	1	1 82	U	63 J	88 U	83 U	88 U	89 U	88 U	14
Dibenzofuran	UG/KG	0.0	0.0%	6200	312857	(1			81 U	88 U	83 U	88 U	89 U	88 U	97
Diethyl phthalate Dimethylphthalate	UG/KG UG/KG	25 0	100 0%	7100 2000	62571429 782142857			1		JB	9 1 JB 81 U	U 88 U 88	8 2 BJ 83 U	25 JB 88 U	14 JB 89 U	17 JB 88 U	9 9 97
Ethylene Glycol	MG/KG	00	0.0%	2000	156428571			1			01 0	00 0	55 6	w 0		00 0	37
Fluoranthene	UG/KG	26 0	81 8%	50000	3128571		9	1			81 U	58 J	83 U	11 J	87 J	86 J	26
Fluorene	UG/KG	0.0	0.0%	50000	3128571 399				1 82		81 U	88 U	83 U 83 U	88 U 88 U	U 98 U 98	88 U 88 U	97 97
Hexachlorobenzene Hexachlorobutadiene	UG/KG UG/KG	00	0.0%	410	399 8189			1			81 U 81 U	88 U 88 U	83 U	88 U	89 U	88 U	97
Hexachlorocyclopentadiene	UG/KG	00	0.0%		547500				1 82		81 U	88 U	83 U	88 U	89 U	88 U	97
Hexachloroethane	UG/KG	. 00	0.0%		45625		0				81 U	88 U	83 U	88 U	89 U	88 U	97
Indeno[1,2 3-cd]pyrene	UG/KG	20.0	72 7% 0 0%	3200 4400	875			1			6.5 J 81 U	88 U 88 U	83 U 83 U	L 9 9	4.8 J 89 U	88 U 88 U	20 97
Isophorone N-Nitrosodiphenylamine	UG/KG UG/KG	00	0.0%	4400	130357			1			81 U 81 U	88 U	83 U	88 U	89 U	88 U	97
N-Nitrosodipropylamine	UG/KG	00	0.0%		.55557			i			81 U	88 U	83 U	88 U	89 U	88 U	97
Naphthalene	UG/KG	0.0	0 0%	13000	3128571	(1			81 U	88 U	83 U	88 U	89 U	88 U	97
Nitrobenzene	UG/KG	0.0	0.0%	200	39107	(-	1 1			81 U 200 U	88 U 210 U	83 U 200 U	88 U 210 U	89 U 220 U	88 U 210 U	97 240
Pentachlorophenol Phenanthrene	UG/KG UG/KG	0 0 17 0	0 0% 54 5%	1000 50000	5323	(-	1			200 U 81 U	210 U 88 U	200 U 83 U	210 U	220 U	210 U 4.8 J	240 17
Phenol	UG/KG	00	0.0%	30	46928571	·		1			81 U	88 U	63 U	88 U	89 U	88 U	97
Propytene Glycol	MG/KG	0.0	0.0%					1									
Pyrene	UG/KG MG/KG	30 0 221 0	81 8% 45 5%	50000	2346429			1			81 U 18 9 U	5 4 J 34 8	83 U 19 U	10 J 22 1	8 2 J 39 4	73 J 21 U	30 115
irn	MG/KG	2210	40 0%			,		'	. 103	-	10 9 0	3-0	19 0	24 1	30 4	2, 0	113

Ebs-123s xis

SITE DESCRIPTION									SEAD-123D Area West of Bldg 715	SEAD 123D Area West of Bidg 715	SEAD-123D Area West of Bidg 715
LOG ID SAMP ID									TP123D 4 EB105	TP123D-5 EB100	TP1230-5 E8101
QC CODE SAMP DETH TOP SAMP DEPTH BOT									SA 1	SA 15 15	SA 41
MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL 5 Mar-98	SOIL 4-Mar-98	SOIL 4 Mar 98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG	ABOVE	OF DETECTS	OF ANALYSES Q	VALUE Q	VALUE Q	VALUE, Q
1 7 4 Trichlorobenzene	UG/KG	0.0	0.0%	3400	782143		0 0	11 U	81 U	84 U	86 U
1,2 Dichlorobenzene	UG/KG	0.0	0.0%	7900	7039286		0 0	11 U	81 U	84 U	86 U
1 3-Dichlorobenzene 1 4-Dichlorobenzene	UG/KG UG/KG	00	0.0%	1600 8500	6961071 26615		0 0	11 U	BI U	84 U	86 U
2.4.5 Trichlorophenal	UG/KG	0.0	0.0%	100	7821429		0 0	11 U	81 U 200 U	84 U 200 U	86 U 210 U
2 4 6 Trichlorophenal	UG/KG	0.0	0.0%		58068		0 0		81 U	84 U	86 U
2.4-Dichlorophenol	UG/KG	0.0	0.0%	400	234643		O D	11 U	81 tJ	84 U	86 U
2.4 Dimethylphenol	UG/KG	0.0	0.0%	200	1564286		0 0	11 U	B1 U	84 U	86 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	UG/KG UG/KG	00	0 0% 0 0%	200	156429 156429		0 0	11 U 11 U	200 U 81 U	200 ป 84 ป	210 U 86 U
2 6-Dinkrotoluene	UG/KG	0.0	0.0%	1000	78214		0 0	11 U	B1 U	84 U	86 U
2 Chloronaphthalene	UG/KG	0.0	0.0%				0 0	11 U	81 U	84 U	86 U
2 Chlorophenol	UG/KG	0.0	0.0%	800	391071		0 0	11 U	61 U	84 U	86 U
2 Methylnaphthalene	UG/KG	5 4	91%	36400			0 1	11 J	81 U	84 U	86 U
2-Methylphenol 2-Nitroaniline	UG/KG UG/KG	00	0.0%	100 430	3910714 4693		0 0	11 U 11 U	81 U 200 U	84 U 200 U	86 U 210 U
2-Nitrophenol	UG/KG	0.0	0.0%	330	407.1		0 0		81 U	84 U	86 U
3.3 -Dichlorobenzidine	UG/KG	0.0	0.0%		1419		0 0	11 U	81 U	B4 U	86 U
3-Nitroaniline	UG/KG	0.0	0.0%	500	234643		0 0	11 U	200 U	200 U	210 U
4 6-Dinitro-2 methylphenol	UG/KG UG/KG	00	0.0%		4536429		0 0	11 U	200 U	200 U	210 U
4-Bromophenyl phenyl ether 4 Chloro-3-methylphenol	UG/KG	00	0.0%	240	4236429		0 0		81 U 81 U	84 U 84 U	บ 88 บ 88
4-Chloroaniline	UG/KG	0.0	0.0%	220	312857		0 0		81 U	84 U	86 U
4-Chlorophenyl phenyl ether	UG/KG	0.0	0.0%				0 0	11 U	81 U	84 U	86 U
4-Methylphenol	UG/KG	0.0	0.0%	900			0 0	11 U	81 U	84 U	86 U
4-Nitroaniline 4-Nitrophenol	UG/KG	00	0.0%	100	234643 4692857		0 0	11 U	200 U 200 U	200 U 200 U	210 U 210 U
Acenaphthene	UG/KG	00	00%	50000	4032037		0 0		81 U	84 U	86 U
Acenaphthylene	UG/KG	0.0	0.0%	41000			0 0	11 U	81 U	84 U	86 U
Anthracene	UG/KG	0.0	0.0%	50000	23464286		0 0	11 U	81 U	84 U	86 U
Benzo(a)anthracene	UG/KG UG/KG	12 0 27 0	36.4% 63.6%	224 61	875 88		0 4	11 J 11 J	95 J 13 J	84 U 84 U	86 U
Benzo(a)pyrene Benzo(b)fluoranthene	UG/KG	350	100.0%	1100	875		0 10		13 J	10 JY	45 J 88 J
Benzo(ghi)perylene	UG/KG	26 0	45.5%	50000			0 5	11 J	15 J	84 U	86 U
Banzo(k)fluoranthene	UG/KG	31 0	72 7%	1100	8750		0 8	11 J	13 J	84 U	45 J
Bis(2-Chloroethoxy)methane	UG/KG UG/KG	00	0.0%		581		0 0	11 U	81 U	84 U	86 U
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether	UG/KG	00	0.0%		9125		0 0	11 U 11 U	81 U 81 U	84 U 84 U	86 U 86 U
Bis(2-Ethylhexyl)phthalate	UG/KG	28 0	63.6%	50000	45625		0 7	11 J	81 U	72 J	73 J
Butylbenzylphthafate	UG/KG	8 1	18 2%	50000	15642857		0 2	11 U	81 U	84 U	5 4 JB
Carbazole	UG/KG	0.0	0 0%		31938		0 0	11 U	81 U	84 U	86 U
Chrysene Di-n-butylphthalate	UG/KG UG/KG	25 0 9 8	72 7% 18 2%	400 8100	87500		0 6	11 J 11 J	15 J 81 U	5 1 J 84 U	69 J 86 U
Di-n-octylphthalate	UG/KG	0.0	0.0%	50000	1564286		0 0	11 U	81 U	84 U 84 U	86 U
Dibenz[a h]anthracene	UG/KG	14 0	18 2%	14			0 2	11 J	81 U	84 U	86 U
Dibenzofuran	UG/KG	0.0	0.0%	6200	312857		0 0	11 U	81 U	84 U	86 U
Diethyl phthalate Dimethylphthalate	UG/KG UG/KG	25 0 0 0	100 0%	7100 2000	62571429 782142857		0 10	10 JB 11 U	57 JB 81 U	17 JB 84 II	18 JB 86 U
Ethylene Glycol	MG/KG	0.0	0.0%	2000	156428571		0 0	11	81 U	84 0	86 0
Fluoranthene	UG/KG	26.0	81 8%	50000	3128571		0 9	11 J	20 J	71 J	82 J
Fluorene	UG/KG	0.0	0 0%	50000	3128571		0 0	11 U	81 U	84 U	86 U
Hexachlorobenzene	UG/KG	0.0	0.0%	410	399		0 0	11 U	81 U	84 U	86 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG UG/KG	00	0.0%		8189 547500		0 0	11 U 11 U	81 ป 81 ป	84 U 84 U	86 U 86 U
Hexachloroethane	UG/KG	00	0.0%		45625		0 0	11 U	81 U	84 U	86 U
Indeno[1 2,3-cd]pyrene	UG/KG	20 0	72 7%	3200	875		0 8	11 J	15 J	5 J	5 4 J
Isophorone	UG/KG	0.0	0.0%	4400			0 0	11 U	81 U	84 U	86 U
N-Nitrosodiphenylamine	UG/KG	0.0	0 0%		130357		0 0	11 U	81 U	84 U	86 U
N-Nitrosodipropylamine Naphthalene	UG/KG	0.0	0.0%	13000	3128571		0 0	11 U 11 U	81 U 81 ป	84 U 84 U	86 U 86 U
Naphthalene	UG/KG	0.0	0.0%	200	39107		0 0	11 U	81 U	84 U	86 U
Pentachlorophenol	UG/KG	00	0 0%	1000	5323		0 0	11 U	200 U	200 U	210 U
Phenanthrene	UG/KG	170	54 5%	50000			0 6	11 J	14 J	84 U	46 J
Phenol	UG/KG	0.0	0.0%	30	46928571		0 0	11 U 11	81 U	84 U	86 U
Propylene Glycol Pyrene	MG/KG UG/KG	00 300	0.0% 81.8%	50000	2346429		0 0	11 11 J	22 J	66 J	66 J
TPH	MG/KG	221 0	45 5%	JANAN	Exames		0 5	11	221	163 U	197 U

Ebs-123s xfs

Table 11-5 123D - Semivolatiles/TPH in Solls vs PRG-RES Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD 123D Area West of Bidg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bidg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bidg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bidg 715
LOCID SAMPID OC CODE SAMP DETHIOP SAMP DEPTH BOT MATRIX									TP123D 1 FB108 SA 0 5 0 5	TP123D-1 EB:09 SA 1 1	TP123D-2 EB106 SA 0 5 0 5	TP123D 2 EB107 SA 15	TP123D-3 EB001 DU 0 5 0 5	TP123D-3 EB102 SA 05 05	TP123D-3 EB103 SA 2 SOIL	TP123D-4 EB104 SA 0 5 0 5
SAMP DATE		FR	EQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	5-Mar-98	5-Mar-98	5-Mar-98	4-Mar-98	4-Mar-98	4-Mar-98	5-Mar-98
1.2.4-Trichforobenzene 1.2-Dichforobenzene 1.3-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforobenzene 1.4-Dichforophenol 1.4-Dichforophenol 1.4-Dichforophenol 1.4-Dimethylphenol 1.4	UNIT UG/KG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OF	TAGM 3400 7500 1600 8500 100 400 200 1000 800 36400 100 430 500 100 430 500 500 100 100 100 100 100 100 100 10	PRG 782143 703926 6961071 26615 7821429 58066 234643 1564296 1564296 78214 3910714 4633 4613 4536429 312857	ABOVE LAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DETECTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANALYSES 11 11 11 11 11 11 11 11 11 11 11 11 11	82 U 82 U 82 U 82 U 82 U 82 U 82 U 82 U	VALUE 0 81 U 81 U 81 U 81 U 200 U 81 U 81 U 200 U 81	VALUE 0 88 U 88 U 88 U 210 U 210 U 210 U 210 U 210 U 88 U 88 U 210 U 210 U 210 U 88 U 8	VALUE 0 83 U	VALUE 88 U 8	VALUE Q 89 U 89 U 89 U 89 U 220 U 89	VALUE	VALUE 97 U 97 U 97 U 97 U 240 U 97 U 9
Anthracene Benzo(a)anthracene Benzo(a)ayrene Benzo(b)fluoranthene Benzo(gh)perylene Benzo(k)fluoranthene	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 0 0 12 0 27 0 35 0 26 0 31 0	0 00% 0 00% 36 36% 63 64% 100 00% 45 45% 72 73% 0 00%	41000 50000 224 61 1100 50000 1100	23464286 875 88 875 875	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 7 10 5	11 11 11 10 11 11	82 U 82 U 96 J 11 J 12 J 86 J 13 J 82 U	81 U 81 U 49 J 57 J 65 J 45 J 81 U	88 U 88 U 86 U 85 J 86 U 88 U	83 U 83 U 83 U 83 U 83 U 83 U 83 U	88 U 88 U 47 J 52 J 94 J 88 U 59 J	89 U 89 U 89 U 48 J 51 J 46 J 67 J 89 U	88 U 88 U 88 U 63 J 88 U 52 J 88 U	97 U 97 U 12 J 27 J 35 J 26 J 31 J 97 U
Bis(2-Chloroethyl)ether Bis(2-Chloroespropyl)ether Bis(2-Chloroespropyl)ether Bis(2-Chloroespropyl)ethel Bis(2-Chloroespropyl)ethelate Butylbenzylphthalate Carbazole Chrysene Di-n-butylphthalate	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 0 0 28 0 6 1 0 0 25 0 9 8	0 00% 0 00% 63 64% 18 18% 0 00% 72 73% 18 18% 0 00%	50000 50000 400 8100 50000	581 9125 45625 15642857 31938 87500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 2 0 8	11 11 11 11 11 11 11 11	82 U 82 U 91 J 82 U 82 U 13 J 82 U	81 U 81 U 95 J 81 U 81 U 81 U 81 U	88 U 88 U 88 U 88 U 88 U 68 U 68 U	83 U 83 U 83 U 83 U 83 U 83 U 83 U	88 U 88 U 13 J 88 U 68 U 8 J 57 J 68 U	89 U 89 U 89 U 89 U 69 U 69 U 89 U 89 U	88 U 88 U 12 J 88 U 88 U 88 U 88 U	97 U 97 U 28 J 97 U 97 U 25 J 98 J 97 U
Dibenzofuran Diethyl phthalate Dimethyl phthalate Ethylene Glycol Fluoranthene	UG/KG UG/KG UG/KG UG/KG MG/KG UG/KG	14 0 0 0 25 0 0 0 0 0 26 0	18 18% 0 00% 100 00% 0 00% 0 00% 81 82%	14 6200 7100 2000	312857 62571429 782142857 156428571 3128571	0 0 0	2 0 10 0 0	11 10 10 11 11 11	82 U 13 JB 82 U 24 J	63 J 81 U 91 JB 81 U 81 U	88 U 88 U 88 U 88 U	83 U 83 U 82 BJ 83 U 83 U	88 U 88 U 25 JB 88 U 11 J	89 U 89 U 14 JB 89 U 8 7 J	88 U 88 U 17 JB 88 U 86 J	14 J 97 U 99 JB 97 U 26 J
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno[1 2,3-cd]pyrene	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	00 00 00 00 00 20 0	0 00% 0 00% 0 00% 0 00% 72 73% 0 00%	50000 410 3200 4400	3128571 399 8189 547500 45625 875	0 0 0	0 0 0 0 8	11 11 11 11 11 11	82 U 8 7 J	81 U 81 U 81 U 81 U 81 U 85 J 81 U	88 U 88 U 88 U 88 U 88 U 88 U	83 U 83 U 83 U 83 U 83 U 83 U	88 U 88 U 88 U 86 J 88 U	69 U 69 U 69 U 69 U 48 J 89 U	88 U 88 U 88 U 88 U 88 U 88 U	97 U 97 U 97 U 97 U 97 U 20 J 97 U
N-Nitrosodiphenylamine N-Nitrosodipropylamine Naphthalene Nitrobenzene Pentachloriphenol Phenanthrene	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	0 0 0 0 0 0 0 0 17 0	0 00% 0 00% 0 00% 0 00% 0 00% 54 55% 0 00%	13000 200 1000 50000	130357 3128571 39107 5323 46928571	0 0 0 0 0 0 0	000000000000000000000000000000000000000	11 11 11 11 11 11 11 11	82 U 82 U 82 U	81 U 81 U 81 U 81 U 200 U 81 U	88 U 88 U 88 U 88 U 210 U 88 U	83 U 83 U 83 U 83 U 200 U 83 U 83 U	88 U 88 U 88 U 210 U 71 J 88 U	89 U 89 U 89 U 89 U 220 U 89 U 89 U	88 U 88 U 88 U 210 U 4.8 J 88 U	97 U 97 U 97 U 97 U 240 U 17 J 97 U
Propylene Glycol Pyrene	MG/KG UG/KG MG/KG	0 0 30 0 221 0	0 00% 81 82% 45 45%	50000	2346429	0	9	11	18 J 18 3 U	81 U 189 U	5 4 J 34 8	83 U 19 U	10 J 22 1	8 2 J 39 4	7 3 J 21 U	30 J 115

Table 11-5 123D - Semivolatiles/TPH in Soils vs PRG-RES Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD 123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715	SEAD-1230 Area West of Bldg 715
LOC ID SAMP ID									TP123D-4 EB105	TP123D-5 EB100	TP123D-5 EB101
QC CODE SAME DETH TOP									SA 1	SA 1.5	SA 4.1
SAMP DEPTH BOT									1	1.5	4.1
MATRIX			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL S Mar 98	SOIL 4 Mar 98	SOIL 4 Mar-98
SAMP DATE			OF			ABOVE	OF	OF	1 100	4 860 30	4 Mar-30
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	IAC-M	DETECTS	ANALYSES		VALUE Q	
1 2 4-Trichlorobenzene	UG/KG	0.0	0 00%	3400 7900	782143 7039286	0	0		81 U	84 V 84 V	
1 2-Dichlorobenzene 1 3-Dichlorobenzene	UG/KG UG/KG	00	0 00%	1600	6961071	0	0		81 U	84 U	
1 4-Dichlorobenzene	UG/KG	00	0 00%	8500	26615	0	0		81 U	84 U	86 U
2 4.5-Trichlorophenol	UG/KG	0.0	0.00%	100	7821429	0	0		200 U	200 U	
2 4 6-Trichlorophenol	UG/KG	0.0	0 00%	400	58068 234643	0	0		81 U 81 U	84 U 84 U	
2 4-Dichlorophenol 2 4-Dimethylphenol	UG/KG UG/KG	00	0 00%	400	1564286	0	0		81 U	B4 (
2 4-Dinitrophenol	UG/KG	0.0	0 00%	200	156479	0	0		200 U	200 U	
2 4-Dinitrotoluene	UG/KG	0.0	0 00%		156429	0	0		81 U	84 (
2 5-Dinitrotoluene	UG/KG	0.0	0 00%	1000	78214	0	0		81 U	84 U 84 U	
2-Chloronaphthalene 2-Chlorophenol	UG/KG	0.0	0 00%	800	391071	0	0		81 U	84 L	
2-Methylnaphthalene	UG/KG	54	9 09%	36400	331011	0	1		81 U	84 L	
2-Methylphenoi	UG/KG	0.0	0 00%	100	3910714	0	0		81 U	84 L	
2-Nitroandine	UG/KG	0.0	0.00%	430	4693	0	0		200 U	200 L	
2-Nitrophenol	UG/KG UG/KG	00	0 00%	330	1419	0	0		81 U 81 U	84 L 84 L	
3,3 -Dichlorobenzidine 3-Nitroanikne	UG/KG	0.0	0 00%	500	234643	0	0		200 U	200 t	
4 6-Dinitro 2-methylpheno?	UG/KG	0.0	0 00%			0	0		200 U	200 t	
4-Bromophenyl phenyl ether	UG/KG	0.0	0 00%		4535429	0	0		81 U	84 L	
4-Chioro 3-methylphenol	UG/KG	0.0		240	849857	0	0		81 U 81 U	84 L 84 L	
4-Chloroaniline 4 Chlorophenyl phenyl ether	UG/KG UG/KG	0.0	0 00%	220	312857	0	0		81 U	84 L	
4 Methylphenol	UG/KG	00	0.00%	900		0	o		81 U	84 L	
4-Nitroaniline	UG/KG	0.0	0 00%		234643	0	0		200 U	200 L	
4-Nitrophenol	UG/KG	0.0		100	4692857	0	0		200 U	200 L	
Acenaphthene	UG/KG	00	0 00%	50000 41000		0	0		81 U	84 t. 84 t.	
Acenaphthylene Anthracene	UG/KG UG/KG	00	0.00%	50000	23464286	0	0		81 U	84 (
Benzo(a)anthracene	UG/KG	120	36 36%	224	875	0	4		95 J	84 L	
Benzo(a)pyrene	UG/KG	27 0		61	88	0	7		13 J	84 L	
Benzo(b)fluoranthene	UG/KG UG/KG	35 0 26 0	100 00% 45 45%	1100 50000	875	0	10		13 J 15 J	10 J 84 L	
Senzo[ghi]perylene Benzo[k]fluoranthene	UG/KG	26 U	72 73%	1100	8750	0	8		13 J	84 (
Bis(2 Chloroethoxy)methane	UG/KG	0.0	0 00%			0	0	11	B1 U	84 (
Bis(2-Chloroethyl)ether	UG/KG	0.0	0 00%		581	0	0		B1 U	84 1	
Bis(2 Chloroisopropyl)ether	UG/KG	0.0	0 00%	50000	9125 45625	0	0 7		81 U 81 U	84 U	
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	UG/KG UG/KG	28 0 8 1	63 64% 18 18%	50000	15642857	0	2		81 U	84 (
Carbazole	UG/KG	00	0.00%	30000	31938	o	0		81 U	84 (
Chrysene	UG/KG	25 0	72 73%	400	87500	0	8		15 J	51 3	
Di-n-butylphthalate	UG/KG	98	18 18%	B100	1564286	0	2		81 U 81 U	84 L 84 L	
Di-n-octylphthalate Dibenz(a.hlanthracene	UG/KG UG/KG	0 0 14 0		50000	1564286	0	2		B1 U		
Dibenzofuran	UG/KG	00	0 00%	6200	312857	0	C	11	81 U	84 L	
Diethyl phthalate	UG/KG	25 0		7100	62571429	0	10				
Dimethylphthalate	UG/KG	0.0		2000	782142857	0	0		81 U	84 (J 86 U
Ethylene Glycol Fluoranthene	MG/KG UG/KG	00 260	0 00% 81 82%	50000	156428571 3128571	0	9		20 J	71.	82 J
Fluorene	UG/KG	00	0 00%	50000	3128571	0	0	11	81 U	84 L	
Hexachlorobenzene	UG/KG	00		410	399	0	0		81 U		
Hexachforobutadiene	UG/KG	0.0			8189 547500	0	0		81 U		
Hexachlorocyclopentadiene	UG/KG UG/KG	0.0	0 00%		547500 45625	0	0		81 U	84 (
Hexachloroethane Indeno(1,2 3-cd)pyrene	UG/KG	20.0	72 73%	3200	875	0	8	11	15 J	5 .	5 4 J
Isophorone	UG/KG	0.0	0.00%	4400		0	0			84 U	
N-Nitrosodiphenylamine	UG/KG	0.0	0.00%		130357	0	0		81 U 81 U	84 L 84 L	
N-Nitrosodipropylamine	UG/KG UG/KG	0.0	0 00%	13000	3128571	0	0		81 U		
Naphthalene Nitrobenzene	UG/KG UG/KG	00		200	39107	0	ď		81 U	84 () 86 U
Pentachlorophenol	UG/KG	00	0 00%	1000	5323	0	C		200 U		
Phenanthrene	UG/KG	17 0	54 55%	50000	.ar	0	6		14 J	84 L 84 L	
Phenol	UG/KG	0.0		30	46928571	0	0		81 U	B4 (, 86 U
Propylena Glycol Pyrana	MG/KG UG/KG	0 0 30 0	81 82%	50000	2348429	0	9		22 J	66.	
TPH	MG/KG	221 0	45 45%			0	5	11	221	163 (J 197 U

Table 11-6 123D - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 11 54.7 41.5 B 61 4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 11.3 0 14854851 0 11 11 0 34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 1 0.00% 2 46 39 107143 0 0 0 11 0 0.7 U 0.07 U 0.08 U 0.07 U 0.07 U 0.07 U Calcium MG/KG 14100 100 00% 12530 0 11 11 11 2350 1710 1410 236 B 1120 B 1290 Chosalt MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 26 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4693 0 11 11 11 167 15 13 26 18.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17.1 Cyande MG/KG 3140 100.00% 374 2344 0 11 11 12 2000 23500 150 3120 2400 Lead MG/KG 3140 100.00% 374 2 3464 0 11 11 11 20200 23500 150 3120 2400 24100	SITE DESCRIPTION								•	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg. 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715
SAMP ID OC CODE	LOC ID									TP123D-1	TP123D-1	TP123D-2	TP123D-2	TP123D-3	TP123D-3
SAMP DETHTOP SAMP. DETHTOP SAMP. DETHTOP SAMP. DETECTION MATRIX SAMP. DETECTION DETAILS SAMP. DETAILS SA	SAMP ID.									EB108	EB109	EB106	EB107	EB001	
SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DEPTH_BOT SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE FREQUENCY SAMP_DATE SAMP_DAT	QC CODE									SA	SA	SA	SA	DU	SA
SAMP DATE FREQUENCY OF NUMBER ABOVE FREQUENCY OF NUMBER ABOVE OF OF NUMBER OF OF OF NUMBER OF	SAMP DETH TOP									0.5	1	0.5	1.5	0.5	0.5
SAMP DATE FREQUENCY OF	SAMP, DEPTH BOT	Г								0.5	1				
SAMP DATE FREQUENCY OF	MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UNIT MAXIMUM DETECTION TAGM PRG TAGM DETECTS ANALYSES VALUE Q VALUE	SAMP DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	5-Mar-98	5-Mar-98			
Aluminum MG/KG 16500 100 00% 19520 78214 286 0 11 11 12300 11300 11100 16500 14400 16600 14400 Antimony MG/KG 0 0 0.00% 6 31 285714 0 0 0 11 0.84 UN 0.8 UN 0.9 UN 0.9 UN 0.81 UN 0.8 UN 0.82 UN Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 54.7 41.5 B 61.4 57.2 101 86.3 Beryllium MG/KG 0.51 100 00% 1.13 0 14854651 0 11 11 0.34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 0.00% 2.46 39 107143 0 0 11 11 0.7 U 0.07				OF			ABOVE	OF	OF						
Alumnum MG/KG 1650 100 00% 1952 78214 286 0 11 11 11 12300 11300 11100 16500 14400 16000 Antimony MG/KG 0 0 0,00% 6 31 285714 0 0 0 11 11 0 84 UN 0.8 UN 0.9 UN 0.9 UN 0.8	PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Arsenic MG/KG 54 100 00% 8.9 0 42583333 0 11 11 4.4 3.6 3.4 54 4.7 3.9 Barum MG/KG 126 100 00% 300 5475 0 11 11 54.7 41.5 B 61.4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 1.13 0 14854651 0 11 11 0.34 B 0.34 B 0.24 B 0.23 B 0.51 B 0.34 B 0.34 B 0.34 B 0.25 B 0.51 B 0.34 B 0.	Aluminum	MG/KG	16500	100 00%	19520	78214.286	0	11	11	12300	11300	11100	16500		
Arsenic MG/KG 5 4 100 00% 8 9 0 42583333 0 11 11 11 4.4 3.6 3.4 5.4 4.7 3.9 Banum MG/KG 126 100 00% 300 5475 0 11 11 11 54.7 41.5 B 61 4 57.2 101 86.3 Beryllium MG/KG 0 51 100 00% 11.3 0 14854851 0 11 11 0 34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0 1 0.00% 2 46 39 107143 0 0 0 11 0 0.7 U 0.07 U 0.08 U 0.07 U 0.07 U 0.07 U Calcium MG/KG 14100 100 00% 12530 0 11 11 11 2350 1710 1410 236 B 1120 B 1290 Chosalt MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 26 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4693 0 11 11 11 167 15 13 26 18.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17.1 Cyande MG/KG 3140 100.00% 374 2344 0 11 11 12 2000 23500 150 3120 2400 Lead MG/KG 3140 100.00% 374 2 3464 0 11 11 11 20200 23500 150 3120 2400 24100	Antimony	MG/KG	0	0.00%	6	31 285714	0	0	11	0 84 UN	0.8 UN	0.9 UN	0 81 UN	0.8 UN	0.82 UN
Beryllium MG/KG 0.51 100 00% 1.13 0.14854651 0 11 11 0.34 B 0.34 B 0.23 B 0.51 B 0.34 B 0.45 B Cadmium MG/KG 0 0.00% 2.46 39 107143 0 0 11 0.07 U	Arsenic	MG/KG	5 4	100 00%	8.9	0 42583333	0	11	11	4.4	3.6	3 4	5 4	47	3.9
Cadmium MG/KG 0 0.00% 2 46 39 107143 0 0 11 0.07 U 0.07 U 0.08 U 0.07 U 0.	Banum	MG/KG	126	100.00%	300	5475	0	11	11	54.7	41.5 B	61 4	57.2	101	86.3
Calcium MG/KG 14100 100 00% 125300 0 11 11 2350 1710 1410 236 B 1120 B 1290 Chromium MG/KG 22 6 100.00% 30 78214 0 11 11 167 15 13 22 6 18.6 20 9 Cobalt MG/KG 13 8 100.00% 30 4893 0 11 11 11 10.4 B 97 B 6.7 B 13.8 12.1 128 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17 1 Cyande MG/KG 0 0 0.00% 33 3129 0 11 11 11 142 10.6 16.4 26.7 13.1 17 1 Cyande MG/KG 0 0 0.00% 37410 23464 0 11 11 11 07 U 0.68 U 0.74 U 0.69 U 0.70 0.71 U 10.00 MG/KG 31400 100.00% 37410 23464 0 11 11 11 20200 23500 15500 31200 24000 Lead MG/KG 314 100.00% 24 3 3 11 11 163 15 24.3 14.1 28.2 21	Beryllium	MG/KG	0 51	100 00%	1.13	0 14854651	0	11	11	034 B	0.34 B	0.23 B	0.51 B	0.34 B	0 45 B
Chromium MG/KG 226 100.00% 30 78214 0 11 11 167 15 13 226 18.6 20.9 Cobalt MG/KG 13.8 100.00% 30 4693 0 11 11 11 10.4 B 9.7 B 6.7 B 13.8 12.1 12.8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0 0.00% 0.35 0 0 0 11 17 17 0.7 U 0.68 U 0.7 U 0.69 U 0.7 U 0.7 U 0.7 U 0.00 MG/KG 3140 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21	Cadmium	MG/KG	0	0.00%	2 46	39 107143	0	0	11	0 07 U	0 07 U	0.08 U	0.07 U	0.07 U	0.07 U
Cobalt MG/KG 13.8 100.00% 30 4693 0 11 11 10.4 B 9.7 B 6.7 B 13.8 12.1 12 8 Copper MG/KG 27.2 100.00% 33 3129 0 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0.00% 0.35 0 0 11 0.7 U 0.68 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21	Calcium	MG/KG	14100	100 00%	125300		0	11	11	2350	1710	1410	236 B	1120 B	1290
Copper MG/KG 27.2 100.00% 33 3129 0 11 11 14.2 10.6 16.4 26.7 13.1 17.1 Cyanide MG/KG 0 0.00% 0.35 0 0 11 0.7 U 0.88 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21	Chromium	MG/KG	22 6	100.00%	30	78214	0	11	11	16 7	15	13	22 6	18.6	20.9
Cyanide MG/KG 0 0.35 0 0 11 0.7 U 0.68 U 0.74 U 0.69 U 0.7 U 0.71 U Iron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 21600 24100 Lead MG/KG 31 4 100.00% 24 4 3 11 11 16.3 15 24.3 14.1 26.2 21	Cobalt	MG/KG	13.8	100.00%	30	4693	0	11	11	10.4 B	97 B	6.7 B	13.8	12.1	12 8
fron MG/KG 31400 100.00% 37410 23464 0 11 11 20200 23500 15500 31200 24600 24100 Lead MG/KG 31 4 100.00% 24 4 3 11 11 16 3 15 24.3 14.1 26.2 21	Copper	MG/KG	27.2	100.00%	33	3129	0	11	11	14 2	10.6	16.4	26.7	13 1	17 1
Lead MG/KG 31.4 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21	Cyanide	MG/KG	0	0 00%	0.35		0	0	11	0.7 U	0.68 U	0.74 U	0.69 U	0 7 U	0 71 U
Lead Migrid 314 100.00% 24.4 3 11 11 16.3 15 24.3 14.1 28.2 21	fron	MG/KG	31400	100.00%	37410	23464	0	11	11	20200	23500	15500	31200	21600	24100
Magnesium MG/KG 6920 100.00% 21700 0 11 11 2940 2570 2030 2640 2020 2450	Lead		31 4	100.00%	24 4		3	11	11	16.3	15	24.3	14.1	28,2	21
	Magnesium	MG/KG	6920	100.00%	21700		0	11	11	2940	2570	2030	3640	3020	3450
Manganese MG/KG 1200 100.00% 1100 1799 1 11 11 662 772 755 287 930 720	Manganese		1200		1100	1799	1	11	11	662	772	755	287	930	720
Mercury MG/KG 0.13 27.27% 0.1 23 1 3 11 0.06 U 0.06 U 0.13 B 0.06 U 0.06 U 0.06 U							1	3	11	0.06 U	0 06 U	0.13 B	0.06 U	0.06 U	0.06 U
Nickel MG/KG 25.4 100.00% 50 1564 0 11 11 18.6 16.1 13.4 25.4 22.6 25.1						1564	0	11				13 4	25.4	22.6	25 1
Potassium MG/KG 1470 100.00% 2623 0 11 11 1350 763 B 911 B 1360 1260 1350					2623		0	11	11	1350	763 B	911 B	1360	1260	1350
Selenium MG/KG 1.5 9.09% 2 391 0 1 11 1.1 U 1.1 U 1.2 U 1.1 U 1.1 U 1.1 U			15	9 09%	_		0	1			1.1 U	1.2 U	1.1 U	1.1 U	1.1 U
Silver MG/KG 0 0.00% 0.8 391 0 0 11 0.51 U 0.48 U 0.54 U 0.49 U 0.48 U 0.49 U	Silver		0	0.00%	0.8	391	0	0	11	0.51 U	0 48 U	0.54 U	0.49 U	0.48 U	0.49 U
Sodium MG/KG 0 0.00% 188 0 0 11 146 U 139 U 155 U 141 U 139 U 142 U															142 U
Thallium MG/KG 0 0.00% 0.855 6 0 0 11 1.5 U 1.4 U 1.6 U 1.5 U 1.4 U 1.5 U							0							1.4 U	1.5 U
Vanadium MG/KG 27.8 100.00% 150 548 0 11 11 22.5 E 23.5 E 19.3 E 27.8 E 23.2 E 25.8 E							0								25.8 E
Zinc MG/KG 124 100.00% 115 23464.286 1 11 11 73.7 60.6 71.4 67.8 90 100	Zinc	MG/KG	124	100.00%	115	23464.286	1	11	11	73.7	606	71.4	67.8	90	100

Table 11-6 123D - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg. 715	SEAD-123D Area West of Bldg 715	SEAD-123D Area West of Bldg 715
LOC ID									TP123D-3	TP123D-4	TP123D-4	TP123D-5	TP123D-5
SAMP ID									EB103	EB104	EB105	EB100	EB101
QC CODE									SA	SA	SA	SA	SA
SAMP DETH TOP									2	0.5	1	1 5	4.1
SAMP DEPTH BOT	Γ								2	0.5	1	1.5	4 1
MATRIX.									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	4-Mar-98	5-Mar-98	5-Mar-98	4-Mar-98	4-Mar-98
			OF			ABOVE	OF	OF					
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	16500	100 00%	19520	78214 286	0	11	11	13900	10900	10400	11800	15100
Antimony	MG/KG	0	0 00%	6	31 285714	0	0	11	0 82 UN	1 1 11	0 8 UN	0 84 UN	0 88 UN
Arsenic	MG/KG	5 4	100 00%	8 9	0 42583333	0	11	11	38	3 2	4.9	2 9	3 3
Barium	MG/KG	126	100.00%	300	5475	0	11	11	104	104	103	75.4	126
Beryllium	MG/KG	0 51	100 00%	1 13	0 14854651	0	11	11	0 33 B	0 32 B	0 26 B	0 35 B	0 43 B
Cadmium	MG/KG	0	0 00%	2 46	39 107143	0	0	11	0 07 U	0.09 U	0 07 U	0.07 U	0.08 U
Calcium	MG/KG	14100	100 00%	125300		0	11	11	1430	9800	14100	1490	2990
Chromium	MG/KG	22 6	100 00%	30	78214	0	11	11	18 1	13 1	17 9	15.4	20.1
Cobalt	MG/KG	13 8	100.00%	30	4693	0	11	11	12 3	8 8 B	9.3 B	9.6 B	11 B
Copper	MG/KG	27 2	100.00%	33	3129	0	11	11	14.3	22 6	27.2	12.4	13.8
Cyanide	MG/KG	0	0 00%	0 35		0	0	11	07 U	0.8 U	0.65 U	0.67 U	0 67 U
Iron	MG/KG	31400	100 00%	37410	23464	0	11	11	21500	16800	31400	19000	22600
Lead	MG/KG	31 4	100 00%	24 4		3	11	11	31.4	28.7	20 8	14 5	19.4
Magnesium	MG/KG	6920	100.00%	21700		0	11	11	3020	3430	6920	2650	3240
Manganese	MG/KG	1200	100.00%	1100	1799	1	11	11	1020	697	923	546	1200
Mercury	MG/KG	0 13	27.27%	0 1	23	1	3	11	0 06 U	0 1 B	0.08 B	0.06 U	0 07 U
Nickel	MG/KG	25.4	100.00%	50	1564	0	11	11	23 1	15.9	18.7	18.4	24
Potassium	MG/KG	1470	100.00%	2623		0	11	11	1210	1470	1160	976 B	1240 B
Selenium	MG/KG	15	9.09%	2	391	0	1	11	1.1 U	1 5 B	1 1 U	1.1 U	1.2 U
Silver	MG/KG	0	0.00%	0.8	391	0	0	11	0 49 U	0.62 U	0.48 U	0.5 U	0.53 U
Sodium	MG/KG	0	0.00%	188		0	0	11	142 U	178 U	138 U	146 U	152 U
Thallium	MG/KG	0	0 00%	0 855	6	0	-	11		18 U	1.4 U	1.5 U	1.6 U
Vanadium	MG/KG	27.8	100 00%	150	548	0	11	11		20.5 E	19 7 E	19.3 €	24 5 E
Zinc	MG/KG	124	100 00%	115	23464 286	1	11	11	87	124	80.2	64.2	79.8

Table 11-7
123D - Metals in Soil vs PRG-RES
Non-Evaluated EBS Sites

								SEAD-123D	SEAD-123D	SEAD-123D	SEAD-123D	SEAD-123D	SEAD-123D
								Area West of	Area West of	Area West of	Area West	Area West of	Area West of
								Bldg. 715	Bldg 715	Bldg. 715	of Bldg 715	Bldg. 715	Bldg. 715
								TP123D-1	TP123D-1	TP123D-2	TP123D-2	TP123D-3	TP123D-3
								EB108	EB109	EB106	EB107	EB001	EB102
								SA	SA	SA	SA	DU	SA
								0.5	1	0.5	1,5	0.5	0.5
								0.5	1	0.5	1.5	0.5	0.5
								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					NUMBER	NUMBER	NUMBER	5-Mar-98	5-Mar-98	5-Mar-98	5-Mar-98	4-Mar-98	4-Mar-98
LINIT	MIMIXAM		TAGM	PRG				VALUE O	VALUE O	VALUE	VALUE	VALUE O	VALUE Q
													16000
					_								
			_		_	-							33
								***					86.3
					-								0.45 B
													0.07 U
				33.107 143	-								1290
				78214	-								20 9
					-								12.8
					_								17.1
				3123									0.71 U
				23464	4	_							24100
				20104	0								21
					_								3450
				1799									720
					-								0.06 U
						11							25.1
				100-1		11							1350
				391	0	1							1.1 U
					-	0							0.49 U
				001	-								142 U
				6	_								1.5 U
													25.8 E
					-								100
A A A A A A A A A A A A A A A A A A A	UNIT MG/KG	UNIT MAXIMUM 165/KG 16500.0 165/KG 0.0 165/KG 5.4 165/KG 0.5 165/KG 0.5 165/KG 0.0 165/KG 14100.0 165/KG 13400.0 165/KG 31400.0 165/KG 31400.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 1200.0 165/KG 0.0	AG/KG 16500.0 100.0% AG/KG 0.0 0.0% AG/KG 5.4 100.0% AG/KG 126.0 100.0% AG/KG 0.5 100.0% AG/KG 0.5 100.0% AG/KG 14100.0 100.0% AG/KG 14100.0 100.0% AG/KG 13.8 100.0% AG/KG 13.8 100.0% AG/KG 31.4 100.0% AG/KG 1200.0 100.0% AG/KG 1200.0 100.0% AG/KG 1200.0 100.0% AG/KG 1470.0 100.0% AG/KG 15.5 9.1% AG/KG 0.0 0.0%	UNIT MAXIMUM DETECTION TAGM 165/06 16500.0 100.0% 19520 165/KG 15.4 100.0% 300 165/KG 126.0 100.0% 1.13 165/KG 0.5 100.0% 1.13 165/KG 0.5 100.0% 1.13 165/KG 0.0 0.0% 2.46 165/KG 14100.0 100.0% 300 165/KG 14100.0 100.0% 30 165/KG 1318 100.0% 30 165/KG 1318 100.0% 33 165/KG 1318 100.0% 33 165/KG 1310.0% 33 165/KG 10.0 0.0% 2.46 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 30 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 37 165/KG 10.0 10.0% 27 165/KG 10.0 10.0% 21 165/KG 10.0 10.0% 25 165/KG 10.0 10.0% 50 165/KG 10.0 10.0% 50 165/KG 10.0 10.0% 50 165/KG 1470.0 100.0% 2623 165/KG 1470.0 100.0% 2623 165/KG 0.0 0.0% 0.8 165/KG 0.0 0.0% 0.8 165/KG 0.0 0.0% 188 165/KG 0.0 0.0% 188 165/KG 0.0 0.0% 185 165/KG 0.0 0.0% 1855 165/KG 27.8 100.0% 155	OF OF OSTACLE NO. 100.0% OSTACLE NO. 100.0%	No. No.	NOTE NOTE	OF HAZINUM DETECTION TAGM PRG TAGM DETECTS ANALYSES ANALYSES 16500.0 100.0% 19520 78214.286 0.0 11 11 11 11 11 11 11 11 11 11 11 11 11	FREQUENCY	FREQUENCY OF	FREQUENCY OF FREQUENCY OF TAGM PRG TAGM PRG TAGM PRG TAGM DETECTION TAGM PRG TAGM DETECTS ANALYSES VALUE Q VALUE Q	FREQUENCY CF	BB108

Table 11-7 123D - Metals in Soil vs PRG-RES Non-Evaluated EBS Sites

SITE									SEAD-123D	SEAD-123D	SEAD-123D	SEAD-123D	SEAD-123D
DESCRIPTION									Area West of	Area West of	Area West of	Area West of	Area West of
									Bldg. 715	Bldg. 715	Bldg. 715	Bldg. 715	Bldg 715
LOC ID.									TP123D-3	TP123D-4	TP123D-4	TP123D-5	TP123D-5
SAMP ID:									EB103	EB104	EB105	EB100	EB101
QC CODE:									SA	SA	SA	SA	SA ·
SAMP DETH TOP	o:								2	0.5	1	1.5	4.1
SAMP DEPTH BO	OT,								2	0.5	1	1.5	4.1
MATRIX:									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	4-Mar-98	5-Mar-98	5-Mar-98	4-Mar-98	4-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	16500.0	100.0%	19520	78214 286	0	11	11	13900	10900	10400	11800	15100
Antimony	MG/KG	0.0	0.0%	6	31 285714	0	0	11	0.82 UN	1 UN	0.8 UN	0.84 UN	0.88 UN
Arsenic	MG/KG	5 4	100.0%	89	0.42583333	11	11	11	3.8	7.3.3	4.9	2.9	3.3
Barium	MG/KG	126.0	100.0%	300	5475	0	11	11	104	104	103	75.4	126
Beryllium	MG/KG	0.5	100.0%	1.13	0.14854651	11	11	11	0.33 B	0.32 B	0.26 B	" " Tat B	0.43 B
Cadmium	MG/KG	0.0	0.0%	2.46	39 107143	0	0	11	0.07 U	0.09 U	0.07 U	0.07 U	0 08 U
Calcium	MG/KG	14100.0	100.0%	125300		0	11	11	1430	9800	14100	1490	2990
Chromium	MG/KG	22.6	100.0%	30	78214	0	11	11	18.1	13.1	17.9	15.4	20.1
Cobalt	MG/KG	13.8	100.0%	30	4693	0	11	11	12.3	8.8 B	9.3 B	96 B	11 B
Copper	MG/KG	27.2	100.0%	33	3129	0	11	11	14.3	22.6	27.2	12.4	13.8
Cyanide	MG/KG	0.0	0.0%	0.35		0	0	. 11	0.7 U	0.8 U	0.65 U	0.67 U	0.67 U
Iron	MG/KG	31400 0	100.0%	37410	23464	4	11	11	21500	16800	3700	19000	22600
Lead	MG/KG	31.4	100.0%	24.4		0	11	11	31 4	28.7	20.8	14.5	19.4
Magnesium	MG/KG	6920.0	100.0%	21700		0	11	11	3020	3430	6920	2650	3240
Manganese	MG/KG	1200.0	100.0%	1100	1799	0	11	11	1020	697	923	546	1200
Mercury	MG/KG	0.1	27.3%	0.1	23	0	, 3	11	0.06 U	0.1 B	0.08 B	0.06 U	0.07 U
Nickel	MG/KG	25.4	100.0%	50	1564	0	11	11	23.1	15.9	18.7	18.4	24
Potassium	MG/KG	1470.0	100.0%	2623		0	11	11	1210	1470	1160	976 B	1240 B
Selenium	MG/KG	1.5	9.1%	2	391	0	1	11	1.1 U	1.5 B	1.1 U	1.1 U	1.2 U
Silver	MG/KG	0.0	0.0%	8,0	391	0	0	11	0.49 U	0.62 U	0.48 U	0.5 U	0.53 U
Sodium	MG/KG	0.0	0.0%	188		0	0	11	142 U	178 U	138 U	146 U	152 U
Thallium	MG/KG	0.0	0.0%	0.855	6	0	0	11	1.5 U	18 U	1.4 U	1.5 U	1.6 U
Vanadium	MG/KG	27.8	100.0%	150	548	0	11	11	21.8 E	20.5 E	19.7 E	19.3 E	24.5 E
Zinc	MG/KG	124.0	100.0%	115	23464.286	0	11	11	87	124	80.2	64 2	79.8

Table 11-8 123D - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-1 Area W Bldg 71	est of	SEAD-12 Area We Bldg 71	st of	SEAD-12 Area We Bldg 715	st of	SEAD-12 Area Wes Bldg. 715	st of	SEAD-123 Area West Bldg. 715	_	SEAD-123 Area Wes Bldg: 715	t of
LOC ID									TP1230)-1	TP123D-	-1	TP123D-	-2	TP123D-	2	TP123D-3		TP123D-3	3
SAMP ID									EB108		EB109		EB106		EB107		EB001		EB102	
QC CODE									SA		SA		SA		SA		DU		SA	
SAMP DETH TOP										0.5		1		0.5		1.5		0 5		0.5
SAMP DEPTH BOT										0.5		1		0.5		15		0 5		0.5
MATRIX									SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	5-N	Aar-98	5-M	ar-98	5-Ma	ar-98	5-Ma	ar-98	4-Mar	-98	4-Ma	ar-98
			OF			ABOVE	OF	OF												
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
4.4`-DDD	UG/KG	0.0		2900	2661	0	0	11		4.1 U		41 U		4.4 U		4.2 U		4.4 U		4.4
4,4`-DDE	UG/KG	2 7	9 1%	2100	1879	0	1	11		41 U		4 1 U		2.7 J		4.2 U		4.4 U		4.4
4.4`-DDT	UG/KG	46		2100	1879	0	2	11		4.1 U		41 U		4.4 U		4.2 U		4.4 U		44
Aldrin	UG/KG	0 0		41	38	0	0			21 U		2 1 U		2.3 U		2.2 U		2.3 U		2 3
Alpha-BHC	UG/KG	0.0		110		0	0			2.1 U		2 1 U		23 U		2.2 U		2.3 U		2 3
Alpha-Chlordane	UG/KG	0.0				0	0	11		2.1 U		2 1 U		2.3 U		2.2 U		2.3 U		23
Aroclor-1016	UG/KG	0 0			5475	0	0			41 U		41 U		44 U		42 U		44 U		44
Aroclor-1221	UG/KG	0 0				0	0			84 U		83 U		89 U		85 U		89 U		90
Aroclor-1232	UG/KG	0 0				0	0	11		41 U		41 U		44 U		42 U		44 U		44
Aroclor-1242	UG/KG	0 0				0	0			41 U		41 U		44 U		42 U		44 U		44
Aroclor-1248	UG/KG	0 0				0	0			41 U		41 U		44 U		42 U		44 U		44
Aroclor-1254	UG/KG	0 0		10000	1564	0	0	11		41 U		41 U		44 U		42 U		44 U		44
Aroclor-1260	UG/KG	0.0		10000		0	0			41 U		41 U		44 U		42 U		44 U		44
Beta-BHC	UG/KG	0 0		200		0	0			2 1 U		2.1 U		2.3 U		2 2 U		2.3 U		2.3
Delta-BHC	UG/KG	0 0		300	40	0	0	11		2 1 U		2.1 U		2.3 U		2.2 U		2.3 U		2.3
Dieldnn	UG/KG	0.0		44	40	0	1	11 10		4 1 U		4.1 U 2 1 U		4.4 U		4.2 U		4.4 U		4.4
Endosulfan I Endosulfan II	UG/KG UG/KG	18		900 900	469286 469286	0	0			2.1 U 4 1 U		41 U		2.3 U 4.4 U		2.2 U 4.2 U		2.3 U 4.4 U		2.3
Endosulfan sulfate	UG/KG	0.0		1000	409200	0	0			4.1 U		4 1 U		4.4 U		4.2 U		4.4 U		4.4
Endosulian suitate	UG/KG	0.0		100	23464	0	0			4.1 U		4.1 U		4.4 U		4.2 U		44 U		4.4
Endnn aldehyde	UG/KG	0.0		100	23464	0	١ ٥			4.1 U		4.1 U		4.4 U		4.2 U		4.4 U		4.4
Endrin ketone	UG/KG	0.0			23464	0	0			4.1 U		4 1 U		4.4 U		4.2 U		4.4 U		4.4
Gamma-BHC/Lindane	UG/KG	0.0		60	25404	0	0			2.1 U		2.1 U		2.3 U		2.2 U		2.3 U		2.3
Gamma-Chlordane	UG/KG	0.0		540		0	0			2.1 U		2.1 U		2.3 U		2.2 U		2.3 U		2.3
Heptachlor	UG/KG	0.0		100	142	0	0	11		2.1 U		2.1 U		2.3 U		2.2 U		2.3 U		2.3
Heptachlor epoxide	UG/KG	0.0		20	70	0	0	11		2.1 U		2.1 U		2.3 U		2.2 U		2.3 U		2.3
Methoxychlor	UG/KG	0.0			391071	0	0	11		21 U		21 U		23 U		22 U		23 U		23
Toxaphene	UG/KG	0.0				0	0	11		210 U		210 U		230 U		220 U		230 U		230
F												_						-		

Table 11-8 123D - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-12 Area We Bldg 715	st of	SEAD-123D Area West of Bldg 715	SEAD-12 Area Wes Bldg 715	st of	SEAD-12 Area We Bldg. 715	st of	SEAD-123 Area Wesl Bldg 715	
LOC ID SAMP ID QC CODE									TP123D- EB103 SA	-3	TP123D-4 EB104 SA	TP123D- EB105 SA	4	TP123D- EB100 SA	5	TP123D-5 EB101 SA	i
SAMP DETH TOP										2	0.5		1		15	-	4 1
SAMP DEPTH BOT										2	0 5		1		15		4 1
MATRIX									SOIL		SOIL	SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	4-M	ar-98	5-Mar-98	5-Ma	ır-98	4-Ma	ar-98	4-Mar	r-98
			OF			ABOVE	OF	OF									
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES Q	VALUE	Q	VALUE Q	VALUE	Q	VALUE	Q	VALUE	Q
4,4°-DDD	UG/KG	0 0	0 0%	2900	2661	0	0			44 U	4.8 U		4.1 U		42 U		43 U
4,4'-DDE	UG/KG	2 7	9 1%	2100	1879	0	1	11 U		4 4 U	4 8 U		4.1 U		4 2 U		43 U
4,4`-DDT	UG/KG	46		2100	1879	0	2			44 U	3 J		46		42 U		4.3 U
Aldnn	UG/KG	0 0		41	38	0	0	., .		2.3 U	2 5 U		2 1 U		2.2 U		2.2 U
Alpha-BHC	UG/KG	0 0		110		0	0			2.3 U	2 5 U		21 U		2.2 U		2.2 U
Alpha-Chlordane	UG/KG	0 0				0	0			2.3 U	2 5 U		2 1 U		2.2 U		2.2 U
Aroclor-1016	UG/KG	0 0			5475	0	0	11.0		44 U	48 U		41 U		42 U		43 U
Aroclor-1221	UG/KG	0 0				0	0			89 U	98 U		83 U		85 U		87 U
Aroclor-1232	UG/KG	0 0				0	0			44 U	48 U		41 U		42 U		43 U
Aroclor-1242	UG/KG	0.0				0	0			44 U	48 U		41 U		42 U		43 U
Aroclor-1248	UG/KG	0.0				0	0			44 U	48 U		41 U		42 U		43 U
Aroclor-1254	UG/KG	0 0		10000	1564	0	0			44 U	48 U		41 U		42 U		43 U
Aroclor-1260	UG/KG	0 0		10000		0	_			44 U	48 U		41 U		42 U		43 U
Beta-BHC	UG/KG	0.0		200		0	0			23 U	2.5 U		2.1 U		2.2 U		2.2 U
Delta-BHC	UG/KG	0 0		300		0	0			2.3 U	2 5 U		2.1 U		2.2 U		22 U
Dieldrin	UG/KG	0 0		44	40	0	0	7.0		4.4 U	4 8 U		4.1 U		4.2 U		43 U
Endosulfan i	UG/KG	1.8		900	469286	0	1	10 U		2.3 U	18 JP		2.1 U		2.2 U		2.2 U
Endosulfan II	UG/KG	0 0		900	469286	0	0			4.4 U	4 8 U		4.1 U		4 2 U		4.3 U
Endosulfan sulfate	UG/KG	0 0		1000		0	0			4.4 U	4.8 U		41 U		4.2 U		4.3 U
Endnn	UG/KG	0 0		100	23464	0	0			4.4 U	48 U		4.1 U		4.2 U		4.3 U
Endrin aldehyde	UG/KG	0 0			23464	0	0			4 4 U	4.8 U		4.1 U		4.2 U		43 U
Endnn ketone	UG/KG	0 0			23464	0	0			4.4 U	48 U		4.1 U		4.2 U		4.3 U
Gamma-BHC/Lindane	UG/KG	0 0		60		0	0			2.3 U	2 5 U		2.1 U		2.2 U		2 2 U
Gamma-Chlordane	UG/KG	0.0		540		0	0			23 U	2.5 U		2.1 U		2.2 U		2.2 U
Heptachlor	UG/KG	0 0		100	142	0	0			23 U	2 5 U		2.1 U		2.2 U		2 2 U
Heptachlor epoxide	UG/KG	0.0			70	0	0			23 U	2.5 U		2.1 U		2.2 U		2.2 U
Methoxychlor	UG/KG	0.0			391071	0	-			23 U	25 U		21 U		22 U		22 U
Toxaphene	UG/KG	0.0	0 0%			0	0	11 U		230 U	250 U		210 U		220 U		220 U

Table 11-9 123D - Pesticices/PCBs in Soils vs PRG-RES Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123 Area West Bldg. 715		SEAD-12 Area Wes Bldg 715	st of	SEAD-1: Area We Bldg. 71	st of	SEAD-12 Area We Bldg 71:	st of	SEAD-123 Area Wes Bldg 715	_	SEAD-123D Area West of Bldg. 715	
LOC ID SAMP ID QC CODE SAMP DETH TOP									TP123D-1 EB108 SA	0.5	TP123D- EB109 SA	1	TP123D EB106 SA	-2 0 5	TP123D EB107 SA	-2 1 5	TP123D-3 EB001 DU	0 5	TP123D-3 EB102 SA	
SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		0 5	SOIL 5-Ma	1 ar QR	SOIL	0.5 ar-98	SOIL 5-Ma	1 5		0.5	0 5 SOIL 4-Mar-98	
SAMP DATE			OF			ABOVE	OF	OF	J-IVIAI	-90	J-1416	ai-90	3-101	ai-90	5-1416	31-90	4-19141	-90	4-IVIAI-90	
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
4.4°-DDD	UG/KG	00		2900	2661	0	0			41 U		41 U		4 4 U		4 2 U		4.4 U	4.4	
4,4'-DDE 4,4'-DDT	UG/KG UG/KG	2 7 4.6		2100 2100	1879 1879	0	1 2	11		41 U 41 U		41 U 41 U		2.7 J 4.4 U		4 2 U 4 2 U		4.4 U 4.4 U	4.4 4.4	
4.4 -DD1 Aldrin	UG/KG UG/KG	0.0		41	38	0	0			21 U		4 1 U		23 U		4 2 U 2.2 U		4.4 U 2.3 U	2.3	
Alpha-BHC	UG/KG	00		110	30	0	0			21 U		2 1 U		23 U		2.2 U		2.3 U	23	
Alpha-Chlordane	UG/KG	0.0		110		0	0			2 1 U		2 1 U		23 U		22 U		2.3 U	23	
Aroclor-1016	UG/KG	0.0			5475	0	0			41 U		41 U		44 U		42 U		44 U	44	
Aroclor-1221	UG/KG	00				0	0			84 U		83 U		89 U		85 U		89 U	90	
Aroclor-1232	UG/KG	0.0				0	0			41 U		41 U		44 U		42 U		44 U	44	
Aroclor-1242	UG/KG	0.0				0	0	11	1	41 U		41 U		44 U		42 U		44 U	44	
Aroclor-1248	UG/KG	0.0	0 00%			0	0	11	l	41 U		41 U		44 U		42 U		44 U	44	
Aroclor-1254	UG/KG	0.0	0 00%	10000	1564	0	0	11	i	41 U		41 U		44 U		42 U		44 U	44	
Aroclor-1260	UG/KG	0.0	0 00%	10000		0	0	11	1	41 U		41 U		44 U		42 U		44 U	44	
Beta-BHC	UG/KG	0.0		200		0	0			2.1 U		2.1 U		2.3 U		22 U		23 U	2 3	
Delta-BHC	UG/KG	0.0		300		0	0			2.1 U		2.1 U		2.3 U		2.2 U		2.3 U	2.3	
Dieldnn	UG/KG	0.0		44	40	0	0			4.1 U		4.1 U		4.4 U		4.2 U		44 U	4.4	
Endosulfan I	UG/KG	18		900	469286	0	1	10		2 1 U		21 U		2.3 U		2.2 U		2.3 U	2.3	
Endosulfan II	UG/KG	0 0		900	469286	0	0			4 1 U		4.1 U		4.4 U		4 2 U		44 U	4 4	
Endosulfan sulfate	UG/KG	0.0		1000		0	0			4 1 U		4 1 U		44 U		4.2 U		4.4 U	4.4	
Endrin	UG/KG	0.0		100	23464	0	0			4.1 U		4 1 U		4.4 U		4.2 U		4.4 U	4 4	
Endrin aldehyde	UG/KG	0.0			23464	0	0			4 1 U		4 1 U		4.4 U		4.2 U		4.4 U 4.4 U	4,4	
Endrin ketone	UG/KG	0.0			23464	0	0			41 U 21 U		4.1 U 2 1 U		4.4 U 2 3 U		4.2 U 2.2 U		4.4 U 2.3 U	44	
Gamma-BHC/Lindane	UG/KG UG/KG	00		60 540		0	0			21 U		2 1 U		23 U		2.2 U		2.3 U	23	
Gamma-Chlordane Heptachlor	UG/KG UG/KG	0.0		100	142	0	0			21 U		2 1 U		2.3 U		2.2 U		2.3 U	2.3	
Heptachlor epoxide	UG/KG	0.0		20	70	0	0			21 U		2 1 U		2.3 U		2.2 U		2.3 U	2.3	
Methoxychlor	UG/KG	0.0		20	391071	0	0			21 U		21 U		2.3 U		22 U		23 U	23	
Toxaphene	UG/KG	00			001071	0	0			210 U		210 U		230 U		220 U		230 U	230	
. охарного	30/10	0.0	0 00 70			· ·	Ü					•							200	

Table 11-9 123D - Pesticides/PCBs in Soils vs PRG-RES Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-123 Area Wes Bldg 715	t of	SEAD-123 Area West Bldg 715	_	SEAD-12 Area Wes Bldg 715	st of	SEAD- Area W Bldg . 7	est of	SEAD-12 Area Wes Bldg: 715	st of
LOC ID SAMP ID QC CODE									TP123D-3 EB103 SA		TP123D-4 EB104 SA		TP123D- EB105 SA	4	TP1238 EB100 SA	D-5	TP123D-5 EB101 SA	j
SAMP DETH TOP										2		0.5		1		15		4 1
SAMP DEPTH BOT										2		0.5		1		1 5		4 1
MATRIX			EDE OUE NOV			AU IMPED		AU IMPER	SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	4-Mai	r-98	5-Mar	98	5-Ma	r-98	4-1	/lar-98	4-Ma	7-98
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
4.4'-DDD	UG/KG	0.0	0 00%	2900	2661	0	000000			4.4 U		4 8 U	VALUE	4.1 U	VALUE	4.2 U	VALUE	4 3 U
4.4 -DDE	UG/KG	2.7	9 09%	2100	1879	0	1	11 U		4.4 U		48 U		4.1 U		4.2 U		43 U
4.4 -DDT	UG/KG	46	18 18%	2100	1879	0	2			4.4 U		3 J		4.6		42 U		43 U
Aldrin	UG/KG	0.0	0 00%	41	38	0	0			23 U		2.5 U		2.1 U		2.2 U		2.2 U
Alpha-BHC	UG/KG	0.0	0.00%	110		ō	Ö			2.3 U		2 5 U		2 1 U		2.2 U		2 2 U
Alpha-Chlordane	UG/KG	0.0	0.00%			0	0			2 3 U		2 5 U		2.1 U		2.2 U		2.2 U
Aroclor-1016	UG/KG	0.0	0 00%		5475	0	0	11 U		44 U		48 U		41 U		42 U		43 U
Aroclor-1221	UG/KG	0.0	0.00%			0	0	11 U		89 U		98 U		83 U		85 U		87 U
Aroclor-1232	UG/KG	0.0	0.00%			0	0	11 U		44 U		48 U		41 U		42 U		43 U
Aroclor-1242	UG/KG	0.0	0.00%			0	0	11 U		44 U		48 U		41 U		42 U		43 U
Aroclor-1248	UG/KG	0.0	0 00%			0	0	11 U		44 U		48 U		41 U		42 U		43 U
Aroclor-1254	UG/KG	0.0	0.00%	10000	1564	0	0	11 U		44 U		48 U		41 U		42 U		43 U
Aroclor-1260	UG/KG	0.0	0.00%	10000		0	0			44 U		48 U		41 U		42 U		43 U
Beta-BHC	UG/KG	0.0	0 00%	200		0	0			2.3 U		2 5 U		2.1 U		2.2 U		2.2 U
Delta-BHC	UG/KG	0.0	0 00%	300		0	0			2.3 U		2.5 U		2.1 U		2.2 U		22 U
Dieldrin	UG/KG	0.0	0.00%	44	40	0	0			4.4 U		48 U		4.1 U		4.2 U		43 U
Endosulfan i	UG/KG	18	10.00%	900	469286	0	1	10 U		2.3 U		18 JP		2.1 U		2.2 U		22 U
Endosulfan II	UG/KG	0.0	0.00%	900	469286	0	0			44 U		4 8 U		4.1 U		4 2 U		43 U
Endosulfan sulfate	UG/KG	0 0	0.00%	1000		0	0			44 U		4 8 U		4.1 U		4 2 U		43 U
Endrin	UG/KG	0.0	0.00%	100	23464	0	0	11 U		4 4 U		4 8 U		4 1 U		4.2 U		4.3 U
Endrin aldehyde	UG/KG	0.0	0.00%		23464	0	0			4.4 U		4 8 U		4.1 U		4.2 U		43 U
Endrin ketone	UG/KG	0.0	0.00%		23464	0	0			4.4 U		4 8 U		4.1 U		4.2 U		4 3 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%	60		0	0			2.3 U		2.5 U		2.1 U		2.2 U		22 U
Gamma-Chlordane	UG/KG	0.0	0.00%	540 100	140	0	0			2.3 U 23 U		2 5 U 2 5 U		2.1 U 2.1 U		2.2 U 2.2 U		2 2 U 2 2 U
Heptachlor	UG/KG	0.0	0 00% 0 00%	100 20	142 70	0	0			23 U		25 U 25 U		2.1 U		2.2 U		22 U
Heptachlor epoxide	UG/KG UG/KG	0.0	0 00%	20	391071	0	0			23 U		25 U		2.1 U		2.2 U		22 U
Methoxychlor	UG/KG UG/KG	0.0	0 00%		3910/1	0	0			23 U 230 U		25 U		210 U		22 U 220 U		22 U
Toxaphene	UG/NG	0.0	0.00%			U	Ü	110		230 0	4	50 0		210 0		220 0		220 0

SEAD-123F

Mound North of Post 3

Table 13-1

Sample Collection Information SEAD-123F - Mound North of Post 3

12 Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	TP123F	EB110	3/5/98	0.5	0.5	SA	Located at north end of mound based on presence of disturbed area and stressed vegetation in low area. No staining observed on ground surface. Near surface sample taken near north end of disturbed area.
SOIL	TP123F	EBIII	3/5/98	1.5	1.5	SA	Same location ID as above. Sample taken at mid- point depth near south end of disturbed area. No VOC hits or indication of impact to soils.

Notes:

SA = Sample

Table 13-2 123F - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-123 Mound No of Post 3		SEAD-12 Mound No of Post 3	orth
LOC ID: SAMP ID: QC CODE:									TP123F EB110 SA		TP123F EB111 SA	
SAMP. DETH TOP:										0.5		1.5
SAMP. DEPTH BOT:										0.5		1.5
MATRIX:									SOIL		SOIL	
SAMP. DATE:			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	5- M a	r-98	5-Ma	r-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0.00%	800	2737500	0	0	2		12 U		12 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0.00%	600	31938	0	0	2		12 U		12 U
1,1,2-Trichloroethane	UG/KG	0	0.00%		11206	0	0	2		12 U		12 U
1,1-Dichloroethane	UG/KG	0	0.00%	200	7821429	0	0	2		12 U		12 U
1,1-Dichloroethene	UG/KG	0	0.00%	400	1065	0	0	2		12 U		12 U
1,2-Dichloroethane	UG/KG	0	0.00%	100	7821429	0	0	2		12 U		12 U
1,2-Dichloroethene (total)	UG/KG	0	0.00%			0	0	2		12 U		12 U
1,2-Dichloropropane	UG/KG	0	0.00%		9393	0	0	2		12 U		12 U
Acetone	UG/KG	7	50.00%	200	7821429	0	1	2		12 U		7 J
Benzene	UG/KG	0	0.00%	60	22026	0	0	2		12 U		12 U
Bromodichloromethane	UG/KG	0	0.00%		10302	0	0	2		12 U		12 U
Bromoform	UG/KG	0	0.00%		80854	0	0	2		12 U		12 U
Carbon disulfide	UG/KG	0	0.00%	2700	7821429	0	0	2		12 U		12 U
Carbon tetrachloride	UG/KG	0	0.00%	600	4913	0	0	2		12 U		12 U
Chlorobenzene	UG/KG	0	0.00%	1700	1564286	0	0	2		12 U		12 U
Chlorodibromomethane	UG/KG	0	0.00%		7604	0	0	2		12 U		12 U
Chloroethane	UG/KG	0	0.00%	1900	31285714	0	0	2		12 U		12 U
Chloroform	UG/KG	0	0.00%	300	104713	0	0	2		12 U		12 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%			0	0	2		12 U		12 U
Ethyl benzene	UG/KG	0	0.00%	5500	7821429	0	0	2		12 U		12 U
Methyl bromide	UG/KG	0	0.00%		111846	0	0	2		12 U		12 U
Methyl butyl ketone	UG/KG	0	0.00%			0	0	2		12 U		12 U
Methyl chloride	UG/KG	0	0.00%		49135	0	0	2		12 U		12 U
Methyl ethyl ketone	UG/KG	0	0.00%	300		0	0	2		12 U		12 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	6257143	0	0	2		12 U		12 U
Methylene chloride	UG/KG	0	0.00%	100	85167	0	0	2		12 U		12 U
Styrene	UG/KG	0	0.00%			0	0	2		12 U		12 U
Tetrachloroethene	UG/KG	0	0.00%	1400	12284	0	0	2		12 U		12 U
Toluene	UG/KG	0	0.00%	1500	15642857	0	0	2		12 U		12 U
Total Xylenes	UG/KG	0	0.00%	1200		0	0	2		12 U		12 U
Trans-1,3-Dichloropropene	UG/KG	0	0.00%			0	0	2		12 U		12 U
Trichloroethene	UG/KG	0	0.00%	700	58068	0	0	2		12 U		12 U
Vinyl chloride	UG/KG	0	0.00%	200	336	0	0	2		12 U		12 U

Table 13-3 123F - Volatiles in Soil vs PRG-RES Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-123F Mound North of Post 3	SEAD Mound of Pos	d North
LOC ID: SAMP ID: QC CODE:									TP123F EB110 SA	TP123 EB111 SA	3F
SAMP. DETH TOP:									0.5	٥, ٠	1.5
SAMP. DEPTH BOT:									0.5		1.5
MATRIX:									SOIL	SOIL	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	5-	-Mar-98
			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		Q VALU	
1,1,1-Trichloroethane	UG/KG	0	0.00%	800	2737500	0	0	2	12 1	U	12 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0.00%	600	31938	0	0			U	12 U
1,1,2-Trichloroethane	UG/KG	0	0.00%		11206	0	0	_			12 U
1,1-Dichloroethane	UG/KG	0	0.00%	200	7821429	0	0				12 U
1,1-Dichloroethene	UG/KG	0	0.00%	400	1065	0	0			U	12 U
1,2-Dichloroethane	UG/KG	0	0.00%	100	7821429	0	0	_			12 U
1,2-Dichloroethene (total)	UG/KG	0	0.00%			0	0			U	12 U
1,2-Dichloropropane	UG/KG	0	0.00%		9393	0	0				12 U
Acetone	UG/KG	7	50.00%	200	7821429	0	1	_			7 J
Benzene	UG/KG	0	0.00%	60	22026	0	0	_		U	12 U
Bromodichloromethane	UG/KG	0	0.00%		10302	0	0	_			12 U
Bromoform	UG/KG	0			80854	0	0				12 U
Carbon disulfide	UG/KG	0	0.00%	2700	7821429	0	0				12 U
Carbon tetrachloride	UG/KG	0	0.00%	600	4913	0	0	_			12 U
Chlorobenzene	UG/KG	0		1700	1564286	0	0				12 U
Chlorodibromomethane	UG/KG	0	0.00%		7604	0	0				12 U
Chloroethane	UG/KG	0		1900	31285714	0	0	_			12 U
Chloroform	UG/KG	0		300	104713	0	0				12 U
Cis-1,3-Dichloropropene	UG/KG	0				0	0				12 U
Ethyl benzene	UG/KG	0		5500	7821429	0	0	_		-	12 U
Methyl bromide	UG/KG	0	0.00%		111846	0	0				12 U
Methyl butyl ketone	UG/KG	0				0	0	_			12 U
Methyl chloride	UG/KG	0			49135	0	0				12 U
Methyl ethyl ketone	UG/KG	0	0.00%	300		0	0				12 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	6257143	0	0	_			12 U
Methylene chloride	UG/KG	0		100	85167	0	0				12 U
Styrene	UG/KG	0	0.00%			0	0				12 U
Tetrachloroethene	UG/KG	0		1400	12284	0	0				12 U
Toluene	UG/KG	0		1500	15642857	0	0				12 U
Total Xylenes	UG/KG	0	0.00%	1200		0	0	_			12 U
Trans-1,3-Dichloropropene	UG/KG	0				0	0				12 U
Trichloroethene	UG/KG	0	0.00%	700	58068	0	0				12 U
Vinyl chloride	UG/KG	0	0.00%	200	336	0	0	2	12	U	12 U

Table 13-4 123F - Semivolatiles/TPH In Soils vs TAGMs Non-Evaluated EBS Sites

Page 1

SITE DESCRIPTION											SEAD 12 Mound N of Post 3	orth	SEAD-12 Mound N of Post 3	lorth
LOC ID SAMP ID											TP123F EB110		TP123F EB111	
OC CODE SAMP DETH TOP											SA	05	SA	15
SAMP DEPTH ROT												0.5		15
MATRIX SAMP DATE			FREQUENCY			NUMBER		NUMBER		NUMBER	SOR S.M.	ar-98	SOIL 5.M	ar 98
			OF			ABOVE		OF		OF				u. 50
PARAMETER 1 2 4 Trichlorobenzene	UNIT UG/KG	MAXIMUM 0	DETECTION 0 00%	TAGM 3400	PRG 782143	TAGM	0	DETECTS	0	ANALYSES	VALUE	77 U	VALUE	2 78 U
1 2-Dichlorobenzene	UG/KG	0	0.00%	7900	7039286		0		0	2		77 U		78 U
1 3-Dichlarobenzene	UG/KG	0	0.00%	1600	6961071		0		0	2		77 U		78 U
1 4 Dichlorobenzene	UG/KG	0	0.00%	8500	26615		0		0	2		77 U		78 U
2.4 5-Trichlorophenol 2.4 6 Trichlorophenol	UG/KG UG/KG	0	0.00%	100	7821429 58068		0		0	2		190 U 77 U		190 U 78 U
2.4 Dichlorophenol	UG/KG	0	0.00%	400	234643		0		0	2		77 U		78 U
2 4-Dimethylphenot	UG/KG	0	0.00%		1564286		0		0	2		77 U		78 U
2 4-Dinitrophenol	UG/KG	0	0.00%	200	156429		0		0	2		190 U		190 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	UG/KG UG/KG	0	0.00%	1000	156429 78214		0		0	2		77 U 77 U		78 U
2.Chloronaphthalene	UG/KG	0	0.00%	1000	70214		0		0	- 2		77 U		78 U
2-Chlorophenol	UG/KG	0	0.00%	800	391071		0		0	7		77 U		78 U
2-Methylnaphthalene	UG/KG	0	0 00%	36400			0		0	2		77 U		78 U
2-Methylphenol 2-Nitroansine	UG/KG UG/KG	0	0 00%	100 430	3910714 4693		0		0	2		77 U 190 U		78 U 190 U
2-Nitrophenot	UG/KG	0	0.00%	330	40373		0		0	2		77 U		78 U
3.3 Dichtorobenzidine	UG/KG	0	0.00%		1419		0		0	2		77 U		78 U
3-Nitroambne	UG/KG	0	0 00%	500	234643		0		0	2		190 U		190 U
4 5-Dinitro 2-methylphenol 4-Bromophenyl phenyl ether	UG/KG UG/KG	0	0.00%		4536429		0		0	2		190 U 77 U		190 U 78 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240	45 10479		o		0	2		77 U		78 U
4-Chloroaniline	UG/KG	0	0.00%	220	312857		0		0	2		77 U		78 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%				0		0	2		77 U		78 U
4-Methylphenol 4-Nitroaniline	UG/KG UG/KG	0	0 00%	900	234643		0		0	2		77 U 190 U		78 U 190 U
4-Nitrophenol	UG/KG	0	0 00%	100	4692857		0		0	2		190 U		190 U
Acenaphthene	UG/KG	0	0.00%	50000			0		0	2		77 U		78 U
Acenaphthylene	UG/KG	0	0.00%	41000			0		0	2		77 U		78 U
Anthracene Benzo[a]amhracene	UG/KG	0 5 1	0 00% 50 00%	50000 224	23464286 875		0		0	2		77 บ 5 1 J		78 U 78 U
Benzo[a]pyrene	UG/KG	53	50 00%	61	88		0		1	2		53 J		78 U
Benzo(b)fluoranthene	UG/KG	7.5	200 00%	1100	875		D		2	1		75 J		7 JY
Senzo[ghi]perylene	UG/KG	5.2	50.00%	50000			0		1	2		52 J		78 U
Benzo(k)fluoranthene Bis(2-Chloroethoxy)methane	UG/KG UG/KG	6 2 0	50 00% 0 00%	1100	8750		0		1	2		52 J 77 U		78 U 78 U
Bis(2-Chloroethyl)ether	UG/KG	0	0 00%		581		0		ō	- 2		77 U		78 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0 00%		9125		0		0	2		77 U		78 U
Bis(2-Ethythexyl)phthalate	UG/KG	11	50 00%	50000	45625 15642857		0		0	3		11 J 77 U		78 U 78 U
Butylbenzylphthalate Carbszole	UG/KG UG/KG	0	0.00%	50000	15642857 31938		0		0	2		77 U		78 U
Chrysene	UG/KG	73	50 00%	400	87500		0		1			73 J		78 U
Di-n-butylphthalate	UG/KG	0	0 00%	8100			0		0	- 7		77 U		78 U
Dr-n-octylphthalate	UG/KG UG/KG	0	0 00%	50000 14	1564286		0		0	3		77 U 77 U		78 U 78 U
Dibenz[a,h]anthracene Dibenzofuran	UG/KG	0	0 00%	6200	312857		0		0			77 U		78 U
Diethyl phthalate	UG/KG	12	100 00%	7100	62571429		0		2	2	?	12 JB		72 JB
Dimethylphthalate	UG/KG	0	0 00%	2000	782142857		0		0	- 2		77 U		78 U
Ethylene Glycol Fluoranthene	MG/KG UG/KG	12	0 00%	50000	156428571 3128571		0		2			12 J		63 J
Fluorene	UG/KG	0	0.00%	50000	3128571		0		Ď			77 U		78 U
Hexachlorobenzene	UG/KG	0	0.00%	410	399		0		0	- 2		77 U		78 U
Hexachlorobutadiene	UG/KG	0	0.00%		8189 547500		0		0	2		77 U 77 U		78 U 78 U
Hexachlorocyclopentadiene Hexachloroethane	UG/KG UG/KG	0	0 00% 0 00%		547500 45625		0		0			77 U		78 U
Indeno[1,2 3-cd]pyrene	UG/KG	48	50 00%	3200	875		0		1			48 J		78 U
Isophotone	UG/KG	0	0 00%	4400			0		0			77 U		78 U
N-Nitrosodrphenylamine	UG/KG	0	0 00%		130357		0		0	3		77 U 77 U		78 U
N-Nifrosodipropylamine Naphthalene	UG/KG UG/KG	0	0.00%	13000	3128571		0		0			77 U		78 U
Nitrobenzene	UG/KG	0	0 00%	200	39107		0		0	7	2	77 U		78 U
Pentachlorophenol	UG/KG	0	0 00%	1000	5323		0		0	- 2		190 U		190 U
Phenanthrene	UG/KG	59	50 00%	50000	400000		0		1			59 J 77 U		78 U
Phenol Propylene Glycol	UG/KG MG/KG	0	0.00%	30	46928S71		0		0			// 0		70 U
Pyrene	UG/KG	10	100 00%	50000	2346429		0		2	2	2	10 J		55 J
TPH	MG/KG	0	0 00%				0		0	-	2	17 2 U		18 2 U

Table 13-5 123F - Semivolatiles/TPH in Soll vs PRG-RES Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD 123 Mound No of Post 3		SEAD-13 Mound N of Post 3	lorth
LOC ID SAMP ID GC GODE									TP123F EB110 SA		TP123F EB111 SA	
SAMP DETH TOP SAMP DEPTH BOT										05 05		1 5 1 5
MATRIX SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER	NUMBER OF	SOIL 5 Ma	-08	SOIL 5 M	ar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1 2 4-Trichlorobenzene 1 2 Dichlorobenzene	UG/KG UG/KG	0	0.00%	3400 7900	782143 7039286	0	0	2		77 U 77 U		78 U 78 U
1 3-Dichlorobenzene	UG/KG	0	0 00%	1600	6961071	0	0	2		77 U		78 U
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	26615	0	0	2		77 U		78 U
2.45-Trichlorophenal	UG/KG	0	0 00%	100	7821429	0	0	2		190 U 77 U		190 U
2,4 6-Trichlaraphenol 2 4-Dichlaraphenol	UG/KG UG/KG	0	0 00%	400	58068 234643	0	0	2		77 U		78 U
2.4-Dimethylphenal	UG/KG	0	0 00%	400	1564286	0	ő	2		77 U		78 U
2 4-Dinitrophenal	UG/KG	0	0.00%	200	156429	0	0	2		190 U		190 U
2.4-Dinitrotoluene	UG/KG	0	0 00%		156429	0	0	2		77 U		78 U
2.6 Dinitrotoluene 2. Chloronaphthalene	UG/KG UG/KG	0	0 00%	1000	78214	0	0	2		77 U 77 U		78 U 78 U
2-Chlorophenol	UG/KG UG/KG	0	0.00%	800	391071	0	0	2		77 U		78 U
2-Methylnaphthalene	UG/KG	0	0 00%	36400		0	0	2		77 U		7B U
2-Methylphenal	UG/KG	0	0 00%	100	3910714	0	0	2		77 U		78 U
2-Nitroaniline	UG/KG	0	0.00%	430	4693	0	0	2		190 tJ 77 tJ		190 U 78 U
2-Nitrophenal 3.3 -Dichlorobenzidine	UG/KG UG/KG	0	0 00%	330	1419	0	0	2		77 U		78 U
3-Nitroaniine	UG/KG	0	0 00%	500	234643	0	0	2		190 U		190 U
4 6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0	2		190 U		190 U
4-Bramophenyl phenyl ether	UG/KG	0	0.00%		4536429	0	0	2		77 U		78 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240 220	312857	0	0	2		77 U 77 U		78 U 78 U
4-Chlorozniline 4-Chlorophenyl phenyl ether	UG/KG UG/KG	0	0.00%	220	312637	0	0	2		77 U		78 U
4 Methylphenal	UG/KG	0	0 00%	900		0	0	7		77 U		78 U
4 Nitroaniline	UG/KG	0	0.00%		234643	0	0	2		190 U		190 U
4-Nitrophenol	UG/KG UG/KG	0	0 00%	100 50000	4692857	0	0	2		190 U 77 U		190 U 78 U
Acenaphthene Acenaphthylene	UG/KG	0	0 00%	41000		0	0	2		77 U		78 U
Anthracene	UG/KG	0	0 00%	50000	23464286	0	0	2		77 U		78 U
Benzo(a)anthracene	UG/KG	5 1	50 00%	224	875	0	1	2		51 J		78 U
Benzo(a)pyrene	UG/KG	53 75	50 00% 200 00%	61 1100	88 875	0	1 2	2		53 J 75 J		78 U 7 JY
Benzo(b)fluoranthene Benzo(ghi)perylene	UG/KG UG/KG	52	50 00%	50000	075	0	1	2		52J		78 U
Benzo[k]fluoranthene	UG/KG	62	50 00%	1100	8750	0	1	2		62 J		78 U
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0	0	2		77 U		78 U
Bis(2-Chloroethyl)ether	UG/KG	0	0 00%		581 9125	0	0	2		77 U 77 U		78 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG UG/KG	0	0 00% 50 00%	50000	45625	0	1	2		11 J		78 U
Butylbenzylphthalate	UG/KG	0	0 00%	50000	15642857	0	n	2		77 U		78 U
Carbazole	UG/KG	0	0 00%		31938	0	0	2		77 U		78 U
Chrysene	UG/KG	73	50 00%	400	87500	0	1	2		73 J		78 U
Di-n-butylphthalate Di-n-octylphthalate	UG/KG UG/KG	0	0 00%	8100 50000	1564286	0	0	2		77 U		78 U 78 U
Dibenz[a,h]anthracene	UG/KG	0	0 00%	14	100-400	0	0	2		77 U		78 U
Dibenzofuran	UG/KG	0	0.00%	6200	312857	0	0	2		77 U		78 U
Diethyl phthalate	UG/KG	12	100 00%	7100	62571429	0	2	2		12 JB 77 U		7 2 JB 78 U
Dimethylphthalate Ethylene Glycol	UG/KG MG/KG	0	0 00%	2000	782142857 156428571	0	0	2		// 0		/8 U
Fluoranthene	UG/KG	12	100 00%	50000	3128571	0	2	2		12 J		63 J
Fluorene	UG/KG	0	0.00%	50000	3128571	0	0	2		77 U		78 U
Hexachlorobenzene	UG/KG	0	0 00%	410	399 8189	0	0	2		77 U 77 U		78 U 78 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG UG/KG	0	0 00%		547500	0	0	2		77 U		78 U
Hexachloroethane	UG/KG	0	0 00%		45625	0	0	2		77 U		78 U
Indeno[1,2 3 cd]pyrene	UG/KG	4.8	50 00%	3200	875	0	1	2		48 J		78 U
Isaphorone	UG/KG	0	0 00%	4400		0	0	2		77 U		78 U
N-Nitrosodiphenylamine	UG/KG UG/KG	0	0 00%		130357	0	0	2		77 U 77 U		78 U 78 U
N-Nitrosodipropylamine Naphthalene	UG/KG UG/KG	0	0 00%	13000	3128571	0	0	2		77 U		78 U
Nitrobenzene	UG/KG	0	0 00%	200	39107	0	0	2		77 U		78 U
Pentachlorophenol	UG/KG	0	0.00%	1000	5323	0	0	2		190 U		190 U
Phenanthrene	UG/KG	5 9	50 00%	50000	46928571	0	1 0	2		59 J 77 U		78 U 78 U
Phenol Propylene Glycol	UG/KG MG/KG	0	0 00%	30	469285/1	0	0	2		// 0		/B U
Pyrene Glycal	UG/KG	10	100 00%	50000	2346429	0	2	2		10 J		55 J
TPH	MG/KG	0	0.00%			0	0	2		17 2 U		18 2 U

Table 13-6 123F - Metals in Soils vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-123F Mound North of Post 3	SEAD-123F Mound North of Post 3
LOC ID:									TP123F	TP123F
SAMP ID:									EB110	EB111
QC CODE:									SA	SA
SAMP. DETH TOP:									0.5	1.5
SAMP. DEPTH BOT:									0.5	1.5
MATRIX:									SOIL	SOIL
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	5-Mar-98
			OF			ABOVE	OF	OF		
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q
Aluminum	MG/KG	10600.0	100.0%	19520	78214.286	0	2	2	9000	10600
Antimony	MG/KG	0.0	0.0%	6	31.285714	0	0	2	0.79 UI	0.81 UN
Arsenic	MG/KG	4.9	100.0%	8.9	0.42583333	0	2	2	3.7	4.9
Barium	MG/KG	108.0	100.0%	300	5475	0	2	2	87.7	108
Beryllium	MG/KG	0.3	100.0%	1.13	0.14854651	0	2	2	0.31 B	0.26 B
Cadmium	MG/KG	0.0	0.0%	2.46	39.107143	0	0	2	0.07 U	0.07 U
Calcium	MG/KG	84600.0	100.0%	125300		0	2	2	84600	64100
Chromium	MG/KG	17.3	100.0%	30	78214	0	2	2	15.2	17.3
Cobalt	MG/KG	11.6	100.0%	30	4693	0	2	2	10.2 B	11.6
Copper	MG/KG	26.7	100.0%	33	3129	0	. 2	2	24.6	26.7
Cyanide	MG/KG	0.0	0.0%	0.35		0	0	2	0.63 U	0.64 U
Iron	MG/KG	21800.0	100.0%	37410	23464	0	2	2		21800
Lead	MG/KG	11.0	100.0%	24.4		0	2			11
Magnesium	MG/KG	13500.0	100.0%	21700		0	2			10800
Manganese	MG/KG	872.0	100.0%	1100	1799	0	2	2		872
Mercury	MG/KG	0.0	0.0%	0.1	23	0	0	2		0.06 U
Nickel	MG/KG	35.7	100.0%	50	1564	0	2	2		35.7
Potassium	MG/KG	1720.0	100.0%	2623		0	2	2		1720
Selenium	MG/KG	0.0	0.0%	2	391	0	0	2		1.1 U
Silver	MG/KG	0.0	0.0%	0.8	391	0	0	2		0.49 U
Sodium	MG/KG	0.0	0.0%	188		0	0	2		141 U
Thallium	MG/KG	0.0	0.0%	0.855	6	0	0	2		1.5 U
Vanadium	MG/KG	19.2		150	548	0	2	2		19.2 E
Zinc	MG/KG	64.1	100.0%	115	23464.286	0	2	2	61.6	64.1

Table 13-7 123F - Metals in Soil vs PRG-RES Non-Evaluated EBS Sites

SITE: DESCRIPTION: LOC ID: SAMP ID: QC CODE:									SEAD-123F Mound North of Post 3 TP123F EB110 SA		SEAD-123 Mound No of Post 3 TP123F EB111 SA	
SAMP, DETH TOP:									0.5		34	1.5
SAMP, DEPTH BOT:									0.5			1.5
MATRIX:									SOIL	'	SOIL	1.5
SAMP. DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	5-Mar-98	}	5-Ma	ır-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
Aluminum	MG/KG	10600	100.00%	19520	78214.286	0	2					0600
Antimony	MG/KG	0	0.00%	6	31.285714	0	0			UN		0.81 UN
Arsenic	MG/KG	4.9	100.00%	8.9	0.42583333	2	2				E909/EN	4.9
Barium	MG/KG	108	100.00%	300	5475	0	2					108
Beryllium	MG/KG	0.31	100.00%	1.13	0.14854651	2	2				10000000	0.26 B
Cadmium	MG/KG	0	0.00%	2.46	39.107143	0	0					0.07 U
Calcium	MG/KG	84600	100.00%	125300		0	2					1100
Chromium	MG/KG	17.3	100.00%	30	78214	0	2	2	15.2	2		17.3
Cobalt	MG/KG	11,6	100.00%	30	4693	0	2	2	10.2	В		11.6
Copper	MG/KG	26.7	100.00%	33	3129	0	2	2	24.6			26.7
Cyanide	MG/KG	0	0.00%	0.35		0	0	2	0.63	U		0.64 U
Iron	MG/KG	21800	100.00%	37410	23464	0	2	2	19500)	21	1800
Lead	MG/KG	11	100.00%	24.4		0	2	2	9.7			11
Magnesium	MG/KG	13500	100.00%	21700		0	2	2	13500	1	10	0800
Manganese	MG/KG	872	100.00%	1100	1799	0	2	2	493	i		872
Mercury	MG/KG	0	0.00%	0.1	23	0	0	2	0.05	U		0.06 U
Nickel	MG/KG	35.7	100.00%	50	1564	0	2	2	30.3			35.7
Potassium	MG/KG	1720	100.00%	2623		0	2				1	1720
Selenium	MG/KG	0	0.00%	2	391	0	0	2	1.1	U		1.1 U
Silver	MG/KG	0	0.00%	8.0	391	0	0	2	0.47	U	1	0.49 U
Sodium	MG/KG	0	0.00%	188		0	0	_				141 U
Thallium	MG/KG	0	0.00%	0.855	6	0	0					1.5 U
Vanadium	MG/KG	19.2	100.00%	150	548	0	2					19.2 E
Zinc	MG/KG	64.1	100.00%	115	23464.286	0	2	2	61.6		,	64.1

Table 13-8 123F - Pesticides/PCBs in Soil vs TAGMs Non-Evaluated EBS Sites

SITE. DESCRIPTION:									SEAD-123F Mound North of Post 3		SEAD-123F Mound North of Post 3	
LOC ID SAMP ID: QC CODE:									TP123F EB110 SA		TP123F EB111 SA	
SAMP DETH TOP: SAMP DEPTH BOT:							•		0. 0.		1.5 1.5	
MATRIX									SOIL 0.	3	SOIL	
SAMP. DATE:			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	5-Mar-9	8	5- M ar-98	
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
4,4`-DDD	UG/KG	0	0.00%	2900	2661	0	0	2		8 U	3.9	
4,4`-DDE	UG/KG	0	0.00%	2100	1879	0	0	2	3.	8 U	3.9	U
4,4`-DDT	UG/KG	0	0.00%	2100	1879	0	0	2	3.	8 U	3.9	U
Aldrin	UG/KG	0	0.00%	41	38	0	0	2		2 U	2	U
Alpha-BHC	UG/KG	0	0.00%	110		0	0	2		2 U	2	U
Alpha-Chlordane	UG/KG	0	0.00%			0	0	2		2 U	2	U
Aroclor-1016	UG/KG	0	0.00%		5475	0	0	2	3	8 U	39	U
Aroclor-1221	UG/KG	0	0.00%			0	0	2	7	8 U	79	U
Aroclor-1232	UG/KG	0	0.00%			0	0	2		8 U	39	
Aroclor-1242	UG/KG	0	0.00%			0	0	2		8 U	39	
Aroclor-1248	UG/KG	0	0.00%			0	0	2		8 U	39	
Aroclor-1254	UG/KG	0	0.00%	10000	1564	0	0	2		8 U	39	
Aroclor-1260	UG/KG	0	0.00%	10000		0	0	2		8 U	39	U
Beta-BHC	UG/KG	0	0.00%	200		0	0	2		2 U	2	
Delta-BHC	UG/KG	0	0.00%	300		0	0	2		2 U	2	
Dieldrin	UG/KG	0	0.00%	44	40	0	0	2		8 U	3.9	
Endosulfan I	UG/KG	0	0.00%	900	469286	0	0	2		2 U	2	
Endosulfan II	UG/KG	0	0.00%	900	469286	0	0	2		8 U	3.9	
Endosulfan sulfate	UG/KG	0	0.00%	1000		0	0	2		8 U	3.9	
Endrin	UG/KG	0	0.00%	100	23464	0	0	2		8 U	3.9	
Endrin aldehyde	UG/KG	0	0.00%		23464	0	0	2		8 U	3.9	_
Endrin ketone	UG/KG	0	0.00%		23464	0	0	2		8 U	3.9	
Gamma-BHC/Lindane	UG/KG	0	0.00%	60		0	0	2		2 U	2	
Gamma-Chlordane	UG/KG	0	0.00%	540		0	0	2		2 U	2	
Heptachlor	UG/KG	0	0.00%	100	142	0	0	2		2 U	2	
Heptachlor epoxide	UG/KG	0	0.00%	20	70	0	0	2		2 U	2	
Methoxychlor	UG/KG	0	0.00%		391071	0	0	2		0 U	20	
Toxaphene	UG/KG	0	0.00%			0	0	2	20	0 U	200	U

Table 13-9
123F - Pesticides/PCBs in Soil vs PRG-RES
Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-123F Mound North of Post 3	SEAD-123F Mound North of Post 3
LOC ID: SAMP ID: QC CODE:									TP123F EB110 SA	TP123F EB111 SA
SAMP. DETH TOP:									0.5	1.5
SAMP. DEPTH BOT:									0.5 SOIL	1.5 SOIL
MATRIX: SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	501L 5-Mar-98
SAME DATE.			OF			ABOVE	OF	OF	5-Wai-50	3-IVIAI-30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE (VALUE Q
4,4`-DDD	UG/KG	0	0.00%	2900	2661	0	0		3.8 ₺	
4,4`-DDE	UG/KG	0	0.00%	2100	1879	0	0	2	3.8 ₺	J 3.9 U
4,4`-DDT	UG/KG	0	0.00%	2100	1879	0	0	2	3.8 ₺	J 3.9 U
Aldrin	UG/KG	0	0.00%	41	38	0	0	2	2 L	J 2 U
Alpha-BHC	UG/KG	0	0.00%	110		0	0	2	2 L	J 2 U
Alpha-Chlordane	UG/KG	0	0.00%			0	0	2	2 L	J 2 U
Aroclor-1016	UG/KG	0	0.00%		5475	0	0	2	38 L	J 39 U
Aroclor-1221	UG/KG	0	0 00%			0	0	2	78 L	J 79 U
Aroclor-1232	UG/KG	0	0.00%			0	0	2	38 L	J 39 U
Aroclor-1242	UG/KG	0	0.00%			0	0	2	38 L	
Aroclor-1248	UG/KG	0	0.00%			0	0	2	38 L	J 39 U
Aroclor-1254	UG/KG	0	0.00%	10000	1564	0	0		38 L	
Aroclor-1260	UG/KG	0	0.00%	10000		0	0	_	38 L	
Beta-BHC	UG/KG	0	0.00%	200		0	0	_	2 L	
Delta-BHC	UG/KG	0	0.00%	300		0	0		2 L	
Dieldrin	UG/KG	0	0.00%	44	40	0	0		3.8 €	•
Endosulfan I	UG/KG	0	0.00%	900	469286	0	0	_	2 ل	
Endosulfan !I	UG/KG	0	0.00%	900	469286	0	0			
Endosulfan sulfate	UG/KG	0	0.00%	1000		0	0		3.8 L	
Endrin	UG/KG	0	0.00%	100	23464	0	0		3.8 €	
Endrin aldehyde	UG/KG	0	0.00%		23464	0	0		3.8 €	
Endrin ketone	UG/KG	0	0.00%		23464	0	0		3.8 L	
Gamma-BHC/Lindane	UG/KG	0	0.00%	60		0	0		2 L	
Gamma-Chlordane	UG/KG	0	0.00%	540		0	0	_	2 ل	
Heptachlor	UG/KG	0	0.00%	100	142	0	0	_	2 ل	
Heptachlor epoxide	UG/KG	0	0.00%	20	70	0	0		2 L	
Methoxychlor	UG/KG	0	0.00%		391071	0	0	_	20 L	
Toxaphene	UG/KG	0	0.00%			0	0	2	200 ل	J 200 U

SEAD-68 Old Pest Control Shop (Building S-335)

Table 15-1

Sample Collection Information SEAD-68 - Old Pest Control Shop (Building S-335)

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS68-1	EB142	3/10/98	0.0	0.2	SΛ	Location is east of the garage door on the southern corner of the building. This is a potential discharge location outside the building because of its close proximity to the bay door.
SURFACE SÕIL	SS68-2	EB143	3/10/98	0.0	0.2	SA	Location is immediately outside the door on the southeastern side of the building. This is a potential discharge location outside the building because of its close proximity to the doorway.
SÜRFACE SOIL	SS68-3	EB144	3/10/98	0.0	0 2	SA	Location is immediately outside the door on the northeastern side of the building This is a potential discharge location outside the building because of its proximity to the doorway
SURFACE SOIL	SS68-4	EB145	3/10/98	0.0	0.2	SA	Location is near an outside corner of the building, north of the door on the northwestern side of the building. This is a potential discharge location outside the huilding because of its proximity to the doorway
SURFACE SOIL	SS68-5	EB146	3/10/98	0.0	0.2	SA	Location is west of the garage door on the western corner of the building. This is a potential discharge location outside the building because of its close proximity to the doorway.
SOIL	SB68-1	EB250	3/16/98	0.0	0 3	SA	Location is east of the garage door on the southers side of the building. This is a potential discharge location outside the building because of its proximity to the doorway, and its downgradient location.

Table 15-1

Sample Collection Information SEAD-68 - Old Pest Control Shop (Building S-335)

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB68-1	EB251	3/16/98	4.5	4 8	SA	Same location as above, sample collected at bottom of boring because of shallow depth to bedrock and no impacts to subsurface soils
SOIL	SB68-2	EB248	3/16/98	0.0	0.2	SA	Location is west of the garage door on the western corner of the building. This is a potential discharge location outside the building because of its close proximity to the doorway, and its downgradient location.
SOIL	SB68-2	EB249	3/16/98	4 0	4 4	SA	Same location as above, sample collected at bottom of boring because of shallow depth to bedrock, and no impact to subsurface soil was observed
WATER	SS68-1	EB031	3/20/98	0.0	0.0	RB	NA

Notes

SA - Sample

RB Rinse Blank

NA Not Applicable

Lable 15-2 68 - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-6 Old Pes Control (Bldg. S	ticide Shop	SEAD-6 Old Pes Control (Bldg. S	sticide Shop
LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT									SB68-1 EB250 SA 0		SB68-1 EB251 SA 4.5	
MATRIX:									0.3 SOIL		4.8 SOIL	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL	3/16/98	SOIL	3/16/98
			OF			ABOVE	OF	OF				
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0.0	0.00%	800	18396000	0	0	9		11 U		11 U
1,1,2,2-Tetrachloroethane	UG/KG	0.0	0.00%	600	286160	0	0	9		11 U		11 U
1,1,2-Trichloroethane	UG/KG	0.0	0.00%		100407	0	0	9		11 U		11 U
1,1-Dichloroethane	UG/KG	0.0	0.00%	200	52560000	0	0	9		11 U		11 U
1,1-Dichloroethene	UG/KG	0.0	0.00%	400	9539	0	0	9		11 U		11 U
1,2-Dichloroethane	UG/KG	0.0	0.00%	100	62892	0	0	9		11 U		11 U
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%			0	0	9		11 U		11 U
1,2-Dichloropropane	UG/KG	0.0	0.00%		84165	0	0	9		11 U		11 U
Acetone	UG/KG	41.0	55.56%	200	52560000	0	5	9		28		41
Benzene	UG/KG	2.0	22.22%	60	197352	0	2	9		11 U		2 J
Bromodichloromethane	UG/KG	0.0	0.00%		92310	0	0	9		11 U		11 U
Bromoform	UG/KG	0.0	0.00%		724456	0	0	9		11 U		11 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	52560000	0	0	9		11 U		11 U
Carbon tetrachloride	UG/KG	0.0	0.00%	600	44025	0	0	9		11 U		11 U
Chlorobenzene	UG/KG	0.0	0.00%	1700	10512000	0	0	9		11 U		11 U
Chlorodibromomethane	UG/KG	0.0	0.00%		68133	0	0	9		11 U		11 U
Chloroethane	UG/KG	0.0	0.00%	1900	210240000	0	0	9		11 U		11 U
Chloroform	UG/KG	4.0	11.11%	300	938230	0	1	9		11 U		4 J
Cis-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	9		11 U		11 U
Ethyl benzene	UG/KG	0.0	0.00%	5500	52560000	0	0	9		11 U		11 U
Methyl bromide	UG/KG	0.0	0.00%		751608	0	0	9		11 U		11 U
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	9		11 U		11 U
Methyl chloride	ŲG/KG	0.0	0.00%		440246	0	0	9		11 U		11 U
Methyl ethyl ketone	UG/KG	0.0	0.00%	300		0	0	9		11 U		11 U
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	42048000	0	0	9		11 U		11 U
Methylene chloride	UG/KG	0.0	0.00%	100	763093	0	0	9		11 U		11 U
Styrene	UG/KG	0.0	0.00%			0	0	9		11 U		11 U
Tetrachloroethene	UG/KG	0.0	0.00%	1400	110062	0	0	9		11 U		11 U
Toluene	UG/KG	56.0	77.78%	1500	105120000	0	7	9		9 J		21
Total Xylenes	UG/KG	5.0	22.22%	1200	1051200000	0	2	9		11 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	9		11 U		11 U
Trichloroethene	UG/KG	5.0	11.11%	700	520291	0	1	9		11 U		11 U
Vinyl chloride	UG/KG	0.0	0.00%	200	3012	0	0	9		11 U		11 U
Ting chorac	00/110	0.0	0.0070	200	3312	· ·	O	9		110		11 0

Table 15-2 68 - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION.	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg, S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)
LOC ID: SAMP_ID: QC CODE: SAMP DETH TOP SAMP. DEPTH BOT: MATRIX: SAMP. DATE:	SB68-2 EB248 SA 0 0.2 SOIL 3/16/98	SB68-2 EB249 SA 4 4 4 SOIL 3/16/98	SS68-1 EB142 SA 0 0.2 SOIL 3/10/98	SS68-2 EB143 SA 0 0.2 SOIL 3/10/98	SS68-3 EB144 SA 0 0.2 SOIL 3/10/98	SS68-4 EB145 SA 0 0.2 SOIL 3/10/98	SS68-5 EB146 SA 0 0.2 SOIL 3/10/98
PARAMETER 1.1.1-Trichloroethane 1.1.2.2-Tetrachloroethane 1.1.2-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropropane Acetone Benzene Bromodichloromethane Bromoform Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroform Cis-1,3-Dichloropropene Ethyl benzene Methyl butyl ketone Methyl chloride Methyl ethyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methylene chloride Styrene Tetrachloroethene	VALUE Q 11 U 11	VALUE Q 10 U	VALUE Q 11 U 11	VALUE Q 12 U	VALUE Q 12 U	VALUE Q 13 U	VALUE Q 11 U 11
Toluene Total Xylenes Trans-1,3-Dichloropropene Trichloroethene Vinyl chloride	30 2 J 11 U 11 U 11 U	56 5 J 10 U 5 J 10 U	8 J 11 U 11 U 11 U 11 U	12 U 12 U 12 U 12 U 12 U 12 U	12 U 12 U 12 U 12 U 12 U 12 U	4 J 13 U 13 U 13 U 13 U	2 J 11 U 11 U 11 U 11 U

Table 15-3 68 - Volatiles in Soil vs PRG-IND Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-68 Old Pest Control S (Bldg. S-	icide Shop	SEAD-68 Old Pesti Control S (Bldg. S-3	cide hop	SEAD-68 Old Pest Control S (Bldg. S-	icide Shop
LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX.									SB68-1 EB250 SA 0 0.3 SOIL		SB68-1 EB251 SA 4.5 4.8 SOIL		SB68-2 EB248 SA 0 0.2 SOIL	
SAMP. DATE:			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SOIL	3/16/98		3/16/98	SOIL	3/16/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	
1,1,1-Trichloroethane	UG/KG	0.0	0.00%	800	18396000	0	0	9		11 U	VALUE	11 U	VALUE	11
1.1.2.2-Tetrachloroethane	UG/KG	0.0	0.00%	600	286160	0	0	9		11 U		11 U		11
1,1,2-Trichloroethane	UG/KG	0.0	0.00%	000	100407	0	0	9		11 U		11 U		11
1.1-Dichloroethane	UG/KG	0.0	0.00%	200	52560000	0	0	9		11 U		11 U		11
1.1-Dichloroethene	UG/KG	0.0	0.00%	400	9539	0	0	9		11 U		11 U		11
1.2-Dichloroethane	UG/KG	0.0	0.00%	100	62892	0	0	9		11 U		11 U		11
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%			0	0	9		11 U		11 U		11
1,2-Dichloropropane	UG/KG	0.0	0.00%		84165	0	0	9		11 U		11 U		11
Acetone	UG/KG	41.0	55.56%	200	52560000	0	5	9		28		41		11
Benzene	UG/KG	2.0	22.22%	60	197352	0	2	9		11 U		2 J		11
Bromodichloromethane	UG/KG	0.0	0 00%		92310	0	0	9		11 U		11 U		11
Bromoform	UG/KG	0.0	0.00%		724456	0	0	9		11 U		11 U		11
Carbon disulfide	UG/KG	0.0	0.00%	2700	52560000	0	0	9		11 U		11 U		11
Carbon tetrachloride	UG/KG	0.0	0.00%	600	44025	0	0	9	1	11 U		11 U		11
Chlorobenzene	UG/KG	0.0	0.00%	1700	10512000	0	0	9	1	11 U		11 U		11
Chlorodibromomethane	UG/KG	0.0	0.00%		68133	0	0	9)	11 U		11 U		11
Chloroethane	UG/KG	0.0	0.00%	1900	210240000	0	0	9)	11 U		11 U		11
Chloroform	UG/KG	4.0	11.11%	300	938230	0	1	9)	11 U		4 J		11
Cis-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	9)	11 U		11 U		11
Ethyl benzene	UG/KG	0.0	0.00%	5500	52560000	0	0	9)	11 U		11 U		11
Methyl bromide	UG/KG	0.0	0.00%		751608	0	0	9	1	11 U		11 U		11
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	9	1	11 U		11 U		11
Methyl chloride	UG/KG	0.0	0.00%		440246	0	0	9)	11 U		11 U		11
Methyl ethyl ketone	UG/KG	0.0	0.00%	300		0	0	9	1	11 U		11 U		11
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	42048000	0	0	9)	11 U		11 U		11
Methylene chloride	UG/KG	0.0	0.00%	100	763093	0	0	9)	11 U		11 U		11
Styrene	UG/KG	0.0	0.00%			0	0	9)	11 U		11 U		11
Tetrachloroethene	UG/KG	0.0	0.00%	1400	110062	0	0	9)	11 U		11 U		11
Toluene	UG/KG	56.0	77.78%	1500	105120000	0	7	9)	9 J		21		30
Total Xylenes	UG/KG	5.0	22.22%	1200	1051200000	0	2	9)	11 U		11 U		2
Trans-1.3-Dichloropropene	UG/KG	0.0	0.00%			0	0	9)	11 U		11 U		11
Trichloroethene	UG/KG	5.0	11.11%	700	520291	0	1	9)	11 U		11 U		11
Vinyl chloride	UG/KG	0.0	0.00%	200	3012	0	Ó	9)	11 U		11 U		11

Table 15-3 68 - Volatiles in Soil vs PRG-IND Non-Evaluated EBS Sites

SITE: DESCRIPTION:		SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)
LOC ID. SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE:		SB68-2 EB249 SA 4 4.4 SOIL 3/16/98	SS68-1 EB142 SA 0 0 2 SOIL 3/10/98	SS68-2 EB143 SA 0 0.2 SOIL 3/10/98	SS68-3 EB144 SA 0 0.2 SOIL 3/10/98	SS68-4 EB145 SA 0 0.2 SOIL 3/10/98	SS68-5 EB146 SA 0 0.2 SOIL 3/10/98
OANNI . DATE.		5/10/30	3/10/00	3/10/30	3/10/30	3/10/90	3/10/96
PARAMETER 1.1,1-Trichloroethane 1.1,2,2-Tetrachloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropthane 1.2-Dichloropthane Benzene Benzene Bromodichloromethane Bromoform Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Cis-1,3-Dichloropropene Ethyl benzene Methyl butyl ketone Methyl chloride Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methylene chloride		VALUE Q 10 U	VALUE Q 11 U 11	VALUE Q 12 U	VALUE Q 12 U	VALUE Q 13 U	VALUE Q 11 U 11
Styrene Tetrachloroethene Toluene Total Xylenes Trans-1,3-Dichloropropene	n n	10 U 10 U 56 5 J 10 U	11 U 11 U 8 J 11 U 11 U	12 U 12 U 12 U 12 U 12 U	12 U 12 U 12 U 12 U 12 U	13 U 13 U 13 U 4 J 13 U	11 U 11 U 2 J 11 U 11 U
Trans-1,3-Dichloropropene Trichloroethene Vinyl chloride	U	5 J 10 U	11 U 11 U	12 U 12 U 12 U	12 U 12 U 12 U	13 U 13 U	11 U 11 U

Table 15-4
68 - Semivolatiles in Soil vs TAGMs
Non-Evaluated EBS Sites

SITE:									SEAD-6	8	SEAD-68	3	SEAD-68	3	SEAD-88		SEAD-88	3
DESCRIPTION:									Old Pesi	licide	Old Pest		Old Pest	icide	Old Pest	icide	Old Pest	
									Control :	Shop	Control S	Shop	Control S	Shop	Control S	hop	Control S	Shop
									(Bldg S	-335)	(Bldg S-	335)	(Bldg. S-	335)	(Bldg. S-	335)	(Bldg, S-	335)
LOC ID:									SB68-1		SB68-1		SB68-2		SB68-2		SS68-1	
SAMP ID:									EB250		EB251		EB248		EB249		EB142	
QC CODE:									SA		SA		SA		SA		SA	
SAMP. DETH TOP:									0		4.5		0		4		0	
SAMP. DEPTH BOT.									0.3		4.8		0.2		4.4	١.	0.2	
MATRIX:									SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	COIL	3/16/98	JOIL	3/16/98		3/16/98		3/16/98	SOIL	3/10/98
CAMIL. DATE.			OF			ABOVE	OF	. OF		0110100		3/10/30		3/10/30		3/10/30		3/10/30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q								
1,2,4-Trichlorobenzene	UG/KG	0.0	0.00%	3400	5256000	0	0			69 U	AVEOL	69 U	VALUE	71 U	VALUE	69 U	AVEOR	140 U
1,2-Dichlorobenzene	UG/KG	0.0	0.00%	7900	47304000	0	0	-		69 U		69 U		71 U		69 U		140 U
1,3-Dichlorobenzene	UG/KG	0.0	0.00%	1600	46778400	0	0			69 U		69 U		71 U		69 U		140 U
1.4-Dichlorobenzene	UG/KG	0.0	0.00%	8500	238467	0	_	-		69 U		69 U		71 U		69 U		140 U
2,4,5-Trichlorophenol	UG/KG	0.0	0.00%	100	52560000	0		-		170 U		170 U		170 U		170 U		350 U
2,4,6-Trichlorophenol	UG/KG	0.0	0.00%	100	520291	0		-		69 U		69 U		71 U		69 U		140 U
2.4-Dichlorophenol	UG/KG	0.0	0.00%	400	1576800	0				69 U		69 U		71 U		69 U		140 U
2,4-Dimethylphenol	UG/KG	00	0.00%	400	10512000	0	-			69 U		69 U		71 U		69 U		140 U
2,4-Dinitrophenol	UG/KG	0.0	0.00%	200	1051200	0	-	_		170 U		170 U		170 U		170 U		350 U
2,4-Dinitrotoluene	UG/KG	0.0	0.00%	200	1051200	0				69 U		69 U		71 U		69 U		140 U
				1000	525800	0				69 U				71 U				
2,6-Dinitrotoluene	UG/KG	0.0	0.00%	1000	523600							69 U				69 U		140 U
2-Chloronaphthalene	UG/KG	0.0	0.00%	000	2020000					69 U		69 U		71 U		69 U		140 U
2-Chlorophenol	UG/KG	00	0.00%	800	2628000	0						89 U		71 U		69 U		140 U
2-Methylnaphthalene	UG/KG	310.0	44.44%	36400	0000000	0		-		69 U		69 U		4.9 J		69 U		8.7 J
2-Methylphenol	UG/KG	0.0	0.00%	100	26280000	0				69 U		· 69 U		71 U		69 U		140 U
2-Nitroantine	UG/KG	0.0	0.00%	430	31536	0		_		170 U		170 U		170 U		170 U		350 U
2-Nitropheno!	UG/KG	0.0	0.00%	330		0	0			69 U		69 U		71 U		69 U		140 U
3,3'-Dichlorobenzidine	UG/KG	0.0	0.00%		12718	0	0			69 U		69 U		71 U		69 U		140 U
3-Nitroaniline	UG/KG	0.0	0.00%	500	1576800	0		_		170 U		170 U		170 U		170 U		350 U
4,6-Dinitro-2-methylphenol	UG/KG	0.0	0.00%		10.7.000	0	0	_		170 U		170 U		170 U		170 U		350 U -
4-Bromophenyl phenyl ether	UG/KG	0.0	0.00%		30484800	0	0	-		69 U		69 U		71 U		69 U		140 U
4-Chloro-3-methylphenol	UG/KG	00	0.00%	240		0	0			69 U		69 U		71 U		69 U		140 U
4-Chloroaniline	UG/KG	00	0.00%	220	2102400	0	-			69 U		69 U		71 U		69 U		140 U
4-Chlorophenyl phenyl ether	UG/KG	0.0	0.00%			0	0			69 U		69 U		71 U		69 U		140 U
4-Methylphenol	UG/KG	0.0	0.00%	900		0	0			69 U		69 U		71 U		69 U		140 U
4-Nitroaniline	UG/KG	0.0	0.00%		1576800	0	0			170 U		170 U		170 U		170 U		350 U
4-Nitrophenol	UG/KG	0.0	0.00%	100	31536000	0				170 U		170 U		170 U		170 U		350 U
Acenaphthene	UG/KG	49.0	44.44%	50000		0	4	_		69 U		69 U		71 U		69 U		34 J
Acenaphthylene	UG/KG	0.0	0.00%	41000		0				69 U		69 U		71 U		89 U		140 U
Anthracene	UG/KG	97.0	68.67%	50000	157680000	0)	69 U		69 U		6 J		69 U		53 J
Benzo[a]anthracene	UG/KG	900.0	86.89%	224	7840	2			1	69 U		7.2 J		46 J		9.6 J	March 1	360
Benzo[a]pyrene	UG/KG	770.0	88.89%	61	784	5		9		69 U		6.7 J		50 J		8 7		350
Benzo(b)fluoranthene	UG/KG	940 0	6 88.89%	1100	7840	0	8	9	1	69 U		7.4 J		68 J		10 J		380
Benzo(ghi)perylene	UG/KG	420.0	88.89%	50000		0	6	9)	69 U		7.1 J		47 J		12 J		280
Benzo(k)fluoranthene	UG/KG	830.0	88.89%	1100	78400	0	8	9)	69 U		8.2 J		58 J		12 J		460
Bis(2-Chloroethoxy)methane	UG/KG	0.0	0.00%			0	0	9	•	69 U		69 U		71 U		69 U		140 U
Bis (2-Chloroethyl)ether	UG/KG	0.0	0.00%		5203	0		9	+	69 U		69 U		71 U		69 U		140 U
Bis(2-Chloroisopropyl)ether	UG/KG	0.0	0.00%		81760	0	0	9	1	69 U		69 U		71 U		69 U		140 U
Bis(2-Ethylhexyl)phthalate	UG/KG	150.0	112.50%	50000	408800	0		8		4.8 JB		1-1 JB		27 JB		8.6 JB		110 BJ
Butylbenzylphthalate	UG/KG	18.0	55.58%	S0000	105120000	0	5	9	1	4.9 J		69 U		6.5 J		69 U		15 J
Carbazole	UG/KG	.80.0	66.67%		286160	0	6	9	1	69 U		69 U		9.3 J		69 U		67 J
Chrysene	UG/KG	1000.0	100.00%	400	784000	2	9	9	1	4 J		8.8 J		60 J		14 J		430
Di-n-butylphthalate	UG/KG	36.0	62.50%	8100		0	5	8	Į.	69 U		4.2 J		3.6 J		69 U		7.3 BJ
Di-n-octylphthalate	UG/KG	18.0	11.11%	50000	10512000	0	1	9)	69 U		69 U		71 U		69 U		140 U
Dibenz[a,h]anthracene	UG/KG	220.0	88 89%	14	784	6	8	9)	69 U		5 J	1000	17. J		4.8 J	-	110 J
Dibenzofuran	UG/KG	43.0	44.44%	6200	2102400	0	4	9		69 U		69 U		71 U		69 U		13 J
Diethyl phthalate	UG/KG	34.0	112.50%	7100	420480000	0	9	8		6.1 JB		6.5 JB		8.2 JB		5.2 JB		12 BJ
Dimethylphthalate	UG/KG	0.0	0.00%	2000	5256000000	0	0	9		69 U		69 U		71 U		69 U		140 U
Fluoranthene	UG/KG	1500.0	100.00%	50000	21024000	0	9	9		6.1 J		14 J		120		23 J		700
Fluorene	UG/KG	34.0	44.44%	50000	21024000	0	4	9	1	69 U		89 U		71 U		69 U		22 J
Hexachlorobenzene	UG/KG	0.0	0.00%	410	3577	0	0	9	1	69 U		69 U		71 U		69 U		140 U
Hexachlorobutadiene	UG/KG	0.0	0.00%		73374	0	0	9		69 U		69 U		71 U		69 U		140 U
Hexachlorocyclopentadiene	UG/KG	0.0	0.00%		3679200	0	0	9		69 U		69 U		71 U		69 U		140 U
Hexachloroethane	UG/KG	0.0	0.00%		408800	0	0	9		69 U		69 U		71 U		69 U		140 U
Indeno[1,2,3-cd]pyrene	UG/KG	400.0	88.89%	3200	7840	0		_		69 U		6.6 J		44 J		7.8 J		260
Isophorone	UG/KG	0.0	0.00%	4400		0	0			69 U		69 U		71 U		69 U		140 U
aspiror orre	00,,10	3.0	0.0070												*			

Fable 15-4 68 - Semivolattles in Soil vs. LAGMs Non-Lyalinated LBS Sites

SITE DESCRIPTION									SEAD-6i Old Pest Control S (Bldg S-	ticide Shop	SEAD-68 Old Pesticide Control Shop (Bldg S-335	,	SEAD-68 Old Pestick Control Sho (Bldg. S-33	р	SEAD-68 Old Pestic Control St (Bldg S-3	ide iop	SEAD-68 Old Pestic Control Sh (Bldg. S-33	юр
LOC ID									SB68-1		SB68-1		SB68-2		SB68-2		SS68-1	
SAMP_ID									EB250		EB251		EB248		EB249		EB142	
QC CODE									SA		SA		SA		SA		SA	
SAMP DETH TOP									0		4 5		0		4		0	
SAMP DEPTH BOT									0.3		4 8		0.2		4 4		0.2	
MATRIX									SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		3/16/98	3/1	6/98	3/	16/98	3	/16/98	3	3/10/98
			OF			ABOVE	OF	OF										
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
N-Nitrosodiphenylamine	UG/KG	0.0	0.00%		1168000	0	0	9	9	69 U		69 U		71 U		69 U		140 U
N-Nitrosodipropylamine	UG/KG	0.0	0 00%		818	0	0	9	9	69 U		69 U		71 U		69 U		140 U
Naphthalene	UG/KG	78 0	22 22%	13000	21024000	0	2	9	9	69 U		69 U		71 U		69 U		140 U
Nitrobenzene	UG/KG	0.0	0 00%	200	262800	0	0		9	69 U		69 U		71 U		69 U		140 U
Pentachlorophenol	UG/KG	0.0	0 00%	1000	47693	0	0	9	9	170 U		170 U		170 U		170 U		350 U
Phenanthrene	UG/KG	480 0	77 78%	50000		0	7		9	69 U		69 U		42 J		11 J		350
Phenol	UG/KG	0.0	0.00%	30	315360000	0	0	9	9	69 U		69 U		71 U		69 U		140 U
Pyrene	UG/KG	1500 0	100 00%	50000	15768000	0	9	!	9	4 3 J		11 J		94		16 J		840

Table 15-4 68 - Semivolatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION:	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop
	(Bldg. S-335)	(Bldg. S-335)	(Bldg S-335)	(Bldg. S-335)
LOC ID:	SS68-2	SS68-3	SS68-4	SS68-5
SAMP_ID:	EB143	EB144	EB145	EB146
QC CODE:	SA	SA	SA	SA
SAMP. DETH TOP:	0	0	0	0
SAMP DEPTH BOT:	0.2	0.2	0 2	0.2
MATRIX:	SOIL	SOIL	SOIL	SOIL
SAMP DATE:	3/10/98	3/10/98	3/10/98	3/10/98
PARAMETER	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	76 U	310 U	410 U	77 U
1.2-Dichlorobenzene	76 U	310 U	410 U	77 U
1,3-Dichlorobenzene	76 U	310 U	410 U	77 U
1,4-Dichlorobenzene	76 U	310 U	410 U	77 U
2,4,5-Trichlorophenol	180 U	740 U	1000 U	190 U
2,4,6-Trichlorophenol	76 U	310 U	410 U	77 U
2,4-Dichlorophenol	76 U	310 U	410 U	77 U
2,4-Dimethylphenol	76 U	310 U	410 U	77 U
2,4-Dinitrophenol	180 U	740 U	1000 U	190 U
2.4-Dinitrotoluene	76 U	310 U	410 U	77 U
2.6-Dinitrotoluene	76 U	310 U	410 U	77 U
2-Chloronaphthalene	76 U	310 U	410 U	77 U
2-Chlorophenol	76 U	310 U	410 U	77 U
2-Methylnaphthalene	76 U	310 U	310 J	7.9 J
2-Methylphenol	76 U	310 U	410 U	77 U
2-Nitroaniline	180 U	740 U	1000 U	190 U
2-Nitrophenol	76 U	310 U	410 U	77 U
3,3'-Dichlorobenzidine	76 U	310 U	410 U	77 U
3-Nitroanitine	180 U	740 U	1000 U	190 U
4,6-Dinitro-2-methylphenol	180 U	740 U	1000 U	190 U
4-Bromophenyl phenyl ether	76 U	310 U	410 U	77 U
4-Chloro-3-methylphenol	76 U	310 U	410 U	77 U
4-Chloroaniline	76 U	310 U	410 U	77 U
4-Chlorophenyl phenyl ether	76 U	310 U	410 U	77 U
4-Methylphenol	76 U	310 U	410 U	77 U
4-Nitroanitine	180 U	740 U	1000 U	190 U
4-Nitrophenol	180 U	740 U	1000 U	190 U
Acenaphthene	4.8 J	49 J	410 U	14 J
Acenaphthylene	76 U	310 U	410 U	77 U
Anthracene	7.5 J	97 J	31 J	23 J
Benzo(a)anthracene	66 J	906	100 J	130
Benzo(a)pyrene	77	778	126 J	130
Senzo(b)fluoranthene	110	940	130 J	170
Benzo(ghi]perylene	64 J	420	110 J	100
Benzo[k]fluoranthene	100	830	150 J	180
Bis(2-Chloroethoxy)methane	76 U	310 U	410 U	77 U
Bis(2-Chloroethyf)ether	76 U	310 U	410 U	77 U
Bis(2-Chloroisopropyl)ether	76 U	310 U	410 U	77 U
Bis(2-Ethylhexyl)phthalate	14 JB	120 JB	58 JB	150 B
Butylbenzylphthalate	76 U	18 J	410 U	8.7 J
Carbazole	13 J	80 J	46 J	36 J
Chrysene	94	1860	150 J	160
Di-n-butylphthalate	76 U	310 U	36 JB	14 JB
Di-n-octylphthalate	76 U	18 J	410 U	77 U
Dibenz[a,h]anthracene	26 .	220 J	56 J	#0 J
Dibenzofuran	76 U	18 J	43 J 34 JB	6.6 J 14 JB
Diethyl phthalate	13 JB	23 JB		
Dimethylphthalate	76 U	310 U	410 U	77 U
Fluoranthene	150	1500	220 J 27 J	320 12 J
Fluorene	76 U	34 J 310 U		12 J 77 U
Hexachlorobenzene	76 U		410 U 410 U	77 U
Hexachlorobutadiene	76 U	310 U		77 U
Hexachlorocyclopentadiene	76 U	310 U	410 U 410 U	77 U
Hexachloroethane	76 U	310 U 400	410 U 96 J	77 U
Indeno[1,2,3-cd]pyrene	61 J 76 U	400 310 U	96 J 410 U	77 U
Isophorone	76 0	310 0	410 0	77 0

Lable 18-4 68 - Semiyolatiles in Soil vs TAGMs Non-Lyalitated FBS Sites

SITE DESCRIPTION	SEAD-68 Old Pesticide Control Shop (Bldg S-335)	,	SEAD-68 Old Pestic Control Sh (Bldg S-3)	ор	SEAD-68 Old Pesticide Control Short (Bldg S-335		SEAD-68 Old Pestic Control Sh (Bldg. S-3	ор
LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE	SS68-2 EB143 SA 0 0 2 SOIL	0/98	SS68-3 EB144 SA 0 0 2 SOIL	i/10/98	SS68-4 EB145 SA 0 0 2 SOIL	0/98	SS68-5 EB146 SA 0 0 2 SOIL	/10/98
PARAMETER N-Natrosodiphenylamine N-Nitrosodipropylamine Naphthalene Naphthalene Pentachlorophenol Phenanthrene Phenol Pyrene		Q 76 U 76 U 76 U 76 U 180 U 54 J 76 U	VALUE	310 U 310 U 310 U 310 U 740 U 480 310 U	VALUE	Q 410 U 410 U 78 J 410 U 1000 U 210 J 410 U 260 J	VALUE	77 U 77 U 65 J 77 U 190 U 150 77 U 310

table 15-5 68 - Sennyolatiles in Soil vs PRG-IND Non-Evaluated EBS Sites

SITE DESCRIPTION								0	EAD-68 ld Pesticide ontrol Shop	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop	SEAD-68 Old Pesticide Control Shop
LOC ID SAMP_ID QC CODE SAMP DETH TOP								S		(Bidg S-335) SB68-1 EB251 SA 4 5	(Bldg. S-335) SB68-2 EB248 SA	(Bldg. S-335) SB68-2 EB249 SA	(Bldg S-335) SS68-1 EB142 SA
SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER		3/16/98	4.8 SOIL 3/16/98	0.2 SOIL 3/16/98	4 4 SOIL 3/16/98	0 2 SOIL 3/10/98
			OF			ABOVE	OF	OF					
PARAMETER 1,2,4-Trichlorobenzene	UNIT UG/KG	MAXIMUM 0 0	DETECTION 0.00%	TAGM 3400	PRG 5256000	TAGM 0	DETECTS	ANALYSES V	ALUE Q 69 U	VALUE Q 69 U	VALUE Q 71 U	VALUE Q 69 U	VALUE Q 140 U
1.2-Dichlorobenzene	UG/KG	0.0	0 00%	7900	47304000	0	0	9	69 U	69 U	71 U	69 U	140 U
1,3-Dichlorobenzene	UG/KG	0.0	0 00%	1600	46778400	0	0		69 U	69 U	71 U	69 U	140 U
1.4-Dichlorobenzene	UG/KG	0.0	0.00%	8500	238467	0			69 U	69 U	71 U	69 U	140 U
2,4,5-Trichlorophenol	UG/KG UG/KG	0.0	0 00% 0 00%	100	52560000 520291	0	(-	170 U 69 U	170 U 69 U	170 U 71 U	170 U 69 U	350 U 140 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	UG/KG UG/KG	0.0	0 00%	400	1576800	0	(69 U	69 U	71 U	69 U	140 U 140 U
2,4-Dimethylphenol	UG/KG	0.0	0 00%	400	10512000	0			69 U	69 U	71 U	69 U	140 U
2 4-Dinitrophenol	UG/KG	0.0	0 00%	200	1051200	0		9	170 U	170 U	170 U	170 U	350 U
2,4-Dinitrotoluene	UG/KG	0.0	0 00%		1051200	0	0	9	69 U	69 U	71 U	69 U	140 U
2,6-Dinfrotoluene	UG/KG	0.0	0 00%	1000	525600	0	(69 U	69 U	71 U	69 U	140 U
2-Chloronaphthalene	UG/KG	0.0	0.00%			0	(69 U	69 U	71 U	69 U	140 U
2-Chlorophenol	UG/KG	0.0	0 00%	800	2628000	0	(-	69 U	69 U	71 U	69 U	140 U
2-Methylnaphthalene	UG/KG UG/KG	310 0 0 0	44.44% 0.00%	36400 100	26280000	0			69 U	69 U 69 U	4.9 J 71 U	69 U 69 U	8.7 J 140 U
2-Methylphenot 2-Nitroaniline	UG/KG	0.0	0.00%	430	31536	0	(170 U	170 U	170 U	170 U	350 U
2-Nitrophenol	UG/KG	0.0	0.00%	330	31330	0	(69 U	69 U	71 U	69 U	140 U
3.3 -Dichlorobenzidine	UG/KG	0.0	0 00%		12718	0	(9	69 U	69 U	71 U	69 U	140 U
3-Nitroaniline	UG/KG	0.0	0.00%	500	1576800	0	(170 U	170 U	170 U	170 U	350 U
4.6-Dinitro-2-methylphenol	UG/KG	0.0	0 00%			0	(170 U	170 U	170 U	170 U	350 U
4-Bromophenyl phenyl ether	UG/KG	0.0	0.00%		30484800	0	(69 U	69 U	71 U	69 U	140 U
4-Chloro-3-methylphenol	UG/KG UG/KG	0.0	0.00%	240 220	2102400	0	(69 U 69 U	69 U 69 U	71 U 71 U	69 U 69 U	140 U 140 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/KG	0.0	0 00%	220	2102400	0	,		69 U	69 U	71 U	69 U	140 U
4-Methylphenol	UG/KG	0.0	0 00%	900		0	Ċ	0 9	69 U	69 U	71 U	69 U	140 U
4-Nitroaniline	UG/KG	0.0	0.00%		1576800	0	(0 9	170 U	170 U	170 U	170 U	350 U
4-Nifrophenol	UG/KG	0.0	0 00%	100	31536000	0	(-	170 U	170 U	170 U	170 U	350 U
Acenaphthene	UG/KG	49 0	44.44%	50000		0	4		69 U	69 U	71 U	69 U	34 J
Acenaphthylene	UG/KG	0.0	0 00%	41000	45700000	0	(69 U 69 U	69 U 69 U	71 U	69 U 69 U	140 U 53 J
Anthracene	UG/KG UG/KG	97 0 900 0	66.67% 88.89%	50000 224	157680000 7840	0		-	69 U	7.2 J	6 J 46 J	9.6 J	360
Benzo[a]anthracene Benzo[a]pyrene	UG/KG	770.0	88.89%	61	784	0			69 U	6.7 J	50 J	9 J	350
Benzo[b]fluoranthene	UG/KG	940.0	88 89%	1100	7840	0	8	8 9	69 U	7.4 J	68 J	10 J	380
Benzo[ghi]perylene	UG/KG	420.0	88.89%	50000		0	8	8 9	69 U	71 J	47 J	12 J	280
Benzo[k]fluoranthene	UG/KG	830.0	88.89%	1100	78400	0	8		69 U	8.2 J	58 J	12 J	460
Bis(2-Chloroethoxy)methane	UG/KG	0.0	0.00%			0	(69 U	69 U	71 U	69 U	140 U
Bis(2-Chloroethyl)ether	UG/KG	0.0	0.00%		5203 81760	0	(69 U 69 U	69 U 69 U	71 U 71 U	69 U 69 U	140 U 140 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG UG/KG	150 0	112.50%	50000	408800	0			4.8 JB	11 JB	27 JB	6.6 JB	110 BJ
Bulylbenzylphthalate	UG/KG	18.0	55.56%	50000	105120000	0		-	4.9 J	69 U	6.5 J	69 U	15 J
Carbazole	UG/KG	80.0	66 67%		286160	0	6	6 9	69 U	69 U	9.3 J	69 U	67 J
Chrysene	UG/KG	1000.0	100 00%	400	784000	0	9	9 9	4 J	8.8 J	60 J	14 J	430
Di-n-butylpbthalate	UG/KG	36 0	62.50%	8100		0	:	-	69 U	4.2 J	3.8 J	69 U	7 3 BJ
Di-n-octylphthalate	UG/KG	18 0	11 11%	50000	10512000	0		1 9	69 U	69 U	71 U	69 U	140 U
Dibenz(a,h)anthracene	UG/KG	220.0	88.89% 44.44%	14 6200	784 2102400	0		8 9 4 9	69 U 69 U	5 J 69 U	17 J 71 U	4.8 J 69 U	110 J 13 J
Dibenzofuran	UG/KG UG/KG	43.0 34 0	112 50%	7100	420480000	0			6.1 JB	6.5 JB	8.2 JB	5.2 JB	12 BJ
Diethyl phthalate Dimethylphthalate	UG/KG	0.0	0.00%	2000	5256000000	0	·	-	69 U	69 U	71 U	69 U	140 U
Fluoranthene	UG/KG	1500 0	100.00%	50000	21024000	0	9	-	6.1 J	14 J	120	23 J	700
Fluorene	UG/KG	34.0	44.44%	50000	21024000	0	4	4 9	69 U	69 U	71 U	69 U	22 J
Hexachlorobenzene	UG/KG	0.0	0.00%	410	3577	0	(69 U	69 U	71 U	69 U	140 U
Hexachlorobutadiene	UG/KG	0.0	0.00%		73374	0	(69 U	69 U	71 U	69 U	140 U
Hexachlorocyclopentadiene	UG/KG	0.0	0.00%		3679200	0	(69 U	69 U	71 U	69 U	140 U
Hexachloroethane	UG/KG	0.0	0.00%	2200	408800	0	(69 U	69 U 6.6 J	71 U 44 J	69 U 7,6 J	140 U 260
Indeno[1,2,3-cd]pyrene	UG/KG UG/KG	400.0 0.0	68.89% 0.00%	3200 4400	7840	0	(69 U	69 U	44 J 71 U	7.6 J 69 U	140 U
Isophorone N-Nitrosodiphenylamine	UG/KG	0.0	0.00%	7400	1168000	0	Č		69 U	69 U	71 U	69 U	140 U
ranio so a priori y latinire		3.0	0.0070					,	3				

Lable 15-5 68 - Semivolatiles in Soil vs PRG-IND Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-68 Old Pest Control S (Bldg S-	icide Shop	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)		SEAD-68 Old Pestici Control Sho (Bldg S-33	ор	SEAD-68 Old Pesticic Control Sho (Bldg. S-33	р	SEAD-68 Old Pestic Control Si (Bldg S-3	hop
LOC ID- SAMP_ID QC CODE. SAMP DETH TOP SAMP DEPTH BOT. MATRIX									SB68-1 EB250 SA 0 0 3 SOIL		SB68-1 EB251 SA 4 5 4 8 SOIL		SB68-2 EB248 SA 0 0.2 SOIL		SB68-2 EB249 SA 4 4.4 SOIL		SS68-1 EB142 SA 0 0 2 SOIL	
SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF		3/16/98	3/16/	98		/16/98		16/98		3/10/98
PARAMETER 1.2,4-Trichlorobenzene N-Nirosodipropylamine Naphthalene Narrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene	UNIT UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	MAXIMUM 0 0 78 0 0 0 480 0 0.0 1500.0	DETECTION 0 00% 0 00% 22 22% 0 00% 0 00% 77 78% 0 00% 100 00%	13000 200 1000 50000 30 50000	PRG 5256000 818 21024000 262800 47693 315360000 15768000	TAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DETECTS 0 2 2 0 7		VALUE	Q 69 U 69 U 69 U 170 U 69 U 69 U 4 3 J	1	Q 59 U 59 U 59 U 70 U 59 U 59 U	VALUE	Q 71 U 71 U 71 U 71 U 170 U 42 J 71 U 94	VALUE	G9 U 69 U 69 U 69 U 170 U 11 J 69 U 16 J	VALUE	140 U 140 U 140 U 140 U 350 U 350 U 350 140 U 840

Table 18-5 68 - Semivolatiles in Soil vs PRG-IND Non-Evaluated EB5 Sites

SITE	SEAD-68	SEAD-68	SEAD-68	SEAD-68
DESCRIPTION	Old Pesticide	Old Pesticide	Old Pesticide	Old Pesticide
	Control Shop	Control Shap	Control Shop	Control Shop
	(Bldg S-335)	(Bldg S-335)	(Bldg S-335)	(Bldg S-335)
FOC ID	SS68-2	SS68-3	SS68-4	SS68-5
SAMP_ID	EB143	EB144	EB145	EB146
OC CODE	SA	SA	SA	SA
SAMP DETH TOP	0	0	0	0
SAMP DEPTH BOT	0 2	0 2	0 2	0 2
MATRIX	SOIL	SOIL 3/10/98	SOIL 3/10/98	SOIL 3/10/98
SAMP DATE	3/10/98	3/10/90	3/10/90	3/10/90
PARAMETER	VALUE O	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	76 U	310 U	410 U	77 U
1,2-Dichlorobenzene	76 U	310 U	410 U	77 U
1,3-Dichlorobenzene	76 U	310 U	410 U	77 U
1,4-Dichlorobenzene	76 U	310 U	410 U	77 U
2,4.5-Trichlorophenol	180 U	740 U	1000 U	190 U
2.4.6-Trichlorophenol	76 U 76 U	310 U 310 U	410 U 410 U	77 U 77 U
2.4-Dichlorophenol 2.4-Dimethylphenol	76 U	310 U	410 U	77 U
2,4-Dinterryiphenol	180 U	740 U	1000 U	190 U
2.4-Dinitrotoluene	76 U	310 U	410 U	77 U
2.6-Dinitrotoluene	76 U	310 U	410 U	77 U
2-Chloronaphthalene	76 U	310 U	410 U	77 U
2-Chlorophenol	76 U	310 U	410 U	77 U
2-Methylnaphthalene	76 U	310 U	310 J	79 J
2-Methylphenol	76 U	310 U	410 U	77 U
2-Nitroaniline	180 U	740 U	1000 U	190 U
2-Nitrophenol	76 U 76 U	310 U 310 U	410 U 410 U	77 U 77 U
3,3 -Dichlorobenzidine 3-Nifroanitine	180 U	740 U	1000 U	190 U
4,6-Dinitro-2-methylphenol	180 U	740 U	1000 U	190 U
4-Bromophenyl phenyl ether	76 U	310 U	410 U	77 U
4-Chloro-3-methylphenol	76 U	310 U	410 U	77 U
4-Chloroaniline	76 U	310 U	410 U	77 U
4-Chlorophenyl phenyl ether	76 U	310 U	410 U	77 U
4-Methylphenol	76 U	310 U	410 U	77 U
4-Nitroaniline	180 U	740 U	1000 U	190 U
4-Nitrophenal	180 U	740 U	1000 U	190 U
Acenaphthene Acenaphthylene	4 8 J 76 ∪	49 J 310 U	410 U 410 U	14 J 77 U
Anthracene	75 J	97 J	31 J	. 23 J
Benzo[a]anthracene	66 J	900	100 J	130
Benzo[a]pyrene	77	770	120 J	130
Benzo[b]fluoranthene	110	940	130 J	170
Benzo[ghi]perylene	64 J	420	110 J	100
Benzo(k)fluoranthene	100	830	150 J	180
Bis(2-Chloroethoxy)methane	76 U	310 U	410 U 410 U	77 U 77 U
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether	76 U 76 U	310 U 310 U	410 U	77 U
Bis(2-Ethylhexyf)phthalate	14 JB	120 JB	58 JB	150 B
Butylbenzylphthalate	76 U	18 J	410 U	87 J
Carbazole	13 J	80 J	46 J	36 J
Chrysene	94	1000	150 J	160
Di-n-butylphthalate	76 U	310 U	36 JB	14 JB
Di-n-octylphthalate	78 U	18 J	410 U	77 U
Dibenz[a,h]anthracene	26 J	220 J	50 J	40 J
Dibenzoluran	76 U 13 JB	18 J 23 JB	43 J 34 JB	6.6 J 14 JB
Diethyl phthalate Dimethylphthalate	13 JB 76 U	23 JB 310 U	34 JB 410 U	77 U
Fluoranthene	150	1500	220 J	320
Fluorantnene	76 U	34 J	27 J	12 J
Hexachlorobenzene	76 U	310 U	410 U	77 U
Hexachlorobutadiene	76 U	310 U	410 U	77 U
Hexachlorocyclopentadiene	76 ∪	310 U	410 ∪	77 U
Hexachloroethane	76 ∪	310 U	410 U	77 U
Indeno[1,2,3-cd]pyrene	61 J	400	96 J	98
Isophorone	76 U	310 U	410 U	77 U 77 U
N-Nitrosodiphenylamine	76 ∪	310 U	410 ∪	77 0

Table 15-5 68 - Sennyolaules in Soil vs PRG-DND Non-Evaluated EBS Sites

SITE DESCRIPTION	SEAD-68 Old Pesticide Control Shop (Bldg S-335)		SEAD-68 Old Pestici Control Shi (Bldg S-33	ор	SEAD-68 Old Peshcid Control Sho (Bldg \$-33)	P	SEAD-68 Old Pestici Control Sh (Bldg S-33	ор
LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE	SS68-2 EB143 SA 0 0 2 SOIL	/98	SS68-3 EB144 SA 0 0 2 SOIL	/10/98	SS68-4 EB145 SA 0 0 2 SOIL	0/98	SS68-5 EB146 SA 0 0 2 SOIL	/10/98
PARAMÉTER 1,2,4-Trichlorobenzene N-Nitrosodipropylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene		Q 76 U 76 U 76 U 76 U 76 U 180 U 54 J 76 U	VALUE	Q 310 U 310 U 310 U 310 U 740 U 480 310 U 1500	VALUE	Q 410 U 410 U 78 J 410 U 1000 U 210 J 410 U 260 J	VALUE	77 U 77 U 65 J 77 U 190 U 150 77 U 310

Table 15-6 68 - Pesticides in Soil vs T \GMs Non-Evaluated EBS Sites

SITE DESCRIPTION.									SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pestic Control S (Bldg. S-3	cide hop
LOC ID SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT.									SB68-1 EB250 SA 0 0.3	SB68-1 EB251 SA 4.5 4.8	
MATRIX: SAMP. DATE:			FREQUENCY OF			NUMBER	NUMBER	NUMBER	SOIL 3/16/98	SOIL	3/16/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	ABOVE TAGM	OF DETECTS	OF ANALYSES	VALUE Q	VALUE	Q
4.4 -DDD	UG/KG	0.0	0.00%	2900	23847	0	0	9	3.5 U	VALUE	3.5 U
4.4 -DDE	UG/KG	260.0	100.00%	2100	16833	0	7	7	3.5 U		3.5 U
4,4'-DDT	UG/KG	4000.0	100.00%	2100	16833	1	6	6	3.5 U		3.5 U
Aldrin	UG/KG	0.0	0.00%	41	337	0	0	9	1.8 U		1.8 U
Alpha-BHC	UG/KG	0.0	0.00%	110	337	0	0	9	1.8 U		1.8 U
Alpha-Chlordane	UG/KG	24.0	83.33%	110		0	5	6	1.8 U		
Beta-BHC	UG/KG	0.0	0.00%	200		0	0	9	1.8 U		1.8 U
Delta-BHC	UG/KG	0.0	0.00%	300		0	0	9	1.8 U		1.8 U
Dieldrin	UG/KG	0.0	0.00%	44	358	0	0	9	3.5 U		1.8 U 3.5 U
Endosulfan i	UG/KG	0.0	0.00%	900	3153600	0	0	9	1.8 U		1.8 U
Endosulfan II	UG/KG	0.0	0.00%	900	3133600	0	0	9	3.5 U		3.5 U
Endosulfan sulfate	UG/KG	0.0	0.00%	1000		0	0	9	3.5 U		3.5 U
Endrin	UG/KG	0.0	0.00%	100	157680	0	0	9	3.5 U		3.5 U
Endrin aldehyde	UG/KG	0.0	0.00%	100	157680	0	0	9	3.5 U		3.5 U
Endrin alderryde Endrin ketone	UG/KG	2.3	12.50%		157680	0	1	8	3.5 U		3.5 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%	60	4402	0	0	9	1.8 U		1.8 U
Gamma-Chlordane	UG/KG	23.0	62.50%	540	4402	0	5	8	1.8 U		1.8 U
Heptachlor	UG/KG	0.0	0.00%	100	1272	0	0	9	1.8 U		1.8 U
Heptachlor epoxide	UG/KG	4.0	50.00%	20	629	0	4	8	1.8 U		1.8 U
Methoxychlor	UG/KG	0.0	0.00%	20	2628000	0	0	9	1.8 U		1.8 U
Toxaphene	UG/KG	0.0	0.00%		2020000	0	0	9	180 U		180 U
Azinphos-methyl	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Bolstar (Sulprofos)	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Chlorpyrifos	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Coumaphos	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Demeton-O	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Diazinon	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Dichlorvos (DDVP)	UG/KG	0.0	0.00%			0	0	. 9	35 U		35 U
Dimethoate	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Disulfoton	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
EPN	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Ethoprop	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Fensulfothion	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Fenthion	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Malathion	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Merphos	UG/KG	0.0	0.00%			Ö	0	9	35 U		35 U
Methyl parathion	UG/KG	0.0	0.00%		131400	0	0	9	35 U		35 U
Mevinphos	UG/KG	0.0	0.00%		.51400	0	0	9	35 U		35 U
Monocrotophos	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Parathion, ethyl	UG/KG	0.0	0.00%	1200		0	0	9	35 U		35 U
Ronnel	UG/KG	0.0	0.00%	1200		0	0	9	35 U		35 U
Stirophos (Tetrachlorovinphos)	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Tokuthion (Protothiofos)	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Trichloronate	UG/KG	0.0	0.00%			0	0	9	35 U		35 U
Hemorollate	30/10	0.0	0.0070			· ·	•	9	55 0		

Table 15-6 68 - Pesticides in Soil vs TAGMs Non-Evaluated EBS Sites

SITE. DESCRIPTION:	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)
LOC ID	SB68-2	SB68-2	SS68-1	SS68-2	SS68-3	SS68-4	SS68-5
SAMP_ID:	EB248	EB249	EB142	EB143	EB144	EB145	EB146
QC CODE	SA	SA	SA	SA	SA	SA	SA
SAMP DETH TOP:	0	4	0	0	0	0	0
SAMP DEPTH BOT:	0.2	4.4	0.2	0.2	0.2	0.2	0 2
MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE:	3/16/98	3/16/98	3/10/98	3/10/98	3/10/98	3/10/98	3/10/98
PARAMETER	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4,4`-DDD	3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	41 U	3.8 U
4,4`-DDE	19	4.2	83 D	130 D	26	260	36
4,4`-DDT	22	3.5 U	28	170 D	23	4000 D	330 D
Aldrin	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	21 U	1.9 U
Alpha-BHC	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	21 U	1.9 U
Alpha-Chlordane	6.2 P	3.7 P	24 D 1.8 U	1,9 U	1.9 U	19 J	1.6 J 1.9 U
Beta-BHC	1.8 U	1.8 U 1.8 U	1.8 U 1.8 U	1.9 U 1.9 U	1.9 U 1.9 U	21 U 21 U	1.9 U 1.9 U
Delta-BHC	1.8 U 3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	21 U	3.8 U
Dieldrin Endosulfan I	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	21 U	1.9 U
Endosulfan II	3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	41 U	3.8 U
Endosulfan sulfate	3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	41 U	3.8 U
Endrin	3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	41 U	3.8 U
Endrin aldehyde	3.5 U	3.5 U	3.6 U	3.8 U	3.9 U	41 U	3.8 U
Endrin ketone	3.5 U	3.5 U	2.3 JP	3.8 U	3.9 U	41 U	3.8 U
Gamma-BHC/Lindane	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	21 U	1.9 U
Gamma-Chlordane	7.5	4.4	23	1.9 U	1.9 U	18 J	1.2 JP
Heptachlor	1.8 U	1.8 U	1.8 U	1.9 U	1.9 U	21 U	1.9 U
Heptachlor epoxide	1.6 J	1.8 U	4 P	1.3 J	3.6	21 U	1.9 U
Methoxychlor	18 U	18 U	18 U	19 U	19 U	210 U	19 U
Toxaphene	180 U	180 U	180 U	190 U	190 U	2100 U	190 U
Azinphos-methyl	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Bolstar (Sulprofos)	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Chlorpyrifos	35 U	35 U	37 U	38 U	37 U	45 U 45 U	37 U 37 U
Coumaphos	35 U	35 U	37 U 37 U	38 U 38 U	37 U 37 U	45 U 45 U	37 U
Demeton-O	35 U 35 U	35 U 35 U	37 U	38 U	37 U	45 U	37 U
Diazinon Dichlorvos (DDVP)	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Dimethoate	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Disulfoton	35 U	35 U	37 U	38 U	37 U	45 U	37 U
EPN	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Ethoprop	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Fensulfothion	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Fenthion	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Malathion	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Merphos	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Methyl parathion	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Mevinphos	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Monocrotophos	35 U	35 U	. 37 U	38 U	37 U	45 U	37 U
Parathion, ethyl	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Ronnel	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Stirophos (Tetrachlorovinphos)	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Tokuthion (Protothiofos)	35 U	35 U	37 U	38 U	37 U	45 U	37 U
Trichloronate	35 U	35 U	37 U	38 U	37 U	45 U	37 ∪

fable 15-7 68 - Pesticides in Soil vs PRG-IND Non-Evaluated FBS Sites

SITE: DESCRIPTION:								Old Co	AD-68 d Pesticide ntrol Shop dg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg S-335)
LOC ID. SAMP_ID: QC CODE. SAMP_DETH TOP: SAMP_DEPTH BOT MATRIX:								EB SA 0 0.3 SC	3 DIL	SB68-1 EB251 SA 4.5 4.8 SOIL	SB68-2 EB248 SA 0 0.2 SOIL
SAMP. DATE:			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	3/16/98	3/16/98	3/16/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES VA		VALUE Q	VALUE
4.4`-DDD	UG/KG	0.0	0.00%	2900	23847	0	0	9	3.5 U	3.5 U	3.5
4.4 -DDE	UG/KG	260.0	100.00%	2100	16833	0	7	7	3.5 U	3.5 U	19
4,4°-DDT	UG/KG	4000.0	100.00%	2100	16833	0	6	6	3.5 U	3.5 U	22
Aldrin	UG/KG	0.0	0.00%	41	337	0	0	9	1.8 U	1.8 U	1.8
Alpha-BHC	UG/KG	0.0	0.00%	110		0	0	9	1.8 U	1.8 U	1.8
Alpha-Chlordane	UG/KG	24.0	83.33%			0	5	6	1.8 U	1.8 U	6.2
Beta-BHC	UG/KG	0.0	0.00%	200		0	0	_	1.8 U	1.8 U	1.8
Delta-BHC	UG/KG	0.0	0.00%	300		0	0	9	1.8 U	1.8 U	1.8
Dieldrin	UG/KG	0.0	0.00%	44	358	0	0	9	3.5 U	3.5 U	3.5
Endosulfan I	UG/KG	0.0	0.00%	900	3153600	0	0	9	1.8 U	1.8 U	1.8
Endosulfan II	UG/KG	0.0	0.00%	900		0	0	9	3.5 U	3.5 U	3.5
Endosulfan sulfate	UG/KG	0.0	0.00%	1000	457000	0	0	9 9	3.5 U	3.5 U	3.5
Endrin	UG/KG	0.0	0.00%	100	157680	0	0		3.5 U	3.5 U	3.5
Endrin aldehyde	UG/KG	0.0	0.00%		157680	0	0	9 8	3.5 U 3.5 U	3.5 U 3.5 U	3.5 3.5
Endrin ketone	UG/KG	2.3	12.50%	co	157680	0					3.5 1.8
Gamma-BHC/Lindane	UG/KG	0.0 23.0	0.00% 62,50%	60 540	4402	0	0 5	8	1.8 U 1.8 U	1.8 U 1.8 U	7.5
Gamma-Chlordane	UG/KG	0.0	0.00%	100	1272	0	0		1.8 U	1.8 U	1.8
Heptachlor	UG/KG UG/KG	4.0	50.00%	20	629	0	4	8	1.8 U	1.8 U	1.6
Heptachlor epoxide	UG/KG	0.0	0.00%	20	2628000	0	0		1.8 U	18 U	18
Methoxychlor	UG/KG	0.0	0.00%		2020000	0	0		180 U	180 U	180
Toxaphene	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Azinphos-methyl Bolstar (Sulprofos)	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Chlorpyrifos	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Coumaphos	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Demeton-O	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Diazinon	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Dichlorvos (DDVP)	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Dimethoate	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Disulfoton	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
EPN	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Ethoprop	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Fensulfothion	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Fenthion	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Malathion	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Merphos	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Methyl parathion	UG/KG	0.0	0.00%		131400	0	0	9	35 U	35 U	35
Mevinphos	UG/KG	0.0	0.00%			0	0		35 U	35 U	35
Monocrotophos	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Parathion, ethyl	UG/KG	0.0	0.00%	1200		0	0	9	35 U	35 U	35
Ronnel	UG/KG	0.0	0.00%	-		0	0	9	35 U	35 U	35
Stirophos (Tetrachłorovinpho		0.0	0.00%			0	0	9	35 U	35 U	35
Tokuthion (Protothiofos)	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35
Trichloronate	UG/KG	0.0	0.00%			0	0	9	35 U	35 U	35

Table 15-7
68 - Pesticides in Soil vs PRG-IND
Non-Evaluated EBS Sites

SITE. DESCRIPTION.		SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg, S-335)	SEAD-68 Old Pesticide Control Shop (Bldg, S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)
LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP DEPTH BOT: MATRIX.		SB68-2 EB249 SA 4 4.4 SOIL	SS68-1 EB142 SA 0 0.2 SOIL	SS68-2 EB143 SA 0 0 2 SOIL	SS68-3 EB144 SA 0 0.2 SOIL	SS68-4 EB145 SA 0 0.2 SOIL	SS68-5 EB146 SA 0 0.2 SOIL
SAMP. DATE:		3/16/98	3/10/98	3/10/98	3/10/98	3/10/98	3/10/98
PARAMETER 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Alpha-BHC Alpha-Chlordane Beta-BHC Della-BHC Dieldrin	000000000	VALUE Q 3.5 U 4.2 3.5 U 1.8 U 1.8 U 3.7 P 1.8 U 1.8 U 3.5 U	VALUE Q 3.6 U 83 D 28 1.8 U 1.8 U 24 D 1.8 U 1.8 U 3.6 U	VALUE Q 3.8 U 130 D 170 D 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.8 U	VALUE Q 3.9 U 26 23 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.9 U	VALUE Q 41 U 260 4000 D 21 U 21 U 19 J 21 U 21 U 41 U	VALUE Q 3.8 U 36 330 D 1.9 U 1.9 U 1.6 J 1.9 U 1.9 U 3.8 U
Endosulfan I Endosulfan II Endosulfan sulfate Endrin	U U U	1.8 U 3.5 U 3.5 U 3.5 U 3.5 U	1.8 U 3.6 U 3.6 U 3.6 U 3.6 U	1.9 U 3.8 U 3.8 U 3.8 U 3.8 U	1.9 U 3.9 U 3.9 U 3.9 U 3.9 U	21 U 41 U 41 U 41 U 41 U	1.9 U 3.8 U 3.8 U 3.8 U 3.8 U
Endrin aldehyde Endrin ketone Gamma-BHC/Lindane Gamma-Chlordane Heptachlor	U U U	3.5 U 1.8 U 4.4 1.8 U	2.3 JP 1.8 U 23 1.8 U	3.8 U 1.9 U 1.9 U 1.9 U	3.9 U 1.9 U 1.9 U 1.9 U	41 U 21 U 18 J 21 U	3.8 U 1.9 U 1.2 JP 1.9 U
Heptachlor epoxide Methoxychlor Toxaphene Azinphos-methyl	J U U	1.8 U 18 U 180 U 35 U 35 U	4 P 18 U 180 U 37 U 37 U	1.3 J 19 U 190 U 38 U 38 U	3.6 19 U 190 U 37 U 37 U	21 U 210 U 2100 U 45 U 45 U	1.9 U 19 U 190 U 37 U 37 U
Boistar (Sulprofos) Chlorpyrifos Coumaphos Demeton-O Diazinon	U U U	35 U 35 U 35 U 35 U	37 U 37 U 37 U 37 U 37 U	38 U 38 U 38 U 38 U	37 U 37 U 37 U 37 U 37 U	45 U 45 U 45 U 45 U	37 U 37 U 37 U 37 U
Dichlorvos (DDVP) Dimethoate Disulfoton EPN	U U U	35 U 35 U 35 U 35 U	37 U 37 U 37 U 37 U	38 U 38 U 38 U 38 U	37 U 37 U 37 U 37 U	45 U 45 U 45 U 45 U	37 U 37 U 37 U 37 U
Ethoprop Fensulfothion Fenthion Malathion	U U U	35 U 35 U 35 U 35 U	37 U 37 U 37 U 37 U 37 U	38 U 38 U 38 U 38 U	37 U 37 U 37 U 37 U 37 U	45 U 45 U 45 U 45 U 45 U	37 U 37 U 37 U 37 U 37 U
Merphos Methyl parathion Mevinphos Monocrotophos Parathion, ethyl	U U U U	35 U 35 U 35 U 35 U 35 U	37 U 37 U 37 U 37 U 37 U	38 U 38 U 38 U 38 U 38 U	37 U 37 U 37 U 37 U 37 U	45 U 45 U 45 U 45 U	37 U 37 U 37 U 37 U 37 U
Ronnel Stirophos (Tetrachlorovinpho Tokuthion (Protothiofos) Trichloronate	U	35 U 35 U 35 U 35 U	37 U 37 U 37 U 37 U 37 U	38 U 38 U 38 U 38 U	37 U 37 U 37 U 37 U 37 U	45 U 45 U 45 U 45 U 45 U	37 U 37 U 37 U 37 U

Table 15-8 68 - Herbicides and Arsenic in Soil vs TAGM Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-68 Old Pesti Control S (Bldg. S-5	icide Shop	SEAD-68 Old Pestic Control Sh (Bldg. S-3	пор
LOC ID:									SB68-1		SB68-1	
SAMP_ID:									EB250		EB251	
QC CODE:									SA		SA	
SAMP, DETH TOP:									0		4.5	
SAMP. DEPTH BOT:									0.3		4.8	
MATRIX:			EDEOUENOV				AU III ADCD		SOIL	0140100	SOIL	140100
SAMP. DATE:			FREQUENCY OF			NUMBER ABOVÉ	NUMBÉR OF	NUMBER OF		3/16/98	3	3/16/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
2,4,5-T	UG/KG	25.0	12.50%	1900	FKG	0	1		8	5 U	VALUE	5 U
2,4,5-TP/Silvex	UG/KG	0.0	0.00%	700		0	0		9	5 U		5 U
2,4-D	UG/KG	0.0	0.00%	500		0	0		9	49 U		49 U
2,4-DB	UG/KG	90.0	12.50%	300		0	1		8	50 U		50 U
3,5-Dichlorobenzoic acid	UG/KG	0.0	0.00%			0			9	49 U		49 U
Dalapon	UG/KG	0.0	0.00%			0	0		9	270 U		270 U
Dicamba	UG/KG	0.0	0.00%			0	0		9	4.9 U		4.9 U
Dichloroprop	UG/KG	0.0	0.00%			0	0		9	49 U		49 U
Dinoseb	UG/KG	0.0	0.00%			0	0		9	25 U		25 U
MCPA	UG/KG	0.0	0.00%			0	0		9	4900 U		4900 U
MCPP	UG/KG	0.0	0.00%			0	0		9	4900 U		4900 U
Pentachlorophenol	UG/KG	24.0	11.11%	1000	47693	0	1		9	18 U		18 U
Picloram	UG/KG	0.0	0.00%		36792000	0	0		9	5 U		5 U
Arsenic	MG/KG	11.3	100.00%	8.9	3.19	1.00	9.00		9	5.2 N*		4.7 N*

Fable 15-8 68 - Herbicides and Arsenic in Soil vs TAGM Non-Evaluated FBS Sites

SITE: DESCRIPTION:	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)						
LOC ID:	SB68-2	SB68-2	SS68-1	SS68-2	SS68-3	SS68-4	SS68-5
SAMP_ID:	EB248	EB249	EB142	EB143	EB144	EB145	EB146
QC CODE:	SA						
SAMP, DETH TOP:	0	4	0	0	0	0	0
SAMP, DEPTH BOT:	0 2	4.4	0 2	0.2	0.2	0.2	0.2
MATRIX:	SOIL						
SAMP. DATE:	3/16/98	3/16/98	3/10/98	3/10/98	3/10/98	3/10/98	3/10/98
PARAMETER	VALUE Q						
2,4,5-T	5.1 U	5 U	5.3 U	5.5 U	5.4 U	25 P	5.3 U
2.4.5-TP/Silvex	5.1 U	5 U	5.3 U	5.5 U	5.4 U	6.6 U	5.3 U
2.4-D	50 U	49 U	52 U	54 U	53 U	64 U	52 U
2,4-DB	51 U	50 U	53 U	55 U	54 U	90 P	53 U
3,5-Dichlorobenzoic acid	50 U	49 U	52 U	54 U	53 U	64 U	52 U
Dalapon	280 U	270 U	290 U	300 U	290 U	360 U	290 U
Dicamba	5 U	4.9 U	5.2 U	5.4 U	5.3 U	6.4 U	5.2 U
Dichtoroprop	50 U	49 U	52 U	54 U	53 U	64 U	52 U
Dinoseb	25 U	25 U	27 U	28 U	27 U	33 U	27 U
MCPA	5000 U	4900 U	5200 U	5400 U	5300 U	6400 U	5200 U
MCPP	5000 U	4900 U	5200 U	5400 U	5300 U	6400 U	5200 U
Pentachlorophenol	18 U	18 U	19 U	24	19 U	23 U	19 U
Picloram	5.1 U	5 U	5.3 U	5.5 U	5.4 U	6.6 U	5.3 U
Arsenic	3.9 N	60 N*	8.3 N*	3.8 N*	7.7 N*	11.3 N*	6.6 N*

Table 15-9
68 - Herbicides and Arsenic in Soil vs PRG-IND
Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)
LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT:									SB68-1 EB250 SA 0	SB68-1 EB251 SA 4.5 4.8
MATRIX: SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL 3/16/98	SOIL 3/16/98
SAMP. DATE.			OF			ABOVE	OF	OF	3/10/30	3/10/30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q
2,4,5-T	UG/KG	25.0	12.50%	1900		0	1	8	5 U	5 U
2,4,5-TP/Silvex	UG/KG	0.0	0.00%	700		0	0	. 9	5 U	5 U
2,4-D	UG/KG	0.0	0.00%	500		0	0	9	49 U	49 U
2,4-DB	UG/KG	90.0	12.50%			0	1	8	50 U	50 U
3,5-Dichlorobenzoic acid	UG/KG	0.0	0.00%			0	0	9	49 U	49 U
Dalapon	UG/KG	0.0	0.00%			0	0	9	270 U	. 270 U
Dicamba	UG/KG	0.0	0.00%			0	0	9	4.9 U	4.9 U
Dichloroprop	UG/KG	0.0	0.00%			0	0	9	49 U	49 U
Dinoseb	UG/KG	0.0	0.00%			0	0	9	25 U	25 U
MCPA	UG/KG	0.0	0.00%			0	0	9	4900 U	4900 U
MCPP	UG/KG	0.0	0.00%			0	0		4900 U	4900 U
Pentachlorophenol	UG/KG	24.0	11.11%	1000	47693	0	1	9	18 U	18 U
Picloram	UG/KG	0.0	0.00%		36792000	0	0	9	5 U	5 U
Arsenic	MG/KG	11.3	100.00%	8.9	3.19	9.00	9.00	9	5,2 N°	4.7 N°

Table 15-9 68 - Herbicides and Arsenic in Soil vs PRG-IND Non-Evaluated EBS Sites

SITE: DESCRIPTION:	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)	SEAD-68 Old Pesticide Control Shop (Bldg, S-335)	SEAD-68 Old Pesticide Control Shop (Bldg. S-335)				
LOC ID:	SB68-2	SB68-2	SS68-1	SS68-2	SS68-3	SS68-4	SS68-5
SAMP_ID:	EB248	EB249	EB142	EB143	EB144	EB145	EB146
QC CODE:	SA						
SAMP, DETH TOP:	0	4	0	0	0	0	0
SAMP, DEPTH BOT:	0.2	4.4	0.2	0.2	0.2	0.2	0.2
MATRIX:	SOIL						
SAMP. DATE:	3/16/98	3/16/98	3/10/98	3/10/98	3/10/98	3/10/98	3/10/98
PARAMETER	VALUE Q						
2,4,5-T	5.1 U	5 U	5.3 U	5.5 U	5.4 U	25 P	5.3 U
2,4,5-TP/Silvex	5.1 U	5 U	5.3 U	5.5 U	5.4 U	6.6 U	5.3 U
2,4-D	50 U	49 U	52 U	54 U	53 U	64 U	52 U
2,4-DB	51 U	50 U	53 U	55 U	54 U	90 P	53 U
3,5-Dichlorobenzoic acid	50 U	49 U	52 U	54 U	53 U	64 U	52 U
Dalapon	280 U	270 U	290 U	300 U	290 U	360 U	290 U
Dicamba	5 U	4.9 U	5.2 U	5.4 U	5.3 U	6.4 U	5.2 U
Dichloroprop	50 U	49 U	52 U	54 U	53 U	64 U	52 U
Dinoseb	25 U	25 U	27 U	28 U	27 U	33 U	27 U
MCPA	5000 U	4900 U	5200 U	5400 U	5300 U	6400 U	5200 U
MCPP	5000 U	4900 U	5200 U	5400 U	5300 U	6400 U	5200 U
Pentachlorophenol	18 U	18 U	19 U	24	19 U	23 U	19 U
Picloram	5.1 U	5 U	5.3 U	5.5 U	5.4 U	6.6 U	5.3 U
Arsenic	3.9 N*	6.0 N*		3.8 N*	7.7 N*	11.3 N°	6.6 N°

SEAD-120A 50 Area Dumping Areas

Table 16-1

Sample Collection Information SEAD-120A - 50 Area Dumping Areas

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL.	TP120A-1	EB155	3/3()/98	0.0	() 6	SA	Location is a mound in the southeastern portion of the site. Chosen because the mound is located near Ovid Road and has an access ramp leading to it, it is also near rr tracks, near possible staging area.
SOIL	TP120A-1	EB032	3/30/98	0.0	0.6	DU	Same location as above
SOIL	TP120A-1	EB156	3/30/98	2 0	2.5	SA	Location is the same as above. The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil
SOIL	TP120A-2	EB157	3/31/98	0.0	0.2	SA	Location is a mound in the eastern portion of the site west of Building 2084. Chosen because the mound is located near Seneca Road and is covered in dehris, it appeared to he a building material dump area.
SOIL	TP120A-2	EB158	3/31/98	2 0	2 2	SA	Location is the same as above The sample was collected directly below debris.
SOIL	TP120A-3	EB159	3/30/98	0.0	0.6	SA	Location is a mound in the southwestern portion of the site. Chosen because the mound is next to railroad tracks and there was little vegetation on the surface of the mound.
SOIL	TP120A-3	EB160	3/30/98	2.0	2.5	SΛ	Location is the same as above. The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil.
SOIL	TP120A-4	EB161	3/30/98	0.0	0.6	SΛ	Location is a mound in the southwestern portion of the site. Chosen because the mound is at the end of railroad tracks where dumping occured, there were several rusty drums at the base of the mound.

Table 16-1

Sample Collection Information SEAD-120A - 50 Area Dumping Areas

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	TP120A-4	EB162	3/30/98	2 0	2.5	SA	Location is the same as above The sample was collected at approximately mid-depth in the pit because there were no VOC hits or impacts to soil
SOIL	TP120A-5	EB163	3/30/98	0.0	0.6	SA	Location is a mound in the northwestern portion of the site. Chosen because the mound is near West Patrol Road and it is in an area that has easy access for dumping.
SOIL	TP120A-5	EB164	3/30/98	10	1.2	SA	Location is the same as above The sample was collected at approximately mid-depth in the pit because there were no VOC bits or impacts to soil
WATER	TP120A-1	EB033	3/30/98	0.0	0.0	RB	NA

Notes

SA - Sample

RB = Rinse Blank

NA ~ Not Applicable

| Lable 16 | Sol | C | AGM | Non 1 | duated LBS Sites |

SITE DESCRIPTION									SEAD 120A 50 Area Dumping Areas	SEAD 50 Are Areas	120A a Dumping	SEAD-12 50 Area D Areas		SEAD-120/ 50 Area Du Areas		SEAD-12 50 Area D Areas	
LOC ID SAMP_ID OC CODE									TP120A-1 EB155 SA	TP120 E8032 DU		TP120A 1 EB156 SA	ı	TP120A-2 EB157 SA		TP120A-2 EB158 SA	!
SAMP DETH TOP									0	0		2		0		2	
SAMP DEPTH BOT MATRIX									SOIL	0 6 SOIL		2 5 SOIL		0.2 SOIL		2.2 SOIL	
SAMP DATE		F	REQUENCY			NUMBER	NUMBÉR	NUMBER	30-Mar-98	301	30-Mar-98		30-Mar-98		1-Mar-98		31-Mar-98
SAM DATE			OF			ABOVE	OF	OF	30 (114) 30		30-14101-30		30 11181 30		1-14-01-50		31-Wai-30
PARAMETER	UNIT	MAXIMUM D		TAGM	PRG-REC	TAGM	DETECTS	ANALYSES	VALUE	Q VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	36850962	0	0	11	11	U	11 U		12 U		13 U		13 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0.00%	600	3439423	0	0	11	11	U	11 U		12 U		13 U		13 U
1 1,2-Trichloroethane	UG/KG	0	0 00%		1206815	0	0	11	11	U	11 U		12 U		13 U		13 U
1,1 Dichloroethane	UG/KG	0	0 00%	200	105288462	0	0	11	11	U	11 U		12 U		13 U		13 U
1,1-Dichloroethene	UG/KG	0	0 00%	400	114647	0	0	11	11	U	11 U		12 U		13 ∪		13 U
1,2-Dichloroethane	UG/KG	0	0.00%	100	755917	0	0	11	11	U	11 U		12 U		13 U		13 ∪
1,2-Dichloroethene (total)	UG/KG	0	0 00%			0	0) 11	11	U	11 U		12 U		13 U		13 U
1,2-Dichloropropane	UG/KG	0	0 00%		1011595	0	C			U	11 U		12 U		13 U		13 U
Acetone	UG/KG	18	45 45%	200	105288462	0	5	5 11	11	U	11 U		12 U		8 J		8 J
Benzene	UG/KG	0	0.00%	60	2372016	0	C			U	11 U		12 U		13 U		13 U
Bromodichloromethane	UG/KG	0	0 00%		1109491	0	0			U	11 U		12 U		13 U		13 U
Bromoform	UG/KG	0	0.00%		8707400	0	0				11 U		12 U		13 U		13 ∪
Carbon disulfide	UG/KG	0	0 00%	2700	105288462	0	0			U	11 U		12 U		13 U		13 ∪
Carbon tetrachloride	UG/KG	0	0 00%	600	529142	0	0				11 U		12 U		13 U		13 U
Chlorobenzene	UG/KG	0	0 00%	1700	21057692	0	C	, ,		U	11 U		12 U		13 U		13 U
Chlorodibromomethane	UG/KG	0	0.00%		818910	0	C	, .,			11 U		12 U		13 U		13 U
Chloroethane	UG/KG	0	0 00%	1900	421153846	0	Ċ				11 U		12 U		13 U		13 ∪
Chloroform	UG/KG	4	9 09%	300	11276797	0	1	11			11 U		12 U		13 U		13 ∪
Cis 1,3-Dichloropropene	UG/KG	0	0.00%			0	0				11 U		12 U		13 U		13 U
Ethyl benzene	UG/KG	0	0 00%	5500	105288462	0	0				11 U		12 U		13 U		13 U
Methyl bromide	UG/KG	0	0 00%		1505625	0	C				11 U		12 U		13 U		13 U
Methyl butyl ketone	UG/KG	0	0 00%			0	C				11 U		12 U		13 U		13 U
Methyl chloride	UG/KG	0	0.00%		5291420	0	0				11 U		12 U		13 U		13 ∪
Methyl ethyl kelone	UG/KG	0	0 00%	300		0	C				11 U		12 U		13 U		13 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	84230769	0	C				11 U		12 U		13 U		13 U
Methylene chlonde	UG/KG	3	9 09%	100	9171795	0	1	11			11 U		12 U		3 1		13 U
Styrene	UG/KG	0	0 00%			0	C				11 U		12 U		13 U		13 U
Tetrachloroethene	UG/KG	0	0 00%	1400	1322855	0	0				11 U		12 U		13 U		13 U
Toluene	UG/KG	9	81.82%	1500	210576923	0	9			_	11 U		3 J		3 J		9 J
Total Xylenes	UG/KG	0	0 00%	1200	2105769231	0	0				11 U		12 U		13 U		13 U
Trans-1,3-Dichloropropene	UG/KG	0	0 00%			0	C			-	11 U		12 U		13 U		13 U
Trichloroethene	UG/KG	0	0 00%	700	6253497	0	C				11 U		12 U		13 U		13 U
Vinyl chloride	UG/KG	0	0 00%	200	36204	0	c) 11		U	11 U		12 U		13 U		13 U

Table 16.5 129A - Volatiles in Soil v. 1 VGM Non D aluated 138 Site

SITE DESCRIPTION		SEAD-120A 50 Area Dumping	50 A	D-120A rea Dumping	SEAD-120 50 Area D		SEAD-12 50 Area l			20A Dumping		20A Dumping
		Areas	Area		Areas		Areas		Areas		Areas	
FOC ID		TP120A-3		20A-3	TP120A-4		TP120A	4	TP120A	-5	TP120A	-5
SAMP_ID		EB159	EB16	50	EB161		EB162		EB163		EB164	
QC CODE.		SA	SA		SA		SA		SA		SA	
SAMP DETH TOP		0	2		0		2		0		1	
SAMP, DEPTH BOT		0.6	2.5		0.6		2 5		0.6		1.2	
MATRIX		SOIL	SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE		30-Mar 9	3	30-Mar-98	3	30 Mar-98		30-Mar-98		30 Mar-98		30-Mar-98
PARAMETER	UNIT	VALUE	Q VAL	JE Q	VALUE	Q	VALUE	0	VALUE	Q	VALUE	Q
1.1.1-Trichloroethane	UG/KG		2 U	12 U		12 U		11 U		12 U		13 U
1.1.2.2-Tetrachloroethane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
1.1.2-Trichloroethane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
1.1 Dichloroethane	UG/KG		2 U	12 U		12 U		11 U		12 U		13 U
1.1-Dichloroethene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
1.2-Dichloroethane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
1,2-Dichloroethene (total)	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
1.2-Dichloropropane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Acetone	UG/KG		2 U	14		12 U		11 U		18		10 J
Benzene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Bromodichloromethane	UG/KG		2 U	12 U		12 U		11 U		12 U		13 U
Bromoform	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Carbon disulfide	UG/KG		2 U	12 U		12 U		11 U		12 U		13 U
Carbon tetrachloride	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Chlorobenzene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Chlorodibromomethane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Chloroethane	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Chloroform	UG/KG	1	2 U	4 J		12 U		11 U		12 U		13 U
Cis 1,3-Dichloropropene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Ethyl benzene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methyl bromide	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methyl butyl ketone	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methyl chloride	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methyl ethyl ketone	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methyl isobutyl ketone	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Methylene chloride	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Styrene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Tetrachloroethene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Toluene	UG/KG		4 J	3 J		4 J		3 J		3 J		7 J
Total Xylenes	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Trans-1,3-Dichloropropene	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U
Trichloroethene	UG/KG		2 U	12 U		12 U		11 U		12 U		13 U
Vinyl chloride	UG/KG	1	2 U	12 U		12 U		11 U		12 U		13 U

Table 16-3 120 V Volatiles in Soil ve PRG R1 C on Evaluat al 1198 Sites

SITE DESCRIPTION LOC ID SAMP ID GC COSE SAMP DETH TOP SAMP DEPTH BOT MATPIX SAMP DATE		,	FREQUENCY OF			NUMBE R ABOVE	NUMBER OF		0A-1	SEAD-1 50 Area Areas TP120A EB032 DU 0 0 6 SOIL	Dumping	SEAD 50 Area Areas TP120/ EB156 SA 2 2 5 SOIL	Dumping	SEAD-1 50 Area Areas TP120A EB157 SA 0 0 2 SOIL	Dumping	SFAD 1 50 Area Areas TP120A EB158 SA 2 2 2 SOIL	Dumping	SEAD-12/ 50 Area D Areas TP120A-3 EB159 SA 0 0 6 SOIL	tumping	SEAD-12 50 Area D Areas TP120A-1 EB160 SA 2 2 5 SOIL	Dumping	SEAD-12' 50 Area C Areas TP120A-4 EB161 SA 0 0 6 SOIL	umping	SEAD-120A SO Area Dur Areas TP120A-4 EB162 SA 2 2 5 SOIL	
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES VALL	IF O	VALUE	Q	VALUE		VALUE	0	VALUE	Q	VALUE	0	VALUE	0	VALUE	a	VALUE	
1.1.1 Trichloroethane	UG/KG	0.0	0 00%	800	36850962	0	0210010	11	11 U	TALUE	11 U	VALUE	12 U	*FECE	13 U	AVEOC	13 U	AVEOR	12 U	VALUE	12 U	47505	12 U	VACUE	11
1 1 2 2 Tetrachiorogithane	UG'KG	0.0	0 00%	600	3439423	0	0	11	11 U		11 11		12 U		13 U		13 U		12 U		12 U		12 U		11
1 1 2 Trichlorpethane	UG/kG	00	0.00%	000	1206815	0	0	11	11 U		11.0		12 U		13 U		13 U		12 U		12 U		12 U		11
! I Dichlorgethane	UG/KG	0.0	0.00%	200	105288452	0	0	11	11 1)		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
1 1 Dichlorgethene	UG/KG	0.0	0 00%	400	114647	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
1.2-Dichloroethane	UG/KG	0.0	D 00%	100	755917	0	0	- 13	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
1.2 Dichlornethene (total)	UG/KG	0.0	0.00%			0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
1.2 Dichloropropane	UG/KG	0.0	0.00%		1011595	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Acelone	UG/KG	18.0	45 45%	200	105288482	0	5	11	11 U		11 U		12 U		8 J		8 J		12 U		14		12 U		11
Benzene	UG/KG	0.0	0.00%	60	2372016	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Bromodichloromethane	UG/KG	0.0	0.00%		1109491	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Bromoform	UG/KG	0.0	0.00%		8707400	C	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Carbon disulfide	UG/KG	0.0	0.00%	2700	105288462	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Carbon tetrachloride	UG/KG	0.0	0.00%	600	529142	0	0	11	11 U		11 11		12 U		13 U		13 U		12 U		12 U		12 U		1.1
Chlorobenzene	UG/KG	0.0	0.00%	1700	21057692	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Chlorodibromomethane	UG/KG	0.0	0.00%		815910	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Chlorosthane	UG/KG	0.0	0.00%	1900	421153846	0	0	11	11 U		11 ປ		12 U		13 U		13 U		12 U		12 U		12 U		11
Chloroform	UG/KG	40	9 09%	300	11276797	0	1	11	11 U		11 U		12 U		13 U		13 U		12 U		4 3		12 U		11
Cis 1 3 Dichloropropene	UG/KG	0.0	0.00%			0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Ethyl benzene	UG/KG	0.0	0.00%	5500	105288462	٥	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Methyl bromide	UG/KG	0.0	0.00%		1505625	0	D	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Methy! butyl ketone	UG/KG	0.0	0.00%			0	0	1.0	11 U		11 U		12 U		13 U		13 U		12 U		t2 U		12 U		11
Methyl chloride	UCIKG	0.0	0.00%		5291420	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Methyl ethyl ketone	UCNKG	0.0	0.00%	300		0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	84230769	0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Methylene chloride	UG/KG	30	9 09%	100	9171795	0	1	11	11 U		11 U		12 U		3 J		13 U		12 U		12 U		12 U		11
Styrene	UG/KG	0.0	0.00%			0	0	11	11 U		11 U		12 U		13 U		13 U		12 U		12 U		12 U		11
Tetrachloroethene	ug/kg	0.0	0.00%	1400	1322855	0	0	11	11 U		11 0		12 U		13 U		13 U		12 0		12 U		12 U		11
Toluene	UG/KG	9.0	81 82%	1500	210576923	0	9	11	11 U		11 U		3 J		3 3		a 1		4 J		3.7		4 3		3
Total Xylenes	UG/KG	0.0	0 00%	1200	2105769231	0	0	11	11 U		11 U 11 U		12 U		13 U		13 0		12 U		12 U		12 U		11
Trans ! 3 Dichloropropene	UG/KG	0.0	0.00%	700	6262407	0	0	11	11 U		11 0		12 U		13 U		13 U		12 U 12 U		12 U		12 U		11
Trichloroethene	UG/KG	0.0	0 00%	700	6253497 36204		0	11	11 U		11 U		12 U		13 U		13 U 13 U		12 U		12 U		12 U 12 U		11
Vinyl chloride	UG/KG	0.0	0.00%	200	36204	0	0	11	11 0		11 0		12 0		13 0		13 0		12 0		12 0		12 0		17

ž .

								SEAU-120A	SEAU IZUA	
								50 Area Dumping	S0 Area Dumping	5
								Areas	Areas	
								TP120A S	TP120A 5	
								£8163	E8164	
								A CO	SA	
									-	
								90		
									i OS	
	u.	REGUENCY			NUMBER	NUMBER	NUMBER	3D Mar 98	30-Mar 98	98
		ō			ABOVE	90	o.			1
TINO	MAXIMUM DETECTION	DETECTION	TAGM	PRG	TACM	DETECTS	ANALYSES O	VALUE	VALUE	C
HG/KG	0.0	%000	900	36850962	0	0		12		13 0
1.1.2.2 Tetrachloroethane UG/KG	0.0	2,00 o	9	3439423	0	0	11.0			2
UG/KG	00	2,000		1206815	0	0	1			13 0
UG/KG	00	2,000	200	105288452	0	0	11 0	12 0		13 11
UG/KG	00	%00 D	400	114647	С	0	11 U			13 U
UG/KG	00	%000	8	755917	0	0	11 0	12 U		13 17
.2 Dichloroethene (total) UG/KG	00	%000			0	0	0 11	12 n		
NGWG	00	%000		1011595	С	0	11 0	12 U		
USIKG	18.0	45 45%	200	105288462	0	N)	U 11	181		
UG/KG		%000	8	2372016	0	0	11 0	12 U		33.0
UG/KG		0 00%		1109491	0	0	11 0	12 U		13 U
DXXCO		%00 D		8707400	0	0	11 0	12 U		13 0
UG/KG		%.00 0	2700	105288452	0	0	11 0	12 U		13 U
UG/KG		7,000	909	529142	0	0	11 0	U 21		13 U
UG/KG		%00 Q	1700	21057692	0	0	11 0	12 U		13 0
UG/KG		%00 0		818910	0	0	Ξ	12 U		13 U
UGVKG		% 00 0	1900	421153846	0	0	Ξ	12 U		13 U
UGVKG		9 09%	300	11276797	0	-	11 0	12 U		13 U
UGVKG		7,00 D			0	0	11 0	12 U		13 ∪
UG/KG		%00 D	2200	105288462	0	0	11 0	12 U		13 U
UG/KG		%00 D		1505625	0	0	11 0	12 U		13 U
UGVKG		%00 D			0	0		U 51		13 U
UCVKG		₹ 00 0		5291420	0	0		U 21		13 U
UGVKG		0 00%	8		0	0	U 17	12 ∪		13 U
UG/KG		0 00 %	1000	84230769	0	0	11 D	12 U		13 U
UG/KG	30	%60 6	ğ	9171795	0	-	U 11	12 U		0 0
UG/KG	00	%000			0	0	11 0	12 U		13 U
UGAKG	00	0 00%	1400	1322855	0	0	11 0	12 U		13 U
UG/KG	0.6	81 82%	1500	210578923	0	6	1 5	3 3		7
UG/KG	00	9,000	1200	2105769231	0	0	0.11	12 U		13.0
Trans 1.3 Dichloropropene UG/XG	00	7,000			0	0	11 0	12 U		13 U
UGVKG	00	%00 O	700	6253497	0	0	13 0	12 11		13 U

Table 16-4 120 V S no olitiks TPH in Soil vs. [MaS] Non-Evillated [108 Sites

SITE DESCRIPTION									SEAD-12 50 Area I Areas		SEAD-1; 50 Area Areas		SEAD-120 50 Area Do Areas		SEAD-120 50 Area Du Areas		SEAD-120/ 50 Area Du Areas		SEAD-120: 50 Area Du Areas		SEAD-120A 50 Area Dump Areas	ng	SEAD-120 50 Area D Areas	
LOC ID SAMP_ID QC CODE									TP120A- EB155 SA	-1	TP120A- E8032 DU	1	TP120A-1 EB156 SA		TP120A-2 EB157 SA		TP120A-2 EB158 SA		TP120A-3 E8159 SA		TP120A-3 EB160 SA		TP120A-4 EB161 SA	
SAMP DETH TOP									0		0		2		0		2		0		2		0	
SAMP DEPTH BOT MATRIX									0 6 SOIL		0.6 SOIL		2 5 SOIL		0 2 SOIL		2 2 SOIL		0.6 SOIL		25 SOIL		0 6 SOIL	
SAMP DATE		F	REQUENCY			NUMBER	NUMBER	NUMBER		30-Mar 98		30-Mar 98		O-Mar-98		-Mar-98		-Mar-98		-Mar-98	30-M	r-98		0-Mar-98
PARAMETER	UNIT	MAXIMUM E	OF	TAGM	PRG	ABOVE TAGM	OF DETECTS	OF ANALYSES	VALUE	0	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	a	VALUE	0	VALUE	Ω	VALUE	Ω
1 2 4 Trichlorobenzene	UG/KG	0.0	0.00%	3400	10528845	1,4000		NAME (SES		78 U	AVEGE	77 U	VALUE	78 U	VACUE	87 U	VALUE	87 U	VALUE	77 U	VALUE	76 U	VALUE	90 U
1 2-Dichlornbenzene	UG/KG	0.0	0.00%	7900	94759515	0		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		60 U
1 3 Dichlorobenzene 1 4 Dichlorobenzene	UG/KG UG/KG	00	0.00%	1600 8500	93706731 2866186	0		1		76 U 78 U		77 U 77 U		78 U 78 U		87 U		87 U 87 U		77 U 77 U		75 U 76 U		80 U 80 U
2 4 5-Trichlorophenol	UG/KG	00	0.00%	100	105288462	c		i		190 U		190 U		190 U		210 U		210 U		190 U		180 U		190 U
2.4 6 Trichlorophenol	UG/KG	0.0	0.00%		6253497	0	0	1	•	78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
2.4-Dichlorophenol	UG/KG UG/KG	0.0	0.00%	400	3158654 21057692	C		1		78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U 77 U		76 U		60 U
2 4-Dimethylphenol 2.4-Dinitrophenol	UG/KG UG/KG	00	0.00%	200	21057692	0		1		190 U		190 U		78 U		210 U		87 U 210 U		77 U 190 U		76 U 180 U		80 U 190 U
2.4-Dinitrotoluene	UG/KG	0.0	0 00%	200	2105769	Č		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		90 U
2 6-Dinstrotoluene	UG/KG	0.0	0.00%	1000	1052885			1		78 U		77 U		78 U		87 U		87 U		77 U		75 U		80 U
2-Chloronaphthalene	UG/KG UG/KG	0.0	0.00%	800	5264423	0		1		78 U 78 U		77 U 77 U		78 U		87 U 87 U		87 U 87 U		77 U 77 U		75 U		80 U 80 U
2 Chlorophenol 2 Methylnaphthalene	UG/KG	20.0	27 27%	36400	5264423			,		78 U		77 U		78 U		87 U		73 J		77 U		76 U		80 U
2 Methylphenol	UG/KG	0.0	0 00%	100) 0	t	1	78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
2 Nifroaniline	UG/KG	0.0	0.00%	430	63173	0		1		190 U		190 U		190 U		210 U		210 U		190 U		180 U		190 U
2-Nitrophenol 3.3 -Dichlorobenzidine	UG/KG UG/KG	0.0	0 00%	330		0		1		78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U 77 U		76 U 76 U		80 U 80 U
3-Nitroaniline	UG/KG	00	0.00%	500	3158654			1		190 U		190 U		190 U		210 U		210 U		190 U		180 U		190 U
4 6-Dinitro-2-methylphenol	UG/KG	0.0	0 00%			Ċ		1	1	190 U		190 U		190 U		210 U		210 U		190 U		180 U		190 U
4-Bromophenyl phenyl ether	UG/KG	0.0	0 00%		61067308			1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
4 Chloro-3-methylphenol 4-Chloroaniline	UG/KG UG/KG	00	0 00%	240 220	4211538	0		1 1		78 U 78 U		77 U 77 U		78 U		87 U 87 U		67 U 87 U		77 U 77 U		76 U		90 U
4-Chlorophenyl phenyl ether	UG/KG	56	9 09%	220	4211330			i		78 U		77 U		78 U		87 U		56 J		77 U		76 U		80 U
4-Methylphenol	UG/KG	0.0	0.00%	900		Ċ	0	1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
4-Nifroaniline	UG/KG	0.0	0 00%	100	3158654 63173077	0		1 7		190 U 190 U		190 U 190 U		190 U		210 U 210 U		210 U 210 U		190 U 190 U		180 U 180 U		190 U 190 U
4-Nitrophenol Acenaphthene	UG/KG UG/KG	00 53	0 00% 9 09%	100 50000	63173077			1		78 U		190 U		78 U		210 U 87 U		53 J		77 U		76 U		190 U
Acenaphthylene	UG/KG	49	9 09%	41000		Č		1		78 U		77 U		78 U		87 U		49 J		77 U		76 U		80 U
Anthracene	UG/KG	69	18 18%	50000	31586538\$	0		1		78 U		77 U		78 U		69 J		61 J		77 U		76 U		80 U
Benzo[a]anihracene Benzo[a]pyrene	UG/KG UG/KG	37 0 31 0	36 36% 45 45%	224 61	9423	0		1		78 U 78 U		77 U 77 U		78 U 78 U		37 J 31 J		16 J 16 J		77 U 77 U		76 U 76 U		80 U 80 U
Benzojajpyrene Benzojbjfluoranihene	UG/KG	38.0	50 00%	1100	94231	Č		1		78 U		77 U		78 U		38 J		20 J		77 U		76 U		80 U
Benzo(ghi perylene	UG/KG	26 0	45 45%	50000			5	1	•	78 U		77 U		78 U		26 J		15 J		77 U		76 U		90 U
Benzo[kMuoranthene	UG/KG	33 0	27 27%	1100	942308	(7		78 U		77 U		78 U		33 J 87 U		15 J 87 U		77 U 77 U		76 U		80 U
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyt)ether	UG/KG UG/KG	00	0 00%		62535	0		1		78 U 78 U		77 U 77 U		78 U		87 U		87 U		77 U		76 U 76 U		80 U
Brs(2-Chloraisopropyl)ether	UG/KG	0.0	0 00%		982692	č		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
Brs(2-Ethylberyl)phihalate	UG/KG	35 0	100 00%	50000						7 2 JB		65 JB		68 JB		35 JB		12 JB		5 2 JB		66 JB		86 JB
Butylbenzylphthalate	UG/KG UG/KG	93 140	18 18% 18 18%	50000	210576923 3439423	0		1		78 U		77 U 77 U		78 U 78 U		87 U 12 J		67 J 14 J		77 U 77 U		76 U 76 U		80 U 80 U
Carbazole Chrysene	UG/KG	43.0	36 36%	400	9423077			1		78 U		77 U		78 U		43 J		21 J		77 U		76 U		90 U
Di n-butyiphthalate	UG/KG	7 7	18 18%	8100		Ċ	2	1	t	78 U		77 U		78 U		87 U		77 J		77 U		76 U		80 U
Di-n-octy/phthalate	UG/KG	5.3	9 09%	50000	21057692			1		78 U 78 U		77 U 77 U		78 U		87 U 11 J		53 J 11 J		77 U 77 U		76 U 76 U		80 U 80 U
Dibenzja,hjanthracene Dibenzofuran	UG/KG UG/KG	11 0 6 5	27 27% 18 18%	14 6200	4211538		, ,	1		78 U		77 U		78 U		11 J 87 U		65 J		77 U		76 U		80 U
Diethyl phthalate	UG/KG	97	63 64%	7100	842307692	č		1		78 U		77 U		59 JB		48 JB		97 J8		77 U		E3 JB		44 JB
Dimethylphthalate	UG/KG	0.0	0.00%	2000	10528845150			1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		t) 08
Fluoranthene Fluorene	UG/KG UG/KG	96 0 6 5	36 36%	50000 50000	42115385 42115385			1		78 U 78 U		77 U 77 U		78 U		96 87 U		33 J 65 J		77 U 77 U		76 U 76 U		80 U 80 U
Hexachlorobenzene	UG/KG	00	0.00%	410	42993	Ċ		i		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
Hexachlorobuladiene	UG/KG	0.0	0 00%		210577			1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
Hexachlorocyclopentadiene	UG/KG	0.0	0 00%		7370192			1		78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U 77 U		76 U 76 U		80 U
Hexachloroethane Indeno[1,2 3-cd]pyrene	UG/KG UG/KG	0 0 24 0	0 00% 36 36%	3200	4913452 94231	(1 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
Isophorone	UÇ/KG	00	0 00%	4400	5-201	ò		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
N-Nitrosodiphenylamine	UG/KG	0.0	0.00%		14038462	0		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
N Nitrosodipropylamine	UG/KG	00	0 00%	13000	42115385			1		78 U 78 U		77 U 77 U		78 U 78 U		87 U		87 U 87 U		77 U 77 U		76 U 76 U		1) 08 U 08
Naphthalene Nitrobenzene	UG/KG UG/KG	10.0	0 00%	200	526442	,		1		78 U		77 U		78 U		87 U		87 U		77 U		76 U		80 U
Pentachlorophenol	UG/KG	0.0	0 00%	1000	573237	Č	0	1		190 U		190 U		190 U		210 U		210 U		190 U		180 U		190 U
Phenanthrene	UG/KG	50 0	36 36%	50000				1		78 U 78 U		77 U 77 U		78 U		50 J 87 U		19 J 87 U		77 U		76 U 76 U		80 U 80 U
Phenol	UG/KG UG/KG	0 0 75 0	0 00% 36 36%	30 50000	631730769 31586538	0		1		78 U		77 U 77 U		78 U		87 U 75 J		87 U 28 J		77 U		76 U		80 U
Pyrene TPH	MG/KG	00	0.00%	30000	31300330			1		183 U		19 2 U		167 U		100				176 U		17 1 U		167 U
1111	MOING	00	0.00%			,																-		

| Lable 16-1 | 129 V | Semiyofatik | 1711 in Soil (s. 1346) { | North digital 1118 Site

SITE	SEAD 120A	SEAD-120A	SEAD 120A
DESCRIPTION	50 Area Dumping	50 Area Dumping	50 Area Dumping
LOCID	Areas TP120A-4	Areas TP120A 5	Areas TP100A.5
SAMP ID	EB162	EB163	EB164
OC CODE	SA	SA	SA
SAMP DETH TOP	2	0	1
SAMP DEPTH BOT	25	0.6	1.2
MATRIX	SOIL	SOIL	SOIL
SAMP DATE	30-Mar-98	30-Mar-98	30 Mar 98
PARAMETER			
1.2.4-Trichlorobenzene	VALUE Q 7B U	VALUE Q 83 U	VALUE Q
1.2 Dichlorobenzene	78 U	83 U	84 U
1 3 Dichlorobenzene	78 U	83 U	84 U
1.4 Dichlorohenzene	78 U	83 U	84 U
2 4 5-Trichlaraphenal	190 Lf	200 U	200 U
2 4 6 Trichlorophenol	78 U	83 U	84 U
2 4-Dichlorophenol	78 U	B3 U	84 U
2 4 Dimethylphenol 2 4 Dintriphenol	78 U	83 U 200 U	84 U 200 U
2 4-Dintroppenoi	190 U 78 U	200 U	200 U
2.6-Dinitrataluene	78 U	83 U	84 U
2 Chloronaphthalene	78 U	11 E8	84 U
2-Chlorophenol	78 U	83 U	84 U
2 Methy/naphthalene	78 U	14 J	20 J
2 Methylphenol	78 U	83 U	84 U
2-Nitroantine	190 U	200 ∪	200 U
2 Nitrophenol	78 U	83 U	84 U
3 3 -Dichlorobenzidine 3 Nitroaniline	78 U 190 U	83 U 200 U	84 U 200 U
4 6-Dinitro-2 methylphenol	190 U	200 U	200 U
4-Bromophenyl phenyl ether	78 11	83 11	84 11
4-Chloro-3 methylphenol	78 U	83 U	84 U
4-Chloroaniline	78 U	83 U	84 U
4-Chlorophenyl phenyl ether	78 U	83 U	84 U
4-Methylphenol	78 U	83 U	84 U
4 Nitroaniline	190 U 190 U	200 U 200 U	200 U 200 U
4-Nitrophenol Acenaphthene	190 U	200 U	700 U 84 U
Acenaphthylene	78 U	83 U	84 U
Anthracene	78 U	83 U	84 U
Benzo[a]anthracene	78 U	53 J	57 J
Benzo[a]pyrene	45 J	6 J	56 J
Benzo[b]fluoranthene	83 J	12 JY	73 J
Benzo[ghi perylene	45 J	9 J	71 J
Benzo[k]fluoranthene Bis(2 Chloroethoxy)methane	78 U 78 U	83 U 83 U	5.2 J 84.11
Bis(2-Chloroethyl)ether	78 U	83 U	84 U
Bis(2-Chloroisopropyl)ether	78 U	83 U	84 U
Brs(2-Ethylhexyl)phthalate	65 J	5 2 JB	4 4 JB
Butylbenzylphthalate	9 3 JB	83 U	84 U
Carbazole	78 U	83 U	84 U
Chrysene	78 U	10 J 83 U	12 J 84 U
Di n butylphthalate Di-n-octylphthalate	48 J 78 U	83 U	84 U
Dihenz[a,h]anthracene	62 J	83 U	84 U
Dibenzoluran	78 U	83 U	6 6 - J
Diethyl phthalate	5 5 JB	83 U	5.7 JB
Dimethylphthalale	78 U	83 U	84 U
Fluoranthene	78 U	10 J	96 J
Fluorene	78 U	83 U	84 U
Hexachlorobenzene	78 U	83 U 83 U	84 U 84 U
Hexachlorobutadiene Hexachlorocyclopertadiene	78 U	83 U	84 IJ
Hexachloroethane	78 U	83 U	84 U
Indeno[1 2 3-cd]pyrene	59 J	5 9 J	84 U
Isophorone	78 U	83 U	84 U
N-Nitrosodiphenylamine	78 U	83 U	84 U
N-Ndrosodipropylamine	78 U	B3 U	84 U
Naphthalene	78 U	74 J	10 J
Nitrobenzene	78 U	83 U 200 U	84 U 200 U
Pentachlorophenol Phenanthrene	190 U 78 U	200 U	200 U 22 J
Phenol	78 U	83 U	84 U
Pyrene	78 U	99 J	10 J
TPH	18 4 U	18 4 U	21 4 U

.

Lidd, 1678 150 V. Scimy olathy (PH in Soil -s PRG/R) C Non-Lyalint, d LRS Site

SITE DESCRIPTION LOG ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX									SEAD-12 50 Area D Areas TP120A 1 EB155 SA 0 0 6 SOIL		SEAD 1 50 Area Areas TP120A EB032 DU 0 0 6 SOIL	Dumping	SEAD- 50 Are: Areas TP120: EB156 SA 2 2 5 SOIL	Dumping	SEAD-12 50 Area Areas TP120A- EB157 SA 0 0 2 SOIL	Dumping	SEAD-124 50 Area D Areas TP120A-2 EB158 SA 2 2 2 2 SOIL	lumping	SEAD-120 50 Area Do Areas TP120A-3 EB159 SA 0 0 6 SOIL	umping	SEAD-120 50 Area Du Areas TP120A-3 EB160 SA 2 2 5 SOIL		SEAD-120A 50 Area Dumping Areas TP120A-4 EB161 SA 0 0 6 SOIL
SAMP DATE		FI	OF			NUMBER ABOVE	NUMBER	NUMBER		30 Mai 98		30-Mar-98		30 Mar 98		31 Mar-98		1 Mar 98		0-Mar 98		-Mar-98	30 Mar-98
PARAMETER	UNIT		ETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		Q	VALUE	Q	VALUE		VALUE	Q	VALUE	٥	VALUE	a	VALUE	Q	VALUE
1,2 4-Trichlorohenzene 1,2 Dichlorobenzene	UG/KG UG/KG	0.0	0.0%	3400 7900	10528846 94759615	0				78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U		76 U	80
1 3-Dichlorobenzene	UG/KG	0.0	0.0%	1600	93706731	0				78 U		77 U		78 U		87 U		87 U		77 U 77 U		76 U	80 80
1 4 Dichlorobenzene	UG/KG	0.0	0.0%	8500	2866186	0	·			78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
2 4 5 Trichlorophenol	UG/KG	0.0	0.0%	100	105288462	0				190 U		190 U		190 U		210 U		210 U		190 U		180 U	190
2,4.6 Trichlorophenol 2,4-Dichlorophenol	UG/KG UG/KG	0.0	0.0%	400	6253497 3158654	0		1		78 U 78 U		77 U		78 U 78 U		87 U 87 U		87 U		77 U		76 U	80
2 4-Dichorophenol	UG/KG UG/KG	0.0	0.0%	400	21057692	0				78 U		77 U		78 U		87 U		87 U		77 U 77 U		76 U 76 U	80 80
2 4-Oinfraphenal	UG/KG	0.0	0.0%	200	2105769	0				190 U		190 U		190 U		210 U		210 U		190 U		180 U	190
2 4 Oinfratoluene	UG/KG	0.0	0.0%		2105769	0				78 U		77 U		78 U		87 U		87 U		77 U		76 U	90
2.6 Dintrololuene	UG/KG	0.0	0.0%	1000	1052885	0				78 U 78 U		77 U 77 U		78 U		87 U 87 U		87 U		77 U		76 U	80
2-Chloronaphthalene 2 Chlorophenol	UG/KG UG/KG	0.0	0.0%	800	S264423	0				78 U		77 U		78 U		87 U		87 U 87 ป		77 U 77 U		76 U 76 U	80 80
2 Methylnaphthalene	UG/KG	20.0	27.3%	36400	0204420	ū				78 U		77 U		78 U		87 U		73 J		77 U		76 U	80
2-Methylphenol	UG/KG	0.0	0.0%	100		0) (78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
2-Nitroaniline	UG!KG	0.0	0.0%	430	63173	0				190 U		190 U		190 U		210 U		210 U		190 U		180 U	190
2-Nifrophenol 3,3 -Dichlorobenzidine	UG/KG	00	0.0%	330		0	, (78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U		76 U 76 U	80 80
3 Nitroanline	UG/KG	0.0	0.0%	500	3158654	0				190 U		190 U		190 U		210 U		210 U		190 U		180 U	190
4 5-Dindro-?-methylphenol	UG/KG	0.0	0.0%			0		1		190 U		190 U		190 U		210 U		210 U		190 U		180 U	190
4-Bromophenyl phenyl ether	UG/KG	0.0	0.0%	240	61067308	0		0 1 0 1		76 U		77 U		78 U		87 U		87 U		77 U		76 U	80
4-Chloro 3-methylphenol 4-Chloroaniline	UG/KG UG/KG	00	0.0%	240 220	4211538			0 f		78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U		77 U 77 U		76 U 76 U	80 80
4 Chlorophenyl phenyl ether	UG/KG	5.6	9 1%	250	-277000	C		1 1		78 U		77 U		78 U		87 U		56 J		77 U		76 U	80
4 Methylphenal	UG/KG	0.0	0.0%	900		0				78 U		77 U		78 ∪		87 U		87 U		77 U		76 U	80
4 Nitroantine	UG/KG	0.0	0.0%	100	3158654	0		0 1		190 U 190 U		190 U 190 U		190 U 190 U		210 U		210 U		190 U		180 U	190
4-Nitrophenol Acenaphthene	UG/KG UG/KG	0 0 5 3	0 0% 9 1%	100 50000	63173077			1 1		78 LI		77 U		190 U		210 U 87 U		210 U 53 J		190 U 77 U		180 U	190 80
Acenaphthylene	UG/KG	49	91%	41000		0		1 1		78 U		77 U		78 U		87 U		49 1		77 U		76 U	80
Anthracene	UG/KG	69	18 2%	50000	315865385	0		2 1		78 U		77 U		78 U		69 J		617		77 U		76 U	80
Benzo(a)anthracene	UG/KG	37 0	36 4% 45 5%	224 61	9423	0				78 U 78 U		77 U 77 U		78 U 78 U		37 J 31 J		16 J		77 U		76 U 76 U	80 80
Benzo[a]pyrene Benzo[b]fluoranthene	UG/KG UG/KG	31 0 38 0	45 5% 50 0%	1100	9423	0				78 U		77 U		78 U		38 J		20 J		77 U		76 U	80
Benzolghilperylene	UG/KG	26 0	45 5%	50000	0.50	ō		5 1		78 U		77 U		78 U		26 J		15 J		77 U		76 U	80
Benzolkifluoranthene	UG/KG	33 0	27.3%	1100	942308	0				78 U		77 U		78 U		33 J		15 J		77 U		76 U	80
Brs(2-Chloroethoxy)methane Brs(2-Chloroethyt)ether	UG/KG UG/KG	0.0	0 0%		62535	0		0 1		78 U 78 U		77 U 77 U		78 U 78 U		87 U 87 U		87 U 87 U		77 U 77 U		76 U 76 U	80 80
Bis(2-Chloralsopropyl)ether	UG/KG	00	0.0%		982692	0		0 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Bis(2-Ethylhexyl)phthalate	UG/KG	35 0	100 0%	50000		ō				7 2 JB		65 JB		8 JB		35 JB		12 JB		5 2 JB		66 JB	8 6
Butylbenzylphthalate	UG/KG	9 3	18 2%	50000	210576923	0		2 1		78 U		77 U		78 U		87 U		67 J		77 U		76 U	80
Carbazole Chrysene	UG/KG UG/KG	14 0 43 0	18 2% 36 4%	400	3439423 9423077	0		2 1		78 U		77 U 77 U		78 U		12 J 43 J		14 J 21 J		77 U 77 U		76 U 76 U	90 90
Di-n butylphthalate	UG/KG	77	18 2%	8100	5425077	0				78 U		77 U		78 U		87 U		77 J		77 U		76 U	80
Di-n-octylphthalate	UG/KG	5 3	9 1%	50000	21057692	Ċ		1 1	1	78 U		77 U		78 U		87 U		53 J		77 U		76 U	80
Dibenz a hjanthracene	UG/KG	11 0	27 3% 18 2%	14	4211538	0		3 1		78 U 78 U		77 U 77 U		78 U 78 U		11 J 87 U		11 J 65 J		77 U		76 U 76 U	80 80
Dibenzofuran Diethyl phthalate	UG/KG UG/KG	66 97	18 2% 63 6%	6200 7100	842307692	0		2 1 7 t		78 U		77 U		78 U 59 JB		48 JB		97 JB		77 U		63 JB	4 4
Dimethylphthalate	UG/KG	00	0.0%	2000	10528846150	0		0 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Fluoranthene	UG/KG	96 0	36 4%	50000	42115385	0		4 1		78 U		77 U		78 U		96		33 J		77 U		76 U	80
Fluorene Hexachlorobenzene	UG/KG UG/KG	65 00	9 1%	50000 410	42115385 42993	0		1 1		78 U		77 U 77 U		78 U 78 U		87 U 87 U		65 J 87 U		77 U 77 U		76 U 76 U	80 80
Hexachiorobetzene Hexachiorobuladiene	UG/KG	0.0	0.0%	410	210577			5 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Hexachlorocyclopentadiene	UG/KG	00	0.0%		7370192	0) (1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Hexachlorgethane	UG/KG	0.0	0.0%		4913462	0		3 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Indeno[1,2,3 cd]pyrene	UG/KG UG/KG	24 0 0 D	36 4% 0.0%	3200 4400	94231	0		4 1 D 1		78 U 78 U		77 U 77 U		78 U 78 U		24 J 87 U		14 J 87 U		77 U		76 U 76 U	80 80
Isophorone N-Nitrosodiphenylamine	UG/KG UG/KG	00	0.0%	4400	14038462	0		0 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
N-Nitrosodipropylamine	UG/KG	0.0	0.0%			0		0 1		78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Naphthalene	UG/KG	10 D	18 2%	13000	42115385	0				78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Nitrobenzene	UG/KG UG/KG	0.0	0.0%	200 1000	526442 573237	0				78 U 190 U		77 U 190 U		78 U 190 U		87 U 210 U		87 U 210 U		77 U 190 U		76 U 180 U	90 190
Pentachlorophenol Phenauthrene	UG/KG UG/KG	500	36.4%	50000	5/323/			4 1		78 U		77 U		78 U		50 J		19 J		77 U		76 U	80
Phenol	UG/KG	0.0	00%	30	631730769	Č		0 1	1	78 U		77 U		78 U		87 U		87 U		77 U		76 U	80
Pyrene	UG/KG	75 0	36 4%	50000	31586538	C	,	. ,		78 U		77 U		78 U		75 J		28 J		77 U		76 U	08
TPH	MG/KG	00	00%			C) (0 1	1	18 3 U		1920		16 7 U	ND		ND			17 6 U		171 U	16 7

| 139, 3 c | | 120 V | Same slank | 1211 m Sol (| 1226 | 1310 | Non) | de old 133 Sq.

SITE		SEAD-1204		SEAD 1		SEAD 1	
DESCRIPTION		50 Area Du	mping		Dumping		Dumping
		Areas		Areas	_	Areas	
LOCID SAMP ID		TP120A-4 EB152		TP120/	. 5	TP120A	1-5
SAMP_ID OC CODE		5A 5A		SA SA		5A	
SAMP DETH TOP		2 2		O.		1	
SAMP DEPTH BOT		2.5		0.6		1.2	
MATRIX		SOIL		SOIL		SOIL	
SAMP DATE			Mar 98	: NOTE	30 Mar-98	3016	30 Mar 98
July Chil		30	ivial 30		30 mai-20		30 mai su
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q
1.2.4 Trichlorobenzene	U		78 U		83 U		84 U
1.2 Dichlorobenzene	U		78 U		83 U		84 U
1 3 Dichlorobenzene	U		78 U		83 U		84 U
1.4 Dichlorobenzene	U		78 U		83 U		84 U
2.4.5 Trichlerophenol	U		190 U		200 U		200 U
2 4 G-Trichlorophenol	U		78 U		83 U		84 U
2 4 Dichlorophenol	U		78 U		83 U		84 U
2.4 Dimethylphenol	U		78 U		83 U		84 U
2 4 Dinitrophenol	U		190 U		200 U		200 U
2 4 Dinitrolaluene 2 6 Dinitrolaluene	f)		78 U 78 U		83 U 83 U		84 U 84 U
	U		79 U 78 U		83 U		84 U
2-Chloronaphthalene 2-Chlorophenol	u u		78 U		83 U		84 U
2 Methylnaphthalene	U		78 U		14 J		84 U 20 J
2-Methylphenol	u		78 U		83 U		84 U
2 Ndroanilne	Ü		190 U		200 U		200 U
2 Nitrophenal	Ü		78 U		83 U		84 U
3,3 -Dichlorobenzidine	υ		78 U		83 U		84 U
3 Nitroaniline	U		190 U		200 U		200 U
4.6-Dinitro 2 methylphenol	U		190 U		200 U		200 U
4-Bromophenyl phenyl ether	U		78 U		83 U		84 U
4-Chloro 3 melhylphenol	U		78 U		83 U		84 U
4 Chloroaniline	U		78 U		83 U		84 U
4 Chlorophenyl phenyl ether	U		78 U		83 U		84 U
4 Methylphenol	U		78 U		83 U		84 U
4 Nitroaniline	U		190 U		200 U		200 U
4 Ndrophenol	U		190 U 78 U		200 U 83 U		200 U 84 U
Acenaphthene	U		78 U		83 U		84 U 84 U
Acenaphthylene Anthracene	Ü		78 U		83 U		84 U
Benzo(alanthracene	U		78 U		53 J		57 J
Benzo[a]pyrene	u		45.1		6.1		56.1
Benzo(b)fluoranihene	Ü		8 3 J		12 JY		7 3 J
Benzo[ghi]perylene	U		45 J		9 J		7 1 J
Benzo(k)fluoranthene	U		78 U		83 U		5 2 J
Brs(2-Chloroethoxy)methane	U		78 U		83 U		84 U
Bis(2-Chloroethyl)ether	U		78 U		83 U		84 U
Bis(2 Chloroisopropyl)ether	U		78 U		83 U		64 U
Bis(2 Ethylhexyl)phthalale	JΒ		65 J		5 2 JB		44 JB
Butyibenzylphthalale	U		93 JB		83 U		84 U
Carbazole	U		78 U		83 U		84 U 12 J
Chrysene	U		78 U		10 J 83 U		12 J 84 U
Di-n-butylphthalate Di-n-octylphthalate	U		78 U		83 U		84 U
Di-n-octylphthalate Dibenz(a h)anthracene	U		62 J		83 U		84 U
Dibenzia njaninracene Dibenzofuran	U		78 U		83 U		66 J
Diethyl phthalate	BL		55 JB		63 U		5.7 JB
Dimethylphthalate	U		78 U		83 U		84 U
Fluoranthene	Ŭ		78 U		10 J		96 J
Fluorene	Ü		78 U		83 U		84 U
Hexachlorobenzene	U		78 U		83 U		84 U
Hexachlorobutadiene	U		78 U		83 U		84 U
Hexachlorocyclopenladiene	U		78 U		83 U		84 U
Hexachloroelhane	U		78 U		83 U		84 U
Indeno[1 2 3-cd]pyrene	U		59 J		5 9 J		84 U
Isophorone	U		78 U		83 U		84 U
N Nitrosodiphenylamine	U		78 U		83 U		84 U
N-Nitrosodipropylamine	U		78 U		83 U		84 U
Naphthaiene	U		78 U		7 4 J 63 U		10 J
Nilrobenzene	U		78 U		200 U		84 U 200 U
Pentachlorophenol Phenanthrene	U		190 U 78 U		200 U		200 U 22 J
Phenanthrene Phenoi	U		78 U		83 U		22 J 84 U
Prenoi Pyrene	U		78 U		99 1		10 J

Table 16-6 120A - Metals in Soil vs TAGM Non-Evaluated EBS Sites

SITE									SEAD-1	20A	SEAD-12	10A	SEAD-1	20A	SEAD-120A	
DESCRIPTION:									50 Area	Dumping	50 Area I	Dumping	50 Area	Dumping	50 Area Dump	ing
									Areas	, ,	Areas		Areas		Areas	
LOC ID:									TP120A	-1	TP120A-	1	TP120A	-1	TP120A-2	
SAMP_ID:									EB155		EB032		EB156		EB157	
QC CODE									SA		DU		SA		SA	
SAMP DETH TOP:									0		0		2		0	
SAMP DEPTH BOT									06		06		2.5		02	
MATRIX.									SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	OOIL	30-Mar-98		30-Mar-98	JOIL	30-Mar-98	31-M	ar-98
SAMI DATE			OF			ABOVE	OF	OF		55 Mai -56		00 11101		oo mar oo	01.11	, 00
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
Aluminum	MG/KG	14500 0	100.0%	19520	1052885	0	11	11		10100		11400		12800 -	1	3200
Antimony	MG/KG	1.9	37.5%	6	421	0	3	3	3	1.1 UN		1.2 UN		1.6 BN		1.9
Arsenic	MG/KG	60	100 0%	8.9	46	0	11	11		4.2		3.5		3.6		6
Barium	MG/KG	134 0	100.0%	300	73702	0	11	11		61		68.9		79.9		109
Beryllium	MG/KG	0.6	100.0%	1.13	16	0	11	11	l	0.36 B		0.44 B		0.49 B		0.49
Cadmium	MG/KG	0.0	0.0%	2.46	526	0	0	11	I	0.07 U		0.07 U		0.07 U		0.07
Calcium	MG/KG	85300 0	100.0%	125300		0	11	11	1	85300 *		70100 *		23000 °		4280
Chromium	MG/KG	31.5	100.0%	30		1	11	11		16.6		18.5		19.4	79000	31.5
Cobalt	MG/KG	12.0	100.0%	30	6317	0	11	11		10.1 B		11 B		10.3 B		10.9
Copper	MG/KG	57.7	100.0%	33	42115	1	11	11	I	21 8		21.8		26.4		57.7
Cyanide	MG/KG	0.0	0.0%	0.35		0	0	11	I	0.63 U		0.61 U		0.65 U		0.69
Iron	MG/KG	44500.0	100.0%	37410	315865	1	11	11		20600		22700		23900	PB 1	44560
Lead	MG/KG	68.3	100.0%	24.4		2	11			10.8		12.4		10.9		68.3
Magnesium	MG/KG	19600.0	100 0%	21700		0	11	11		15900 *		13800 *		7800 *		3240
Manganese	MG/KG	945.0	100.0%	1100	24216	0	11	11	I	486		463		567		757
Mercury	MG/KG	0 1	18.2%	0.1	316	0	2	11	1	0.06 U		0.06 U		0.06 U		0.07
Nickel	MG/KG	35.2	100.0%	50	21058	0	11	11	1	31.3		31.3		34		35.2
Potassium	MG/KG	2110.0	100.0%	2623		0	11	11		1630		1760		1660		2100
Selenium	MG/KG	1.6	220.0%	2	5264	0	11	5		1 UN*		1 UN*		1.1 UN*		1.2
Silver	MG/KG	0.5	9.1%	0.8	5264	0	. 1	11		0.29 U		0.54 B		0.3 U		0.3
Sodium	MG/KG	119.0	54.5%	188		0	6			108 B		110 B		110 B		60.7
Thallium	MG/KG	2.1	18.2%	0.855		2	2			1.5 U		1.5 U		1.6 U		2.1
Vanadium	MG/KG	25.3	100.0%	150	7370	0	11			17.1		19.3		22		24.2
Zinc	MG/KG	100.0	100 0%	115	315865	0	11	11	I	67.5 E		73.3 E		72.8 E		100

Table 16-6 120A - Metals in Soil vs TAGM Non-Evaluated EBS Sites

SITE:		SEAD-120A	SEAD-120A		SEAD-120)A	SEAD-120)A	SEAD-120/	A	SEAD-120/	A	SEAD-12	0A
DESCRIPTION:		50 Area Dumping	50 Area Dump	ping	50 Area D	umping	50 Area D	umping	50 Area Du	mping	50 Area Du	ımpina	50 Area D	Dumpina
		Areas	Areas		Areas		Areas		Areas		Areas	F 3	Areas	
LOC ID.		TP120A-2	TP120A-3		TP120A-3		TP120A-4		TP120A-4		TP120A-5		TP120A-	5
SAMP_ID:		EB158	EB159		EB160		EB161		EB162		EB163		EB164	
QC CODE:		SA	SA		SA		SA		SA		SA		SA	
SAMP DETH TOP:		2	0		2		0		2		0		1	
SAMP DEPTH BOT:		22	0.6		2.5		0.6		2.5		0.6		1.2	
MATRIX:		SOIL	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE		31-Mar-98	30-M	1ar-98		0-Mar-98		80-Mar-98		-Mar-98		0-Mar-98		30-Mar-98
PARAMETER	Q	VALUE	Q VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	0
Aluminum	4	14500		12500	AVEOL	10100	VALUE	13100	VALUE	10600	VALUE		VALUE	Q
Antimony	BN	1.4		1.2 UN		1 1 UN		1.2 UN		1,1 UN		13300		14300
Arsenic	DIA	5.5	DIA	4.1		35		3.8		4.3		1.2 UN		1.3 UN
Barium		128		74.8		62.4		82.5		62.7		3.7 120		3.1
Beryllium	В	0.59	D.	0.46 B		0.38 B		0.52 B		0.44 B				134
Cadmium	U	0.08		0.40 B		0.06 U		0.07 U		0.44 B		0.57 B 0.07 U		0 62 B
Calcium		5210		55100 *		63200 °		25500 *		45700 *				0.08 U
Chromium		19.9	,	19.6		16,7		19 7		17.4		15100 *		5450 *
Cobalt	В	12	D	10.7 B		10.1 B		99 B				18.7		19.3
Copper	ь	20.4	ь	22.8		21.2		22.6		9.2 B		8.9 B		8.4 B
Cyanide	U	0.72		0 58 U		0.61 U				23.7		20.5		20.1
Iron	U	25100		23400		20500		0.64 U		0.62 U		0.68 U		0.66 U
Lead		47,5		12.4		10.7	·	23800 12.3		22100		22300		22900
Magnesium		3650		10900 *		19600 *				12.5		15.4		12.5
Manganese		945		497		487		7380 * 500		8800 *		5780 *		3680 *
Mercury	В	0.06	0	0 05 U		0.05 U				475		469		519
Nickel	В	26.6	В	32.3				0.06 U		0.05 U		0.06 U		0.06 U
Potassium						28.3		29.8		29.6		24.3		22.4
Selenium	BN*	1690 1.6	Alm	2110		1590		1950		1380		1720		1500
				1 UN*		1.3 N*		1.3 N*		1.5 N*		1 UN*		1.5 N°
Silver	U	0.34		0.29 U		0.28 U		0.3 U		0.28 U		0.3 U		0.33 U
Sodium	U	69.3		119 B		86 1 B		59 9 U		91.2 B		61 U		65.7 U
Thallium	В	1.8	U	1.5 U		1.4 U		1.5 U	1	1.5 B		1.6 U		1.7 U
Vanadium	-	25 3	_	21		17.6		22.6		17.5		23.1		24
Zinc	E	94 7	t	83 7 E		80 E		96.1 E		83.7 E		87.6 E		81.4 E

Fable 16-7 120A - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE. DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-1 50 Area Areas TP120A EB155 SA 0 0 6 SOIL	Dumping	SEAD-12 50 Area I Areas TP120A- EB032 DU 0 0.6 SOIL	Dumping	SEAD-1: 50 Area Areas TP120A: EB156 SA 2 2 5 SOIL	Dumping	SEAD-12 50 Area Areas TP120A- EB157 SA 0 0 2 SOIL	Dumping
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
Aluminum	MG/KG	14500 0	100.00%	19520	1052885	0	11	11		10100		11400		12800		13200
Antimony	MG/KG	1.9	37 50%	6	421	0	3	8	3	1.1 UN		1.2 UN		1 6 BN		19
Arsenic	MG/KG	6 0	100.00%	8 9	46	0	11	11		4 2		3.5		3.6		6
Barium	MG/KG	134.0	100.00%	300	73702	0	. 11	11		61		68.9		79.9		109
Beryllium	MG/KG	0.6	100.00%	1 13	16	0	11	11		0.36 B		0 44 B		0.49 B		0.49
Cadmium	MG/KG	0 0	0.00%	2 46	526	0	0	11		0.07 U		0.07 U		0.07 U		0.07
Calcium	MG/KG	85300.0	100.00%	125300		0	11	11		85300 *		70100 *		23000 *		4280
Chromium	MG/KG	31 5	100 00%	30		0	11	11		16.6		18.5		19.4		31.5
Cobalt	MG/KG	12 0	100.00%	30	6317	0	11	11		10 1 B		11 B		10.3 B		10 9
Copper	MG/KG	57 7	100.00%	33	42115	0	11	11		21.8		21.8		26.4		57.7
Cyanide	MG/KG	0.0	0.00%	0 35		0	0	11		0.63 U		0.61 U		0.65 U		0.69
Iron	MG/KG	44500.0	100.00%	37410	315865	0	11	11		20600		22700		23900		44500
Lead	MG/KG	68 3	100.00%	24 4		0	11	11		10 8		12.4		10.9		68 3
Magnesium	MG/KG	19600.0	100.00%	21700		0	11	11		15900 *		13800 *		7800 *		3240
Manganese	MG/KG	945 0	100.00%	1100	24216	0	11	11		486		463		567		757
Mercury	MG/KG	0 1	18.18%	0 1	316	0	2	11		0.06 U		0 06 U		0.06 U		0.07
Nickel	MG/KG	35.2	100.00%	50	21058	0	11	11		31.3		31.3		34		35.2
Potassium	MG/KG	2110 0	100.00%	2623		0	11	11		1630		1760		1660		2100
Selenium	MG/KG	1.6	220.00%	2	5264	0	11	5	;	1 UN*		1 UN*		1.1 UN*		1.2
Silver	MG/KG	0.5	9.09%	0.8	5264	0	1	11		0.29 U		0.54 B		0.3 U		0.3
Sodium	MG/KG	119.0	54.55%	188		0	6	11		108 B		110 B		110 B		60.7
Thallium	MG/KG	2 1	18.18%	0 855		0	2	11		1.5 U		1.5 U		16 U		2 1
Vanadium	MG/KG	25.3	100 00%	150	7370	0	11	11		17.1		19.3		22		24.2
Zinc	MG/KG	100 0	100 00%	115	315865	0	11	11		67 5 E		73.3 E		72.8 E		100

Table 16-7 120A - Metals in Soil vs PRG-RFC Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT		SEAD-120A 50 Area Dump Areas TP120A-2 EB158 SA 2	ing	SEAD-120A 50 Area Dun Areas TP120A-3 EB159 SA 0		SEAD-120, 50 Area Du Areas TP120A-3 EB160 SA 2 2 5		SEAD-120. 50 Area Do Areas TP120A-4 EB161 SA 0 0 6		SEAD-120. 50 Area Do Areas TP120A-4 EB162 SA 2		SEAD-120A 50 Area Du Areas TP120A-5 EB163 SA 0		SEAD-120 50 Area D Areas TP120A-5 EB164 SA 1	umping
MATRIX SAMP DATE		SOIL 31-M	ar 09	SOIL	Mar-98	SOIL	0-Mar-98	SOIL	0-Mar-98	SOIL	0-Mar-98	SOIL)-Mar-98	SOIL	30-Mar-98
SAMP DATE		31-101	ar-96	30-	Mai-90	30	J-1VIAI -30	30	7-IVIAI - 90	31	J-MISI-30	30	-War-98		30-Mar-98
PARAMETER Aluminum	Q	VALUE 1	Q 4500	VALUE	Q 12500	VALUE	Q 10100	VALUE	Q 13100	VALUE	Q 10600	VALUE	Q 13300	VALUE	Q 14300
Antimony Arsenic Barium	BN		1 4 BN 5 5 128		1 2 UN 4.1 74 8		1 1 UN 3 5 62.4		1 2 UN 3 8 82 5		1.1 UN 4.3 62.7		1.2 UN 3.7 120		1.3 UN 3.1 134
Beryllium Cadmium Calcium	₽ B		0 59 B 0 08 U 5210 *		0 46 B 0 07 U 55100 *		0 38 B 0 06 U 63200 *		0 52 B 0 07 U 25500 *		0.44 B 0.07 U 45700 *		0.57 B 0.07 U 15100 *		0 62 B 0.08 U 5450 *
Chromium Cobalt	В		19 9 12 B		19.6 10.7 B		16 7 10 1 B		197 99 B		17.4 9 2 B		18.7 89 B		19.3 8 4 B
Copper Cyanide Iron	U		20 4 0 72 U 5100		22 8 0 58 U 23400		21 2 0.61 U 20500		22.6 0 64 U 23800		23.7 0.62 U 22100		20 5 0 68 U 22300		20.1 0.66 U 22900
Lead Magnesium			47.5 3650 *		12.4 10900 *		10 7 19600 *		12 3 7380 *		12.5 8800 *		15.4 5780 *		12.5 3680 *
Manganese Mercury Nickel	В		945 0 06 B 26 6		497 0.05 U 32 3		487 0 05 U 28 3		500 0 06 U 29.8		475 0.05 U 29.6		469 0.06 U 24.3		519 0 06 U 22.4
Potassium Selenium	BN*		1690 1 6 N°		2110 1 UN*		1590 1 3 N*		1950 1.3 N*		1380 1.5 N*		1720 1 UN*		1500 1.5 N*
Silver Sodium	U		0.34 U 69 3 U		0 29 U 119 B		0 28 U 86 1 B		0 3 U 59.9 U		0 28 U 91.2 B		0.3 U 61 U		0.33 U 65.7 U
Thallium Vanadium	В		1.8 U 25 3		1 5 U 21		1 4 U 17 6		15 U 226		1 5 B 17.5		1.6 U 23 1		1.7 U 24
Zinc	Е		94.7 E		83 7 E		80 E		96 1 E		83 7 E		87.6 E		81.4 E

Fable 16-8 120 V Pesticides/PCB in Soil vs TAGM Non-Evaluated FBS Sites

SITE. DESCRIPTION LOC ID SAMP_ID CODE SAMP DETH TOP SAMP DEPTH BOT: MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-12 50 Area I Areas TP120A- EB155 SA 0 0 6 SOIL	Dumping	SEAD-120A 50 Area Du Areas TP120A-1 EB032 DU 0 0 6 SOIL		SEAD-120, 50 Area Du Areas TP120A-1 EB156 SA 2 2 5 SOIL		SEAD-120 50 Area D Areas TP120A-2 EB157 SA 0 0.2 SOIL	lumping
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
4.4`-DDD	UG/KG	0.0	0 00%	2900		0	0	11		39 U		38 U		3.9 U		4.3
4,4`-DDE	UG/KG	0.0	0 00%	2100		0	0	11		3.9 U		3.8 U		39 U		4.3
4.4 -DDT	UG/KG	3 1	22 22%	2100		0	2	9)	3 9 U		3.8 U		39 U		4.3
Aldrın	UG/KG	0.0	0 00%	41	4046	0	0	11		2 U		2 U		2 U		2.2
Alpha-BHC	UG/KG	2 3	9 09%	110		0	1	11	l	2 U		2 U		2 U		22
Alpha-Chlordane	UG/KG	0.0	0 00%			0	0	11	1	2 U		2 U		2 U		2.2
Aroclor-1016	UG/KG	0 0	0 00%		73702	0	0	11		39 U		38 U		39 U		43
Aroclor-1221	UG/KG	0 0	0 00%			0	0	11		78 U		78 U		79 U		88
Aroclor-1232	UG/KG	0 0	0.00%			0	0	11		39 U		38 U		39 U		43
Aroclor-1242	UG/KG	0.0	0 00%			0	0	11		39 U		38 U		39 U		43
Aroclor-1248	UG/KG	0 0	0.00%			0	0	11		39 U		38 U		39 U		43
Arocior-1254	UG/KG	0 0	0 00%	10000	21058	0	0	11		39 U		38 U		39 U		43
Aroclor-1260	UG/KG	0.0	0 00%	10000		0	0	11		39 U		38 U		39 U		43
Beta-BHC	UG/KG	0 0	0 00%	200		0	0	11		2 U		2 U		2 U		2 2
Delta-BHC	UG/KG	14 0	9 09%	300		0	1	11		2 U		2 U		2 U		2.2
Dieldrin	UG/KG	0.0	0 00%	44	4299	0	0	11		3 9 U		38 U		3.9 U		4.3
Endosulfan I	UG/KG	0.0	0 00%	900		0	0	11		2 U		2 U		2 U		2.2
Endosulfan II	UG/KG	0.0	0 00%	900		0	0	11		3.9 U		3 8 U		3 9 U		4.3
Endosulfan sulfate	UG/KG	0 0	0.00%	1000		0	0	11		3.9 U		3 8 U		3 9 U		4.3
Endrin	UG/KG	0.0	0 00%	100	315865	0	0	11		3.9 U		3 8 U		3.9 U		4 3
Endrin aldehyde	UG/KG	0.0	0.00%			0	0	11		3 9 U		3.8 U		3.9 U		4.3
Endrin ketone	UG/KG	0.0	0.00%			0	0	11		3 9 U		3.8 U		3 9 U		4 3
Gamma-BHC/Lindane	UG/KG	8 8	9.09%	60		0	1	11		2 U		2 U		2 U		22
Gamma-Chlordane	UG/KG	0 0	0.00%	540	45000	0	0	11		2 U		2 U		2 U		2.2
Heptachlor	UG/KG	0 0	0.00%	100	15286	0	0	11		2 U		2 U		2 U		2.2
Heptachlor epoxide	UG/KG	0.0	0 00%	20	7559	0	0	11		2 U		2 U		2 U		2.2
Methoxychlor	UG/KG	0 0	0.00%		5264423	0	0	11		20 U		20 U		20 U		22
Toxaphene	UG/KG	0 0	0.00%			0	0	11	ł	200 U		200 U		200 U		220

Table 16-8 420A - Pesticides PCB in Soil vs. LAGM Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID		SEAD-120A 50 Area Dum Areas TP120A-2	nping	SEAD-120 50 Area Di Areas TP120A-3	umping	SEAD-120/ 50 Area Du Areas TP120A-3		SEAD-120A 50 Area Du Areas TP120A-4		SEAD-120/ 50 Area Du Areas TP120A-4		SEAD-120A 50 Area Du Areas TP120A-5		SEAD-12 50 Area I Areas TP120A-	Dumping
SAMP_ID		EB158		EB159		EB160		EB161		EB162		EB163		EB164	5
QC CODE:		SA		SA		SA		SA		SA		SA		SA SA	
SAMP DETH TOP		2		0		2		0		2		0		1	
SAMP DEPTH BOT		2 2		06		2 5		0.6		25		0.6		12	
MATRIX		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			Mar-98		0-Mar-98		D-Mar-98)-Mar-98)-Mar-98		-Mar-98		30-Mar-98
SAME DATE		31-	IVIAI -30	3	0-War-50	30	J-14141 - 30	30)-14101-30	30	J-14141-30	30	-IVIAI-30		30-IVIAI - 30
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
4,4`-DDD	U		4.3 U		38 U		3 8 U		4 U		3 9 U		4.2 U		4 2 U
4.4 - DDE	U		4.3 U		3 8 U		3 8 U		4 U		3.9 U		4.2 U		4 2 U
4.4 -DDT	U		4.3 U		3 8 U		3 1 JP		4 U		3.9 U		2.7 JP		4 2 U
Aldrin	U		2 2 U		2 U		19 U		2 1 U		2 U		2.2 U		2 2 U
Alpha-BHC	U		2 2 U		2 U		19 U		2 1 U		2 U		2 2 U		2 3
Alpha-Chlordane	U		2.2 U		2 U		19 U		2.1 U		2 U		2.2 U		2 2 U
Aroclor-1016	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1221	U		88 U		78 U		77 U		81 U		79 U		85 U		86 U
Aroclor-1232	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1242	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1248	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1254	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1260	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Beta-BHC	U		2.2 U		2 U		19 U		2 1 U		2 U		2 2 U		2 2 U
Delta-BHC	U		2 2 U		2 U		19 U		2.1 U		2 U		2.2 U		14
Dieldrin	U		43 U		3 8 U		3 8 U		4 U		3.9 U		4.2 U		4.2 U
Endosulfan I	U		2.2 U		2 U		19 U		2 1 U		2 U		2.2 U		2 2 U
Endosulfan II	U		4.3 U		3 8 U		3 8 U		4 U		3.9 U		4.2 U		4.2 U
Endosulfan sulfate	U		4 3 U		3 8 U		3 8 U		4 U		3.9 U		4.2 U		4 2 U
Endrin	U		4.3 U		3 8 U		3.8 U		4 U		3.9 U		4 2 U		4.2 U
Endrin aldehyde	U		4.3 U		38 U		3 8 U		4 U		3.9 U		4.2 U		4 2 U
Endrin ketone	U		4 3 U		3.8 U		3 8 U		4 U		3 9 U		4.2 U		4.2 U
Gamma-BHC/Lindane	U		2 2 U		2 U		19 U		2 1 U		2 U		2.2 U		88
Gamma-Chlordane	U		2 2 U		2 U		19 U		2.1 U		2 U		2.2 U		2 2 U
Heptachlor	U		2.2 U		2 U		1.9 U		21 U		2 U		2.2 U		2.2 U
Heptachlor epoxide	U		2 2 U		2 U		19 U		2 1 U		2 U		2.2 U		2.2 U
Methoxychlor	U		22 U		20 U		19 U		21 U		20 U		22 U		22 U
Toxaphene	U		220 U		200 U		190 U		210 U		200 U		220 U		220 U

Table 16-9 120A - Pesticides/PCBs in Soil vs PRG-RFC Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX									SEAD-1 50 Area Areas TP120A EB155 SA 0 0 6 SOIL	Dumping	SEAD-12 50 Area I Areas TP120A- EB032 DU 0 0 6 SOIL	Dumping	SEAD-12 50 Area I Areas. TP120A- EB156 SA 2 2 5 SOIL	Dumping	SEAD-12 50 Areas Areas TP120A- EB157 SA 0 0.2 SOIL	Dumping
SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF		30-Mar-98		30-Mar-98		30-Mar-98		31-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
4,4 -DDD	UG/KG	0.0	0.00%	2900		0	0	11	ı	3 9 U		3.8 U		3 9 U		4 3
4.4 -DDE	UG/KG	0.0	0 00%	2100		0	0	11	ı	3 9 U		3 8 U		3 9 U		4.3
4,4 -DDT	UG/KG	3 1	22 22%	2100		0	2	9	9	3 9 U		3.8 U		3 9 U		4 3
Aldrin	UG/KG	0.0	0 00%	41	4046	0	0	11	1	2 U		2 U		2 U		2.2
Alpha-BHC	UG/KG	23	9 09%	110		0	1	11	I	2 U		2 U		2 U		2 2
Alpha-Chlordane	UG/KG	0.0	0 00%			0	0	11	ł	2 U		2 U		2 U		2.2
Aroclor-1016	UG/KG	0.0	0 00%		73702	0	0	11	1	39 U		38 U		39 U		43
Aroclor-1221	UG/KG	0.0	0 00%			0	0	11	1	78 U		78 U		79 U		88
Aroclor-1232	UG/KG	0.0	0 00%			0	0	11	1	39 U		38 U		39 U		43
Aroclor-1242	UG/KG	0.0	0 00%			0	0	11	1	39 U		38 U		39 U		43
Aroclor-1248	UG/KG	0.0	0 00%			0	0	11	1	39 U		38 U		39 U		43
Aroclor-1254	UG/KG	0.0	0.00%	10000	21058	0	0	11	1	39 U		38 U		39 U		43
Aroclor-1260	UG/KG	0.0	0 00%	10000		0	0	11	1	39 U		38 U		39 U		43
Beta-BHC	UG/KG	0.0	0.00%	200		0	0	11	I	2 U		2 U		2 U		2 2
Delta-BHC	UG/KG	14 0	9 09%	300		0	1	11	I	2 U		2 U		2 U		22
Dieldrin	UG/KG	0.0	0.00%	44	4299	0	0	11	1	39 U		3.8 U		3.9 U		4 3
Endosulfan I	UG/KG	0.0	0 00%	900		0	0	11	1	2 U		2 U		2 U		2.2
Endosulfan II	UG/KG	0 0	0.00%	900		0	0	11	1	3.9 U		38 U		3.9 U		4.3
Endosulfan sulfate	UG/KG	0 0	0 00%	1000		0	0	11	1	3 9 U		3.8 U		3.9 U		43
Endrin	UG/KG	0.0	0.00%	100	315865	0	0	11	t	3.9 U		3.8 U		3.9 U		43
Endrin aldehyde	UG/KG	0.0	0 00%			0	0	11	1	39 U		3.8 U		3.9 U		4.3
Endrin ketone	UG/KG	0.0	0 00%			0	0	11	1	3 9 U		3.8 U		3.9 U		4 3
Gamma-BHC/Lindane	UG/KG	8.8	9 09%	60		0	1	11	1	2 U		2 U		2 U		22
Gamma-Chlordane	UG/KG	0 0	0 00%	540		0	0	11	1	2 U		2 U		2 U		2.2
Heptachlor	UG/KG	0 0	0 00%	100	15286	0	0	11	I	2 U		2 U		2 U		22
Heptachlor epoxide	UG/KG	0.0	0 00%	20	7559	0	0	11	I	2 U		2 U		2 U		2.2
Methoxychlor	UG/KG	0.0			5264423	0	0	11	Ī	20 U		20 U		20 U		22
Toxaphene	UG/KG	0 0	0 00%			0	0	11		200 U		200 U		200 U		220

Lable 16-9 120 V - Pesticides PCBs in Soil vs PRG-RFC Non-Evaluated FBS Sites

SITE DESCRIPTION		SEAD-120A 50 Area Dump Areas	ping	Areas	Dumping	SEAD-120 50 Area Do Areas		SEAD-120 50 Area D Areas	Dumping	SEAD-120A 50 Area Du Areas		SEAD-120A 50 Area Du Areas		SEAD-120 50 Area D Areas	umping
LOC ID		TP120A-2		TP120A	-3	TP120A-3		TP120A-4	1	TP120A-4		TP120A-5		TP120A-5	,
SAMP_ID		EB158		EB159		EB160		EB161		EB162		EB163		EB164	
QC CODE		SA		SA		SA		SA 0		SA 2		SA		SA 1	
SAMP DETH TOP		2		0 06		2 2 5		06		2 5		0			
SAMP DEPTH BOT MATRIX		2.2 SOIL		SOIL		SOIL		SOIL		SOIL		06 SOIL		12 SOIL	
SAMP DATE			4 00	SOIL.	30-Mar-98		0-Mar-98		30-Mar-98		-Mar-98)-Mar-98		30-Mar-98
SAMP DATE		31-10	1ar-98		30-Mar-98	3	U-Mar-98		30-Mar-98	30	-Mar-98	30	-Mar-98	`	30-Mar-98
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
4.4`-DDD	U		43 U		38 U		3.8 U		4 U		3.9 U		4 2 U		4 2 U
4,4`-DDE	U		43 U		3 8 U		3 8 U		4 U		39 U		4 2 U		4.2 U
4.4`-DDT	U		43 U		3 8 U		3 1 JP		4 U		39 U		27 JP		42 U
Aldrin	U		22 U		2 U		19 U		2.1 U		2 U		2 2 U		2 2 U
Alpha-BHC	U		2 2 U		2 U		19 U		2 1 U		2 U		2.2 U		2 3
Alpha-Chlordane	U		2.2 U		2 U		1.9 U		2 1 U		2 U		2.2 U		2 2 U
Aroclor-1016	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1221	U		88 U		78 U		77 U		81 U		79 U		85 U		86 U
Aroclor-1232	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1242	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1248	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1254	U		43 U		38 U		38 U		40 U		39 U		42 U		42 U
Aroclor-1260	U		43 U		38 U		38 U		40 U		39 Ų		42 U		42 U
Beta-BHC	U		2.2 U		2 U		19 U		2.1 U		2 U		2 2 U		2.2 U
Delta-BHC	U		2.2 U		2 U		19 U		2 1 U		2 U		2.2 U		14
Dieldrin	U		4 3 U		3 8 U		3 8 U		4 U		3.9 U		4 2 U		4 2 U
Endosulfan I	U		2 2 U		2 U		19 U		2 1 U		2 U		2.2 U		2.2 U
Endosulfan II	U		43 U		3.8 U		3 8 U		4 U		3 9 U		4.2 U		4.2 U
Endosulfan sulfate	U		43 U		3.8 U		3 8 U		4 U		39 U		4 2 U		4.2 U
Endrin	U		4.3 U		3.8 U		3 8 U		4 U		3 9 U		4 2 U		4 2 U
Endrin aldehyde	U		4.3 U		3 8 U		3.8 U		4 U		3 9 U		4.2 U		4.2 U
Endrin ketone	U		43 U		3 8 U		3 8 U		4 U		3 9 U		4.2 U		4.2 U
Gamma-BHC/Lindane	U		2 2 U		2 U		19 U		2.1 U		2 U		2 2 U		8.8
Gamma-Chlordane	U		22 U		2 U		1 9 U		2.1 U		2 U		2 2 U		2 2 U
Heptachlor	U		22 U		2 U		19 U		2 1 U		2 U		2 2 U		2.2 U
Heptachlor epoxide	U		22 U		2 U		1 9 U		2.1 U		2 U		2.2 U		2.2 U
Methoxychlor	U		22 U		20 U		19 U		21 U		20 U		22 U		22 U
Toxaphene	U		220 U		200 U		190 U		210 U		200 U		220 U		220 U

Table 16-10 120A - Herbicides in Soil vs TAGM Non-Evaluated FBS Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	MIMOSO	Areas TP120A- EB155 SA 0 0 6 SOIL	Dumping .1	SEAD-120A 50 Area Dump Areas TP120A-1 EB032 DU 0 0 6 SOIL		SEAD-12 50 Area I Areas TP120A- EB156 SA 2 2 5 SOIL	Dumping	SEAD-120A 50 Area Dumping Areas TP120A-2 EB157 SA 0 0 2 SOIL	
SAME DATE			OF			ABOVE	NUMBER OF	NUMBER OF		30-Mar-98	30-M	lar-98	;	30-Mar-98	31-Mar-9	18
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
2,4,5-T	UG/KG	0 0	0 00%	1900		0	0	11		5.6 U	NA			5.7 U	6	3
2,4,5-TP/Silvex	UG/KG	0.0	0 00%	700		0	0	11		5.6 U	NA			57 U	6.	-
2,4-D	UG/KG	0 0	0 00%	500		0	0	11	l	55 U	NA			56 U		52
2,4-DB	UG/KG	0 0				0	0	11	l	56 U	NA			57 U		53
3,5-Dichlorobenzoic acid	UG/KG	0 0				0	0	11	!	55 U	NA			56 U	6	52
Dalapon	UG/KG	0.0	0 00%			0	0	11		300 U	NA			310 U	34	10
Dicamba	UG/KG	0 0	0 00%			0	0			5.5 U	NA			5.6 U	6	2
Dichloroprop	UG/KG	0 0	0 00%			0	0	11		55 U	NA			56 U	6	52
Dinoseb	UG/KG	0 0	0.00%			0	0			28 U	NA			28 U	3	32
MCPA	UG/KG	0 0	0 00%			0	0			5500 U	NA			5600 U	620	10
MCPP	UG/KG	0.0	0 00%			0	0			5500 U	NA			5600 U	620	10
Pentachiorophenol	UG/KG	0 0	0 00%	1000	573237	0	0	11		20 U	NA			20 U	2	22
Picloram	UG/KG	0 0	0 00%		73701923	0	0	11		5.6 U	NA			57 U	6.	.3

Table 16-10 120A - Herbicides in Soil vs TAGM Non-Evaluated FBS Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX		SEAD-120A 50 Area Dum Areas TP120A-2 EB158 SA 2 2 2 2 SOIL	nping	SEAD-120A 50 Area Dun Areas TP120A-3 EB159 SA 0 0 6 SOIL	nping	SEAD-120A 50 Area Dun Areas TP120A-3 EB160 SA 2 2 5 SOIL		SEAD-120A 50 Area Dur Areas TP120A-4 EB161 SA 0 0 6 SOIL		SEAD-120A 50 Area Du Areas TP120A-4 EB162 SA 2 2 5 SOIL		SEAD-120A 50 Area Dun Areas TP120A-5 EB163 SA 0 0.6 SOIL	nping	SEAD-120A 50 Area Dun Areas TP120A-5 EB164 SA 1 1 2 SOIL	
SAMP DATE		31-1	Mar-98	30-	Mar-98	30-	Mar-98	30	-Mar-98	30	-Mar-98	30-	Mar-98	30-	Mar-98
PARAMETER 2 4.5-T 2.4.5-TP/Silvex 2.4-D 3.5-Dichlorobenzoic acid Dalapon Dicamba Dichloroprop Dinoseb MCPA MCPP Pentachlorophenol	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VALUE	Q 63 U 63 U 62 U 63 U 62 U 340 U 6.2 U 62 U 32 U 6200 U 6200 U 6200 U	VALUE	Q 5 6 U 5 6 U 5 5 U 5 U 5 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U 5 U 5 5 U	VALUE	Q 5 5 U 5 5 U 5 4 U 5 5 U 5 4 U 300 U 5 4 U 28 U 28 U 5400 U 5400 U	VALUE	Q 5 8 U 5 8 U 5 7 U 5 8 U 5 7 U 3 2 0 U 5 7 U 2 9 U 5 7 0 U 5 7 0 U 2 9 U 5 7 0 0 U 2 1 U	VALUE	Q 5.6 U 5.6 U 55 U 56 U 55 U 300 U 5.5 U 28 U 5500 U 5500 U 20 U	VALUE	Q 61 U 6.1 U 59 U 61 U 59 U 330 U 59 U 30 U 5900 U 5900 U 22 U	VALUE	Q 6 2 U 60 U 60 U 60 U 330 U 6 U 31 U 6000 U 6000 U

Table 16-11 120 V - Herbieides in Soil vs PRG-RFC Non-Evaluated FBS Sites

SITE DESCRIPTION										20A Dumping	SEAD-120A 50 Area Dum	ping	SEAD-12 50 Area (SEAD-120A 50 Area Dun	
LOC ID									Areas TP120A-	.1	Areas TP120A-1		Areas TP120A-	4	Areas TP120A-2	
SAMP_ID									EB155		EB032		EB156	1	EB157	
QC CODE									SA		DU		SA		SA	
SAMP DETH TOP									0		0		2		0	
SAMP DEPTH BOT									0.6		0.6		2 5		0 2	
MATRIX									SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		30-Mar-98	30-N	/lar-98		30-Mar-98		-Mar-98
			OF			ABOVE	OF	OF								-
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
2,4,5-T	UG/KG	0 0		1900		0	0			5.6 U	NA			5.7 U		63
2,4,5-TP/Silvex	UG/KG	0.0		700		0	0			5.6 U	NA			5.7 U		6.3
2,4-D	UG/KG	00		500		0	0			55 U	NA			56 U		62
2,4-DB	UG/KG	0.0				0	0			56 U	NA			57 U		63
3,5-Dichlorobenzoic acid Dalapon	UG/KG	0 0				0	0			55 U	NA			56 U		62
Dicamba	UG/KG UG/KG	0.0				0	0			300 U	NA			310 ป		340
Dichloroprop	UG/KG	0.0				0	0			5.5 U	NA			5.6 U		6.2
Dinoseb	UG/KG	0.0				0	0			55 U	NA			56 U		62
MCPA	UG/KG	0.0				0	0	* *		28 U	NA			28 U		32
MCPP	UG/KG	0.0				0	0	11		5500 U	NA			5600 U		6200
Pentachiorophenoi	UG/KG	0.0		1000	573237	0	0	11		5500 U 20 U	NA NA			5600 U		6200
Picloram	UG/KG	0.0		1000	73701923	0	0			20 U	NA NA			20 U		22
	5 5/10	0.0	0 00 /4		. 5. 51526	0	O		'	300	1474			5.7 U		63

Table 16-11 120 V - Herbicides in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION		SEAD-120A 50 Area Dum Areas	ping	SEAD-120A 50 Area Dun Areas		SEAD-120A 50 Area Dum Areas	ping	SEAD-120A 50 Area Dur Areas		SEAD-120A 50 Area Dui Areas		SEAD-120A 50 Area Dun Areas		SEAD-120A 50 Area Dun Areas	
LOC ID		TP120A-2		TP120A-3		TP120A-3		TP120A-4		TP120A-4		TP120A-5		TP120A-5	
SAMP ID		EB158		EB159		EB160		EB161		EB162		EB163		EB164	
QC CODE		SA		SA		SA		SA		SA		SA		SA	
SAMP DETH TOP:		2		0		2		0		2		0		1	
SAMP DEPTH BOT		2.2		0.6		2 5		06		2.5		0.6		1 2	
MATRIX		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			31-Mar-98		Mar-98	30-1	Mar-98		-Mar-98		-Mar-98		Mar-98		Mar-98
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
2.4.5-T	Ü		6 3 U		56 U		5 5 U		5 8 U		5.6 U	***************************************	6.1 U	***************************************	62 U
2.4.5-TP/Silvex	U		63 U		56 U		55 U		5.8 U		56 U		6.1 U		6.2 U
2,4-D	U		62 U		55 U		54 U		57 U		55 U		59 U		60 U
2.4-DB	U		63 U		56 U		55 U		58 U		56 U		61 U		62 U
3,5-Dichlorobenzoic acid	U		62 U		55 U		54 U		57 U		55 U		59 U		60 U
Dalapon	U		340 U		300 U		300 U		320 U		300 U		330 U		330 U
Dicamba	U		6.2 U		5 5 U		5.4 U		57 U		5.5 U		5.9 U		6 U
Dichloroprop	U		62 U		55 U		54 U		57 U		55 U		59 U		60 U
Dinoseb	U		32 U		28 U		28 U		29 U		28 U		30 U		31 U
MCPA	U		6200 U		5500 U		5400 U		5700 U		5500 U		5900 U		6000 U
MCPP	U		6200 U		5500 U		5400 U		5700 U		5500 U		5900 U		6000 U
Pentachlorophenol	U		22 U		20 U		20 U		21 U		20 U		22 U		22 U
Picloram	U		63 U		56 U		5 5 U		58 U		56 U		6.1 U		6 2 U

SEAD-120B Ovid Road Small Arms Range

Table 17-1

Sample Collection Information SEAD-120B - Ovid Road Small Arms Range

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL	TP120B-1	EB165	3/31/98	0.6	1.0	SA	Location is in central portion of the arcuate berm behind target mounting post (potential bullet impact area) Sample depth chosen where the most projectiles were found
SOIL	TP120B-1	EB034	3/31/98	0.6	10	DU	Location is in central portion of the arcuate berm behind target mounting post (potential bullet impact area) Sample depth chosen where the most projectiles were found
SOIL	TP120B-1	EB166	3/31/98	2 0	2 2	SA	Location same as above Sample chosen beneath the zone that contained the most projectiles (potential impact due to leaching from zone above)
SOIL	TP120B-2	EB167	3/31/98	0.8	10	SA	Location is in south-central portion of the arcuate berm behind a target mounting post (potential bullet impact area) Sample chosen where the most projectiles were found
SOIL	TP120B-2	EB168	3/31/98	20	2.2	SA	Location same as above. Sample chosen beneath the zone that contained the most bullet casings (potential impact due to leaching from zone above)
SOIL	TP120B-3	EB169	3/31/98	1.0	1.5	SA	Location is in north-central portion of the arcuate berm behind a target mounting post (potential bullet impact area). Sample chosen where the most projectiles were found
SOII.	TP120B-3	EB170	3/31/98	2 8	3 0	SA	Location same as above Sample chosen beneath the zone that contained the most projectiles (potential impact due to leaching from zone above)
WATER	TP120B-1	EB035	3/31/98	0.0	0.0	RB	NA

Notes

SA Sample

DU - Duplicate

NA - Not Applicable

Table 17-2 120B - Explosives in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION.									SEAD-120B Ovid Road Small Arms Range		SEAD-120 Ovid Road Small Arm Range	1
LOC ID:									TP120B-1		TP120B-1	
SAMP_ID									EB165		EB034	
QC CODE									SA		DU	
SAMP, DETH TOP:									0.6		0.6	
SAMP DEPTH BOT:									1		1	
MATRIX:									SOIL		SOIL	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	3/31/9	8		31/98
			OF			ABOVE	OF	OF				
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1,3,5-Trinitrobenzene	UG/KG	0.0	0.00%		52644	0	0	7	' 12	20 U		120 U
1,3-Dinitrobenzene	UG/KG	0.0	0.00%		105288	0	0	7	' 12	20 U		120 U
2,4,6-Trinitrotoluene	UG/KG	0.0	0.00%		526442	0	0	7	' 12	20 U		120 U
2,4-Dinitrotoluene	UG/KG	0.0	0.00%		2105769	0	0	7	' 12	20 U		120 U
2,6-Dinitrotoluene	UG/KG	0.0	0.00%	1000	1052885	0	0	7	' 12	20 U		120 U
2-Nitrotoluene	UG/KG	0.0	0.00%			0	0	7	' 12	20 U		120 U
2-amino-4,6-Dinitrotoluene	UG/KG	0.0	0.00%			0	0	7	' 12	20 U		120 U
3-Nitrotoluene	UG/KG	0.0				0	0	7		20 U		120 U
4-Nitrotoluene	UG/KG	0.0	0.00%			0	0	7	12	20 U		120 U
4-amino-2,6-Dinitrotoluene	UG/KG	0.0	0.00%			0	0	7		20 U		120 U
HMX	UG/KG	0.0	0.00%			0	0	7	' 12	20 U		120 U
Nitrobenzene	UG/KG	0.0	0.00%	200	526442	0	0	7	12	20 U		120 U
RDX	UG/KG	0.0	0.00%			0	0	7		20 U		120 U
Tetryl	UG/KG	0.0	0.00%			0	0	7	12	20 U		120 U

Table 17-2 120B - Explosives in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION:	SEAD-120B Ovid Road Small Arms Range		SEAD-120B Ovid Road Small Arms Range		SEAD-120B Ovid Road Small Arms Range		SEAD-120E Ovid Road Small Arms Range		SEAD-120E Ovid Road Small Arms Range	
LOC ID:	TP120B-1		TP120B-2		TP120B-2		TP120B-3		TP120B-3	
SAMP_ID:	EB166		EB167		EB168		EB169		EB170	
QC CODE:	SA		SA		SA		SA		SA	
SAMP, DETH TOP:	2		0.8		2		1		2.8	
SAMP. DEPTH BOT:	2.2		1		2.2		1.5		3	
MATRIX:	SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP. DATE:	3/31/	198	3/31	1/98	3/31	1/08	3/31	/O.R	3/31	1/00
or title . British	0,0 1,	30	0,0	1730	5/5	1730	3/3 [130	3/3	.190
PARAMETER	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,3,5-Trinitrobenzene	1	20 U		120 U		120 U		120 U		120 U
1,3-Dinitrobenzene	1	20 U		120 U		120 U		120 U		120 U
2,4,6-Trinitrotoluene	1	20 U		120 U		120 U		120 U		120 U
2,4-Dinitrotoluene	1	20 U		120 U		120 U		120 U		120 U
2,6-Dinitrotoluene	1	20 U		120 U		120 U		120 U		120 U
2-Nitrotoluene	1	20 U		120 U		120 U		120 U		120 U
2-amino-4,6-Dinitrotoluene	1	20 U		120 U		120 U		120 U		120 U
3-Nitrotoluene	1	20 U		120 U		120 U		120 U		120 U
4-Nitrotoluene	1	20 U		120 U		120 U		120 U		120 U
4-amino-2,6-Dinitrotoluene	1	20 U		120 U		120 U		120 U		120 U
HMX	1	20 U		120 U		120 U		120 U		120 U
Nitrobenzene	1	20 U		120 U		120 U		120 U		120 U
RDX	1	20 U		120 U		120 U	•	120 U		120 U
Tetryl	1	20 U		120 U		120 U	•	120 U		120 U

Table 17-3 120B - Explosives in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-120 Ovid Road Small Arm Range	d	SEAD-120 Ovid Road Small Arm Range	1
LOC ID: SAMP_ID:									TP120B-1 EB165		TP120B-1 EB034	
QC CODE:									SA		DU	
SAMP. DETH TOP:									0.6		0.6	
SAMP. DEPTH BOT:									1		1	
MATRIX:									SOIL		SOIL	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	3/3	31/98	3/3	31/98
			OF			ABOVE	OF	OF				
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q
1,3,5-Trinitrobenzene	UG/KG	0.0	0.00%		52644	0	0	7		120 U		120 U
1,3-Dinitrobenzene	UG/KG	0.0	0.00%		105288	0	0	7		120 U		120 U
2,4,6-Trinitrotoluene	UG/KG	0.0	0.00%		526442	0	0	7		120 U		120 U
2,4-Dinitrotoluene	UG/KG	0.0	0.00%		2105769	0	0	7		120 U		120 U
2,6-Dinitrotoluene	UG/KG	0.0	0.00%	1000	1052885	0	0	7		120 U		120 U
2-Nitrotoluene	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
2-amino-4,6-Dinitrotoluene	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
3-Nitrotoluene	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
4-Nitrotoluene	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
4-amino-2,6-Dinitrotoluene	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
HMX	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
Nitrobenzene	UG/KG	0.0	0.00%	200	526442	0	0	7		120 U		120 U
RDX	UG/KG	0.0	0.00%			0	0	7		120 U		120 U
Tetryl	UG/KG	0.0	0.00%			0	0	7		120 U		120 U

Table 17-3 120B - Explosives in Soil vs PRG-REC Non-Evaluated EBS Sites

DESCRIPTION:	Ovid Road Small Arms Range	SEAD-120B Ovid Road Small Arms Range	SEAD-12 Ovid Roa Small Ari Range	ad	SEAD-120B Ovid Road Small Arms Range	SEAD-120B Ovid Road Small Arms Range
LOC ID: SAMP_ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX:	TP120B-1 EB166 SA 2 2.2 SOIL	TP120B-2 EB167 SA 0.8 1 SOIL	TP120B- EB168 SA 2 2.2 SOIL		TP120B-3 EB169 SA 1 1.5 SOIL	TP120B-3 EB170 SA 2.8 3 SOIL
SAMP. DATE:	3/31/98	3/31/98	3,	/31/98	3/31/98	3/31/98
PARAMETER 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Nitrotoluene 2-amino-4,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene 4-amino-2,6-Dinitrotoluene HMX Nitrobenzene RDX Tetryl	VALUE 120 120 120 120 120 120 120 120 120 120	U 120	U U U U U U U U U U U	Q 120 U 120 U	VALUE 120 U	120 U

| 1 del | 47 f | 12010 | Symmethalis and Soil Soil Artists | Soil Destinated LDS Sates

											AD-120B								_		
SITE DESCRIPTION									SEAD 120B Oved Road		d Road	SEAD Oved R		SEAD-12		SEAD-120 Ovid Rose		SEAD 120 Oved Road		SEAD-120 Ovid Road	
DECCRIPTION									Small Arms		all Aims	Small		Small Arn		Small Air		Small Arm		Small Arm	
									Range	Rai		Range		Range		Range	-	Range		Range	-
LOC ID									TP120B 1		170B-1	TP120		TP120B-2		TP120B 2		TP120B-3		TP120B-3	ł.
SAMP ID									EB165	683		EB160		EB167		EB168		EB169		E8170	
GC CODE									SA	DU		SA		SA		SA		SA		SA	
SAMP DETH TOP									0.6	0.6		2		0.8		2		1		2.8	
SAMP DEPTH BOT									1	1		2.2		1		2 2		1 5		3	
MATRIX									SOIL	so		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENC/			NUMBER ABOVE	NUMBER OF	NUMBER	3:31:96	}	3/31/98		3/31/98	3	/31/98	3/	31/98	3/3	1/98	3	V31/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q VA	LUF O	VALUE	E Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	0
1 2 4 Trichlorobenzene	UG/KG	0.0	0.00%	3400	10528846	0	0	7	75	U	NA		79 U		80 U		80 U		60 U		78 U
1 2-Dichlorobenzene	UG/KG	0.0	0.00%	7900	94759615	0	0	7		U	NA.		79 U		80 U		80 U		80 U		78 U
1 3 Dichlorobenzene	UG/KG	0.0	0.00%	1600	93706731	0	D	7		υ	NA.		79 U		80 U		80 U		80 U		78 U
1 4 Dichlorobenzene	UG/KG	0.0	0 00%	8500	2866186	0	0	7		U	NA		79 U		80 U		80 U		60 U		78 U
2 4 5-Trichlorophenol	UG/KG	0.0	0.00%	100	105288462	0	0	7) U	NA NA		190 U 79 U		190 U 80 U		190 U 80 U		190 U		190 U
2,4,6-Trichlorophenol	UG/KG UG/KG	0.0	0 00%	400	6253497 3158654	0	0	7) U	NA NA		79 U		80 U		80 U		80 U 80 U		78 U 78 U
2,4 Dichlarophenal 2,4-Dimethylphenal	UG/KG	00	0.00%	400	21057692	0	0	7		Ü	NA.		79 U		80 U		80 U		80 U		78 U
2 4-Dinitrophenal	UG/KG	0.0	0.00%	200	2105769	0	0	7		บ	NA.		190 U		190 U		190 U		190 U		190 U
2 4 Dindrotoluene	UG/KG	0.0	0.00%		2105769	0	0	7		U	NA		79 U		80 U		80 U		50 Ų		78 U
2 6 Dinstrotaluene	UG/kG	0.0	0.00%	1000	1052885	0	D	7	71	U	NA		79 U		80 U		80 U		50 U		78 U
2-Chloronaphthalene	UG/KG	0.0	0.00%			0	0			U	NA		79 U		80 U		80 U		80 U		78 U
2-Chlorophenol	UG/KG	0.0	0.00%	800	5264423	0	0			U	NA		79 U		80 U		80 U		80 V		78 U
2-Methylnaphthalene	UG/KG	0.0	0.00%	36400		0	0			U C	NA		79 U		80 U		80 U		50 U		78 U
2 Methylphenol	UG/KG	0.0	0.00%	100	52644231	0	0			n U	NA NA		79 U 190 U		80 U		80 U 190 U		50 U 190 U		78 U
2-Nitroaniline 2 Nitrophenol	UG/KG UG/KG	0.0	0.00%	430 330	63173	0	0) U	NA.		79 U		80 U		80 U		80 U		190 U 78 U
3 3 -Dichlorobenzidine	UG/KG	0.0	0.00%	330	152863	0	0	,) U	NA.		79 U		80 U		80 U		80 U		78 U
3 Nitroansine	UG/KG	0.0	0 00%	500	3158654	0	0		19	U	NA		190 U		190 U		190 U		190 U		190 U
4 5 Dinitro-2-methylphenol	UG/NG	0.0	0.00%			0	0	7		U	NA		190 U		190 U		190 U		190 U		190 U
4-Sromophenyl phenyl ether	UG/KG	0.0	0.00%		61067308	D				U	NA		79 U		50 U		80 U		60 U		78 U
4 Chloro 3-methylphenol	UG/KG	0.0	0 00%	240		0	0			U	NA		79 U		80 U		80 U		80 U		78 U
4-Chloroaniline	UG/KG	0.0	D 00%	220	4211538	0	0			U	NA		79 U		80 U		80 U		80 U		78 U
4-Chlorophenyl phenyl ether	UG/KG	0.0	0 00%			0	0			e U	NA NA		79 U		80 U 80 U		80 U 80 U		80 U		78 U 78 U
4 Methylphenol 4 Nitroaniline	UG/KG UG/KG	0.0	0.00%	900	3158654	0	0			, U	NA AA		190 U		190 U		190 U		190 U		190 U
4 Ntrophenol	UG/KG	0.0	0.00%	100	63173077	0	0			U	NA.		190 U		190 U		190 U		190 U		190 U
Acenachthene	UG/KG	0.0	0 00%	50000	03113011	0	a			9 U	NA.		79 U		80 U		80 U		U 08		78 U
Acenaphthylene	UG/XG	0.0	0.00%	41000		0	d	7	7	9 U	NA.		79 U		80 U		80 U		80 U		78 U
Anthracene	UG/KG	4.5	14 29%	50000	315865385	0		7		9 U	NA		79 U		45 J		80 U		80 U		78 U
Benzo[a]anthracene	UG/KG	0.0	0.00%	224	94231	0				9 U	NA		79 U		80 U		80 U		80 U		78 U
Senzo[a]pyrene	UG/KG	0.0	0.00%	61	9423	0	0			9 U	NA		79 U		80 U		U 08		80 U		78 U
Benzo[b]fluoranthene	UG/KG	0.0	0.00%	1100 50000	94231	0	0			9 U	NA NA		79 U		50 U		50 U		80 U		78 U 78 U
Benzo(ghi)perylene Benzo(k)ñuoranthene	UG/KG UG/KG	0.0	0.00%	1100	942308	0	0			9 U	NA NA		79 U		80 U		80 U		80 U		78 U
Bis(2-Chloroethoxy)methane	UG/KG	0.0	0.00%	1100	342300	0	o			. u	NA.		79 U		80 U		80 U		80 U		78 U
Bis(2-Chloroethyllether	UG/KG	0.0	0.00%		62535	0	0	7	7	9 U	NA		79 U		80 U		80 U		80 U		78 U
Bis(2 Chloroisopropyl)ether	UG/KG	0.0	0.00%		982692	0	0	7		9 U	NA		79 U		80 U		80 U		80 U		78 U
8rs(2-Ethythexyl)phthalate	UG/KG	7.7	85 71%	50000	4913462	0				4 JB	NA		46 JB		63 JB		64 18		69 JB		77 JB
Butylbenzylphthalate	UG/KG	0.0	0.00%	50000	210576923	0				9 U	NA		79 U		80 U		U 08		80 U		78 U
Carbazole	UG/KG UG/KG	0.0	0 00% 28 57%	400	3439423 9423077	0				9 J U	NA NA		79 U 79 U		53 J		80 U		80 U		78 U 78 U
Chrysene Di-n-butylphthalate	UG/KG	53	0 00%	8100	9423077	0				9 U	NA.		79 U		80 U		50 U		U 08		78 U
Di-n-octylphthalate	UG/KG	0.0	0.00%	50000	21057692	0				9 U	NA		79 U		80 U		80 U		80 U		78 U
Dibenz(a h)anthracene	UG/KG	0.0	0.00%	14	9423	0	0	7	7	9 U	NA		79 U		80 U		80 U		80 U		78 U
Dibenzofuran	UG'KG	0.0	0.00%	6200	4211538	0	0			9 U	NA		79 U		60 U		50 U		80 U		78 U
Diethyl phthalate	UG/KG	9 5	85 71%	7100	842307892	0				s JB	NA		95 JB		7 7 JB		63 JB		4 6 JB		6 8 JB
Dimethylphthalate	UG/NG	0.0	0.00%	2000	10528848150	0				9 U	NA NA		79 U		80 U 6 9 J		80 U 47 J		80 U 80 U		78 U 78 U
Fluoranthene	UG/KG UG/KG	8 9 0 0	42 86% 0 00%	50000 50000	42115385 42115385	0				2 J	NA NA		79 U 79 U		89 J		80 U		80 U		78 U
Fluorene Hexachlorobenzene	UG/KG	0.0	0 00%	410	42993	0				9 U	NA AN		79 U		80 U		80 U		80 U		78 U
Hexachlorobutadiene	UG/KG	0.0	0 00%		210577	ō				9 U	NA.		79 U		80 U		80 U		U 08		78 U
Hexachlorocyclopentadiena	UG/KG	0.0	0 00%		7370192	ō		7	7	9 U	NA		79 U		80 U		80 U		80 U		78 U
Hexachlorpethane	UG/KG	0.0	0.00%		1052885	0	0	7		9 U	NA		79 U		80 U		80 U		60 U		78 U
Indeno[1,2,3-cd]pyrene	UG/KG	0.0	0 00%	3200	94231	0				9 U	NA		79 U		80 U		80 U		60 U		78 U
Isophorane	UG/KG	0.0	0.00%	4400		0				9 U	NA		79 U		80 U		80 U		60 U		78 U
N-Ndrosodiphenylamine	UC/KG	0.0	0 00%		14038462	0				9 U	NA.		79 U		80 U		80 U		80 U		78 U 78 U
N Nitrosodipropylamine	UG/KG	0.0	0 00%	13000	9827 42115385	0				9 U 9 U	NA NA		79 U 79 U		80 U		80 U 80 U		80 U 80 U		78 U
Naphthalene Nitrobenzene	UG/KG	0.0	0.00%	13000	42115385 526442	0				9 U	NA NA		79 U		80 U		10 OB		80 U		78 U
Nitrobenzene Pantachlorophenol	UG/KG	0.0	0.00%	1000	573237	0) U	NA NA		190 U		190 U		190 U		190 U		190 U
Phenanthrene	UG/KG	44	14 29%	50000		o o		7	7	9 U	NA		79 U		44 J		8D U		80 U		78 U
Phenoi	UG/KG	0.0	0.00%	30	631730769	0				9 U	NA		79 U		80 U		60 U		80 U		78 U
Pyrene	UG/KG	6.6	28 57%	50000	31586538	0	2	7	5	5 J	NA.		79 U		66 J		80 U		80 U		78 tJ

							y :_		_	_	_			2:				_ :			-	-					-1			. =		<u>.</u>	:		_		5 5		E		. :		- 1	-	_ B						_	= :	<u>.</u> _		. =	_		_	2 2
St UD-120R Child Rind Small Vms	11120R-3	18170		-	11 1 08		78	X.	18	78	1901	M.	78	3.6	100	87	78	E 1	E 9F	95	14	78	161	130	78	78	7.8	7.8	961	100	84	87.	E 1	78	#2	78	7 79	25	77	28	28.	87	78	7.8	11	77	7.8	7.8	38.	738	78	78	84 84	7, 27	78	X.C	061	78	E 12
= - :	_				1 11 0%	5) :- Si	, (n	.) 498	.) 118	. 1 061	.) (M	No (*	70 L	1 08	.) (3	11 08	- CO	- C - C - C - C - C - C - C - C - C - C	- 20	1 UM	80 t	.1 061	. 1 101		.1 08	1 08	80.1	1 00 1	1 1 1 1 1	1, 08	108	2 2	2 18	80 t	108	08 9	1 08	A 9 JR	30 1.	101	13 03	11 08	.1 08	108	80 1:	11 08	.) 08	No C	ug	. 1 vs	200	1 (38)	R0 C	. OK	.) (18	1001	30 1	% 12 1- 1- 1-
SF VD-12mH Chad Road Small Vress Record	17-120B-1	FRING		1.5	100																																																						
20R mad	7				1 11 98			30 (.1 08	80 1	1 161	100	200	308	Ro C	RO 1.	. J 138			1961	'1 0%	.1 08	1 061	8			188	- GK	1 061	30 1.	30 1	- CO	11 08	1 2	11 US	208	20 12	. L GX	6.4 33	.1 08	98		30 1:	.1 08	.1 0%	11 08	47.1	80 1	508	101	i) lik	_ : E :	1 1 1 1 1 1	11 08	. 1 OM	71 08	1 061	30 1,	2 R
SL VO-120B Ox of Road Small Arms Range	1 P1 203-2	18168	٠,	2.2	=	11111																																																					
Light Soad Vene	H-2				86.11.1			SK.	1 08	.1 688	1.85		NO C	1 181 1	.) ()%	.) (p)	. J 08	2 3	2 2	1001	e cx	- GR	1.30	00.	2 2	K0 L7	X0 1,	.1 08	1 00 1	- F 0X	NO 11	7.2	2 08	, D	.1 08	- 5	9 8	1 68	A) A	108		X0 (;	'1 CK	.1 08	7 2 2	Xn 1	6.9 3	1 08	2 08	8 2	- GR	2 8		¥ 1	 	i ox	1001	77	KD (*
SI MALIZOR Daid Road Small Ames Renuc	179120	18167	0 8	- 3		1111																																																					
St. Up. 1200 Oxad Sond Small Vens Renge					3.414.8			7.1.7	70.17	70.0	100	2 2	2 2	2 00	70 [70 1.	70.00	2 2	: E	1 061	7 5	-1 64	100	190 1	2 2	79 (-	79 (2	2	30 100	2	2	79 1	2 2	2 2	70 (1	2 2	2 2	-1 62	146 133	2	R	2 2	70 (*	70 1:	7 67 0	79 11	.1 62	79 [2 1	- - -	70 11	2 2	2 2	. 2	79	5	1061	70 1.	2 2 2
Shirt Anny	1102341		٠.	2, 5		11111																																																					
St. AD-170H Oxed Read Susall Vine Renye	р.1				1 11 08			7	7	7	5	;	2 :	. 5	7	12	7	;;	7	7	7	7	ź	2	2. 2	5	7	;	;;	; ;	1	ź	27	2 2	1	7	55	;	7	í.	7	<i>: :</i>	5	7	;;	í	1%	ź	5	; ;	7	2 2	. 7	; ;	7	í.	5	Ź	52
() () () () () () () () () () () () () (111209-1	2 20	7 8	_ 3		1111																																																					
Sl VD-L20B Oxid Read Sotall Vites Range	1.4				30 11 1	2	- 12	70.1	- 1-	2	190	2 2	2 2	196	7.07	70 1.	2	2 2	ž.	141	Ę.	Ê	100	1.00	2 2	- 12	-1 12	2 .	9 2	î	î	2 1	 R #	1 2	70 (2 1	78.	7 2	E 13	130	101	- 2	79 1	2	2 9 3	20 02	6.2.3	70 -	R F	70 1.	- 62	2 2	2 2	2 2	10.00	1 (4	1.xi	79 (
Charles Charles	17170R-1	SA	90	- 5	4 100 K	1815 1 11 13	7	r	-	7	- 1			- 1-	7	7	7			7	^	7	۱ -	- 1		7	7	٠,			7	r 1			7	۲,			7	7	- +		7	7	,	-	7	7	- 1		7					1	,	7	,
							_	=	a	¢			5 0		D	c	0	= =	: =	c	0	e		2 :	: :	9		5 5			c	- :	e =		0	٥:		÷	4	0	= ^	. =	=	0	c 4	. c	-	0	2 5	: =	=	= =			c	c	e ·	-	= ^
					R NINTER		_	÷	=	=	c	c :		: 0	G	c	=	= =	: 0	c	0	٥	٠.	= 0	2 5	п		0 :	0 0		÷	± :			0	c :			9	a :	= =	: 5	63	c	c c		с	0			0	0 0		: 0	•	•	с:	=	= =
					STABLE				=	s	> 1		7 2	7.6	64	84		12	=	12		5	J		40	18			7 6			\$2	= =	. =		380	22	,7	25	12	T, F		92	23	33	06	83	Σ:	1 1		KS.	=	5		2	12	1.1		61 81
						PRC.	23846	91109014	917067	386418b	1915,788,1	1156	MALL TO STORY	0925017	2105769	105.288		1264421	17644231	1/11/1		152867	1152251	* 100 7 100	Place	4211548			61171077			115865185	1576	11.7%		942303	159	19824112	47 (04	2105769	14/14	75	21057692	Z	42117438	105288461	121151	151127	627	7170192	1415.28	942	140184	T.S.V.	42115185	426442	2112		11586518
						1 103/1	1,100	71381	16/00	8400	100	trans	CH.	300		(HH)		36.100	100	11/1	011		400		or.	320		DOK.	1001	SDOWN	41080	\$6660	2 3	1001	SHANN	100			\$19090	\$13000	Gir	8 30	46000	7	7100	2000	SODOR	SUDGE	=			1200	*		13690	200	1000	SONN	th 50000
					FRI OT 4:3	II CTO		0 (MP*,	11 150**	0 00",	0.000	0.007	1 197"	0.00.0	() (107.	0 00"	"(H) ()	"(B) (C		0 DD*	O DIP.	0.00**	0.000	0.000	0.00%	0.00**	0.00**	0.000	0.00"	0.00"	0 187".	14 29",	0,000	0.000	0 (30,4)	0.000	" KI G	D (M)",	85.71~	0 (K)**	1010	0000	0.00**	40 00 p	84.71"	0.000	42 X6"p	0.00.0	0 Off.	0.000	O Dates	0.100**			0.00**	(1 Ol)*a	0.000	12 27.	28 47"
					Œ	I 40 IV. IIVIVIV	0.0	9.0	9.0	0	9.0	0 0	0 0	2 0	9.0	0.0	2	0 0		0 0	0.0	0.0	0.0	0 0		-	9 6	0 0	0 0	0.0	6 0	* 7	0 0	2 0	0 0	0 :	= 6	G G	11	00	0 0	8 0	0.0	0.0	0 0	0.0	6.9	0.0	0 0		0.0	0 0	2 0	0 0	6.0	0.0	0.0	7	6 8 9
						INI IIV		t c. kG	t. kt.	I to ke	6. KG	5 P C	C P C	e ke	G-KG	h, kci	r. kg	5 2 2	C KG	't. KG	'6-Kr6	G NG	, K		e ve	G NG	6,46	5 P.C	Takis Takis	GRG	'6-KG	G KG	5 N S	5 7 5	'G N.G	5,40	10 KG	C.K.G	V. KG	76. KG	5 KG	ri KG	7t- KG	'C: KG	6 KG	GKG	'G KG	G kG	da ko	SERG	GKG	5 KG	5 2 2	i ki	'c. KG	0.86	949	in KG	tisks tisks
						-	_	-	_	-			-	-	_	-	- :		-	-	-	-				-	-				1			-	-			. 2	_			-	-	-		-	_	- :	- :		_		_		-	-	-	-	-
٤			1700	1001		~	obenzen	SHALM.	287782	MILLER	upheni	home	there's	permi	Hene	nenc.	iheline	dhalone			_	henruline		4 A. Daulius / methy iphensi	4 Chloro Cmethy lphenol	Ac	4 Thlorophens I phens I other	lus.			NC 30		311111	anthene .	n Jene	anthone	Book 2 Chlorochavy Inchance	Red 2 (Threemorphythether	ve liphthalate	hibalate		helate	halate	ihra, cnc	1	alate			n/cnc	Iceachinececlapentadiene	hane	Indeaol 1 2 3 and pyrene	Newpherman	ney lamine			hemail		
STE DEVENTRON	0 10	CK. COM	ar DI III	VAR DIPITIBUT	10.00.00	PVKVVDIIK	12 terubbenkaren	1.2 De blerebenzene	D. Morrok	Dr blomb	7.4.4.1m.hlorophenol	2.4.5. Itt. blomphenol	Dat Money	4 Deviteurbino	4-Destrolation	to Dentrodulare	" hlumanphihalene	2.4 Maringhenal	leths fahen	2-Nationaline	2-Netrophenal	t 3 Dr. Mistrobenzuline	1. Vitroandine	Danillin.	Motor Cas	1 (Thereanding	hlorophen	1. Activity liphone	4-Nitrophenel	Wenaphihene	Lensphih lene	Inthracenc	Renzulajanthrace Benzulahusenne	Denzieh Humanthene	Benzulahilpers lene	Benzofk Murranthone	2-Chlorine	2 (Thforem	2-F rhs lhe	Turi Penzy Iphibalaic	arbayok	Da-n-buty fphthalate	Dr.n.m.ts Sphibalate	Description of the land of the	Dieter infuran	Symethy bolithelate	hurranthene	Norene	levachinriben/ene	- Chlimer	llexachluroethane	and 1 2 4	N. Valenandesk	/ / if completion is the inc	Suphthalone	Sitridenzese	Penta, Muruphenul	Themanthrene	Pend

Table 17-6 120B - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-1 Ovid Ro Small A Range	ad	SEAD-120 Ovid Road Small Am Range	d	SEAD-1 Ovid Ro Small Ar Range	ad
LOC ID:									TP120E	-1	TP120B-1		TP120B	i-1
SAMP_ID:									EB165		EB034		EB166	
QC CODE:									SA		DU		SA	
SAMP, DETH TOP:									0.6		0.6		2	
SAMP. DEPTH BOT:									1		1		2.2	
MATRIX:									SOIL		SOIL		SOIL	
SAMP. DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF		3/31/98	3/3	31/98		3/31/98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
Aluminum	MG/KG	15300.0	85.71%	19520	1052885	0	6	7	7	13300		NA		13400
Antimony	MG/KG	1.4	75.00%	6	421	0	3	4	1	1.1 UN		NA		1.2 UN
Arsenic	MG/KG	10.7	85.71%	8.9	46	1	6	7	7	2.9		NA	100	10.7
Barium	MG/KG	148.0	85.71%	300	73702	0	6	7	7	105		NA		148
Beryllium	MG/KG	0.6	85.71%	1.13	16	0	6	7	7	0.56 B		NA		0.40 B
Cadmium	MG/KG	0.0	0.00%	2.46	526	0	0	7	7 .	0.07 U		NA		0.07 U
Calcium	MG/KG	36600.0	85.71%	125300		0	6	7	7	20300 *		NA		21700 *
Chromium	MG/KG	21.9	85.71%	30	1052885	0	6	7	7	19.7		NA		20.1
Cobalt	MG/KG	14.2	85.71%	30	63173	0	6	7	7	9.8 B		NA		14.2
Copper	MG/KG	212.0	85.71%	33	42115	4	6	7	71	M191		NA	A SHOW IN	57.0
Cyanide	MG/KG	0.0	0.00%	0.35		0	0	7	7	0.63 U		NA		0.65 U
Iron	MG/KG	27100.0	85.71%	37410	315865	0	6		7	24100		NA	2.2	26200
Lead	MG/KG	522.0	85.71%	24.4		6	6		TWEET.	289		NA	ALC: N	324
Magnesium	MG/KG	10300.0	85.71%	21700		0	6	7		6200 *		NA		7640 *
Manganese	MG/KG	945.0	85.71%	1100	24216	0	6	7		448		NA		945
Mercury	MG/KG	0.1	14.29%	0.1	316	0	1	7		0.06 U		NA		0.07 B
Nickel	MG/KG	34.6	85.71%	50	21058	0	6	7		29.9		NA		34.6
Potassium	MG/KG	2270.0	85.71%	2623		0	6	7		1630		NA		1730
Selenium	MG/KG	. 1.2		2	5264	0	6	1		1.0 UN*		NA		1.1 UN*
Silver	MG/KG	0.4		8.0	5264	0	1	7		0.29 U		NA		0.31 U
Sodium	MG/KG	92.5		188		0	5	7		90.4 B		NA	71	88.5 B
Thallium	MG/KG	2.9		0.855	84	2	2	7		1.5 U		NA	10000	1.9 B
Vanadium	MG/KG	25.7	85.71%	150	7370	0	6	7		21.2		NA		24.2
Zinc	MG/KG	110.0	85.71%	115		0	6	7	7	83.5 E		NA		87.2 E

Table 17-6
120B - Metals in Soil vs TAGMs
Non-Evaluated EBS Sites

SITE:	SEAD-120B		SEAD-120E	3	SEAD-1206	3	SEAD-1	20B	
DESCRIPTION:	Ovid Road		Ovid Road		Ovid Road		Ovid Ro		
	Small Arms		Small Arms		Small Arms		Small Ar		
	Range		Range		Range		Range	1110	
LOC ID:	TP120B-2		TP120B-2		TP120B-3		TP120B-	-3	
SAMP ID:	EB167		EB168		EB169		EB170		
QC CODE:	SA		SA		SA		SA		
SAMP, DETH TOP:	0.8		2		1		2.8		
SAMP. DEPTH BOT:	1		2.2		1.5		3		
MATRIX:	SOIL		SOIL		SOIL		SOIL		
SAMP. DATE:	3/3	1/98	3/31	/98	3/31	/98		3/31/98	
PARAMETER	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	
Aluminum		300		600	-	400	***************************************	13100	
Antimony		1.4 BN		1.2 UN		1.2 BN		1.3 BN	
Arsenic		5.1		4.0		3.2		2.7	
Barium		134		115		112		106	
Beryllium		0.51 B	- 0	.53 B	0	.54 B		0.56 B	
Cadmium		0.07 U	C	.07 U	0	.07 U		0.07 U	
Calcium	8	020 *	27:	200 *	285	500 *		36600 *	
Chromium		21.9	2	0.2	1	9.6		19.3	
Cobalt		12.2	1	1.6 B		9.6 B		8.6 B	
Copper	C. P. P.	138	11-0777	212	3	3.0		32,1	
Cyanide		0.62 U	C	.65 U	0	.62 U		0.63 U	
Iron	27	100	24	500	23	100		22500	
Lead	me/As	522	MA CONTAIN	166	1	12,6		72	
Magnesium	5	130 *	7:	280 *	103	300 *		10200 *	
Manganese		871	!	585	4	474		352	
Mercury		0.06 U	C	.06 U	0	.05 U		0.06 U	
Nickel		32.1		1.1	2	9.3		27.7	
Potassium	2	270		570		300		1700	
Selenium		1.2 BN*		1.0 UN*		1.0 UN*		1.0 UN*	
Silver		0.31 U		.38 B		.29 U		0.3 U	
Sodium	250	92.5 B		2.2 B		8.5 U		69.6 B	
Thallium	NEL TE	2.9		1.5 U		1.5 U		1.6 U	
Vanadium		25.7		2.7		2.6		21.9	
Zinc		105 E		110 E	8	3.9 E		79.9 E	

Table 17-7 120B - Metals in Soil vs PRG-RFC Non-Evaluated EBS Sites

SITE DESCRIPTION:									SEAD-120B Ovid Road Small Arms Range	SEAD-120B Ovid Road Small Arms Range	SEAD-120B Ovid Road Small Arms Range
LOC ID.									TP120B-1	TP120B-1	TP120B-1
SAMP ID:									EB165	EB034	EB166
QC CODE:									SA	DU	SA
SAMP DETH TOP:									0.6	0.6	2
SAMP, DEPTH BOT:									1	1	2.2
MATRIX:									SOIL	SOIL	SOIL
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	3/31/98	3/31/98	3/31/98
			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	15300.0	85.71%	19520	1052885	0	6	7	13300	NA	13400
Antimony	MG/KG	1.4	75.00%	6	421	0	3	4	1.1 UN	NA	1.2 UN
Arsenic	MG/KG	10.7	85.71%	8.9	46	0	6	7	2.9	NA	10.7
Barium	MG/KG	148.0	85.71%	300	73702	0	6	7	105	NA	148
Beryllium	MG/KG	0.6	85.71%	1.13	16	0	6	7	0.56 B	NA	0.40 B
Cadmium	MG/KG	0.0	0.00%	2.46	526	0	0		0.0.	NA	0.07 U
Calcium	MG/KG	36600.0	85.71%	125300		0	6		20000	NA	21700 *
Chromium	MG/KG	21.9	85.71%	30	1052885	0	6	7	19.7	NA	20.1
Cobalt	MG/KG	14.2	85.71%	30	63173	0	6		0.00	NA	14.2
Copper	MG/KG	212.0	85.71%	33	42115	0	6	7		NA	57.0
Cyanide	MG/KG	0.0	0.00%	0.35		0	0		0.00	NA	0.65 U
Iron	MG/KG	27100.0	85.71%	37410	315865	0	6			NA	26200
Lead	MG/KG	522.0	85.71%	24.4		0	6			NA	324
Magnesium	MG/KG	10300.0	85.71%	21700		0	6		0200	NA	7640 *
Manganese	MG/KG	945.0	85.71%	1100	24216	0	6			NA	945
Mercury	MG/KG	0.1	14.29%	0.1	316	0	1	7	0.00	NA	0.07 B
Nickel	MG/KG	34.6	85.71%	50	21058	0	6		20.0	NA	34.6
Potassium	MG/KG	2270.0	85.71%	2623		0	6		1000	NA	1730
Selenium	MG/KG	1.2	600.00%	2	5264	0	6		1.0 UN*	NA	1.1 UN*
Silver	MG/KG	0.4	14.29%	0.8	5264	0	1	7	0.20	NA	0.31 U
Sodium	MG/KG	92.5	71.43%	188		0	5			NA	88.5 B
Thallium	MG/KG	2.9	28.57%	0.855	84	0	2			NA	1.9 B
Vanadium	MG/KG	25.7	85.71%	150	7370	0	6			NA	24.2
Zinc	MG/KG	110.0	85.71%	115		0	6	7	83.5 E	NA	87.2 E

Table 17-7 120B - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE.	SEAD-120B	SEAD-120B	SEAD-1208	SEAD-120B
DESCRIPTION:	Ovid Road	Ovid Road	Ovid Road	Ovid Road
	Small Arms	Small Arms	Small Arms	Small Arms
	Range	Range	Range	Range
LOC ID	TP120B-2	TP120B-2	TP120B-3	TP120B-3
SAMP_ID	EB167	EB168	EB169	EB170
QC CODE.	SA	SA	SA	SA
SAMP DETH TOP:	0.8	2	1	2 8
SAMP DEPTH BOT.	1	2.2	1.5	3
MATRIX	SOIL	SOIL	SOIL	SOIL
SAMP DATE:	3/31/98	3/31/98	3/31/98	3/31/98
PARAMETER	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	15300	13600	13400	13100
Antimony	1.4 BN	1.2 UN	1.2 BN	1.3 BN
Arsenic	5.1	4.0	3.2	2.7
Barium	134	115	112	106
Beryllium	0.51 B	0.53 B	0.54 B	0.56 B
Cadmium	0.07 U	0.07 U	0.07 U	0.07 U
Calcium	8020 *	27200 *	28500 *	36600 *
Chromium	21.9	20.2	19.6	19.3
Cobalt	12.2	11.6 B	9.6 B	8 6 B
Copper	136	212 0.65 U	33.0	32.1
Cyanide Iron	0.62 U 27100	24500	0.62 U 23100	0.63 U 22500
Lead	522	166	82.6	72
Magnesium	5130 *	7280 *	10300 *	10200 *
Manganese	871	585	474	352
Mercury	0.06 U	0.06 U	0.05 U	0.06 U
Nickel	32.1	31.1	29.3	27.7
Potassium	2270	1670	1800	1700
Selenium	1.2 BN*	1.0 UN*	1.0 UN*	1.0 UN*
Silver	0.31 U	0.38 B	0.29 U	0.3 U
Sodium	92.5 B	72.2 B	58.5 U	69.6 B
Thallium	2.9	1.5 U	1.5 U	1.6 U
Vanadium	25.7	22.7	22.6	21.9
Zinc	105 E	110 E	83.9 E	79.9 E

SEAD-120D

MP Refueling Island in the Q

Table 19-1

Sample Collection Information SEAD-120D - MP Refueling Island in the Q

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL	SB120D-1	EB258	3/17/98	0.0	0.3	SA	Location is at the southwestern end of the MP refueling island. The location was chosen because it is immediately downgradient of a fomer underground gasoline storage tank, hased on info. provided by SEDA environmental staff.
SOIL	SB120D-1	EB026	3/17/98	0.0	0.3	DU	Location same as above.
SOIL	SB120D-1	EB259	3/17/98	6.8	7.2	SA	Location same as above. Sample collected at approximately mid-depth (near water table) in the boring because no VOCs or other indications of impacts were observed in the subsurface soil.
SURFACE SOIL	SS120D-1	EB260	3/17/98	0.0	0.2	SA	Location is in the northeastern portion of the refueling island. Sample chosen because it was an area of stressed vegetation.
SURFACE SOIL	SS120D-2	EB261	3/17/98	0.0	0.2	SA	Location is in the southwestern portion of the refueling island. Sample chosen because it was an area of stressed vegetation.
WATER	SB120D-1	EB024	3/17/98	0.0	0.0	RB	NA

Notes:

SA = Sample

DU = Duplicate

RB = Rinse Blank

Table 19-2 120D - Volatiles in Soil vs TAGMs Non-Lyalinated FBS Sites

SITE DESCRIPTION LOC ID SAMP_ID GC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER		SEAD-120D MP Refueling Island in the Q SB120D-1 EB258 SA 0 0 3 SOIL 17-Mar-98	SEAD-12 MP Refu Island in SB120D- EB026 DU 0 0 3 SOIL	eling the Q	SEAD-120 MP Refuel Island in th SB120D-1 EB259 SA 6 8 7 2 SOIL	ling ne Q	SEAD-120I MP Refueli Island in th SS120D-1 EB260 SA 0 0 2 SOIL	ng e Q	SEAD-120E MP Refuelin Island in the SS120D-2 EB261 SA 0 0.2 SOIL	ing e Q
SAIVIF DATE			OF			ABOVE	OF	OF	17-Wat-30	17-1	Ma1-90	17-1	//ar-98	17-Ma	ar-98	17-M	lar-98
PARAMETER	UNIT	MAXIMUM		TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0.0	0 00%	800	36850962	0	0				11 U	VALUE	12 U	VALUE	13 U	VALUE	11 U
1.1.2.2-Tetrachloroethane	UG/KG	0.0	0 00%	600	3439423	0	0	_			11 U		12 U		13 U		11 U
1,1,2-Trichloroethane	UG/KG	0.0	0.00%		1206815	0	0	5			11 U		12 U		13 U		11 U
1,1-Dichloroethane	UG/KG	0.0	0.00%	200	105288462	0	0	5			11 U		12 U		13 U		11 U
1,1-Dichloroethene	UG/KG	0.0	0.00%	400	114647	0	0	5	11 U		11 U		12 U		13 U		11 U
1,2-Dichloroethane	UG/KG	0.0	0.00%	100	755917	0	0	5	11 U		11 U		12 U		13 U		11 U
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%			0	0	5	11 U		11 U		12 U		13 U		11 U
1,2-Dichloropropane	UG/KG	0.0	0 00%		1011595	0	0	5	11 U		11 U		12 U		13 U		11 U
Acetone	UG/KG	210.0	60.00%	200	105288462	1	3	5	210		17 B		160		13 U		11 U
Benzene	UG/KG	0.0	0 00%	60	2372016	0	0	5	11 U		11 U		12 U		13 U		11 U
Bromodichloromethane	UG/KG	0.0	0.00%		1109491	0	0	5	11 U		11 U		12 U		13 U		11 U
Bromoform	UG/KG	0 0	0.00%		8707400	0	0	5			11 U		12 U		13 U		11 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	105288462	0	0	5			11 U		12 U		13 U		11 U
Carbon tetrachlonde	UG/KG	0.0	0.00%	600	529142	0	0	_	, , ,		11 U		12 U		13 U		11 U
Chlorobenzene	UG/KG	0 0	0 00%	1700	21057692	0	0	5			11 U		12 U		13 U		11 U
Chlorodibromomethane	UG/KG	0 0	0.00%		818910	0	0	5			11 U		12 U		13 U		11 U
Chloroethane	UG/KG	0.0	0.00%	1900	421153846	0	0	_			11 U		12 U		13 U		11 U
Chloroform	UG/KG	0.0	0.00%	300	10528846	0	0	5			11 U		12 U		13 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	5			11 U		12 U		13 U		11 U
Ethyl benzene	UG/KG	0.0	0 00%	5500	105288462	0	0				11 U		12 U		13 U		11 U
Methyl bromide	UG/KG	0.0	0.00%		1505625	0	0	5			11 U		12 U		13 U		11 U
Methyl butyl ketone	UG/KG	0.0	0 00%			0	0	_	,. 0		11 U		12 U		13 U		11 U
Methyl chloride	UG/KG	0.0	0.00%		5291420	0	0	5			11 U		12 U		13 U		11 U
Methyl ethyl ketone	UG/KG	0.0	0 00%	300		0	0				11 U		12 U		13 U		11 U
Methyl isobutyl ketone	UG/KG	0.0	0 00%	1000	84230769	0	0	5			11 U		12 U		13 U		11 U
Methylene chlonde	UG/KG	0 0	0.00%	100	9171795	0	0	5			11 U		12 U		13 U		11 U
Styrene	UG/KG	0.0	0 00%	4.400	4222055	0	-	_			11 U		12 U		13 U		11 U
Tetrachloroethene	UG/KG	0 0 13 0	0 00% 100 00%	1400 1500	1322855 210576923	0	0 5	5			11 U 5 J		12 U 6 J		13 U 5 J		11 U
Toluene Total Vylanas	UG/KG UG/KG	0.0	0 00%	1200		0	0	_			11 U		12 U		13 U		13 11 U
Total Xylenes Trans-1,3-Dichloropropene	UG/KG	0.0		1200	2103/09231	0	0	5 5			11 U		12 U		13 U		11 U
Trichloroethene	UG/KG	0.0	0.00%	700	6253497	0	0	-			11 U		12 U		13 U		11 U
Vinvl chlonde	UG/KG	0.0		200	36204	0	0	_			11 U		12 U		13 U		11 U
viriyi chionde	JUNG	0.0	0 00%	200	30204	U	U	5	11 0		11.0		12 0		13 0		11 0

Table 19-3 120D - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-120 MP Refuel	ling	SEAD-120 MP Refuel	ling	SEAD-120 MP Refuel	ing	SEAD-1200 MP Refuelin	ng	SEAD-120 MP Refue	ling
LOC ID									SB120D-1		SB120D-1		SB120D-1	ic Q	SS120D-1	5 Q	SS120D-2	
SAMP_ID									EB258		EB026		EB259		EB260		EB261	
QC CODE									SA		DU		SA		SA		SA	
SAMP DETH TOP									0		0		68		0		0	
SAMP DEPTH BOT									0 3		0.3		7.2		0.2		0.2	
MATRIX									SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	17-N	/lar-98	17-M	ar-98	17-M	ar-98		lar-98		lar-98
			OF			ABOVE	OF	OF										
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Tnchloroethane	UG/KG	0.0	0 00%	800	36850962	0	0	5	;	11 U		11 U		12 U		13 U		11 U
1,1,2,2-Tetrachloroethane	UG/KG	0.0	0 00%	600	3439423	0	0	5	,	11 U		11 U		12 U		13 U		11 U
1,1,2-Trichloroethane	UG/KG	0 0	0 00%		1206815	0	0	5	;	11 U		11 U		12 U		13 U		11 U
1,1-Dichloroethane	UG/KG	0.0	0.00%	200	105288462	0	0	5	5	11 U		11 U		12 U		13 U		11 U
1,1-Dichloroethene	UG/KG	0.0	0.00%	400	114647	0	0	5	5	11 U		11 U		12 U		13 U		11 U
1,2-Dichloroethane	UG/KG	0.0	0.00%	100	755917	0	0	5	5	11 U		11 U		12 U		13 U		11 U
1.2-Dichloroethene (total)	UG/KG	0 0	0 00%			0	0	5	,	11 U		11 U		12 U		13 U		11 U
1,2-Dichloropropane	UG/KG	0.0	0 00%		1011595	0	0	5		11 U		11 U		12 U		13 U		11 U
Acetone	UG/KG	210 0	60.00%	200	105288462	0	3	5	,	210		17 B		160		13 U		11 U
Benzene	UG/KG	0 0	0 00%	60	2372016	0	0	5	;	11 U		11 U		12 U		13 U		11 U
Bromodichloromethane	UG/KG	0.0	0.00%		1109491	0	0	5		11 U		11 U		12 U		13 U		11 U
Bromoform	UG/KG	0.0	0 00%		8707400	0	0	5		11 U		11 U		12 U		13 U		11 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	105288462	0	0	5		11 U		11 U		12 U		13 U		11 U
Carbon tetrachlonde	UG/KG	0 0	0.00%	600	529142	0	0	5		11 U		11 U		12 U		13 U		11 U
Chlorobenzene	UG/KG	0 0	0.00%	1700	21057692	0	0	5	•	11 U		11 U		12 U		13 U		11 U
Chlorodibromomethane	UG/KG	0.0	0 00%		818910	0	0	5		11 U		11 U		12 U		13 U		11 U
Chloroethane	UG/KG	0.0	0.00%	1900	421153846	0	0	5		11 U		11 U		12 U		13 U		11 U
Chloroform	UG/KG	0 0	0.00%	300	10528846	0	0	5		11 U		11 U		12 U		13 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0 0	0.00%			0	0	5		11 U		11 U		12 U		13 U		11 U
Ethyl benzene	UG/KG	0 0	0.00%	5500	105288462	0	0	5		11 U		11 U		12 U		13 U		11 U
Methyl bromide	UG/KG	0 0	0.00%		1505625	0	0	5		11 U		11 U		12 U		13 U		11 U
Methyl butyl ketone	UG/KG	0 0	0.00%			0	0	5		11 U		11 U		12 U		13 U		11 U
Methyl chloride	UG/KG	0 0	0.00%		5291420	0	0	5		11 U		11 U		12 U		13 U		11 U
Methyl ethyl ketone	UG/KG	0.0	0 00%	300		0	0	5		11 U		11 U		12 U		13 U		11 U
Methyl isobutyl ketone	UG/KG	0 0	0 00%	1000	84230769	0	0	5		11 U		11 U		12 U		13 U		11 U
Methylene chloride	UG/KG	0.0	0 00%	100	9171795	0	0	5		11 U		11 U		12 U		13 U		11 U
Styrene	UG/KG	0.0	0.00%			0	0	5		11 U		11 U		12 U		13 U		11 U
Tetrachloroethene	UG/KG	0.0	0 00%	1400	1322855	0	0	5		11 U		11 U		12 U		13 U		11 U
Toluene	UG/KG	13 0	100 00%	1500	210576923	0	5	5		7 J		5 J		6 J		5 J		13
Total Xylenes	UG/KG	0.0	0.00%	1200	2105769231	0	0	5		11 U		11 U		12 U		13 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	5		11 U		11 U		12 U		13 U		11 U
Tnchloroethene	UG/KG	0.0	0 00%	700	6253497	0	0	5		11 U		11 U		12 U		13 U		11 U
Vinyl chloride	UG/KG	0 0	0 00%	200	36204	0	0	5	•	11 U		11 U		12 U		13 U		11 U

Table 19-4 120D - Semiyoluthes and TPH in Soil vs. 1 AGM Non-Lvaluated LPS Sites

SITE DESCRIPTION									SEAD-1200 MP Refueling		SEAD-120 MP Refuel	ing	SEAD-120 MP Refuel	ing	SEAD-120	ng	SEAD-120 MP Refuel	ng
LOC ID SAMP_ID OC CODE									SB120D-1 EB258 SA		SB120D-1 EB026 DU		\$B120D-1 EB259 SA		SS120D-1 EB260 SA		SS120D-2 EB261 SA	
SAMP DETH TOP									0		0		6 B 7.2		0		0	
SAMP DEPTH BOT MATRIX									03 SOIL		SOIL		7.2 SOIL		SOIL		02 SOIL	
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER	NUMBER	17-Mar-9	86		ar-96		tar-98	17-M	ar-98		Aar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	a	VALUE	Q	VALUE	Q	VALUE	a	VALUE	Q
1 2,4-Trichlorobenzene	UG/KG	0.0		3400	10528845	0	0			72 U		73 U		74 U	*********	85 U	***************************************	73 U
1.2-Dichlorobenzene	UG/KG	0.0	0 00%	7900	94759615	0	0			72 U		73 U		74 U		85 U		73 U
1,3-Dichlorobenzene	UG/KG	0.0	0 00%	1600	93706731	0	0	5		2 U		73 U		74 U		85 U		73 U
1.4-Dichlorobenzene 2.4,5-Trichlorophenol	UG/KG UG/KG	00	0 00%	8500 100	2856186 105288462	0	0	5		72 U 30 U		73 U 180 U		74 U 180 U		85 U 200 U		73 U 180 U
2,4,5-Trichlorophenol	UG/KG	00	0.00%	100	6253497	0	0			72 U		73 U		74 U		85 U		73 U
2,4-Dichlorophenol	UG/KG	00		400	3158654	0	0			12 U		73 U		74 U		85 U		73 U
2,4-Dimethylphenol	UG/KG	0.0	0 00%		21057692	0	0			72 U		73 U		74 U		85 U		73 U
2.4-Dinitrophenol	UG/KG	0.0		200	2105769	0	0			30 U		180 U		180 U		200 U		180 U
2.4-Dintrotoluene	UG/KG	00			2105769	0	0			72 U		73 U		74 U		85 U		73 U
2,6-Dinitrotoluene	UG/KG	00		1000	1052885	0	0			72 U		73 U		74 U		65 U		73 U
2-Chloronaphthalene 2-Chlorophenol	UG/KG UG/KG	00		800	5264423	0	0			72 U		73 U		74 U		85 U		73 U 73 U
2-Methylnaphthalene	UG/KG	61	40 00%	38400	320423	0	2			72 U		4 J		74 U		85 U		61 J
2-Methylphenol	UG/KG	0.0		100	52644231	0	ō			72 U		73 U		74 U		BS U		73 U
2-Nitroaniline	UG/KG	0.0	0 00%	430	63173	0	0			30 U		180 U		180 U		200 U		180 U
2-Nitrophenol	UGKG	0.0	0 00%	330		0	0			72 U		73 U		74 U		85 U		73 U
3,3'-Dichloroberizidine	UG/KG	0.0			152863	0	0			72 U		73 U		74 U		85 U		73 U
3-Nitroentine	UG/KG UG/KG	0.0		500	3158654	0	0			50 U		180 U 180 U		180 U		200 U 200 U		160 U 180 U
4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	UG/KG	00			61067308	0	0			72 U		73 U		74 U		85 U		73 U
4-Chloro-3-methylphenol	UG/KG	0.0		240	01007300	0	o			72 U		73 U		74 U		85 U		73 U
4-Chioroaniline	UG/KG	00		220	4211538	0	0			72 U		73 U		74 U		85 U		73 U
4-Chlorophenyl phenyl ether	UG/KG	0.0				0	0			72 U		73 U		74 U		85 U		73 U
4-Methylphenol	UG/KG	0.0		900		0	0			72 U		73 U		74 U		85 U		73 U
4-Nitroanline	UG/KG	00		100	31586S4 63173077	0	0			30 U		180 U		180 U		200 U 200 U		160 U 180 U
4-Nitrophenol Acensphthene	UG/KG UG/KG	0.0 8.6		50000	63173077	0	2			72 U		73 U		74 U		5.4 J		86 J
Acenaphthylene	UG/KG	0.0		41000		0	0			72 U		73 U		74 U		85 U		73 U
Anthracene	UG/KG	190	80 00%	50000	315865385	0	4			8 J		43 J		74 U		9 J		19 J
Benzo[a]anthracens	UG/KG	160.0		224	94231	0	4	5		46 J		36 'J		74 U		68 J		160
Benzo(a)pyrene	UG/KG	200 0		61	9423	2	4			52 J		40 J		74 U	4	が何」		1.300
Benzo(b)fluoranthene	UG/KG	320 0		1100 50000	94231	0	4			52 J		47 J		74 U		96 64 J		320
Benzo(ghi)perylene Benzo(k)/huoranthene	UG/KG UG/KG	210 0		1100	942308	0	7			87 J		55 J		74 U		85		230
Bls(2-Chloroethaxy)methane	UG/KG	0.0		7100	0-12000	0	0			72 U		73 U		74 U		85 U		73 U
Bls(2-Chioroethyl)ether	UG/KG	0.0	0 00%		62535	0	0	5	5	72 U		73 U		74 U		85 · U		73 U
Bis(2-Chloroisopropyl)ether	UG/KG	00			982692	0	0			72 U		73 U		74 U		85 U		73 U
Sis(2-Ethylhexyl)phthelete	UG/KG	1100		50000	4913482	0	5			27 JB		19 JB		16 JB		9.2 JB		110 B
Butylbenzylphthalate	UG/KG	48.0		50000	210576923 3439423	0	0			72 U 5 J		73 U 57 J		74 U 74 U		85 U 12 J		73 U 48 J
Carbazole Chrysene	UG/KG	270 0		400	9423077	0	4			57 J		50 J		74 U		96		270
Di-n-butylphthalate	UG/KG	36		8100	0-120077	o	1			8 3		73 U		74 U		85 U		73 U
Di-n-octylphthalata	UG/KG	00		50000	21057692	0	0			72 U		73 U		74 U		85 U		73 U
Dibenz[e,h]anthracene	UG/KG	92 0		14	9423	4	4			1	No.	ET J		74 U	241	20 /	10	93
Dibenzofuran	UG/KG	46		6200	4211538	0	1			72 U		73 U		74 U 7.9 JB		78 JB		46 J 77 JB
Diethyl phthelate	UG/KG UG/KG	79		7100	842307692 10528846150	0	5			18 JB		5 3 JB 73 U		74 U		85 U		73 U
Damethylphthalate Ekonanthene	UG/KG	450 0		50000	42115385	0	4			87		82		74 U		200		450
Pluorene	UG/KG	84		50000	42115385	0	2			72 U		73 U		74 U		5.1 J		8 4 J
Hexachiorobenzene	UG/KG	0.0		410	42993	0	0			72 U		73 U		74 U		85 U		73 U
Hexachlorobutadiene	UG/KG	0.0			210577	0	0			72 U		73 U		74 U		65 U		73 U
Hexachlorocyclopentadlene	UG/KG	00			7370192	0	0			72 U		73 U		74 U		85 U		73 U
Hexachloroethane	UG/KG	00		3200	1052885 94231	0	0			72 U		73 U 32 J		74 U		61 J		73 U 160
Indeno(1,2,3-cd)pyrene Isophorone	UG/KG UG/KG	180 0		4400	34231	0	0			72 U		73 U		74 U		85 U		73 U
N-Nitrosodiphenylamine	UG/KG	00			14038462	0	0			72 U		73 U		74 U		85 U		73 U
N-Nitrosodipropylamine	UG/KG	0.0			9827	0	0			72 U		73 U		74 U		65 U		73 U
Naphthalene	UG/KG	49	20 00%	13000	42115385	0	1			72 U		73 U		74 U		85 U		4.9 J
Ntrobenzene	UG/KG	. 00		200	526442	0	0			72 U		73 U		74 U		85 U		73 U
Pentachlorophenol	UG/KG	0.0		1000	573237	0	0			80 U 22 J		180 U 26 J		180 U		200 U 96		180 U
Phenanthrene Phenol	UG/KG UG/KG	180 0		50000	631730769	0	4			72 U		73 U		74 U		85 U		73 U
Phenol Pyrene	UG/KG UG/KG	720 0		50000	31586538	0	5			70 J		66 J		4 J		180		720 E
TPH	MG/KG	.200		,					1	18		141		18 4 U		43.6		181

Table 19 5 120D Semiyolatiles and TPH in Soil vs PRG-RFC Non-Lyaluated LBS Sites

SITE DESCRIPTION									SEAD 120D MP Refueling Island in the Q	SEAD 120D MP Refueling Island in the Q	SEAD 120D MP Refueling Island in the Q	SEAD-120D MP Refueling Island in the Q	SEAD-120D MP Refueling Island in the O
LOC ID SAMP_ID									SB120D-1 EB258	SB120D-1 EB026	SB120D-1 EB259	SS120D-1 EB260 SA	SS120D-2 EB261
QC CODE SAMP_DETH_TOP									SA 0	0	6 8	0	0
SAMP DEPTH BOT									0 3	0.3	7 2	0 2	0 2
MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	5OIL 17-Mar-98	SOIL 17-Mar-98	SOIL 17-Mar-98	SOIL 17-Mar-98	SOIL 17-Mar-98
SAME DATE			OF			ABOVE	OF	OF	77-18191-30	17-1401-00	17-11121-30	17-461-50	17-14101-50
PARAMETER	UNIT		DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		VALUE Q	VALUÉ Q	VALUE Q	VALUE Q
1,2 4 Trichlorobenzene 1,2-Dichlorobenzene	UG/KG UG/KG	00	0 00%	3400 7900	10528846 94759615	0	0	5		73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
1.3-Dichlorobenzene	UG/KG	0.0	0.00%	1600	93706731	0	0	5		73 U	74 U	85 U	73 U
1,4-Dichlorobenzene	UG/KG	0.0	0 00%	8500	2866186	0	0	5	72 U	73 U	74 U	85 U	73 U
2.4.5-Trichlorophenol	UG/KG	0 0	0 00%	100	105288462	0	0	5		180 U	180 U	200 U	180 U
2,4,6-Trichlorophenol	UG/KG	0.0	0 00%	400	6253497 3158654	0	0	5		73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/KG UG/KG	0.0	0.00%	400	21057692	0	0			73 U	74 U	85 U	73 U
2 4-Dinitrophenol	UG/KG	0.0	0 00%	200	2105769	0	0	5		180 U	180 U	200 U	180 U
2,4-Dintrotoluene	UG/KG	0.0	0 00%		2105769	0	0			73 ∪	74 U	85 U	73 U
2,6-Dinitrotoluene	UG/KG	0 0	0 00%	1000	1052885	0	0	5		73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
2-Chloronaphthalene 2-Chlorophenol	UG/KG UG/KG	0.0	0 00%	800	5264423	0	0	_		73 U	74 U	85 U	73 U
2-Methylnaphthalene	UG/KG	6 1	40 00%	36400	3,04423	0	2	5		4 J	74 U	85 U	61 J
2-Methylphenal	UG/KG	0.0	0 00%	100	52644231	0	0	5		73 U	74 U	85 U	73 ∪
2-Nitroaniline	UG/KG	0 0	0 00%	430	63173	0	0	5		180 U	180 U	200 U	180 U
2-Nrtrophenol	UG/KG UG/KG	0.0	0 00%	330	152863	0	0			73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
3,3 -Dichlorobenzidine 3-Nitroaniline	UG/KG	0.0	0 00%	500	3158654	0	0	5		180 U	180 U	200 U	180 U
4.6-Dinitro-2-methylphenol	UG/KG	0.0	0.00%			0	0	5		180 U	180 U	200 U	180 U
4-Bromophenyl phenyl ether	UG/KG	0.0	0 00%		61067308	0	0	5		73 U	74 U	85 U	73 U
4-Chloro-3-methylphenoi	UG/KG UG/KG	0 0	0 00%	240 220	4211538	0	0	5		73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/KG	0.0	0.00%	220	4211336	0	0	5		73 U	74 U	85 U	73 U
4-Methylphenol	UG/KG	0.0	0 00%	900		0	0	5	72 U	73 U	74 U	85 U	73 U
4-Nitroaniline	UG/KG	0.0	0 00%		3158654	0	0	5		180 U	180 U	200 U	180 U
4-Nitrophenol	UG/KG UG/KG	0 0 8 6	0 00% 40 00%	100 50000	63173077	0	0	5		180 U 73 U	180 U 74 U	200 U 5 4 J	180 U 8.6 J
Acenaphthene Acenaphthylene	UG/KG	00	0 00%	41000		0	0			73 U	74 U	85 U	73 U
Anthracene	UG/KG	19 0	80 00%	50000	315865385	0	4	5		4 3 J	74 U	9 J	19 J
Benzo(a)anthracene	UG/KG	160 0	80 00%	224	94231	0	4	5		36 J	74 U 74 U	68 J	160
Benzo(a)pyrene Benzo(b)fluoranthene	UG/KG UG/KG	200 0 320 0	80 00% 80 00%	61 1100	9423 94231	0	4	5		40 J 47 J	74 U	74 J 96	200 320
Benzo(ghi)perylene	UG/KG	210 0	80 00%	50000	54251	0	4			33 J	74 U	64 J	210
Benzo[k]fluoranthene	UG/KG	230 0	80 00%	1100	942308	0	4	5		55 J	74 U	85	230
Bis(2-Chloroethoxy)methane	UG/KG	0.0	0 00%			0	0	5		73 U	74 U	85 U	73 U
Bis(2-Chloroethyl)ether	UG/KG UG/KG	0 0	0 00%		62535 982692	0	0	5		73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG	1100	100 00%	50000	4913462	0	5			19 JB	16 JB	9 2 JB	110 B
Butylbenzylphthalate	UG/KG	0.0	0 00%	50000	210576923	0	0			73 U	74 U	85 U	73 U
Carbazole	UG/KG	48 0	80 00%		3439423	0	4			57 J	74 U 74 U	12 J 96	48 J 270
Chrysene Di-n-butylphthalate	UG/KG UG/KG	270 0 3 8	80 00% 20 00%	400 8100	9423077	0	4			50 J 73 U	74 U	85 U	73 U
Di-n-outylphthalate	UG/KG	0.0	0 00%	50000	21057692	0	0	5	72 U	73 U	74 U	85 U	73 U
Dibenz(a,h)anthracene	UG/KG	92 0	80 00%	14	9423	. 0	4			17 J	74 U	21 J	92
Dibenzofuran	UG/KG	46	20 00%	6200 7100	4211538 842307692	0	1 5			73 U 53 JB	74 U 7 9 JB	85 U 7 8 JB	46 J 77 JB
Diethyl phthalate Dimethylphthalate	UG/KG UG/KG	7 9 0 0	100 00% 0 00%	2000	10528846150	0	0			73 U	74 U	85 U	73 U
Fluoranthene	UG/KG	450 0	80 00%	50000	42115385	0	4		5 87	82	74 U	200	450
Fluorene	UG/KG	8 4	40 00%	50000	42115385	0	2			73 U	74 U	5 1 J	8 4 J
Hexachlorobenzene	UG/KG	0.0	0 00%	410	42993	0	0			73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG UG/KG	0.0	0 00%		210577 7370192	0	0			73 U	74 U	85 U	73 U
Hexachloroethane	UG/KG	0.0	0 00%		1052885	0	0		5 72 U	73 U	74 U	85 U	73 U
Indeno[1,2,3-cd]pyrene	UG/KG	180 0	80 00%	3200	94231	0	4			32 J	74 U	61 J	· 180
Isophorone	UG/KG	0.0	0 00%	4400	******	0	0			73 U 73 U	74 U 74 U	85 U 85 U	73 U 73 U
N-Nitrosodiphenylamine	UG/KG UG/KG	00	0 00%		14038462 9827	0	0			73 U	74 U	85 U	73 U
N-Nitrosodipropylamine Naphthalene	UG/KG	4 9	20 00%	13000	42115385	0	1			73 U	74 U	85 U	49 J
Nitrobenzene	UG/KG	0.0	0 00%	200	526442	0	0			73 ∪	74 U	85 U	73 U
Pentachiorophenol	UG/KG	0.0	0 00%	1000	573237	0	0			180 U	180 U 74 U	200 U 96	180 U 180
Phenanthrene Phenol	UG/KG UG/KG	180 0	80 00% 0 00%	50000 30	631730769	0	4			26 J 73 U	74 U	96 85 U	73 U
Pyrene	UG/KG	720 0	100 00%	50000	31586538	0	5			66 J	4 J	180	720 E
трн	MG/KG	181 0	80 00%			0	4		5 118	141	18 4 U	43 6	181

SEAD-120E

Near Building 2131, Possible DDT Disposal

Table 20-1

Sample Collection Information SEAD-120E - Near Building 2131, Possible DDT Disposal

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB120E-1	EB262	3/17/98	0.0	0.2	SA	Location is approximately 50 northeast of Building 2131; adjacent to a magnetic anomaly.
SOIL	SB120E-1	EB027	3/17/98	0.0	0.2	DU	Location is approximately 50 northeast of Building 2131; adjacent to a magnetic anomaly.
SOIL	SB120E-1	EB266	3/17/98	2.3	2.6	SA	Location is same as above. Sample collected at this interval in the boring because of stained soil and wire debris
SEDIMENT	SD120E-1	EB263	3/17/98	0.0	0.2	SA	Location is in drainage ditch immediately downgradient of the magnetic anomaly.
SEDIMENT	SD120E-2	EB264	3/17/98	0.0	0.2	SA	Location is in drainage ditch approximately 100 feet downgradient of the magnetic anomaly.
SEDIMENT	SD120E-3	EB265	3/17/98	0.0	0.2	SA	Location is in drainage ditch approximately 200 feet downgradient of the magnetic anomaly; at intersection with Kendaia Creek.
WATER	SB120E-1	EB025	3/17/98	0.0	0.0	RB	NA

Notes:

SA ~ Sample

DU = Duplicate

RB = Rinse Blank

NA = Not Applicable

Table 20-2 120E Pesticides in Soil vs TAGM Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-120E Near Bldg 2131, Possible DDT Disposal	SEAD-120E Near Bldg 2131, Possible DDT Disposal	SEAD-120E Near Bldg 2131, Possible DDT Disposal
LOC ID:									SB120E-1	SB120E-1	SB120E-1
SAMPLE ID:									EB262	EB027	EB266
QA/QC CODE:									SA	DU	SA
SAMPLE TOP:									0	0	2.3
SAMPLE BOT:									0.2	0.3	2.6
MATRIX:									SOIL	SOIL	SOIL
SAMPLE DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	17-Mar-98	17-Mar-98	17-Mar-98
			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q
4.4 -DDD	UG/KG	0.0	0.00%	2900	286619	0	0	3	4.6 U	4.6 U	3.7 U
4.4`-DDE	UG/KG	0.0	0.00%	2100	202319	0	0	3		4.6 U	3.7 U
4.4`-DDT	UG/KG	3.0	50.00%	2100	202319	0	1	2	3 JP	4.6 U	3.7 U
Aldrin	UG/KG	0.0	0.00%	41	4046	0	0	3	2.3 U	2.3 U	1.9 U
Alpha-BHC	UG/KG	0.0	0.00%	110		0	0	3	2.3 U	2.3 U	1.9 U
Alpha-Chlordane	UG/KG	1.3	50.00%			0	1	2		2.3 U	1.9 U
Beta-BHC	UG/KG	0.0	0.00%	200		0	0	3		2.3 U	1.9 U
Delta-BHC	UG/KG	0.0	0.00%	300		0	0	3		2.3 U	1.9 U
Dieldrin	UG/KG	0.0	0.00%	44	4299	0	0	3		4.6 U	3.7 U
Endosulfan I	UG/KG	0.0	0.00%	900	6317308	0	0	3		2.3 U	1.9 U
Endosulfan II	UG/KG	2.6	33.33%	900	6317308	0	1	3		4.6 U	3.7 U
Endosulfan sulfate	UG/KG	0.0	0.00%	1000		0	0	3		4.6 U	3.7 U
Endrin	UG/KG	0.0	0.00%	100	315865	0	0	3		4.6 U	3.7 U
Endrin aldehyde	UG/KG	0.0	0.00%		315865	0	0	3		4.6 U	3.7 U
Endrin ketone	UG/KG	0.0	0.00%		315865	0	0	3		4.6 U	3.7 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%	60	52914	0	0	3		2.3 U	1.9 U
Gamma-Chlordane	UG/KG	0.0	0.00%	540		0	0	3		2.3 U	1.9 U
Heptachlor	UG/KG	0.0	0.00%	100	15286	0	0	3		2.3 U	1.9 U
Heptachlor epoxide	UG/KG	2.1	50.00%	20	7559	0	1	2		2.3 U	1.9 U
Methoxychlor	UG/KG	0.0	0.00%		5264423	0	0	3		23 U	19 U
Toxaphene	UG/KG	0.0	0.00%			0	0	3	230 U	230 U	190 U

Table 20-3 120E Pesticides in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-120E Near Bldg 2131, Possible DDT Disposal	SEAD-120E Near Bldg 2131, Possible DDT Disposal	SEAD-120E Near Bldg 2131. Possible DDT Disposal
LOC ID:									SB120E-1	SB120E-1	SB120E-1
SAMPLE ID:									EB262	EB027	EB266
QA/QC CODE:									SA	DU	SA
SAMPLE TOP:									0	0	2.3
SAMPLE BOT									0.2	0.3	2.6
MATRIX:									SOIL	SOIL	SOIL
SAMPLE DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	17-Mar-98	17-Mar-98	17-Mar-98
			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		VALUE Q	VALUE Q
4.4 -DDD	UG/KG	0.0	0.00%	2900	286619	0	0	3		4.6 U	3.7 U
4.4 -DDE	UG/KG	0.0	0.00%	2100	202319	0	0	3	3 4.6 U	4.6 U	3.7 U
4.4 -DDT	UG/KG	3.0	50.00%	2100	202319	0	1		2 3 JP	4.6 U	3.7 U
Aldrin	UG/KG	0.0	0.00%	41	4046	0	0		3 2.3 U	2.3 U	1.9 U
Alpha-BHC	UG/KG	0.0	0.00%	110		0	0		3 2.3 U	2.3 U	1.9 U
Alpha-Chlordane	UG/KG	1.3	50.00%			0	1		2 1.3 JP	2.3 U	1.9 U
Beta-BHC	UG/KG	0.0	0.00%	200		0	0		3 2.3 U	2.3 U	1.9 U
Delta-BHC	UG/KG	0.0	0.00%	300		0	0		3 2.3 U	2.3 U	1.9 U
Dieldrin	UG/KG	0.0	0.00%	44	4299	0	0		3 4.6 U	4.6 U	3.7 U
Endosulfan I	UG/KG	0.0	0.00%	900	6317308	0	0		3 2.3 U	2.3 U	1.9 U
Endosulfan II	UG/KG	2.6	33.33%	900	6317308	0	1		3 2.6 J	4.6 U	3.7 U
Endosulfan sulfate	UG/KG	0.0	0.00%	1000		0	0		3 4.6 U	4.6 U	3.7 U
Endrin	UG/KG	0.0	0.00%	100	315865	0	0		3 4.6 U	4.6 U	3.7 U
Endrin aldehyde	UG/KG	0.0	0.00%		315865	0	0		3 4.6 U	4.6 U	3.7 U
Endrin ketone	UG/KG	0.0	0.00%		315865	0	0		3 4.6 U	4.6 U	3.7 U
Gamma-BHC/Lindan	UG/KG	0.0	0.00%	60	52914	0	0		3 2.3 U	2.3 U	1.9 U
Gamma-Chlordane	UG/KG	0.0	0.00%	540		0	0		3 2.3 U	2.3 U	1.9 U
Heptachior	UG/KG	0.0	0.00%	100	15286	0	0		3 2.3 U	2.3 U	1.9 U
Heptachlor epoxide	UG/KG	2.1	50.00%	20	7559	0	1		2 2.1 JP	2.3 U	1.9 U
Methoxychlor	UG/KG	0.0	0.00%		5264423	0	0		3 23 U	23 U	19 U
Toxaphene	UG/KG	0.0	0.00%			0	0	;	3 230 U	230 U	190 U

Table 20-4 Pesticides in Sediment vs NYS Criteria Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-120E Near Building 2131. Possible DDT Disposal	SEAD-120E Near Building 2131, Possible DDT Disposal	SEAD-120E Near Building 2131, Possible DDT Disposal
LOC ID									SD120E-1	SD120E-2	SD120E-3
SAMP_ID									EB263	EB264	EB265
QC CODE									SA	SA	SA
SAMP DETH TOP									0	0	0
SAMP DEPTH BOT									0.2	0 2	0.2
MATRIX									SEDIMENT	SEDIMENT	SEDIMENT
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	17-Mar-98	17-Mar-98	17-Mar-98
			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MAXIMUM	DETECTION	CRITERIA TYPE	LEVEL	CRITERIA LEVEL	DÉTECTS	ANALYSES		VALUE Q	VALUE Q
4.4 -DDD	UG/KG	5 1	33.33%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10	0	1	3	4.8 ∪	6.5 U	5.1 JP
4.4 -DDE	UG/KG	7.9	50.00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10	0	1	2	4.8 ∪	6.5 U	7.9 P
4.4 DDT	UG/KG	6 3	100 00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10	0	3	3	. 4.3 JP	4.5 JP	6.3 J
Aldrın	UG/KG	0 0	0.00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	100	0	0	3	. 2.4 U	3.3 ∪	3.7 U
Alpha-BHC	UG/KG	0.0	0 00%			0	0	3	. 2.4 U	3.3 ∪	3 7 U
Alpha-Chlordane	UG/KG	0 0	0.00%			0	0	3	2.4 ∪	3.3 U	3 7 U
Beta-BHC	UG/KG	0.0	0 00%			0	0	3	. 2.4 U	3.3 U	3 7 U
Delta-BHC	UG/KG	0.0	0 00%			0	0	3	. 24 U	3.3 U	3 7 U
Dieldnn	UG/KG	0.0	0.00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	100	0	0	3	4.8 U	6.5 U	7.4 U
Endosulfan I	UG/KG	0 0		NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	30	0	0	3	2.4 ∪	3.3 U	3.7 ∪
Endosulfan II	UG/KG	0.0		NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	30	0	0	3	4.8 U	6.5 U	7.4 U
Endosulfan sulfate	UG/KG	0 0				0	0	3	4.8 U	6.5 U	7.4 U
Endrin	UG/KG	0.0	0 00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	800	0	0	3	4.8 U	6.5 U	7.4 U
Endrin aldehyde	UG/KG	0.0	0.00%			0	0	3	4.8 U	6.5 U	7.4 U
Endrin ketone	UG/KG	0.0	0 00%	•		0	0	3	4.8 U	6.5 U	7.4 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%			0	0	3	2.4 U	3.3 U	3.7 U
Gamma-Chlordane	UG/KG	0.0	0 00%			0	0	3	. 2.4 U	3.3 U	3.7 U
Heptachlor	UG/KG	0.0	0 00%	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	8	0	0	3	2.4 U	3.3 ∪	3.7 U
Heptachlor epoxide	UG/KG	0.0	0 00%	NYS HUMAN HEALTH BIOAÇCUMULATION CRITERIA	8	0	0	3	. 2,4 U	3.3 U	3.7 U
Methoxychlor	UG/KG	0 0	0 00%			0	0	3	. 24. U	33. U	37 U
Toxaphene	UG/KG	0 0	0.00%			0	0	3	240. U	330. U	370. U

SEAD-120G

Mounds at the Duck Pond

Table 22-1

Sample Collection Information SEAD-120G - Mounds at the Duck Ponds

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	1D	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL.	TP120G-1	EB112	3/5/98	0.5	0.5	SΛ	Location is at north end of Duck Ponds Area, location chosen because it was where a depression within a 3-foot high mound, which was on top of a larger 4-foot high mound, was located; the mounds were covered with brush and trees
SOIL	TP120G-1	EB113	3/5/98	2 0	2.0	SΛ	Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil
SOIL	TP120G-2	EB114	3/6/98	15	1.5	SΛ	Location is at north end of Duck Ponds Area, location was chosen because it is where a 100-foot long and 65 feet wide east-west trending mound is located. The trench was located on the north side of the mound, the only area that had surface dehris
SOIL	TP120G-2	EBI15	3/6/98	3.0	3.0	SA	Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacats were noted in the soil
SOIL	TP120G-3	EB135	3/9/98	1.0	10	SA	Location is a grassy area in east-central area of Duck Ponds Area. location was chosen because it is where uneven, lumpy ground was noted, it was a location that was suspected to be a previous excavation.
SOIL	TP120G-3	EB136	3/9/98	2 0	2.0	SA	Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacats were noted in the soil
SOIL	TP120G-4	EB118	3/6/98	1.5	1.5	SA	Location is a mound in southeastern portion of Duck Ponds Area, location was chosen because it is the location of a 200-foot long and 100-foot wide mound, the excavatoin was on the east side of the mound near the road

Table 22-1

Sample Collection Information SEAD-120G - Mounds at the Duck Ponds

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	TP120G-4	EB119	3/6/98	3.5	3 5	SA	Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil
SOIL	TP120G-5	EB120	3/6/98	1.0	1.0	SA	Location is a mound in southern portion of Duck Ponds Area, location was chosen because it is where a 50-foot long, 35-foot wide, and 3-foot high area of disturbed ground with surface debris (metal strapping) was located
SOIL	TP120G-5	EB121	3/6/98	20	2.0	SA	Location is the same as above, sample was taken at approximately mid-depth in the pit because no VOC hits or visual impacts were noted in the soil

Notes

SA Sample

Table 22-2 120G - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-12 MOUNDS THE DUC POND	S AT	SEAD-120 MOUNDS THE DUCI POND	AT	SEAD-120 MOUNDS THE DUC POND	AT	MC TH	AD-120G DUNDS AT E DUCK ND
LOC ID SAMP ID QC CODE.									TP120G- EB112 SA		TP120G-1 EB113 SA		TP120G-2 EB114 SA	2		120G-2 115
SAMP DETH TOP SAMP DEPTH BOT										0.5		2		15		3
MATRIX:									SOIL	05	SOIL	2	SOIL	15	so	3
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		ar-98		Mar-98	6-Ma	ır-98	30	6-Mar-98
			OF			ABOVE	OF	OF								5 Mai 55
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		Q	VALUE	Q	VALUE	Q	VA	LUE
1,1,1-Tnchloroethane	UG/KG	0.0	0 00%	800	36850962	0	0	10		12 U		12 U		12 U		13
1,1,2,2-Tetrachloroethane	UG/KG UG/KG	0.0	0 00% 0 00%	600	3439423	0	0	10		12 U		12 U		12 U		13
1,1,2-Trichloroethane 1,1-Dichloroethane	UG/KG UG/KG	0.0		200	1206815 105288462	0	0	10 10		12 U		12 U		12 U		13
1,1-Dichloroethene	UG/KG	0.0		400	114647	0	0	10		12 U 12 U		12 U 12 U		12 U 12 U		13
1.2-Dichloroethane	UG/KG	0.0		100	755917	0	0	10		12 U		12 U		12 U		13 13
1,2-Dichloroethene (total)	UG/KG	0.0		100	700017	0	0	10		12 U		12 U		12 U		13
1,2-Dichloropropane	UG/KG	0.0			1011595	0	0	10		12 U		12 U		12 U		13
Acetone	UG/KG	20.0		200	105288462	0	6	10		12 U		11 J		17		20
Benzene	UG/KG	0.0	0.00%	60	2372016	0	0	10		12 U		12 U		12 U		13
Bromodichloromethane	UG/KG	0 0	0 00%		1109491	0	0	10	1	12 U		12 U		12 U		13
Bromoform	UG/KG	0.0	0.00%		8707400	0	0	10	1	12 U		12 U		12 U		13
Carbon disulfide	UG/KG	0 0		2700	105288462	0	0	10		12 U		12 U		12 U		13
Carbon tetrachloride	UG/KG	0 0		600	529142	0	0	10		12 U		12 U		12 U		13
Chlorobenzene	UG/KG	0.0		1700	21057692	0	0	10		12 U		12 U		12 U		13
Chlorodibromomethane	UG/KG UG/KG	0.0		4000	818910 421153846	0	0	10		12 U		12 U		12 U		13
Chloroethane Chloroform	UG/KG UG/KG	0.0		1900 300	10528846	0	0	10 10		12 U 12 U		12 U		12 U		13
Cis-1,3-Dichloropropene	UG/KG	0.0		300	10320040	0	0	10		12 U		12 U 12 U		12 U 12 U		13 13
Ethyl benzene	UG/KG	00		5500	105288462	0	0	10		12 U		12 U		12 U		13
Methyl bromide	UG/KG	0.0		0000	1505625	0	0	10		12 U		12 U		12 U		13
Methyl butyl ketone	UG/KG	0.0				0	ō	10		12 U		12 U		12 U		13
Methyl chloride	UG/KG	0.0	0 00%		5291420	0	0	10	1	12 U		12 U		12 U		13
Methyl ethyl ketone	UG/KG	0.0	0 00%	300		0	0	10	1	12 U		12 U		12 U		13
Methyl isobutyl ketone	UG/KG	0.0		1000	84230769	0	0	10		12 U		12 U		12 U		13
Methylene chlonde	UG/KG	0.0		100	9171795	0	0	10		12 U		12 U		12 U		13
Styrene	UG/KG	0.0				0	0	10		12 U		12 U		12 U		13
Tetrachloroethene	UG/KG	0.0		1400	1322855	0	0	10		12 U		12 U		12 U		13
Toluene Total Xvienes	UG/KG UG/KG	7.0 0.0		1500 1200	210576923 2105769231	0	5	10 10		12 U		12 U		12 U		13
Trans-1,3-Dichloropropene	UG/KG	00		1200	2105/69231	0	0	10		12 U 12 U		12 U 12 U		12 U 12 U		13
Trichloroethene	UG/KG	0.0		700	6253497	0	0	10		12 U		12 U		12 U 12 U		13 13
Vinyl chloride	UG/KG	0.0		200	36204	0	0	10		12 U		12 U		12 U		13
,	00,110	0.0	0.0070	200	30204	U	U	10		12 0		,2 0		12 0		13

Table 22-2 120G - Volatiles in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION		SEAD-120G MOUNDS AT THE DUCK POND		SEAD-120 MOUNDS THE DUCK POND	AT	SEAD-120 MOUNDS THE DUC POND	AT	SEAD-12 MOUNDS THE DUC POND	SAT	SEAD-120 MOUNDS THE DUCI POND	AT	SEAD-120 MOUNDS THE DUC POND	AT
LOC ID SAMP ID QC CODE		TP120G-3 EB135 SA		TP120G-3 EB136 SA		TP120G-4 EB118 SA	4	TP120G- EB119 SA	4	TP120G-5 EB120 SA		TP120G-5 EB121 SA	
SAMP DETH TOP			1		2		15		3.5		1		2
SAMP DEPTH BOT			1		2		1 5		3.5		1		2
MATRIX		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE		9-Mar-9	8	9-Ma	ar-98	6-M	ar-98	6-M	lar-98	6-Ma	ar-98	6-Ma	ar-98
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	U	1	3 U		13 U		12 U		11 U		14 U		14 U
1,1,2,2-Tetrachloroethane	U		3 U		13 U		12 U		11 U		14 U		14 U
1,1,2-Trichloroethane	U		3 U		13 U		12 U		11 U		14 U		14 U
1,1-Dichloroethane	U		3 U		13 U		12 U		11 U		14 U		14 U
1,1-Dichloroethene	U		3 U		13 U		12 U		11 U		14 U		14 U
1,2-Dichloroethane	U		3 U		13 U		12 U		11 U		14 U		14 U
1.2-Dichloroethene (total)	U		3 U		13 U		12 U		11 U		14 U		14 U
1,2-Dichloropropane	U		3 U		13 U		12 U		11 U		14 U		14 U
Acetone			3 U		9 J		7 J		10 J		14 U		14 U
Benzene	U		3 U		13 U		12 U		11 U		14 U		14 U
Bromodichloromethane	U		3 U		13 U 13 U		12 U 12 U		11 U 11 U		14 U 14 U		14 U 14 U
Bromoform Corbon disulfide	U		3 U		13 U		12 U		11 U		14 U		14 U
Carbon disulfide Carbon tetrachloride	U		13 U 13 U		13 U		12 U		11 U		14 U		14 U
Carbon tetrachionde Chlorobenzene	U		3 U		13 U		12 U		11 U		14 U		14 U
Chlorodibromomethane	U		3 U		13 U		12 U		11 U		14 U		14 U
Chloroethane	U		13 U		13 U		12 U		11 U		14 U		14 U
Chloroform	Ü		13 U		13 U		12 U		11 U		14 U		14 U
Cis-1,3-Dichloropropene	Ŭ		13 U		13 U		12 U		11 U		14 U		14 U
Ethyl benzene	Ü		3 U		13 U		12 U		11 U		14 U		14 U
Methyl bromide	Ü		3 U		13 U		12 U		11 U		14 U		14 U
Methyl butyl ketone	U		13 U		13 U		12 U		11 U		14 U		14 U
Methyl chloride	Ū	1	13 U		13 U		12 U		11 U		14 U		14 U
Methyl ethyl ketone	U	1	13 U		13 U		12 U		11 U		14 U		14 U
Methyl isobutyl ketone	U	1	13 U		13 U		12 U		11 ∪		14 U		14 U
Methylene chloride	U	1	13 U		13 U		12 U		11 U		14 U		14 U
Styrene	U	1	13 U		13 U		12 U		11 U		14 U		14 U
Tetrachloroethene	U	1	13 U		13 U		12 U		11 U		14 U		14 U
Toluene	U		13 U		7 J		4 J		2 J		5 J		3 J
Total Xylenes	U		13 U		13 U		12 U		11 U		14 U		14 U
Trans-1,3-Dichloropropene	U		13 U		13 U		12 U		11 U		14 U		14 U
Trichloroethene	U		13 U		13 U		12 U		11 U		14 U		14 U
Vinyl chlonde	U	1	13 U		13 U		12 U		11 U		14 U		14 U

Table 22-3 120G - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE									SEAD-120G MOUNDS AT THE DUCK POND TP120G-1 EB112 SA	MOUNDS A	TP120G-1 EB113 SA		SEAD-120G MOUNDS AT THE DUCK POND TP120G-2 EB114 SA	
SAMP DETH TOP									0 5		2		15	3
SAMP DEPTH BOT									0.5		2		15	3
MATRIX									SOIL	SOIL		SOIL		SOIL
SAMP DATE.			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Mar-98	5-Mar	-98	6-Mar	-98	6-Mar-98
			OF			ABOVE	OF	OF						
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS			VALUE	Q	VALUE	Q	VALUE
1,1.1-Trichloroethane	UG/KG	0.0	0 00%	800	36850962	0	0	10			12 U		12 U	13
1,1,2,2-Tetrachloroethane	UG/KG	0 0	0 00%	600	3439423	0	0	10			12 U		12 U	13
1,1,2-Trichloroethane	UG/KG	0.0	0 00%		1206815	0	0	10			12 U		12 U	13
1,1-Dichloroethane	UG/KG	0 0		200	105288462	0	0				12 U		12 U	13
1,1-Dichloroethene	UG/KG	0.0	0 00%	400	114647	0	0	10			12 U		12 U	13
1.2-Dichloroethane	UG/KG	0.0	0 00%	100	755917	0	0	10			12 U		12 U	13
1,2-Dichloroethene (total)	UG/KG	0.0	0 00%			. 0	0	10	12 U		12 U		12 U	13
1,2-Dichloropropane	UG/KG	0.0	0 00%		1011595	0	0	10			12 U		12 U	13
Acetone	UG/KG	20 0		200	105288462	0	6	10			11 J		17	20
Benzene	UG/KG	0 0		60	2372016	0	0	10			12 U		12 U	13
Bromodichloromethane	UG/KG	0 0	0 00%		1109491	0	0	10	12 U		12 U		12 U	13
Bromoform	UG/KG	0.0	0 00%		8707400	0	0	10			12 U		12 U	13
Carbon disulfide	UG/KG	0 0	0.00%	2700	105288462	0	0	10			12 U		12 U	13
Carbon tetrachloride	UG/KG	0 0	0 00%	600	529142	0	0	10	12 U		12 U		12 U	13
Chlorobenzene	UG/KG	0 0	0 00%	1700	21057692	0	0	10			12 U		12 U	13
Chlorodibromomethane	UG/KG	0.0	0.00%		818910	0	0	10			12 U		12 U	13
Chloroethane	UG/KG	0 0	0 00%	1900	421153846	0	0	10) 12 U		12 U		12 U	13
Chloroform	UG/KG	0.0	0 00%	300	10528846	0	0	10			12 U		12 U	13
Cis-1,3-Dichloropropene	UG/KG	0 0	0 00%			0	0	10	12 U		12 U		12 U	13
Ethyl benzene	UG/KG	0 0	0 00%	5500	105288462	0	0	10			12 U		12 U	13
Methyl bromide	UG/KG	0.0	0.00%		1505625	0	0	10			12 U		12 U	13
Methyl butyl ketone	UG/KG	0 0	0 00%			0	0	10			12 U		12 U	13
Methyl chloride	UG/KG	0.0	0 00%		5291420	0	0	10			12 U		12 U	13
Methyl ethyl ketone	UG/KG	0.0	0 00%	.300		0	0	10			12 U		12 U	13
Methyl isobutyl ketone	UG/KG	0.0	0 00%	1000	84230769	0	0	10			12 U		12 U	13
Methylene chloride	UG/KG	0.0	0 00%	100	9171795	0	0	10			12 U		12 U	13
Styrene	UG/KG	0.0				0	0	10			12 U		12 U	13
Tetrachloroethene	UG/KG	0.0		1400	1322855	0	0	10			12 U		12 U	13
Toluene	UG/KG	7 0		1500	210576923	0	5	10			12 U		12 U	13
Total Xylenes	UG/KG	0.0		1200	2105769231	0	0	10			12 U		12 U	13
Trans-1,3-Dichloropropene	UG/KG	0.0				0	0	10			12 U		12 U	13
Trichloroethene	UG/KG	0.0		700	6253497	0	0	10			12 U		12 U	13
Vinyl chloride	UG/KG	0.0	0.00%	200	36204	0	0	10) 12 U		12 U		12 U	13

Table 22-3 120G - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE		SEAD-120G MOUNDS AT THE DUCK POND TP120G-3 EB135 SA 1 1 SOIL 9-Mar-98	SEAD-120G MOUNDS AT THE DUCK POND TP120G-3 EB136 SA 2 2 SOIL 9-Mar-98	SEAD-120G MOUNDS AT THE DUCK POND TP120G-4 EB118 SA 1.5 1.5 SOIL 6-Mar-98	SEAD-120G MOUNDS AT THE DUCK POND TP120G-4 EB119 SA 3.5 3.5 SOIL 6-Mar-98	SEAD-120G MOUNDS AT THE DUCK POND TP120G-5 EB120 SA 1 1 SOIL 6-Mar-98	SEAD-120G MOUNDS AT THE DUCK POND TP120G-5 EB121 SA 2 2 SOIL 6-Mar-98
PARAMETER	Q	VALUE Q	\/ALLIE 0	VALUE			
1,1,1-Trichloroethane	U	VALUE Q 13 U	VALUE Q	VALUÉ Q	VALUE Q	VALUE Q	VALUE Q
1,1,1-Trichloroethane	U	13 U	13 U	12 U	11 U	14 U	14 U
1,1,2,2-Tetrachioroethane	υ	13 U	13 U 13 U	12 U	11 U	14 U	14 U
1,1-Dichloroethane	U	13 U	13 U	12 U	11 U	14 U	14 U
1,1-Dichloroethane	U	13 U	13 U	12 U	11 U	14 U	14 U
1.2-Dichloroethane	U	13 U	_	12 U	11 U	14 U	14 U
	U		13 U	12 U	11 U	14 U	14 U
1,2-Dichloroethene (total) 1,2-Dichloropropane	U	13 U 13 U	13 U 13 U	12 U	11 U	14 U	14 U
Acetone	U	13 U	9 J	12 U 7 J	11 U	14 U	14 U
Benzene	U	13 U	13 U		10 J	14 U	14 U
Bromodichloromethane	U	13 U		12 U	11 U	14 U	14 U
Bromoform	U	13 U	13 U	12 U	11 U	14 U	14 U
Carbon disulfide	U		13 U	12 U	11 U	14 U	14 U
Carbon distillide Carbon tetrachloride	-	13 U	13 U	12 U	11 U	14 U	14 U
Carbon tetrachionide Chlorobenzene	U U	13 U	13 U	12 U	11 U	14 U	14 U
		13 U	13 U	12 U	11 U	14 U	14 U
Chlorodibromomethane	U	13 U	13 U	12 U	11 U	14 U	14 U
Chloroethane	U	13 U	13 U	12 U	11 U	14 U	14 U
Chloroform	U	13 U	13 U	12 U	11 U	14 U	14 U
Cis-1,3-Dichloropropene	U U	13 U 13 U	13 U	12 U	11 U	14 U	14 U
Ethyl benzene	U		13 U	12 U	11 U	14 U	14 U
Methyl bromide Methyl butyl ketone	U	13 U 13 U	13 U 13 U	12 U	11 U	14 U	14 U
	U	13 U	13 U	12 U	11 U	14 U	14 U
Methyl chloride	U	13 U		12 U	11 U	14 U	14 U
Methyl ethyl ketone	U	13 U	13 U 13 U	12 U	11 U	14 U	14 U
Methyl isobutyl ketone		13 U		12 U	11 U	14 U	14 U
Methylene chloride	U U		13 U	12 U	11 U	14 U	14 U
Styrene		13 U	13 U	12 U	11 U	14 U	14 U
Tetrachloroethene	U	13 U 13 U	13 U 7 J	12 U	11 U	14 U	14 U
Toluene	U		7 J 13 U	4 J	2 J	5 J	3 J
Total Xylenes	-	13 U		12 U	11 U	14 U	14 U
Trans-1,3-Dichloropropene	U	13 U	13 U	12 U	11 U	14 U	14 U
Trichloroethene	U U	13 U	13 U	12 U	11 U	14 U	14 U
Vinyl chloride	U	13 U	13 U	12 U	11 U	14 U	14 U

Title 12 d 11/8 - Seminar till for and 18 than 5 alone TARARS Than 6 - Americal 1861 of the

5111 (4 \ r.p.15 11/3N								SEAL! MATHE	IN SIL	SEAL 199G M. HOLDS AT	MO	D-1706 PMF S-AT	SEAD 120G MOI RES AT	SEAD-1707- MOUNTS AT	SEAD-1: MOUND	S AT	SEAD 1200 MOI NOS A		SEAD 120G MOI PATS AT	340	AD-120G DIANDS AT	SEAD-120G MOUNDS AT
								14 (14 (TIME SECIEN	PON	TV K. K.	LUNU LIE DOCK	THE DLK K POND	THE CKI POND	OX.	THE EVEN		HE CHOX		€ COCX	THE EXICK POND
SAME!								IPIN FBII		19113 18113	TP1: FB1	20G-2 14	TP120G-2 EB115	TP120G-3 EB135	FP120G EB1V	3	TP120G 4 EB118		1P120G 4 EB117		120G 5 1120	TP120G 5 EB121
OK 1 UDE								<₩		<.∧	SA		4,Λ	SA	SA		SA		SA	SA		SA
SAME DEPTH FOR									05		;	15	3	5		2		15	35		;	2
MATRIX								·.ci.		44.4	SOIL		SOIL	SOIL	SOIL	•	SOIL		SOIL		DIL .	SOIL
SAMP CATE			LEKE COLALINE A			NUMBER ABOVT	DI IMBER	NUMBER CA	5 Mar. 18	's Mixe his		is May ria	Fi Mar NA	9 M ns ns		Mar NH	7-Me	ne ne	AP WAR		A Mar 98	5 Mar 98
FARAMETER 1.14 Trobumbenzene	UNIT	MAXMIN	DETECTION	7AGM 3400	PRG 10528846	TAGM	r∉trcts.	ANALYSIS SALE	F 0	. At 14	O VAL	UF (3 (2.1)	VALIE ()	VALUE	D VALLE	Q	VALUE	78 U	VALUE .'B		ALIFE Q	VALUE 0
1.2 Ex histobenzene	1666	по	Outre.	34(K)	94759615	rı	n	10	87.11		2.11	R2 11	85 11	5. 5.2		85 U 85 U		78 U	7R		99 U	97.11
1.31 V blumberzene	USAG	пп	U (K).	1500	93709731	(1)	19	10	H2 11		. 11	82.11	86 11	H."		45 U		76 11	78		89 U	97 11
1.4 Fer blockbenzene 7.4 S. Trichtgerighengt	UGAG UGAG	0.0	0.00**	4500 100	2865186 105288452	n	n n	10	200 11		. 11	82 11 '00 11	210 U	6.7 200		85 U 300 U		78 U 190 U	190		89 U 220 U	9, 11
7.4.6 Tochinophenni	LIGAS	0.0	0.00%	1181	6253497	n	n	10	82 11		2 17	87.11	85 11	82		85 U		78 U	78		89 U	97 (1
2.4 Exchlorophenol	HCKG	0.0	0.00%	400	1158654	n	0	10	87 (1		2.11	R2 (1	86 17	62		85 ()		78 U	78	U	89 U	97 U
2.4 Firmethylphenol	UGAG	ñ n	0.00%		21057692	D	n	10	87 (1		2.0	82 (I	85 U	62		85 U		78 U	78		89 U	97 U
; 4 (Introphenol 2.4 (Indicate) whe	USAS	0.0	0.00%	200	2105769 2105769	0	D n	10	200 11 82 1J		. U	82.0	210 U	200		200 U 85 U		190 U	190		220 U 89 U	240 E1 97 U
2.5 (sndrdrkuene	HGAG	0.0	0.00%	1000	105,7885	63	n	10	82 U		111	82.11	86 17	83		85 U		78 U	78		89 U	97 U
2 Chioronaphthatene	HGAKG	0.0	0.00%			0	Ð	10	87 (1		2.0	8.5 11	86 U	82		85 ()		78 U	78		89 U	97 U
, Chiarophena	UGAC.	0.0	0.00%	800	5764473	0	n	10	82.11		2.14	67 H	86 U	6.7 6.7		85 ()		78 U	78		89 U	97 ()
? Methylnaphti siese ? Methylphenoi	UGAKG	0.0	0.00%	95400 100	52644231	0	0	10	82.11		2.17	82 U	11.28	6.2		85 U		78 U 78 U	78 78		89 U	97 H 97 H
2 Namanine	UG/KC-	0.0	0.00%	430	63173	0	a	10	200 U	200	0 11	200.17	210.11	,00		200 U		190 U	190		220 U	240 LF
2 Miliophenol	UGALG	50	0.00%	3 10		n	0	10	82 U		2.17	87 U	86 ()	82		85 U		78 U	78		89 U	97 U
3.3 Exchlorobenzidine 3.titroandine	UGAKG	0.0	0.00%	500	152863	0	0	10	82 U 200 U		2 U	82 U 200 U	80 U	87		85 U 200 U		78 U	78 190		89 U 220 U	97 U 240 U
4 f I knitro 2 methylphenol	USAG	0.0	0.00%	910	11,890,14	0	0	10	200 11		D (I	200 U	210 U	790		200 U		190 U	190		220 U	240 U
4 Bromophenyl phenyl ether		0.0	0.00%		61057308	0	2	10	82 12		2 U	82.17	84 U	A2		85 U		78 U	78	U	89 U	97 (1
4 (2-lorg 3 methylphenol	UGAKG	0.0	0.00%	240	4211539	n	0	10	82 U		2.0	82.11	86 U 86 U	82		85 U		79 U	78 78		89 U	97 (I 97 U
4 Chkroankne 4 Chlatophenyl phenyl elher	UGAKG	0.0	0.00%	230	4211519	0	0	10	82 U		2.0	82 U	85 U	82		85 U		78 U	78		89 U	97 11
4 Methylphenal	UGAG	0.0	0.00%	1400	52644231	n	n	10	82 U		2.0	82.17	86 U	62		85 U		78 U	79	Ü.	89 U	97 U
4 Nitroamine	UÇAKC.	n a	0.00%		3158654	0	G.	10	200 U		αU	200 U	210 U	200		200 U		190 U	190		220 U	240 ∪
4 Nitrophenol Acertacotherie	UGAG	0.0	0.00%	50000	63173077	0.0	0	1(1	200 H 82 U		n ()	200 U 82 U	210 U 86 U	200		200 U 85 U		190 U 78 U	190		220 U 81 U	240 U 97 U
Acen sphilitylene	USAG	0.0	0.00%	41000		0	n	10	82 U		2.07	82.11	86 17	82		85 U		78 U	78		89 U	97 U
Anthracene	I KAKG	11.0	10 00%	50000	315865385	n	1	10	82 U		2.0	82.11	85 U	82		11 J		78 U	78		89 U	97 LI
[lenzo[a]nnthracene	KWG	41 G 40 G	30 00%	224	94231	0	,	10	82 U 47 J		2 U	82 U	96 U 85 U	12	1	41 J 40 J		78 U 78 U	78 78		7 1 J 83 J	97 LI 97 U
Renzolajoyrene Renzolajtiuoraminene	USAKG	40 C	40 00% 40 00%	1100	94231	q	4	10	59.3		2.0	82 U	85 U	22		48 J		78 U	75 75		98 1	97 U
(lenznight)peryiene	UGAG	29.0	40.00%	50000		0	4	10	5 1 J		2 U	87 11	86 U	16		29 J		78 U	78		99 1	97 U
Renzujk/Nuoranthene	USAKS	410	40 00**	1100	942308	0	4	10	7 2 J 87 U		2.0	82 U	85 U	14	J	41 I 85 U		78 U 78 U	78 78		10 J 69 U	97 U
Bist? Chloroethory)methine Bist? Chloroethyljether	UGMG	00	0.00%		62535	0		1D	82 U		2.0	82 U	86 U	82		85 U		78 U	78		89 U	97 U
Brit? Chlorosopropyljether	USAKG	20	0.00%		962602	0	0	10	82 U		7 0	82 U	U 86	82	U	85 U		78 U	/8	U	89 U	97 U
Bisi.' Ethylheirylichthalate	UGAKG	25.0	60 00%	50000	4913457	0	-	10	25 J		5 1	82 U	86 U		J	48 J		78 U	78		16 JB	12 JB
Butytherszylphthaliste Certhazole	UGAG	8 2 8 3	30 00% 10 00%	50M0	210576923	0	3	10	82 U		1 JB	82 11	82 JB	92		52 I		78 U	76 78		89 U	97 U
Chrysene	UGAKG	48.0	50 00%	400	942.9777	0	5	10	611	83	2.17	82 U	85 U		ì	48 J		78 U	78		11 J	6.3 J
O n butylphthalete	UG/KG	0.0	0.00%	8100		0	0	10	82 U		2.11	82 14	86 U	87 83		85 U		78 U	78		89 U	97 U
Can octylphthalate Dibensia blanthiarene	HOMO	14.0	10.00%	50000	21057592	0		10	82 U		2 U 2 U	82 U	96 U		U	85 U 14 J		78 U	78 78		89 U	97 U 97 U
Cabenzinfuran	UGAKG	0.0	0.00%	6200	9827	a	0	10	92 U	83	2 U	82.11	86 U	82	U	85 U		78 U	78	U	89 U	97 U
Elethyl phthalate	UGMG	20 0	125 00%	7100	842307692	o	10	8	6 IB		7 :IR	63 R	98 JB		RJ.	8 2 BJ		89 J	7.1		50 J	7.4.1
Camethylphilhalate Fluoranthene	UGAKG	00 950	0 00% 40 00%	2000 50000	10530000000 42115385	0	0	10	82 U 9 3 .1		2 U	82 U	86 U 7.2 J	82	u .	85 U 95		78 U 78 U	78 78		89 U	97 U 87 J
Fluorene	USAKS	5.6	10 00%	50000	42115385	a	1	10	82 U		2.0	82 11	86 U	82		56 J		78 U	78		89 U	97 17
Herachlorgbenzene	UCKG	0.0	0.00%	410	42993	c	0	10	82 U		2 U	87 U	95 U	82		85 U		78 U	78		89 U	97 ∪
I texts bloodsuladiene	UGAC	0.0	0.00%		210577	0	0	10	82 U 82 U		2 ()	82 U 82 U	86 U	82		85 U		78 U 78 U	78 78		89 U 89 U	97 U 97 U
Lievachiorocyclopentagiene Hexachioxoethane	UGAKG	0.0	0.00% 0.00%		1052885	0	0	10	82 U		2 U	82 17	85 U	82		85 U		78 U	78		89 U	97 U
Indenn(1 2 3 cd)pviene	UGAG	27 0	40 00%	3200	94231	0	4	10	46 J		7 U	82 IJ	86 U	12		27 .)		78 U	78	U	7.4 J	97 U
Largharone	HOWG	0.0	0.00%	4400		0	0	10	82 U		2 U	82 U	96 U 95 U	e: e:		85 U		78 U	78 78		89 U	97 U
N Nitroscophenylamine N Nitroscopropylamine	UG/KG UG/KG	0.0	0.00%		14038462 9827	0	0	10	87 U		2 U	82 U	95 U 96 U	82		85 U		78 U	78		89 U	97 U
N Narrascopropyramine Naphthalene	UGAKG	00	0.00%	13000	42115385	0	0	10	82 U		2 U	82 U	85 U	82	U	85 U		78 U	78	U	89 U	97 U
*littobenzene	UGAKG	0.0		200	526442	D	n	10	82 U		2.0	82 U	86 U		U	85 U		78 U	78		89 U	97 U
Pentachlorophenol Phenanthrene	UGAKG	0 n 50 0	0.00%	1000	573237	0	0	10	200 U 59 J	200 a	0 U 2 U	200 U 82 U	710 U 86 U	200		200 U 60 J		190 U 78 U	190		220 U	240 U 5.5 .I
Phenri	LIGNIG	0.0	0.00%	30	631730769	0	0	10	A2 U		20	82 U	86 U		Ű	85 U		78 U	78	U	89 U	97 U
Pyréné	UGARG	95.0	PO 00%	50000	31585538	n	6	10	81 /	6.	2.19	6? U	65 J	71	J	84		78 U	7,8	U	13 J	7.4.3
TPH	MONG	0.0	0.00%			0	n	10	18.9	18	7.11	20.4.17	20.8 U	22.4		35 A		18 D U	23.4	D	20 6 U	22 5 U
074	WESTER!								10.7	18	,	200.17	20 8 17		v	33.0			214		2000	22 3 0

SEAD-1200 MOUNDS AT MOUNDS AT POUCK POND TP120G 5 E8171 SA 2 SOIL 2 6 MA: 98	
SEAD-120G MOUNDS AT THE DUCK POND TP120G-5 SA 1 SOIL SOIL 6-Mai 96	7 C C C C C C C C C C C C C C C C C C C
SEAD 120G THE DUCK POND TP 120G 4 EB 19 SA 3 5 SOIL 6 Mar 96	20 M M M M M M M M M M M M M M M M M M M
SEAD 120G THE DUCK POND TP120G 4 EB118 SA 15 SOIL 15 6-1/ks1.96 6-1/ks1.96	40
SEAD-120G MCUMCS AT THE DUCK POND TP120G 3 E8136 S.A. 2 SOR, 2 9 Mar 96	
SEAD-120G MCMUNGS AT THE DUCK POND TP120G-3 SA 1 SA 1 SOLL 9 Mar 96	
SEAD-120G THE DUCK POND TP 170G 2 EB115 SA 3 SGIL 13 SGIL 61Abr 98	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEAD 120G THE DUCK POUND AT THE DUCK POUND TP 120G 2 EB 114 SA 15 50.1 A Main 9B	
SEAD 170G THE CUCK POND TP120G 1 EB113 SA 2 SOIL 5 Mar 96	2
20G AT UCK UCK 3 1 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	$\frac{1}{8} = \frac{1}{8} \times \frac{1}$
SEAD 130G 1.0GH/S0 41 110 UOCH 1.0GH/S0 110 UCH 1.0GH/S0 UCH 1.0	**************************************
NUMBER	
NJABER About	
2	10073046 91700713 7007104 7007
	7700.47 7700.4
FREGUENCY	
PREC	PARTIES AND
	114 141 141 141 141 141 141 141 141 141
STE PESCRIPTION LOC. D SAMP TO SAMP DETERMENT SAMP DATE	1 Or International Control Con

Page 1

Į,

Table 22-6 120G - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

SITE: DESCRIPTION:									SEAD-120G MOUNDS AT THE DUCK POND		SEAD-120 MOUNDS THE DUC POND	AT	SEAD-120 MOUNDS THE DUCK POND	AT	SEAD-120G MOUNDS AT THE DUCK POND
LOC ID									TP120	0G-1	TP120G-	1	TP120G-2		TP120G-2
SAMP ID									EB112	2	EB113		EB114		EB115
QC CODE:									SA		· SA		SA		SA
SAMP DETH TOP:										0.5		2		1,5	3
SAMP DEPTH BOT.										0.5		2		1.5	3
MATRIX.									SOIL		SOIL	_	SOIL		SOIL
SAMP DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF		5-Mar-98		lar-98		ar-98	6-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALU	E Q	VALUE	Q	VALUE	Q	VALUE
Aluminum	MG/KG	20200	100 00%	19520	1053000	1	10	1	0	12600		14100		7800	A 31-34 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
Antimony	MG/KG	1.5	150.00%	6	421	0	6		4	0.86 UN		0.88 BN		1.1 BN	1.4
Arsenic	MG/KG	10.3	100.00%	8.9	46	1	10	1	0	3.9		3.6		4.4	5.2
Barium	MG/KG	155	100 00%	300	73702	0	10	1	0	82.6		79.1		111	149
Beryllium	MG/KG	0.7	90.00%	1 13	16	0	9	1	0	0.4 B		0.41 B		0.07 B	0.54
Cadmium	MG/KG	0.09	400.00%	2 46	526	0	8		2	0.07 U*		0.05 U*		0.07 U*	0.08
Calcium	MG/KG	23700	100,00%	125300		0	10	1	0	10400		4010		1710	3290
Chromium	MG/KG	26 8	100 00%	30	1052885	0	10	1	0	15.1 *		15.5 *		20.2 *	24.2
Cobalt	MG/KG	13.9	100.00%	30	63173	0	10	1	0	8.6 B		8.2 B		12.8	10.6
Copper	MG/KG	27.3	100.00%	33	42115	0	10	1	0	18.3 °		13.5 *		14 *	19
Cyanide	MG/KG	0	0.00%	0.35		0	0	1	0	0.66 U		0.64 U		0.66 U	0.71
Iron	MG/KG	33200	100.00%	37410	315865	0	10	1	0	17800		16800	2	4600	31800
Lead	MG/KG	38	100.00%	24.4		3	10	1	0	17.5		12.1		15.4	18.3
Magnesium	MG/KG	7740	100.00%	21700		0	10	1	0	5260 °		3100 *		3530 *	3390
Manganese	MG/KG	2070	100.00%	1100	24216	3	10	1	0	508		420	1100-2100	1920	1570
Mercury	MG/KG	0.08	20.00%	0.1	316	0	2	1	0	0.06 U		0.06 U		0.06 U	0.06
Nickel	MG/KG	43.8	500.00%	50	21058	0	10		2	18.4 E*		16.2 E*		19.5 E*	19.8
Potassium	MG/KG	2120	100 00%	2623		0	10	1	0	1410		1150		1620	2070
Selenium	MG/KG	0	0.00%	2	5264	0	0	1	0	1.2 UN		0.8 UN		1.2 UN	1.2
Silver	MG/KG	0	0 00%	0.8	5264	0	0	1	0	0.52 U		0.36 U		0.51 U	0.55
Sodium	MG/KG	0	0 00%	188		0	0	1	0	149 U		104 U		149 U	158
Thallium	MG/KG	2.8	40.00%	0.855	84	4	4	1	0	1.7 B		1.1 U	in the same of	В	2.8
Vanadium	MG/KG	37.5	100.00%	150	7370	0	10	1	0	21.5 E		23.3 E	, U U.	29.9 E	37.5
Zinc	MG/KG	103	100.00%	115	315865	0	10	1	0	57		51.5		66.5	102

Table 22-6 120G - Metals in Soil vs TAGMs Non-Evaluated EBS Sites

SITE DESCRIPTION		MOUNDS A			OG AT K	MOUNDS A	SEAD-120G MOUNDS AT THE DUCK POND		SEAD-120G MOUNDS AT THE DUCK POND		G AT	SEAD-12 MOUNDS THE DUO POND	SAT
LOC ID:		TP120G-3		POND TP120G-3	3	TP120G-4		TP120G-4		TP120G-5		TP120G-	-5
SAMP ID		EB135		EB136		EB118		EB119		EB120		EB121	
QC CODE		SA		SA		SA		SA		SA		SA	
SAMP DETH TOP:		Or .	1		2		1.5		3.5	1			2
SAMP DEPTH BOT			1		2		15		3.5	1			2
MATRIX		SOIL	•	SOIL	-	SOIL		SOIL		SOIL		SOIL	
SAMP DATE.		9-Mar	-98	. 9-M	ar-98	6-Mar-98		6-Mar-98		6-Mar-98		6-Mar-98	
PARAMETER	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Aluminum		148	300	1	13400		17000		000	169	900		16400
Antimony	BN		.82 UN	1 5 BN		0	.85 BN		08 UN		1.4 BN	1 UN	
Arsenic			5.1		4		4.5		5		63	2,8 B	
Barium			155		97	84 4		81.4			115		145
Beryllium	В	0	.02 U		0.63 B		0.7 B	(58 B	C	.57 B		0.67 B
Cadmium	U*	0	07 U		0 08 U	0.05 U*		(0.07 U*	C	.08 U°		0.09 U*
Calcium		111	100 *		8840 *	12300		23	700	6	070		7100
Chromium	•	1	9.7		19.7	26.8 *		22.2 *			22 *		21.4 *
Cobalt	В	1	3.7		11 2 B		3.9	11.3 B		11.5 B		8.5 E	
Copper	•	2	3.1 N°		26.3 N*		7.3 *	25 *		26.2 *		24.7 *	
Cyanide	U	0	.64 U		0.67 U		.59 U		0.62 U		.71 U		0.75 U
Iron		231		2	1900		200		500		300		23000
Lead		4.4	**		36.9		6.3		13.3		15.6		19.5
Magnesium	•		540		4310		810 *		740 *		120 *		3980 °
Manganese		1423			379		513		520		489		402
Mercury	U		0.08 B		0.06 B).06 U		0.06 U		.07 U		0.06 U
Nickel	E*		6.4		296		3.8 E*		32.3 E*		7.8 E*		24.5 E*
Potassium			120		1920		570	1	480		090		1800
Selenium	UN		1.1 U		1.2 U		0.8 UN		1.1 UN		1.2 UN		1.4 UN
Silver	U		.49 U		0.53 U		0.36 U		0.48 U		.56 U		0.61 U
Sodium	U		143 U		152 U		104 U		138 U		161 U		175 U
Thallium			1,5 UN	1.6 UN		Lit. night I.M. B		1.4 U		1.7 U		1.8 U	
Vanadium	E		6.8	21.8		25.1 E		23 6 E		27.2 E		24.6 E	
Zinc			100 N	103 N		9	6.5	71 5		9	5.7	101	

Table 22-7 120G - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION	ı								SEAD-120 MOUNDS . THE DUCK POND	AT	SEAD-120 MOUNDS THE DUCI POND	AT	SEAD-120G MOUNDS AT THE DUCK POND		SEAD-120G MOUNDS AT THE DUCK POND
LOC ID									TP120G-1		TP120G-1		TP120G-2		TP120G-2
SAMP ID									EB112		EB113		EB114		EB115
QC CODE									SA		SA		SA		SA
SAMP DETH TOP										0 5		2	1	5	3
SAMP DEPTH BOT										0.5		2	1	.5	3
MATRIX									SOIL		SOIL		SOIL		SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	5-Ma	ar-98	5-M	lar-98	6-Mar-9	98	6-Mar-98
			OF			ABOVE	OF	OF							0 11141 00
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE
Aluminum	MG/KG	20200.0	100 00%	19520	1053000	0	10	10	12	2600		14100	1786	00	20200
Antimony	MG/KG	1 5	150.00%	6	421	0	6	4		0.86 UN		0.88 BN	1	.1 BN	1.4
Arsenic	MG/KG	10 3	100.00%	8 9	46	0	10	10	1	3 9		36	4	4	5.2
Barium	MG/KG	155 0	100.00%	300	73702	0	10	10	1	82.6		79.1	1	11	149
Beryllium	MG/KG	0 7	90 00%	1 13	16	0	9	10	1	0.4 B		0 41 B	0.0	07 B	0.54
Cadmium	MG/KG	0 1	400 00%	2 46	526	0	8	2		0.07 U*		0.05 U*	0.0	07 U*	0.08
Calcium	MG/KG	23700.0	100 00%	125300		0	10	10	10	0400		4010	17	10	3290
Chromium	MG/KG	26 8	100 00%	30	1052885	0	10	10	1	15.1 *		15.5 *	20	2 *	24.2
Cobalt	MG/KG	13.9	100.00%	30	63173	0	10	10	1	8.6 B		8.2 B	12	.8	106
Copper	MG/KG	27 3	100.00%	33	42115	0	10	10	1	18.3 *		13.5 *		14 *	19
Cyanide	MG/KG	0.0	0.00%	0 35		0	0	10		0.66 U		0.64 U	0.6	66 U	0 71
Iron	MG/KG	33200.0	100.00%	37410	315865	0	10	10	17	7800		16800	2460	00	31800
Lead	MG/KG	38 0	100.00%	24 4		0	10	10		17.5		12 1	15	.4	183
Magnesium	MG/KG	7740.0	100.00%	21700		0	10	10		5260 *		3100 *	353	30 °	3390
Manganese	MG/KG	2070.0	100.00%	1100	24216	0	10	10		508		420	192	20	1570
Mercury	MG/KG	0.1	20.00%	0.1	316	0	2	10		0.06 U		0.06 U	0.0	06 U	0 06
Nickel	MG/KG	43 8	500.00%	50	21058	0	10	2		18.4 E*		16.2 E*	19	.5 E*	19.8
Potassium	MG/KG	2120 0	100.00%	2623		0	10	10		1410		1150	162	20	2070
Selenium	MG/KG	0 0	0.00%	2	5264	0	0	10		1.2 UN		0.8 UN	1	.2 UN	1.2
Silver	MG/KG	0 0	0.00%	8 0	5264	0	0	10		0.52 U		0 36 U	0.5	51 U	0.55
Sodium	MG/KG	0 0	0.00%	188		0	0	10		149 U		104 U	14	19 U	158
Thallium	MG/KG	28	40 00%	0 855	84	0	4	10		1.7 B		1.1 U		.6 B	2.8
Vanadium	MG/KG	37 5	100 00%	150	7370	0	10	10		21 5 E		23.3 E		.9 E	37 5
Zinc	MG/KG	103 0	100 00%	115	315865	0	10	10		57		51.5	66	.5	102

Table 22-7
120G - Metals in Soil vs PRG-REC
Non-Evaluated EBS Sites

SITE DESCRIPTION		SEAD-120G MOUNDS AT THE DUCK						
		POND	POND	POND	POND	POND	POND	
LOC ID		TP120G-3	TP120G-3	TP120G-4	TP120G-4	TP120G-5	TP120G-5	
SAMP ID		EB135	EB136	EB118	EB119	EB120	EB121	
QC CODE		SA	SA	SA	SA	SA	SA	
SAMP DETH TOP	•	1	2	1 5	3 5	1	2	
SAMP DEPTH BO	T	1	2	1 5	3 5	1	2	
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
SAMP DATE		9-Mar-98	9-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98	
PARAMETER	Q	VALUE Q	VALUE Q	VALUE Q	VALUE O	VALUE Q	VALUE Q	
Aluminum	u.	14800	13400	17000	15000	16900	16400	
Antimony	BN	0.82 UN	1.5 BN	0.85 BN	0.8 UN	1.4 BN	1 UN	
Arsenic	014	5.1	4	4.5	5	103	2.8 B	
Barium		155	97	84 4	81 4	115	145	
Beryllium	В	0.02 U	0 63 B	07 B	0 58 B	0.57 B	0 67 B	
Cadmium	Ü٠	0.07 U	0 08 U	0.05 U*	0 07 U*	0.08 U*	0 09 U*	
Calcium		11100 *	8840 *	12300	23700	6070	7100	
Chromium		19 7	19.7	26.8 *	22.2 *	22 *	21.4 *	
Cobalt	В	13 7	11.2 B	13.9	11 3 B	11.5 B	8 5 B	
Copper	•	23.1 N*	26 3 N*	27.3 *	25 *	26.2 *	24.7 *	
Cyanide	U	0 64 U	0 67 U	0 59 U	0.62 U	0.71 U	0.75 U	
Iron	_	23100	21900	33200	27500	29300	23000	
Lead		38	36 9	16.3	13 3	25 6	19.5	
Magnesium		4540	4310	6810 *	7740 *	4120 *	3980 *	
Manganese		2070	379	513	520	489	402	
Mercury	U	0 08 B	0.06 B	0 06 U	0.06 U	0.07 U	0.06 U	
Nickel	E*	26.4	296	43 8 E*	32 3 E*	27.8 E*	24.5 E*	
Potassium		2120	1920	1570	1480	2090	1800	
Selenium	UN	1.1 U	1,2 U	0.8 UN	1 1 UN	1.2 UN	1.4 UN	
Silver	U	0.49 U	0.53 U	0 36 U	0 48 U	0 56 U	0.61 U	
Sodium	U	143 U	152 U	104 U	138 U	161 U	175 U	
Thallium		1 5 UN	1.6 UN	1 1 B	1.4 U	1.7 U	1.8 U	
Vanadium	E	26.8	21.8	25.1 E	23.6 E	27.2 E	24.6 E	
Zinc		100 N	103 N	96 5	71 5	95 7	101	

Table 22-8 120G - Pesticides/PCBs in Soil vs TAGMS Non-Evaluated EBS Sites

SIT	E SCRIPTION									SEAD-1. MOUND THE DU POND	S AT	SEAD-1: MOUND THE DU POND	SAT	SEAD-120 MOUNDS THE DUCK POND	AT	SEAD- MOUNI THE DI POND	DS AT
SA	C ID MP ID CODE									TP120G EB112 SA	G-1	TP120G EB113 SA	-1	TP120G-2 EB114 SA		TP1200 EB115 SA	
SA	MP DETH TOP MP DEPTH BOT										0 5 0 5		2		1 5 1 5		3
	TRIX MP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL 5-M	Mar-98	SOIL 5-M	lar-98	SOIL 6-Mar	r-98	SOIL 6-	Mar-98
				OF			ABOVE	OF	OF		_		_		_		
	RAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	
	-DDD	UG/KG	0		2900	286619	0	C		0	4.2 U		4 2 U		42 U		4 4
	-DDE	UG/KG	0		2100	202319	0	0		0	4.2 U		4 2 U		42 U		4 4
	-DDT	UG/KG	0		2100	202319	0	(0	4.2 U		4 2 U		4.2 U		4.4
Alc		UG/KG	0		41	4046	0	C		0	2.1 U		2 1 U		2.1 U		22
	ha-BHC	UG/KG	0	0 00 10	110		0	0		0	2 1 U		2 1 U		21 U		2 2
	ha-Chlordane	UG/KG	0				0	(0	2.1 U		2 1 U		2 1 U		22
	oclor-1016	UG/KG	0			73702	0	(0	42 U		42 U		42 U		44
	oclor-1221	UG/KG	0				0	(0	83 U		83 U		83 U		88
	oclor-1232	UG/KG	0				0	(0	42 U		42 U		42 U		44
	oclor-1242	UG/KG	0				0	(0	42 U		42 U		42 U		44
	oclor-1248	UG/KG	0				0	(0	42 U		42 U		42 U		44
Arc	oclor-1254	UG/KG	0		10000	21058	0	(,	0	42 U		42 U		42 U		44
Arc	oclor-1260	UG/KG	0		10000		0	(0	42 U		42 U		42 U		44
Be	ta-BHC	UG/KG	0		200		0	(0	2.1 U		2.1 U		2 1 U		2.2
De	Ita-BHC	UG/KG	0		300		0	(0	2.1 U		2.1 U		2.1 U		2.2
Die	eldrin	UG/KG	0		44	4299	0	(0	4.2 U		4.2 U		42 U		4 4
En	dosulfan l	UG/KG	0		900	6317308	0	(0	2.1 U		2.1 U		21 U		2.2
En	dosulfan II	UG/KG	0	0 00%	900	6317308	0	(0	4.2 U		4:2 U		4.2 U		4.4
En	dosulfan sulfate	UG/KG	0	0 00%	1000		0	(0	4.2 U		4.2 U		4.2 U		4 4
En	drin	UG/KG	0	0.00%	100	315865	0	(0	4.2 U		4 2 U		42 U		4 4
En	drin aldehyde	UG/KG	0	0.00%		315865	0	(0	4.2 U		4 2 U		42 U		4.4
En	drin ketone	UG/KG	0	0 00%		315865	0	() 1	0	4.2 U		4.2 U		4.2 U		4.4
Ga	mma-BHC/Lindane	UG/KG	0	0.00%	60	52914	0	() 1	0	2 1 U		2.1 U		2.1 U		2.2
Ga	mma-Chlordane	UG/KG	0	0.00%	540		0	() 1	0	2 1 U		2.1 U		2.1 U		22
He	ptachlor	UG/KG	O	0.00%	100	15286	0	(0	2.1 U		2 1 U		2.1 U		2.2
	ptachlor epoxide	UG/KG	C	0.00%	20	7559	0	() 1	0	2 1 U		2.1 U		2.1 U		2.2
	ethoxychlor	UG/KG	C	0.00%		5264423	0	(,	0	21 U		21 U		21 U		22
	xaphene	UG/KG	0	0.00%			0	() 1	0	210 U		210 U		210 U		220

Table 22-8 120G - Pesticides/PCBs in Soil vs TAGMS Non-Evaluated EBS Sites

SITE DESCRIPTION		SEAD-120G MOUNDS AT THE DUCK POND					
LOC ID		TP120G-3	TP120G-3	TP120G-4	TP120G-4	TP120G-5	TP120G-5
SAMP ID		EB135	EB136	EB118	EB119	EB120	EB121
QC CODE		SA	SA	SA	SA	SA	SA
SAMP DETH TOP		1	2	1 5	3.5	1	2
SAMP DEPTH BOT		1	2	1 5	3 5	1	2
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE		9-Mar-98	9-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98
PARAMETER	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4,4`-DDD	U	4.1 U	4 2 U	3 9 U	4 U	4 5 U	4.9 U
4.4°-DDE	U	4 1 U	4 2 U	3 9 U	4 U	4 5 U	4.9 U
4,4°-DDT	U	4 1 U	4 2 U	3 9 U	4 U	4 5 U	4.9 U
Aldrin	U	2 1 U	2.2 U	2 U	2 U	2 2 U	2 4 U
Alpha-BHC	U	2.1 U	2.2 U	2 U	2 U	2.2 U	2.4 U
Alpha-Chlordane	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Aroclor-1016	U	41 U	42 U	39 ∪	40 U	45 U	49 U
Aroclor-1221	U	84 U	86 U	78 U	79 U	90 U	98 U
Aroclor-1232	Ų	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1242	U	41 U	42 U	39 ∪	40 U	45 U	49 U
Aroclor-1248	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1254	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1260	U	41 U	42 U	39 U	40 U	45 U	49 U
Beta-BHC	U	2 1 U	2 2 U	2 U	2 U	2.2 U	24 U
Delta-BHC	U	2 1 U	2 2 U	2 U	2 U	2 2 U	24 U
Dieldnn	Ų	4 1 U	42 U	3.9 U	4 U	4.5 U	49 U
Endosulfan I	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Endosulfan II	U	4.1 U	4.2 U	39 U	4 U	4.5 U	4.9 U
Endosulfan sulfate	U	4.1 U	42 U	3 9 U	4 U	4.5 U	4.9 ∪
Endrin	Ų	4 1 U	4 2 U	39 ∪	4 U	4 5 U	4.9 U
Endnn aldehyde	Ų	4 1 U	4 2 U	3.9 ↓	4 ∪	4.5 U	4.9 U
Endrin ketone	U	4 1 U	4 2 U	3 9 U	4 U	4 5 U	4.9 U
Gamma-BHC/Lindane	U	2 1 U	2 2 U	2 U	2 U	2 2 U	2.4 U
Gamma-Chlordane	U	2.1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Heptachlor	U	2.1 U	2.2 U	2 U	2 U	2.2 U	2.4 U
Heptachlor epoxide	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Methoxychlor	U	21 U	22 U	20 U	20 U	22 U	24 U
Toxaphene	U	210 U	220 U	200 U	200 U	220 U	240 U

Table 22-9 120G - Pesticides/PCBs in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-12 MOUNDS THE DUG POND	SAT	SEAD-12 MOUNDS THE DUC POND	AT	SEAD-120 MOUNDS THE DUCK POND	AT	SEAD-1 MOUND THE DU POND	OS AT
LOC ID									TP120G-	-1	TP120G-	ı	TP120G-2		TP1200	S-2
SAMP ID									EB112		EB113		EB114		EB115	
QC CODE									SA		SA	_	SA		SA	
SAMP DETH TOP										0.5		2		1.5		3
SAMP DEPTH BOT									000	0 5		2		15		3
MATRIX									SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREOUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF		Mar-98	5-M	ar-98	6-Ma	r-98	6-	Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRĞ	TAGM	DETECTS	ANALYSES		Q	VALUE	Q	VALUE	Q	VALUE	
4.4°-DDD	UG/KG	0	0 00%	2900	286619	0			0	4.2 U		4.2 U		4.2 U		44
4.4 DDE	UG/KG	0	0 00%	2100	202319	0	(0	42 U		42 U		4.2 U		44
4.4`-DDT	UG/KG	0		2100	202319	0	,		0	42 U		42 U		42 U		44
Aldrin	UG/KG	0	0 00%	41	4046	0	(0	21 U		21 U		2 1 U		22
Alpha-BHC	UG/KG	0		110		0	(0	2.1 U		21 U		2.1 U		2.2
Alpha-Chlordane	UG/KG	0				0	(0	21 U		2 1 U		2.1 U		2.2
Aroclor-1016	UG/KG	0			73702	0	(0	42 U		42 U		42 U		44
Aroclor-1221	UG/KG	0	0 00%			0	(0	83 U		83 U		83 U		88
Aroclor-1232	UG/KG	0				0			0	42 U		42 U		42 U		44
Aroclor-1242	UG/KG	0	0 00%			0	(0	42 U		42 U		42 U		44
Aroclor-1248	UG/KG	0				0	(0	42 U		42 U		42 U		44
Aroclor-1254	UG/KG	0	0 00%	10000	21058	0	(0	42 U		42 U		42 U		44
Aroclor-1260	UG/KG	0		10000		0	(0	42 U		42 U		42 U		44
Beta-BHC	UG/KG	0	0.00%	200		0	,		0	2 1 U		2.1 U		21 U		2.2
Delta-BHC	UG/KG	0		300		0			0	2 1 U		2.1 U		2.1 U		2 2
Dieldrin	UG/KG	0		44	4299	0	(0	4 2 U		4.2 U		4.2 U		4 4
Endosulfan I	UG/KG	0	0.00%	900	6317308	0	(0	21 U		2.1 U		2.1 U		2.2
Endosulfan II	UG/KG	0	0 00%	900	6317308	0			0	4.2 U		4.2 U		4.2 U		4.4
Endosulfan sulfate	UG/KG	0	0 00%	1000	045005	0	(0	4.2 U		4 2 U		4.2 U		4.4
Endrin	UG/KG	0		100	315865	0	(0	4 2 U		4.2 U		4.2 U		4 4 4 4
Endrin aldehyde	UG/KG	0	0.00%		315865	-	(0	4 2 U		4.2 U		4.2 U		
Endrin ketone	UG/KG	0	0.00%		315865	0	,		0	4.2 U		4.2 U		4.2 U		4.4
Gamma-BHC/Lindane	UG/KG	0		60	52914	0	1		0 0	2.1 U 2.1 U		2.1 U 2.1 U		2.1 U 2.1 U		2 2
Gamma-Chlordane	UG/KG	0		540	45000	0	(0			2.1 U		2.1 U		2.2
Heptachlor	UG/KG	0		100	15286 7559	0	(0	2 1 U 2.1 U		2.1 U		2.1 U		2.2
Heptachlor epoxide	UG/KG	0		20	5264423	0	(0	2.1 U		2.1 U		2.1 U		22
Methoxychlor	UG/KG	0			5204423	0	`		0	210 U		210 U		21 U		220
Toxaphene	UG/KG	0	0.00%			U	(, 1	0	210 0		2100		2100		220

Table 22-9 120G - Pesticides/PCBs in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION		SEAD-120G MOUNDS AT THE DUCK POND					
LOC ID SAMP ID		TP120G-3 EB135	TP120G-3 EB136	TP120G-4 EB118	TP120G-4 EB119	TP120G-5 EB120	TP120G-5 EB121
QC CODE		SA	SA	SA	SA	SA	SA
SAMP DETH TOP		1	2	15	3 5	1	2
SAMP DEPTH BOT		1	2	1.5	3 5	1	2
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE		9-Mar-98	9-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98	6-Mar-98
PARAMETER	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4 4'-DDD	Ū	4 1 U	4 2 U	3 9 U	4 U	4.5 U	4.9 U
4.4'-DDE	Ü	41 U	42 U	3 9 U	4 U	4.5 U	4.9 U
4.4°-DDT	Ü	41 U	4.2 U	3 9 U	4 U	4.5 U	4 9 U
Aldrin	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Alpha-BHC	Ū	2 1 U	2.2 U	2 U	2 U	2.2 U	2.4 U
Alpha-Chlordane	Ū	2 1 U	2.2 U	2 U	2 U	2.2 U	2 4 U
Aroclor-1016	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1221	U	84 U	86 U	78 U	79 U	90 U	98 U
Aroclor-1232	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1242	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1248	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroctor-1254	U	41 U	42 U	39 U	40 U	45 U	49 U
Aroclor-1260	U	41 U	42 U	39 U	40 U	45 U	49 U
Beta-BHC	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Delta-BHC	U	2.1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Dieldnn	U	41 U	4.2 U	39 U	4 U	4.5 U	4.9 U
Endosulfan I	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Endosulfan II	U	4.1 U	4 2 U	3 9 U	4 U	4.5 U	4.9 U
Endosulfan sulfate	U	41 U	4 2 U	3 9 U	4 U	4 5 U	4.9 U
Endrin	U	4 1 U	4 2 U	3 9 U	4 U	4.5 U	4.9 U
Endrin aldehyde	U	4.1 U	4 2 U	3 9 U	4 U	4,5 U	4 9 U
Endrin ketone	U	4.1 U	4 2 U	3.9 U	4 U	4.5 U	4.9 U
Gamma-BHC/Lindane	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2 4 U
Gamma-Chlordane	U	2.1 U	2 2 U	2 U	2 U	2 2 U	2.4 U
Heptachlor	U	2 1 U	2 2 U	2 U	2 U	2.2 U	2.4 U
Heptachlor epoxide	U	2 1 U	2.2 U	2 U	2 U	2.2 U	2.4 U
Methoxychlor	U	21 U	22 U	20 U	20 U	22 U	24 U
Toxaphene	U	210 U	220 U	200 U	200 U	220 U	240 U

SEAD-120J

Farmer's Dump

Table 25-1

Sample Collection Information SEAD-120J - Farmer's Dump

12 Moderate EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS120J-1	EB269	3/18/98	0.0	0.2	SA	Location is at base of a slope that is downgradient of a debris pile; debris includes rotting wood, metal siding/stove pipes, pig hides/fur/bones; also, the remains of two unlabelled drums and a container labelled (4-DAMINE No. 4) herbicide.
SURFACE SOIL	SS120J-1	EB029	3/18/98	0.0	0.2	DU	Location is at base of a slope that is downgradient of a debris pile; debris includes rotting wood, metal siding/stove pipes, pig hides/fur/bones; also, the remains of two unlabelled drums and a container labelled (4-DAMINE No. 4) herbicide.
SURFACE SOIL	SS120J-2	EB270	3/18/98	0.0	0.2	SA	Location is at the bottom of the main drainage wash into a low area; the area contained cans, glass bottles, plastic bottles, and other household debris.
SURFACE SOIL	SS120J-3	EB271	3/18/98	0.0	0.2	SA	Location is approx. I foot downslope of the contained labelled 4-DAMINE No. 4 mentioned above.
SURFACE SOIL	SS120J-4	EB272	3/18/98	0.0	0.2	SA	Location is just below (downgradient) an unlabelled drum, which had no bottom or top.

Notes:

SA = Sample

DU = Duplicate

Table 25-2 120J - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites

SITE DESCRIPTION.									SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
LOC ID: SAMP_ID: QC CODE: SAMP. DEPTH TOP: SAMP. DEPTH BOT: MATRIX:									SS120J-1 EB269 SA 0 0.2 SOIL	SS120J-1 EB029 DU 0 0.2 SOIL
SAMP DATE:			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q
1,1,1-Trichloroethane	UG/KG	0.0	0.00%	800	36850962	0	0	ANAL 1 3 E 3		
1,1,2,2-Tetrachloroethane	UG/KG	0.0	0.00%	600	3439423	0	0	5		16 U 16 U
1.1.2-Trichloroethane	UG/KG	0.0	0.00%	000	1206815	0	0	5		
1.1-Dichloroethane	UG/KG	0.0	0.00%	200	105288462	0	0	5		16 U 16 U
1,1-Dichloroethene	UG/KG	0.0	0.00%	400	114647	0	0	5		16 U
1,2-Dichloroethane	UG/KG	0.0	0.00%	100	755917	0	0	5		16 U
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%		700017	0	0	5		16 U
1,2-Dichloropropane	UG/KG	0.0	0.00%		1011595	0	0	5		16 U
Acetone	UG/KG	20.0	20.00%	200	105288462	0	1	5		20 B
Benzene	UG/KG	0.0	0.00%	60	2372016	0		5		16 U
Bromodichloromethane	UG/KG	0.0	0.00%		1109491	0	0	5		16 U
Bromoform	UG/KG	0.0	0.00%		8707400	0	0	5		16 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	105288462	o o	0	5		16 U
Carbon tetrachloride	UG/KG	0.0	0.00%	600	529142	0	0	5		16 U
Chlorobenzene	UG/KG	0.0	0.00%	1700	21057692	0	0	5		16 U
Chlorodibromomethane	UG/KG	0.0	0.00%		818910	0	0	5		16 U
Chloroethane	UG/KG	0.0	0.00%	1900	421153846	0	0	5		16 U
Chloroform	UG/KG	0.0	0.00%	300	10528846	0	0	5		16 U
Cis-1,3-Dichloropropene	UG/KG	0.0	0.00%	-		0	0	5		16 U
Ethyl benzene	UG/KG	0.0	0.00%	5500	105288462	0	0	5		16 U
Methyl bromide	UG/KG	0.0	0.00%		1505625	0	0	5		16 U
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	5		16 U
Methyl chloride	UG/KG	0.0	0.00%		5291420	0	0	5		16 U
Methyl ethyl ketone	UG/KG	0.0	0.00%	300		0	0	5		16 U
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	84230769	0	0	5		16 U
Methylene chloride	UG/KG	0.0	0.00%	100	9171795	0	0	5		16 U
Styrene	UG/KG	0.0	0.00%			0	0	5		16 U
Tetrachloroethene	UG/KG	0.0	0.00%	1400	1322855	0	0	5		16 U
Toluene	UG/KG	13.0	80.00%	1500	210576923	0	4	5		16 U
Total Xylenes	UG/KG	0.0	0.00%	1200	2105769231	0	0	5		16 U
Trans-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	5		16 U
Trichloroethene	UG/KG	0.0	0.00%	700	6253497	0	0	5		16 U
Vinyl chloride	UG/KG	0.0	0.00%	200	36204	0	0	5		16 U
•										

Table 25-2 120J - Volatiles in Soil vs TAGM Non-Evaluated EBS Sites

SITE: DESCRIPTION:	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
DESCRIPTION.	rainiei's Dunip	Tarrier's Durip	Tamer 3 Bamp
LOC ID: SAMP_ID: QC CODE: SAMP, DEPTH TOP:	SS120J-2 EB270 SA 0	SS120J-3 EB271 SA 0	SS120J-4 EB272 SA 0
SAMP DEPTH BOT:	0.2	0.2	0.2
MATRIX:	SOIL	SOIL	SOIL
SAMP. DATE:	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER	VALUE Q	VALUE Q	VALUE Q
1,1,1-Trichloroethane	14 U	13 U	16 U
1,1,2,2-Tetrachloroethane	14 U	13 U	16 U
1,1,2-Trichloroethane	14 U	13 U	16 U
1,1-Dichloroethane	14 U	13 U	16 U
1,1-Dichloroethene	14 U	13 U	16 U
1,2-Dichloroethane	14 U	13 U	16 U
1,2-Dichloroethene (total)	14 U	13 U	16 U
1,2-Dichloropropane	14 U	13 U	16 U
Acetone	14 U	13 U	16 U
Benzene	14 U	13 U	16 U
Bromodichloromethane	14 U	13 U	16 U
Bromoform	14 U	13 U	16 U
Carbon disulfide	14 U	13 U	16 U
Carbon tetrachloride	14 U	13 U	16 U
Chlorobenzene	14 U	13 U	16 U
Chlorodibromomethane	14 U	13 U	16 U
Chloroethane	14 U	13 U	16 U
Chloroform	14 U	13 U	16 U
Cis-1,3-Dichloropropene	14 U	13 U	16 U
Ethyl benzene	14 U	13 U	16 U
Methyl bromide	14 U	13 U	16 U
Methyl butyl ketone	14 U	13 U	16 U
Methyl chloride	14 U	13 U	16 U
Methyl ethyl ketone	14 U	13 U	16 U
Methyl isobutyl ketone	14 U	13 U	16 U
Methylene chloride	14 U	13 U	16 U
Styrene	14 U	13 U	16 U
Tetrachloroethene	14 U	13 U	16 U
Toluene	13 J	12 J	7 J
Total Xylenes	14 U	13 U	16 U
Trans-1,3-Dichloropropene	14 U	13 U	16 U
Trichloroethene	14 U	13 U	16 U
Vinyl chloride	14 U	13 U	16 U

Table 25-3 120J - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION:									SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
LOC ID: SAMP_ID QC CODE SAMP_DEPTH TOP:									SS120J-1 EB269 SA 0	SS120J-1 EB029 DU 0	SS120J-2 EB270 SA 0
SAMP_DEPTH_BOT: MATRIX									0.2 SOIL	0.2 SOIL	0.2 SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98
SAMP DATE			OF			ABOVE	OF	OF	10-IVIAI - 30	10-Mar-30	10-14141-30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q
1,1,1-Trichloroethane	UG/KG	0.0	0.00%	800	36850962	0	0	5	16 U	16 U	14 U
1,1,2,2-Tetrachloroethane	UG/KG	0.0	0.00%	600	3439423	0	0	5	16 U	16 U	14 U
1,1,2-Trichloroethane	UG/KG	0.0	0.00%		1206815	0	0	5	16 U	16 U	14 U
1,1-Dichloroethane	UG/KG	0.0	0.00%	200	105288462	0	0	5	16 U	16 U	14 U
1,1-Dichloroethene	UG/KG	0.0	0.00%	400	114647	0	0	5	16 U	16 U	14 U
1,2-Dichloroethane	UG/KG	0.0	0.00%	100	755917	0	0	5	16 U	16 U	14 U
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%			0	0	5	16 U	16 U	14 U
1,2-Dichloropropane	UG/KG	0.0	0.00%		1011595	0	0	5	16 U	16 U	14 U
Acetone	UG/KG	20.0	20.00%	200	105288462	0	1	5	16 U	20 B	14 U
Benzene	UG/KG	0.0	0.00%	60	2372016	0	0	5	16 U	16 U	14 U
Bromodichloromethane	UG/KG	0.0	0.00%		1109491	0	0	5	16 U	16 U	14 U
Bromoform	UG/KG	0.0	0.00%		8707400	0	0	5	16 U	16 U	14 U
Carbon disulfide	UG/KG	0.0	0.00%	2700	105288462	0	0	5	16 U	16 U	14 U
Carbon tetrachloride	UG/KG	0.0	0.00%	600	529142	0	0	5	16 U	16 U	14 U
Chlorobenzene	UG/KG	0.0	0.00%	1700	21057692	0	0	5		16 U	14 U
Chlorodibromomethane	UG/KG	0.0	0.00%		818910	0	0	5	16 U	16 U	14 U
Chloroethane	UG/KG	0.0	0.00%	1900	421153846	0	0	5	16 U	16 U	14 U
Chloroform	UG/KG	0.0	0.00%	300	10528846	0	0	5		16 U	14 U
Cis-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	5		16 U	14 U
Ethyl benzene	UG/KG	0.0	0.00%	5500	105288462	0	0	5		16 U	14 U
Methyl bromide	UG/KG	0.0	0.00%		1505625	0	0	5		16 U	14 U
Methyl butyl ketone	UG/KG	0.0	0.00%			0	0	5		16 U	14 U
Methyl chloride	UG/KG	0.0	0.00%		5291420	0	0	5		16 U	14 U
Methyl ethyl ketone	UG/KG	0.0	0.00%	300		0	0	5		16 U	14 U
Methyl isobutyl ketone	UG/KG	0.0	0.00%	1000	84230769	0	0	5		16 U	14 U
Methylene chloride	UG/KG	0.0	0.00%	100	9171795	0	0	5		16 U	14 U
Styrene	UG/KG	0.0	0.00%			0	0	5		16 U	14 U
Tetrachloroethene	UG/KG	0.0	0.00%	1400	1322855	0	0	5		16 U	14 U
Toluene	UG/KG	13.0	80.00%	1500	210576923	0	4	5		16 U	13 J
Total Xylenes	UG/KG	0.0	0.00%	1200	2105769231	0	0	5		16 U	14 U
Trans-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	5		16 U	14 U
Trichloroethene	UG/KG	0.0	0.00%	700	6253497	0	0	5		16 U	14 U
Vinyl chloride	UG/KG	0.0	0.00%	200	36204	0	0	5	16 U	16 U	14 U

Table 25-3 120J - Volatiles in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE. DESCRIPTION:	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
LOC ID: SAMP_ID: QC CODE: SAMP_DEPTH TOP: SAMP_DEPTH BOT. MATRIX: SAMP_DATE:	SS120J-3 EB271 SA 0 0.2 SOIL 18-Mar-98	SS120J-4 EB272 SA 0 0.2 SOIL 18-Mar-98
BARAMETER		
PARAMETER	VALUE Q	VALUE Q
1,1,1-Trichloroethane	13 U	16 U
1,1,2,2-Tetrachloroethane	13 U	16 U
1,1,2-Trichloroethane 1,1-Dichloroethane	13 U 13 U	16 U 16 U
1,1-Dichloroethane	13 U	16 U
1.2-Dichloroethane	13 U	16 U
1,2-Dichloroethene (total)	13 U	16 U
1,2-Dichloropropane	13 U	16 U
Acetone	13 U	16 U
Benzene	13 U	16 U
Bromodichloromethane	13 U	16 U
Bromoform	13 U	16 U
Carbon disulfide	13 U	16 U
Carbon tetrachloride	13 U	16 U
Chlorobenzene	13 U	16 U
Chlorodibromomethane	13 U	16 U
Chloroethane	13 U	16 U
Chloroform	13 U	16 U
Cis-1,3-Dichloropropene	13 U	16 U
Ethyl benzene	13 U	16 U
Methyl bromide	13 U	16 U
Methyl butyl ketone	13 U	16 U
Methyl chloride	13 U	16 U
Methyl ethyl ketone	13 U	16 U
Methyl isobutyl ketone	13 U	16 U
Methylene chloride	13 U	16 U
Styrene	13 U	16 U
Tetrachloroethene	13 U	16 U
Toluene Total Xylones	12 J 13 U	7 J 16 U
Total Xylenes	13 U 13 U	16 U
Trans-1,3-Dichloropropene Trichloroethene	13 U	16 U
Vinyl chloride	13 U	16 U
viriyi chloride	13 U	16 0

Table 25-4 120J - Semivolatiles/TPH in Soil vs TAGM Non-Evaluated EBS Sites

0.75									SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J
SITE DESCRIPTION									Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump
LOCID									SS120J-1	SS120J-1	SS120J-2	SS120J-3	SS120J-4
SAMP, ID.									EB269	EB029	EB270	EB271	EB272
QC CODE.									SA	DU	SA	SA	SA
SAMP DEPTH TOP									0	0	0	0	0
SAMP DEPTH BOT									0 2	0 2	0.2	0.2	0.2
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP. DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	0 0	0.00%	3400	10528846	0	(5		100 U	81 U	87 U	100 U
1.2-Dichlorobenzene	UG/KG	0 0	0 00%	7900	94759615	0		5		100 U	81 U	87 U	100 U
1,3-Dichlorobenzene	UG/KG	0 0	0 00%	1600	93706731	0		5		100 U	81 U	87 U	100 U
1,4-Dichlorobenzene	UG/KG	0 0	0 00%	8500	2866186	0	,) 5		100 U	81 U	87 U	100 U
2,4,5-Trichlorophenol	UG/KG	0 0	0 00%	100	105288462	0		0 5		250 U	200 U	210 U	250 U 100 U
2,4,6-Trichlorophenol	UG/KG	0 0	0.00%	100	6253497	0		D 5		100 U 100 U	81 U 81 U	87 U 87 U	100 U
2,4-Dichlorophenol	UG/KG	0 0	0 00%	400	3158654 21057692	0) : D :		100 U	81 U	87 U	100 U
2,4-Dimethylphenol	UG/KG UG/KG	0.0 0.0	0 00% 0 00%	200	21057692	0		0 5		250 U	200 U	210 U	250 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	UG/KG	00	0.00%	200	2105769	0		0 5		100 U	81 U	87 U	100 U
2,6-Dinitrotoluene	UG/KG	00	0.00%	1000	1052885	0		D 5		100 U	81 U	87 U	100 U
2-Chloronaphthalene	UG/KG	0 0	0 00%	1000	1002000	0		0 5		100 U	81 U	87 U	100 U
2-Chlorophenol	UG/KG	0 0	0 00%	800	5264423	0		0 5		100 U	81 U	87 U	100 U
2-Methylnaphthalene	UG/KG	0.0	0 00%	36400		0	(0 5	5 100 U	100 U	81 U	87 U	100 U
2-Methylphenol	UG/KG	0 0	0 00%	100		0	(0 5	100 U	100 U	81 U	87 U	100 U
2-Nitroaniline	UG/KG	0 0	0.00%	430	63173	0	(0 9		250 U	200 U	210 U	250 U
2-Nitrophenol	UG/KG	0.0	0.00%	330		0		0 5		100 U	81 U	87 U	100 U
3,3 -Dichlorobenzidine	UG/KG	0.0	0.00%			0		0 5		100 U	81 U	87 U	100 U
3-Nitroaniline	UG/KG	0 0	0.00%	500	3158654	0		0 5		250 U	200 U	210 U	250 U
4.6-Dinitro-2-methylphenol	UG/KG	0 0	0.00%			0		0 5		250 U	200 U	210 U	250 U
4-Bromophenyl phenyl ether	UG/KG	0 0	0.00%	0.10	61067308	0		0 9		100 U 100 U	81 U 81 U	87 U 87 U	100 U 100 U
4-Chloro-3-methylphenol	UG/KG	0 0	0 00%	240 220	4211538	0		o s		100 U	81 U	87 U	100 U
4-Chloroaniline	UG/KG UG/KG	00	0.00%	220	4211536	0		0 9		100 U	81 U	87 U	100 U
4-Chlorophenyl phenyl ether 4-Methylphenol	UG/KG	0.0	0.00%	900		0		0 4		100 U	81 U	87 U	100 U
4-Nitroaniline	UG/KG	0.0	0.00%	300	3158654	0		0 !		250 U	200 U	210 U	250 U
4-Nitrophenol	UG/KG	0.0	0.00%	100	63173077	0		0 9	5 240 U	250 U	200 U	210 U	250 U
Acenaphthene	UG/KG	0 0	0.00%	50000		0		0 !	5 100 U	100 U	81 U	87 U	100 U
Acenaphthylene	UG/KG	0.0	0.00%	41000		0		0 5	5 100 U	100 U	81 U	87 U	100 U
Anthracene	UG/KG	0.0	0.00%	50000	315865385	0		0 :		100 U	81 U	87 U	100 U
Benzo[a]anthracene	UG/KG	22.0	100.00%	224		0		5		22 J	8.8 J	7.6 J	18 J
Benzo[a]pyrene	UG/KG	23 0	100.00%	61	9423	0			5 21 J	23 J	10 J	9 J	21 J
Benzo[b]fluoranthene	UG/KG	30.0	100.00%	1100	94231	0		-	5 24 J	28 J	14 J	17 J	30 J
Benzo[ghi]perylene	UG/KG	20 0	100.00%	50000	0.40000	0			5 17 J 5 27 J	19 J 27 J	12 J 15 J	9.6 J 10 J	20 J 23 J
Benzo[k]fluoranthene	UG/KG	27 0	100.00% 0.00%	1100	942308	0		-	5 100 U	100 U	81 U	87 U	100 U
Bis(2-Chloroethoxy)methane	UG/KG UG/KG	0.0	0.00%		62535	0			5 100 U	100 U	81 U	87 U	100 U
Bis(2-Chloroethyl)ether	UG/KG	0.0	0.00%		982692	0			5 100 U	100 U	81 U	87 U	100 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/KG	14.0	100.00%	50000	302302	0			5 12 JB	12 JB	10 JB	14 JB	11 JB
Butylbenzylphthalate	UG/KG	8.1	20 00%	50000	210576923	0		1 !	5 100 U	100 U	81 U	8.1 J	100 U
Carbazole	UG/KG	66	20.00%		3439423	0		1 :	5 6.6 J	100 U	81 U	87 U	100 U
Chrysene	UG/KG	33 0	100.00%	400	9423077	0		5	5 28 J	33 J	17 J	15 J	30 J
Di-n-butylphthalate	UG/KG	0.0	0.00%	8100		0		-	5 100 U	100 U	81 U	87 U	100 U
Di-n-octylphthalate	UG/KG	0.0	0.00%	50000	21057692	0			5 100 U	100 U	81 U	87 U	100 U
Dibenz[a,h]anthracene	UG/KG	8 7	80.00%	14		0			5 100 U	8.7 J	6.3 J	6 J	7.4 J
Dibenzofuran	UG/KG	0.0	0.00%	6200	4211538	0		•	5 100 U	100 U	81 U	87 U	100 U
Diethyl phthalate	UG/KG	34 0	100.00%	7100	842307692	0		•	5 34 J	7.3 J	4.2 J	7.5 J 87 U	7 J 100 U
Dimethylphthalate	UG/KG	0 0	0.00%		10528846150	0		-	5 100 U	100 ป 55 J	81 U 18 J	87 U 20 J	100 U 45 J
Fluoranthene	UG/KG	55.0	100 00%	50000	42115385	0			5 46 J 5 100 U	100 U	18 J 81 U	20 J 87 U	100 U
Fluorene	UG/KG	0.0	0.00%	50000	42115385	0		-	5 100 U	100 U	81 U	87 U	100 U
Hexachlorobenzene	UG/KG	0.0	0.00%	410	42993 210577	0		-	5 100 U	100 U	81 U	87 U	100 U
Hexachlorobutadiene	UG/KG	0.0 0.0	0.00%		7370192	0			5 100 U	100 U	81 U	87 U	100 U
Hexachlorocyclopentadiene	UG/KG	0.0	0.0070		7370192	Ü		•		.50 0	3, 0		

Table 25-4 120J - Semivolatiles/TPH in Soil vs TAGM Non-Evaluated EBS Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-120J Farmer's Dump SS120J-1 EB269 SA 0 0 0 2 SOIL 18-Mar-98	SEAD-120J Farmer's Dump SS120J-1 EB029 DU 0 0 2 SOIL 18-Mar-98	SEAD-120J Farmer's Dump SS120J-2 EB270 SA 0 0 2 SOIL 18-Mar-98	SEAD-120J Farmer's Dump SS120J-3 EB271 SA 0 0.2 SOIL 18-Mar-98	SEAD-120J Farmer's Dump SS120J-4 EB272 SA 0 0 2 SOIL 18-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Hexachloroethane	UG/KG	0.0	0 00%		1052885	0	0	5		100 U	81 U	87 U	100 U
Indeno[1,2,3-cd]pyrene	UG/KG	18 0	100 00%	3200	94231	0	5		5 15 J	18 J	11 J	8 J	17 J
Isophorone	UG/KG	0.0	0.00%	4400		0	0		100 U	100 U	81 U	87 U	100 U
N-Nitrosodiphenylamine	UG/KG	0 0	0 00%		14038462	0	C		100 U	100 U	81 U	87 U	100 ∪
N-Nitrosodipropylamine	UG/KG	0 0	0 00%			0	C		100 U	100 U	. 81 U	87 U	100 U
Naphthalene	UG/KG	0.0	0 00%	13000	42115385	0	C		100 U	100 U	81 U	87 U	100 U
Nitrobenzene	UG/KG	0 0	0 00%	200	526442	0	C	5	100 U	100 U	81 U	87 ∪	100 U
Pentachlorophenol	UG/KG	0 0	0.00%	1000	573237	0	C		240 U	250 U	200 U	210 U	250 U
Phenanthrene	UG/KG	35 0	100 00%	50000		0	5		5 26 J	35 J	10 J	12 J	26 J
Phenol	UG/KG	0 0	0.00%	30	631730769	0	C		100 U	100 U	81 U	87 U	100 ∪
Pyrene	UG/KG	54 0	100.00%	50000	31586538	0	5		5 46 J	54 J	15 J	21 J	43 J
TPH	MG/KG	71 4	80 00%			0	4	5 000	69.7	71 4	23.7	19.6 U	62.9

Table 25-5 120J - Semivolatiles and TPH in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE									SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J
DESCRIPTION									Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump
LOC ID									SS120J-1	SS120J-1	SS120J-2	SS120J-3	SS120J-4
SAMP_ID									EB269	EB029	EB270	EB271	EB272
QC CODE									SA	DU	SA ·	SA	SA
SAMP DEPTH TOP SAMP DEPTH BOT									0 0 2	0.2	0	0	0
MATRIX									SOIL	SOIL	0 2 SOIL	0 2	0 2
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98	SOIL 18-Mar-98	SOIL 18-Mar-98
SAMP DATE			OF			ABOVE	OF	OF	10-14/01-20	10-Mai-50	10-M91-90	10-Mai-96	10-Mat-80
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1 2,4-Trichlorobenzene	UG/KG	0.0	0.00%	3400	10528846	0	0			100 U	81 U	87 U	100 U
1,2-Dichlorobenzene	UG/KG	0.0	0.00%	7900	94759615	0	0			100 U	81 U	87 U	100 U
1,3-Dichlorobenzene	UG/KG	0 0	0.00%	1600	93706731	0	0	5		100 U	81 U	87 U	100 U
1 4-Dichlorobenzene	UG/KG	0 0	0.00%	8500	2866186	0	0		5 100 U	100 U	81 U	87 U	100 U
2,4,5-Trichlorophenol	UG/KG	0 0	0 00%	100	105288462	0	0	5	240 U	250 U	200 U	210 U	250 U
2.4,6-Trichlorophenol	UG/KG	0.0	0.00%		6253497	0	0		, ,,,,	100 U	81 U	87 U	100 U
2,4-Dichlorophenol	UG/KG	0.0	0.00%	400	3158654	0	0	,		100 U	81 ∪	87 U	100 U
2.4-Dimethylphenol	UG/KG	0.0	0.00%		21057692	0	0			100 U	81 U	87 U	100 U
2.4-Dintrophenol	UG/KG	0 0	0 00%	200	2105769	0	0			250 U	200 U	210 U	250 U
2,4-Dinitrotoluene	UG/KG	0 0	0.00%	4000	2105769	0	0			100 U 100 U	81 U	87 U	100 U
2.6-Dinitrotoluene	UG/KG UG/KG	0 0	0.00%	1000	1052885	0	0	-		100 U	81 U	87 U	100 U
2-Chloronaphthalene 2-Chlorophenol	UG/KG	00	0 00%	800	5264423	0	0			100 U	81 U 81 U	87 U 87 U	100 U 100 U
2-Methylnaphthalene	UG/KG	0.0	0 00%	36400	3204423	0	0			100 U	81 U	87 U	100 U
2-Methylphenol	UG/KG	0.0	0.00%	100	52644231	0	0			100 U	81 U	87 U	100 U
2-Nitroaniline	UG/KG	0.0	0 00%	430	63173	0	0			250 U	200 U	210 U	250 U
2-Nitrophenol	UG/KG	0.0	0 00%	330		0	0			100 U	81 U	87 U	100 U
3,3 - Dichlorobenzidine	UG/KG	0.0	0.00%		152863	0	0		100 U	100 U	81 U	87 U	100 U
3-Nitroaniline	UG/KG	0.0	0.00%	500	3158654	0	0		240 U	250 U	200 U	210 U	250 U
4,6-Dinitro-2-methylphenol	UG/KG	0.0	0.00%			0	0	5	5 240 U	250 U	200 U	210 U	250 ∪
4-Bromophenyl phenyl ether	UG/KG	0 0	0.00%		61067308	0	0	-		100 U	81 U	87 U	100 U
4-Chloro-3-methylphenol	UG/KG	0.0	0 00%	240		0	0	-		100 U	81 U	87 U	100 U
4-Chloroaniline	UG/KG	0 0	0.00%	220	4211538	0	0	-		100 U	81 U	87 U	100 U
4-Chlorophenyl phenyl ether	UG/KG	0 0	0.00%			0	0	-		100 U	81 U	87 U	100 U
4-Methylphenol	UG/KG	0.0	0.00%	900	2458654	0	0	-		100 U	81 U	87 U	100 U
4-Nitroaniline 4-Nitrophenol	UG/KG UG/KG	0.0 0.0	0.00% 0.00%	100	3158654 63173077	0	0			250 U 250 U	200 U 200 U	210 U 210 U	250 U 250 U
4-Nifrophenoi Acenaphthene	UG/KG	0.0	0.00%	50000	631/30//	0	0			100 U	200 U 81 U	210 U 87 U	100 U
Acenaphthylene	UG/KG	00	0.00%	41000		0	0	-		100 U	81 U	87 U	100 U
Anthracene	UG/KG	0.0	0.00%	50000	315865385	0	0			100 U	81 U	87 U	100 U
Benzo[a]anthracene	UG/KG	22 0	100.00%	224	94231	0	5	5		22 J	8.8 J	7.6 J	18 J
Benzo[a]pyrene	UG/KG	23 0	100 00%	61	9423	0	5	4	5 21 J	23 J	10 J	9 J	21 J
Benzo[b]fluoranthene	UG/KG	30 0	100.00%	1100	94231	0	5	5	5 24 J	28 J	14 J	17 J	30 J
Benzo[ghi]perylene	UG/KG	20.0	100.00%	50000		0	5	5		19 J	12 J	9.6 J	20 J
Benzo(k)fluoranthene	UG/KG	27.0	100.00%	1100	942308	0	5			27 J	15 J	10 J	23 J
Bis(2-Chloroethoxy)methane	UG/KG	0.0	0.00%			0	0			100 U	81 U	87 U	100 U
Bis(2-Chloroethyl)ether	UG/KG	0 0	0.00%		62535 982692	0	0			100 U	81 U	87 U	100 U
Bis(2-Chloroisopropyl)ether	UG/KG UG/KG	0 0 14.0	0.00% 100.00%	50000	4913462	0	5	-		100 U 12 JB	81 U 10 JB	87 U 14 JB	100 U 11 JB
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	UG/KG	8.1	20.00%	50000	210576923	0	1			100 U	81 U	14 JO 81 J	100 U
Carbazole	UG/KG	6.6	20.00%	30000	3439423	0	1		,	100 U	81 U	87 U	100 U
Chrysene	UG/KG	33.0	100 00%	400	9423077	0	5			33 J	17 J	15 J	30 J
Di-n-bulylph/halate	UG/KG	0 0	0.00%	8100		0	0			100 U	81 U	87 U	100 U
Di-n-octylphthalate	UG/KG	0.0	0.00%	50000	21057692	0	0		100 U	100 U	81 U	87 U	100 U
Dibenz[a,h]anthracene	UG/KG	8 7	80.00%	14	9423	0	4	5	100 U	87 J	6.3 J	6 J	7.4 J
Dibenzofuran	UG/KG	0.0	0.00%	6200	4211538	0	0		5 100 U	100 U	81 U	87 U	100 U
Diethyl phthalate	UG/KG	34 0	100.00%	7100	842307692	0	5	-		7.3 J	4.2 J	7.5 J	7 J
Dimethylphthalate	UG/KG	0.0	0.00%	2000	10528846150	0	0	-		100 U	81 U	87 U	100 U
Fluoranthene	UG/KG	55.0	100.00%	50000	42115385	0	5			55 J	18 J	20 J	45 J
Fluorene	UG/KG	0 0	0.00%	50000	42115385	0	0			100 U	81 U	87 U	100 U
Hexachiorobenzene	UG/KG	0.0	0.00%	410	42993	0	0			100 U	81 U	87 U	100 U
Hexachlorobutadiene	UG/KG	0 0	0 00%		210577	0	0	-		100 U	81 U	87 U	100 U
Hexachlorocyclopentadiene	UG/KG	0.0	0.00% 0.00%		7370192 1052885	0	0			100 U 100 U	81 U 81 U	87 U 87 ∪	100 U 100 U
Hexachloroethane	UG/KG UG/KG	0.0 18.0	100.00%	3200	94231	0	5	-		18 J	11 J	8 J	100 U
Indeno[1,2,3-cd]pyrene Isophorone	UG/KG UG/KG	0.0	0 00%	4400	37231	0	0	-		100 U	81 U	87 U	100 U
N-Nitrosodiphenylamine	UG/KG	0.0	0.00%	7400	14038462	0	0			100 U	81 U	87 U	100 U
N-Nitrosodipropylamine	UG/KG	0.0	0.00%		9827	0	0			100 U	81 U	87 U	100 U

Table 25-5 120J - Semivolatiles and TPH in Soil vs PRG-REC Non-Evaluated EBS Sites

SITÉ DESCRIPTION									SEAD-120J Farmer's Dump				
LOC ID									SS120J-1	SS120J-1	SS120J-2	SS120J-3	SS120J-4
SAMP_ID									EB269	EB029	EB270	EB271	EB272
QC CODE									SA	DU	SA	SA	SA
SAMP DEPTH TOP									0	0	0	0	0
SAMP DEPTH BOT									0 2	0.2	0 2	0.2	0 2
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
CALL DATE			OF			ABOVE	OF	OF					
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q				
Naphthalene	UG/KG	0.0	0 00%	13000	42115385		0	0	5 100 U	100 U	81 U	87 U	100 U
Nitrobenzene	UG/KG	0.0	0 00%	200	526442		0	0	5 100 U	100 U	81 U	87 U	100 U
Pentachlorophenol	UG/KG	0.0	0.00%	1000	573237		0	0	5 240 U	250 U	200 ∪	210 U	250 U
Phenanthrene	UG/KG	35 0	100.00%	50000			0	5	5 26 J	35 J	10 J	12 J	26 J
Phenol	UG/KG	0.0	0.00%	30	631730769		0	0	5 100 U	100 U	81 U	87 U	100 U
Pyrene	UG/KG	54 0	100.00%	50000	31586538		0	5	5 46 J	54 J	15 J	21 J	43 J
TPH	MG/KG	71 4	80 00%				0	4 5 00	0 69 7	71 4	23 7	19 6 U	62 9

Table:25-6 120J - Metals in Soil vs TAGM Non-Evaluated EBS Sites

SITE:									SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J
DESCRIPTION:									Farmer's Dump				
LOC ID:									SS120J-1	SS120J-1	SS120J-2	SS120J-3	SS120J-4
SAMP_ID:									EB269	EB029	EB270	EB271	EB272
QC CODE:									SA	DU	SA	SA	SA
SAMP. DEPTH TOP:									0	0	0	0	0
SAMP DEPTH BOT:									02	0.2	0.2	0.2	0.2
MATRIX:									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE:			FREQUENCY			NUMBER ABOVE	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q				
Aluminum	MG/KG	16400.0	100.00%	19520	1052885	0	5	5	14800	14500	11100	16400	15700
Antimony	MG/KG	0.0	0.00%	6	421	0	0		3.2 UN	3.3 UN	2.7 UN	2.8 UN	3.3 UN
Arsenic	MG/KG	5.6	100,00%	8 9	46	0	5		4.1 N°	3.6 N°	3.6 N°	4.3 N*	5.6 N*
Banum	MG/KG	154.0	100 00%	300	73702	0	5		154	142	73.6	50.6 B	132
Beryllium	MG/KG	0.8	100.00%	1.13	16	0	5		0.76 B	0.76 B	0.44 B	0.64 B	0.58 B
Cadmium	MG/KG	0.0	0.00%	2.46	526	0	0		0 21 U	0.21 U	0.17 U	0.18 U	0.21 U
Calcium	MG/KG	8620.0	100.00%	125300	0	0	5		8050	8620	5760	2760	6150
Chromium	MG/KG	29.8	100.00%	30	1052885	0	5	5	24.2	23.2	18.0	29.8	23.8
Cobalt	MG/KG	15.3	100.00%	30	63173	0	5		11.2 B	10.5 B	10.7 B	15.3	13.7 B
Copper	MG/KG	61.8	100.00%	33	42115	1	5	5	21.1	21.7	17.4	61.3	24.9
Cyanide	MG/KG	0.0	0.00%	0.35		0	0	5	0.80 U	0.84 U	0.64 U	0.69 U	0 82 U
Iron	MG/KG	33000.0	100.00%	37410	315865	0	5		28300	27300	22500	33000	28200
Lead	MG/KG	144.0	100.00%	24.4		5	5		14.	** 415 *	38,4		32.8
Magnesium	MG/KG	6690.0	100.00%	21700		0	5	,		4420	4290	6690	4690
Manganese	MG/KG	823.0	100.00%	1100	24216	0	5	5	420	401	427	324	823
Mercury	MG/KG	0.1	20.00%	0.1	316	0	1	5	0.07 U	0.07 U	0.05 U	0.06 U	0.08 B
Nickel	MG/KG	47.3	100.00%	50	21058	0	5	5	34.3	33.0	28.7	47.3	34.6
Potassium	MG/KG	2270.0	100,00%	2623		0	5		1920	1960	1230 B	2080	2270
Selenium	MG/KG	1.6	20.00%	2	5264	0	1	4	1.6 N	1.4 UN	1.2 UN	1,2 UN	1.4 UN
Silver	MG/KG	0.0	0.00%	0.8	5264	0	0		1,1 U	1.2 U	0.94 U	0.98 U	1.2 U
Sodium	MG/KG	0.0	0.00%	188		0	0		252 U	256 U	208 U	217 U	256 U
Thallium	MG/KG	0.0	0.00%	0.855	84	. 0	0		1.9 U	1.9 U	1.6 U	1.6 U	1.9 ປ
Vanadium	MG/KG	25.0	100.00%	150	7370	0	5			21.2	17.4	22.9	25.0
Zinc	MG/KG	233.0	100.00%	115	315865	1	5		93.2	91.2	82.6	233	114

Page 1

Table 25-7 120J - Metals in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-120J Farmer's Dump				
LOC ID SAMP_ID QC CODE									SS120J-1 EB269 SA	SS120J-1 EB029 DU	SS120J-2 EB270 SA	SS120J-3 EB271 SA	SS120J-4 EB272 SA
SAMP DEPTH TOP									0	0	0	0	0
SAMP DEPTH BOT									0.2	0 2	0 2	0.2	0.2
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
			OF			ABOVE	OF	OF		10-14181-30	10-19181-90	10-10101-90	10-Mai-90
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE O	VALUE Q	VALUE Q	VALUE Q
Alumnum	MG/KG	16400 0	100 00%	19520	1052885	0	5		5 14800	14500	11100	16400	15700
Antimony	MG/KG	0.0	0.00%	6	421	0	0		5 3.2 UN	3.3 UN	2 7 UN	2.8 UN	3 3 UN
Arsenic	MG/KG	5.6	100 00%	8.9	46	0	5		5 41 N°	3 6 N°	3 6 N*	4 3 N°	5.6 N*
Barrum	MG/KG	154.0	100 00%	300	73702	0	5		5 154	142	73 6	50.6 B	132
Beryllium	MG/KG	0.8	100 00%	1 13	16	0	5		5 0.76 B	0 76 B	0.44 B	0.64 B	0.58 B
Cadmium	MG/KG	0.0	0 00%	2.46	526	0	0		5 0.21 U	0.21 U	0.17 U	0.18 U	0.30 B
Calcium	MG/KG	8620 0	100 00%	125300	0	0	5		5 8050	8620	5760	2760	6150
Chromium	MG/KG	29 8	100.00%	30	1052885	0	5		5 24.2	23 2	18.0	29 8	23.8
Cobalt	MG/KG	15.3	100 00%	30	63173	0	5		5 11 2 B	10.5 B	10.7 B	15 3	13 7 B
Copper	MG/KG	61.8	100 00%	33	42115	0	5		5 21.1	21.7	17.4	61.8	24.9
Cyanide	MG/KG	0.0	0.00%	0 35		0	0		5 0 80 U	0 84 U	0.64 U	0.69 U	0.82 U
Iron	MG/KG	33000 0	100 00%	37410	315865	0	5		5 28300	27300	22500	33000	28200
Lead	MG/KG	144 0	100 00%	24.4		0	5		5 144 *	115 *	38.4 *	29.9 *	32 8 *
Magnesium	MG/KG	6690 0	100 00%	21700		0	5		5 4670	4420	4290	6690	4690
Manganese	MG/KG	823 0	100 00%	1100	24216	0	5		5 420	401	427	324	823
Mercury	MG/KG	0 1	20.00%	0.1	316	0	1		5 0.07 U	0 07 U	0.05 ∪	0.06 U	0.08 B
Nickel	MG/KG	47 3	100.00%	50	21058	0	5		5 343	33.0	28.7	47.3	34.6
Potassium	MG/KG	2270 0	100.00%	2623		0	5		5 1920	1960	1230 B	2080	2270
Selenium	MG/KG	16	20.00%	2	5264	0	1		5 16 N	1.4 UN	1.2 UN	1.2 UN	1.4 UN
Silver	MG/KG	0.0	0 00%	0.8	5264	0	0		5 1.1 U	1.2 U	0.94 U	0.98 U	1.2 U
Sodium	MG/KG	0.0	0.00%	188		0	0		5 252 U	256 U	208 U	217 U	256 U
Thallium	MG/KG	0.0	0.00%	0.855	84	0	0		5 19U	1,9 U	16 U	1.6 U	1.9 U
Vanadium	MG/KG	25.0	100 00%	150	7370	0	5		5 217	21.2	17.4	22.9	25.0
Zinc	MG/KG	233 0	100 00%	115	315865	0	5		5 93 2	91 2	82 6	233	114

Table 25-8 120J - Pesticides/PCB in Soil vs TAGM Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
LOC ID SAMP_ID QC CODE SAMP_DEPTH TOP SAMP_DEPTH BOT MATRIX									SS120J-1 EB269 SA 0 0.2 SOIL	S\$120J-1 EB029 DU 0 0.2 SOIL	SS120J-2 EB270 SA 0 0 2 SOIL	SS120J-3 EB271 SA 0 0.2 SOIL	SS120J-4 EB272 SA 0 0.2 SOIL
SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM		ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4,4°-DDD	UG/KG	0.0	0.00%	2900	286619	0	0) 5	5 U	5 1 U	4.1 U	4.3 U	5.1 U
4.4'-DDE	UG/KG	2 2	20.00%	2100	202319	0	1	. 5		5.1 U	4.1 U	2.2 J	5 1 U
4,4 -DDT	UG/KG	4.3	40.00%	2100	202319	0	2			5 1 U	2.7 J	4.3 J	5.1 U
Aldrin	UG/KG	0 0	0.00%	41	4046	0	C			26 U	2.1 U	2.2 U	2.6 U
Alpha-BHC	UG/KG	0 0	0.00%	110		0	C		2.00	2.6 U	2.1 U	2.2 U	26 U
Alpha-Chlordane	UG/KG	0.0	0 00%			0	C		2.00	2.6 U	2 1 U	2.2 U	2.6 U
Aroclor-1016	UG/KG	0.0	0 00%		73702	0	0			51 U	41 U	43 U	51 U
Aroclor-1221	UG/KG	0.0	0.00%			0	C			100 U	83 U	88 U	100 U
Aroclor-1232	UG/KG	0 0	0.00%			0	0			51 U	41 U	43 U	51 U
Aroclor-1242	UG/KG	0.0	0 00%			0	0			51 U	41 U	43 U	51 U
Aroclor-1248	UG/KG	0 0	0.00%			0	C			51 U	41 U	43 U	51 U
Aroclor-1254	UG/KG	0 0	0.00%	10000	21058	0	C			51 U	41 U	43 U	51 U
Aroclor-1260	UG/KG	0.0	0 00%	10000		0	C			51 U	41 ∪	43 U	51 U
Beta-BHC	UG/KG	0.0	0.00%	200		0	C			2.6 U	2 1 U	2.2 U	26 U
Delta-BHC	UG/KG	0.0	0.00%	300		0	C			2.6 U	2 1 U	2.2 U	2.6 U
Dieldrin	UG/KG	0.0	0.00%	44	4299	0	C			5.1 U	4.1 U	4.3 U	5.1 U
Endosulfan I	UG/KG	0.0	0.00%	900	6317308	0	C	-		2.6 U	2.1 U	2.2 U	2 6 U
Endosulfan II	UG/KG	0.0	0.00%	900	6317308	0	C	-		5.1 U	4.1 U	4.3 U	5.1 U
Endosulfan sulfate	UG/KG	0 0	0 00%	1000		0	C	-		5.1 U	4.1 U	4.3 U	5 1 U
Endrin	UG/KG	0 0	0.00%	100	315865	0	C			5 1 U	4 1 U	4.3 U	5 1 U
Endrin aldehyde	UG/KG	0.0	0.00%		315865	0	0	-		5 1 U	4 1 U	4.3 U	5.1 U
Endrin ketone	UG/KG	0.0	0.00%		315865	0	0			5.1 U	4 1 U	4.3 U	5 1 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%	60	52914	0	0			2.6 U	2.1 U	2.2 U	26 U
Gamma-Chlordane	UG/KG	0.0	0.00%	540		0	0			2.6 U	2.1 U	2.2 U	2.6 U
Heptachlor	UG/KG	0.0	0.00%	100	15286	0	0			2.6 U	2.1 U	2.2 U	2.6 ↓
Heptachlor epoxide	UG/KG	0.0	0.00%	20	7559	0	0	-		2.6 U	2.1 U	2.2 U	2.6 U
Methoxychlor	UG/KG	0 0	0.00%		5264423	0	0			26 U	21 U	22 U	26 U
Toxaphene	UG/KG	0 0	0.00%			0	0	5	260 U	260 U	210 U	220 U	260 U

Table 25-9 120J - Pesticides/PCB in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE									SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J	SEAD-120J
DESCRIPTION									Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump	Farmer's Dump
LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT									SS120J-1 EB269 SA 0	SS120J-1 EB029 DU 0	SS120J-2 EB270 SA 0	SS120J-3 EB271 SA 0	SS120J-4 EB272 SA 0
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE O	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4.4 -DDD	UG/KG	0.0	0 00%	2900	286619	0	0		5 5 6		4 1 U	4 3 U	5 1 U
4.4 -DDE	UG/KG	22	20.00%	2100	202319	0	1		5 5 1	5.1 U	4.1 U	2.2 J	5.1 U
4,4`-DDT	UG/KG	4 3	40.00%	2100	202319	0	2	:	5 5 L	5.1 U	2 7 J	4.3 J	5 1 U
Aldrın	UG/KG	0.0	0.00%	41	4046	0	0	:	5 26 L	2.6 U	2.1 U	2 2 U	2.6 U
Alpha-BHC	UG/KG	0 0	0 00%	110		0	0	:	5 2.6 L		2.1 U	2 2 U	2.6 U
Alpha-Chlordane	UG/KG	0 0	0 00%			0	0		5 261		2.1 U	2 2 U	2.6 U
Aroclor-1016	UG/KG	0 0	0.00%		73702	0	0		5 50 (41 U	43 U	51 U
Aroclor-1221	UG/KG	0 0	0 00%			0	0	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		83 U	88 U	100 U
Araclor-1232	UG/KG	0 0	0 00%			0	0		5 50 L		41 U	43 U	51 U
Aroclor-1242	UG/KG	0 0	0 00%			0	0				41 U	43 U	51 U
Aroclor-1248	UG/KG	0 0	0 00%			0	0		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		41 U	43 U	51 U
Aroclor-1254	UG/KG	0 0	0.00%	10000	21058	0	0				41 U	43 U	51 U
Aroclor-1260	UG/KG	0.0	0 00%	10000		0	0				41 U	43 U	51 U
Beta-BHC	UG/KG	0 0	0.00%	200		0	0		5 2.6 L		2 1 U	2.2 U	2 6 U
Delta-BHC	UG/KG	0.0	0.00%	300		0	0		5 26 L		2 1 U	2.2 U	2.6 U
Dieldrin	UG/KG	0 0	0 00%	44	4299	0	0				4 1 U	4 3 U	5.1 U
Endosulfan I	UG/KG	0.0	0.00%	900	6317308	0	0		5 261		2 1 U	2.2 U	2 6 U
Endosulfan II	UG/KG	0.0	0 00%	900	6317308	0	0				4.1 U	4.3 U	5.1 U
Endosulfan sulfate	UG/KG	0 0	0.00%	1000	0.15005	0	0		5 5 1		4.1 U	4.3 U	5 1 U
Endrin	UG/KG	0.0	0.00%	100	315865	0	0		5 5 1		4.1 U	4 3 U	5.1 U
Endrin aldehyde	UG/KG	0.0	0.00%		315865	0	0				4 1 U	4.3 U	5.1 U
Endrin ketone	UG/KG	0.0	0.00%		315865	0	0				4.1 U	4 3 U	5.1 U
Gamma-BHC/Lindane	UG/KG	0.0	0.00%	60	52914	0	0				2.1 U	2.2 U	2.6 U
Gamma-Chlordane	UG/KG	0.0	0 00%	540	15200	0	0		5 26 L 5 2.6 L		2.1 U	2.2 ∪	2.6 U
Heptachlor	UG/KG	0.0	0.00%	100	15286 7559	0	0		5 2.6 L		2.1 U 2.1 U	2.2 U 2.2 U	2 6 U 2 6 U
Heptachlor epoxide	UG/KG	0.0	0.00%	20	5264423	0	0		5 2.6 L		2.1 U 21 U	2.2 U	26 U
Methoxychlor	UG/KG		0.00%		3204423	0	0		5 260 L		21 U	22 U 220 U	26 U
Toxaphene	UG/KG	0 0	0.00%			0	0		200 0	260 0	210 0	220 0	260 0

Table 25-10 120J - Herbicides in Soil vs TAGM Non-Evaluated EBS Sites

SITE: DESCRIPTION									SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump	SEAD-120J Farmer's Dump
LOC ID SAMP_ID QC CODE. SAMP DEPTH TOP: SAMP DEPTH BOT: MATRIX									SS120J-1 EB269 SA 0 0 2 SOIL	SS120J-1 EB029 DU 0 0.2 SOIL	SS120J-2 EB270 SA 0 0.2 SOIL	SS120J-3 EB271 SA 0 0.2 SOIL	SS120J-4 EB272 SA 0 0.2 SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98	18-Mar-98
PARAMETER 2.4,5-T 2.4,5-TP/Silvex 2.4-D 2.4-DB 3.5-Dichlorobenzoic acid Dalapon Dicamba Dichloroprop Dinoseb	UNIT UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	MAXIMUM 0 0 0 0 0 0 0	OF DETECTION 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	TAGM 1900 700 500	PRG	ABOVE TAGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OF DETECTS 0 0 0 0 0		73 U 73 U 73 U 73 U 74 U 75 73 U 76 73 U 77 U 77 U 78 390 U 77 U 77 U 78 390 U 79 390 U 79 390 U	VALUE Q 7.4 U 74 U 72 U 74 U 72 U 400 U 7.2 U 72 U 37 U	VALUE Q 5.9 U 5.9 U 58 U 58 U 320 U 5.8 U 300 U	VALUE Q 6.3 U 6.3 U 62 U 62 U 340 U 6.2 U 62 U 32 U	VALUE Q 7 3 U 7.3 U 71 U 73 U 71 U 390 U 7.1 U 36 U
MCPA MCPP Pentachlorophenol	UG/KG UG/KG UG/KG	0 0 0	0.00% 0.00% 0.00%	1000	573 2 37	0	0		7100 U 7100 U 26 U	7200 U 7200 U 26 U	5800 U 5800 U 21 U	6200 U 6200 U 22 U	7100 U 7100 U 26 U
Picloram	UG/KG	0	0 00%		73701923	0	0		5 73 U	7 4 U	5 9 U	6.3 U	7.3 U

Table 25-11 120J - Herbicides in Soil vs PRG-REC Non-Evaluated EBS Sites

SITE DESCRIPTION									SEAD-120J Farmer's Dump				
LOC ID SAMP_ID QC CODE SAMP DEPTH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SS120J-1 EB269 SA 0 0 2 SOIL 18-Mar-98	SS120J-1 EB029 DU 0 0.2 SOIL 18-Mar-98	SS120J-2 EB270 SA 0 0 2 SOIL 18-Mar-98	SS120J-3 EB271 SA 0 0.2 SOIL 18-Mar-98	SS120J-4 EB272 SA 0 0 2 SOIL 18-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG	ABOVE	OF	OF					10 18.65 50
2,4,5-T	UG/KG	0	0.00%		PRG	TAGM	DETECTS	ANALYSES	VALUE Q				
2,4,5-TP/Silvex	UG/KG	-		1900		0	0		7.3 U	7 4 U	59 U	6.3 U	7.3 U
2,4,3-17/3/livex 2,4-D		0	0 00%	700		0	0		7.3 U	7.4 U	5.9 U	6.3 U	73 U
	UG/KG	0	0 00%	500		0	0		71 U	72 U	58 U	62 U	71 U
2.4-DB	UG/KG	0	0.00%			0	0		73 U	74 U	59 U	63 U	73 U
3,5-Dichlorobenzoic acid	UG/KG	0	0.00%			0	0	!	71 U	72 U	58 U	62 U	71 U
Dalapon	UG/KG	0	0.00%			0	0		390 ∪	400 U	320 U	340 U	390 U
Dicamba	UG/KG	0	0 00%			0	0		7.1 U	7.2 U	5.8 U	6.2 U	7.1 U
Dichloroprop	UG/KG	0	0 00%			0	0		5 71 U	72 U	58 U	62 U	71 U
Dinoseb	UG/KG	0	0.00%			0	0		36 U	37 U	30 U	32 U	36 U
MCPA	UG/KG	0	0 00%			0	0		7100 U	7200 U	5800 U	6200 U	7100 U
MCPP	UG/KG	0	0.00%			0	0		7100 U	7200 U	5800 U	6200 U	7100 U
Pentachlorophenol	UG/KG	0	0.00%	1000	573237	0	0		26 ∪	26 U	21 U	22 U	26 U
Picloram	UG/KG	0	0 00%		73701923	0	0	į	7.3 U	7 4 U	5 9 U	6.3 U	7.3 U

SEAD-121B Building 325 PCB Oil Spill

Table 27-1

Sample Collection Information SEAD-121B - Building 325 PCB Oil Spill

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB121B-1	EB212	3/7/98	0.00	0.20	SA	Location is a potential run-off area next to loading ramp to Bldg. 325. Surface soil sample.
SOIL	SB121B-1	EB213	3/7/98	4.00	4.50	SA	Same location as above. Approx. mid- depth sample at water table. No VOC's or impact to soils detected.
SURFACE SOIL	SS121B-1	EB238	3/9/98	0.00	0.20	SA	Location is a drainage ditch downgradient of loading ramp to Bldg. 325.
SURFACE SOIL	SS121B-2	EB239	3/9/98	0.00	0.20	SA	Location is next to steps to loading platform at Bldg. 325.
SURFACE SOIL	SS121B-3	EB240	3/9/98	0.00	0.20	SA	Location is a downgradient ditch between Bldg. 325 and adjacent railroad line.

SA = Sample

Table 27-2 SEAD-121B - Volatiles in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID: SAMP_ID QC CODE									SEAD-12 Bldg 325 PCB Oil SB121B- EB212 SA	5 Spill 1	SEAD-12 Bldg. 325 PCB Oil S SB121B- EB213 SA	Spill 1	SEAD-12 Bldg. 325 PCB Oil S SS121B- EB238 SA	Spill 1	SEAD-12 Bidg. 325 PCB Oil S SS121B- EB239 SA	Spill 2	SEAD-12 Bldg 32 PCB Oil SS121B EB240 SA	5 Spill -3
SAMP DETH TOP										0		4		0		0		0
SAMP DEPTH BOT										0 2		4.5		0 2		02		0 2
MATRIX									SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	7-M	ar-98	7-Ma	r-98	9-Mai	r-98	9-Ma	r-98	9-M	lar-98
			OF			ABOVE	OF	OF										
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES		Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0		800	18396000	0		5		14 U		12 U		16 U		14 U		11 U
1,1,2,2-Tetrachloroethane	UG/KG	0		600	286160	0	_	5		14 U		12 U		16 U		14 U		11 U
1,1,2-Trichloroethane	UG/KG	0			100407	0		5		14 U		12 U		16 U		14 U		11 U
1.1-Dichloroethane	UG/KG	0	0 00%	200	52560000	0	0	5		14 U		12 U		16 U		14 U		11 U
1,1-Dichloroethene	UG/KG	0	0 00%	400	9539	0	0	5		14 U		12 U		16 U		14 U		11 U
1,2-Dichloroethane	UG/KG	0	0 00%	100	62892	0	0	5		14 U		12 U		16 U		14 U		11 U
1,2-Dichloroethene (total)	UG/KG	0				0	0	5		14 U		12 U		16 U		14 U		11 U
1,2-Dichloropropane	UG/KG	0	0.00%		84165	0	0	5	,	14 U		12 U		16 U		14 U		11 U
Acetone	UG/KG	14	20 00%	200	52560000	0	1	5	;	14 J		12 U		16 U		14 U		11 U
Benzene	UG/KG	0	0.00%	60	197352	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Bromodichloromethane	UG/KG	0	0 00%		92310	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Bromoform	UG/KG	0	0 00%		724456	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Carbon disulfide	UG/KG	0	0.00%	2700	52560000	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Carbon tetrachloride	UG/KG	0	0.00%	600	44025	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Chlorobenzene	UG/KG	0	0 00%	1700	10512000	0	0	5	,	14 U		12 U		16 U		14 U		11 U
Chlorodibromomethane	UG/KG	0	0.00%		68133	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Chloroethane	UG/KG	0	0.00%	1900	210240000	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Chloroform	UG/KG	0	0.00%	300	938230	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%			0	0	5	i	14 U		12 U		16 U		14 U		11 U
Ethyl benzene	UG/KG	0	0 00%	5500	52560000	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Methyl bromide	UG/KG	0	0.00%		751608	0	0		;	14 U		12 U		16 U		14 U		11 U
Methyl butyl ketone	UG/KG	0				0	0	5	;	14 U		12 U		16 U		14 U		11 U
Methyl chloride	UG/KG	0			440246	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Methyl ethyl ketone	UG/KG	0		300		0	0	5	;	14 U		12 U		16 U		14 U		11 U
Methyl isobutyl ketone	UG/KG	0		1000	42048000	0	0	5	,	14 U		12 U		16 U		14 U		11 U
Methylene chloride	UG/KG	0		100	763093	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Styrene	UG/KG	0				0	0	5	,	14 U		12 U		16 U		14 U		11 U
Tetrachloroethene	UG/KG	0		1400	110062	0	0	5	;	14 U		12 U		16 U		14 U		11 U
Toluene	UG/KG	20		1500	105120000	0	5		,	6 J		7 J		4 J		2 J		20
Total Xylenes	UG/KG	0		1200	1051200000	0	0		;	14 U		12 U		16 U		14 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0		0		0	0			14 U		12 U		16 U		14 U		11 U
Trichloroethene	UG/KG	0		700	520291	0	0			14 U		12 U		16 U		14 U		11 U
Vinyl chloride	UG/KG	0		200	3012	0	0			14 U		12 U		16 U		14 U		11 U
Villy) Chloride	30/110	O	3.5076	~~~	3012	Ü												

Table 27-3 SEAD-1218- Volatiles in Soil vs. PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP ID OC CODI									SEAD-121 Bldg 325 Oil Spill SB121B-1 FB212 SA		SEAD-121B Bldg 325 PCB Oil Spill SB121B-1 EB213 SA	SEAD-121 Bldg 325 I Oil Spill SS121B-1 EB238 SA		SEAD-121 Bldg 325 1 Oil Spill SS121B-2 EB239 SA		SEAD-12 Bldg 325 Oil Spill SS121B-3 EB240 SA	PCB
SAMP DETH TOP										()	4	5.1	0	3/1	0	.,,,	0
SAME DEPTH BOT										0.2	45		0.2		0.2		0.2
MATRIX									SOIL		SOIL	SOIL	0.2	SOIL.	17 2	SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		ar-98	7-Mar-98	9-Ma	r_08	9-Ma	r-08		Jar-98
13811 17311			OF			ABOVE	OF	OF		111-211	7-11111-211	7-1814	11-711	7-1512	1-78	7-10	101-711
PARAMETER.	TINIT	MAXIMUM	DEFFCTION	LAGM	PRG-IND	LAGM	DT LECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE	Q	VALUE	Q	VALUE	Q
1.1 1-Trichloroethane	UG/KG	{1	0.00%	800	18396000	()	O		,	14 ()	12 U		16 (1		14 ()		11 U
1.1.2.7-Tetrachloroethane	UG/KG	0	0.00° a	600	286160	0	0	•	5	14 U	12 U		16 U		14 U		H U
1.1.2-Trichloroethane	UG/KG	0	0.00%		100407	O	0		5	14 U	12 U		16 U		14 U		II U
1.1-Dichloroethane	UGKG	0	0.00%	200	52560000	()	O		i	14 17	12 U		16 U		14 U		H U
1.1-Dichloroethene	UG/KG	Ω	0.00%	400	9539	0	n	4	5	14 U	12 U		16 U		14 U		11 U
1,2-Dichloroethane	UG/KG	()	0.00%	100	62892	()	()		5	14 U	12 U		16 U		14 N		HU
1.2-Dichloroethene (total)	UG/KG	0	0.00%			0	()		5	14 U	12 U		16 U		14 U		H U
1 2-Dichloropropane	UG/KG	0	0.00%		84165	-0	0	•	5	14 U	12 U		16 U		14 U		H U
Accione	UG/KG	14	20 00%	200	52560000	()	1	:	5	11.3	12 U		16 U		14 U		11 U
Benzene	UG/KG	()	0.00%	(4)	197352	ο	()		5	14 U	12 U		16 U		14 U		11 U
Bromodichloromethane	UG/KG	0	() ()() ⁿ / _n		92310	0	0		5	14 U	12 U		16 U		14 U		II U
Bromoform	UG/KG	()	0.00%		724456	0	. 0		5	14 U	12 U		16 U		14 U		H U
Carbon disulfide	UG/KG	0	0.00%	2700	52560000	()	0		3	14 U	12 U		16 U		14 U		11 U
Carbon tetrachloride	UG/KG	0	0.00%	6481	44025	()	0	:	5	14 U	12 U		16 U		14 U		11 U
Chlorobenzene	UG/KG	0	0.00%	1700	10512000	()	()		5	14 U	12 U		16 U		14 U		HU
Chlorodibromonichanc	UG/KG	0	0.00%		68133	0	0		5	14 U	12 U		16 U		11 D		11 U
Chloroethane	UG/KG	0	() ()) ⁿ / ₆	1900	210240000	()	0	:	5	14 U	12 U		16 U		14 U		II U
Chloroform	UG/KG	0	() (VO%	300	938230	()	0		5	14 U	12 U		16 U		14 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0	0 60%			0	Ω	4	i .	14 U	12 U		16 U		14 U		HU
Ethyl benzene	UG/KG	()	0.00%	5500	52560000	()	0	:	5	14 U	12 U		16 U		14 U		II U
Methyl bromide	UG/KG	0	0.00%		751608	0	0	:	5	14 U	12 U		16 U		14 U		U 11
Methyl butyl ketone	UG/KG	0	0.00%			0	0		٩	14 U	12 U		16 U		14 U		H U
Methyl chloride	UG/KG	0	0.00%		440246	0	0		5	14 U	12 U		16 U		14 U		II U
Methyl ethyl ketone	UG/KG	0	0.00%	300		0	0	4	5	14 U	12 U		16 U		14 U		11 U
Methyl isobutyl ketone	UG/KG	0	0.00%	0001	42048000	0	0		5	14 U	12 U		16 U		14 U		11 U
Methylene chloride	UG/KG	0	0.00%	100	763093	0	()		5	14 U	12 U		16 U		14 U		ΠU
Styrene	UG/KG	0	0.00%			0	t)	:	5	14 U	12 U		16 U		14 U		11 U
Tetrachloroethene	UG/KG	0	0.00%	1400	110062	()	{}	:	5	HU	12 U		16 U		14 U		H U
Tolucne	UG/KG	20	[00 00%	1500	105120000	0	5		5	6 J	7 J		4 J		2 J		20
Total Xylenes	UG/KG	0	0.00%	1200	1051200000	0	0		5	14 U	12 U		16 U		14 U		11 U
Trans-1.3-Dichloropropene	UG/KG	0	0 00%			0	0		5	14 D	12 U		16 U		14 U		11 U
Trichloroethene	UG/KG	0	0.00%	700	520291	0	0		5	14 U	12 U		16 U		14 U		II U
Vinyl chloride	UG/KG	0	0.00%	200	3012	0	n		5	14 U	12 U		16 U		14 U		11 U

Table 27-4 SEAD-121B-Semivolatiles/TPH in Soil vs. NYTAGM Non-Evaluated Sites

	AD-121B SEAD-121B g. 325 PCB Bldg. 325 PCB	SEAD-121B Bldg, 325 PCB
DESCRIPTION Oil Spill Oil	Spill Oil Spill	Oil Spill
	21B-1 SS121B-2	SS121B-3
SAMP_ID: EB212 EB213 EB2:		EB240
OC CODE SA SA SA	SA	SA
SAMP DETHTOP 0 4	0 0	()
SAMP DEPTH BOT 0.2 4.5	0.2	0.2
MATRIX SOIL SOIL SOIL		SOIL
SAMP DATE FREQUENCY NUMBER NUMBER 7-Mar-98 7-Mar-98 OF ABOVE OF OF	9-Mar-98 9-Mar-98	9-Mar-98
PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VA		VALUE Q
1,2,4-1) (110) 001/210	500 U 970 U	3700 U
1.2-Dichlorobenzene UG/KG 0 0.00% 7900 47304000 0 0 5 220 U 220 U 13-Dichlorobenzene UG/KG 0 0.00% 1600 46778400 0 0 5 220 U 220 U	500 U 970 U	3700 U
1, Delition of the second of t	500 U 970 U	3700 U
7.4-Diction obclinate	500 U 970 U 1200 U 2400 U	3700 U 9000 U
6,1,2 176/1010/01010		
2.4.6-Trichlorophonol UG/KG 0 0.00% 520291 0 0 5 220 U 220 U	500 U 970 U	3700 U
2,4-Dichiolophichol	500 U 970 U 500 U 970 U	3700 U 3700 U
2.4-billionity piction		9000 U
2.4-Dinitrophenol UG/KG 0 0.00% 200 1051200 0 0 5 530 U 540 U 2.4-Dinitrophenol UG/KG 0 0.00% 1051200 0 0 5 220 U 220 U	1200 U 2400 U	
2,4-billionidatic	500 U 970 U	3700 U
2.6-Dinitrotoluenc UG/KG 0 0.00% 1000 52.5600 0 0 5 220 U 220 U	500 U 970 U	3700 U
2-Chloronaphthalene UG/KG 0 0.00% 0 0 5 220 U 220 U	500 U 970 U	3700 U
2-Chlorophenol UG/KG 0 0.00% 800 2628000 0 0 5 220 U 220 U	500 U 970 U	3700 U
2-Methylnaphthalene UG/KG 460 60.00% 36400 0 3 5 220 U 220 U	27 J 78 J	460 J
2-Methylphenol UG/KG 0 0,00% 100 262800000 0 0 5 221 U 220 U	500 U 970 U	3700 U
2-Nitroaniline UG/KG 0 0.00% 430 31536 0 0 5 530 U 540 U	1200 U 2400 U	9000 U
2-Nitrophenol UG/KG 0 0.00% 330 0 0 5 220 U 220 U	500 U 970 U	3700 U
3.3'-Dichlorobenzidine UG/KG 0 0.00% 12718 0 0 5 220 U 220 U	500 U 970 U	3700 U
3-Nitroaniline UG/KG 0 0,00% 500 1576800 0 0 5 530 U 540 U	1200 U 2400 U	9000 U
4.6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 0 5 530 U 540 U	1200 U 2400 U	9000 U
4-Bromophenyl phenyl ether UG/KG 0 0.01% 30484800 0 0 5 220 U 220 U	500 U 970 U	3700 U
4-Chloro-3-methylphonol UG/KG 0 0.00% 240 0 0 0 5 220 U 220 U	500 U 970 U	3700 U
4-Chloroaniline UG/KG 0 0.00% 220 2102400 0 0 5 220 U 220 U	500 U 970 U	3700 U
4-Chlorophenyl phenyl ether UG/KG 0 0.00% 0 0 5 220 U 220 U	500 U 970 U	3700 U
4-Methylphenol UG/KG 0 0.00% 900 0 0 5 220 U 220 U	500 U 970 U	3700 U
4-Nitroaniline UG/KG 0 0.00% 1576800 0 0 5 530 U 540 U	1200 U 2400 U	9000 U
4-Nitrophenol UG/KG 0 0,00% 100 31536000 0 0 5 530 U 540 U	1200 U 2400 U	9000 U
Accessibilities UG/KG 1800 100.00% 50000 0 5 5 59 J 120 J	320 J 640 J	1800 J
Acenaphthylene UG/KG 0 0.00% 41000 0 0 5 220 U 220 U	500 U 970 U	3700 U
Anthrucene UG/KG 2500 100 00% 50000 157680000 0 5 5 83 J 160 J	430 J 960 J	2500 J
Ben.zo[a]anthracene UG/KG 9400 100 00% 224 7840 5 5 5 390 439	1600 3100	9400
Benzolalpyrene UG/KG 9100 100 00% 61 784 5 5 5 396	1500 2800	9100
Benzo[b]fluoranthene UG/KG 10000 100.00% 1100 7840 3 5 5 460 410	1700 3200	10000
Benzolghilperylene UG/KG 6500 100.00% 50000 0 5 5 260 230	Trades #1010	
Benzo[k]fluoranthene UG/KG 9700 100 00% 1100 78400 3 5 5 410 440	1600 2600	9790
Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 0 5 220 U 220 U	500 U 970 U	3700 U
Bis(2-Chloroethy1)ether UG/KG 0 0.00% 5203 0 0 5 220 U 220 U	500 U 970 U	3700 U
Bis(2-Chloroisoprops))ether UG/KG 0 0.00% 81760 0 0 5 220 U 220 U	500 U 970 U	3700 U
Bis(2-Eihylhesy))phthalate UG/KG 0 0.00% 50000 408800 0 0 5 220 U 220 U	500 U 970 U	3700 U
Buty lbenzylphthalate UG/KG 0 0.00% 50000 105120000 0 0 5 220 U 220 U	500 U 970 U	3700 U
Carbazolc UG/KG 5300 100,00% 286160 0 5 5 10 J 200 J	\$20 1400	5300
Christing OO/KO (20kh) 100 00/h 4187		1.1
Di-n-but lphthalate UG/KG 0 0.00% 8100 0 0 5 220 U , 220 U	500 U 970 U	3700 U
Di-n-ock lphthalate UG/KG 0 0.00% 50000 10512000 0 0 5 220 U 220 U	500 U 970 U	3700 U
		2100 J
Dibenzofuran UG/KG 1200 100.00% 6200 2102400 0 5 5 16 J 42 J	140 J 300 J	1200 J
Diethyl phthalate UG/KG 12 20,00% 7100 420480000 0 1 5 12 J 220 U	500 U 970 U	3700 U
Dimethylphthalate UG/KG 0 0.00% 2000 5256000000 0 0 5 220 U 220 U	500 U 970 U	3700 U
Fluoranthene UG/KG 30000 100.00% 50000 21024000 0 5 5 1100 1200	5000 E 8900 E	30000
Fluorene UG/KG 1800 100,00% 50000 21024000 0 5 5 44 J 88 J	270 J . 580 J	1800 J
Hexachlorobenzene UG/KG 0 0,00% 410 3577 0 0 5 220 U 220 U	500 U 970 U	3700 U
Hexachlorobutadiene UG/KG 0 0.00% 73374 0 0 5 220 U 220 U	500 U 970 U	3700 U
Hexachloroex elopentadiene UG/KG 0 0.00% 3679200 0 0 5 220 U 220 U	500 U 970 U	3700 U
Hexachloroethane UG/KG 0 0.00% 408800 0 0 5 220 U 220 U	500 U 970 U	3700 U
Indeno[1,2,3-ed]pyrene UG/KG 6600 100,00% 3200 7840 1 5 5 240 210 J	970 2000	All and the second
Isophoronc UG/KG 0 0.00% 4400 0 0 5 220 U 220 U	500 U 970 U	3700 U

Table 27-4 SEAD-121B-Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites

SITE DESCRIPTION LOC ID SAMP ID QC CODE. SAMP DETH TOP									SEAD- Bldg 3 Oil Spil SB1241 EB212 SA	25 PCB II 3-1	SEAD-121B Bldg 325 PCB Oil Spill SB121B-1 EB213 SA	SEAD-121B Bldg 325 PCB Oil Spill SS121B-1 EB238 SA	SEAD-121B Bldg. 325 PCB Oil Spill SS121B-2 EB239 SA	SEAD-121B Bldg 325 PCB Oil Spill SS121B-3 EB240 SA
SAME DIPTH BOT										0	4	()	0	()
MATRIX										0.2	4.5	0.2	0.2	0.2
SAMP DATI			EDEOLIEVOV						SOIL		SOIL	SOIL.	SOIL	SOIL
3480 12411			FREQUENCY			NUMBER	NUMBI R	NUMBER	7-	Mai-98	7-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98
DADAMETER			OF			ABOVI	OF-	OF						
PARAMETER	UNIT		DETECTION	TAGM	PRG-IND	LAGM	DETECTS	ANALYSES	VALUE	/ Q	VALUE Q	VALUE Q	VALUE O	VALUE Q
N-Nitrosodiphenylamnie	UG/KG	0	0.00%		1168000	0	0		5	220 U	220 11	500 Ü	970 U	3700 U
N-Nitrosodipropylamine	UGKG	{}	0.00%		818	0	0		5	220 U	220 U	500 U	970 U	3700 [1
Naphthalene	UG/KG	1700	60 00%	13000	21024000	0	3		5	220 U	220 LF	79 J	240 J	1700 J
Nitrobenzene	UG/KG	0	0.00%	200	262800	0	()		5	220 U	220 U	500 U	970 11	3700 U
Pentachlorophenol	UG/KG	0	0.00%	1000	47693	0	0		5	530 U	540 U	1200 U	2400 U	9000 U
Phenanthrene	UG/KG	21000	100 00%	50000		0	5		5	620	940	3200	5800	21000
Phenol	UG/KG	0	B 00%	30	315360000	0	Ð		5	220 U	220 U	500 U	970 U	
Pyrene	UG/KG	21000	100.00%	50000	15768000	Ð	5		5	940	1100	3800	5900	3700 U
TPH	MG/KG	1360	60 00%			0	3		5	20 4 U	19.5 U	109		21000
										211 4 0	193 0	1177	1200	1360

Table 27-5
SEAD-121B-Semivolatiles/TPH in Soil vs. PRG-IND
Non-Evaluated Sites

SITE:									SEAD-		SEAD-121B Bldg 325	SEAD-121B Bldg, 325	SEAD-121B Bldg. 325	SEAD-121B Bldg, 325
DESCRIPTION.									PCB Oi		PCB Oil Spill	PCB Oil Spill	PCB Oil Spill	PCB Oil Spill
LOC ID:									SB1218		SB121B-1	SS121B-1	SS121B-2	SS121B-3
SAMP ID:									EB212		EB213	EB238	EB239	EB240
QC CODE:									SA		SA	SA	SA	SA
SAMP. DETH TOP.										0	4	0	0	0
SAMP, DEPTH BOT:										0.2	4.5	0.2	0.2	02
MATRIX.									SOIL		SOIL	SOIL	SOIL	SOIL
SAMP DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER	7-	Mar-98	7-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	0	0 00%	3400	5256000	0	()	5	220 U	220 U	500 U	970 U	3700 U
1,2-Dichlorobenzene	UG/KG	0	0 00%	7900	47304000	0	()	5	220 U	220 U	500 U	970 U	3700 U
1,3-Dichlorobenzene	UG/KG	0	0.00%	1600	46778400	0)	5	220 U	220 U	500 U	970 U	3700 U
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0			5	220 U	220 U	500 U	970 U	3700 U
2,4,5-Trichlorophenol	UG/KG	0	0.00%	100	52560000	0	(5	530 U	540 U	1200 U	2400 U	9000 U
2,4,6-Trichlorophenol	UG/KG	0	0.00%		520291	0			5	220 U	220 U	500 U	970 U	3700 U
2,4-Dichlorophenol	UG/KG	0		400	1576800	0	(5	220 U	220 U	500 U	970 U	3700 U
2,4-Dimethylphenol	UG/KG	0	0.00%		10512000	0	(5	220 U	220 U	500 U	970 U	3700 U
2,4-Dinitrophenol	UG/KG	0		200	1051200	0	(5	530 U	540 U	1200 U	2400 U	9000 U
2,4-Dinitrotoluene	UG/KG	0			1051200	0			5	220 U	220 U	500 U	970 U	3700 U
2,6-Dinitrotoluene	UG/KG	0		1000	525600	0			5	220 U	220 U	500 U	970 U	3700 U
2-Chloronaphthalene	UG/KG	0		200	0000000	0			5	220 U	220 U	500 U	970 U	3700 U
2-Chlorophenol	UG/KG	0		800	2628000	0			5	220 U	220 U	500 U	970 U	3700 U
2-Methylnaphthalene	UG/KG UG/KG	460		36400	25250000	0	3		5	220 U	220 U	27 J	78 J	460 J
2-Methylphenol 2-Nitroaniline	UG/KG	0	0.00%	100 430	26280000 31536	0	(5	220 U 530 U	220 U	500 U	970 U	3700 U
	UG/KG	0		330	31330	0			5	220 U	540 U	1200 U	2400 U	9000 U
2-Nitrophenol 3,3'-Dichtorobenzidine	UG/KG	0	0.00%	330	12718	0			5	220 U	220 U 220 U	500 U 500 U	970 U	3700 U
3-Nitroaniline	UG/KG	* 0	0.00%	500	1576800	0			5	530 U	540 U	1200 U	970 U 2400 U	3700 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%	500	1376000	0			5	530 U	540 U	1200 U	2400 U	9000 U 9000 U
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		30484800	0			5	220 U	220 U	500 U	970 U	3700 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240	30404000	o	ì		5	220 U	220 U	500 U	970 U	3700 U
4-Chloroaniline	UG/KG	0		220	2102400	o			5	220 U	220 U	500 U	970 U	3700 U
4-Chlorophenyl phenyl ether	UG/KG	o			2102100	0	Č		5	220 U	220 U	500 U	970 U	3700 U
4-Methylphenol	UG/KG	0		900		0			5	220 U	220 U	500 U	970 U	3700 U
4-Nitroaniline	UG/KG	0	0.00%		1576800	0	(5	530 U	540 U	1200 U	2400 U	9000 U
4-Nitrophenol	UG/KG	0	0.00%	100	31536000	0	(5	530 U	540 U	1200 U	2400 U	9000 U
Acenaphthene	UG/KG	1800	100 00%	50000		0		5	5	59 J	120 J	320 J	640 J	1800 J
Acenaphthylene	UG/KG	0	0.00%	41000		0	(5	220 U	220 U	500 U	970 U	3700 U
Anthracene	UG/KG	2500	100.00%	50000	157680000	0		5	5	83 J	160 J	430 J	960 J	2500 J
Benzo[a]anthracene	UG/KG	9400	100.00%	224	7840	1		5	5	390	420	1600	3100	9400
Benzo[a]pyrene	UG/KG	9100	100.00%	61	784	3		5	5	390	390	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9100
Benzo[b]fluoranthene	UG/KG	10000	100.00%	1100	7840	1			5	460	410	1700	3200	10400
Benzo[ghi]perylene	UG/KG	6500	100.00%	50000		0			5	260	230	1000	2000	6500
Benzo[k]fluoranthene	UG/KG	9700	100.00%	1100	78400	0			5	410	440	1600	2600	9700
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0	(5	220 U	220 U	500 U	970 U	3700 U
Bis(2-Chloroethyl)ether	UG/KG	0			5203	0	(5	220 U	220 U	500 U	970 U	3700 U
Bis(2-Chloroisopropyl)ether	UG/KG	0			81760	0	(5	220 U	220 U	500 U	970 U	3700 U
Bis(2-Ethylhexyl)phthalate	UG/KG	0		50000	408800	0	(5	220 U	220 U	500 U	970 U	3700 U
Butylbenzylphthalate	UG/KG	0		50000	105120000	0	(5	220 U	220 U	500 U	970 U	3700 U
Carbazole	UG/KG	5300		400	286160	0			5	130 J	200 J	820	1400	5300
Chrysene	UG/KG	12000	100.00%	400	784000	0			5	450	450	2000	3400	12000
Di-n-butylphthalate	UG/KG	0		8100	40540000	0			5	220 U	220 U	500 U	970 U	3700 U
Di-n-octylphthalate	UG/KG	0		50000	10512000 784	0			5	220 U 110 J	220 U 78 J	500 U 500	970 U	3700 U
Dibenz[a,h]anthracene	UG/KG	2100	100.00%	14		0			5	16 J	78 J 42 J	140 J	640 J	2100 J
Dibenzofuran	UG/KG	1200		6200	2102400	0		•	5			500 U	300 J	1200 J
Diethyl phthalate	UG/KG UG/KG	12	20.00%	7100 2000	420480000 5256000000	0			5	12 J 220 U	220 U 220 U	500 U	970 U 970 U	3700 U 3700 U
Dimethylphthalate		30000		50000	21024000	0			5	1100	1200	500 U		30000
Fluoranthene	UG/KG			50000	21024000	0			5	1100 44 J	1200 88 J	270 J	8900 E 580 J	
Fluorene	UG/KG UG/KG	1800	100,00%	410	3577	0			5	44 J 220 U	220 U	500 U	580 J 970 U	1800 J 3700 U
Hexachlorobenzene	UG/KG	0		410	73374	0			5	220 U	220 U	500 U	970 U	3700 U
Hexachlorobutadiene	UG/KG	0	0.00%		3679200	0			5	220 U	220 U	500 U	970 U	
Hexachlorocyclopentadiene	UG/KG UG/KG	0			408800	0			5	220 U	220 U	500 U	970 U	3700 U 3700 U
Hexachloroethane	UG/KG	6600	100,00%	3200	7840	0			5	240	210 J	970	2000	6600
Indeno[1,2,3-cd]pyrene Isophorone	UG/KG	0	0.00%	4400	7040	0			5	240 220 U	210 J 220 U	500 U	970 U	3700 U
ravpilototto	JUNG	0	0.03%	7700		0	,	,	•	220 0	220 0	300 0	310 0	3700 0

Table 27-5 SEAD-1218-Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites

SITE									SEAD-121 Bldg. 325	В	SEAD-121B Bldg 325	SEAD-121B Bldg 325	SEAD-121B Bldg 325	SEAD-121B Bldg 325
DESCRIPTION									PCB Oil S	pill	PCB Oil Spill	PCB Oil Spill	PCB Oil Spill	PCB Oil Spill
LOC ID									SB121B-1		SB121B-1	SS121B-1	SS121B-2	SS121B-3
SAMP_ID									EB212		EB213	EB238	EB239	EB240
QC CODE									SA		SA	SA	SA	SA
SAMP DETH TOP										0	4	0	0	0
SAMP DEPTH BQT										0 2	4.5	0 2	0 2	0 2
MATRIX									SOIL		SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	7-Ma	r-98	7-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98
			OF			ABOVE	OF	OF						
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
N-Nitrosodiphenylamine	UG/KG	0	0 00%		1168000	0	0			220 U	220 U	500 U	970 U	3700 U
N-Nitrosodipropylamine	UG/KG	0	0 00%		818	0	0			220 U	220 U	500 U	970 U	3700 U
Naphthalene	UG/KG	1700	60 00%	13000	21024000	0	3			220 U	220 U	79 J	240 J	1700 J
Nitrobenzene	UG/KG	0	0 00%	200	262800	0	0		5	220 U	220 U	500 U	970 U	3700 U
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0	0			530 U	540 U	1200 U	2400 U	9000 U
Phenanthrene	UG/KG	21000	100.00%	50000		0	5		5	620	940	3200	5800	21000
Phenoi	UG/KG	0	0 00%	30	315360000	0	0			220 U	220 U	500 U	970 U	3700 U
Pyrene	UG/KG	21000	100 00%	50000	15768000	0	5			940	1100	3800	5900	21000
TPH	MG/KG	1360	60.00%			0	3		5	20 4 U	19 5 U	109	1200	1360

Table 27-6 SEAD-121B-PCBs in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION FOCID SAMP ID OCCODE									SEAD-12 Bldg 325 Oil Spill SB121B- EB212 SA	PCB	SEAD-121B Bldg 325 PCB Oil Spill SB121B-1 EB213 SA	SEAD-121B Bldg 325 PCB Oil Spill SS121B-1 EB238 SA	SEAD-121B Bidg 325 PCB Oil Spill SS121B-2 EB239 SA	SEAD-121B Bldg 325 PCB Oil Spill SS121B-3 EB240 SA
SAMP DETH TOP										0	4	0	0	0
SAMP DEPTH BOT										0.2	4.5	0.2	0.2	0.2
MATRIX									SOIL		SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	7-N	lai-98	7-Nlar-98	9-Mar-98	9-Mar-98	9-Mar-98
			OF:			ABOAT	OF	Ol:						7
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	LAGM	DUTECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE Q	VALUE 0	VALUE O
Aroclor-1016	UG/KG	0	0.00%		36792	0	()		5	44 (1	40 Ú	50 U	48 (I	37 U
Aroclor-1221	UG/KG	0	0.00%			0	()		5	88 U	79 U	100 U	98 U	75 11
Aroclor-1232	UGKG	0	0.00%			0	()		5	44 U	40 U	50 U	48 U	37 U
Aroclor-1242	UG/KG	0	0.00%			0	0		5	44 U	40 [1	50 U	48 U	37 U
Aroclor-1248	UG/KG	0	0.00%			0	0		5	44 U	40 U	50 (1	48 U	37 U
Aroclor-1254	UG/KG	76	25.00%	10000	10512	0	ı		1	44 ()	40 U	50 U	48 U	76 P
Aroclor-1260	UG/KG	0	0.00%	10000		0	0			44 ()	40 U	50 U		
	,,		., .,,			•	.,			44 ()	40 0	20 0	48 ()	37 U

Table 27-7 SEAD-121B-PCBs in Soit vs PRG-IND Non-Evaluated Sites

SITE									SEAD-12 Bldg, 325		SEAD-1211 Bldg, 325	3	SEAD-12 Bldg 325		SEAD-121 Bldg, 325	IB	SEAD-12 Bldg 325	
DESCRIPTION									Oil Spill		PCB Oil Sp	iB	PCB Oil S	pill	PCB Oil S	pill	Oil Spill	
LOC ID									SB121B-	1	SB121B-1		SS121B-		SS121B-2		SS121B-3	3
SAMP_ID.									EB212		EB213		EB238		EB239		EB240	
QC CODE									SA		SA		SA		SA		SA	
SAMP DETH TOP										0		4		0		0		0
SAMP DEPTH BOT										0 2		4.5		0 2		0 2		0 2
MATRIX									SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	7-M	ar-98	7-Mar	-98	9-Ma	r-98	9-Ma	r-98	9-Ma	ar-98
			OF			ABOVE	OF	OF										
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Aroclor-1016	UG/KG	0	0 00%		36792	0	0		5	44 U		40 U		50 U		48 U		37 U
Aroclor-1221	UG/KG	0	0.00%			0	0		5	88 U		79 U		100 U		98 U		75 U
Aroclor-1232	UG/KG	0	0.00%			0	0		5	44 U		40 U		50 U		48 U		37 U
Aroclor-1242	UG/KG	0	0 00%			0	0		5	44 U		40 U		50 U		48 U		37 U
Aroclor-1248	UG/KG	0	0.00%			0	0		5	44 U		40 U		50 U		48 U		37 U
Aroclor-1254	UG/KG	76		10000	10512	0	1		4	44 U		40 U		50 U		48 U		76 P
Aroclor-1260	UG/KG	0	0 00%	10000		0	0		5	44 U		40 U		50 U		48 U		37 U

SEAD-121C DRMO Yard

Table 28-1

Sample Collection Information SEAD-121C - DRMO Yard

9 Low Priority EBS Non-Evaluated Sites Scneca Army Depot Activity

MATRIX	LOCATION 1D	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB121C-1	EB231	3/9/98	0.0	0.2	SA	Location is near the NW fence where surface water flows into drainage ditch. Scrap metal and plastic fragments on ground surface
SOIL	SB121C-1	EB014	3/9/98	0.0	0.2	DU	Same location as above
SOIL	SB121C-1	EB232	3/9/98	2.5	3.0	SA	Same location as above Sample taken at water table Bedrock at 3 ft. No detected VOC's or impact to soils
SOIL	SB121C-2	EB226	3/9/98	0.0	0.2	SA	Location is N of SB121C-1 near concrete storage cells Surface debris. Small arms projectiles at sample depth
SOIL	SB121C-2	EB228	3/9/98	2.0	2.5	SA	Same location as above Sample taken at water table. Bedrock at 3 8 ft. No detected VOC's or impact to soils
SOIL	SB121C-3	EB233	3/9/98	0.0	0.2	SA	Location is SW corner of Building T-355 where spills may of occured
SOIL	SB121C-3	EB234	3/9/98	2.5	3.0	SA	Same location as above Mid-depth sample, bedrock at 4.5 ft. No detected VOC's or impact to soils
SOIL	SB121C-4	EB229	3/9/98	0.0	0.2	SA	Location at midway on south fence line and is downgradient of parking/storage areas
SOIL	SB121C-4	EB020	3/9/98	0.0	0.2	DU	Same location as above
SOIL	SB121C-4	EB230	3/9/98	2.5	3.0	SA	Same location as above Sample taken at fill and former ground surface interface
SURFACE SOIL	SS121C-1	EB235	3/9/98	0.0	0.2	SA	Sample taken at SW corner of compound, downgradient of parking/storage area and concrete debris containment.

h \eng\seneca\ebs\report\low\tables\Smp1121c xis

Table 28-1

Sample Collection Information SEAD-121C - DRMO Yard

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS121C-2	FB236	3/9/98	0.0	0.2	SA	Sample taken along NW fence downgradient of parking area
SURFACE SOIL	SS121C-3	EB237	3/9/98	0.0	0.2	SA	Sample taken N of Bldg 360 near concrete storage bays used for recyclable materials
SURFACE SOIL	SS121C-4	EB241	3/10/98	0.0	0.2	SA	Sample taken in the NW corner of the yard near the concrete storage bays along the fence Near drainage of surface water
GROUNDWATER	MW121C-1	EB153	3/17/98	4.68 (TOC)	11.76 (TOC)	SA	Well located in SW corner of yard, downgradient of surface water drainage and the concrete debris containment
GROUNDWATER	MW121C-1	EB023	3/17/98	4.68 (TOC)	11.76 (TOC)	DU	Same as above
GROUNDWATER	MW121C-2	EB154	3/17/98	4.75 (TOC)	7.4 (TOC)	SA	Well located in SE corner of yard,downgradient of Bldg. T-355 and parking area

h leng\seneca\ebs\report\low\tables\Smp1121c xls

Table 28-2 SEAD-121C- Volatile in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SEAD-12 DRMO Y SB121C- EB226 SA SOIL 9-Ma	ard	SEAD-12 DRMO Y SB121C- EB231 SA SOIL 9-Ma	o 0 0 2	SEAD-1: DRMO 1) SB121C EB232 SA SOIL	Yard
DADAMETED	LINIT	14 A V 18 AL 18 A	OF	T4014	DDQ (ND	ABOVE	OF	OF						
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0.0	0 00%	800	18396000	0	0	14		12 U		12 U		12 U
1,1,2,2-Tetrachloroethane	UG/KG	0.0	0.00%	600	286160	0	0	14		12 U		12 U		12 U
1,1,2-Trichloroethane	UG/KG	0.0	0 00%		100407	0	0	14		12 U		12 U		12 U
1,1-Dichloroethane	UG/KG	0.0	0 00%	200	52560000	0	0	14		12 U		12 U		12 U
1,1-Dichloroethene	UG/KG	0 0	0 00%	400	9539	0	0	14		12 U		12 U		12 U
1,2-Dichloroethane	UG/KG	0.0	0 00%	100	62892	0	0	14		12 U		12 U		12 U
1,2-Dichloroethene (total)	UG/KG	0.0	0.00%			0	0	14		12 U		12 U		12 U
1,2-Dichloropropane	UG/KG	0 0	0 00%		84165	0	0	14		12 U		12 U		12 U
Acetone	UG/KG	28.0	50.00%	200	52560000	0	7	14		12 U		12 U		14
Benzene	UG/KG	2 0	7 14%	60	197352	0	1	14		12 U		12 U		12 U
Bromodichloromethane	UG/KG	0.0	0 00%		92310	0	0	14		12 U		12 U		12 U
Bromoform	UG/KG	0.0	0 00%		724456	0	0	14		12 U		12 U		12 U
Carbon disulfide	UG/KG	0 0	0 00%	2700	52560000	0	0	14	ļ	12 U		12 U		12 U
Carbon tetrachloride	UG/KG	0 0	0 00%	600	44025	0	0	14	ļ	12 U		12 U		12 U
Chlorobenzene	UG/KG	0.0	0.00%	1700	10512000	0	0	14	ļ	12 U		12 U		12 U
Chlorodibromomethane	UG/KG	0.0	0 00%		68133	0	0	14	ļ	12 U		12 U		12 U
Chloroethane	UG/KG	0.0	0.00%	1900	210240000	0	0	14	ļ	12 U		12 U		12 U
Chloroform	UG/KG	40	28 57%	300	938230	0	4	14	Į.	12 U		12 U		12 U
Crs-1,3-Dichloropropene	UG/KG	0 0	0 00%			0	0	14	Į.	12 U		12 U		12 U
Ethyl benzene	UG/KG	0.0	0 00%	5500	52560000	0	0	14	ļ.	12 U		12 U		12 U
Methyl bromide	UG/KG	0 0	0.00%		751608	0	0	14	ļ.	12 U		12 U		12 U
Methyl butyl ketone	UG/KG	0 0	0.00%			0	0	14	Į.	12 U		12 U		12 U
Methyl chloride	UG/KG	0.0	0 00%		440246	0	0	14	Į.	12 U		12 U		12 U
Methyl ethyl ketone	UG/KG	0.0	0 00%	300		0	0	14	Į.	12 U		12 U		12 U
Methyl isobutyl ketone	UG/KG	0.0	0 00%	1000	42048000	0	0	14	Į.	12 U		12 U		12 U
Methylene chloride	UG/KG	0.0	0 00%	100	763093	0	0	14	ļ	12 U		12 U		12 U
Styrene	UG/KG	0.0	0 00%			0	0	14	ļ	12 U		12 U		12 U
Tetrachloroethene	UG/KG	0.0	0.00%	1400	110062	0	0	14	l .	12 U		12 U		12 U
Toluene	UG/KG	28 0	100.00%	1500	105120000	0	14	14	ļ	3 J		2 J		7 J
Total Xylenes	UG/KG	0.0	0.00%	1200	1051200000	0	0	14	l .	12 U		12 U		12 U
Trans-1,3-Dichloropropene	UG/KG	0.0	0.00%			0	0	14	Į.	12 U		12 U		12 U
Trichloroethene	UG/KG	0 0	0.00%	700	520291	0	0	14	ļ	12 U		12 U		12 U
Vinyl chloride	UG/KG	0 0	0 00%	200	3012	0	0	14	ŀ	12 Ų		12 U		12 U

Table 28-2 SEAD-121C- Volatile in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE		SEAD-121C DRMO Yard SB121C-2 EB014 DU 0 0 2 SOIL 9-Mar-98	SEAD-121C SEAD-121C DRMO Yard DRMO Yard SB121C-2 SB121C-3 EB228 EB233 SA SA 2 0 25 0 SOIL SOIL 9-Mar-98 9-Mar-98		SEAD-121C DRMO Yard SB121C-3 EB234 SA 2 5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB020 DU 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB229 SA 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB230 SA 2.5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SS121C-1 EB235 SA 0 0 2 SOIL 9-Mar-98
								0 11101 00	5 Mai 55
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE 0	VALUE Q	VALUE Q	VALUE Q
1.1.1-Trichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,1,2,2-Tetrachloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,1,2-Trichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.1-Dichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.1-Dichloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,2-Dichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,2-Dichloroethene (total)	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,2-Dichloropropane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Acetone	UG/KG	12 J	11 U	11 U	16	10 J	11 U	28	10 J
Benzene	UG/KG	12 U	2 J	11 U	11 U	11 U	11 U	11 U	11 U
Bromodichloromethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Bromoform	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Carbon disulfide	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Carbon tetrachloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chlorobenzene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chlorodibromomethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chloroform	UG/KG	12 U	4 J	11 U	11 U	11 U	4 J	2 J	11 U
Cis-1,3-Dichloropropene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Ethyl benzene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl bromide	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl butyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl ethyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl isobutyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methylene chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Styrene	UG/KG	12 U	11 U	. 11 U	11 U	11 U	11 U	11 U	11 U
Tetrachloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Toluene	UG/KG	5 J	5 J	2 J	9 J	12	10 J	4 J	9 J
Total Xylenes	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Trans-1,3-Dichloropropene	UG/KG	· 12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Trichloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Vinyl chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U

Table 28-2 SEAD-121C- Volatile in Soil vs. NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE		SEAD-121C DRMO Yard SS121C-2 EB236 SA 0 0 2 SOIL 9-Mar-98	SEAD-12 DRMO Yard SS121C- EB237 SA 0 0 2 SOIL 9-Mar-98	SEAD-121 DRMO Yard SS121C-4 EB241 SA 0 0 2 SOIL 10-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE Q
1,1,1-Trichloroethane	UG/KG	11 U	11 U	11 U
1,1,2,2-Tetrachloroethane	UG/KG	11 U	11 U	11 U
1, 1,2,2-1 etrachioroethane 1,1,2-Trichloroethane	UG/KG UG/KG	11 U	11 U	11 U
1.1-Dichloroethane	UG/KG	11 U	11 U	11 U
1.1-Dichloroethane	UG/KG	11 U	11 U	11 U
1,2-Dichloroethane	UG/KG	11 U	11 U	11 U
1,2-Dichloroethene (total)	UG/KG	11 U	11 U	11 U
1,2-Dichloropropane	UG/KG	11 U	11 U	11 U
Acetone	UG/KG	11 U	11 U	6 JB
Benzene	UG/KG	11 U	11 U	11 U
Bromodichloromethane	UG/KG	11 U	11 U	11 U
Bromoform	UG/KG	11 U	11 U	11 U
Carbon disulfide	UG/KG	11 U	11 U	11 U
Carbon tetrachloride	UG/KG	11 U	11 U	11 U
Chlorobenzene	UG/KG	11 U	11 U	11 U
Chlorodibromomethane	UG/KG	11 U	11 U	11 U
Chloroethane	UG/KG	11 U	11 U	11 U
Chloroform	UG/KG	11 U	11 U	4 J
Cis-1.3-Dichloropropene	UG/KG	11 U	11 U	11 U
Ethyl benzene	UG/KG	11 U	11 U	11 U
Methyl bromide	UG/KG	11 U	11 U	11 U
Methyl butyl ketone	UG/KG	11 U	11 U	11 U
Methyl chloride	UG/KG	11 U	11 U	11 U
Methyl ethyl ketone	UG/KG	11 U	11 U	11 U
Methyl isobutyl ketone	UG/KG	11 U	11 U	11 U
Methylene chloride	UG/KG	11 U	11 U	11 U
Styrene	UG/KG	11 U	11 U	11 U
Tetrachloroethene	UG/KG	11 U	11 U	11 U
Toluene	UG/KG	28	4 J	16
Total Xylenes	UG/KG	11 U	11 U	11 U
Trans-1,3-Dichloropropene	UG/KG	11 U	11 U	11 U
Trichloroethene	UG/KG	11 U	11 U	11 U
Vinyl chloride	UG/KG	11 U	11 U	11 U

Table 28-3 SEAD-121C- Volatile in Soil vs PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP									SEAD-12 DRMO Y SB121C- EB226 SA	ard -2	SEAD-12 DRMO Y3 SB121C- EB231 SA	ard 1	SEAD-1 DRMO N SB121C EB232 SA	Yard C-1
SAMP DEPTH BOT										0 0 2		0 0 2		25 3
MATRIX									SOIL	0.2	SOIL	0 2	SOIL	3
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		ar-98	9-Ma	r-98		Mar-98
074111			OF			ABOVE	OF	OF	0 111	u. 50	3-1110	11-50	5-11	1141 30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	18396000	0	0	14	,	12 U		12 U		12 Ū
1.1.2.2-Tetrachloroethane	UG/KG	0	0 00%	600	286160	0	0	14	Į.	12 U		12 U		12 U
1.1.2-Trichloroethane	UG/KG	0	0 00%		100407	0	0	14		12 U		12 U		12 U
1.1-Dichloroethane	UG/KG	0	0 00%	200	52560000	0	0	14	ı	12 U		12 U		12 U
1.1-Dichloroethene	UG/KG	0	0 00%	400	9539	0	0	14	ı	12 U		12 U		12 U
1,2-Dichloroethane	UG/KG	0	0 00%	100	62892	0	0	14	ı	12 U		12 U		12 U
1,2-Dichloroethene (total)	UG/KG	0	0 00%			0	0	14	1	12 U		12 U		12 U
1.2-Dichloropropane	UG/KG	0	0 00%		84165	0	0	14	1	12 U		12 U		12 U
Acetone	UG/KG	28	50 00%	200	52560000	0	7	14	1	12 U		12 U		14
Benzene	UG/KG	2	7 14%	60	197352	0	1	14	1	12 U		12 U		12 U
Bromodichloromethane	UG/KG	0	0 00%		92310	0	0	14	1	12 U		12 U		12 U
Bromoform	UG/KG	0	0 00%		724456	0	0	14	1	12 U		12 U		12 U
Carbon disulfide	UG/KG	0	0 00%	2700	52560000	0	0	14	1	12 U		12 U		12 U
Carbon tetrachloride	UG/KG	0	0 00%	600	44025	0	0	14	1	12 U		12 U		12 U
Chlorobenzene	UG/KG	0	0 00%	1700	10512000	0	0	14	Į.	12 U		12 U		12 U
Chlorodibromomethane	UG/KG	0	0.00%		68133	0	0	14	1	12 U		12 U		12 U
Chloroethane	UG/KG	0	0 00%	1900	210240000	0	0	14	1	12 U		12 U		12 U
Chloroform	UG/KG	4	28.57%	300	938230	0	4	14	1	12 U		12 U		12 U
Cis-1,3-Dichloropropene	UG/KG	0	0 00%			0	0	14	1	12 U		12 U		12 U
Ethyl benzene	UG/KG	0	0 00%	5500	52560000	0	0	14	1	12 U		12 U		12 U
Methyl bromide	UG/KG	0	0 00%		751608	0	0	14	ļ	12 U		12 U		12 U
Methyl butyl ketone	UG/KG	0	0 00%			0	0	14	1	12 U		12 U		12 U
Methyl chloride	UG/KG	0	0 00%		440246	0	0	14	ļ	12 U		12 U		12 U
Methyl ethyl ketone	UG/KG	0		300		0	0	14		12 U		12 U		12 U
Methyl isobutyl ketone	UG/KG	0		1000	42048000	0	0	14		12 U		12 U		12 U
Methylene chloride	UG/KG	0		100	763093	0	0	14		12 U		12 U		12 U
Styrene	UG/KG	0				0	0	14		12 U		12 U		12 U
Tetrachloroethene	UG/KG	0		1400	110062	0	0	14		12 U		12 U		12 U
Toluene	UG/KG	28	100.00%	1500	105120000	0	14	14		3 J		2 J		7 3
Total Xylenes	UG/KG	0		1200	1051200000	0	0	14	•	12 U		12 U		12 U
Trans-1,3-Dichloropropene	UG/KG	0				0	0	14		12 U		12 U		12 U
Trichloroethene	UG/KG	0	0 00%	700	520291	0	0	14		12 U		12 U		12 U
Vinyl chloride	UG/KG	0	0 00%	200	3012	0	0	14	1	12 U		12 U		12 U

Table 28-3 SEAD-121C- Volatile in Soil vs PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE		SEAD-121C DRMO Yard SB121C-2 EB014 DU 0 0.2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-2 EB228 SA 2 2 5 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-3 EB233 SA 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-3 EB234 SA 2 5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB020 DU 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB229 SA 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-4 EB230 SA 2 5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SS121C-1 EB235 SA 0 0 2 SOIL 9-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1.1.1-Trichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.1.2.2-Tetrachloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,1,2-Trichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.1-Dichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.1-Dichloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.2-Dichloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1,2-Dichloroethene (total)	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
1.2-Dichloropropane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Acetone	UG/KG	12 J	11 U	11 U	16	10 J	11 U	28	10 J
Benzene	UG/KG	12 U	2 J	11 U					
Bromodichloromethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Bromoform	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Carbon disulfide	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Carbon tetrachloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chlorobenzene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chlorodibromomethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chloroethane	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Chloroform	UG/KG	12 U	4 J	11 U	11 U	11 U	4 J	2 J	11 U
Cis-1,3-Dichloropropene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Ethyl benzene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl bromide	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl butyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl ethyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methyl isobutyl ketone	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Methylene chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Styrene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Tetrachloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Toluene	UG/KG	5 J	5 J	2 J	9 J	12	10 J	4 J	9 J
Total Xylenes	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Trans-1,3-Dichloropropene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Trichloroethene	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U
Vinyl chloride	UG/KG	12 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U

Table 28-3 SEAD-121C- Volatile in Soil vs. PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE		SEAD-121C DRMO Yard SS121C-2 EB236 SA 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SS121C-3 EB237 SA 0 0 2 SOIL 9-Mar-98	SEAD-121B DRMO Yard SS121C-4 EB241 SA 0 0 2 SOIL 10-Mar-98
PARAMETER	LIMIT	VALUE Q	VALUE	VALUE
1,1,1-Trichloroethane	UNIT UG/KG	VALUE Q 11 U	VALUE Q 11 U	VALUÉ Q 11 U
1.1.2.2-Tetrachloroethane		11 U	11 U	11 U
1,1,2-Trichloroethane	UG/KG UG/KG	11 U	11 U	11 U
1.1-Dichloroethane	UG/KG	11 U	11 U	11 U
1.1-Dichloroethene	UG/KG	11 U	11 U	11 U
1.2-Dichloroethane	UG/KG	11 U	11 U	11 U
1,2-Dichloroethene (total)	UG/KG	11 U	11 U	11 U
1,2-Dichloropropane	UG/KG	11 U	11 U	11 U
Acetone	UG/KG	11 U	11 U	6 JB
Benzene	UG/KG	11 U	11 U	11 U
Bromodichloromethane	UG/KG	11 U	11 U	11 U
Bromoform	UG/KG	11 U	11 U	11 U
Carbon disulfide	UG/KG	11 U	11 U	11 U
Carbon tetrachloride	UG/KG	11 U	11 U	11 U
Chlorobenzene	UG/KG	11 U	11 U	11 U
Chlorodibromomethane	UG/KG	11 U	11 U	11 U
Chloroethane	UG/KG	11 U	11 U	11 U
Chloroform	UG/KG	11 U	11 U	4 J
Cis-1,3-Dichloropropene	UG/KG	11 U	11 U	11 U
Ethyl benzene	UG/KG	11 U	11 U	11 U
Methyl bromide	UG/KG	11 U	11 U	11 U
Methyl butyl ketone	UG/KG	11 U	11 U	11 U
Methyl chloride	UG/KG	11 U	11 U	11 U
Methyl ethyl ketone	UG/KG	11 U	11 U	11 U
Methyl isobutyl ketone	UG/KG	11 U	11 U	11 U
Methylene chloride	UG/KG	11 U	11 U	11 U
Styrene	UG/KG	11 U	11 U	11 U
Tetrachloroethene	UG/KG	11 U	11 U	11 U
Toluene	UG/KG	28	4 J	16
Total Xylenes	UG/KG	11 U	11 U	11 U
Trans-1,3-Dichloropropene	UG/KG	11 U	11 U	11 U
Trichloroethene	UG/KG	11 U	11 U	11 U
Vinyl chloride	UG/KG	11 U	11 U	11 U

Table 28-4 SEAD-121C- Semivolatiles/TPH in Soil vs NYTAGM Non-Evaluated Sites

SITE: DESCRIPTION: LOC ID. SAMP_ID:									SEAD DRMC SB121 EB226	Yard 1C-2	SEAD-121C DRMO Yard SB121C-1 EB231	SEAD-12 DRMO Y SB121C- EB232	ard	SEAD-121C DRMO Yard SB121C-2 EB014	SEAD-121C DRMO Yard SB121C-2 EB228	SEAD-121C DRMO Yard SB121C-3 EB233
QC CODE:			1						SA		SA	SA		DU	SA	SA
SAMP. DETH TOP										0	0		2.5	0	2	0
SAMP, DEPTH BOT										0.2	02		3	0.2	2.5	0.2
MATRIX.									SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	9	-Mar-98	9-Mar-98	9-M	ar-98	9-Mar-98	9-Mar-98	9-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG-IND	ABOVE TAGM	OF DETECTS	OF ANALYSES	VALU	E Q	VALUE	Q VALUE	Q	VALUE Q	VALUE Q	VALUE
1,2,4-Trichlorobenzene	UG/KG	0	0.00%	3400	5256000	0	0			73 U	78		77 U	73 U	75 U	72
1,2-Dichlorobenzene	UG/KG	0	0.00%	7900	47304000	0	0	14	4	73 U	78	U	77 U	73 U	75 U	72
1,3-Dichlorobenzene	UG/KG	0	0 00%	1600	46778400	0	0	14	4	73 U	78	U	77 U	73 U	75 U	72
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0	0	14	4	73 U	78	U	77 U	73 U	75 U	72
2,4,5-Trichlorophenol	UG/KG	0	0.00%	100	52560000	0	0	14	4	180 U	190		190 U	180 U	180 U	180
2,4,6-Trichlorophenol	UG/KG	0	0.00%		520291	0				73 U	78		77 U	73 U	75 U	72
2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0	-			73 U	78		77 U	73 U	75 U	72
2,4-Dimethylphenol	UG/KG	0	0.00%		10512000	0				73 U	78		77 U	73 U	75 U	72
2,4-Dinitrophenol	UG/KG	0	0.00%	200	1051200	0	-			180 U	190		190 U	180 U	180 U	180
2.4-Dinitrotoluene	UG/KG	45		4000	1051200	0		14		45 J	78		77 U	73 U	75 U	72
2,6-Dinitrotoluene	UG/KG UG/KG	0	. 0.00%	1000	525600	0	0	1-		73 U	78 78		77 U	73 U 73 U	75 U 75 U	72
2-Chloronaphthalene 2-Chlorophenol	UG/KG	0	0.00%	800	2628000	0				73 U	78		77 U	73 U	75 U	72 72
2-Methylnaphthalene	UG/KG	18		36400	2020000	0	7	1.		8.6 J	78		77 U	4.3 J	7 J	5,5
2-Methylphenol	UG/KG	0	0.00%	100	26280000	0	,	1.		73 U	78		77 U	73 U	75 U	72
2-Nitroaniline	UG/KG	0	0.00%	430	31536	0			4	180 U	190		190 U	180 U	180 U	180
2-Nitrophenol	UG/KG	0	0.00%	330	31330	0	0		4	73 U	78		77 U	73 U	75 U	72
3.3 -Dichlorobenzidine	UG/KG	0	0.00%	****	12718	0	0		4	73 U	78		77 U	73 U	75 U	72
3-Nitroaniline	UG/KG	0	0.00%	500	1576800	0	0		4	180 U	190		190 U	180 U	180 U	180
4.6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0		4	180 U	190		190 U	180 U	. 180 U	180
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		30484800	0	0	1-	4	73 U	78	U	77 U	73 U	75 U	72
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0	1-	4	73 U	78	U	77 U	73 U	75 U	72
4-Chloroaniline	UG/KG	0	0.00%	220	2102400	0	0	1-	4	73 U	78	U	77 U	73 U	75 U	72
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%			0	0		4	73 U	78		77 U	73 U	75 U	72
4-Methylphenol	UG/KG	0	0.00%	900		0	0		4	73 U	78		77 U	73 U	75 U	72
4-Nitroanifine	UG/KG	0	0.00%		1576800	0	-		4	180 U	190		190 U	180 U	180 U	180
4-Nitrophenol	UG/KG	.0	0.00%	100	31536000	0	0		4	180 U	190		190 U	180 U	180 U	180
Acenaphthene	UG/KG	52		50000		0	7		4	32 J	78		77 U	6.8 J	20 J	72
Acenaphthylene	UG/KG	0	0.00%	41000	157680000	0	0		4	73 U	78 78		77 U 77 U	73 U 15 J	75 U 41 J	72
Anthracene	UG/KG	96		50000 224	7840	2			4	52 J 180	78		4.6 J	76	140	72 8.2
Benzo[a]anthracene	UG/KG UG/KG	420 370		61	784	4	10		4	158	78		6.3 J	57 J	100	8.1
Benzo[a]pyrene Benzo[b]fluoranthene	UG/KG	530		1100	7840	0			4	200	78		6.6 J	95	110	13
Benzo(ghi)perylene	UG/KG	380		50000	7040	0			4	98	78		12 J	42 J	65 J	11
Benzo[k]fluoranthene	UG/KG	390		1100	78400	0			4	150	78		5.7 J	67 J	120	7
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0			4	73 U	78	U	77 U	73 U	75 U	72
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0	1-	4	73 U	78	U	77 U	73 U	75 U	72
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%		81760	0	0	1	4	73 U	78	U	77 U	73 U	75 U	72
Bis(2-Ethylhexyl)phthalate	UG/KG	200	100.00%	50000	408800	0	14	1	4	8.6 JB	13		10 J	15 JB	21 J	9.2
Butylbenzylphthalate	UG/KG	24	28.57%	50000	105120000	0	4		4	73 U	78		77 U	73 U	6.4 J	72
Carbazole	UG/KG	130	50 00%		286160	0			4	73 J	78		77 U	17 J	56 J	72
Chrysene	UG/KG	510		400	784000	1	12		4	210	78		5.5 J	90	160	11
Di-n-butylphthalate	UG/KG	50		8100		0	-		4	27 JB	78		77 U	10 JB	19 J	72
Di-n-octylphthalate	UG/KG	17		50000	10512000	0	-		4	73 U	9.9		9.8 J	73 U	17 J	72
Dibenz[a,h]anthracene	UG/KG	150		14	784	6			4	13 J 19 J	78 78		9.7 J 77 U	5.1 J	. 13 J	72 72
Oibenzofuran	UG/KG	22		6200	2102400 420480000	0			4 3	7.2 JB	5.8		8.9 JB	11 JB	6.8 JB	8.5
Diethyl phthalate	UG/KG	18		7100 2000	5256000000	0			4	7.2 JB	78		77 U	73 U	75 U	72
Dimethylphthalate	UG/KG	820	0.00% 85.71%	50000	21024000	0			4	520	78		4.8 J	180	390	13
Fluoranthene Fluorene	UG/KG UG/KG	43		50000	21024000	0			4	32 J	78		77 U	8 J	22 J	72
Hexachlorobenzene	UG/KG	8.5		410	3577	0			4	8.5 J	78		77 U	73 U	75 U	72
Hexachlorobutadiene	UG/KG	0.5	0.00%	410	73374	0				73 U	78		77 U	73 U	75 U	72
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0	0		4	73 U	78		77 U	73 U	75 U	72
Hexachloroethane	UG/KG	0	0.00%		408800	0			4	73 U	78		77 U	73 U	75 U	72
Indeno[1,2,3-cd]pyrene	UG/KG	350		3200	7840	0	10		4	94	78	U	8.6 J	41 J	58 J	8.6
Isophorone	UG/KG	0	0.00%	4400		0	0			73 U	78		77 U	73 U	75 U	72
N-Nitrosodiphenylamine	UG/KG	4.8	7.14%		1168000	0	1		4	4.8 J	78	U	77 U	73 U	75 U	72
N-Nitrosodipropylamine	UG/KG	0	0.00%		818	0	0		4	73 U	78		77 U	73 U	75 U	72
Naphthalene	UG/KG	14		13000	21024000	0	6	1	4	11 J	78		77 U	73 U	12 J	72
Nitrobenzene	UG/KG	0	0.00%	200	262800	0	-		4	73 U	78		77 U	73 U	75 U	72
Pentachlorophenol	UG/KG	0	0.00%	1000	47693	0	-		4	180 U	190		190 U	180 U	180 U	180
Phenanthrene	UG/KG	520		50000		0	11		4	360	78		77 U	96	280	8.8
Phenol	UG/KG	0	0.00%	30	315360000	0	0	1-	4	73 U	78	U	77 U	73 U	75 U	72

Table 28-4 SEAD 121C: Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites

SITE DESCRIPTION LOC ID SAMP JID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SEAD 121C DRMO Yard SB121C-2 EB226 SA 0 0 2 SOIL 9 Mar 98	SEAD 121C DRMO Yard SB121C-1 EB231 SA 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C 1 EB232 SA 2 5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-2 EB014 DU 0 0 2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-2 EB228 SA 2 2 5 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-3 EB233 SA 0 0 2 SOIL 9 Mar-98
SAME DATE			OF			ABOVE	OF	OF	5 11151 00	5 7101 50	5-1111-50	5 Mai 50	3-1101-30	3 (44)1 20
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG IND	TAGM	DETECTS	ANALYSES	VALUE O	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE
Pyrene	UG/KG	820	85 71%	50000	15768000		0 12	1	14 380	78 U	4 7 J	170	290	13
TPH	MG/KG	482	85 71%				0 12	1	14 23.4	16 7 U	90.4	28 3	18 5	19

Table 28-4
SEAD-121C- Semivolatiles/TPH in Soil vs. NYTAGM
Non-Evaluated Sites

SITE: DESCRIPTION- LOC ID: SAMP_ID: QC CODE:			SEAD-121C DRMO Yard SB121C-3 EB234	SEAD-121C DRMO Yard SB121C-4 EB020 DU	SEAD-121C DRMO Yard SB121C-4 EB229 SA	SEAD-121C DRMO Yard SB121C-4 EB230 SA	SEAD-121C DRMO Yard SS121C-1 EB235 SA	SEAD-121C DRMO Yard SS121C-2 EB236 SA	SEAD-12 DRMO Yard SS121C- EB237 SA	SEAD-121 DRMO Yard SS121C-4 EB241 SA
			SA 2.5	00	0	2.5	. 0	0	0	0
SAMP, DETH TOP: SAMP, DEPTH BOT:			2.5	0.2	0.2	3	0.2	0.2	0.2	0.2
				SOIL	SOIL	SOIL	SOIL 0.2	SOIL	SOIL U.2	SOIL 0.2
MATRIX:			SOIL				9-Mar-98			
SAMP DATE			9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-96	9-Mar-98	9-Mar-98	10-Mar-98
PARAMETER	UNIT	0	VALUE Q	VALUE Q	VALUE Q	VALUE 0	VALUE Q	VALUE Q	VALUE Q	VALUE Q
	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
1.2,4-Trichlorobenzene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
1,2-Dichlorobenzene				72 U	71 U	76 U	72 U	69 U	180 U	170 U
1,3-Dichlorobenzene	UG/KG	U	77 U		71 U	76 U	72 U	69 U	180 U	170 U
1.4-Dichlorobenzene	UG/KG	U	77 U	72 U						
2,4,5-Trichlorophenol	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2,4,6-Trichlorophenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4-Dichlorophenol	UG/KG	Ų	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2.4-Dimethylphenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4-Dinitrophenol	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2,4-Dinitrotoluene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,6-Dinitrotoluene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Chloronaphthalene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Chlorophenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Methylnaphthalene	UG/KG	J	8.3 J	72 U	71 U	76 U	72 U	69 U	18 J	9.9 J
2-Methylphenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	1'80 U	170 U
2-Nitroanifine	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2-Nitrophenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
3,3'-Dichlorobenzidine	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
3-Nitroaniline	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
4,6-Dinitro-2-methylphenol	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
4-Bromophenyl phenyl ether	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 ∪	170 U
4-Chloro-3-methylphenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Chloroaniline	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Chlorophenyl phenyl ether	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Methylphenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Nitroaniline	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
4-Nitrophenol	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
Acenaphthene	UG/KG	U	13 J	72 U	71 U	76 U	72 U	6.5 J	50 J	52 J
Acenaphthylene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Anthracene	UG/KG	U	19 J	72 U	71 U	76 U	72 U	6.5 J	96 J	70 J
Benzo(a)anthracene	UG/KG	J	68 J	3.9 J	7 J	4.6 J	72 U	30 J	424	320
Benzo[a]pyrene	UG/KG	J	58 J	72 U	71 U	6 J	72 U	28 J	370	264
Benzo[b]fluoranthene	UG/KG	J	74 J	13 J	71 U	5.8 J	72 U	40 J	530	310
Benzo[ghi]perylene	UG/KG	J	54 J	72 U	71 U	6 2 J	72 U	15 J	380	190
Benzolkifluoranthene	UG/KG	J	70 J	72 U	71 U	6.7 J	72 U	29 J	340	390
Bis(2-Chloroethoxy)methane	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Chloroethyl)ether	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Chloroisopropyl)ether	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Ethylhexyl)phthalate	UG/KG	J	39 J	9.3 J	13 J	14 J	7.2 J	9.2 J	200	52 JB
Butylbenzylphthalate	UG/KG	Ü	77 U	72 U	71 U	76 U	72 U	7.8 J	24 J	10 J
Carbazole	UG/KG	ŭ	34 J	72 U	71 U	76 U	72 U	14 J	130 J	100 J
Chrysene	UG/KG	J	82	8.8 J	12 J	7.8 J	72 U	35 J	516	360
Di-n-butylphthalate	UG/KG	U	5.3 J	72 U	3.7 J	76 U	8.2 J	69 U	50 J	20 JB
Di-n-octylphthalate	UG/KG	ŭ	77 U	72 U	71 U	3.9 J	72 U	3.8 J	180 U	170 U
Dibenz(a,h)anthracene	UG/KG	U	26 J	72 U	71 U	76 U	72 U	7.6 J	150 J	WIJ
Dibenzofuran	UG/KG	Ü	4.1	72 U	71 U	76 U	72 U	69 U	22 J	22 J
Diethyl phthalate	UG/KG	JB	18 JB	8.1 JB	10 BJ	4.7 JB	11 JB	9.4 JB	11 JB	170 U
Dimethylphthalate	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Fluoranthene	UG/KG	J	160	7.4 J	10 J	9.6 J	72 U	65 J	820	760
Fluorene	UG/KG	ŭ	12 J	72 U	71 U	76 U	72 U	5 J	41 J	43 J
	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Hexachlorobenzene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Hexachlorobutadiene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Hexachlorocyclopentadiene					71 U	76 U	72 U	69 U	180 U	170 U
Hexachloroethane	UG/KG	U	77 U	72 U	71 U	5.9 J	72 U	17 J	350	180
Indeno[1,2,3-cd]pyrene	UG/KG	J	.48 J	72 U						170 U
Isophorone	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	
N-Nitrosodiphenylamine	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
N-Nitrosodipropylamine	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Naphthalene	UG/KG	U	6.9 J	72 U	71 U	76 U	72 U	4 J	14 J	12 J
Nitrobenzene	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Pentachlorophenol	UG/KG	U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
Phenanthrene	UG/KG	J	110	8.8 J	7.6 J	5.9 J	72 U	38 J	520	440
Phenol	UG/KG	U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U

Table 28-4 SEAD 121C Semivolatiles/TPH in Soil vs. NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE		SEAD-121C DRMO Yard SB121C-3 EB234 SA	SEAD 121C DRMO Yard SB121C 4 EB020 DU	SEAD-121C DRMO Yard SB121C 4 EB229 SA	SEAD 121C DRMO Yard SB121C 4 EB230 SA	SEAD-121C DRMO Yard SS121C 1 EB235 SA	SEAD-121C DRMO Yard SS121C 2 EB236 SA	SEAD-12 DRMO Yard SS121C- EB237 SA	SEAD-121 DRMO Yard SS121C-4 EB241 SA
SAMP DETH TOP		2 5	0	0	2 5	0	0	D	0
SAMP DEPTH BOT		3	0 2	0 2	3	0.2	0.2	0 2	0 2
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE		9-Mar 98	9-Mar-98	9 Mar 98	9 Mai 98	9 Mar-98	9-Mar-98	9 Mar 98	10-Mar-98
PARAMETER	UNIT Q	VALUE Q	VALUE Q	VALUE Q	VALUE O	VALUE Q	VALUE O	VALUE Q	VALUE Q
Pyrene	UG/KG J	130	8.3 J	14 J	L ‡ 8	72 U	53 J	820	580
TPH	MG/KG	213	413	303	38 4	19 3 U	109	482	66 3

Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX									DRMI SB12 EB22 SA SOIL	0 0 2	SEAD-121C DRMO Yard SB121C-1 EB231 SA 0 0.2 SOIL	SEAD-121C DRMO Yard SB121C-1 EB232 SA 2 5 3	SEAD-121C DRMO Yard SB121C-2 EB014 DU 0 0 2	SEAD-121C DRMO Yard SB121C-2 EB228 SA 2 2 5 SOIL
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	Ş	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98
PARAMETER	UNIT		DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALL		VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	0	0.00%	3400	5256000	0	0			73 U	78 U	77 U	73 U	75 U
1.2-Dichlorobenzene	UG/KG	0	0 00%	7900	47304000	0	0			73 U	78 U	77 U	73 U	75 U
1.3-Dichlorobenzene 1,4-Dichlorobenzene	UG/KG UG/KG	0	0 00% 0 00%	1600 8500	46778400 238467	0	0			73 U 73 U	78 U 78 U	77 U	73 U	75 U
2,4,5-Trichlorophenol	UG/KG	0	0 00%	100	52560000	0	0			180 U	190 U	77 U 190 U	73 U 180 U	75 U 180 U
2.4,6-Trichlorophenol	UG/KG	0	0 00%	100	520291	ő	0			73 U	78 U	77 U	73 U	75 U
2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0	0			73 U	78 U	77 U	73 U	75 U
2.4-Dimethylphenol	UG/KG	0	0.00%		10512000	0	0			73 U	78 U	77 U	73 U	75 U
2,4-Dinitrophenol	UG/KG	0	0 00%	200	1051200	0	0	1	4	180 U	190 U	190 U	180 U	180 U
2.4-Dinitrotoluene	UG/KG	45	7 14%		1051200	0	1	1-	4	45 J	78 U	77 U	73 U	75 U
2,6-Dinstrotoluene	UG/KG	0	0.00%	1000	525600	0	0			73 U	78 U	77 U	73 U	75 U
2-Chloronaphthalene	UG/KG	0	0.00%			0	0			73 U	78 U	77 U	73 U	75 U
2-Chlorophenol	UG/KG	0	0.00%	800	2628000	0	0			73 U	78 U	77 U	73 U	75 U
2-Methylnaphthalene	UG/KG	18	50.00%	36400		0	7	1		8 6 J	78 U	77 U	4.3 J	7 J
2-Methylphenol	UG/KG	0	0.00%	100 430	26280000	0	0			73 U	78 U	77 U	73 U	75 U
2-Nitroaniline 2-Nitrophenol	UG/KG UG/KG	0	0 00%	330	31536	0	0			180 U 73 U	190 U 78 U	190 U 77 U	180 U 73 U	180 U 75 U
3,3 Dichlorobenzidine	UG/KG	0	0 00%	330	12718	0	0			73 U	78 U	77 U	73 U	75 U
3-Nitroaniline	UG/KG	0	0 00%	500	1576800	0	0			180 U	190 U	190 U	180 U	180 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0 00%			0	0			180 U	190 U	190 U	180 U	180 U
4-Bromophenyl phenyl ether	UG/KG	0	0 00%		30484800	0	0			73 U	78 U	77 U	73 U	75 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0			73 U	78 U	77 U	73 U	75 U
4-Chloroaniline	UG/KG	0	0.00%	220	2102400	0	0	1-	4	73 U	78 U	77 U	73 U	75 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%			0	0			73 U	78 U	77 U	73 U	75 U
4-Methylphenol	UG/KG	0	0.00%	900		0	0			73 U	78 U	77 U	73 U	75 U
4-Nitroaniline	UG/KG	0	0.00%		1576800	0	0			180 U	190 U	190 U	180 U	180 U
4-Nitrophenol	UG/KG	0	0.00%	100	31536000	0	0 7			180 U	190 U	190 U	180 U	180 U
Acenaphthene	UG/KG UG/KG	52 0	50.00% 0.00%	50000 41000		0	,			32 J 73 U	78 U 78 U	77 U 77 U	6.8 J 73 U	20 J 75 U
Acenaphthylene Anthracene	UG/KG	96	50.00%	50000	157680000	0	7	,		73 U 52 J	78 U	77 U	73 U 15 J	75 U 41 J
Benzo[a]anthracene	UG/KG	420	85 71%	224	7840	0	12			180	78 U	46 J	76	140
Benzo[a]pyrene	UG/KG	370	71.43%	61	784	ő	10			150	78 U	6.3 J	57 J	100
Benzo[b]fluoranthene	UG/KG	530	78.57%	1100	7840	0	11	1	4	200	78 U	6.6 J	95	110
Benzo(ghi)perylene	UG/KG	380	71.43%	50000		0	10	1	4	98	78 U	12 J	42 J	65 J
Benzo[k]fluoranthene	UG/KG	390	71.43%	1100	78400	0	10	1-	4	150	78 U	5.7 J	67 J	120
Bis(2-Chloroethoxy)methane	UG/KG	0	0 00%			0	0			73 U	78 U	77 U	73 U	75 U
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0			73 U	78 U	77 U	73 U	75 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%		81760	0	0			73 U	78 U	77 U	73 U	75 U
Bis(2-Ethylhexyl)phthalate	UG/KG UG/KG	200 24	100.00% 28.57%	50000 50000	408800 105120000	0	14			8.6 JB 73 U	13 J 78 U	10 J 77 U	15 JB 73 U	21 J 6 4 J
Butylbenzylphthalate Carbazole	UG/KG	130	50.00%	30000	286160	0	7			73 J	78 U	77 U	17 J	56 J
Chrysene	UG/KG	510	85.71%	400	784000	ő	12			210	78 U	5 5 J	90	160
Di-n-bulylphthalate	UG/KG	50	57.14%	8100	104000	ō	8			27 JB	78 U	77 U	10 JB	19 J
Di-n-octylphthalate	UG/KG	17	35.71%	50000	10512000	0	5	. 1	4	73 U	9.9 J	9.8 J	73 U	17 J
Dibenz(a,h)anthracene	UG/KG	150	57.14%	14	784	0	8	1-	4	43 J	78 U	9.7 J	21 J	33 J
Dibenzofuran	UG/KG	22	42.86%	6200	2102400	0	6			19 J	78 U	77 U	5.1 J	13 J
Diethyl phthalate	UG/KG	18	100 00%	7100	420480000	0	13			7.2 JB	5.8 JB	8.9 JB	11 JB	6.8 JB
Dimethylphthalate	UG/KG	0	0.00%	2000	5256000000	0	0			73 U	78 U	77 U	73 U	75 U
Fluoranthene	UG/KG	820	85.71%	50000	21024000	0	12			520	78 U	4.8 J	180	390
Fluorene	UG/KG	43	50.00%	50000	21024000	0	7			32 J	78 U	77 U	8 J	22 J
Hexachlorobenzene	UG/KG	8 5	7 14%	410	3577	0	1	1.		8.5 J	78 U	77 U	73 U	75 U
Hexachlorobuladiene	UG/KG	0	0.00%		73374 3679200	0	0			73 U 73 U	78 U 78 U	77 U 77 U	73 U 73 U	75 U 75 U
Hexachlorocyclopentadiene Hexachloroethane	UG/KG UG/KG	0	0.00%		3679200 408800	0	0			73 U	78 U	77 U	73 U	75 U
Indeno[1,2,3-cd]pyrene	UG/KG	350	71.43%	3200	7840	0	10			94	78 U	8.6 J	41 J	58 J
Isophorone	UG/KG	0	0.00%	4400	,540	0	0			73 U	78 U	77 U	73 U	75 U
N-Nitrosodiphenylamine	UG/KG	4.8	7.14%	7.00	1168000	0	1	1		4.8 J	78 U	77 U	73 U	75 U
N-Nitrosodipropylamine	UG/KG	0	0.00%		818	0	0			73 U	78 U	77 U	73 U	75 U
Naphthalene	UG/KG	14	42.86%	13000	21024000	0	6	1-	4	11 J	78 U	77 U	73 U	12 J

Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE									SEAD-12 DRMO Y SB121C- EB226 SA	ard	SEAD-121C DRMO Yard SB121C-1 EB231 SA	SEAD-121C DRMO Yard SB121C-1 EB232 SA		SEAD-121C DRMO Yard SB121C-2 EB014 DU	SEAD-121C DRMO Yard SB121C-2 EB228 SA	
SAMP DETH TOP										0	0	2	5	0	2	
SAMP DEPTH BOT										0.2	0 2		3	0 2	2.5	
MATRIX									SOIL		SOIL	SOIL		SOIL	SOIL	
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	9-M	ar-98	9-Mar-98	9-Mar-9	8	9-Mar-98	9-Mar-98	
OAM DATE			OF			ABOVE	OF	OF								
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE	Q	VALUE Q	VALUE Q	
Narobenzene	UG/KG	0	0.00%	200	262800	0	0	1	4	73 U	78 U	7	7 U	73 U	75 U	
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0	0	1	4	180 U	190 U	19	0 U	180 U	180 U	
Phenanthrene	UG/KG	520	78 57%	50000		0	11	1	4	360	78 U	7	7 U	96	280	
Phenol	UG/KG	0.00	0 00%	30	315360000	0	0	1	4	73 U	78 U	7	7 U	73 U	75 ∪	
Pyrene	UG/KG	820	85 71%	50000	15768000	0	12	1	4	380	78 U	4.	7 J	170	290	
TPH	MG/KG	482	85 71%	******		0	12	1	4	23 4	16 7 U	90		28 3	18.5	

Table 28-5 SEAD-121C- Semivolables/TPH in Soil vs. PRG-IND Non-Evaluated Sites

SITE		SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-1218
DESCRIPTION:		DRMO Yard	DRMO Yard	DRMQ Yard	DRMO Yard					
FOC ID		SB121C-3	SB121C-3	SB121C-4	SB121C-4	SB121C-4	\$\$121C-1	SS121C-2	SS121C-3	SS121C-4
SAMP_ID		EB233	EB234	EB020	EB229	EB230	EB235	EB236	EB237	EB241
QC CODE		SA	SA	DU	SA	SA	SA	SA	SA	SA
SAMP DETH TOP		0	2 5	0	0	2 5	0	0	0	0
SAMP DEPTH BOT		0 2	3	0.2	0.2	3	0.2	0 2	0.2	0.2
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE		9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	10-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE Q	VALUE Q					
1,2,4-Trichlorobenzene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
1,2-Dichlorobenzene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
1,3-Dichlorobenzene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
1.4-Dichlorobenzene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4 5-Trichlorophenol	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2,4,6-Trichlorophenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4-Dichlorophenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4-Dimethylphenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,4-Dinitrophenol	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2.4-Dinitrotoluene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2,6-Dintrotoluene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Chloronaphthalene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Chlorophenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Methylnaphthalene	UG/KG	5.5 J	83 J	72 U	71 U	76 U	72 U	69 U	18 J	9.9 J
2-Methylphenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
2-Nitroaniline	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
2-Nitrophenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
3.3 - Dichlorobenzidine	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
3-Nitroanitine 4,6-Dinitro-2-methylphenol	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
4-Bromophenyl phenyl ether	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Chloro-3-methylphenol	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Chloroaniline	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Chlorophenyl phenyl ether Mathylahagal	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
4-Methylphenol 4-Nitroaniline	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
4-Nitrophenol	UG/KG	180 U	190 U	170 U	170 U	180 U	180 U	170 U	440 U	420 U
Acenaphthene	UG/KG	72 U	13 J	72 U	71 U	76 U	72 U	6.5 J	50 J	52 J
Acenaphthylene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 ∪	170 U
Anthracene	UG/KG	72 U	19 J	72 U	71 U	76 U	72 U	6.5 J	96 J	70 J
Benzo[a]anthracene	UG/KG	8 2 J	68 J	3.9 J	7 J	4.6 J	72 U	30 J	420	320
Benzo[a]pyrene	UG/KG	8 1 J	58 J	72 U	71 U	6.1	72 U	28 J	370	260
Benzo[b]fluoranthene	UG/KG	13 J	74 J	13 J	71 U	5 8 J	72 U	40 J	530	310
Benzo(ghi)perylene	UG/KG	11 J	54 J	72 U	71 U	6 2 J	72 U	15 J	380	190
Benzo[k]fluoranthene	UG/KG	7 J	70 J	72 U	71 U	6.7 J	72 U	29 J	340	390
Bis(2-Chloroethoxy)methane	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Chloroethyl)ether	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Chloroisopropyl)ether	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Bis(2-Ethylhexyl)phthalate	UG/KG	9 2 J	39 J	9 3 J	13 J	14 J	7.2 J	9.2 J	200	52 JB
Butylbenzylphthalate	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	7 8 J	24 J	10 J
Carbazole	UG/KG	72 U	34 J	72 U	71 U	76 ∪	72 U	14 J	130 J	100 J
Chrysene	UG/KG	11 J	82	8.8 J	12 J	7,8 J	72 U	35 J	510	360
Di-n-butylphthalate	UG/KG	72 U	5 3 J	72 U	37 J	76 U	8 2 J	69 U	50 J	20 JB
Di-n-octylphthalate	UG/KG	72 U	77 U	72 U	71 U	3.9 J	72 U	3 8 J	180 ∪	170 ∪
Dibenz[a,h]anthracene	UG/KG	72 U	26 J	72 U	71 U	76 U	72 U	7.6 J	150 J	79 J
Dibenzofuran	UG/KG	72 U	8 J	72 U	71 U	76 U	72 U	69 U	22 J	22 J
Diethyl phthalate	UG/KG	8.5 JB	18 JB	8.1 JB	10 BJ	4 7 JB	11 JB	9.4 JB	11 JB	170 U
Dimethylphthalale	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Fluoranthene	UG/KG	13 J	160	7.4 J	10 J	9.6 J	72 U	65 J	820	760
Fluorene	UG/KG	72 U	12 J	72 U	71 U	76 U	72 U	5 J	41 J	43 J
Hexachlorobenzene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 ∪	180 ∪	170 U
Hexachlorobutadiene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 ∪	180 U	170 ∪
Hexachlorocyclopentadiene	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Hexachloroethane	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Indeno[1,2,3-cd]pyrene	UG/KG	8.6 J	48 J	72 U	71 U	5.9 J	72 U	17 J	350	180
Isophorone	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 ∪	170 U
N-Nitrosodiphenylamine	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
N-Nitrosodipropylamine	UG/KG	72 U	77 U	72 U	71 U	76 U	72 U	69 U	180 U	170 U
Naphthalene	UG/KG	72 U	6.9 J	72 U	71 U	76 U	72 U	4 J	14 J	12 J
aprimate ne	COING	72.0	0,00	,,,	., .					

Table 28-5 SEAD-121C- Semivolatiles/TPH in Soil vs. PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE		SEAD-121 DRMO YA SB121C-3 EB233 SA	rd	SEAD-12 DRMO Y: SB121C-: EB234 SA	ard	SEAD-121 DRMO YA SB121C-4 EB020 DU	rd	SEAD-12 DRMO Y2 SB121C-4 EB229 SA	ard	SEAD-12 DRMO Y SB121C- EB230 SA	ard	SEAD-121 DRMO Ya SS121C-1 EB235 SA		SEAD-12 DRMO Ya SS121C-2 EB236 SA	erd	SEAD-12 DRMO Y: SS121C-: EB237 SA	ard	SEAD-12 DRMO Y SS121C- EB241 SA	'ard
SAMP DETH TOP			0		2 5		0		0		2 5		0		0		0		0
SAMP DEPTH BOT			0 2		3		0 2		0 2		3		0 2		0.2		0 2		0.2
MATRIX		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
SAMP DATE		9-Mar	-98	9-Ma	r-98	9-Mai	r-98	9-Ma	ar-98	9-Ma	ır-98	9-Mai	-98	9-Ma	r-98	9-Ma	ır-98	10-Ma	ır-98
PARAMETER	UNIT	VALUE	Q	VALUE	۵	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Nitrobenzene	UG/KG		72 U		77 U		72 U		71 U		76 U		72 U		69 U		180 U		170 U
Pentachlorophenol	UG/KG	1	180 U		190 U		170 U		170 U		180 U		180 U		170 U		440 U		420 U
Phenanthrene	UG/KG		8.8 J		110		88 J		76 J		5.9 J		72 U		38 J		520		440
Phenol	UG/KG		72 U		77 U		72 U		71 U		76 U		72 U		69 U		180 U		170 U
Pyrene	UG/KG		13 J		130		83 J		14 J		8 1 J		72 U		53 J		820		580
TPH	MG/KG		19		213		413		303		38 4	1	9.3 U		109		482		66 3

Table 28-6 SEAD 121C- Pesticides/PCBs in Soil vs. NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF		SEAD-121C DRMO Yard SB121C-2 E6226 SA 0 0.2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-1 EB231 SA 0 2 SOIL 9-Mar 98	SEAD-121C DRMO Yard SB121C-1 EB232 SA 2.5 3 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-2 EB014 DU 0 0.2 SOIL 9-Mar-98	SEAD-121C DRMO Yard SB121C-2 EB228 SA 2 2.5 SOIL 9-Mar-98
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG IND	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4.4 DDD	UG/KG	7.4	7 14%	2900	23847	0	1	14	37 U	3 9 U	3.8 U	37 U	3.8 U
4.4 DDE	UG/KG	69	64 29%	2100	16833	0	9	14		3.9 U	3.8 U	29	13
4.4 -DDT	UG/KG	100	61 54%	2100	16833	0	8	13		3 9 U	3.8 U	35	98
Aldrin	UG/KG	0	0.00%	41	337	0	0	14		2 U	2 U	1 8 U	19 U
Alpha-BHC	UG/KG	1.5	7.69%	110		0	1	13		2 U	2 U	1 5 JP	19 U
Alpha-Chlordane	UG/KG	1	7.69%	.,,		0	1	13		2 U	2 U	1.8 U	1.9 U
Aroclor 1016	UG/KG	0	0.00%		36792	0	0	14		39 U	38 U	37 U	38 U
Aroclor-1221	UG/KG	0	0.00%		00702	0	0	14		79 U	78 U	74 U	76 U
Aroclor-1232	UG/KG	0	0 00%			0	0	14		39 U	38 U	37 U	38 U
Aroclor-1242	UG/KG	58	7 69%			0	1	13		39 U	38 U	37 U	38 U
Aroclor-1248	UG/KG	0	0 00%			0	0	14		39 U	38 U	37 U	38 U
Aroclor 1254	UG/KG	79	14.29%	10000	10512	0	2	14	37 U	39 U	38 U	37 U	38 U
Aroclor-1260	UG/KG	200	50.00%	10000		0	5	10		39 U	38 U	30 JP	200
Beta-BHC	UG/KG	0	0 00%	200		0	0	14	1.8 U	2 U	2 U	1.8 U	1.9 U
Delta BHC	UG/KG	2	40.00%	300		0	4	10	1.8 U	2 U	2 U	0 95 JP	1 3 JP
Dieldrin	UG/KG	0	0 00%	44	358	0	0	14	37 U	3.9 U	3.8 U	3.7 U	3.8 U
Endosulfan I	UG/KG	0	0 00%	900	3153600	0	0	14	1.8 U	2 U	2 U	1 8 U	19 U
Endosulfan II	UG/KG	0	0.00%	900	3153600	0	0	14	37 U	3 9 U	3.8 U	3.7 U	3.8 U
Endosulfan sulfate	UG/KG	0	0 00%	1000		0	0	14	3 7 U	3 9 U	3.8 U	3.7 U	3 8 U
Endon	UG/KG	0	0 00%	100	157680	0	0	14	37 U	3 9 U	3 8 U	3.7 U	3.8 U
Endrin aldehyde	UG/KG	0	0.00%		157680	0	0	14	3.7 U	3.9 U	3 8 U	3.7 U	3.8 U
Endrin ketone	UG/KG	3.8	7.69%		157680	0	1	13	3.7 U	3 9 U	3 8 U	3.7 U	38 U
Gamma-BHC/Lindane	UG/KG	0	0 00%	60	4402	0	0	14	1.8 U	2 U	2 U	1.8 U	19 U
Gamma-Chlordane	UG/KG	1.2	7 69%	540		0	1	13	1 8 U	2 U	2 U	1 8 U	19 U
Heptachlor	UG/KG	2 1	7 69%	100	1272	0	1	13	1.8 U	2 U	2 U	1.8 U	1.9 U
Heptachlor epoxide	UG/KG	2.8	27 27%	20	629	0	3	11	1.8 U	2 U	2 U	1.8 U	1.1 JP
Methoxychlor	UG/KG	0	0 00%		2628000	0	0	14	18 U	20 U	20 U	18 U	19 U
Toxaphene	UG/KG	0	0 00%			0	0	14	180 U	200 U	200 U	180 U	190 U

Table 28.6 SEAD 121C Pesticides/PCBs in Soil vs. NYTAGM Non-Evaluated Sites

0.75										
SITE		SEAD-121C	SEAD-121C	SEAD 121C	SEAD 121C	SEAD-121C	SEAD 121C	SEAD-121C	SEAD-12	SEAD-121
DESCRIPTION		DRMO Yard								
LOC ID		SB121C-3	SB121C-3	SB121C 4	SB121C 4	SB121C 4	SS121C-1	SS121C-2	SS121C	SS121C-4
SAMP_tD		EB233	EB234	EB020	EB229	EB230	EB235	EB236	EB237	EB241
OC CODE		SA	SA	DU	SA	SA	SA	SA	SA	SA
SAMP DETH TOP		0	2 5	0	0	2 5	0	0	0	0
SAMP DEPTH BOT		0 2	3	0 2	0 2	3	0 2	0.2	0.2	0.2
MATRIX		SOIL								
SAMP DATE		9 Mar-98	9-Mar-98	9-Mar 98	9-Mar 98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	10-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE O	VALUE Q	VALUE O	VALUE Q	VALUE Q	VALUE Q	VALUE Q
4.4 DDD	UG/KG	3 6 U	3 B U	36 U	3 5 U	3 8 U	3.6 U	3 5 U	7.4	3 5 U
44 DDE	UG/KG	3 6 U	17	3.8	4.5	2 5 J	3 6 U	3 5 U	69 E	50
4,4 -DDT	UG/KG	36 U	16	19 J	2 3 JP	3 B U	3 6 U	3 5 U	100 E	37
Aldrin	UG/KG	19 U	2 U	1 8 U	1 B U	2 U	19 U	1 8 U	19 U	1.8 U
Alpha BHC	UG/KG	19 U	2 U	1 8 U	1 B U	2 U	19 U	18 U	1.9 U	1.8 U
Alpha Chlordane	UG/KG	19 U	2 U	1 8 U	1 B U	2 U	1.9 U	18 U	19 U	1 JP
Aroclor-1016	UG/KG	36 U	38 U	36 U	35 U	38 U	36 U	35 U	36 U	35 U
Aroclor 1221	UG/KG	74 U	78 U	73 U	72 U	77 U	74 U	70 U	74 U	71 U
Arodor 1232	UG/KG	36 U	38 U	36 U	35 U	38 U	36 U	35 U	36 U	35 U
Aroclor-1242	UG/KG	36 U	38 U	36 U	35 U	38 U	36 U	35 U	36 U	58 P
Arocfor 1248	UG/KG	36 U	38 ∪	36 U	35 U	38 U	36 U	35 U	36 U	35 U
Aroclor-1254	UG/KG	36 U	38 U	36 ∪	35 U	38 U	36 U	35 U	72	79
Aroclor-1260	UG/KG	36 U	21 JP	36 U	35 U	38 U	36 U	35 U	85 P	36 P
Beta BHC	UG/KG	19 U	2 U	1 B U	1 8 U	2 U	19 U	1 8 U	1.9 U	1 8 U
Delta-BHC	UG/KG	19 U	2 U	18 ∪	18 U	2 U	19 U	1.8 U	1.2 JP	2 P
Dieldrin	UG/KG	3 6 U	38 ∪	3 6 U	3 5 U	3 8 U	3 6 U	3.5 U	3.6 U	3 5 U
Endosulfan I	UG/KG	19 U	2 U	18 U	1 8 U	2 U	1.9 U	18 U	1.9 U	1.8 U
Endosulfan II	UG/KG	3.6 U	3 8 U	3.6 U	3 5 U	3 8 U	3.6 U	3 5 U	3 6 U	3.5 U
Endosulfan sulfate	UG/KG	3 6 U	3 8 U	3 6 U	3 5 U	38 U	3.6 U	3 5 U	3.6 U	3.5 U
Endrin	UG/KĢ	3 6 U	3 8 U	36 U	3 5 U	3.8 U	36 U	3.5 U	3.6 U	35 U
Endrin aldehyde	UG/KG	3 6 U	3.8 U	3 6 U	3.5 U	3 8 U	3 6 U	3.5 U	3.6 U	35 U
Endrin ketone	UG/KG	3 6 U	3 8 U	3.6 U	3 5 U	3 8 U	3.6 U	3 5 U	3.8 P	3 5 U
Gamma-BHC/Lindane	UG/KG	1.9 ↓	2 U	18 U	1 B U	2 U	19 U	1 8 U	19 U	18 U
Gamma-Chlordane	UG/KG	19 U	2 U	1 8 U	18 U	2 U	1.9 U	1 8 U	19 U	1.2 JP
Heptachlor	UG/KG	1.9 U	2 U	18 U	18 ∪	2 U	19 U	18 U	2 1 P	1.8 U
Heptachlor epoxide	UG/KG	1.9 U	2 U	18 ∪	1 B U	2 U	1.9 U	18 U	2.8 P	1.4 JP
Methoxychlor	UG/KG	19 ∪	20 U	18 U	18 U	20 U	19 U	18 U	19 U	18 U
Toxaphene	UG/KG	190 U	200 U	180 U	180 U	200 U	190 U	180 U	190 U	180 U

Table 28-7 SEAD 121C: Perticides/PCBs in SOil vs. PRG IND Non Evaluated Sites

5								2	SI 40.171C	SEADLING	SEADLINE	SEAD-171C	SEADLING	20,000
DESCRIPTION								30	DRAKO Yand	DRMO Yard				
108.19								N.	SH1210.2	SD121C 1	SB121C-1	SB121C-2	SB121C-2	SB1216.3
SAMP ID								Ξ	11326	FB231	1 112 12	FB014	1 B228	171/211
CK CODI								V.S.		V.Y.	8.	1)(1	VS.	8.1
SAMP DUTITIOP									В	0	2 5	U	2	O
SAMP DUPITIBOL									0.2	ç e	_	0.2	2.5	0.2
MAIRIX								NOI		SOIL	SOIL	SOIL	SOII	ROS
SAMP DATI			FREQUI NCY			NUMBER R	NUMBER R	NIMBER	9. Mar-98	9-Mar-98	9-Mar-98	9.Mar-98	9-Mar-98	9.Mar-98
			-10			ABOVI	[0	01						
PARAMI II R	EN.	MAXIMIM	DULLICITON	14634	PRG IND	1 4 GM	DI HC 18	ANALYSIS VALUE		VALUE Q	VAL111 Q	O UIV	VALUE 0	O LINA
1.1 [991)	HGAG	7.4	7 1-4"6	2,400	23817	Ċ	~	7	17 11	13 6 8	11 8 11	17.11	13.81	16.11
1 1 1003	13C/NG	5	64.29°4	2100	11891	E	7	Ξ	-1	11 11 11	11 8 1	5.0	1.1	11 91
1.1 DB1	UGAG	100	61 54%	2100	16833	C	×	~	N.	13.61	18 11	15	8.0	11 91
Abhm	IK:/KG	С	0.00%	17	111	0	0	Ξ	181	2 11	0.7	18 11	11 6 11	11 6 1
Alpha-BHC	UGAG	~_	7 6.90%	911		Ξ	-	13	181	2 11	2.13	11.5 JP	11 6 1	11.61
Alphu-Chlordane	UGAG	-	7.69%			С	-	13	18 1	2.10	2.11	11 8 11	11 6 1	11.61
Aroclop-1016	DGAG:	0	0.000%		26.793	С	G	7	17 11	11 61	11 81	37.11	18 11	11 91
Atox for 1221	DONG	0	0.00%			=	G	17	74 17	11 62	1) 8/	14 11	1) 92	73.0
Aroc lor- 1232	HONG	0	0.00%			С	٥	Ξ	17 (1	11 61	13 8 13	11 (1	11 81	13 92
Vest lot-12.12	HGAG	\$¢	7 6.90%			С	~	~	17 (1	11 61	11 82	1) ()	11 81	11 9%
Aroc lor-12:48	DGAG	C	%000			=	С	-	17 (1	11 64	11 81	U U	13 8 (1	11 98
Areclor-1254	1107.00	74	14.29%	(0000)	10512	=	7	14	17 (1	11 61	38.10	13 61	11 81	11 91
Aroclor-1260	1KI/KG	2100	\$10 (10)%	10000		Ξ	**	10	11 71	19 11	11 81	At th	200	14 91
Reta BIRC	DC://C:	C	20 nm2	200		C	G	2	18 11	2 (1)	3.10	11 8 1	11 6 1	11 6 1
Delta BHC	UCKG	2	40.00%	NX)		G .	-	01	1 8 1	2.11	2 11	0.95 JP	13.77	11 6 1
Dieldrin	TRINGS	c	(1 (X)*5	7	358	a	=	<u></u>	11 61	11 61	3.8.11	17.11	11 8 11	1) 9 %
I ndo stilan I	TGWG	5	0.00%	1000	1157600	C	=	~	1.8 t)	2 17	2 13	11.8.11	11 6 1	11 6 1
Inde affan II	UGAG	C	0.000%	006	1153000	c	2	7	17 11	11 6 8	11.8.1	17.0	11 8 1	36.11
I mbosultan sulfate	UGAG	С	6.000%	1000		С	=	14	17.11	11 6 8	13 81	11 11	13 8 11	11 91
1 infrim	UGAG	0	6.200.0	001	13.7680	С	0	±	11 11	13.61	11 8 1	11 2.1	18.11	11 91
Ludrin aldeby de	TICARG	C	0.00.0		1570.80	C	Ξ	7	17 11	11 6 1	11 8 11	17 11	18 11	11 9 1
Indrin ketone	UC:NG:	8,	7 0.00%		157680	С	-	<u>"</u>	1,7 11	11 0 1	181	11 / 11	181	11 91
Ganna-BHCA indanc	UGAG	O	5-011 O	(%)	1402	ū	=	7	11 8 1	2 13	2 11	18.0	11 6 1	0.61
Camina Chlordane	UGAG	12	7,69%	44D		С	-	13	18 1	2.11	2.11	11.8.1	11 6 11	11.6.1
Heptachlor	1RiAG	2 t	2 (.9%	001	1272	C	-		18 11	2.0	2 13	11 8 1	1.9 U	1) 61
Heptuchlur epovide	UC/KG	2 x	27 27%	30	629	С	~	=	18 11	2 11	2.10	18.0	JI JP	11.61
Methovychlor	UGAG	=	0.000		2628000	0	С		18 11	20 13	20 02	1) 81	11 61	19 11
Lovaphene	UGARG	=	0.00%			Ξ	c	7	11 081	200 11	200 U	180 11	11 061	1300 13

1abt 28.7 SEAD 121G, Predicides/PCRs in SOllive PRG-IND Non-Evallated Sites

SFAD-121B DRNO Yard SSI2IC-4 TD241 SA	D	0.2	SOIL	10-Mar-98	V1111 Q	11 5 2	97	17	18 1	18.11	- H	11 51	71 (1	11 51	48 P	13 (1)	70	46. P	18 (1	2 P	11 5 11	13 8 11	13 51	11 5 11	11 > 1	13 \$ 11	11 5 1	181	1.2.1P	18 11	14 JP	18 11	180 11
SFAD 121C DRMO Yord SS121C-3 TB237 SA	C)	0.2	Soll	9-Mar-98	VARIO	-	- 69	1001	11 0 11	11 6 1	11 6 1	14 92	7.1 (1)	14 91	To El	11 %	7.2	85 P	11 6 1	1.2 JP	11 01	0.61	14.41	19 9 1	16 17	11 9 1	3 % 5	11 6 3	11 6 1	2.1.12	28 1	11 61	190.41
SUAD-121C DRMO Yard SSI21C 2 11875, SA	D	G 2	- F 7	21 M.n. 98	V 18111 Q	11:11	11 5 12	11 5 1	1.8.1	1 8 1	1.8.1	1) 51	11 (1)	1 %	13.11	11:11	13:11	11 51	181	181	11 > 1	1.8.1	11 5 11	11 5 11	13.11	11 > 1	11 \$ 11	18 1	18 1	11 8 1	181	18 11	130 (1
SI AD-121C DRMO Yard SS121C-1 111235 SA	T)	i i	1102	o Mar ox	VALMED	1 17	11 92	16.41	11 0 1	11.6.1	19 61	14, 11	- ::	11 91	11 1/1	11 V	13 v4	11 1/1	11 6 1	11 0 11	16.11	13 6 1	11 11	11 91	11.91	11 91	11 91	13 6 1	101	11 6 1	11 0 11	11 61	11-00-1
SLAD-121C DRMO Yard SB121C 1 11123d SA	2.5	pr	SOII	9.Nar 98	VALES Q	18 8 1	7 : 7	11.8.11	2 11	7 11	7 11	18 81	U 77	13 81	13 81	11 81	(1.8)	11 81	2.13	2.17	11.8 F	2 17	18.11	18 (1	3.8.11	13 8 1	13.8 11	2 [1	2.0	2.11	2.11	20 13	200 U
SLAD-121G DRMO Yard SR121G + 1/8220 SA	2	; ;	IIO	9.NLn 08	VALUE	1 % 1	-	= ::	- × -	1.8.1	L 8 L	11 21	72.10	11 12	11 53	13.11	11 53	13.51	18 1	13.8.1	1 > 1	1 × 1	11 5 1	11 5 2	11 > 1	13 > 1	13 % (1	1 × 1	18 13	11 8 1	1 × 1	18 11	13(08)
SEAD-121G DRAKO Yard SH121G 1 1 B020 D81	=	0.2	KOIL	9 Mar-98	O HINA	-1 11	×	1.61	1.81	11 8 1	1.8.1	11.17	11-12	11 %	11 %	11 vp	11 91	11 %	11 8 1	(1.8.1)	36.17	18.1	11 41	3.6.11	16.81	11 91	11 91	13 8 1	18.1	11.8.1	11.8.1	18.1	13 (38)
SI AD-121C DRMO Yard SB121C 3 11823 SA	5.	~	Nor	9-Mai-98	VALUE Q	1 8 1	-	≤	2.11	2 11	2 11	1) 84	11 87	11 81	18 11				2 13						38.0	13.8.1	13 8 13	2 11	2 (1	2 (1	2 11	20 []	200 1)
					IN.	Herko	UGAG	HGAG	UG/KG	UGKG	DC/KG	UGAG	HG/KG	UGAG	11C/KG	HGKG	TIGAGG	HGAG	UGAG	HGAG	HGKG	DGKG	UG/KG	(IG/KG	DC/KG	11G/AG	HGAG	DCAG	UGAG	UCKG	UGÆG	UGAG	TIEVAG
NIII DISCRIPTION LOCATION SAMPLED CR. CODI	SAMP DUTH TOP	SAMP DUPITIBOL	MATRIX	SAMP DAH	PARAMI II R	1 11/11	t I DDM	100.11	Aldım	Alpha-BIR	Alpha Chlordane	Arou for-1016	Aroclor-1221	Arochur 1232	Arec lor-1242	Aroclor-1248	Aroc lot -1254	Arix for 1260	Beta-BHC	Delin-BHC	Dieldrin	I nde adlan f	Fudo-offon II	Ludosuftan suttate	1 ndrin	findrin addehy de	Fudrm ketone	Gamma-BHC/I indane	Gamma-Chlordane	Heptachlor	Heptachlor epovide	Methosschlor	Lovaphene

S121cf xis

pestpcbprg

Table 28-8 SEAD-121C- Metals in Soil vs. NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID									SEAD-121C DRMO Yard SB121C-2 EB226	SEAD-121C DRMO Yard SB121C-1 EB231	SEAD-121C DRMO Yard SB121C-1 EB232	SEAD-121C DRMO Yard SB121C-2 EB014	SEAD-121C DRMO Yard SB121C-2 EB228	SEAD-121C DRMO Yard SB121C-3 EB233
QC CODE									SA	SA	SA	DU	SA	SA
SAMP DETH TOP									0	0	2.5	0	2	0
, SAMP DEPTH BOT									02	0.2		0 2	2.5	0 2
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE Q	VALUE Q				
Aluminum	MG/KG	16200 0	100 00%	19520	525600	0	14	1		12800	13400	14500	16200	1730
Antimony	MG/KG	19.3	433 33%	6	210	3	13		3 17.3 N	1 1 BN	1 4 BN	19.3 N	11.5 BN	0 93 BN
Arsenic	MG/KG	8 1	100 00%	8 9	4	0	14	1		5 5	4 4	6.1	8.1	38
Barrum	MG/KG	1600 0	100 00%	300 '	36792	4	14	1	4 1430	64 9	64 2	1680	1050	18.1 B
Beryllium	MG/KG	0.7	100 00%	1 13	1	0	14	1	4 0.47 B	0 52 B	0 72 B	0.4 B	0.43 B	0.25 B
Cadmium	MG/KG	21 1	50 00%	2 46	263	6	7	1	4 2.3 *	0 07 U	0.07 U	27 -	11,6	0.07 U
Calcium	MG/KG	296000 0	100.00%	125300		3	14		4 23400	2580 *	2280 °	31300	31600 *	283400
Chromsum	MG/KG	49 2	100 00%	30	525600	6	14	1	4 17 1307 353 .	20 9	21	32.9	37	3.8
Cobalt	MG/KG	19 7	100 00%	30	31536	0	14	1	4 15 7	12 8	94 B	16.5	16	35 B
Copper	MG/KG	9750 0	100 00%	33	21024	9	14	1	4 " 9756" *	19 7 N°	18 7 N*	7698 *	2445 1/	88 N°
Cyanide	MG/KG	0.0	0 00%	0 35		0	0	1	4 0.56 U	0 63 U	0 65 U	0.59 U	0.63 U	D 58 U
Iron	MG/KG	54100 0	100 00%	37410	157680	5	14	1	4 SHIP THERE	25700	23800	42100	54100	4230
Lead	MG/KG	5280 0	100 00%	24 4		10	14	1	4 5000	11 8	14.1	5260	1790	11 7
Magnesium	MG/KG	15400 0	100 00%	21700		0	14	1	4 6810 °	4590	4040	6820 *	6480	10200
Manganese	MG/KG	752 0	100 00%	1100	12089	0	14	1	4 525	598	299	612	752	213
Mercury	MG/KG	02	50 00%	0 1	158	2	7	1	4 0 0 T B	0 06 U	0 05 B	0 05 U	0.07 B	0 04 U
Nickel	MG/KG	224 0	116 67%	50	10512	8	14	1	2 56.5 E*	40 5	35 8	E.		116
Potassium	MG/KG	1990 0	100 00%	2623		0	14	1	4 1990	1600	1670	1840	1220	1150
Selenium	MG/KG	0.0	0 00%	2	2528	0	0	1	4 1 UN	11 U	11 U	0 92 UN	0 97 U	1 U
Silver	MG/KG	21 8	28 57%	0.8	2628	4	4	1	4 0.45 U	0 48 U	0 48 U	0.41 U	0.43 U	0 46 U
Sodium	MG/KG	606 0	57 14%	188		6	8	1	4 191 B	139 U	138 U	444 B	B	132 U
Thallium	MG/KG	0.0	0 00%	0 855	42	0	0	1	4 14 U	14 UN	1 4 UN	1 2 U	1.3 UN	1.4 UN
Vanadium	MG/KG	21.8	100 00%	150	3679	0	14	1	4 20.9 E	20 8	21 8	19.5 E	19.3	5 1 B
Zinc	MG/KG	1350 0	100 00%	115	157680	10	14	1	4 1350	80 3 N	70 5 N		N A STATE OF THE S	29 8 N

S121cf xts

mettagm

Table 28-8
SEAD-121C- Metals in Soil vs. NYTAGM
Non-Evaluated Sites

SITE		SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121C	SEAD-121	SEAD-121C
DESCRIPTION		DRMO Yard	DRMO Yard	DRMO Yard	DRMO Yard	DRMO Yard	DRMO Yard	DRMO Yard	DRMO Yard
LOC ID		SB121C-3	SB121C-4	SB121C-4	SB121C-4	SS121C-1	SS121C-2	SS121C-3	SS121C-4
SAMP ID		EB234	EB020	EB229	EB230	EB235	EB236	EB237	EB241
QC CODE		SA	DU	SA	SA	SA	SA	SA	SA
SAMP DETH TOP		2 5	0	0	2.5	0	0	0	0
SAMP DEPTH BOT		3	0.2	0.2	3	0.2	0.2	0.2	0.2
MATRIX		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SQIL '	SOIL
SAMP DATE		9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	9-Mar-98	10-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE O	VALUE Q	VALUE O	VALUE Q	VALUE Q	VALUE O	VALUE Q
Aluminum	MG/KG	8880	14400	13000	15700	12800	12600	7650	2700
Antimony	MG/KG	0 98 BN	1 7 BN	0 81 BN	0 69 UN	2 5 BN	2 2 BN	3 4 BN	29 BN
Arsenic	MG/KG	46	5	37	6.4	5 2	63	6.4	5 4
Barium	MG/KG	46 3 B	86 6	69 6	72 4	57 7	252	334	90 6
Beryllium	MG/KG	0 32 B	0.57 B	0 49 B	0 63 B	0 56 B	0.48 B	0.3 B	0.21 B
Cadmium	MG/KG	0 07 U	0 07 U	0 05 U	0 06 U	21.1	7.1	18.5	12.6
Calcium	MG/KG	97200 *	17200 *	25500 *	13000 *	11800 °	53100 *	129000 *	296000 °
Chromium	MG/KG	13 1	27 8	22 6	30	32.9	48.7	49.2	9.2
Cobalt	MG/KG	77 B	17.6	12 5	19 7	14	15 5	11 3	9.6 B
Copper	MG/KG	20 6 N°	39.1 N°	33 N°	39.1 N°	139 N°	ATE IN	383 N°	"111 N"
Cyanide	MG/KG	0.58 U	0.56 U	0 61 U	0.63 U	0 62 U	0.53 U	0 59 U	0 54 U
fron	MG/KG	16500	32000	25900	35600	41366	45600	35000	8050
Lead	MG/KG	Bulkar L. Bill	27.1	23 5	£02., 1 All	78.2	251	Salahat Ald	171
Magnesium	MG/KG	8000	6980	5630	7500	6220	12800	8770	15400
Manganese	MG/KG	473	413	359	394	364	403	494	407
Mercury	MG/KG	0.06 U	0.04 U	0 04 U	0 06 B	0 05 U	01	0.15	6.13
Nickel	MG/KG	22.3	87.0	49.3	69.7	58.6	234	62.5	19.5
Potassium	MG/KG	1500	1980	1450	1870	1480	1890	1600	1290
Selenium	MG/KG	11 U	1 U	08 U	0 92 U	1 U	0.95 U	1 U	1 U
Silver	MG/KG	0 49 U	0 46 U	0 36 U	0 41 U	21.8	13 B	AT	21 B
Sodium	MG/KG	141 U	132 U	110 B	119 U	223 B	196 B	255 B	147 B
Thalium	MG/KG	1.5 UN	1 4 UN	- 11 UN	1 2 UN	1 4 UN	13 UN	1.4 UN	1,3 UN
Vanadium	MG/KG	14.4	21	17	21 7	18.6	20 1	21.5	8.5 B
Zinc	MG/KG	77 6 N	'193 N	"196 N	136 N	58\$ N	1 dit N	523 N	N. Service

Table 28.9 SEAD-121C Metals in Soil vs. PRG IND Non Evaluated Sites

2/17/99

SI AD-1210	DKIMO VIII	SB121C.3	FB2 13	ν.			Soll			VALUI	0.17	100	**	181	0.23	0.07	28.4(00)	18	1.5	oc oc	85.0	42.40	11.7	10200	213	0.04	911	0511	-	0.46	112	-7	- 1 >	
SI AD-1210	DECISIO 1310	SB121C-2	111228	VS	•	3.6	llos	9-Mar-98		VALUE	16200	11 5 BN	1.60	1050	0.43 B	- 80	316/K) *	11	£	2440 N*	0.61 U	64100	1780	6480	752	0.07 B	9'95	1220	0.97 11	0.43 U	214 B	13 th	163	
SLAD-121C	DENIN TING	SB121C-2	FB011	13(1	c	0.0	llos	9-Mur-98		VALUE	1.13(R)	N 1 01	6.1	1400	0.4 B	2.7 *	()()), [1,	12.9 *	16.5	 0692 	0.59 11	41100	5280	6820 *	612	0.05 U	54.2 F*	1840	0 92 UN	0.41 15	8 909	1.2.13	19 \$ 1:	
SEAD-121C	DENGE FAIR	SB121C-1	F182.12	S.A.	5.2	***	Nos	9-Mar-98		VALUE Q	13:400	1.4 BN	7	612	0.72 B	0.07 11	2280 *	2.1	9.4 B	18.7 N*	11 89/0	23800	14.5	4040	299	0.05 B	15.8	1670	11.0	0.48 U	118 11	1.4 UN	21.8	
SLAD-121C	Markey Faller	SB121C-1	11271	V.S.	=	0.2	SON	9-Mar-98		UASTIT Q	12800	NB I I	5.5	64.9	0.52.8	0.07 11	2580 *	20.0	12.8	10 7 N	0.63 U	25700	8 II	4500	808	11 90 0	40 5	1600	0 11	0.48.11	U (F)	NU 41	20 8	
SLAD-1210 DRMOV act	DIRECT PRICE	SH121C 2	1 B226	VS.	С	0.2	HOS			VALL	154(8)	Z ~ C.	6.5	1420	0.47 B	2.1 *	27,400	35.2 *	157	• 0570	0.56.11	11,000	5080	6810 *	424	0.07 B	*1 > 85	0661	NI -	0.46.0	102 B	141	20.9.1	
								NUMBI R	ē	ANALYSTS	Ξ	~	Ξ		17	<u></u>	Ξ	=	≖	Ξ.	<u> </u>	Ξ	Ξ	14	Ξ	=	12	=	=	=	=	=	14	
								NUMBI R	<u>[</u>	SI II CIS	=	13	Ξ	Ξ	=	r-	=	=	==	<u>=</u>	О	=	<u></u>	==	Ξ	7	7	≖	0		×	0	~	
								NUMBER	ABOVI	LYCM																								
										PRG-IND	0.009825	210.0	£1 7	16792 0	0	24.1.0	0.0	0.000525	11546.0	21024 0	0 0	157680 0	0 0	0 0	12089 0	158.0	10512.0	0.0	2428.0	2628.0	0 0	42.0	0.629	
										LYCM	19520	9	- ×	300		3.46	125400	0,	30)	33	0.15	17:110	2.1.4	21700	11(8)	- 0	95	2421	٠	8 0	188	558.0	150	
								I RI QUI NCY	5	NOTESTE RE	FOO 1997 o	411 13"0	100 00%	E00 00%	100 000	50.00"	100 00%	2200 DOM:	LOO 1301"	100 00%	0.00%	5""(Y) C/OI	100 OUT	E00 (9)%	FOO DO!*5	540 00%	116.67%	ICO (X)."	0.00%	28 57%	57 140%	0.00%	9,00,001	
										MAXIMUM DLITCHON	14200	19.3	~	(x)UI	0.72	21.1	296000	10.7	19.7	9750	¢	54100	4280	0.0151	752	0.15	224	1990	C	21 X	909	0	21.8	
										ĪŅ.	MGAG	MG/KG	MCKG	MGAG	MCKG	MGAG	MGAG	MGARG	MGAG	MGAG	MOAG	MGAG	MGAG	MG/KG	MGAG	MGAG	MONG	MGAG	MGKG	MG/KG	MGAG	MCAG	MG/KG	
SILE DISCREPTION	November 1	100 111	SAMP 1D	(x con	SAMP DETH TOP	SAMP DEPTHROL	MAIRIA	SAMP DAIL		PVRAMI II R	Mummin	Antunom	Arsenn	Ranten	Beryllum	Cadminia	Cakinin	Chromina	C obalt	Соружт	C vanide	Iron	l ead	Maenessum	Manganese	Mercuix	Nickel	Potassium	Seleman	Silver	Sadium	Thallium	Vanadam	

SI AD-121B DRMO Yard · SS121C-4 1B241	_	0	llos	10-Mar-98	VALUE	2700	2 v 11N	\$.4	9.06	0.21 B	12 6	* ()()()()()	9.2	96.18	*Z (); '	0.54 (1	8050	171	15400	407	110	5 61	1290	13.1	2.1 B	147 B	- 1 TA	× × ×	250 N
SEAD-121C DRMO Yard SS121C-3 HB237 SA	=	0.2	SOIL	9 Mar.98	VALUE	Th 42	ZE : E	6.4	101	0.3 8	> 81	1290883	763	1 1	*X XX	11 65 0	15(100)	477	8770	191	\$1.0	\$ 29	1000	111	4.7	255 B	NI T	21 \$	425 N
SEAD-121C SEAD-121C BDRNO Yand DESS121C-2 SEAD-1182% EAS-1 SEAD-12 SEA	=	0.2	Soft	9-Mar-98	VALIST	12600	2.2 IBN	6.3	252	0.48 13	7.1	\$ 3100 *	45.7	14.4	*N 102	0.53 (1	43(0)	251	12800	£U†	ē	224	1890	H 66 0	111	10v, B	Z ~ ~	20 1	Z - 17
SEAD 121C DRAIO Yaid SSEEIC A DEPS	c	0.2	102	9 Mar-98	ė li wa	1,2%(10)	N=	\$	4.77	11 sts 13	11.	• (NOS) I	12.9	=	-X 02	0.62.11	41300	7.8.2	0.220	36.5	0.05 U	28.6	1180	1 1	51.8	22.1 H	N :-	18 6	N - 85
SLAD-121G DRMO Yard SREEG 1 118230 SA	3.4	,	5011	9.Ma 38	VALID	15700	NIL COLD	4.4	1	063 B	1) 100 (1	1 3(MM) *	35)	40 4	*Z - &	13 12/10	35000	37	17500	10.1	0.06.11	60.17	07.81	0.92 [1	0.41 17	11 611	NI CL	217	N 851
SIAD 121C SI, DRAWO Yard DR SH21C 4 SR [R22] R22	G.	0.2	SOH	o Mar 98	VAR	1,70001	0 81 BN	1.7	9 69	0.49 B	0.05 U	255(10) *	226	12 3	*× %	11 19'0	25000	213	56.10	150	0.01.11	49.1	1150	0.8.13	11 98 0	110 B	NE I	1.1	N '961
1 415-12 (C 1885 Vaid 1812 (C - 1 1812 (c - 1	=	c. c.	II O	9.Mar-98	0 1111	114001	N#	w.	Nr. 6:	0.52 B	0.07.11	17,2101 *	2.7 K	176	*Z - %	13 95 0	120003	27.1	6.980	Ξ	0.04.11	8 19	1980	==	D 26- U	13.71	N. 1	21	Z 251
SI AD-121C S DRMO Yard D SH123C 3 S 1123M 1	**	-	NOIL	9 Mar-98	VALUE	SSS(1)	NH 80 0	4.6	46.1 B	0 12 B	11 70 11	• 17200 •	Ĩ.	7.7 B	20 5 N*	0.48.11	16500	10.0	SANO	473	0.00, 17	22 3	1 (00)	11.0	11 61 0	111 11	Y 1 .	**	N 977
					0										ż						=							×	
					ĪŅ.	MGAG	MG/KG	MIGAG	MGAG	MG/kG	MGAG	MGAG	MG/KG	MG/KG	MG/KG	MGAG	MGAG	MGAG	MGAG	MGAG	MGAG	MCARG	MGFKG	MGAG	MGAG	MGAG	MGAG	MGAG	MGAG
MIT DESCRITION TOC ID SAMP ID OCCODE	SAMP DUTITOP	SAMP DIPHTROL	MATRIA	SAMP DATI	PARAMI ITR	Alemman	Anfillions	Arsenie	Barum	Berdlum	Calmann	Calcum	Сътопния	< obalt	Copper	Cymrde	From	Lead	Magnesian	Manganese	Merum	Nickel	Potssium	Seleumin	Silver	Sodium	Ballium	Vanachum	/1114

S121cf xls

1 U

1 U

1 U

1 U

1 U

1 U

3

Table 28-10 S121C - Volatiles in Groundwater vs. Class GA Non Evaluated Sites

SITE SEAD-121C SEAD-121C SEAD-121C DESCRIPTION DRMO Yard DRMO Yard DRMO Yard LOC ID MW121C-1 MW121C-1 MW121C-2 SAMP ID EB023 EB153 EB154 QC CODE DU SA ŞA SAMP. DETH TOP 2 1 16 SAMP DEPTH BOT 9.7 5 1 MATRIX GROUNDWATER GROUNDWATER GROUNDWATER SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS UNIT MUMIXAM ANALYSES VALUE VALUE Q VALUE Q 1.1.1-Trichloroethane UG/L 0 00% 792 55 0 1 U 1 U 1 U 5 00 0 52 1.1.2.2-Tetrachloroethane UG/L 0.00% 0 0 1 U 1 U 1 U 1,1,2-Trichloroethane UG/L 0 00% 0 19 0 0 1 U 1 U 1 U 1,1-Dichloroethane UG/L 0 00% 5 00 811 74 1 U 1 U 3 1 U 1,1-Dichloroethene UG/L 5.00 0 04 0.00% 0 3 1 U 1 U 1 U 1,2-Dibromo-3-chloropropan UG/L 0 00% 5.00 0 12 0 3 1 U 1 U 1 U 1,2-Dibromoethane UG/L 0 00% 5 00 0 3 1 U 1 U 1 U 1,2-Dichlorobenzene UG/L 0.00% 5 00 0 99 3 1 U 1.11 1 U 1,2-Dichloroethane UG/L 0 0.00% 5 00 0.12 0 0 3 1 U 1 U 1 U 1,2-Dichloropropane UG/L 0.00% 5 00 0.99 1 U 1 U 1 U 1,3-Dichlorobenzene UG/L 0.00% 5 00 3200 00 1 U 1 U 1 U 1,4-Dichlorobenzene UG/L 0.00% 4 70 2.80 n n 3 1 U 1 U 1 U Acetone UG/L 61 100.00% 3650.00 52 61 36 UG/L 0 00% 0 70 0 36 Benzene 1 U 1 U 1 U 1 08 Bromochloromethane UG/L 0.00% 0 0 1 U 0 1 U 1 U Bromodichloromethane UG/L 33 33% 1 10 n 1 U 1 U Bromoform UG/L 0.00% 2.35 1 U 1 U 1 U 1042.86 UG/L 100 00% Carbon disulfide 0 3 2 2 4 5.00 Carbon tetrachloride UG/L 0.00% 0.16 n n 3 1 U 1 U 1 U Chlorobenzene UG/L 0.00% 5 00 39.43 0 0 1 U 1 U 1 U Chlorodibromomethane UG/L 33.33% 080 0 3 1 U 1 U 2 5.00 8591 77 UG/I 0.00% Chloroethane 0 0 3 1.0 1 U 1 U Chloroform UG/L 0.00% 7.00 0 15 0 0 3 1 U 1 U 1 U Cis-1,2-Dichloroethene UG/L 0 00% 5.00 0 1 U 1 U 1 U Cis-1,3-Dichloropropene UG/L 0.00% 5 00 1 U 1 U 0 3 1 [] Ω 0 1328 12 Ethyl benzene UG/L 0 0.00% 5 00 0 0 3 1 U 1 U 1 U Methyl bromide UG/L 0.00% 8.70 0 0 1 U 1 U 1 U Methyl butyl ketone UG/L 0.00% 0 3 5 U 5 U 5 U 5.00 UG/I 0.00% 1.44 1 U Methyl chloride 0 0 0 3 1 U 1 U Methyl ethyl kelone UG/L 0 0.00% 50 00 0 5 U 5 U 5 U 158 12 5 U Methyl isobutyl ketone UG/L 0.00% 0 5 U 5 U 5 00 Methylene chloride 0.00% UG/L 0 4 12 0 0 3 2 U 2 U 2 U Styrene UG/L 0.00% 0 0 3 1 U 1 U 1 U Tetrachloroethene UG/L 0.00% 5.00 1.07 1 U 1 U 1 U UG/I 33.33% 5.00 747.04 3 1 U 1 U Toluene 0 1 1 U **Total Xylenes** UG/L 0.00% 5.00 73000.00 0 0 3 1.11 1 U Trans-1,2-Dichloroethene UG/L 0 00% 5.00 0 1 U 1 U 1 U 1 U Trans-1,3-Dichloropropene UG/L 0 00% 5 00 0 0 3 1 U 1 U 0

1 56

0 02

0.00%

0 00%

Trichloroethene

Vinyl chloride

UG/L

UG/L

5.00

2.00

0

0

0

Table 28-11 S121C Volatiles in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT										SEAD-121 DRMO Ya MW121C- EB023 DU	rd	SEAD-1210 DRMO Yaro MW121C-1 EB153 SA		SEAD-121C DRMO Yard MW121C-2 EB154 SA	
MATRIX										GROUND		GROUNDW		GROUNDW	
SAMP DATE			FREQUENCY			NUMBER	NUMBER		NUMBER	17	-Mar-98	17-	Mar-98	17	-Mar-98
			OF			ABOVE	OF		OF						
PARAMETER	UNIT	MAXIMUM		NYS CLASS GA	DRINKING WATER	TAGM	DETECTS		ANALYSES	VALUE	Q	VALUÉ	Q	VALUE	Q
1.1.1-Trichloroethane	UG/L	0	0.00%	5 00		0 00		0		3	1 U		1 U		1 U
1,1,2,2-Tetrachloroethane	UG/L	0	0.00%	5 00		0 00		0		3	1 U		1 U		1 U
1,1,2-Trichloroethane	UG/L	0	0.00%		0 19	0 00		0		3	1 U		1 U		1 U
1,1-Dichloroethane	UG/L	0	0 00%	5.00		0 00		0		3	1 U		1 U		1 U
1,1-Dichloroethene	UG/L	0	0.00%	5.00		0 00		0		3	1 U		1 U		1 U
1,2-Dibromo-3-chloropropan	n UG/L	0	0.00%	5 00	0 12	0 00		0		3	1 U		1 U		1 U
1,2-Dibromoethane	UG/L	0	0 00%	5 00		0 00		0		3	1 U		1 U		1 U
1,2-Dichlorobenzene	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
1,2-Dichloroethane	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
1,2-Dichloropropane	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
1,3-Dichlorobenzene	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
1,4-Dichlorobenzene	ŲĢ/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Acetone	UG/L	61	100.00%		3650 00	0 00		3		3	52		61		36
Benzene	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Bromochloromethane	UG/L	0	0 00%		1 08	0.00		0		3	1 U		1 U		1 U
Bromodichloromethane	UG/L	1	33,33%		1 10	0.00		1		3	1 U		1 U		1
Bromoform	UG/L	0	0 00%		2 35	0 00		0		3	1 U		1 U		1 U
Carbon disulfide	UG/L	4	100 00%		1042 86	0 00		3		3	2		2		4
Carbon tetrachloride	UG/L	0	0 00%			0.00		0		3	1 U		1 U		1 U
Chlorobenzene	UG/L	0	0 00%			0 00		0		3	1 U		1 U	annestrone Material	1 U
Chlorodibromomethane	UG/L	2	33.33%		0 8 0	1 00		1		3	1 U		1 U	43,44	2
Chloroethane	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
Chloroform	UG/L	0	0.00%			0.00		0		3	1 U		1 U		1 U
Cis-1,2-Dichloroethene	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Cis-1,3-Dichloropropene	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Ethyl benzene	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
Methyl bromide	UG/L	0	0.00%		8 70	0 00		0		3	1 U		1 U		1 U
Methyl butyl ketone	UG/L	0	0.00%			0 00		0		3	5 U		5 U		5 U
Methyl chlonde	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Methyl ethyl ketone	UG/L	0	0.00%			0 00		0		3	5 U		5 U		5 U
Methyl isobutyl ketone	UG/L	0	0.00%		158 12	0.00		0		3	5 U		5 U		5 U
Methylene chlonde	UG/L	0	0.00%		4 12	0.00		0		3	2 U		2 U		2 U
Styrene	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
Tetrachioroethene	UG/L	0	0 00%			0.00		0		3	1 U		1 U		1 U
Toluene	UG/L	1	33.33%			0.00		1		3	1 U		1		1 U
Total Xylenes	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Trans-1,2-Dichloroethene	UG/L	0	0.00%			0 00		0		3	1 U		1 U		1 U
Trans-1,3-Dichloropropene	UG/L	0	0 00%			0 00		0		3	1 U		1 U		1 U
Trichloroethene	UG/L	0	0 00%	5 00	1 56	0.00		0		3	1 U		1 U		1 U

Table 28-12 S121C - Semivolatiles in Groundwater vs. Class GA Non Evaluated Sites

SITE SEAD-121C SEAD-121C SEAD-121C DRMO Yard DESCRIPTION DRMO Yard DRMO Yard MW121C-1 MW121C-1 MW121C-2 LOC ID SAMP ID EB023 EB153 EB154 QC CODE DU SA SA SAMP DETH TOP 0 2.1 1.6 SAMP DEPTH BOT 97 5.1 0 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 ABOVE OF OF OF DETECTS PARAMETER UNIT MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM ANALYSES VALUE Q VALUE Q VALUE Q 1.2,4-Trichlorobenzene UG/L 0 00% 5 00 194 60 0 11 U 1.1 U 268 16 1.2-Dichlorobenzene UG/L 0 0 00% 4 70 0 11 U 1 1 11 1,3-Dichlorobenzene UG/Ł 0 00% 5 00 3248 50 0 1.1 U 1.1 U 1,4-Dichlorobenzene UG/L 0 00% 4 70 2 80 0 3 11 U 1.1 U 0 3650 00 28 U UG/L 0.00% 0 2.7 U 2.4.5-Trichlorophenol 0 3 2,4,6-Trichlorophenol UG/L 0 00% 0 97 0 O 3 1.1 U 1.1 U 2,4-Dichlorophenol UG/L 0 0 00% 109 50 0 11 U 11 U UG/L 0.00% 5 00 730 00 0 1.1 U 2.4-Dimethylphenol 0 0 3 1.1 U 2,4-Dinitrophenol UG/L 0.00% 73 00 0 0 27 U 2.8 U 2,4-Dinitrotoluene UG/L 0 0 00% 5 00 73 00 0 0 11 U 11 U UG/L 0.00% 5 00 36 50 1.1 U 11 U 2.6-Dinitrotoluene 0 3 2-Chloronaphthalene UG/L 0 0.00% 0 0 11 U 1.1 U 2-Chlorophenol UG/L 0 0 00% 182 50 0 0 11 U 11 U 2-Methylnaphthalene UG/L 0 0.00% 1.1 U 1.1 U 5 00 1825.00 0 2-Methylphenol 0 1.1 U 1 1 U UG/I 0 0.00% 2-Nitroaniline UG/L 0 0 00% 0.35 0 0 27 U 2.8 U 2-Nitrophenol UG/L 0 0 00% 0 0 1.1 U 1 1 U 0 15 0 0 1.1 U 1 1 U 3.3° Dichlorobenzidine UG/L 0.00% Ω 2711 2 R I I 3-Nitroaniline UG/L 0 0 00% 109 50 0 Ω 4,6-Dinitro-2-methylphenol 0.00% 5.00 0 0 2.7 U 2.8 U 0 4-Bromophenyl phenyl ether UG/L ٥ 0.00% 2117.00 0 0 1.1 U 1.1 U 1 1 U 4-Chloro-3-methylphenol UG/L 0 0.00% 0 0 11 U 4-Chloroaniline 0 00% 5.00 146 00 0 0 3 1 1 U 1.1 U 0 0 1.1 U 1.1 U 4-Chlorophenyl phenyl ether UG/L 0 0.00% 5.00 1.1 U 1.1 U UG/L 0.00% 0 0 3 4-Methylphenol 0 4-Nitroaniline UG/L 0.00% 5.00 109.50 0 ٥ 3 27 U 28 11 0.00% 2190.00 0 0 3 2.7 U 2.8 U 4-Nitrophenol UG/L 0 0.00% 3 1.1 U 1.1 U Acenaphthene UG/L 0 1 1 U 1.1 U Acenaphthylene UG/L 0 0.00% 0 Ω 3 10950 00 1.1 U Anthracene UG/L 0 00% 0 0 3 1.1 U Benzo[a]anthracene UG/L 0 00% 0 02 1.1 U 1.1 U 10.00 0.00 0 0 1.1 U 1.1 U Benzo[a]pyrene UG/L 0 0.00% 3 11 U 1.1 U Benzo[b]fluoranthene UG/L 0.00% 0.02 0 0 0.00% 0 1.1 U 1.1 U Benzo[ghi]perylene UG/L 0.00% 0 17 0 0 1,1 U 1.1 U UG/L 0 Benzo[k]fluoranthene Bis(2-Chloroethoxy)methane UG/L 0 0.00% 0 0 1.1 U 1.1 U 0.00% 0 01 0 1.1 U 11 U Bis(2-Chloroethyl)ether UG/L 1.1 U 11 U 0.00% 0 26 0 0 Bis(2-Chloroisopropyl)ether UG/L 0 0.23 JB 0 4 JB Bis(2-Ethylhexyl)phthalate UG/L 0.4 200.00% 50 00 4.80 0 2 0.12 33.33% 7300 00 0 0.12 .1 1.1 U Butylbenzylphthalate UG/L UG/L 0.00% 3 36 0 0 1.1 U 11 U Carbazole 0 1.1 U 1.1 U Chrysene UG/L n 0.00% 1 68 0 0 0.79.1 17 Di-n-butylphthalate UG/L 1.7 66 67% 50 00 0 2 Di-n-octylphthalate UG/L 0.00% 730 00 0 0 1.1 U 1.1 U 0 1.1 U 11 U 0.00% 0.00 0 Dibenz[a,h]anthracene UG/L 0 Ω 1.1 U 11 U Dibenzofuran UG/L 0.00% 146.00 0 0 29200.00 0 0.057 J 11 U Diethyl phthalate UG/L 0.057 33.33% 365000.00 0 0 1.1 U 1.1 U 0.00% Dimethylphthalate UG/L 0 1.1 U 11 U Fluoranthene 0.00% 1460.00 0 0 3 UG/L 1460 00 0 1.1 U 0.48 J UG/L 0.48 33.33% Fluorene 1 1 U 0.35 0.01 0 0 3 1.1 U Hexachlorobenzene UG/L 0.00% 0.061 J 0 4 J Hexachlorobutadiene UG/L 0,4 66.67% 0 14 0 2 3 0.15 0 0 3 1.1 U 1 1 U 0.00% Hexachlorocyclopentadiene UG/L 0 1.1 U 1.1 U 0.75 0 0 3 Hexachloroethane UG/L 0 0.00% 11 U 0 00% 0.02 0 Ω 3 1.1 U Indeno[1,2,3-cd]pyrene UG/L 0 0 0 3 1.1 U 1.1 U UG/L 0.00% Isophorone 0 13 72 1.1 U 11 U N-Nitrosodiphenylamine UG/L 0.00%

Table 28-12 S121C - Semivolaliles in Groundwater vs. Class GA Non Evaluated Sites

								MW121C-1 EB023 DU	0	MW121C-1 EB153 SA	2.1	MW121C-2 EB154 SA	1 6
								0.000	0	0.501.11.015		000111014	5 1
	FREQUENCY			NUMBER	NL			17-	Mar-98	17	-Mar-98	17	7-Mar-98
	OF			ABOVE		OF	OF						
MAXIMUM	DETECTION	NYS CLASS GA	DRINKING WATER	TAGM	DE	TECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
0	0 00%		0 01		0	0		3			1.1 U		1 1 U
0	0 00%		1460 00		0	0		3			1 1 U		1 1 U
0	0.00%		3 39		0	0		3			1.1 U		1 1 U
0			00 0 56		0	0		3			27 U		2.8 U
0.24					0	1		3			1.1 U		0 24 J
			00 21900 00		0	0		3			1.1 U		1 1 U
					0	1		3			1.1 U		0 13 J
					n			3 11					0 44 U
		MAXIMUM DETECTION 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.24 33.33% 0 0.00% 0.13 33.33%	OF DETECTION NYS CLASS GA 0 000% 0 000% 0 000% 0 000% 10 0.24 33 33% 0 000% 11 0.33 333%	OF MAXIMUM DETECTION NYS CLASS GA DRINKING WATER 0 00% 01 0 00% 1460 00 0 00% 1 00 056 0 24 33 33% 0 00% 1 00 21900 00 0 13 33 33% 1095 00	MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM 0 000% 001 0 000% 1460 00 0 000% 339 0 0.00% 100 056 0.24 33 33% 0 000% 100 21900 00 0 13 33 33% 1095 00	OF ABOVE MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DE 0 0 00% 0 00% 1460 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OF ABOVE OF AMAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS 0 000% 001 1460 00 0 0 0 000% 3 3 39 0 0 0 0.00% 1 00 056 0 0 0 0.24 33 33% 0 1095 00 0 0 0 13 33 33% 1 095 00 0 1	OF OF ABOVE OF OF OF ANALYSES MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES 0 000% 01460 00 0 0 0 0 000% 33 39 0 0 0 0 0.00% 1 00 0 56 0 0 0 0 24 33 33% 0 1095 00 0 1 0 0 00% 1 00 21900 00 0 0 0 13 33 33% 1 095 00 0 1	FREQUENCY OF ABOVE OF	FREQUENCY OF	FREQUENCY OF	FREQUENCY OF	FREQUENCY OF

. . . .

.

~ rs ** .

and the

4 11 25 14

~ . ..

Table 28-13 S121C - Semivolatiles/TPH in Ground Water vs. DRINKING WATER STANDARDS Non-Evaluated Sites

SEAD-121C SEAD-121C SEAD-121C SITE DESCRIPTION DRMO Yard DRMO Yard DRMO Yard MW121C-1 MW121C-1 MW121C-2 LOC ID EB023 EB153 EB154 SAMP ID DU SA SA QC CODE SAMP DETH TOP 0 2 1 16 SAMP DEPTH BOT 0 97 5 1 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 SAMP DATE FREQUENCY 17-Mar-98 ABOVE OF OF OF DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE PARAMETER UNIT MAXIMUM 0 00 1,2,4-Trichlorobenzene UG/L 0 0.00% 5 00 194 60 0 1 1 U 11 U 0 00% 4 70 268 16 0 00 0 11 U 11 U UG/L 0 1.2-Dichlorobenzene 0.00% 5 00 3248 50 0.00 0 11 U 11 U 1.3-Dichlorobenzene UG/L 0 3 1,4-Dichlorobenzene UG/L 0 00% 4 70 2 80 0 00 0 1.1 U 11 U 0.00% 3650 00 0.00 0 3 2.7 U 2.8 U 2.4,5-Trichlorophenol UG/L 0 2,4,6-Trichlorophenol UG/L 0 0 00% 0.97 0.00 0 11 U 11 U 0 0.00% 109 50 0 00 11 U 11 U UG/L 2.4-Dichlorophenol 0.00 2,4-Dimethylphenol UG/L 0 0.00% 5.00 730 00 n 3 1.1 U 1 1 II UG/L 0 0 00% 73 00 0 00 0 2.7 U 28 U 2 4-Dinitrophenol 0.00% 5 00 73 00 0 00 1.1 U 11 U 0 0 3 2,4-Dinitrotoluene UG/L 2,6-Dinitrotoluene UG/L 0 0 00% 5 00 36 50 0.00 0 1.1 U 11 U 0 00 UG/L 0 0.00% 0 3 1.1 U 1 1 U 2-Chloronaphthalene 182 50 0.00 1.1 U 2-Chlorophenol UG/L 0 0 00% Λ 3 1.1 U 0.00 1.1 U 11 U UG/L 0 0.00% 2-Methylnaphthalene 5 00 1825 00 0.00 0 11 U 3 1.1 U 2-Methylphenol UG/L 0 0.00% 0.00% 0 35 0.00 0 3 2.7 U 28 U 2-Nitroaniline UG/L 0 0.00% 0.00 0 1.1 U 11 U 0 3 2-Nitrophenol UG/L 0.00% 0 15 0.00 n 11 U 1.1 U 3.3 - Dichlorobenzidine UG/L 0.00 3 2.7 U 28 U UG/L 0 0.00% 109.50 0 3-Nitroaniline 5 00 0.00 2.7 U 28 U 4,6-Dinitro-2-methylphenol UG/L 0 0 00% 0 3 2117.00 0.00 0 1.1 U 11 U 0 0.00% 4-Bromophenyl phenyl ether UG/L 0.00 0 1.1 U 1.1 U ٥ 0.00% 3 4-Chloro-3-methylphenol UG/L 0 0.00% 5 00 146 00 0.00 0 3 1.1 U 11 U UG/L 4-Chloroaniline 0 00 1.1 U 11 U 0 0.00% 4-Chlorophenyl phenyl ether UG/L 0 0.00% 5.00 0.00 0 3 1.1 U 1 1 U 4-Methylphenol UG/L 109 50 0 00 0 3 2.7 U 2.8 U UG/L 0 0.00% 5.00 4-Nitroaniline 2.7 U 28 U 2190 00 0.00 3 4-Nitrophenol UG/L 0 0.00% 0.00 0 1.1 U 11 U Acenaphthene 0 0.00% UG/L 0 00 0 3 1.1 U 11 U 0.00% Acenaphthylene UG/L Ω 10950 00 11 U 0 0.00% 0 00 Ω 3 11 U UG/L Anthracene 0.00% 0.02 0.00 1.1 U 1.1 U Benzo(a)anthracene UG/L Ω 11 U 10 00 0.00 Λ 3 1.1 U Benzo[a]pyrene UG/L 0 0.00% 0.00 Benzo[b]fluoranthene LIG/I 0 0.00% 0 02 0 00 0 3 1.1 U 11 U 0.00 3 1.1 U 11 U Benzo[ghi]perylene UG/L 0 0.00% 11 U UG/L 0 0.00% 0 17 0.00 Ω 3 1.1 U Benzo[k]fluoranthene 11 U 11 U 0.00 0 3 0 0.00% Bis(2-Chloroethoxy)methan UG/L 1.1 U 11 U UG/L 0 0.00% 0.01 0.00 0 3 Bis(2-Chloroethyl)ether 1.1 U 11 U 0.00% 0 26 0 00 Bis(2-Chloroisopropyl)ether UG/L Ω 0.23 JB 0.4 JB Bis(2-Ethylhexyl)phthalate UG/L 04 200 00% 50 00 4.80 0.00 2 0.12 33.33% 7300 00 0 00 3 0.12 J 11 U UG/L Butylbenzylphthalate 11 U 0.00 0 3 1.1 U UG/L 0 0.00% 3 36 Carbazole 1.1 U 1 68 0.00 0 3 1.1 U UG/I 0 0 00% Chrysene 1.7 0.79 J 50.00 0.00 3 17 66 67% Di-n-butylphthalate UG/L 730 00 1.1 U 1.1 U 0 00% 0.00 Ω 3 UG/L 0 Di-n-octylphthalate 1.1 U 11 U 0 00 0 00 0.00% Dibenz[a,h]anthracene UG/L 0 146.00 0.00 0 3 1.1 U 11 U 0 0.00% Dibenzofuran UG/L 0.057 33 33% 29200.00 0 00 3 0.057 J 1 1 U Diethyl phthalate UG/L 1.1 U 11 U 0 0.00% 365000 00 0.00 0 3 Dimethylphthalate UG/L 1460.00 0 00 Ω 1.1 U 11 U UG/L 0.00% Fluoranthene 0 0 48 J 0 00 3 1.1 U 1460 00 UG/L 0.48 33 33% Fluorene 0 35 0.01 0 00 0 3 1.1 U 11 U 0 00% Hexachlorobenzene UG/L 0 0.061 J 0.4 J 1 00 3 0.14 2 UG/L 0.4 66.67% Hexachlorobutadiene 0.15 0 00 0 3 1.1 U 1.1 IJ 0.00% Hexachlorocyclopentadiene UG/L 0 0 00 0 3 1.1 U 11 U 0.75 0 0.00%

Page 1 s121cgw-dw s121cgw.xls

Hexachloroethane

UG/L

Table 28-13 S121C Semivolatiles/TPH in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE										SEAD-121C DRMO Yard MW121C-1 EB023 DU		SEAD-121C DRMO Yard MW121C-1 EB153 SA		SEAD-121C DRMO Yard MW121C-2 EB154 SA	
SAMP DETH TOP											0		2 1		16
SAMP DEPTH BOT											0		9 7		5 1
MATRIX										GROUNDWA	TER	GROUNDW	ATER	GROUNDWA	ATER
SAMP DATE			FREQUENCY			NUMBER	NUMBER		NUMBER	17-M	ar-98	17-1	Mar-98	17	'-Mar-98
			OF			ABOVE	OF		OF						
PARAMETER	UNIT	MAXIMUM	DETECTION	NYS CLASS GA	DRINKING WATER	TAGM	DETECTS		ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
Indeno[1,2,3-cd]pyrene	UG/L	0	0 00%		0 02	0 00		0		3			11 U		1 1 U
Isophorone	UG/L	0	0 00%			0 00		0		3			1 1 U		1 1 U
N-Nitrosodiphenylamine	UG/L	0	0 00%		13 72	0 00		0		3			11 U		1 1 U
N-Nitrosodipropylamine	UG/L	0	0 00%		0 01	0 00		0		3			1.1 U		1.1 U
Naphthalene	UG/L	0	0 00%		1460 00	0.00		0		3			1.1 U		1 1 U
Nitrobenzene	UG/L	0	0 00%		3 39	0 00		0		3			1.1 U		11 U
Pentachlorophenol	UG/L	0	0 00%	1 00	0 56	0 00		0		3			2.7 U		28 U
Phenanthrene	UG/L	0 24	33 33%			0 00		1		3			1.1 U		0 24 J
Phenol	UG/L	0	0 00%	1.00	21900 00	0 00		0		3			11 U		11 U
Pyrene	UG/L	0 13	33 33%		1095 00	0 00		1		3			11 U		0 13 J
TPH	MG/L	0	0 00%		0 48	0 00		0		3			0 49 U		0 44 U

Table 28-14 S121C.- Pesticides/PCBs in Groundwater vs. Class GA Non Evaluated Sites

SITE: SEAD-121C SEAD-121C SEAD-121C DESCRIPTION DRMO Yard DRMO'Yard DRMO Yard LOC ID: MW121C-1 MW121C-1 MW121C-2 SAMP_ID: EB023 EB153 EB154 QC CODE: DU SA SA SAMP DETH TOP: 2.1 1.6 SAMP DEPTH BOT 9.7 51 MATRIX: GROUNDWATER GROUNDWATER GROUNDWATER SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER DETECTION NYS CLASS GA UNIT MAXIMUM DRINKING WATER TAGM DETECTS ANALYSES VALUE VALUE Q Q VALUE Q 4,4'-DDD UG/L 0.9 66 67% 0.10 0 28 0.9 0.11 U 0.81 P 4.4 -DDE UG/L 100.00% 0.20 0.3 0.10 0.27 P 0.093 JP 0.3 P 4,4'-DDT UG/L 0.56 100.00% 0.10 0 03 0.29 P 1 0.56 P Aldrin UG/L 0 0.00% 0 06 0.00 0 0 3 0.057 U 0.057 U 0.054 U Alpha-BHC UG/L 0.059 66 67% 0 2 0.057 U 0.036 J 0.059 P Alpha-Chlordane UG/L 5.00 0 096 66.67% 0 0.096 0.068 0.054 U Aroclor-1016 UG/L 0 00% 2.56 0 0 1.1 U 1.1 U 1.1 U Aroclor-1221 UG/L 0 00% 0 0 0 2.3 U 2.3 U 2.2 U UG/L Aroclor-1232 0 0 00% 1.1 U 1.1 U 1.1 U Aroclor-1242 UG/L 0.00% 0 0 1.1 U 1.1 U 1.1 U Aroclor-1248 UG/L 0.00% 1.1 U 0 0 1.1 U 1.1 U UG/L Aroclor-1254 0 0.00% 0 10 0.73 0 0 1.1 U 1.1 U 1.1 U Aroctor-1260 UG/L 0 0.00% 0.10 1.1 U 1.1 U 1.1 U Beta-BHC UG/L 0.56 100.00% 5.00 0 0.56 P 0.096 P 3 0.061 P UG/L 0.23 100.00% Delta-BHC 0 0.23 P 0.094 0.16 P Dieldrin UG/L 0.2 66.67% 0.10 0,00 0.11 U 0.052 JP 8.1 P Endosulfan i UG/L 0.11 66 67% 219.00 0 0.11 P 0.08 P 0.054 U Endosulfan II UG/L 0.28 66.67% 219 00 Π 2 0.28 P 0.11 U 0.28 Endosulfan sulfate UG/L 0.69 100.00% 0 0.28 P 0.14 P 0.59 P Endrin UG/L 0.71 33.33% 0.10 10.95 0.11 U 0.11 U 0.71 P Endrin aldehyde UG/L 0.97 100.00% 5.00 10.95 0 3 0.22 P 0.073 JP 0.97 P 33.33% UG/L Endrin ketone 0.2 5.00 10 95 0 0.11 U 0.11 U 0.2 Gamma-BHC/Lindane UG/L 0.038 33.33% 5.00 0 05 0 0.057 U 0.057 U 0 038 JP Gamma-Chlordane UG/L 0.47 100.00% 0 0.47 0.086 P 0.17 P Heptachlor UG/L 0.23 66.67% 0.05 0.00 0.23 P 6.058 P 2 2 3 0.054 U Heptachlor epoxide UG/L 0.11 66.67% 0.05 0.00 2 2 0.057 U 0,072 P 0.11 P Methoxychlor UG/L 0 62 66.67% 35 00 182.50 0 2 0.57 0.57 U 3 0.62 P

0

5.7 U

5.7 U

5.4 U

Toxaphene

UG/L

0.00%

Table 28-15 S121C - Pesticides/PCBs in Ground Water vs DRINKING WATER STANDARDS Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID. QC CODE.									SEAD- DRMO MW121 EB023 DU	Yard	SEAD-121 DRMO Yar MW121C-1 EB153 SA	d	SEAD-1210 DRMO Yard MW121C-2 EB154 SA	
SAMP DETH TOP										0		2.1	•	1.6
SAMP DEPTH BOT										0		9.7		5 1
MATRIX									GROUI	NDWATER	GROUNDY	VATER	GROUNDW	VATER
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		17-Mar-98	17	-Mar-98	1	7-Mar-98
			OF			ABOVE	OF	OF						
PARAMETER	UNIT	MAXIMUM	DETECTION	NYS CLASS GA	DRINKING WATER	TAGM	DETECTS	ANALYSE	VALUE		VALUE	Q	VALUE	Q
4,4 -DDD	UG/L	09	66.67%	0.10	0.28	2.00	2		3	0.9		0.11 U	御じ湯用子	0.81 P
4,4'-DDE	UG/L	0.3	100.00%	0 10	0.20	2.00	3		3	0.27 P		0.093 JP		0,3 P
4.4 -DDT	UG/L	0.56	100 00%	0.10	0.03	3.00	3	,	3	0.29 P	100 000	0.28		0.56 P
Aldrin	UG/L	0	0.00%	0.06	0 00	0.00	0	•	3	0.057 U		0.057 U		0.054 U
Ałpha-BHC	UG/L	0.059	66.67%			0.00	2		3	0.057 U		0.036 J		0.059 P
Alpha-Chlordane	UG/L	0.096	66 67%	5.00		0.00	2		3	0.096		0 068		0.054 U
Aroclor-1016	UG/L	0	0.00%		2 56	0.00	()	3	1.1 U		1.1 U		1 1 U
Aroclor-1221	UG/L	0	0.00%			0.00	()	3	2.3 U		2.3 U		22 U
Aroclor-1232	UG/L	0	0.00%			0.00	()	3	1.1 U		1.1 U		1 1 U
Aroclor-1242	UG/L	0	0.00%			0.00	()	3	1.1· U		1.1 U		1.1 U
Aroclor-1248	UG/L	0	0.00%			0 00	(3	1.1 U		1.1 U		1.1 U
Aroclor-1254	UG/L	0	0.00%			0.00	(3	1.1 U		1.1 U		11 U
Aroclor-1260	UG/L	0	0.00%	0.10)	0.00	(3	1.1 U		1.1 U		1.1 U
Beta-BHC	UG/L	0 56	100.00%	5.00)	0.00	3		3	0 56 P		0.096 P		0.061 P
Delta-BHC	UG/L	0.23	100.00%			0.00	3		3	0.23 P		0.094		0.16 P
Dieldnn	UG/L	0.2	66.67%	0.10	0.00	2.00	2		3	0.11 U	- 2007	0.052 JP	02	6.2 P
Endosulfan I	UG/L	0.11	66.67%		219.00	0.00	2		3	0.11 P		0.08 P		0.054 U
Endosulfan II	UG/L	0.28	66.67%		219.00	0.00			3	0.28 P		0.11 U		0.28
Endosulfan sulfate	UG/L	0.69	100.00%			0.00	3	3	3	0.28 P		0.14 P		0.69 P
Endrin	UG/L	0.71	33.33%	0.10	10.95	0.00	1		3	0.11 U		0.11 U		0.71 P
Endrin aldehyde	UG/L	0.97	100.00%	5.00	10.95	0.00	3	3	3	0.22 P		0.073 JP		0.97 P
Endrin ketone	UG/L	0.2	33.33%	5 00	10 95	0.00	•		3	0.11 U		0.11 U		0.2
Gamma-BHC/Lindane	UG/L	0.038	33.33%	5 00	0.05	0.00	1		3	0.057 U		0.057 U		0.038 JP
Gamma-Chlordane	UG/L	0.47	100.00%			0 00	3		3	0.47		0.066 P		0.17 P
Heptachlor	UG/L	0.23	66.67%	0.05	0.00	2.00	2		3	6,15 P	S13 (622)	8.858 P		0.054 U
Heptachlor epoxide	UG/L	0.11	66.67%			2.00	2		3	0.057 U	A	0.072 P	10000	0.11 P
Methoxychlor	UG/L	0 62	66,67%		182.50	0 00	2		3	0.57		0.57 U		0.62 P
Toxaphene	UG/L	0	0.00%			0.00	()	3	5.7 U		5.7 U		5.4 U

Table 28-16 S121C - Metals in Groundwater vs. Class GA Non Evaluated Sites

SITE: SEAD-121C SEAD-121C SEAD-121C DESCRIPTION: DRMO Yard DRMO Yard DRMO Yard MW121C-2 MW121C-1 MW121C-1 LOC ID. SAMP ID: EB023 EB153 EB154 QC CODE: DU SA SA SAMP. DETH TOP: 2.1 1.6 0 SAMP DEPTH BOT: 0 9.7 5.1 GROUNDWATER GROUNDWATER GROUNDWATER MATRIX: NUMBER NUMBER NUMBER SAMP DATE FREQUENCY 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE Q Aluminum UG/L 5350 100.00% 36500.00 0 3 133 B 738 5350 UG/L 0,00% 14,60 0 5.1 U 5.1 U · 5.1 U Antimony 0 0.01 0 UG/L 25.00 3.7 U 3.8 B 3.7 U 3.8 33.33% 3 Arsenic 1.04 39.5 B Barium UG/L 106 100.00% 1000.00 0 3 38 B 106 B UG/L 0.00% 0.00 0 0.1 U 0.1 U 0.1 U Beryllium 0 0 Cadmium UG/L 0.39 33.33% 10 00 0 00 0.39 B 0.3 U 0.3 U Calcium UG/L 172000 100 00% 0 3 172000 E 163000 E 162000 E Chromium UG/L 6.5 100.00% 50 00 0.00 0 3 1.2 B 2.4 B 6.5 B UG/L 3.6 66.67% 2190.00 0 2 1.4 U 1.6 B 3.6 B Cobalt UG/L 66.67% 200.00 1460.00 1.2 U 5.2 B 5.2 0 2 2 B Copper Cyanide UG/L 0 0.00% 100.00 0 0 5 U 5 U 5 U 5620 E UG/L 5620 100.00% 300.00 10950 00 3 346 € 1430 E Iron 1.8 U UG/L 0.00% 25.00 0 1.8 U 1.8 U Lead n UG/L 24100 100.00% 0 3 23800 24100 23200 Magnesium Manganese UG/L 1590 100.00% 300 00 0.10 3 W. Line attention makes 1100 0.1 U 0.1 U 0.1 U Mercury UG/L 0 0.00% 2.00 0.59 0 4.2 B UG/L 10.6 100.00% 730 00 0 3 2.8 B 10.6 B Nickel 21400 Potassium UG/L 21400 100.00% 0 3 7610 10900 UG/L 300.00% 10.00 182.50 3.7 B° 5.6 * 4.3 B° 5.6 Selenium UG/L 0.00% 50.00 182.50 0 0 1.3 U 1.3 U 1.3 U Silver 0 11200 95200 Sodium UG/L 95200 100.00% 20000.00 3 8920 Thallium UG/L 0.00% 2 92 0 3 6.7 U 6.7 U 6.7 U 0 UG/L 66.67% 255.50 0 2 3 1.5 U 2.4 B 6.5 B 6.5 Vanadium

Page 1

3

300,00

100.00%

16.4

10950.00

2.4 B

9.3 B

16.4 B

Zinc

UG/L

Table 28-17 S121C - Metals in Ground Water vs. DRINKING WATER STANDARDS Non-Evaluated Sites

SITE SEAD-121C SEAD-121C SEAD-121C DESCRIPTION. DRMO Yard DRMO Yard **DRMO** Yard LOC ID. MW121C-1 MW121C-1 MW121C-2 SAMP ID EB023 EB153 EB154 QC CODE DU SA SAMP DETH TOP: 0 2.1 1.6 SAMP DEPTH BOT 0 9.7 5.1 GROUNDWATER MATRIX: GROUNDWATER GROUNDWATER NUMBER NUMBER SAMP DATE FREQUENCY NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF MAXIMUM PARAMETER DETECTION NYS CLASS GA DRINKING WATER TAGM DETECTS UNIT ANALYSES VALUE Q VALUE Q VALUE Q Aluminum UG/L 5350 100 00% 36500 00 0 00 3 133 B 738 5350 Antimony UG/L 0 14 60 0.00 0.00% 0 3 5.1 U 5.1 U 5.1 U Arsenic UG/L 3.8 33.33% 25 00 0 01 1 00 3 3.7 U ₩ J# B 3.7 U Barium UG/L 106 100.00% 1000 00 1.04 3.00 39.5 B 3 3 38 B 106 B Beryllium UG/L 0 0 00% 0.00 0 00 0 0.1 U 0.1 U 0 1 U Cadmium UG/L 0.39 33 33% 10 00 0 00 1.00 3 0.39 B 0.3 U 0.3 U Calcium UG/L 172000 100.00% 0.00 3 3 172000 E 163000 E 162000 E Chromium UG/L 6.5 100.00% 50 00 0 00 3.00 T. B B STATE OF B 3 6.5 B UG/L 66.67% 2190 00 0.00 3.6 Cobalt 3 1.4 U 1.6 B 3.6 B 200.00 Copper UG/L 5.2 66.67% 1460.00 0 00 3 1.2 U 2 B 52 B Cyanide UG/L 0 0.00% 100 00 0.00 0 3 5 U 5 U 5 U 5620 10950.00 0.00 iron UG/L 100.00% 300 00 3 3 346 E 1430 E 5620 E Lead UG/L 0 0.00% 25.00 0.00 0 3 1.8 U 1.8 U 1.8 U UG/L 24100 100.00% Magnesium 0.00 3 23800 24100 23200 Manganese UG/L 1590 100,00% 300 00 0 10 3 00 3 1590 1140 1100 Mercury 200 UG/L 0 0.00% 0.59 0.00 0 3 0.1 U 0.1 U 0.1 U Nickel UG/L 10.6 100.00% 730 00 0 00 3 3 2.8 B 4.2 B 10 6 B UG/L 21400 0.00 7610 Potassium 100.00% 3 3 10900 21400 UG/L 10 00 182 50 0.00 Selenium 56 300.00% 3 3.7 B* 5.6 * 43 B* Silver UG/L 0 0.00% 50 00 182 50 0.00 0 3 1.3 U 1.3 U 1.3 U UG/L 100.00% 20000 00 Sodium 95200 0.00 3 3 8920 11200 95200 Thallium UG/L 0 0.00% 2.92 0 00 0 3 67 U 6.7 U 6.7 U UG/L 66.67% 255.50 0.00 Vanadium 6.5 3 15 U 2.4 B 6.5 B

0 00

3

2.4 B

9.3 B

16.4 B

3

UG/L

Zinc

100.00%

16.4

300 00

10950.00

SEAD-121D

Building 306 and 308 Hazardous Materials Release

Table 29-1

Sample Collection Information SEAD-121D - Building 306 308 Hazardous Materials Release

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL	SB121D-1	EB220	3/8/98	0.00	0.20	SA	Location is downgradient of Bldg. 306 in stressed vegatation area where rumored spill took place.
SOIL	SB121D-1	EB221	3/8/98	0.80	1.40	SA	Same location as above. Sample taken near bedrock, (2.0 ft). No VOC's or impact to soils detected.
SOIL	SB121D-2	EB218	3/8/98	0.00	0.20	SA	Location is downgradient of Bldg. 306 and a concrete pad. Stressed vegatation.
SOIL	SB121D-2	EB219	3/8/98	4.00	4.50	SA	Same location as above. Sample taken near bedrock. (5.0 ft.). No VOC's or impact to soils detected.
SOIL	SB121D-3	EB222	3/8/98	0.00	0.20	SA	Location is downgradient of Bldg. 308 and site of removed UST & existing AST.
SOIL	SB121D-3	EB223	3/8/98	2.30	2.50	SA	Same location as above. Sample taken at top of water table. No VOC's or impact to soils detected.
SURFACE SOIL	SS121D-1	EB224	3/8/98	0.00	0.20	SA	Sample taken at Bldg. 306 down gradient of a loading area where spills may of occured. Stressed vegatation.
SURFACE SOIL	SS121D-2	EB225	3/8/98	0.00	0.20	SA	Sample taken SE corner Bldg. 306 near door. Stressed vegatation.

Table 29-2 SEAD-1210 Volables in Soil vs. Na TAGM Non Evaluated Sites

DESCRIPTION LOGIO SAMP_ID OC CODE SAMP DETH TOP SAMP DETH TOP SAMP DETH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD 1 Bldg 30 and 308 Release SB1210 FR220 SA SOIL 8 M	HM	SEAD-121D Bldg 306 and 308 HM Rojeake SB121D 1 EB221 SA 0.8 1.4 SOIL 8-Mai 98	SEAD 121D Bidg 306 and 308 HM Release SB121D 2 EB218 SA 0 SOIL 8-Mar 9	0 2	SEAD-121D Bidg 306 and 308 MM Release SB121D-2 EB219 CA 4 5 SOIL 6-Mar-96	SEAD-121D Ridg 306 and 306 HM Release SB121D-3 EB222 SA 0 0 2 SOIL 6-Mar-98	SEAD-1210 Bidg 306 and 308 HM Release SB1210-3 EB223 SA 23 75 SOIL 8-Mar 98	SEAD-121D Bidg 306 and 308 HM Release SS121D-1 EB224 SA 0 02 SOIL B-Mai-98	SEAD 1210 Bldg 306 and 308 HM Refease SS1210-2 E8225 SA 0 0 2 SOIL 8-Mar 98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	0	VALUE O	VALUE	0	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1.1.1 Trichloroethane	UG/KG	0	0.00%	800	18396000	0			8	15 U	12 U		10	12 U	10 U	12 U	14 U	VALUE Q
1 1 2 2 Tehachloroethane	UG/kG	0	0.00%	600	286160	0			8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
1.1.2 Inchloroethane	UG/KG	0	0.00%		100407	0	C		8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
1.1 Dichloroethane	UG/KG	0	0.00%	200	52560000	0	0		8	15 U	12 U	1	1.0	12 U	10 U	12 U	14 U	tt U
1 1 Dichloroethene	UG/KG	0	0.00%	400	9539	0			8	15 U	12 U	t	1.0	12 U	10 U	12 U	14 U	11 U
1.2-Dichloroethane	UG/KG	0	0.00%	100	62892	0			В	15 U	12 U	1	1 U	12 U	10 U	12 U	14 U	11 U
1.2 Dir Horoethene (total)	UG/KG	0	0.00%			0			8	15 U	12 U	1	1 U	12 U	10 U	12 U	14 U	11 U
1.2 Dichloropropane	UG/KG	0	0.00%		84165	0			8	15 U	12 U	1	1 U	12 U	10 U	12 U	14 U	n u
Acetone	UG/KG	11	50 00%	200	52560000	0	4		8	15 U	12 U	1	1 0	11 J	7 J	12 U	7 JB	5 JB
Berizene	UG/KG	0	0.00%	60	197352	0			В	15 U	12 U	1	1 U	12 U	10 U	12 U	14 U	ti U
Bromodir hloromethane	UG/KG	0	0.00%		92310	0			В	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
Biomoform	UG/KG	0	0.00%		724456	0			В	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
Carbon disulfide	UG/KG	0	0.00%	2700	52560000	0			В	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
Carbon tetrachloride Chlorobenzene	UG/KG UG/KG	0	0.00%	600	44025	0			8	15 U	12 U		1.6	12 U	10 U	12 U	14 U	11 U
Chlorodebromomethane	UG/KG	0		1700	10512000	0			8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	17 U
Chloroethane	UG/KG	0	0.00%	1900	68133 210240000	0			8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
Chloroform	UG/KG	4	12 50%	300	938230	0			8	15 U	12 0		1 0	12 U	10 U	12 U	14 U	11 U
Cis-1.3-Dichloropropene	UG/KG	0	0.00%	300	330730	0			8	15 U 15 U	12 U 12 U		1 U	12 U	10 U	12 U	14 U	4 J
Ethyl benzene	UG/KG	0	0.00%	5500	52560000					15 U			1 U	12 U	10 U	12 U	14 U	11 U
Methyl bromide	UG/KG	0	0 00%	3300	751608				0	15 U	17 U 12 U		1 U	12 U 12 U	10 U	12 U	14 U	11 U
Methyl bulyl ketone	UG/KG	0	0 00%		737100					15 U	12 U		1 U	12 U	10 U 10 U	12 U	14 U	11 U
Methyl chloride	UG/KG	o o	0.00%		440246	0	0		9	15 U	17 U		1 U	12 U	10 U	12 U	14 U	11 U
Methyl ethyl ketone	UG/KG	0	0.00%	300					8	15 U	17 U		1 U	12 U	10 U	12 U 12 U	14 U	11 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	42048000	0	0		8	15 U	12 U		1 U	12 U	10 U	12 U	14 U 14 U	11 U
Methylane chloride	UG/KG	1	12 50%	100	763093	0	1		8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 U
Styrene	UG/KG	0	0.00%			0	0		8	15 U	12 U		1 U	12 U	10 U	12 U	14 U	11 0
Tetrachioroethene	UG/KG	0	0.00%	1400	110062	0	0		8	15 D	12 U	5	1.0	12 U	10 U	12 U	14 U	11 U
Toluene	UG/KG	14	62 50%	1500	105120000	0	5		8	15 U	12 U		2 J	12 U	14	4 J	2 J	4 J
Total Xylenes	UG/KG	2	12 50%	1200	1051200000	0	1		8	15 U	12 U		1 U	12 U	2 J	12 U	14 U	11 U
Trans 1.3 Dichloropropene	UG/KG	0	0.00%			0	0		8	15 U	12 U	1	1 U	12 U	10 U	12 U	14 U	11 U
Trichloroethene	UG/KG	0	0.00%	700	520291	0	0		В	15 U	12 U	1	1.0	12 U	10 U	12 U	14 U	11 U
Vinyl chloride	UG/KG	0	0.00%	200	3012	0	0		8	15 U	12 U	1	t U	12 U	10 U	12 U	14 U	11 U

1

	SOUL SAND	- 4	18, 7, 7, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 A M M M M M M M M M M M M M M M M M M	11.23	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10.00	10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.00	10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1	10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
NOB 4 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 N. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SON	4.4 Syn	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41 A A A A A A A A A A A A A A A A A A A	2	2.5 P.	A MARKA SA	2	A COLOR OF THE CAME AND THE CAM	P P P P P P P P P P P P P P P P P P P	2. 1	T T T T T T T T T T T T T T T T T T T	P		P		P
5	Net-9k NOB A	Na-98 N/16 N/16 N/16 N/16 N/16 N/16 N/16 N/16	Name 98 × Name 1	Name	Name of Action 1992	22 X W X X X X X X X X X X X X X X X X X	2.0 V U I I I I I I I I I I I I I I I I I I	New XVIII	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	2.0	2.0	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	Name of the state	N N N N N N N N N N N N N N N N N N N	Name of the state	N N N N N N N N N N N N N N N N N N N	Name of the control o	X X X X X X X X X X X X X X X X X X X
R-VIn 98	> −	2 : 2 : :	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 212112	\$ 01001000 0	3 5 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 010010000000 0	8 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0111111111111111111111111111111111111	2	0=====================================	9	0	5 2122122222222222222222222222222222222	0	0	0	0	5 21011000000000000000000000000000000000	0
Z	NUMBER KYDER OF ANALYSES Y UTI	NUMBER K15H- OF ANALYSES (UII R R R	NUMBER K 1551-	NUMBER VIEW	NUMBER CATES AND CONTROL OF ANALYSES AUTION OF AUTION OF ANALYSES AUTION OF ANALYSES AUTI	NUMBER VALUE AND		NUMBER CATES AND A STATE AND A	NUMBER CATES AND	NUMBER CATES NU	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	10	MANDER A. M.	NUMBER CATTER CA		MUMBER A. C.	AMABER A. C.	ADMORA STATE OF THE PROPERTY	AMALY (2015) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	AMALATION NO N
	6	OETEG	DETEC	PETEC PETEC	PETEG	DETEG	DE TEG	DETEG	06 DETEC	06 150	20 DETEC	20 E E E E E E E E E E E E E E E E E E E	90 00 TEG	OF DETEC	2013	E 23			\$5 1-	<i>\$</i>)
		68 69 70	640 10.7 10.9	60 E0	88 89 89 89 89 89 89 89 89 89 89 89 89 8	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88 88 88 88 88 88 88 88 88 88 88 88 88	88 88 88 88 88 88 88 88 88 88 88 88 88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	640 640 640 640 640 640 640 640 640 640	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 89 99 99 99 99 99 99 99 99 99 99 99 9	7ACM	7.62.44 1 1 1 1 1 1 1 1 1	7.62M	7ACM 1	7,0,000	7,7,2,3,4 (19) (19) (19) (19) (19) (19) (19) (19)
	PRG-tND IX 199/2000	K(S):	PRG-tND Kitte K-204-600 Gotto 286-1440 John C-346-1420 John C-346-1420 John O-34-142	PRG-BHD RV94/mm RV94/mm RV94/mm PRG-BH PR 101	PRG-N4D Revolution Revolu	PPG-64D PPG-	PRG-BID PRG-	PRG-BD P	PRG-MD	PRG-MD	PRG-840 200	PRG-640	PRG-MD	PRG-BD	PRG-RED TAGAM	PRG-RD TAGAA	PRG-B10 TAGM	PRG-RD TAGAA	PRG-RD TAGAA	PRG-RD TAGAA
	DETECTION TAGM PRG-IND	DETECTION TAGAS PROCERNO DE SENTINO DE SENTI	DETECTION 19.64P PROGNED 1	DETECTION TAGE PROCESS 1	DETECTION AGE PROCESS 1		TOTAL TACA TOTAL T	CONTINUENT ACAP PROCESSOR	DEFECTION AGAP PROCESSOR	COLUMN ALACA PROPERTY	CONTINUE CONTINUE	CONTINUE	1	Controlled Access Properties				100 100		
ò	MAXIMUM DETECTION TAGM PRG-tND	MAXIMUM DETECTION TAGM PRC-1410 REN INVOLUMENT O GO GO PAN-140	MAANUUU DETECTION TAGAN PRICARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAXIMUM DETECTOR TAQUE PRG-RDD 0 000 000 150-	MAXIMUM DETECTION TAGAN PRG-MDD 0 000 000 000 000 000 000 000 000 00	MAXIMUM DETECTION TAGA PRG-800 1	MAXAMUM DETECTOR TAGA PRG-MD (1994) 1	MAXAMOUA DETECTOR TAQA PRG-ARD	MAXIMUM DETECTION TAQUE PRG-MID	MAXAMUM DETECTION TAGA PRIGARD 1	MAXIMUM DETECTION TAGA PRG-AND	MAXAMUM DETECTOR TAGA PRG-MICH	MAXIMUM DETECTION TAGA PRE-AND	MAXIMUM DETECTION TAGAS PRE-AND	MAXIMUM DETECTION TAGA PRG-ABO TAGAM 100-101	MAXIMUM DETECTOR TAGA PRG-ABO TAGAM AND TAGAMA PRG-ABO TAGAMA AND TAGAMA	MAXIMUM DETECTION TAGA PRG-ABO TAGA	MAXIMUM DETECTION TAGA PRG-ABD TAGA	MAXIMUM DETECTION TAGA PRG-ABD TAGA	MAXIMUM DETECTION TAGA PRG-ABD TAGA

Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM Non-Evaluated Sites

SITE SEAD-121D SEAD-121D SEAD-121D Blda. 306 Bldg. 306 Bldg. 306 and 308 HM and 308 HM and 308 HM DESCRIPTION Release Release Release SB121D-1 SB121D-1 SB121D-2 LOC ID EB220 EB221 EB218 SAMP ID. QC CODE SA SA SA n SAMP DETH TOP 0.8 Ω 02 14 02 SAMP DEPTH BOT MATRIX SOIL SOIL SOIL FREQUENCY NUMBER NUMBER NUMBER SAMP DATE 8-Mar-98 8-Mar-98 8-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VALUE Q VALUE 1,2,4-Trichlorobenzene UG/KG 0 0.00% 3400 5256000 0 0 8 91 U 72 U 76 7900 47304000 0 0 91 U 72 U 76 1.2-Dichlorobenzene UG/KG Ω 0.00% 8 1600 46778400 0 0 91 U 72 U 76 1,3-Dichlorobenzene UG/KG 0 0 00% 8 1,4-Dichlorobenzene UG/KG 0 0.00% 8500 238467 0 0 8 91 LJ 72 U 76 52560000 220 U 170 U 180 2.4.5-Trichlorophenol UG/KG 0 0.00% 100 0 0 8 0 00% 520291 0 0 91 U 72 U 76 2.4.6-Trichlorophenol UG/KG 0 2.4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 0 8 91 U 72 U 76 0 0.00% 10512000 0 0 8 91 U 72 U 76 2.4-Dimethylphenol UG/KG 0 0 00% 200 1051200 0 0 8 220 U 170 U 180 2.4-Dinitrophenol UG/KG 0 00% 1051200 91 U 72 U 76 2,4-Dinitrotoluene UG/KG 0 0 0 8 0.00% 1000 525600 0 0 91 U 72 U 76 2.6-Dinitrotoluene UG/KG 0 8 UG/KG 0 0 00% 0 0 8 91 U 72 U 76 2-Chloronaphthalene 76 800 2628000 0 Ω 8 91 U 72 U 2-Chlorophenoi UG/KG 0 0.00% 36400 91 U 72 U 76 UG/KG 40 25 00% 0 2 8 2-Methylnaphthalene UG/KG 0 0.00% 100 26280000 0 0 8 91 U 72 U 76 2-Methylphenol 220 U 170 U 180 0.00% 430 31536 0 0 8 2-Nitroaniline UG/KG 0 91 U 72 U 76 UG/KG 0.00% 330 0 0 2-Nitrophenol 0 UG/KG 0 0.00% 12718 0 0 8 91 U 72 U 76 3.3'-Dichlorobenzidine 500 220 U 170 U 180 0.00% 1576800 0 0 8 3-Nitroaniline UG/KG 0 0 220 U 170 U 180 UG/KG 0 0.00% 0 4,6-Dinitro-2-methylphenol 91 U 72 U 76 UG/KG 0 0.00% 30484800 0 0 Я 4-Bromophenyl phenyl ether 0.00% 240 0 8 91 U 72 U 76 UG/KG 0 4-Chloro-3-methylphenol 0 0 00% 2102400 0 0 91 U 72 U 76 UG/KG 0 220 4-Chloroaniline 8 91 U 72 U 76 4-Chlorophenyl phenyl ether UG/KG 0 0 00% Ω 0 72 U 76 0 0.00% 900 0 0 8 91 U UG/KG 4-Methylphenol 0 00% 1576800 0 0 8 220 U 170 U 180 UG/KG 0 4-Nitroaniline 100 220 U 170 U 180 4-Nitrophenol UG/KG 0 0.00% 31536000 0 0 8 72 U 76 25 25 00% 50000 n 2 8 91 U UG/KG Acenaphthene 79 41000 0 2 8 91 U 72 U 76 UG/KG 25 00% Acenaphthylene 91 11 72 U 76 157680000 8 Anthracene UG/KG 67 37.50% 50000 n 3 22 J 72 U 76 830 62.50% 224 7840 2 5 8 UG/KG Benzo[a]anthracene 72 U 76 UG/KG 890 62.50% 61 784 2 8 30 J Benzo[a]pyrene 45 J 72 U 76 Benzo[b]fluoranthene UG/KG 930 62.50% 1100 7840 Ω R 50000 5 32 J 72 U 76 62 50% Ω UG/KG 960 Benzo[ghi]perylene UG/KG 1000 62.50% 1100 78400 0 8 42 J 72 U 76 Benzo[k]fluoranthene R 91 U 72 U 76 0 Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 5203 0 8 91 U 72 U 76 0.00% Ω Bis(2-Chloroethyl)ether UG/KG 0 72 U 76 UG/KG 0 0.00% 81760 0 0 8 91 U Bis(2-Chloroisopropyl)ether 58 14 JB 13 JB UG/KG 25 87 50% 50000 408800 0 8 Bis(2-Ethylhexyl)phthalate 105120000 2 8 7.1 J 72 U 77 25.00% 50000 Butylbenzylphthalate UG/KG 7.7 Ω UG/KG 66 25 00% 286160 0 2 8 91 U 72 U 76 Carbazole 45.1 68.1 44 UG/KG 980 87.50% 400 784000 2 R Chrysene 2 8 47 JB 4.5 JB 76 8100 0 Di-n-butylphthalate UG/KG 47 25.00% 50000 10512000 91 U 72 U 76 22 25.00% 0 8 UG/KG Di-n-octylphthalate 72 U 76 370 50 00% 14 784 3 4 8 10 J Dibenz(a,h)anthracene UG/KG 76 91 U 72 U 2102400 0 UG/KG 0 0.00% 6200 0 8 Dibenzofuran 6 JB 6.7 JB 76 62.50% 7100 420480000 0 8 UG/KG 9.1

0

0

8

91 U

72 U

76

2000

5256000000

Diethyl phthalate

Dimethylphthalate

UG/KG

0

0.00%

Table 29-4 SEAD-121D- Semivolatile/TPH in Soil vs. NYTAGM Non-Evaluated Sites

DESCRIPTION. LOC ID SAMP_ID QC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SEAD-1 Bidg. 30 and 308 Release SB121D EB220 SA	6 HM	SEAD-121D Bldg 306 and 308 HM Release SB121D-1 EB221 SA 0.8 1.4 SOIL 8-Mar-98		SEAD-121D Bldg 306 and 308 HM Release SB121D-2 EB218 SA 0 0 2 SOIL 8-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	TAGM	PRG-IND	ABOVE TAGM	OF	OF			14444		
							DETECTS	ANALYSES	VALUE	Q		Q	VALUE
Fluoranthene	UG/KG	1800	87 50%	50000	21024000	0	/		8	53 J	5.6	-	5.8
Fluorene	UG/KG	29	25 00%	50000	21024000	0	2		8	91 U	72		76
Hexachlorobenzene	UG/KG	0	0 00%	410	3577	0	0		8	91 U	72		76
Hexachlorobutadiene	UG/KG	0	0 00%		73374	. 0	0		8	91 U	72		76
Hexachlorocyclopentadiene	UG/KG	0	0 00%		3679200	0	0		8	91 U	72	U	76
Hexachloroethane	UG/KG	0	0 00%		408800	0	0		8	91 U	72	U	76
Indeno[1,2,3-cd]pyrene	UG/KG	630	62 50%	3200	7840	0	5		8	28 J	72	U	76
Isophorone	UG/KG	0	0 00%	4400		0	0		8	91 U	72	U	76
N-Nitrosodiphenylamine	UG/KG	0	0 00%		1168000	0	0		8	91 U	72	U	76
N-Nitrosodipropylamine	UG/KG	0	0 00%		818	0	0		8	91 U	72	U	76
Naphthalene	UG/KG	35	12 50%	13000	21024000	0	1		8	91 U	72	U	76
Nitrobenzene	UG/KG	0	0 00%	200	262800	0	0		8	91 U	72	U	76
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0	0		8	220 U	170	U	180
Phenanthrene	UG/KG	540	87 50%	50000		0	7		8	19 J	4.8	J	4.4
Phenol	UG/KG	0	0 00%	30	315360000	0	0		8	91 U	72	U	76
Pyrene	UG/KG	1400	87.50%	50000	15768000	0	7		8	55 J	5.5	J	5.2
TPH	MG/KG	359	62 50%			0	5		8	55.3	15		37.5

svtagm

Table 29-4
SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM
Non-Evaluated Sites

SITE			SEAD-121D Bldg. 306 and 308 HM	SEAD-121D Bidg 306 and 308 HM	SEAD-121D Bldg 306 and 308 HM	SEAD-121D Bldg 306 and 308 HM	SEAD-121D Bldg. 306 and 308 HM
DESCRIPTION.			Release	Release	Release	Release	Release
LOC ID:			SB121D-2	SB121D-3	SB121D-3	SS121D-1	SS121D-2
SAMP ID:			EB219	EB222	EB223	EB224	
QC CODE:							EB225
			SA	SA	SA	SA	SA
SAMP DETH TOP:			4	0	2.3	0	0
SAMP, DEPTH BOT.			4 5	0 2	25	0.2	0.2
MATRIX			SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			8-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98
PARAMETER	UNIT	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
1,2-Dichlorobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
1,3-Dichlorobenzene	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
1,4-Dichlorobenzene	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
2,4,5-Trichlorophenol	UG/KG	Ŭ	180 U	840 U	180 U	180 U	860 U
2,4,6-Trichlorophenol	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
2,4-Dichlorophenol	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
	UG/KG	U	75 U	350 U	74 U		
2,4-Dimethylphenol						72 U	350 U
2,4-Dinitrophenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
2,4-Dinitrotoluene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,6-Dinitrotoluene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Chloronaphthalene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Chlorophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Methylnaphthalene	UG/KG	U	75 U	40 J	74 U	7 J	350 U
2-Methylphenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Nitroaniline	UG/KG	U	180 U	840 U	180 U	180 U	860 U
2-Nitrophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
3,3'-Dichlorobenzidine	UG/KG	U	75 U	350 U	74 U	72 U	350 U
3-Nitroaniline	UG/KG	U	180 U	840 U	180 U	180 U	860 U
4,6-Dinitro-2-methylphenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
4-Bromophenyl phenyl ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Chloro-3-methylphenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Chloroaniline	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Chlorophenyl phenyl ether	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
4-Methylphenol	UG/KG	Ŭ	75 U	350 U	74 U	72 U	350 U
4-Nitroaniline	UG/KG	Ü	180 U	840 U	180 U	180 U	860 U
4-Nitrophenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
Acenaphthene	UG/KG	Ü	75 U	25 J	74 U	72 U	23 J
•	UG/KG	U	75 U	79 J	4.1 J	72 U	350 U
Acenaphthylene		U		45 J			
Anthracene	UG/KG		75 U	320 320	5.8 J	72 U	67 J
Benzo[a]anthracene	UG/KG	U,	75 U		48 J	5 J	830
Benzo[a]pyrene	UG/KG	U ´	75 U	890	61 J	6.7 J	880
Benzo[b]fluoranthene	UG/KG	U	75 U	570	60 J	7.9 J	930
Benzo[ghi]perylene	UG/KG	U	75 U	960	57 J	7.1 J	570
Benzo[k]fluoranthene	UG/KG	U	75 U	760	56 J	7 J	1000
Bis(2-Chloroethoxy)methane	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Chloroethyl)ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Chloroisopropyl)ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Ethylhexyl)phthalate	UG/KG	JB	13 JB	350 U	9 JB	11 JB	25 JB
Butylbenzylphthalate	UG/KG	J	75 U	350 U	74 U	72 U	350 U
Carbazole	UG/KG	U	75 U	350 U	4.3 J	72 U	66 J
Chrysene	UG/KG	J	75 U	720	56 J	ВЈ	San a. Shiz 1992.
Di-n-butylphthalate	UG/KG	Ŭ	75 U	350 U	74 U	72 U	350 U
Di-n-octylphthalate	UG/KG	ŭ	22 J	350 U	74 U	8.2 J	350 U
Dibenz[a,h]anthracene	UG/KG	U	75 U	330 U	≱ i J	72 U	330 0
Dibenzofuran	UG/KG	U	75 U	350 U	74 U	72 U	350 U
	UG/KG	U	7 JB	350 U	9.1 JB	6.4 JB	350 U
Diethyl phthalate	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Dimethylphthalate	UG/NG	Ų	75 0	350 0	74 0	120	350 0

Table 29-4
SEAD-121D- Semivolatile/TPH in Soil vs NYTAGM
Non-Evaluated Sites

SITE			SEAD-121D Bldg 306 and 308 HM	SEAD-121D Bldg. 306 and 308 HM	SEAD-121D Bldg 306 and 308 HM	SEAD-121D Bldg 306 and 308 HM	SEAD-121D Bldg. 306 and 308 HM
DESCRIPTION			Release	Release	Release	Release	Release
LOC ID			SB121D-2	SB121D-3	SB121D-3	SS121D-1	\$\$121D-2
SAMP_ID			EB219	EB222	EB223	EB224	EB225
QC CODE			SA	SA	SA	SA	SA
SAMP DETH TOP			4	0	2 3	0	0
SAMP DEPTH BOT			4.5	0 2	2 5	0 2	0 2
MATRIX			SOIL	SOIL	SOIL	SOIL	SOIL
SAMP DATE			8-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98	8-Mar-98
PARAMETER	UNIT	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Fluoranthene	UG/KG	J	75 U	410	70 J	86 J	1800
Fluorene	UG/KG	Ü	75 U	29 J	74 U	72 U	25 J
Hexachlorobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 ∪
Hexachiorobutadiene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Hexachlorocyclopentadiene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Hexachloroethane	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Indeno[1,2,3-cd]pyrene	UG/KG	U	75 U	630	40 J	62 J	590
Isophorone	UG/KG	U	75 U	350 U	74 U	72 U	350 U
N-Nitrosodiphenylamine	UG/KG	U	75 ∪	350 U	74 U	72 U	350 U
N-Nitrosodipropylamine	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Naphthalene	UG/KG	U	75 U	35 J	74 U	72 U	350 ∪
Nitrobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Pentachlorophenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
Phenanthrene	UG/KG	J	75 U	200 J	28 J	46 J	540
Phenol	UG/KG	U	75 U	350 U		72 U	350 U
Pyrene	UG/KG	J	75 U	1200	97	9.3 J	1400
TPH	MG/KG		17 U	359	18.4 U	25.3	126

Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites

SITE									SEAD-1)6	SEAD-121D Bldg. 306	SEAD-121D Bldg, 306
DUGGELLENGT									and 308	НМ	and 308 HM	and 308 HM
DESCRIPTION:									Release		Release	Release
LOC ID:									SB1211)- [SB121D-1	SB121D-2
SAMP ID:									EB220		EB221	EB218
QC CODE:									SΛ		SA	SA
SAMP. DETH TOP:										0	0.8	0
SAMP, DEPTH BOT:										0.2	1.4	0.2
MATRIX:									SOIL		SOIL	SOIL
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER	8-Ma	r-98	8-Mar-98	8-Mar-98
DADALADED			OF	TAGM	PRG-IND	ABOVE	OF	OF				
PARAMETER	UNIT	MAXIMUM	DETECTION 0.00%	3400	5256000	TAGM 0	DETECTS 0	ANALYSES	VALUE	Q	VALUE Q	VALUE
1,2,4-Trichlorobenzene	UG/KG	0	0.00%	7900	47304000	0	0			91 U	72 U	76
1,2-Dichlorobenzene	UG/KG	0		1600	46778400	0	0	8		91 U	72 U	76
1,3-Dichlorobenzene 1,4-Dichlorohenzene	UG/KG	0	0.00% 0.00%	8500	238467	0	0	8	-	91 U 91 U	72 U 72 U	76
2,4,5-Trichlorophenol	UG/KG UG/KG	0	0.00%	100	52560000	0	0			220 U	170 U	76 180
	UG/KG	0	0.00%	100	520291	0	0	8		91 U	72 U	76
2,4,6-Trichlorophenol 2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0	0	8		91 U	72 U	76
2,4-Dimethylphenol	UG/KG	0	0.00%	400	10512000	0	0			91 U	72 U	76
2,4-Dinitrophenol	UG/KG	0	0.00%	200	1051200	0	0			220 U	170 U	180
2,4-Dinitrotoluene	UG/KG	0	0.00%	200	1051200	0	0	8	-	91 U	72 U	76
2.6 Dinitrotoluene	UG/KG	0	0.00%	1000	525600	0	0	3		91 U	72 U	76
2 Chloronaphthalene	UG/KG	0	0.00%	1000	02.000	0	0			91 U	72 U	76
2-Chlorophenol	UG/KG	0	0.00%	800	2628000	0	0	è		91 U	72 U	76
2-Methylnaphthalene	UG/KG	40	25.00%	36400	202000	0	2			91 U	72 U	76
2-Methylphenol	UG/KG	0	0.00%	100	26280000	0	0	8		91 U	72 U	76
2-Nitroaniline	UG/KG	0	0.00%	430	31536	0	0	8		220 U	170 U	180
2-Nitrophenol	UG/KG	0	0.00%	330		0	0	8	3	91 U	72 U	76
3,3'-Dichlorobenzidine	UG/KG	0	0.00%		12718	0	0	8	3	91 U	72 U	76
3-Nitroaniline	UG/KG	0	0.00%	500	1576800	0	0	8		220 U	170 U	180
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0	8	3	220 U	170 U	180
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		30484800	0	0	8	3	91 U	72 U	76
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0	8	3	91 U	72 U	76
4-Chloroaniline	UG/KG	0	0.00%	220	2102400	0	0	8	3	91 U	72 U	76
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%			0	0	8	3	91 U	72 U	76
4-Methylphenol	UG/KG	0	0.00%	900		0	0	8		91 U	72 U	76
4-Nitroaniline	UG/KG	0	0.00%		1576800	0	0	8		220 U	170 U	180
4 Nitrophenol	UG/KG	0	0.00%	100	31536000	0	0		3	220 U	170 U	180
Acenaphthene	UG/KG	25	25.00%	50000		0	2	8		91 U	72 U	76
Acenaphthylene	UG/KG	79	25.00%	41000		0	2	8		91 U	72 U	76
Anthracene	UG/KG	67	37.50%	50000	157680000	0	3	8		91 U	72 U	76
Benzolajanthracene	UG/KG	830	62.50%	224	7840	0	5	8		22 J	72 U	76
Benzo[a]pyrene	UG/KG	890	62.50%	61	784	2	. 5	8		30 J	72 U	76
Benzo[b]fluoranthene	UG/KG	930	62.50%	1100	7840	0	5	8	-	45 J	72 U	76
Benzolghilperylene	UG/KG	960	62.50%	50000	70.400	0	5	8		32 J	72 U	76
Benzo[k]fluoranthene	UG/KG	1000	62.50%	1100	78400	0	5	8		42 J 91 U	72 U 72 U	76
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%		5202	0	0			91 U	72 U	76 76
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0	8		91 U	72 U	76
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%	50000	81760 408800	0	7		-	91 U 14 JB	13 JB	5.8
Bis(2-Ethylhexyl)phthalate	UG/KG	25	87.50% 25.00%	50000	105120000	0	2		3	7.1 J	72 U	7.7
Butylbenzylphthalate	UG/KG	7.7 66	25.00%	20000	286160	0	2	8		7.1 J 91 U	72 U	7.7
Carbazole	UG/KG	980	25.00% 87.50%	400	784000	0	7			91 U 45 J	6.8 J	4.4
Chrysene	UG/KG		87.50% 25.00%	8100	704000	0	2			45 J 4.7 JB	4.5 JB	76
Di-n-butylphthalate	UG/KG	4.7 22	25.00% 25.00%	50000	10512000	0	2	8		4.7 JB 91 U	4.5 JB 72 U	76
Di n-octylphthalate	UG/KG	370	50.00%	14	784	0	4	3		10 J	72 U	76
Dibenz[a,h]anthracene	UG/KG	370	0.00%	6200	2102400	0	0	8		91 U	72 U	76
Dibenzofuran	UG/KG UG/KG	9.1	62.50%	7100	420480000	0	5	8		6 JB	6.7 JB	76 76
Diethyl phthalate	UG/KG	9.1	0.00%	2000	5256000000	0	0			91 U	72 U	76
Dimethylphthalate	00/KU	0	0.0076	2000	32000000	O .	Ü	,	-	0		

Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites

DESCRIPTION: LOC ID: SAMP ID: QC CODE: SAMP. DETH TOP: SAMP. DEPTH BOT: MATRIX:									SEAD-1 Bldg, 30 and 308 Release SB121L EB220 SA	06 8 HM 0-1 0 0.2	SEAD-121D Bldg. 306 and 308 HM Release SB121D-1 EB221 SA 0.8 1.4	SEAD-1211) Bldg, 306 and 308 HM Release SB12111-2 EB218 SA 0 0.2 SOIL
SAMP, DATE.			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	8-Ma	11-98	8-Mar-98	8-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	0	VALUE O	VALUE
Fluoranthene	UG/KG	1800	87.50%	50000	21024000	0	7		8	Q 53 J	VALUE Q 5.6 J	5.8
Fluorene	UG/KG	29	25.00%	50000	21024000	0	2			91 U	72 U	76
Hexachlorobenzene	UG/KG	0	0.00°i	410	3577	0	0			91 U	72 U	76
Hexachlorobutadiene	UG/KG	0	0.00%	710	73374	0	0			91 U	72 U	76
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0	0			91 U	72 U	76
Hexachloroethane	UG/KG	0	0.00%		408800	0	0		-	91 U	72 U	76
Indeno[1,2,3-cd]pyrene	UG/KG	630	62.50%	3200	7840	o o	5		R	28 J	72 U	76
Isophorone	UG/KG	0.00	0.00%	4400	71710	0	0		8	91 U	72 U	76
N Nitrosodiphenylamine	UG/KG	0	0.00%		1168000	0	0			91 U	72 U	76
N-Nitrosodipropylamine	UG/KG	0	0.00%		818	0	0		_	91 U	72 U	76
Naphthalene	UG/KG	35	12.50%	13000	21024000	0	1		8	91 U	72 U	76
Nitrobenzenc	UG/KG	0	0.00%	200	262800	0	0		8	91 U	72 U	76
Pentachlorophenol	UG/KG	0	0.00%	1000	47693	0	0		8	220 U	170 U	180
Phenanthrene	UG/KG	540	87.50%	50000		0	7		8	19 J	4.8 J	4.4
Phenol	UG/KG	0	0.00%	30	315360000	0	0		8	91 U	72 U	76
Pyrene	UG/KG	1400	87.50%	50000	15768000	0	7		8	55 J	5.5 J	5.2
TPH	MG/KG	359	62.50%			0	5		R	55.3	15 U	37.5

Table 29-5 SEAD-121D- Semivolatile/TPH in Soil vs PRG-IND Non-Evaluated Sites

OUTD			0040 1310	011415 13115	0010 1010		anan tarn
SITE			SEAD-121D	SEAD-121D	SEAD-121D	SEAD-121D	SEAD-121D
			Bldg. 306	Bldg. 306	Bldg. 306	Bldg. 306	Bldg. 306
			and 308 HM	and 308 HM	and 308 HM	and 308 HM	and 308 HM
DESCRIPTION:			Release	Release	Release	Release	Release
LOC ID:			SB121D-2	SB121D-3	SB121D-3	SS121D-1	SS121D-2
SAMP ID:			EB219	EB222	EB223	EB224	EB225
QC CODE:			SΛ	SA	SA	SA	SA
SAMP. DETH TOP:			4	0	2.3	0	0
SAMP, DEPTH BOT:			4.5	0.2	2.5	0.2	0.2
MATRIX:			SOIL	SOIL	SOIL	SOIL	SOIL
SAMP. DATE:			8-Mar-98	8-Mar-98	8-Mar 98	8-Mar-98	8-Mar-98
PARAMETER	UNIT	Q	VALUE Q	VALUE Q	VALUE Q	VALUE O	VALUE O
1,2,4 Trichlorobenzene	UG/KG	Ŭ	75 U	350 U	74 U	72 U	350 U
1,2-Dichlorobenzene	UG/KG	Ü	75 U	350 U	74 U	72 U	350 U
1,3-Dichlorobenzene		U	75 U	350 U	74 U	72 U	350 U
1,4-Dichlorobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,4,5 Trichlorophenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
2,4,6-Trichlorophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,4-Dichlorophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,4-Dimethylphenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,4-Dinitrophenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
2,4-Dinitrophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2,6-Dinitrotoluene	,	U	75 U	350 U	74 U	72 U	
	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Chloronaphthalene	UG/KG						350 U
2-Chlorophenol		U	75 U	350 U	74 U	72 U	350 U
2-Methylnaphthalene	UG/KG	U	75 U	40 J	74 U	7 J	350 U
2-Methylphenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
2-Nitroaniline	UG/KG	U	180 U	840 U	180 U	180 U	860 U
2 Nitrophenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
3,3'-Diehlorobenzidine	UG/KG	U	75 U	350 U	74 U	72 U	350 U
3-Nitroaniline	UG/KG	U	180 U	840 U	180 U	180 U	860 U
4,6-Dinitro-2-methylphenol	UG/KG	U	180 U	840 U	180 U	180 U	860 U
4-Bromophenyl phenyl ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Chloro-3-methylphenol		U	75 U	350 U	74 U	72 U	350 U
4-Chloroaniline	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Chlorophenyl phenyl ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Methylphenol	UG/KG	U	75 U	350 U	74 U	72 U	350 U
4-Nitroaniline	UG/KG	U	180 U	840 U	180 U	180 U	860 U
4-Nitrophenol	UG/KG		180 U	840 U	180 U	180 U	860 U
Acenaphthene	UG/KG	U	75 U	25 J	74 U	72 U	23 J
Acenaphthylene	UG/KG	U	75 U	79 J	4.1 J	72 U	350 U
Anthracene	UG/KG	U	75 U	45 J	5.8 J	72 U	67 J
Benzo[a]anthracene	UG/KG	U	75 U	520	48 J	5 J	830
Benzo[a]pyrene	UG/KG	U	75 U	890	61 J	6.7 J	880
Benzo[b]fluoranthene	UG/KG	U	75 U	570	60 J	7.9 J	930
Benzo[ghi]perylene	UG/KG	U	75 U	960	57 J	7.1 J	570
Benzo[k]fluoranthene	UG/KG	U	75 U	760	56 J	7 J	1000
Bis(2-Chloroethoxy)methane	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Chloroethyl)ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Chloroisopropyl)ether	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Bis(2-Ethylhexyl)phthalate	UG/KG	JB	13 JB	350 U	9 JB	11 JB	25 JB
Butylbenzylphthalate	UG/KG	J	75 U	350 U	74 U	72 U	350 U
Carbazole	UG/KG	U	75 U	350 U	4.3 J	72 U	66 J
Chrysene	UG/KG	J	75 U	720	56 J	8 J	980
Di-n butylphthalate	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Di n-octylphthalate	UG/KG	Ü	22 J	350 U	74 U	8.2 J	350 U
Dibenzla,hlanthracene	UG/KG	Ü	75 U	370	21 J	72 U	240 J
Dibenzofuran	UG/KG		75 U	350 U	74 U	72 U	350 U
Diethyl phthalate	UG/KG		7 JB	350 U	9.1 JB	6.4 JB	350 U
Dimethylphthalate	UG/KG		75 U	350 U	74 U	72 U	350 U
	00/10	0	, 3 0	000	,,,	72 0	550 0

Table 29-5
SEAD-121D- Semivolatile/TPH in Soil vs. PRG-IND
Non-Evaluated Sites

SITE			SEAD-121D Bldg, 306 and 308 HM	SEAD-121D Bldg, 306 and 308 HM	SEAD-121D Bldg, 306 and 308 HM	SEAD 121D Bidg. 306 and 308 HM	SEAD-121D Bldg, 306 and 308 HM
DESCRIPTION:			Release	Release	Release	Release	Release
LOC ID:			SB121D-2	SB121D 3	SB121D:3	SS121D-1	SS121D-2
SAMP ID:			EB219	EB222	EB223	EB224	EB225
QC CODE:			SA	SA	SA	SA	SA
SAMP. DETH TOP:			4	0	2.3	0	0
SAMP, DEPTH BOT:			4.5	0.2	2.5	0.2	0.2
MATRIX:			SOIL	SOIL	SOIL	SOIL	SOIL
SAMP. DATE:			8-Mar-98	8-Mar 98	8 Mar 98	8 Mar-98	8-Mar-98
PARAMETER	UNIT	Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE O
Fluoranthene	UG/KG	J	75 U	410	70 J	8.6 J	1800
Fluorenc	UG/KG	U	75 U	29 J	74 U	72 U	25 J
Hexachlorobenzene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Hexachlorobutadiene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Hexachlorocyclopentadiene	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Hexachlorocthane	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Indeno[1,2,3-cd]pvrene	UG/KG	U	75 U	630	40 J	6.2 J	590
Isophorone	UG/KG	U	75 U	350 U	74 U	72 U	350 U
N-Nitrosodiphenylamine	UG/KG	U	75 U	350 U	74 U	72 U	350 U
N-Nitrosodipropylamine	UG/KG	U	75 U	350 U	74 U	72 U	350 U
Naphthalene	UG/KG	U	75 U	35 √	74 U	72 U	350 U
Nitrobenzene	UG/KG		75 U	350 U	74 U	72 U	350 U
Pentachlorophenol	UG/KG		180 U	840 U	180 U	180 U	860 U
Phenanthrene	UG/KG		75 U	200 J	28 J	4.6 J	540
Phenol	UG/KG		75 U	350 U	74 U	72 U	350 U
Pyrene	UG/KG	J	75 U	1200	97	9.3 J	1400
TPH	MG/KG		17 U	359	18.4 U	25.3	126

SEAD-121E

Building 127 UST Petroleum Release

Table 30-1

Sample Collection Information SEAD-121E - Building 127 UST Petroleum Release

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SOIL	SB121E-1	EB267	3/17/98	0.00	0.30	SA	Location is N. of UST, on the S. edge of the railroad bed. This is downgradient of the filling area. Overhead lines, splitspoon hammered by hand. Surface soil sample, near water table.
SOIL	SB121E-1	EB268	3/17/98	0.80	1.10	SA	Same location as above. Refusal at 1.1 ft. Both samples taken from one spoon. Slight odor, no VOC's or impact to soils detected.
SOIL	SB121E-2	EB256	3/17/98	0.00	0.70	SA	Location is W. of UST. Parking area for tanker truck. Boring ajacent to small area of black stained soil. No VOC's or impact to soil detected.
SOIL	SB121E-2	EB257	3/17/98	5.10	5.50	SA	Same location as above. Sample taken at interval with a 44 ppm VOC screen & petrolem odor. Top of water table.

Notes:

SA = Sample

Table 30-2 SEAD-121E Volatiles in Soil vs. NYTAGM Non-Evaluated Sites

SITE										SEAD-12	1E	SEAD-12	1E	SEAD-121	E	SEAD-1	21E
2										Bldg 127	UST	Bldg. 127	UST	Bldg 127	UST	Bldg 12	
										Petroleum		Petroleum		Petroleum		Petroleu	
DESCRIPTION.										Release		Release		Release		Release	
LOC ID										SB121E-		SB121E-1	1	SB121E-1		SB121E	
SAMP ID										EB267		EB256		EB268		EB257	
OC CODE										SA		SA		SA		SA	
SAMP DETH TOP.										30	0	3/	0	JA.	0.8	3A	5.1
SAMP DEPTH BOT											0.3		0.7		11		5.5
										SOIL	0.3	SOIL	0.7		11		5.5
MATRIX						NUMBER	NUME	nen.	NUMBER		00			SOIL		SOIL	
SAMP DATE			FREQUENCY							17-N	ar-98	17-M	lar-98	17-Ma	ar-98	17-	Mar-98
			OF			ABOVE	OF		OF		_		_		_		
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG-IND	TAGM	DETE		ANALYSES	VALUE	0	VALUE	Q	VALUÉ	Q	VALUE	
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	18396000		0	0		4	11 U		11 U		11 U		48 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	286160		0	0		4	11 U		11 U		11 U		48 U
1.1.2-Trichloroethane	UG/KG	0	0.00%		100407		0	0		4	11 U		11 U		11 U		48 U
1.1-Dichloroethane	UG/KG	0	0 00%	200	52560000		0	0		4	11 U		11 U		11 U		48 U
1,1-Dichloroethene	UG/KG	0	0.00%	400	9539		0	0		4	11 U		11 U		11 U		48 U
1,2 Dichloroethane	UG/KG	0	0.00%	100	62892		0	0		4	11 U		11 U		11 U		48 U
1,2-Dichloroethene (total)	UG/KG	0	0.00%				0	0		4	11 U		11 U		11 U		48 U
1,2-Dichloropropane	UG/KG	0	0 00%		84165		0	0		4	11 U		11 U		11 U		48 U
Acctone	UG/KG	400	100 00%	200	52560000		1	4		4	39		9 JB		18 B	effect of the	400
Benzene	UG/KG	0	0.00%	60	197352		0	0		4	11 U		11 U		11 U		48 U
Bromodichloromethane	UG/KG	0	0.00%		92310		0	0		4	11 U		11 U		11 U		48 U
Bromoform	UG/KG	0	0.00%		724456		0	0		4	11 U		11 U		11 U		48 U
Carbon disulfide	UG/KG	2	50 00%	2700	52560000		0	2		4	2 J		11 U		2 J		48 U
Carbon tetrachloride	UG/KG	0	0 00%	600	44025		0	0		4	11 U		11 U		11 U		48 U
Chlorobenzene	UG/KG	4	25.00%	1700	10512000		0	1		4	11 U		11 U		4 J		48 U
Chlorodibromomethane	UG/KG	0	0 00%		68133		0	0		4	11 U		11 U		11 U		48 U
Chloroethane	UG/KG	0	0 00%	1900	210240000		0	0		4	11 U		11 U		11 U		48 U
Chloroform	UG/KG	4	25 00%	300	938230		0	1		4	11 U		11 U		4 JB		48 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%				0	0		4	11 U		11 U		11 U		48 U
Ethyl benzene	UG/KG	0	0 00%	5500	52560000		0	0		4	11 U		11 U		11 U		48 U
Methyl bromide	UG/KG	0	0.00%		751608		0	0		4	11 U		11 U		11 U		48 U
Methyl butyl ketone	UG/KG	0	0 00%				0	0		4	11 U		11 U		11 U		48 U
Methyl chloride	UG/KG	0	0 00%		440246		0	0		4	11 U		11 U		11 U		48 U
Methyl ethyl ketone	UG/KG	0	0.00%	300			0	0		4	11 U		11 U		11 U		48 U
Methyl isobutyl ketone	UG/KG	0	0 00%	1000	42048000		0	0		4	11 U		11 U		11 U		48 U
Methylene chloride	UG/KG	0	0.00%	100	763093		0	0		4	11 U		11 U		11 U		48 U
Styrene	UG/KG	0	0.00%				0	0		4	11 U		11 U		11 U		48 U
Tetrachloroethene	UG/KG	0	0.00%	1400	110062		0	0		4	11 U		11 U		11 U		48 U
Toluene	UG/KG	38	100 00%	1500	105120000		0	4		4	27		11 J		7 J		38 J
Total Xylenes	UG/KG	0	0.00%	1200	1051200000		0	0		4	11 U		11 U		11 U		48 U
Trans-1,3-Dichloropropene	UG/KG	0	0.00%	.230			0	0		4	11 U		11 U		11 U		48 U
Trichloroethene	UG/KG	0	0.00%	700	520291		0	ō		4	11 U		11 U		11 U		48 U
Vinyt chloride	UG/KG	0	0 00%	200	3012		0	0		4	11 U		11 U		11 U		48 U
***************************************	33/10	· ·	0 0070	200			-	•					-		-		

Table 30-3 SEAD 121E Volatiles in Soil vs. PRG IND Non Evaluated Sites

DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER		NUMBER	SEAD-121 Bldg 127 Petroleum Release SB121E-1 EB267 SA	0 03	SEAD-121 Bldg 127 Petroleum Release SB121E-1 EB256 SA SOIL	0 0 7	SEAD-121 Bidg 127 U Petroleum Release SB121E-1 EB268 SA	08 11	SEAD-1 Bldg 12 Petroleu Release SB121E EB257 SA	27 UST um e
			OF			ABOVE	OF		OF								
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG IND	TAGM	DETECTS		ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
1 1.1 Trichloroethane	UG/KG	0	0 00%	800	18396000	0		0		4	11 U		11 U		11 U		48 U
1 1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	286160	0		0		4	11 U		11 U		11 U		48 U
1,1,2 Trichloroethane	UG/KG	0	0 00%		100407	0		0		4	11 U		11 U		11 U		48 U
1,1-Dichloroethane	UG/KG	0	0 00%	200	52560000	0		0		4	11 U		11 U		11 U		48 U
1,1-Dichloroethene	UG/KG	0	0 00%	400	9539	0		0		4	11 U		11 U		11 U		48 U
1,2 Dichloroethane	UG/KĢ	0	0 00%	100	62892	0		0		4	11 U		11 U		11 U		48 U
1.2-Dichloroethene (total)	UG/KG	0	0 00%			0		0		4	11 U		11 U		11 U		48 U
1,2-Dichloropropane	UG/KG	0	0 00%		84165	0		0		4	11 U		11 U		11 U		48 U
Acetone	UG/KG	400	100 00%	200	52560000	0		4		4	39		9 JB		18 B		400
Benzene	UG/KG	0	0 00%	60	197352	0		0		4	11 U		11 U		11 U		48 U
Bromodichloromethane	UG/KG	0	0 00%		92310	0		0		4	11 U		11 U		11 U		48 U
Bramoform	UG/KG	0	0.00%		724456	0		0		4	11 U		11 U		11 U		48 U
Carbon disulfide	UG/KG	2	50.00%	2700	52560000	0		2		4	2 J		11 U		2 J		48 U
Carbon tetrachloride	UG/KG	0	0 00%	600	44025	0		0		4	11 U		11 U		11 U		48 U
Chlorobenzene	UG/KG	4	25.00%	1700	10512000	0		1		4	11 U		11 U		4 J		48 U
Chlorodibromomethane	UG/KG	0	0 00%		68133	0		0		4	11 U		11 U		11 U		48 U
Chloroethane	UG/KG	0	0.00%	1900	210240000	0		0		4	11 U		11 U		11 U		48 U
Chloroform	UG/KG	4	25 00%	300	938230	0		1		4	11 U		11 U		4 JB		48 U
Cis-1,3-Dichloropropene	UG/KG	0	0 00%			0		0		4	11 U		11 U		11 U		48 U
Ethyl benzene	UG/KG	0	0.00%	5500	52560000	0		0		4	11 U		11 U		11 U		48 U
Methyl bromide	UG/KG	0	0 00%		751608	0		0		4	11 U		11 U		11 U		48 U
Methyl butyl ketone	UG/KG	0	0.00%			0		0		4	11 U		11 U		11 U		48 U
Methyl chloride	UG/KG	0	0.00%		440246	0		0		4	11 U		11 U		11 U		48 U
Methyl ethyl ketone	UG/KG	0	0 00%	300		0		0		4	11 U		11 U		11 U		48 U
Methyl isobutyl ketone	UG/KG	0	0 00%	1000	42048000	0		0		4	11 U		11 U		11 U		48 U
Methylene chlonde	UG/KG	0	0.00%	100	763093	0		0		4	11 U		11 U		11 U		48 U
Styrene	UG/KG	0	0 00%			0		0		4	11 U		11 U		11 U		48 U
Tetrachloroethene	UG/KG	0	0 00%	1400	110062	0		0		4	11 U		11 U		11 U		48 U
Toluene	UG/KG	38	100 00%	1500	105120000	0		4		4	27		11 J		7 J		38 J
Total Xylenes	UG/KG	0	0.00%	1200	1051200000	0		0		4	11 U		11 U		11 U		48 U
Trans-1,3-Dichloropropene	UG/KG	0	0.00%			0		0		4	11 U		11 U		11 U		48 U
Trichloroethene	UG/KG	0	0.00%	700	520291	0		0		4	11 U		11 U		11 U		48 U
Vinyl chloride	UG/KG	0	0.00%	200	3012	0		0		4	11 U		11 U		11 U		48 U

SEAD-121E

Release

SB121E-1

Bldg. 127 UST Petroleum

Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites

SITE:

DESCRIPTION: LOC ID: SAMP_ID: QC CODE:

SAMP_ID:									EB267	-	
QC CODE:									SA		
SAMP. DETH TOP:									O/ 1	0	
SAMP, DEPTH BOT:										0.3	
MATRIX:									SOIL	0.0	
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER		Mar-98	
J. 1111 . D. 11 L.			OF			ABOVE	OF	OF			
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	
1,2,4-Trichlorobenzene	UG/KG	0	0.00%	3400	5256000	0	0		4	750 U	
1,2-Dichlorobenzene	UG/KG	0	0.00%	7900	47304000	0	0		4	750 U	
1.3-Dichlorobenzene	UG/KG	0	0.00%	1600	46778400	0	0		4	750 U	
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0	0		4	750 U	
2,4,5-Trichlorophenol	UG/KG	0	0.00%	100	52560000	0	0		4	1800 U	
2,4,6-Trichlorophenol	UG/KG	0	0.00%		520291	0	0		4	750 U	
2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0	0		4	750 U	
2,4-Dimethylphenol	UG/KG	0	0 00%		10512000	0	0		4	750 U	
2,4-Dinitrophenol	UG/KG	0	0.00%	200	1051200	0	0		4	1800 U	
2,4-Dinitrotoluene	UG/KG	0	0.00%		1051200	0	0		4	750 U	
2,6-Dinitrotoluene	UG/KG	0	0.00%	1000	525600	0	0		4	750 U	
2-Chloronaphthalene	UG/KG	0	0.00%			0	0		4	750 U	
2-Chlorophenol	UG/KG	0	0.00%	800	2628000	0	0		4	750 U	
2-Methylnaphthalene	UG/KG	260	100.00%	36400		0	4		4	220 J	
2-Methylphenol	UG/KG	0	0.00%	100	26280000	0	0		4	750 U	
2-Nitroaniline	UG/KG	9.7	25.00%	430	31536	0	1		4	1800 U	
2-Nitrophenol	UG/KG	0	0.00%	330		0	0		4	750 U	
3,3 -Dichlorobenzidine	UG/KG	0	0.00%		12718	0	0		4	750 U	
3-Nitroaniline	UG/KG	0	0.00%	500	1576800	0	0		4	1800 U	
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0		4	1800 U	
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		30484800	0	0		4	750 U	
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0		4	750 U	
4-Chloroaniline	UG/KG	0	0.00%	220	2102400	0	0		4	750 U	
4-Chlorophenyl phenyl ether	UG/KG	7.6	25.00%			0	1		4	750 U	
4-Methylphenol	UG/KG	0	0.00%	900		0	0		4	750 U	
4-Nitroaniline	UG/KG	0	0.00%		1576800	0	0		4	1800 U	
4-Nitrophenol	UG/KG	0	0.00%	100	31536000	0	0		4	1800 U	
Acenaphthene	UG/KG	230	50.00%	50000		0	2		4	750 U	
Acenaphthylene	UG/KG	120	50.00%	41000		0	2		4	750 U	
Anthracene	UG/KG	630	75.00%	50000	157680000	0	3		4	750 U	
Benzo[a]anthracene	UG/KG	3900	100.00%	224	7840	1	4		4	53 J	
Benzo[a]pyrene	UG/KG	3600	75.00%	61	784	2	3		4	750 U	
Benzo[b]fluoranthene	UG/KG	3300	133.33%	1100	7840	1	4		3	180 YJ	
Benzo[ghi]perylene	UG/KG	2000	75.00%	50000		0	3		4	750 U	
Benzo[k]fluoranthene	UG/KG	4800	75.00%	1100	78400	1	3		4	750 U	
Bis(2-Chloroethoxy)methane	UG/KG	6.2	25.00%			0	1		4	750 U	
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0		4	750 U	
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%		81760	0	0		4	750 U	
Bis(2-Ethylhexyl)phthalate	UG/KG	21	50.00%	50000	408800	0	2		4	750 U	
Butylbenzylphthalate	UG/KG	12	25.00%	50000	105120000	0	1		4	750 U	
Carbazole	UG/KG	420	50.00%		286160	0	2		4	750 U	

Table 30-4 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites

SITE:

DESCRIPTION: LOC ID SAMP_ID: QC CODE: SAMP. DETH TOP; SAMP. DEPTH BOT MATRIX: SEAD-121E Bldg. 127 UST Petroleum Release SB121E-1 EB267 SA

0 0.3

SAMP. DEPTH BOT:										0.3
MATRIX:									SOIL	0.5
SAMP. DATE:			FREQUENCY			NUMBER	NUMBER	NUMBER		//ar-98
CAMI . DATE.			OF			ABOVE	OF	OF	17-11	nai-30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q
Chrysene	UG/KG	4500	100.00%	400	784000	1	4		4	110 J
Di-n-butylphthalate	UG/KG	8.9	25.00%	8100		0	1		4	750 U
Di-n-octylphthalate	UG/KG	16	25 00%	50000	10512000	0	1		4	750 U
Dibenz[a,h]anthracene	UG/KG	890	75.00%	14	784	3	3		4	750 U
Dibenzofuran	UG/KG	120	50.00%	6200	2102400	0	2		4	750 U
Diethyl phthalate	UG/KG	15	25.00%	7100	420480000	0	1		4	750 U
Dimethylphthalate	UG/KG	6.2	25.00%	2000	5256000000	0	1		4	750 U
Fluoranthene	UG/KG	6800	100.00%	50000	21024000	0	4		4	130 J
Fluorene	UG/KG	330	50.00%	50000	21024000	0	2		4	750 U
Hexachlorobenzene	UG/KG	0	0.00%	410	3577	0	0		4	750 U
Hexachlorobutadiene	UG/KG	5.2	25.00%		73374	0	1		4	750 U
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0	0		4	750 U
Hexachloroethane	UG/KG	0	0.00%		408800	0	0		4	750 U
indeno[1,2,3-cd]pyrene	UG/KG	1900	75.00%	3200	7840	0	3		4	750 U
Isophorone	UG/KG	0	0.00%	4400		0	0		4	750 U
N-Nitrosodiphenylamine	UG/KG	6.2	25.00%		1168000	0	1		4	750 U
N-Nitrosodipropylamine	UG/KG	0	0.00%		818	0	0		4	750 U
Naphthalene	UG/KG	96	100.00%	13000	21024000	0	4		4	88 J
Nitrobenzene	UG/KG	0	0.00%	200	262800	0	0		4	750 U
Pentachlorophenol	UG/KG	0	0.00%	1000	47693	0	0		4	1800 U
Phenanthrene	UG/KG	4200	100.00%	50000		0	4		4	130 J
Phenol	UG/KG	0	0.00%	30	315360000	0	0		4	750 U
Pyrene	UG/KG	6800	100.00%	50000	15768000	0	4		4	150 J
TPH	MG/KG	3780	75.00%			0	3		4	3780
Lead	MG/KG	92.5	100.00%	24.4		2	4		4,	67.5

Table 30-4
SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM
Non-Evaluated Sites

SITE:	SEAD-121E Bidg. 127 US Petroleum	T.	SEAD-121 Bldg. 127 Petroleum	UST	SEAD-121E Bldg. 127 UST Petroleum		
DESCRIPTION:		Release		Release		Release	•
LOC ID:		SB121E-1		SB121E-1		SB121E-2	2
SAMP_ID:		EB256		EB268		EB257	2
-				SA		SA SA	
QC CODE:		SA	•	SA	0.0	SA	5.1
SAMP. DETH TOP:			0		0.8		
SAMP. DEPTH BOT:			0.7	2011	11	2011	5.5
MATRIX:		SOIL		SOIL		SOIL	
SAMP. DATE:		17-Mar-	98	17-M	ar-98	17-1	/lar-98
PARAMETER	UNIT	VALUE	Q	VALUE	Q	VALUE	Q
1,2,4-Trichlorobenzene	UG/KG	14	00 U		360 U		81 U
1,2-Dichlorobenzene	UG/KG	14	00 U		360 U		81 U
1,3-Dichlorobenzene	UG/KG	14	00 U		360 U		81 U
1,4-Dichlorobenzene	UG/KG	14	00 U		360 U		81 U
2,4,5-Trichlorophenol	UG/KG	35	00 U		880 U		200 U
2,4,6-Trichlorophenol	UG/KG	14	00 U		360 U		81 U
2,4-Dichlorophenol	UG/KG	14	00 U		360 U		81 U
2,4-Dimethylphenol	UG/KG	14	00 U		360 U		81 U
2,4-Dinitrophenol	UG/KG		00 U		880 U		200 U
2,4-Dinitrotoluene	UG/KG		00 U		360 U		81 U
2,6-Dinitrotoluene	UG/KG		00 U		360 U		81 U
2-Chloronaphthalene	·UG/KG		00 U		360 U		81 U
2-Chlorophenol	UG/KG		00 U		360 U		81 U
2-Methylnaphthalene	UG/KG		76 J		260 J		9.8 J
2-Methylphenol	UG/KG		00 U		360 U		81 U
2-Nitroaniline	UG/KG		00 U		880 U		9.7 J
2-Nitrophenol	UG/KG		00 U		360 U		81 U
3,3'-Dichlorobenzidine	UG/KG		00 U		360 U		81 U
	UG/KG		00 U		880 U		200 U
3-Nitroaniline			600 U		880 U		200 U
4,6-Dinitro-2-methylphenol	UG/KG		00 U		360 U		81 U
4-Bromophenyl phenyl ether	UG/KG				360 U		81 U
4-Chioro-3-methylphenol	UG/KG		00 U				
4-Chloroaniline	UG/KG		00 U		360 U		81 U
4-Chlorophenyl phenyl ether	UG/KG		00 U		360 U		7.6 J
4-Methylphenol	UG/KG		00 U		360 U		81 U
4-Nitroaniline	UG/KG		00 U		880 U		200 U
4-Nitrophenol	UG/KG		00 U		880 U		200 U
Acenaphthene	UG/KG		30 J		360 U		7.6 J
Acenaphthylene	UG/KG		20 J		360 U		6.4 J
Anthracene	UG/KG		30 J		37 J		8.6 J
Benzo[a]anthracene	UG/KG	3	900		93 J		17 J
Benzo[a]pyrene	UG/KG	36	500		34 J		18 J
Benzo[b]fluoranthene	UG/KG	32	loo		160 J		23 J
Benzo[ghi]perylene	UG/KG		000		81 J		17 J
Benzo[k]fluoranthene	UG/KG	14. 11. 15	ios		110 J		22 J
Bis(2-Chloroethoxy)methane	UG/KG	14	00 U		360 U		6.2 J
Bis(2-Chloroethyl)ether	UG/KG	14	00 U		360 U		81 U
Bis(2-Chloroisopropyl)ether	UG/KG	14	00 U		360 U		81 U
Bis(2-Ethylhexyl)phthalate	UG/KG		00 U		21 JB		14 JB
Butylbenzylphthalate	UG/KG		00 U		360 U		12 J
Carbazole	UG/KG		20 J		360 U		16 J
	0.00				-12V		

Table 30-4
SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. NYTAGM
Non-Evaluated Sites

SITE:		SEAD-121E		SEAD-12	1E	SEAD-12	1E
		Bldg. 127 U	ST	Bldg. 127	UST	Bldg. 127	UST
		Petroleum		Petroleum	1	Petroleur	n
DESCRIPTION:		Release		Release		Release	
LOC ID:		SB121E-1		SB121E-1	1	SB121E-	2
SAMP ID:		EB256		EB268		EB257	
QC CODE:		SA		SA		SA	
SAMP, DETH TOP:			0		0.8		5.1
SAMP, DEPTH BOT:			0.7		1.1		5.5
MATRIX:		SOIL		SOIL		SOIL	0.0
SAMP, DATE:		17-Ma	r-98		lar-98		Mar-98
							viol 00
PARAMETER	UNIT	VALUE	Q	VALUE	Q	VALUE	Q
Chrysene	UG/KG	4	1500		130 J		21 J
Di-n-butylphthalate	UG/KG	1	400 U		360 U		8.9 J
Di-n-octylphthalate	UG/KG	1	400 U		360 U		16 J
Dibenz[a,h]anthracene	UG/KG	ELECTIVE DE	890 J		36 J	11000000	16 J
Dibenzofuran	UG/KG		120 J		360 U		8.4 J
Diethyl phthalate	UG/KG	1	400 U		360 U		15 JB
Dimethylphthalate	UG/KG	1	400 U		360 U		6.2 J
Fluoranthene	UG/KG	6	800		220 J		31 J
Fluorene	UG/KG		330 J		360 U		8.9 J
Hexachlorobenzene	UG/KG	1	400 U		360 U		81 U
Hexachlorobutadiene	UG/KG	1	400 U		360 U		5.2 J
Hexachlorocyclopentadiene	UG/KG	1	400 U		360 U		81 U
Hexachloroethane	UG/KG	1	400 U		360 U		81 U
Indeno[1,2,3-cd]pyrene	UG/KG	1	900		67 J		15 J
Isophorone	UG/KG	1	400 U		360 U		81 U
N-Nitrosodiphenylamine	UG/KG	1	400 U		360 U		6.2 J
N-Nitrosodipropylamine	UG/KG	1	400 U		360 U		81 U
Naphthalene	UG/KG		83 J		96 J		7 J
Nitrobenzene	UG/KG	1	400 U		360 U		81 U
Pentachlorophenol	UG/KG	3	500 U		880 U		200 U
Phenanthrene	UG/KG	4	200		210 J		21 J
Phenol	UG/KG	1	400 U		360 U		81 U
Pyrene	UG/KG	6	800		230 J		23 J
TPH	MG/KG		172		2800		18.3 U
Lead	MG/KG		24.2		92.5		16.3
						~	

Table 30-5 SEAD 121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites

SITE										0-121E 127 UST	SEAD-121E Bldg 127 UST	SEAD-121E Bldg 127 UST	SEAD-121E Bldg, 127 UST
DESCRIPTION LOC ID. SAMP_ID.									Petro Relea SB12 EB26	sse :1E-1	Petroleum Release SB121E-1 EB256	Petroleum Release SB121E-1 EB268	Petroleum Release SB121E-2 EB257
OC CODE									SA		SA	SA	SA
SAMP DETH TOP: SAMP DEPTH BOT										0	0 0.7	0.8 1 1	5 1 5 5
MATRIX									SOIL		SQIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBE	R 1	17-Mar-98	17-Mar-98	17-Mar-98	17-Mar-98
PARAMETER	TINU	MAXIMUM	OF DETECTION	TAGM	PRG-IND	ABOVE TAGM	OF DETECTS	OF ANALYSI	ES VALU	JE O	VALUE Q	VALUE Q	VALUE
Volatiles	0.41.	0	0 00%	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	0	4		,	VACOL Q	VACOL Q	VALUE
1,1,1-Trichloroethane	UG/KG	0	0.00%	800	18396000	0		0	4	11 U	11 U	11 U	48
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	UG/KG UG/KG	0	0.00% 0.00%	600	286160 100407	0		0	4	11 U 11 U	11 U 11 U	11 U 11 U	48 48
1.1-Dichloroethane	UG/KG	0	0 00%	200	52560000	0		0	4	11 U	11 U	11 U	48
1,1-Dichloroethene	UG/KG	0	0 00%	400	9539	0		0	4	11 U	11 U	11 U	48
1,2-Dichloroethane	UG/KG	0	0 00%	100	62892	0		0	4	11 U	11 U	11 U	48
1,2-Dichloroethene (total) 1,2-Dichloropropane	UG/KG UG/KG	0	0.00%		84165	0		0 0	4	11 U 11 U	11 U 11 U	11 U 11 U	48 48
Acetone	UG/KG	400	100.00%	200	52560000	0		4	4	39	9 JB	18 B	400
Benzene	UG/KG	0	0.00%	60	197352	0		0	4	11 U	11 U	11 U	48
Bromodichloromethane	UG/KG	0	0 00%		92310	0		0	4	11 U	11 U	11 U	48
Bromoform Carbon disulfide	UG/KG UG/KG	0 2	0.00% 50.00%	2700	724456 52560000	0		0 2	4	11 U 2 J	11 U 11 U	11 U	48 48
Carbon letrachloride	UG/KG	0	0.00%	600	44025	0		0	4	11 U	11 U	2 J 11 U	48
Chlorobenzene	UG/KG	4	25.00%	1700	10512000	0		1	4	11 U	11 U	4 J	48
Chlorodibromomethane	UG/KG	0	0 00%		68133	0		0	4	11 U	11 U	11 U	48
Chloroethane	UG/KG	0	0.00%	1900	210240000	0		0	4	11 U	11 U	11 U	48
Chloroform Cis-1,3-Dichloropropene	UG/KG UG/KG	4	25.00% 0.00%	300	938230	0		0	4	11 U 11 U	. 11 U	4 JB 11 U	48 48
Ethyl benzene	UG/KG	0	0.00%	5500	52560000	0		0	4	11 U	11 U	11 U	48
Methyl bromide	UG/KG	0	0 00%		751608	0		0	4	11 U	11 U	11 U	48
Methyl butyl ketone	UG/KG	0	0.00%			0		0	4	11 U	11 U	11 U	48
Methyl chloride Methyl ethyl ketone	UG/KG UG/KG	0	0.00% 0.00%	300	440246	0		0	4	11 U 11 U	11 U 11 U	11 U 11 U	48 48
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	42048000	0		0	4	11 U	11 U	11 U	48
Methylene chlonde	UG/KG	0	0.00%	100	763093	0		0	4	11 U	11 U	11 U	48
Styrene	UG/KG	0	0.00%			0		0	4	11 U	11 U	11 U	48
Tetrachloroethene	UG/KG	0 38	0.00% 100.00%	1400 1500	110062	0		0 4	4	11 U 27	11 U 11 J	11 U 7 J	48 38
Toluene Total Xylenes	UG/KG UG/KG	38	0.00%	1200	105120000 1051200000	0		0	4	11 U	11 J 11 U	7 J 11 U	48
Trans-1,3-Dichloropropene	UG/KG	ō	0.00%			0		0	4	11 U	11 U	11 U	48
Trichloroethene	UG/KG	0	0.00%	700	520291	0		0	4	11 U	11 U	11 U	48
Vinyl chloride	UG/KG	0	0.00%	200	3012	0		0	4	11 U	11 U	11 U	48
Semivolatiles 1,2,4-Trichlorobenzene	UG/KG	0	0.00% 0.00%	3400	5256000	0		0 0	4	750 U	1400 ∪	360 U	81
1,2-Dichlorobenzene	UG/KG	0	0.00%	7900	47304000	0		0	4	750 U	1400 U	360 U	81
1,3-Dichlorobenzene	UG/KG	0	0.00%	1600	46778400	0		0	4	750 U	1400 U	360 U	81
1.4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0		0	4	750 U 1800 U	1400 U	360 U 880 U	81
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	UG/KG UG/KG	0	0.00% 0.00%	100	52560000 520291	0		0 0	4	750 U	3500 U 1400 U	880 U 360 U	200 81
2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0		0	4	750 U	1400 U	360 U	81
2,4-Dimethylphenol	UG/KG	0	0.00%		10512000	0		0	4	750 U	1400 U	360 U	81
2,4-Dinitrophenol	UG/KG	0	0.00%	200	1051200	0		0	4	1800 U	3500 U	880 U	200
2,4-Dinfrotoluene 2,6-Dinfrotoluene	UG/KG UG/KG	0	0.00%	1000	1051200 525600	0		0 0	4	750 U 750 U	1400 U 1400 U	360 U 360 U	81 81
2.6-Dinirotottene 2-Chloronaphthalene	UG/KG	0	0.00%	1000	323000	0		0	4	750 U	1400 U	360 U	81
2-Chlorophenol	UG/KG	0	0.00%	800	2628000	0		0	4	750 U	1400 U	360 U	81
2-Methylnaphthalene	UG/KG	260	100.00%	36400		0		4	4	220 J	76 J	260 J	9 8
2-Methylphenol	UG/KG	0	0.00%	100	26280000	0		0	4	750 U 1800 U	1400 U 3500 U	360 U 880 ∪	81 9.7
2-Nitroaniline 2-Nitrophenol	UG/KG UG/KG	9.7 0	25 00% 0.00%	430 330	31536	0		0	4	750 U	1400 U	360 U	9.7
3,3'-Dichlorobenzidine	UG/KG	0	0.00%	-	12718	0		0	4	750 U	1400 U	360 U	81
3-Nitroaniline	UG/KG	0	0.00%	500	1576800	0		0	4	1800 U	3500 U	880 U	200
4,6-Dinitro-2-methylphenol	UG/KG	0	0 00%		20101000	0		0	4	1800 U	3500 U	880 U	200
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	UG/KG UG/KG	0	0.00%	240	30484800	0		0	4	750 U 750 U	1400 U 1400 U	360 U 360 U	81 81
4-Choro-3-methylphenor	UG/KG	U	0,00%	240		U		•	1	,300	1400 0	300 0	01

Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs PRG-IND Non-Evaluated Sites

SEAD-121E SITE SEAD-121E SEAD-121E SEAD-121E Bldg. 127 UST Bldg 127 UST Bldg. 127 UST Bldg 127 UST Petroleum Petroleum Petroleum Petroleum DESCRIPTION Release Release Release Release SB121E-1 SB121E-1 LOC ID SB121F-1 SB121E-2 SAMP ID EB267 EB256 EB268 EB257 QC CODE SA SA SA SA SAMP DETH TOP 8 0 5.1 SAMP DEPTH BOT 03 0.7 5 5 11 MATRIX SOIL SOIL SOIL SOIL NUMBER SAMP DATE FREQUENCY NUMBER NUMBER 17-Mar-98 17-Mar-98 17-Mar-98 17-Mar-98 OF ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION TAGM PRG-IND TAGM DETECTS ANALYSES VALUE Q VALUE a VALUE Q VALUE 2102400 0 4-Chloroaniline UG/KG 0 00% 220 750 U 1400 U 360 U 81 4-Chlorophenyl phenyl ether UG/KG 76 25.00% 0 750 U 1400 U 360 U 76 900 4-Methylphenol UG/KG 0 0.00% 0 0 750 U 1400 U 360 U 81 4-Nitroaniline UG/KG 0 0.00% 1576800 0 1800 U 3500 U 880 U 200 4-Nitrophenol UG/KG 0.00% 100 31536000 0 1800 U 3500 U 880 U 200 Acenaphthene UG/KG 230 50 00% 50000 0 750 U 230 J 360 U 7.6 41000 UG/KG 120 50 00% 0 Acenaphthylene 750 U 120 J 360 U 6.4 LIG/KG 630 75.00% 50000 157680000 750 11 Anthracene O 630 J 37 J 86 Benzo(a)anthracene UG/KG 3900 100 00% 224 7840 0 53 J 3900 93 J 17 Benzo[a]pyrene UG/KG 3600 75.00% 61 784 750 U 3600 84 J 18 Benzo[b]fluoranthene UG/KG 3300 133 33% 1100 7840 0 3300 180 YJ 160 J 23 Benzo[ghi]perylene UG/KG 2000 75 00% 50000 0 750 U 2000 81 J 17 75 00% 78400 Benzo[k]fluoranthene UG/KG 4800 1100 750 U 4800 110 J 22 0 Bis(2-Chloroethoxy)methane UG/KG 6.2 25 00% 0 750 II 1400 U 360 U 62 Bis(2-Chloroethyl)ether UG/KG 0 0.00% 5203 0 750 U 1400 U 360 U 81 Bis(2-Chloroisopropyl)ether UG/KG 0 0.00% 81760 0 750 U 1400 U 360 U 81 Bis(2-Ethylhexyl)phthalate UG/KG 21 50.00% 50000 408800 0 750 U 1400 U 21 JB 14 Butylbenzylphthalate UG/KG 12 25 00% 50000 105120000 0 750 U 1400 U 360 U 12 UG/KG 420 50 00% 286160 0 750 U 420 J 360 U 16 Carbazole UG/KG 4500 400 784000 Chrysene 100 00% 0 110 J 4500 130 J 21 Di-n-butylphthalate UG/KG 8.9 25 00% 8100 0 750 U 1400 U 360 U 8 9 Di-n-octylphthalate UG/KG 16 25.00% 50000 10512000 0 750 U 1400 U 360 U 16 784 890 J Dibenz(a,h)anthracene UG/KG 890 75.00% 750 U 36 J 16 UG/KG 120 50.00% 6200 2102400 0 750 U 120 J 360 U 8 4 Dibenzofuran 420480000 UG/KG 25 00% 7100 750 U 360 U 15 15 0 1400 U Diethyl phthalate 5256000000 750 II 1400 LI Dimethylphthalate UG/KG 6.2 25.00% 2000 0 360 U 62 Fluoranthene UG/KG 6800 100.00% 50000 21024000 0 130 .1 6800 220 J 31 UG/KG 330 50.00% 50000 21024000 0 750 U 330 J 360 U 8.9 Fluorene 3577 750 U 1400 U 360 U 81 UG/KG 0 00% 410 0 Hexachlorobenzene Hexachlorobutadiene UG/KG 52 25.00% 73374 0 750 U 1400 U 360 U 52 3679200 1400 U Hexachlorocyclopentadiene UG/KG 0 0.00% 0 0 750 U 360 U 81 1400 U Hexachloroethane UG/KG 0.00% 408800 0 750 U 360 U 81 Indeno[1,2,3-cd]pyrene UG/KG 1900 75.00% 3200 7840 0 750 U 1900 67 J 15 Isophorone UG/KG 0.00% 4400 0 750 U 1400 U 360 U 81 1168000 N-Nitrosodiphenylamine UG/KG 62 25.00% 0 750 U 1400 U 360 U 62 LIG/KG 0 750 U 1400 U 360 U 81 0.00% 818 N-Nitrosodipropylamine Ω 0 13000 21024000 88 J 96 J Naphthalene UG/KG 96 100.00% 0 83 J 7 Nitrobenzene UG/KG 0 0 00% 200 262800 0 Π 750 LI 1400 U 360 LI 81 Pentachlorophenol UG/KG 0 00% 1000 47693 0 1800 U 3500 U 880 U 200 130 J 4200 210 J Phenanthrene UG/KG 4200 100 00% 50000 0 21 UG/KG 30 315360000 0 0 750 U 1400 U 360 U 81 Phenol 0 0.00% 6800 Pyréne UG/KG 6800 100 00% 50000 15768000 Ω 150 J 230 J 23 3780 172 TPH MG/KG 3780 75 00% 0 3 2800 183 Lead MG/KG 92 5 100.00% 24 4 0 67.5 24.2 92 5 163

Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites

SITE

DESCRIPTION
LOC ID
SAMP_ID
QC CODE
SAMP DETH TOP
SAMP DEPTH BOT.
MATRIX
SAMP DATE

SAMP DATE		
PARAMETER	UNIT	Q
Volatiles		
1,1,1-Trichloroethane	UG/KG	U
1,1,2,2-Tetrachloroethane	UG/KG	U
1 1,2-Trichloroethane	UG/KG	U
1.1-Dichloroethane	UG/KG	U
1,1-Dichloroethene	UG/KG	U
1,2-Dichloroethane	UG/KG	U
1,2-Dichloroethene (total)	UG/KG	U
1,2-Dichloropropane	UG/KG	U
Acetone	UG/KG	
Benzene	UG/KG	U
Bromodichloromethane	UG/KG	U
Bromoform	UG/KG	U
Carbon disulfide	UG/KG	U
Carbon letrachforide	UG/KG	U
Chlorobenzene	UG/KG	U
Chlorodibromomethane	UG/KG	U
Chloroethane	UG/KG	U
Chloroform	UG/KG	U
Cis-1,3-Dichloropropene	UG/KG	U
Ethyl benzene	UG/KG	U
Methyl bromide	UG/KG	U
Methyl butyl ketone	UG/KG	U
Methyl chloride	UG/KG	U
Melhyl ethyl ketone	UG/KG	U
Methyl isobutyl ketone	UG/KG	U
Methylene chloride	UG/KG	U
Styrene	UG/KG	U
Tetrachloroethene	UG/KG	U
Toluene	UG/KG	J
Total Xylenes	UG/KG	U
Trans-1,3-Dichloropropene	UG/KG	U
Trichloroethene	UG/KG	U
Vinyl chloride	UG/KG	Ų
Semivolatiles		
1,2,4-Trichlorobenzene	UG/KG	U
1,2-Dichlorobenzene	UG/KG	U
1,3-Dichlorobenzene	UG/KG	U
1,4-Dichlorobenzene	UG/KG	U
2.4,5-Trichlorophenol	UG/KG	U
2,4,6-Trichlorophenol	UG/KG	U
2,4-Dichlorophenol	UG/KG UG/KG	U
2.4-Dimethylphenol		U
2.4-Dinitrophenol	UG/KG UG/KG	U
2,4-Dinitrotoluene	UG/KG	U
2,6-Dinitrotoluene	UG/KG	U
2-Chloronaphthalene	UG/KG UG/KG	U
2-Chlorophenol	UG/KG	
2-Methylnaphthalene	UG/KG	J
2-Methylphenol	UG/KG	
2-Nitroaniline 2-Nitrophenol	UG/KG	J
	UG/KG	U
3,3'-Dichlorobenzidine	UG/KG	U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	UG/KG	U
4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	UG/KG	u
4-Chloro-3-methylphenol	UG/KG	u
4-Onoro-3-memyphenor	OGING	0

S121ef xls 3] syprg

Table 30-5 SEAD-121E- Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites

SITE

DESCRIPTION
LOC ID
SAMP_ID
QC CODE
SAMP DETH TOP
SAMP DEPTH BOT
MATRIX
SAMP DATE

PARAMETER	UNIT	Q
4-Chloroaniline	UG/KG	U
4-Chlorophenyl phenyl ether	UG/KG	J
4-Methylphenol	UG/KG	U
4-Nitroaniline	UG/KG	U
4-Nitrophenol	UG/KG	U
Acenaphthene	UG/KG	J
Acenaphthylene	UG/KG	J
Anthracene	UG/KG	J
Benzo[a]anthracene	UG/KG	J
Benzo[a]pyrene	UG/KG	J
Benzo(b)fluoranthene	UG/KG	J
Benzolghilperylene	UG/KG	J
Benzo[k]fluoranthene	UG/KG	J
Bis(2-Chloroethoxy)methane	UG/KG	J
Bis(2-Chloroethyl)ether	UG/KG	U
Bis(2-Chloroisopropyl)ether	UG/KG	Ų
Bis(2-Ethylhexyl)phthalate	UG/KG	JB
Butyfbenzylphthalate	UG/KG	J
Carbazole	UG/KG	J
Chrysene	UG/KG	J
Di-n-butylphthalate	UG/KG	J
Di-n-octylphthalate	UG/KG	J
Dibenz[a,h]anthracene	UG/KG	J
Dibenzofuran	UG/KG	J
Diethyl phthalate	UG/KG	JB
Dimethylphthalate	UG/KG	J
Fluoranthene	UG/KG	J
Fluorene	UG/KG	J
Hexachlorobenzene	UG/KG	U
Hexachlorobutadiene	UG/KG	J
Hexachtorocyclopentadiene	UG/KG	U
Hexachloroethane	UG/KG	U
Indeno[1,2,3-cd]pyrene	UG/KG	J
Isophorone	UG/KG	U
N-Nitrosodiphenylamine	UG/KG	J
N-Nitrosodipropylamine	UG/KG	U
Naphthalene	UG/KG	J
Nitrobenzene	UG/KG	U
Pentachlorophenol	UG/KG	U
Phenanthrene	UG/KG	J
Phenol	UG/KG	U
Pyrene	UG/KG	J
TPH	MG/KG	U
Lead	MG/KG	

S121ef xls 4] sypro

SEAD-121F Building 135 Stained Soil

Table 31-1

Sample Collection Information SEAD-121F - Building 135 Stained Soil

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS121F-1	EB273	3/18/98	0.00	0.20	SA	Sample location is in the NW area of Bldg. 135. Severe surface soil staining.
SURFACE SOIL	SS121F-2	EB274	3/18/98	0.00	0.20	SA	Sample location is in the E. central area of Bldg. 135. Severe surface soil staining.
SURFACE SOIL	SS121F-3	EB275	3/18/98	0.00	0.20	SA	Sample location is in the W. central area of Bldg. 135. Severe surface soil staining.

Notes:

SA = Sample

Table 31-2 SEAD-121F · Volatiles in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID: SAMP_ID QC CODE										SEAD-12 Bldg. 135 Stained S SS121F-1 EB273 SA	oil	SEAD-12 Bldg. 135 Stained S SS121F- EB274 SA	Soil 2	Bldg	ied Soil 21F-3 75	
SAMP DETH TOP											0		0			0
SAMP DEPTH BOT MATRIX										SOIL	0 2	SOIL	0.2	SOIL		1.2
SAMP DATE			FREQUENCY			NUMBER	NUMBER		NUMBER	18-M	ar 08		ar-98		18-Mar-9	00
SAME DATE			OF			ABOVE	OF		OF	10-1414	a1-30	10-14	a1-30		10-14191-2	30
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS		ANALYSES	VALUE	Q	VALUE	Q	VALI	JE	Q
1,1,1-Trichloroethane	UG/KG	0	0 00%	800	18396000)	0		3	11 U		12 U			11 U
1.1.2.2-Tetrachloroethane	UG/KG	0	0.00%	600	286160	()	0		3	11 U		12 U			11 U
1,1,2-Trichloroethane	UG/KG	0	0.00%		100407	()	0		3	11 U		12 U		1	11 U
1,1-Dichloroethane	UG/KG	0	0 00%	200	52560000	Ċ)	0		3	11 U		12 U			11 U
1.1-Dichloroethene	UG/KG	0	0 00%	400	9539	()	0		3	11 U		12 U			11 U
1.2-Dichloroethane	UG/KG	0	0.00%	100	62892	()	0		3	11 U		12 U		1	11 U
1.2-Dichloroethene (total)	UG/KG	0	0.00%			()	0		3	11 U		12 U		-	11 U
1,2-Dichforopropane	UG/KG	0	0 00%		84165	()	0		3	11 U		12 U			11 U
Acetone	UG/KG	75	100 00%	200	52560000	()	3		3	44 B		75 B		2	24 B
Benzene	UG/KG	0	0 00%	60	197352	()	0		3	11 U		12 U			11 U
Bromodichloromethane	UG/KG	0	0.00%		92310	()	0		3	11 U		12 U			11 U
Bromoform	UG/KG	0	0 00%		724456	()	0		3	11 U		12 U			11 U
Carbon disulfide	UG/KG	0	0 00%	2700	52560000	()	0		3	11 U		12 U			11 U
Carbon tetrachloride	UG/KG	0	0 00%	600	44025	()	0		3	11 U		12 U			11 U
Chlorobenzene	UG/KG	0	0 00%	1700	10512000	()	0		3	11 U		12 U		1	11 U
Chlorodibromomethane	UG/KG	0	0 00%		68133	()	0		3	11 U		12 U		1	11 U
Chloroethane	UG/KG	0	0 00%	1900	210240000	()	0		3	11 U		12 U			11 U
Chloroform	UG/KG	0	0 00%	300	938230	()	0		3	11 U		12 U			11 U
Cis-1,3-Dichloropropene	UG/KG	0	0 00%			()	0		3	11 U		12 U			11 U
Ethyl benzene	UG/KG	0	0 00%	5500	52560000	()	0		3	11 U		12 U			11 U
Methyl bromide	UG/KG	0	0.00%		751608	(0		3	11 U		12 U			11 U
Methyl butyl ketone	UG/KG	0	0 00%			(,	0		3	11 U		12 U		,	11 U
Methyl chloride	UG/KG	0	0 00%		440246	()	0		3	11 U		12 U			11 U
Methyl ethyl ketone	UG/KG	0	0.00%	300		(0		3	11 U		12 U			11 U
Methyl isobutyl ketone	UG/KG	0	0.00%	1000	42048000	(0		3	11 U		12 U			11 U
Methylene chloride	UG/KG	0	0 00%	100	763093	(0		3	11 U		12 U			11 U
Styrene	UG/KG	0	0 00%			(•	0		3	11 U		12 U			11 U
Tetrachloroethene	UG/KG	0	0 00%	1400	110062	(-	0		3	11 U		12 U			11 U
Toluene	UG/KG	56	100 00%	1500	105120000	(-	3		3	56		56			32
Total Xylenes	UG/KG	0		1200	1051200000	(-	0		3	11 U		12 U			11 U
Trans-1,3-Dichloropropene	UG/KG	0				(-	0		3	11 U		12 U			11 U
Tnchloroethene	UG/KG	0	0.00%	700	520291	(•	0		3	11 U		12 U			11 U
Vinyl chloride	UG/KG	0	0.00%	200	3012	()	0		3	11 U		12 U			11 U

Table 31-3 SEAD-121F - Volatiles in Soil vs PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP									SEAD-12 Bldg 135 Stained S SS121F-1 EB273 SA	oil	SEAD-12 Bldg. 135 Stained S SS121F-2 EB274 SA	orl	SEAD-1 Bidg 13 Stained SS121F EB275 SA	5 Sorl
SAMP DETH TOP										0 2		0.2		0 2
MATRIX									SOIL		SOIL		SOIL	
SAMP DATE			FREQUENCY			NUMBER ABOVE	NUMBER OF	NUMBER OF	18-M	ar-98	18-M	ar-98	18-1	Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q
1.1.1-Trichloroethane	UG/KG	MAXIMUM 0	0 00%	800	18396000	0	0	ANALIGES	3	11 U	VALUE	12 U	VALUE	11 U
1,1,2,2-Tetrachloroethane	UG/KG	0	0 00%	600	286160	0	0		3	11 U		12 U		11 U
1,1,2-Trichloroethane	UG/KG	0	0 00%	000	100407	0	0		3	11 U		12 U		11 U
1.1-Dichloroethane	UG/KG	0	0 00%	200	52560000	0	0		3	11 U		12 U		11 U
1.1-Dichloroethene	UG/KG	0	0 00%	400	9539	0	0		3	11 U		12 U		11 U
1.2-Dichloroethane	UG/KG	0	0 00%	100	62892	0	0		3	11 U		12 U		11 U
1,2-Dichloroethene (total)	UG/KG	0	0 00%	100	02002	0	0		3	11 U		12 U		11 U
1,2-Dichloropropane	UG/KG	0	0 00%		84165	0	0		3	11 U		12 U		11 U
Acetone	UG/KG	75	100.00%	200	52560000	0	3		3	44 B		75 B		24 B
Benzene	UG/KG	0	0.00%	60	197352	0	0		3	11 U		12 U		11 U
Bromodichloromethane	UG/KG	0	0 00%	00	92310	0	0		3	11 U		12 U		11 U
Bromoform	UG/KG	0	0.00%		724456	0	0		3	11 U		12 U		11 U
Carbon disulfide	UG/KG	0	0.00%	2700	52560000	0	0		3	11 U		12 U		11 U
Carbon tetrachloride	UG/KG	0	0 00%	600	44025	0	0		3	11 U		12 U		11 U
Chlorobenzene	UG/KG	0	0.00%	1700	10512000	0	0		3	11 U		12 U		11 U
Chlorodibromomethane	UG/KG	0	0.00%	1700	68133	0	0		3	11 U		12 U		11 U
	UG/KG	0	0.00%	1900	210240000	0	0		3	11 U		12 U		11 U
Chloroethane	UG/KG UG/KG	0	0 00%	300	938230	0	0		3	11 U		12 U		11 U
Chloroform		0	0 00%	300	930230	0	0		3	11 U		12 U		11 U
Cis-1,3-Dichloropropene	UG/KG	0	0.00%	5500	52560000	0	0		3	11 U		12 U		11 U
Ethyl benzene	UG/KG	0	0.00%	5500	751608	0	0		3	11 U		12 U		11 U
Methyl bromide	UG/KG	0	0.00%		731000	0	0		3	11 U		12 U		11 U
Methyl butyl ketone	UG/KG	0	0.00%		440246	0	0		3	11 U		12 U		11 U
Methyl chloride	UG/KG	0	0.00%	300	440246	0	0		3	11 U		12 U		11 U
Methyl ethyl ketone	UG/KG	•	0 00%	1000	42048000	0	0		3	11 U		12 U		11 U
Methyl isobutyl ketone	UG/KG	0		100	763093	0	0		3	11 U		12 U		11 U
Methylene chloride	UG/KG	0	0 00%	100	/63093	0	0		3	11 U		12 U		11 U
Styrene	UG/KG	•	0 00%	1400	110062	0	0		3	11 U		12 U		11 U
Tetrachloroethene	UG/KG	0		1500	105120000	0	3		3	56		56		32
Toluene	UG/KG	56 0	100 00%	1500	105120000	0	0		3	11 U		12 U		11 U
Total Xylenes	UG/KG		0 00%	1200	1031200000	0	0		3	11 U		12 U		11 U
Trans-1,3-Dichloropropene	UG/KG	0	0 00%	700	520291	0	0		3	11 U		12 U		11 U
Trichloroethene	UG/KG	0	0 00%			0	0		3	11 U		12 U		11 U
Vinyl chloride	UG/KG	0	0 00%	200	3012	U	U		3	11 0		12 0		,, 0

Table 31-4 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs. NYTAGM Non-Evaluated Sites

DESCRIPTION. LOC ID SAMP_ID: QC CODE:									SEAD-1 Bldg. 13 Stained SS121F EB273 SA	Soil	SEAD-121F Bldg. 135 Stained Soil SS121F-2 EB274 SA	SEAD-121F Bldg. 135 Stained Soil SS121F-3 EB275 SA
SAMP, DETH TOP:										0	0	0
SAMP DEPTH BOT:										0.2	0.2	0.2
MATRIX:									SOIL		SOIL	SOIL
SAMP. DATE:			FREQUENCY			NUMBER ABOVE	NUMBER OF		NUMBER 18- OF	Mar-98	18-Mar-98	18-Mar-98
PARAMETER	UNIT	MUMIXAM	DETECTION	TAGM	PRG	TAGM	DETECTS		ANALYSES VALUE	Q	VALUE Q	VALUE
1,2,4-Trichlorobenzene	UG/KG	0	0 00%	3400	5256000	0		0	3	75 U	69 U	72
1,2-Dichlorobenzene	UG/KG	0	0.00%	7900	47304000	0		0	3	75 U	69 U	72
1,3-Dichlorobenzene	UG/KG	0	0 00%	1600	46778400	0		0	3	75 U	69 U	72
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0		0	3	75 U	69 U	72
2,4,5-Trichlorophenol	UG/KG	0	0.00%	100	52560000	0		0	3	180 U	170 U	180
2,4,6-Trichlorophenol	UG/KG	0	0.00%		520291	0		0	3	75 U	69 U	72
2,4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0		0	3	75 U	69 U	72
2.4-Dimethylphenol	UG/KG	0	0.00%		10512000	0		0	3	75 U	69 U	72
2,4-Dinitrophenol	UG/KG	0	0 00%	200	1051200	0		0	3	180 U	170 U	180
2,4-Dinitrotoluene	UG/KG	0	0.00%		1051200	0		0	3	75 U	69 U	72
2,6-Dinitrotoluene	UG/KG	0	0 00%	1000	525600	0		0	3	75 U	69 U	72
2-Chloronaphthalene	UG/KG	0				0		0	3	75 U	69 U	72
2-Chlorophenol	UG/KG	0		800	2628000	0		0	3	75 U	69 U	72
2-Methylnaphthalene	UG/KG	36	100.00%	36400		0		3	3	17 J	13 J	36
2-Methylphenol	UG/KG	0		. 100	26280000	0		0	3	75 U	69 U	72
2-Nitroaniline	UG/KG	0	0 00%	430	31536	0		0	3	180 U	170 U	180
2-Nitrophenol	UG/KG	0	0.00%	330		0		0	3	75 U	69 U	72
3,3 - Dichtorobenzidine	UG/KG	0	0 00%	1.000	12718	0		0	3	75 U	69 U	72
3-Nitroaniline	UG/KG	0		500	1576800	0		0	3	180 U	170 U	180
4,6-Dinitro-2-methylphenol	UG/KG	0	0 00%			0		0	3	180 U	170 U	180
4-Bromophenyl phenyl ether	UG/KG	0			30484800	0		0	3	75 U	69 U	72
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0		0	3	75 U	69 U	72
4-Chloroaniline	UG/KG	0		220	2102400	0		0	3	75 U	69 U	72
4-Chlorophenyl phenyl ether	UG/KG	0		200		0		0	3	75 U 75 U	. 69 U	. 72
4-Methylphenol	UG/KG	0		900	1576800	0		0	3	180 U	170 U	180
4-Nitroaniline	UG/KG	0		100	31536000	0		0	3	180 U	170 U	180
4-Nitrophenol	UG/KG	0 7.4	66,67%	50000	31536000	0		2	3	7.4 J	69 U	6.4
Acenaphthene	UG/KG	7.4		41000		0		0	3	75 U	69 U	72
Acenaphthylene	UG/KG UG/KG	13		50000	157680000	0		2	3	13 J	69 U	13
Anthracene	UG/KG	68		224	7840	0		3	3	56 J	14 J	68
Benzo[a]anthracene	UG/KG	71	100.00%	61	784	1		3	3	58 J	19 J	71
Benzo[a]pyrene Benzo[b]fluoranthene	UG/KG	110		1100	7840	0		3	3	100	21 J	110
Benzo[ghi]perylene	UG/KG	60		50000	7040	0		3	3	60 J	30 J	58
Benzo[k]fluoranthene	UG/KG	72		1100	78400	0		3	3	59 J	16 J	72
Bis(2-Chloroethoxy)methane	UG/KG	0			7-7-00	0		0	3	75 U	69 U	72
Bis(2-Chloroethyl)ether	UG/KG	0			5203	0		0	3	75 U	69 U	72
Bis(2-Chloroisopropyl)ether	UG/KG	0			81760	0		0	3	75 U	69 U	72
Bis(2-Ethylhexyl)phthalate	UG/KG	43		50000	408800	0		3	3	43 JB	13 JB	35
Butylbenzylphthelate	UG/KG	22		50000	105120000	0		2	3	22 J	69 U	9.9
Carbazole	UG/KG	21	66.67%		286160	0		2	3	21 J	69 U	15
Chrysene	UG/KG	94	100,00%	400	784000	0		3	3	82	21 J	94
Di-n-butylphthalate	UG/KG	8.1	100.00%	8100		0		3	3	8.1 J	4.8 J	4.6
Di-n-octylphthalate	UG/KG	7.5	33.33%	50000	10512000	0		1	3	7.5 J	69 U	72
Dibenz(a,h)anthracene	UG/KG	23		14	784	2		2	3 5 1	J	69 U	18
Dibenzofuran	UG/KG	10		6200	2102400	0		2	3	10 J	69 U	9
Diethyl phthalate	UG/KG	12		7100	420480000	0		2	3	12 J	8.5 J	72
Dimethylphthalate	UG/KG	0		2000	5256000000	0		0	3	75 U	69 U	72
Fluoranthene	UG/KG	140	100.00%	50000	21024000	0		3	3	130	24 J	140
Fluorene	UG/KG	9.2	33.33%	50000	21024000	0		1	3	9.2 J	69 U	72
Hexachlorobenzene	UG/KG	0	0.00%	410	3577	0		0	3	75 U	69 U	72
Hexachlorobutadiene	UG/KG	0			73374	0		0	3	75 U	69 U	72
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0		0	3	75 U	69 U	72

Table 31-4 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs NYTAGM Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE									SEAD-121F Bldg 135 Stained Soil SS121F-1 EB273 SA	SEAD-121F Bldg 135 Stained Soil SS121F-2 EB274 SA	SEAD-121F Bldg 135 Stained Soil SS121F-3 EB275 SA
SAMP DETH TOP									0	0	0
SAMP DEPTH BOT									0 2	0.2	0.2
MATRIX									SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Mar-98	18-Mar-98	18-Mar-98
			OF			ABOVE	OF	OF			
PARAMETER	ŲNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES		Q VALUE Q	VALUE Q
Hexachloroethane	UG/KG	0	0 00%		408800	0	0		3 75		72 U
Indeno[1,2,3-cd]pyrene	UG/KG	53	100.00%	3200	7840	0	3		3 53		48 J
Isophorone	UG/KG	91	66 67%	4400		0	2		3 91	69 U	27 J
N-Nitrosodiphenylamine	UG/KG	6.2	33 33%		1168000	0	1		3 6.2		72 U
N-Nitrosodipropylamine	UG/KG	0	0.00%		818	0	0		3 75	U 69 U	72 U
Naphthalene	UG/KG	14	100.00%	13000	21024000	0	3		3 10	J 9 J	14 J
Nitrobenzene	UG/KG	0	0 00%	200	262800	0	0		3 75		72 U
Pentachlorophenol	UG/KG	0	0.00%	1000	47693	0	0		3 180	U 170 U	180 U
Phenanthrene	UG/KG	93	100 00%	50000		0	3		3 75	21 J	93
Phenol	UG/KG	0	0 00%	30	315360000	0	0		3 75	U 69 U	72 U
Pyrene	UG/KG	230	100.00%	50000	15768000	0	3		3 150	61 J	230
TPH	MG/KG	419	100 00%			0	3		3 395	419	290
Lead	MG/KG	318	100 00%	24 4		1	3		3 31.8	11 1	24 3

Table 31-5 SEAD-121F · Semivolatiles/TPH and Lead in Soil vs PRG-IND Non-Evaluated Sites

SITE									SEAD-12	F	SEAD-121F	SEAD-121F
DESCRIPTION									Bldg. 135	- 14	Bldg. 135	Bldg 135
LOC ID									Stained S		Stained Soil	Stained Soil
SAMP_ID									SS121F-1		SS121F-2	SS121F-3
QC CODE									EB273		EB274	EB275
SAMP DETH TOP									SA		SA	ŞA
										0	0	0
SAMP DEPTH BOT										0 2	0.2	0 2
MATRIX									SOIL		SOIL	SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-Ma	ir-98	18-Mar-98	18-Mar-98
			OF			ABOVE	OF	OF				
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE Q
1.2,4-Trichlorobenzene	UG/KG	0	0 00%	3400	5256000	0	0		3	75 U	69 U	72 U
1,2-Dichlorobenzene	UG/KG	0	0 00%	7900	47304000	0	0		3	75 U	69 U	72 U
1.3-Dichlorobenzene	UG/KG	0	0 00%	1600	46778400	0	0		3	75 U	69 U	72 U
1,4-Dichlorobenzene	UG/KG	0	0.00%	8500	238467	0	0		3	75 U	69 U	72 U
2,4,5-Trichlorophenol	UG/KG	0	0 00%	100	52560000	0	0		3	180 U	170 U	180 U
2,4,6-Trichlorophenol	UG/KG	0	0 00%		520291	0	0		3	75 U	69 U	72 U
2,4-Dichlorophenol	UG/KG	0	0 00%	400	1576800	0	0		3	75 U	69 U	72 U
2,4-Dimethylphenol	UG/KG	0	0.00%		10512000	0	0		3	75 U	69 U	72 U
2,4-Dinitrophenol	UG/KG	0	0.00%	200	1051200	0	0		3	180 U	170 U	180 U
2,4-Dinitrotoluene	UG/KG	0	0.00%		1051200	0	0		3	75 U	69 U	72 U
2,6-Dinitrotoluene	UG/KG	0	0.00%	1000	525600	0	0		3	75 U	69 U	72 U
2-Chloronaphthalene	UG/KG	0	0 00%			0	0		3	75 U	69 U	72 U
2-Chlorophenol	UG/KG	0	0 00%	800	2628000	0	0		3	75 U	69 U	72 U
2-Methylnaphthalene	UG/KG	36	100.00%	36400		0	3		3	17 J	13 J	36 J
2-Methylphenoi	UG/KG	0	0 00%	100	26280000	0	0		3	75 U	69 U	72 U
2-Nitroaniline	UG/KG	0	0 00%	430	31536	0	0		3	180 U	170 U	180 U
2-Nitrophenol	UG/KG	0	0 00%	330		0	0		3	75 U	69 U	72 U
3,3'-Dichlorobenzidine	UG/KG	0	0 00%		12718	0	0		3	75 U	69 U	72 U
3-Nitroaniline	UG/KG	0	0.00%	500	1576800	0	0		3	180 U	170 U	180 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%			0	0		3	180 U	170 U	180 U
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		30484800	0	0		3	75 U	69 U	72 U
4-Chloro-3-methylphenol	UG/KG	0	0.00%	240		0	0		3	75 U	69 U	72 U
4-Chloroaniline	UG/KG	0	0 00%	220	2102400	0	0		3	75 U	69 U	72 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%			0	0		3	75 U	69 U	72 U
4-Methylphenol	UG/KG	0	0.00%	900		0	0		3	75 U	69 U	72 U
4-Nitroaniline	UG/KG	0	0.00%		1576800	0	0		3	180 U	170 U	180 U
4-Nitrophenol	UG/KG	0	0 00%	100	31536000	0	0		3	180 U	170 U	180 U
Acenaphthene	UG/KG	7.4	66.67%	50000		0	2		3	7.4 J	69 U	6.4 J
Acenaphthylene	UG/KG	0	0 00%	41000		0	0		3	75 U	69 U	72 U
Anthracene	UG/KG	13	66.67%	50000	157680000	0	2		3	13 J	69 U	13 J
Benzo[a]anthracene	UG/KG	68	100 00%	224	7840	0	3		3	56 J	14 J	68 J
Benzo[a]pyrene	UG/KG	71	100.00%	61	784	0	3		3	58 J	19 J	71 J
Benzo[b]fluoranthene	UG/KG	110	100 00%	1100	7840	0	3		3	100	21 J	110
Benzo[ghi]perylene	UG/KG	60	100.00%	50000		0	3		3	60 J	30 J	58 J
Benzo(k)fluoranthene	UG/KG	72	100.00%	1100	78400	0	3		3	59 J	16 J	72 J
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0	0		3	75 U	69 U	72 U
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0		3	75 U	69 U	72 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%		81760	0	0		3	75 U	69 U	72 U
Bis(2-Ethylhexyl)phthalate	UG/KG	43	100 00%	50000	408800	0	3		3	43 JB	13 JB	35 JB
Butylbenzylphthalate	UG/KG	22	66.67%	50000	105120000	0	2		3	22 J	69 U	9.9 J
Carbazole	UG/KG	21	66 67%		286160	0	2		3	21 J	69 U	15 J
Chrysene	UG/KG	94	100.00%	400	784000	0	3		3	82	21 J	94
Di-n-butylphthalate	UG/KG	8 1	100.00%	8100		0	3		3	8.1 J	4.8 J	46 J
Di-n-octylphthalate	UG/KG	7.5	33 33%	50000	10512000	0	1		3	75 J	69 U	72 U
Dibenz[a,h]anthracene	UG/KG	23	66 67%	14	784	0	2		3	23 J	69 U	18 J
Dibenzofuran	UG/KG	10	66.67%	6200	2102400	0	2		3	10 J	69 U	9 J
Diethyl phthalate	UG/KG	12	66 67%	7100	420480000	0	2		3	12 J	8.5 J	72 U
Dimethylphthalate	UG/KG	0	0.00%	2000	5256000000	0	0		3	75 U	69 U	72 U
Fluoranthene	UG/KG	140	100.00%	50000	21024000	0	3		3	130	24 J	140
Fluorene	UG/KG	9.2	33.33%	50000	21024000	0	1		3	9.2 J	69 U	72 U
Hexachlorobenzene	UG/KG	0	0 00%	410	3577	0	0		3	75 U	69 U	72 U
Hexachlorobutadiene	UG/KG	0	0.00%		73374	0	0		3	75 U	69 U	72 U
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0	0		3	75 U	69 U	72 U
Hexachloroethane	UG/KG	0	0.00%		408800	0	0		3	75 U	69 U	72 U
Indeno[1,2,3-cd]pyrene	UG/KG	53	100.00%	3200	7840	0	3		3	53 J	17 J	48 J
Isophorone	UG/KG	91	66.67%	4400		0	2		3	91	69 U	27 J
N-Nitrosodiphenylamine	UG/KG	6.2	33 33%		1168000	0	1		3	6.2 J	69 U	72 U

Table 31-5 SEAD-121F - Semivolatiles/TPH and Lead in Soil vs. PRG-IND Non-Evaluated Sites

SITE DESCRIPTION LOC ID SAMP_ID QC CODE									SEAD-12 Bldg 135 Stained S SS121F-1 EB273 SA	oil	SEAD-121F Bldg. 135 Stained Soil SS121F-2 EB274 SA		SEAD-121F Bldg 135 Stained Soil SS121F-3 EB275 SA
SAMP DETH TOP										0		0	0
SAMP DEPTH BOT										0 2		0 2	0 2
MATRIX									SOIL		SOIL		SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	18-M	ar-98	18-Mar-	98	18-Mar-98
			OF			ABOVE	OF	OF					
PARAMETER	UNIT	MAXIMUM	DETECTION	TAGM	PRG	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE Q
N-Nitrosodipropylamine	UG/KG	0	0 00%		818	0	0		3	75 U		69 U	72 U
Naphthalene	UG/KG	14	100 00%	13000	21024000	0	3		3	10 J		9 J	14 J
Nitrobenzene	UG/KG	0	0 00%	200	262800	0	0		3	75 U		69 U	72 U
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0	0		3	180 U	1	70 U	180 U
Phenanthrene	UG/KG	93	100.00%	50000		0	3		3	75		21 J	93
Phenol	UG/KG	0	0 00%	30	315360000	0	0		3	75 U		69 U	72 U
Pyrene	UG/KG	230	100 00%	50000	15768000	0	3		3	150		61 J	230
TPH	MG/KG	419	100 00%			0	3		3	395		119	290
Lead			00 00%	24.4		0	3		3	31.8		1.1	24.3

SEAD-121G

Rumored Coal Ash Disposal Area

Table 32-1

Sample Collection Information SEAD-121G - Rumored Coal Ash Disposal Area

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL	SB121G-1	EB214	3/7/98	0.00	0.20	SA	Location is on E. edge of rumored ash disposal area. Location recommended by SEDA personal. Surface soil sample.
SOIL	SB121G-1	EB215	3/7/98	0.58	1.20	SA	Same area as above. Sample interval contained ash.
SOIL	SB121G-2	EB216	3/7/98	0.00	0.20	SA	Location in central area of rumored ash disposal area. Surface soil sample.
SOIL	SB121G-2	EB217	3/7/98	0.75	1.10	SA	Same area as above. Sample interval contained ash.

SA = Sample

Table 32-2 SEAD-121G- Serravolatiles in Soil vs. NYTAGM Non-Evaluated Sites

SITE. DESCRIPTION	٠											SEAD-1 Rumore Ash Disp Area	d Coal oosal	SEAD-1: Rumore: Ash Dis Area	d Coal cosel	SEAD-12 Rumored Ash Disp Area	Coal	SEAD-1 Rumore Ash Dis Area	ed Coel sposal	
FOC ID												SB121G	-1	SB121G	-1	SB121G-	2	SB1210	3-2	
SAMP_ID												EB214 SA		EB215 SA		EB216		EB217 SA		
QC CODE												SA	0	SA	0 58	SA	0	SA	0.75	
SAMP DETH TOP SAMP DEPTH BOT													0.2		12		0.2		11	
MATRIX												SOIL	0.2	SOIL	12	SOIL	0.2	SOIL	11	
SAMP DATE			FREQUENCY				NUMBER		NUMBER		NUMBER		Mar-98		Mar-98		far-98		7-Mar-98	
PARAMETER	UNIT	MAXIMUM	OF DETECTION	NYSDEC TAGM 4046	PRG-RES		TAGM		OF DETECTS		OF ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE		Q
1 2,4-Trichlorobenzene	UG/KG	0	0 00%		3400	10528846		0	0)		4	76 U		85 U	J	150 U '		80 1	U
1,2-Dichlorobenzene	UG/KG	0	0 00%		7900	94759615		0	0)		4	76 U		85 U		150 U		80 1	
1,3-Dichlorobenzene	UG/KG	0	0 00%		1600	93706731		0	0			4	76 U		85 U		150 U		80 1	
1,4-Dichlorobenzene -	UG/KG	0	0 00%		8500	2866186		0	0			4	76 U		85 U		150 U		80	
2,4,5-Trichlorophenol	UG/KG	0	0 00%		100	105288462		0	0			4	180 U		200 U		360 U		200	
2.4,6-Trichlorophenol	UG/KG	0	0 00%			6253497		0	0			4	76 U		85 U		150 U		80 (
2,4-Dichlorophenol	UG/KG	0	0 00%		400	3158654		0	0			4	76 U		85 U		150 U		80 (
2,4-Dimethylphenol	UG/KG	0	0.00%		***	21057692		0	0			4	78 U		85 U		150 U		80	
2,4-Dintrophenol	UG/KG	0	0.00%		200	2105769		0	0			4	180 U		200 U		360 U		200	
2,4-Dinitrotoluene	UG/KG	0	0 00%		1000	2105769		0	0			1	76 U		85 U		150 U		80	
2,6-Dinitrotoluene	UG/KG	0	0 00%		1000	1052885		0	0			1	76 U		85 U 85 U		150 U		80	
2-Chloronaphthalene	UG/KG UG/KG	0	0.00%		800	5264423		0	0			7	76 U		85 U		150 U		80	
2-Chlorophenol	UG/KG	96	25 00%		36400	5204423		0	1	_		7	76 U		85 U		96 J		80	
2-Methylnaphthalene 2-Methylphenol	UG/KG	0	0.00%		100	52644231		0				4	76 U		85 U		150 U		80	
2-Nitroankne	UG/KG	ō	0.00%		430	63173		0	o			4	180 U		200 U		360 U		200	
2-Nitrophenol	UG/KG	o	0.00%		330	00110		0	0			4	76 U		85 U	,	150 U		80	
3,3'-Dichlorobenzidine	UG/KG	0	0.00%		-	152863		0	0			4	76 U		85 U		150 U		80	
3-Nrtroeniline	UG/KG	0	0.00%		500	3158654		0	0	9		4	180 U		200 U		380 U		200	
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%					0	0	0		4	180 U		200 U		360 U		200	
4-Bromophenyl phenyl ether	UG/KG	0	0.00%			61067308		0	0	0		4	76 U		85 U		150 U		80	U
4-Chloro-3-methylphenol	UG/KG	0	0.00%		240			0	0	0		4	76 U		85 U		150 U		80	U
4-Chloroaniline	UG/KG	0	0 00%		220	4211538		0	0			4	78 U		85 U		150 U		80	
4-Chlorophenyl phenyl ether	UG/KG	0	0 00%					0	0			4	76 U		85 U		150 U		80	
4-Methylphenol	UG/KG	0	0 00%		900			0	0			4	78 U		85 U		150 U		80	
4-Nitroaniline	UG/KG	0	0 00%			3158654		0	0			4	180 U		200 U		360 U		200	
4-Nrtrophenol	UG/KG	0	0 00%		100	63173077		0		9		4	180 U		200 U		360 U		200	
Acenaphthene	UG/KG	63	25 00%		50000			0	1			4	76 U		85 U		63 J		80	
Acenephthylene	UG/KG	15	25 00%		41000			0	1			4	78 U		85 U		15 J		80	
Anthracene	UG/KG	360	75.00%		50000	315865385 94231		0	3			1	7.7 J 54 J		48 J	-	360 E		80 26 .	
Benzo[a]anthracene	UG/KG	1800	100 00%		224 61	9423		1	- 2			1	54 J		24 J 25 J	63,463	1500 E		26 .	
Benzo(a)pyrene	UG/KG UG/KG	1500 1400	100 00%		1100	94231		1	- 4			4	69 J		25 J	27,010	1,000 E		37	
Benzo(b)fluoranthene	UG/KG	830	100 00%		50000	34231		o	4	-		4	39 J		19 J		830		22	
Benzo(ghi)perylene Benzo(k)fluoranthene	UG/KG	1400	100 00%		1100	942308		1	4			4	57 J		25 J	277.7010	TARK E		29	
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0.2000		0	C	0		4	76 U		85 U		150 U		80	
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%			62535		0	0	0		4	76 U		85 U		150 U		80	
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%			982692		0	0	0		4	76 U		85 U		150 U		80	U
Bis(2-Ethylhexyi)phthalate	UG/KG	15	50 00%		50000	4913462		0	2			4	76 U		12 JB		150 U		15	JB
Butylbenzylphthalata	UG/KG	0	0.00%		50000	210576923		0	0	0		4	76 U		85 U		150 U		80	
Carbazole	UG/KG	100	50 00%			3439423		0	2			4	69 J		85 U		100 J		80	
Chrysene	UG/KG	1600	100 00%		400	9423077		1	4			4	74 J		28 J	27 (200)			34 .	
Di-n-butylphthalate	UG/KG	45	50.00%		6100			0	2			4	4 J		85 U		150 U		4.5	
Di-n-octylphthalate	UG/KG	33	75 00%		50000	21057692		0	3			4	4.9 J		13 J	100000000000000000000000000000000000000	150 U		33 .	
Dibenz(a,h)anthracene	UG/KG	430	100 00%		14	9423		2	4			451510	44.7		12 J	45 By 181	TALAL CO.		12 .	
Dibenzofuran	UG/KG	32	25 00%		6200	4211538		0	1			4	76 U		85 U		32 J		80	
Diethyl phthalate	UG/KG	17	100 00%		7100	842307692		0	4	0		4	11 J 76 U		17 J 85 U		93 J 150 U		77	
Ormethylphthalate	UG/KG	0	0 00%			10528846150						7					3700 E		52 .	
Fluoranthene	UG/KG	3700 82	100 00% 50 00%		50000 50000	42115385 42115385		0	4 2			4	140 8 4 J		50 J 85 U	,	82 J		80	0
Fluorene	UG/KG UG/KG	0	0 00%		410	42993		0	0			4	76 U		85 U		150 U		80	
Hexachlorobenzene Hexachlorobutadene	UG/KG	0	0.00%		410	210577		0		0		4	76 U		85 U		150 U		80	
Hexachlorocyclopentadiene	UG/KG	0	0.00%			7370192		0		0		4	76 U		85 U		150 U		60	
Hexachloroethane	UG/KG	0	0.00%			1052685		o		0		4	78 U		85 U	,	150 U		80	
Indeno[1,2,3-cd]pyrene	UG/KG	880	100.00%		3200	94231		0	4			4	42 J		18 J		880		20	
Isophorone	UG/KG	0	0.00%		4400			D	0			4	78 U		85 U		150 U		80	
N-Nitrosodiphenylamine	UG/KG	0	0.00%			14038462		0	0	0		4	76 U		85 U		150 U		80	
N-Nitrosodipropylamine	UG/KG	0	0.00%			9827		0	C	0		4	76 U		85 U		150 U		80	
Naphthalene	UG/KG	12	25 00%		13000	42115385		0	1	1		4	76 U		85 U		12 J		80	
Nrtrobenzene	UG/KG	0	0 00%		200	526442		0	0			4	76 U		85 U		150 U		80	
Pentachlorophenol	UG/KG	0	0.00%		1000	573237		0		0		4	180 U		200 U		360 U		200	
Phenanthrene	UG/KG	1500	100 00%		50000			0	4			4	83		25 J		1500 E		31 .	
Phenol	UG/KG	0	0.00%		30	631730769		0		0		4	76 U		85 U		150 U		80	
Pyrene	UG/KG	3200	100 00%		50000	31586538		0	4	6		4	120		51 J		3200 E		61 .	J

Table 32 3 SEAD-121G - Semivolatiles in Soil vs. PRG_RES Non Evaluated Sites

SITE DESCRIPTION. LOC ID. SAMP_ID: OC CODE									SEAD-1; Rumored SB121G EB214 SA	Coal	SEAD-121G Rumored Coal SB121G-1 EB215 SA	SEAD-121G Rumored Coal SB121G-2 EB216 SA	SEAD-121G Rumored Coal SB121G-2 EB217 SA
SAMP. DETH TOP:										0	0.58	0	0 75
SAMP. DEPTH BOT. MATRIX:									SOIL	0.2	1.2 SOIL	0 2 SOIL	1 1 SOIL
SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER		Mar 98	7-Mar-98	7-Mar-98	7-Mar-98
PARAMETER	UNIT	MAXIMUM	OF DETECTION	NYSDEC TAGM 4046 F	PRG-RES	ABOVE TAGM	OF DETECTS	OF ANALYSES	VALUE	0	VALUE Q	VALUE O	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	0	0.00%	3400	10528846	0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	76 U	85 U	150 U	80 U
1.2-Dichlorobenzene	UG/KG	0	0 00%	7900	94759615	0	0		4	76 U	85 U	150 U	80 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	UG/KG UG/KG	0	0 00%	1600 8500	93706731 2866186	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	80 U 80 U
2,4,5-Trichlorophenol	UG/KG	0	0.00%	100	105288462	0	0		4	180 U	200 U	360 U	200 U
2,4,6-Trichlorophenol	UG/KG	0	0.00%	400	6253497 3158654	0	0		4	76 U	85 U	150 U	80 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/KG UG/KG	0	0.00%	400	21057692	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	80 U 80 U
2.4-Dinitrophenol	UG/KG	0	0 00%	200	2105769	0	0		4	180 U	200 U	360 U	200 U
2,4-Dinitrotoluene 2.6-Dinitrotoluene	UG/KG UG/KG	0	0 00% 0 00%	1000	2105769 1052885	0	0		4	76 U	85 U 85 H	150 U 150 U	80 U 80 U
2-Chloronaphthalene	UG/KG	0	0.00%	1000	1032003	0	0		4	76 U	85 U	150 U	80 U
2-Chlorophenol	UG/KG	0	0.00%	800	5264423	0	0		4	76 U	85 U	150 U	80 U
2-Methylnaphthalene 2-Methylphenol	UG/KG UG/KG	9.6 0	25 00% 0 00%	36400 100	52644231	0	1 0		4	76 U 76 U	85 U 85 U	9.6 J 150 U	80 U 80 U
2-Nitroaniline	UG/KG	0	0.00%	430	63173	0	0		4	180 U	200 U	360 U	200 U
2-Nitrophenol	UG/KG	0	0 00%	330		0	0		4	76 U	85 U	150 U	80 U
3,3 -Dichlorobenzidine 3-Nitroaniline	UG/KG UG/KG	0	0 00%	500	152863 3158654	0	0		4	76 U 180 U	85 U 200 U	150 U 360 U	80 U 200 U
4,6-Dinitro-2-methylphenol	UG/KG	0	0.00%	300	3130034	0	0		4	180 U	200 U	360 U	200 U
4-Bromophenyl phenyl ether	UG/KG	0	0.00%		61067308	0	0		4	76 U	85 U	150 U	80 U
4-Chloro-3-methylphenol 4-Chloroaniline	UG/KG UG/KG	0	0.00%	240 220	4211538	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	80 U 80 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%	LLO	4211000	0	ō		4	76 U	85 U	150 U	80 U
4-Methylphenol	UG/KG	0	0.00%	900	******	0	0		4	76 U	85 U	150 U	80 U
4-Nitroaniline 4-Nitrophenol	UG/KG UG/KG	0	0.00% 0.00%	100	3158654 63173077	0	0		4	180 U 180 U	200 U 200 U	360 U 360 U	200 U 200 U
Acenaphthene	UG/KG	63	25.00%	50000	00170077	ō	1		4	76 U	85 U	63 J	80 U
Acenaphthylene	UG/KG	15	25.00%	41000 50000	315865385	0	1		4	76 U	85 U	15 J	80 U
Anthracene Benzo[a]anthracene	UG/KG UG/KG	360 1800	75 00% 100,00%	224	94231	0	3 4		4	7.7 J 54 J	4.8 J 24 J	360 1800 E	80 U 26 J
Benzo[a]pyrene	UG/KG	1500	100.00%	61	9423	0	4		4	54 J	25 J	1500 E	26 J
Benzo(b)fluoranthene	UG/KG UG/KG	1400 830	100.00% 100.00%	1100 50000	94231	0	4		4	39 J	25 J 19 J	1400 E 830	37 J 22 J
Benzo(ghi)perylene Benzo(k)fluoranthene	UG/KG	1400	100.00%	1100	942308	0	4		4	57 J	25 J	1400 E	22 J 29 J
Bis(2-Chloroethoxy)methane	UG/KG	0	0.00%			0	0		4	76 U	85 U	150 U	80 U
Bis(2-Chloroethy!)ether Bis(2-Chloroisopropyl)ether	UG/KG UG/KG	0	0.00% 0.00%		62535 982692	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	U 08 U 08
Bis(2-Ethylhexyl)phthalate	UG/KG	15	50 00%	50000	4913462	0	2		4	76 U	12 JB	150 U	15 JB
Butylbenzylphthalate	UG/KG	0	0.00%	50000	210576923	0	0		4	76 U	85 U	150 U	80 U
Carbazole	UG/KG UG/KG	100 1600	50 00% 100,00%	400	3439423 9423077	0	2		4	6.9 J 74 J	85 U 28 J	100 J 1600 E	80 U 34 J
Chrysene Di-n-butylphthalate	UG/KG	4 5	50.00%	8100	5425077	0	2		4	4 J	85 U	150 U	4.5 J
Di-n-octylphthalate	UG/KG	33	75 00%	50000	21057692	0	3		4	4.9 J	13 J	150 U	33 J
Dibenz[a,h]anthracene Dibenzofuran	UG/KG UG/KG	430 32	100.00% 25 00%	14 6200	9423 4211538	0	4		4	17 J 76 U	12 J 85 U	430 32 J	12 J 80 U
Diethyl phthalate	UG/KG	17	100 00%	7100	842307692	0	4		4	11 J	17 J	9.3 J	7.7 J
Dimethylphthalate	UG/KG	0	0.00%	2000	10528846150	0	0		4	76 U	85 U	150 U	80 U
Fluoranthene Fluorene	UG/KG UG/KG	3700 82	100 00% 50 00%	50000 50000	42115385 42115385	0	4 2		4	140 6 4 J	50 J 85 U	3700 E 82 J	52 J 80 U
Hexachlorobenzene	UG/KG	0	0.00%	410	42993	ō	ō		4	76 U	85 U	150 U	80 U
Hexachlorobutadiene	UG/KG	0	0.00%		210577	0	0		4	76 U	85 U	150 U	80 U
Hexachlorocyclopentadiene Hexachloroethane	UG/KG UG/KG	0	0.00%		7370192 1052885	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	80 U 80 U
Indeno[1,2,3-cd]pyrene	UG/KG	880	100.00%	3200	94231	0	4		4	42 J	18 J	880	20 J
Isophorone	UG/KG	0	0.00%	4400		0	0		4	76 U	85 U	150 U	80 U
N-Nitrosodiphenylamine	UG/KG UG/KG	0	0.00% 0.00%		14038462 9827	0	0		4	76 U 76 U	85 U 85 U	150 U 150 U	₩ 08 U 08
N-Nitrosodipropylamine Naphthalene	UG/KG	12	25.00%	13000	42115385	0	1		4	76 U	85 U	12 J	80 U
Nitrobenzene	UG/KG	0	0.00%	200	526442	0	0		4	76 U	85 U	150 U	80 U
Pentachlorophenol	UG/KG UG/KG	0 1500	0.00% 100.00%	1000 50000	573237	0	0		4	180 U 83	200 U 25 J	360 U 1500 E	200 U 31 J
Phenanthrene Phenol	UG/KG	1500	0.00%	30	631730769	0	0		4	76 U	85 U	150 U	80 U
Pyrene	UG/KG	3200	100,00%	50000	31586538	0	4		4	120	51 J	3200 E	61 J

Table 32-4 SEAD 1210: Metals in Soil vs. NYTAGM Non Evaluated Sites

SITE									SEAD-121G	SEAD-121G	SEAD-121G	SEAD-121G
									Rumored Coal	Rumored Coal	Rumored Coal	Rumored Coal
									Ash Disposal	Ash Disposal	Ash Disposal	Ash Disposal
DESCRIPTION									Area	Area	Area	Area
LOC ID									SB121G 1	SB121G-1	SB121G-2	SB121G-2
SAMP, ID									EB214	EB215	EB216	EB217
QC CODE									SA	SA	SA	SA SA
SAMP DETH TOP									0	0.58	0	0.75
SAMP DEPTH BOT									0.2	1.2	0.2	11
MATRIX									SOIL	SOIL	\$DIL	
SAMP DATE			FREQUENCY	,		NUMBER	NUMBER	NUMBER	7-Mar-98	7-Mar-98	7-Mar-98	SOIL
			OF			ABOVE	OF	OF	7 - WAT - 200	7-Mai-30	/-Mar-98	7-Mar-98
PARAMETER	UNIT	MAXIMUM		NYSDEC TAGM 4046 PRO	3 RES	TAGM	DETECTS	ANALYSE'S	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	11500	100 00%	19520	1052885	0	4	711971 100 3	10900	832	11500	VALUE Q 8660
Antimony	MG/KG	0.9	100 00%	6	421	0	2		2 08 UN	0.87 UN	0.72 BN	0.9 BN
Arsenic	MG/KG	4.8	75 00%	8.9	46	0	3		4 1	09 1	43	4.8
Barium	MG/KG	82	100 00%	300	73702	0	4	-	814	17 B	82	4 8 68 4
Beryllium	MG/KG	0.46	100 00%	1 13	16	0	4	,	0 42 B	0 08 B	0.46 B	
Cadmium	MG/KG		0.00%	2 46	526	0	0	7	007 0	0.07 U*	0.09 N _e	0.34 B 0.07 U*
Calcium	MG/KG	44800	100 00%	125300		0	4		44800	801 B	23600	8950
Chromium	MG/KG	17.8	133 33%	30	1052885	0	4		159	11 B*	178 *	
Cobalt	MG/KG		100 00%	30	63173	0	4	7	73 B	0 87 B	8.6	128 *
Copper	MG/KG	21 4	100 00%	33	42115	0	4	-	193	66 *	21 4 *	6 B 19 2 *
Cyanide	MG/KG	0	0.00%	0 35		0	'n	7	0 63 U	0 66 U	0 67 U	
Iron	MG/KG	20100	100 00%	37410	315865	0	4		1 17100	780	20100	0 64 U 13500
Lead	MG/KG	45.9	100 00%	24.4	0.11.000	2	4	-	30.8	1.4	46.9	20.9
Magnesium	MG/KG	5810	133 33%	21700		n	4		3 4880 °	109 B*	5810 *	3210 *
Manganese	MG/KG	378	100 00%	1100	24216	ů.	4	7	354	31.5	378	284
Mercury	MG/KG	0.06	50 00%	0.1	316		2	-	0.06.8	0.05 U	0.06 8	0.05 U
Nickel	MG/KG	23	133 33%	50	21058	o o	4	-	20 5 E*	25 BE*	23 E*	18 7 E*
Potassium	MG/KG	1900	100 00%	2623		0	4	-	1900	157 B	1470	1130 B
Selenium	MG/KG	0	0.00%	2	5264	0	0		1 1 UN	1 2 UN	0 92 UN	11 UN
Silver	MG/KG	0	0.00%	0.8	5264	0	0		0 48 U	0 52 U	0 41 U	05 U
Sodium	MG/KG	0	0.00%	188		0	0	4	1 139 U	152 U	119 U	144 U
Thallium	MG/KG	16	25 00%	0 855	84	1	1		14 U	16 U	12 U	1.6 B
Vanadium	MG/KG	20 6	100 00%	150	7370	0	4		1 195 E	3 2 BE	20 6 E	162 E
Zinc	MG/KG	79 9	100 00%	115	315865	ō	4	-	1 742	54	79 9	50 2
						-	•			3.4	, 3 3	30 2

Table 32-5 SEAD 121G Metals in Soil vs PRG_RES Non-Evaluated Sites

SITE. DESCRIPTION LOC ID. SAMP_ID: QC CODE									SEAD-121G Rumored Co SB121G-1 EB214 SA		SEAD-121G Rumored Coal SB121G-1 EB215 SA	SEAD-121G Rumored Coal SB121G-2 EB216 SA	SEAD-121G Rumored Coal SB121G-2 EB217 SA
SAMP DETH TOP										0	0.58	0	0.75
SAMP DEPTH BOT										.2	1 2	0 2	1.1
MATRIX									SOIL		SOIL	SOIL	SOIL
SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	7-Mar-	98	7-Mar-98	7-Mar-98	7-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	NYSDEC TAGM 4046 F	PRG RES	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	MG/KG	11500	100.00%	19520	1052885	0	4		4 109	00	832	11500	8660
Antimony	MG/KG	0.9	100.00%	6	421	0	2		2 (.8 UN	0 87 UN	0.72 BN	0.9 BN
Arsenic	MG/KG	4 8	75.00%	8 9	46	0	3		4 4	1	0.9 U	4.3	4.8
Barrum	MG/KG	82	100.00%	300	73702	0	4		4 81	4	17 B	82	68 4
Beryllium	MG/KG	0 46	100.00%	1 13	16	0	4		4 0.	42 B	0.08 B	0.46 B	0 34 B
Cadmium	MG/KG	0	0 00%	2 46	526	0	0		4 0.	07 U*	0.07 U*	0 06 U*	0.07 U*
Calcium	MG/KG	44800	100.00%	125300		0	4		4 448	00	801 B	23600	8950
Chromium	MG/KG	17 8	133 33%	30	1052885	0	4		3 15	.9 *	1 1 B*	178 *	12.8 *
Cobalt	MG/KG	8	100.00%	30	63173	0	4		4 7	'.3 B	0.87 B	8 B	6 B
Copper	MG/KG	21.4	100.00%	33	42115	0	4		4 19	1.3 *	6.6 *	21.4 *	19.2 *
Cyanide	MG/KG	0	0 00%	D 35		0	0		4 0.	63 U	0.66 U	0.67 U	0.64 U
Iron	MG/KG	20100	100 00%	37410	315865	0	4		4 171	00	780	20100	13500
Lead	MG/KG	45 9	100.00%	24.4		0	4		4 30		1.4	45.9	20 9
Magnesium	MG/KG	5810	133.33%	21700		0	4			80 *	109 B*	5810 *	3210 *
Manganese	MG/KG	378	100 00%	1100	24216	0	4			54	31.5	378	284
Mercury	MG/KG	0.06	50.00%	0.1	316	0	2			06 B	0.05 U	0.06 B	0.05 U
Nickel	MG/KG	23	133.33%	50	21058	0	4),5 E*	2.5 BE*	23 E*	18.7 E*
Potassium	MG/KG	1900	100 00%	2623		0	4		4 19	00	157 B	1470	1130 B
Setenium	MG/KG	0	0 00%	2	5264	0	0		4 1	.1 UN	1.2 UN	0.92 UN	1 1 UN
Silver	MG/KG		0 00%	0.8	5264	0	0			48 U	0 52 U	0.41 U	0.5 U
Sodium	MG/KG		0 00%	188		0	0			39 U	152 U	119 U	144 U
Thallium			25.00%	0 855	84	0	1			.4 U	1.6 U	1 2 U	16 B
Vanadium	MG/KG	20 6	100 00%	150	7370	0	4			5 E	3 2 BE	20.6 E	16.2 E
Zinc	MG/KG	79 9	100 00%	115	315865	0	4		4 74	2	5.4	79.9	50 2

SEAD-121H Rumored Coal Disposal Area

Table 33-1

Sample Collection Information SEAD-121H - Rumored Coal Disposal Area

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION	SAMPLE	SAMPLE	TOP	BOTTOM	QC	RATIONALE FOR SAMPLE
	ID	ID	DATE	(feet)	(feet)	CODE	LOCATION
SOIL	SB121H-1	EB254	3/16/98	0.00	0.90	SA	Rumored location verified by SEDA personal. The site has been covered by a roadsalt storage dome. Boring was done on the NE perimeter of the dome. Sample interval included coal.
SOIL	SB121H-1	EB255	3/16/98	6.90	7.50	SA	Same location as above. Sample taken at only other boring interval to contain coal.
SOIL	SB121H-2	EB252	3/16/98	0.00	0.30	SA	Rumored location verified by SEDA personal. The site has been covered by a roadsalt storage dome. Boring was done on the South perimeter of the dome. Surface soil sample.
SOIL	SB121H-2	EB253	3/16/98	7.30	7.70	SA	Same location as above. Sample taken at just above bedrock. (near water table). No detected VOC's or impact to soils.

Notes:

SA = Sample

Table 33.2 SEAD-121H Semivolatiles in Soil vs. NYTAGM Non Evaluated Sites

SITE										SEAD-12	1H	SEAD-1	21H	SEAD	>121H	s	EAD-12	1H
DEADDELON										Rumored		Rumore		Rumo	red Coal	R	umored	Coal
DESCRIPTION LOC ID										Disposal		Disposa			sal Area		sposal	
SAMP ID										SB121H- EB252	1	SB121H EB254	1-7	S812 EB25			B121H-	2
QC CODE										SA		SA SA		SA	5	E S	B253	
SAMP DETH TOP										0-1	0	3/	0	3.4	6.9	3	M	7.3
SAMP DEPTH BOT											03		0.9		7.5			7 7
MATRIX										SOIL		SOIL		SOIL		s	OIL	
SAMP DATE			FREQUENCY			NUMBER		NUMBER	NUMBER		16-Mar 98	16-8	Mar-98	18	6-Mar-98		16-M	ar-98
DARAMETER			QF	WARE THEM	DDC NO	ABOVE		OF	OF									
PARAMETER 1 2 4-Trichlorobenzene	UNIT UG/KG	MAXIMUM 0		VYSDEC TAGM 3400	PRG IND 5256000	TAGM	0	DETECTS 0	ANAL YSES	VALUE 4	2 72 U	VALUE		VALU		V	ALUE	_ Q
1.2-Dichlorobenzene	UG/KG	0		7900	47304000		0	0		4	72 U		69 U		72 U 72 U			79 U 79 U
1.3-Dichlorobenzene	UG/KG	0		1600	46778400		0	0		4	72 U		69 U		72 U			79 U
1,4-Dichlorobenzene	UG/KG	0		8500	238467		0	0		4	72 U		69 U		72 U			79 U
2,4,5-Trichlorophenol	UG/KG	0	0 00 10	100	52560000		0	0		4	170 U		170 U		180 U			190 U
2,4,6-Trichlorophenal	UG/KG	0			520291		0	0		4	72 U		69 U		72 U			79 U
2,4 Dichlorophenol	UG/KG	0		400	1576800		0	0		4	72 U		69 U		72 U			79 U
2.4 Dimethylphenol	UG/KG	0			10512000		0	0		4	72 U		69 U		72 U			79 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	UG/KG UG/KG	0	0 00 70	200	1051200 1051200		0	0		4	170 U 72 U		170 U		180 U			190 U
2,6-Dinitratoluene	UG/KG	0		1000	525600		0	0		4	72 U		69 U 69 U		72 U 72 U			79 U 79 U
2-Chloronaphthalene	UG/KG	0		1000	525000		0	0		4	72 U		69 U		72 U			79 U
2-Chlorophenol	UG/KG	ō		800	2628000		0	0		4	72 U		69 U		72 U			79 U
2-Methylnaphthalene	UG/KG	20		36400			0	2		4	72 U		20 J		16 J			79 U
2-Methylphenol	UG/KG	0		100	26280000		0	0		4	72 U		69 U		72 U			79 U
2 Ndroaniline	UG/KG	0		430	31536		0	0		4	170 U		170 U		180 U			190 U
2-Nitrophenol	UG/KG	0		330			0	0		4	72 U		69 U		72 U			79 U
3,3 -Dichlorobenzidine 3-Nitroaniline	UG/KG UG/KG	0		500	12718 1576800		0	0		4	72 U		69 U		72 U			79 U
4.6-Dintro-2-methylphenol	UG/KG	0	0 00% 0 00%	500	1370000		0	0		4	170 U 170 U		170 U 170 U		180 U 180 U			190 U
4 Bromophenyl phenyl ether	UG/KG	0			30484800		0	0		4	72 U		69 U		72 U			190 U 79 U
4-Chloro-3-methylphenol	UG/KG	0		240			0	0		4	72 U		69 U		72 U			79 U
4-Chloroaniline	UG/KG	0	0 00%	220	2102400		0	0		4	72 U		69 U		72 U			79 U
4-Chlorophenyl phenyl ether	UG/KG	0					0	0		4	72 U		69 U		72 U			79 U
4-Methylphenol	UG/KG	0		900			0	0		4	72 U		69 U		72 U			79 U
4-Nitroaniline	UG/KG	. 0		400	1576800		0	0		4	170 U		170 U		180 U			190 U
4-Nitrophenol Acenaphthene	UG/KG UG/KG	0		100 50000	31536000		0	0		4	170 U 72 U		170 U 69 U		180 U 72 U			190 U 79 U
Acenaphthylene	UG/KG	0		41000			0	0		4	72 U		69 U		72 U			79 U
Anthracene	UG/KG	ō		50000	157680000		0	ō		4	72 U		69 U		72 U			79 U
Benzo[a]anthracene	UG/KG	12		224	7840		0	4		4	7 2 J		12 J		4.2 J			98 J
Benzo(a)pyrene	UG/KG	10		61	784		0	3		4	10 J		8.6 J		72 U			8 J
Benzo(b)fluoranthene	UG/KG	15		1100	7840		0	4		3	15 J		15 J		7 2 JY			9 J
Benzo(ghi)perylene	UG/KG UG/KG	13 16		50000 1100	78400		0	4		4	13 J		94 J		47 J			83 J
Benzo(k)fluoranthene Bis(2-Chloroethoxy)methane	UG/KG	0		1100	76400		0	0		4	16 J 72 U		10 J 69 U		72 U 72 U			86 J 79 U
Bis(2-Chloroethyl)ether	UG/KG	0			5203		0	0		4	72 U		69 U		72 U			79 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0 00%		81760		0	0		4	72 U		69 U		72 U			79 U
Bis(2-Ethylhexyl)phthalate	UG/KG	8 4		50000	408800		0	4		4	5 2 JB		8 4 JB		7 4 JB			69 JB
Butylbenzylphthalate	UG/KG	4 4		50000	105120000		0	1		4	72 U		4 4 J		72 U			79 U
Carbazole	UG/KG	0			286160		0	0		4	72 U		69 U		72 U			79 U
Chrysene Dun hydrolehthadata	UG/KG UG/KG	18 3 5		400 8100	784000		0	4		4	12 J		18 J 3 5 J		7 2 J			12 J
Di-n-butylphthalate Di-n-octylphthalate	UG/KG	0		50000	10512000		0	0		4	72 U 72 U		69 U		72 U 72 U			79 U 79 U
Dibenz[a,h]anthracene	UG/KG	76		14	784		Ô	2		4	76 J		64 J		72 U			79 U
Dibenzoluran	UG/KG	7 8		6200	2102400		0	2		4	72 U		7 8 J		49 J			79 U
Diethyl phthalate	UG/KG	13	100 00%	7100	420480000		0	4		4	5 4 JB		13 JB		9 4 JB			12 JB
Dimethylphthalate	UG/KG	0		2000	5256000000		0	0		4	72 U		69 U		72 U			79 U
Fluoranthene	UG/KG	33		50000	21024000		0	4		4	15 J		33 J		10 J			23 J
Fluorene	UG/KG	0		50000	21024000		0	0		4	72 U		69 U		72 U			79 U
Hexachlorobenzene Hexachlorobutadiene	UG/KG UG/KG	0		410	3577 73374		0	0		4	72 U 72 U		69 U		72 U 72 U			79 U 79 U
Hexachlorocyclopentadiene	UG/KG	0			3679200		0	0		4	72 U		69 U		72 U			79 U
Hexachloroethane	UG/KG	0			408800		0	0		4	72 U		69 U		72 U			79 U
Indeno[1,2,3-cd]pyrene	UG/KG	13		3200	7840		0	3		4	13 J		8 1 J		72 U			83 J
Isapharane	UG/KG	0		4400			0	0		4	72 U		69 U		72 U			79 U
N-Nitrosodiphenylamine	UG/KG	0			1168000		0	0		4	72 U		69 U		72 U			79 U
N-Nitrosodipropylamine	UG/KG	0			818		0	0		4	72 U		69 U		72 U			79 U
Naphthalene	UG/KG	12		13000	21024000		0	2		4	72 U		12 J		89 J			79 U
Nitrobenzene	UG/KG	0		200 1000	262800 47693		0	0		4	72 U 170 U		69 U 170 U		72 U			79 U
Pentachlorophenol Phenanthrene	UG/KG UG/KG	0 34		50000	4/693		0	0		4	170 U 7 1 J		170 U 34 J		180 U 15 J			190 U 13 J
Phenoi	UG/KG	0		30	315360000		0	0		4	72 U		69 U		72 U			79 U
Pyrene	UG/KG	22		50000	15768000		0	4		4	10 J		22 J		75 J			17 J

Table 33-3 SEAD-121H Semivolatiles in Soil vs. PRG IND Non Evaluated Sites

SITE									SEAD- Rumor	-121H red Coal	SEAD-121H Rumored Coal	SEAD-121H Rumored Coal	SEAD-121H Rumored Coal
DESCRIPTION									Dispos	sal Area	Disposal Area	Disposal Area	Disposal Area
LOC ID									SB121		SB121H-1	SB121H-2	SB121H-2
SAMP_ID									EB252	2	EB254	EB255	EB253
QC CODE									SΛ		SA	SA	SA
SAMP DETH TOP										0	0	6 9	7 3
SAMP DEPTH BOT										0 3	0.9	7.5	7 7
MATRIX SAMP DATE			FREQUENCY			NUMBER	NUMBER	NUMBER	SOIL	16-Mar-98	SOIL 16-Mar-98	SOIL 16-Mar-98	SOIL 16-Mar-98
			OF			ABOVE	OF	OF					
PARAMETER	TIMU	MUMIXAM			PRG-IND	TAGM	DETECTS	ANALYSES	VALUE		VALUE Q	VALUE Q	VALUE Q
1.2 4-Trichlorobenzene	UG/KG	0	0 00%	3400	5256000	0	0		4	72 U	69 U	72 U	79 U
1.2 Dichlorobenzene	UG/KG	0	0 00%	7900	47304000	0	0		4	72 U	69 U	72 U	79 U
1 3 Dichlarabenzene	UG/KG	0	0.00%	1600	46778400	0	0		4	72 U	69 U	72 U	79 U
1,4-Dichlorobenzene	UG/KG	0	0 00%	8500	238467	0	0		4	72 U	69 U	72 U	79 U
2 4,5 Trichlorophenol	UG/KG	0	0.00%	100	52560000	0	0		4	170 U	170 U	180 U	190 U
2.4 6 Trichlorophenol	UG/KG	0	0 00%		520291	0	0		4	72 U	69 U	72 U	79 U
2 4-Dichlorophenol	UG/KG	0	0.00%	400	1576800	0	0		4	72 U	69 U	72 U	79 U
2.4 Dimethylphenol	UG/KG	0	0 00%		10512000	0	0		4	72 U	69 U	72 U	79 U
2.4-Dinitrophenal	UG/KG	0	0 00%	200	1051200	0	0		4	170 U	170 U	180 U	190 U
2 4-Dinitrotoluene	UG/KG	0	0 00%		1051200	0	0		4	72 U	69 U	72 U	79 U
2.6-Dinitrotoluene	UG/KG	0	0 00%	1000	525600	0	0		4	72 U	69 U	72 U	79 U
2 Chloronaphthalene	UG/KG	0	0.00%	000	202222	0			4	72 U	69 U	72 U	79 U
2-Chlorophenol	UG/KG	0	0 00%	900	2628000	0	0		4	72 U	69 U	72 U	79 U
2-Methylnaphthalene	UG/KG	20	50 00%	36400	26280000	0	2		4	72 U	20 J	16 J	79 U
2-Methylphenol	UG/KG	0	0 00%	100		0	0		4	72 U	69 U	72 U	79 U
2-Nitroaniline	UG/KG	0	0.00%	430	31536	0	0		4	170 U 72 U	170 U	180 U	190 U
2 Nitrophenol	UG/KG UG/KG	0	0 00%	330	12718	0	0		4	72 U	69 U 69 U	72 U 72 U	79 U
3.3 -Dichlorobenzidine				500		0	0		4				79 U
3-Nitroankine	UG/KG	0	0 00%	500	1576800	0	0		4	170 U	170 U	180 U	190 U
4,6-Dinitra 2-methylphenol	UG/KG UG/KG	0	0 00%		30484800	0	0		4	170 U 72 U	170 U	72 11	190 U 79 U
4-Bromophenyl phenyl ether	UG/KG UG/KG	0	0.00%	240	30484800	0	0		4	72 U	69 U	72 U	79 U
4-Chloro-3 methylphenol 4-Chloroaniline	UG/KG	0	0 00%	720	2102400	0	0		4	72 U	69 U	72 U	79 U
4-Chlorophenyl phenyl ether	UG/KG	0	0.00%	120	2102400	0	0		4	72 U	69 U	72 U	79 U
4-Onlorophenyl phenyl emer 4-Methylphenol	UG/KG	0	0 00%	900		0	0		4	72 U	69 U	72 U	79 U
4-Nitroaniline	UG/KG	0	0 00%	900	1576800	0	0		4	170 U	170 U	180 U	190 U
4-Nitrophenol	UG/KG	0	0 00%	100	31536000	0	0		4	170 U	170 U	180 U	190 U
	UG/KG	0	0.00%	50000	31536000	0	0		4	72 U	69 U	72 U	190 U
Acenaphthene Acenaphthylene	UG/KG	0	0.00%	41000		0	0		4	72 U	69 U	72 U	79 U
Anthracene	UG/KG	0	0 00%	50000	157680000	0	0		4	72 U	69 U	72 U	79 U
Benzo(a)anthracene	UG/KG	12	100 00%	224	7840	0	4		4	7 2 J	12 J	42 J	98 J
Benzo(a)pyrene	UG/KG	10	75 00%	61	784	0	3		4	10 J	86 J	72 U	8 J
Benzo[b]fluoranthene	UG/KG	15	133 33%	1100	7840	0	4		3	15 J	15 J	7 2 JY	9 3
Benzo(ghi)perylene	UG/KG	13	100 00%	50000	1040	0	4		4	13 .	9 4 J	47 J	83 J
Benzo[k]fluoranthene	UG/KG	16	75 00%	1100	78400	0	3		4	16 J	10 J	72 U	86 J
Bis(2 Chloroethoxy)methane	UG/KG	0	0 00%			0	0		4	72 U	69 U	72 U	79 U
Bis(2-Chloroethyl)ether	UG/KG	0	0.00%		5203	0	0		4	72 U	69 U	72 U	79 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0.00%		81760	0	0		4	72 U	69 U	72 U	79 U
Bis(2 Ethylhexyl)phthalate	UG/KG	8.4	100 00%	50000	408800	0	4		4	5 2 JB	8 4 JB	7 4 JB	69 JB
Butylbenzylphthalate	UG/KG	4.4	25 00%	50000	105120000	0	1		4	72 U	4 4 J	72 U	79 ∪
Carbazole	UG/KG	0	0 00%		286160	0	0		4	72 U	69 U	72 U	79 U
Chrysene	UG/KG	18	100 00%	400	784000	0	4		4	12 J	18 J	7 2 J	12 J
Di-n-buty/phthalate	UG/KG	35	25 00%	8100		0	1		4	72 U	35 J	72 U	79 U
Di-n-octylphthalate	UG/KG	0	0 00%	50000	10512000	0	0		4	72 U	69 U	72 U	79 U
Dibenz(a,h)anthracene	UG/KG	76	50 00%	14	784	0	2		4	76 J	64 J	72 U	79 U
Dibenzofuran	UG/KG	7 8	50 00%	6200	2102400	0	2		4	72 U	78 J	49 J	79 ∪
Diethyl phthalate	UG/KG	13	100 00%	7100	420480000	0	4		4	5 4 JB	13 JB	9 4 JB	12 JB
Dimethylphthalate	UG/KG	0	0 00%	2000	5256000000	0	0		4	72 U	69 U	72 U	79 U
Ftuoranthene	UG/KG	33	100 00%	50000	21024000	0	4		4	15 J	33 J	10 J	23 J
Fluorene	UG/KG	0	0.00%	50000	21024000	0	0		4	72 U	69 U	72 U	79 U
Hexachlorobenzene	UG/KG	0	0 00%	410	3577	0	0		4	72 U	69 U	72 U	79 U
Hexachlorobutadiene	UG/KG	0	0 00%		73374	0			4	72 U	69 U	72 U	79 U
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200	0			4	72 U	69 U	72 U	79 U
Hexachloroethane	UG/KG	0	0.00%		406800	0	0		4	72 U	69 U	72 U	79 U
Indena(1 2 3-cd)pyrene	UG/KG	13	75 00%	3200	7840	0			4	13 J	81 J	72 U	83 J
Isophorone	UG/KG	0	0 00%	4400		0			4	72 U	69 U	72 U	79 U
N-Nitrosodiphenylamine	UG/KG	0	0 00%		1168000	0	0		4	72 U	69 U	72 U	79 U
N-Nitrosodipropylamine	UG/KG	0	0 00%		818	0			4	72 U	69 U	72 U	79 U
Naphthalene	UG/KG	12	50 00%	13000	21024000	0			4	72 U	12 J	8 g J	79 U
Nitrobenzene	UG/KG	0	0 00%	200	262800	0			4	72 U	69 U	72 U	79 U
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0			4	170 U	170 U	180 U	190 U
Phenanthrene	UG/KG	34	100 00%	50000		0			4	71 J	34 J	15 J	13 J
Phenol	UG/KG	0	0 00%	30	315360000	0			4	72 U	69 U	72 U	79 U
Pyrene	UG/KG	22	100 00%	50000	15768000	0	4		4	10 J	22 J	75 J	17 J

Table 33-4 SEAD-121H - Metals in Soil vs NYTAGM Non-Evaluated Sites

SITE SEAD-121H SEAD-121H SEAD-121H SEAD-121H Rumored Coal Rumored Cost Rumored Coal Rumored Coal DESCRIPTION Disposal Area Disposal Area Disposel Area SB121H-2 Disposal Area SB121H-2 LOC ID SB121H-1 SB121H-1 SAMP_ID EB252 EB254 EB255 EB253 OC CODE SAMP DETH TOP SA SA SA SA 69 73 SAMP DEPTH BOT 03 09 75 77 MATRIX SOIL SOIL SOIL SOIL SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 16-Mar-98 16-Mar-98 16-Mar-98 16-Mar-98 ABOVE OF PARAMETER UNIT MAXIMUM DETECTION NYSDEC TAGM PRG-IND TAGM DETECTS ANALYSES VALUE VALUE Q a VALUE a VALUE Q Aluminum MG/KG 12400 100 00% 19520 525600 3610 1570 6570 12400 Antimony MG/KG 0 00% 210 24 11 U 0 99 U 1 U 12 U Arsenic MG/KG 4.5 100 00% 3 815466667 89 34 45 Barrum MG/KG 83 1 100 00% 300 36792 23.5 B 17.7 B 53 6 83 1 MG/KG 0 48 MG/KG 0 1 13 Beryllium 100 00% 1 330976744 0 17 B 0.11 B 0 24 B 0.48 B Cadmium 2 46 125300 0.00% 262 B 0.06 U 0.06 U 0.06 U 0.07 U MG/KG 246000 Calcium 100 00% 227000 E "WENTE 102000 E 17400 E Chromium MG/KG 19.3 100 00% 30 30 33 525600 69 11.5 19.3 Cobalt MG/KG 10 5 100 00% 31536 57 B 47 B 6.9 B 10 5 B MG/KG 20 2 MG/KG 0 Copper 100 00% 21024 13.8 87 149 20 2 0 23600 0 35 37410 Cyanide 0 00% 0 55 U 0.55 U 0.58 U 0 65 U MG/KG 100 00% 157680 8390 4400 14800 23600 Lead MG/KG 12.6 100 00% 24 4 9.7 49 76 12 6 MG/KG MG/KG 15400 495 Magnesium 100 00% 21700 13500 13900 15400 5820 1100 0 1 50 Manganese 12088 8 100 00% 308 337 321 495 Mercury MG/KG 0 27.7 0 00% 157 68 0 04 U 0 04 U 0 06 U 0 05 U Nickel MG/KG 100 00% 10512 14.1 10 20.5 277 Potassium MG/KG 1370 MG/KG 1.1 100 00% 2623 1090 881 B 1060 1370 Selenium 1.1 25.00% 2628 0 93 U 0.87 U 0.9 U 1.1 B MG/KG Silver 08 0 00% 2628 0.27 U 0.25 U 0.26 U 03 U Sodium MG/KG 611 188 100 00% 14 U 83 B 611.0 BANK BURNER B 377 B Thallium MG/KG 0 0 00% 0 855 42 048 13 U 1.5 U Vanadium MG/KG 21 3 MG/KG 67 1 100 00% 150 3679 2 5.4 B 11.4 47.6 21 3 67 1 Zinc 115

33 1

23.5

157680

100 00%

Table 33-5 SEAD-121H - Metals in Soil vs PRG-IND Non-Evaluated Siles

DESCRIPTION LOC ID SAMP_ID OC CODE SAMP DETH TOP. SAMP DEPTH BOT MATRIX SAMP DATE			FREQUENCY OF			NUMBER ABOVE	NUMBER OF	NUMBER OF	SEAD-12 Rumored Disposal SB121H- EB252 SA	i Coal Area	SEAD-1211 Rumored C Disposal A SB121H-1 EB254 SA SOIL 16-Ma	oal rea 0 0 9		5.9	SEAD- Rumore Disposi SB1211 EB253 SA SOIL	ed Coal al Area H-2
PARAMETER	UNIT	MAXIMUM	DETECTION	NYSDEC TAGM	PRG-IND	TAGM	DETECTS	ANALYSES	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
Aluminum	MG/KG	12400	100.00%	19520	525600	0	4		4	3610	1	570	65	70		12400
Antimony	MG/KG	0	0 00%	6	210	0	0		4	11 U		99 U		1 U		1.2 U
Arsenic	MG/KG	4 5	100.00%	8 9	4	2	4		4	4.3		3.1	:	3.4		4.5
Barium	MG/KG	83.1	100.00%	300	36792	0	4		4	23.5 B		17 7 B	5.5	3.6		83 1
Beryllium	MG/KG	0.48	100.00%	1 13	. 1	0	4		4	0.17 B	+	11 B	0	24 B		0.48 B
Cadmium	MG/KG	0	0 00%	2.46		0	0		4	0.06 U		0.06 U	0.	.06 U		0 07 U
Calcium	MG/KG	246000	100 00%	125300		0	4		4	227000 E		000 E	1020	00 E		17400 E
Chromium	MG/KG	19 3	100.00%	30		0	4		4	6 9		3.7		1.5		19 3
Cobalt	MG/KG	10.5	100 00%	30	31536	0	4		4	5.7 B		4.7 B		5.9 B		10.5 B
Copper	MG/KG	20.2	100.00%	33		0	4		4	13.8		8.7		4.9		20.2
Cyanide	MG/KG		0.00%	0.35		0	0		4	0 55 U		0.55 U		.58 U		0 65 U
Iron	MG/KG	23600	100.00%	37410		0	4		4	8390		400	148			23600
Lead	MG/KG	126	100.00%	24.4		0	4		4	9.7		4.9		7.6		12 6
Magnesium	MG/KG	15400	100 00%	21700		0	4		4	13500		900	154			5820
Manganese	MG/KG		100 00%	1100		0	4		4	308		337		321		495
Mercury	MG/KG		0 00%	0 1	158	0	0		4	0 04 U		0.04 U		.06 U		0 05 U
Nickel	MG/KG	27 7	100.00%	50		0	4		4	14.1		10		0.5		27 7
Potassium	MG/KG	1370	100 00%	2623		0	4		4	1090		881 B		60		1370
Selenium	MG/KG	1 1	25.00%	2		0	1		4	0.93 U		0.87 U		0.9 U		1 1 B
Silver	MG/KG		0.00%	0.8		0	0		4	0.27 U		0.25 U		.26 U		0.3 U
Sodium	MG/KG		100.00%	188		0	4		4	328 B		611 B		35 B		377 B
Thallium	MG/KG		0.00%	0 855		0	0		4	1.4 U		1.3 U		1.3 U		1.5 U
Vanadium	MG/KG	21.3	100 00%	150		0	4		4	8.3 B		5.4 B		1.4		21.3
Zinc	MG/KG	67 1	100 00%	115	157680	0	4		4	33 1		23,5	4	7.6		67 1

SEAD-121I Cosmoline Oil Disposal Areas

Table 34-1

Sample Collection Information SEAD-1211 - Cosmoline Oil Disposal Areas

9 Low Priority EBS Non-Evaluated Sites Seneca Army Depot Activity

MATRIX	LOCATION ID	SAMPLE ID	SAMPLE DATE	TOP (feet)	BOTTOM (feet)	QC CODE	RATIONALE FOR SAMPLE LOCATION
SURFACE SOIL	SS121I-1	EB147	3/10/98	0	0.2	SA	Location is in a depressed ground surface area adjacent to warehouse Bldg. 343 where cosmoline may of been deposited during equipment unpacking and cleaning activities.
SURFACE SOIL	SS121I-2	EB150	3/10/98	0	0.2	SA	Location is in a depressed ground surface area adjacent to warehouse Bldg.342 where cosmoline may of been deposited during equipment unpacking and cleaning activities.
SURFACE SOIL	SS1211-3	EB149	3/10/98	0	0.2	SA	Location is in a depressed ground surface area adjacent to warehouse Bldg.341 where cosmoline may of been deposited during equipment unpacking and cleaning activities.
SURFACE SOIL	SS1211-4	EB148	3/10/98	0	0.2	SA	Location is in a depressed ground surface area adjacent to warehouse Bldg.340 where cosmoline may of been deposited during equipment unpacking and cleaning activities.
SEDIMENT	SD121I-1	EB151	3/10/98	0	0.2	SA	Location is a drainage culvert downgradient of the material staging area between warehouse Bldgs. 343 & 331, near a railway dock, where cosmoline may of been deposited from surface water runoff. Standing water was present.
SEDIMENT	SD121I-2	EB152	3/10/98	0	0.2	SA	Location is a drainage culvert downgradient of the material staging area between warehouse Bldgs. 329 & 341, near a railway dock, where cosmoline may of been deposited from surface water runoff. Standing water was present.

Notes:

SA = Sample

Q

Table 34-2 SEAD-1211 - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites

SEAD-1211 SEAD-1211 SITE: DESCRIPTION: SS121I-1 SS121I-2 LOC ID: EB147 EB150 SAMP_ID: QC CODE: SA SA SAMP, DEPTH TOP: 0 0 0.2 0.2 SAMP. DEPTH BOT: MATRIX: SOIL SOIL NUMBER SAMP. DATE: **FREQUENCY** NUMBER NUMBER 10-Mar-98 10-Mar-98 OF **ABOVE** OF OF DETECTION NYSDEC TAGM PRG-IND PARAMETER UNIT MAXIMUM TAGM DETECTS ANALYSES VALUE VALUE Ω 1,2,4-Trichlorobenzene UG/KG Ω 0.00% 3400 5256000 0 0 470 U 7400 U UG/KG 0.00% 7900 47304000 0 0 470 U 7400 U 1,2-Dichlorobenzene 0 46778400 0 UG/KG 0.00% 1600 0 470 U 7400 U 1,3-Dichlorobenzene 0 238467 0 UG/KG 0 0.00% 8500 0 470 U 7400 U 1,4-Dichlorobenzene 52560000 0 1100 U 2,4,5-Trichlorophenol UG/KG 0 0.00% 100 0 18000 U UG/KG 520291 0 0 470 U 7400 U 2,4,6-Trichlorophenol 0 0.00% 0 2.4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 470 U 7400 U 2,4-Dimethylphenol UG/KG 0 0.00% 10512000 0 0 470 U 7400 U 0 0 2,4-Dinitrophenol UG/KG 0 0.00% 200 1051200 1100 U 18000 U 0 0 2,4-Dinitrotoluene UG/KG 0 0.00% 1051200 470 U 7400 U 0 1000 525600 0 470 U 2,6-Dinitrotoluene UG/KG 0 0.00% 7400 U 0 0 470 U 0 0.00% 7400 U 2-Chloronaphthalene UG/KG 800 2628000 0 0 470 U UG/KG 0 0.00% 7400 U 2-Chlorophenol 54 25.00% 36400 0 470 U 7400 U 2-Methylnaphthalene UG/KG 1 2-Methylphenol UG/KG 0 0.00% 100 26280000 0 0 470 U 7400 U UG/KG 0 0.00% 430 31536 0 0 1100 U 18000 U 2-Nitroaniline 0 0 470 U 7400 U 2-Nitrophenol UG/KG 0 0.00% 330 3,3'-Dichlorobenzidine UG/KG 0 0.00% 12718 0 0 470 U 7400 U 3-Nitroaniline UG/KG 0 0.00% 500 1576800 0 0 1100 U 18000 U 4,6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 1100 U 18000 U UG/KG 0 0.00% 30484800 0 0 470 U 7400 U 4-Bromophenyl phenyl ether 470 U 4-Chloro-3-methylphenol UG/KG 0 0.00% 240 0 0 7400 U 470 U 4-Chloroaniline UG/KG 0 0.00% 220 2102400 0 0 7400 U 0 0 470 U 7400 U 4-Chlorophenyl phenyl ether UG/KG 0 0.00% 470 U 7400 U 0.00% 900 0 0 4-Methylphenol UG/KG 0 0.00% 1576800 0 0 1100 U 18000 U UG/KG 0 4-Nitroaniline UG/KG 0.00% 100 31536000 0 0 1100 U 18000 U 0 4-Nitrophenol UG/KG 1900 100.00% 50000 0 4 170 J 1900 J Acenaphthene 0.00% 41000 0 0 470 U 7400 U Acenaphthylene UG/KG 0 UG/KG 2600 100.00% 50000 157680000 0 170 J 2600 J Anthracene UG/KG 13000 100.00% 224 7840 1400 13000 Benzo[a]anthracene 100.00% 784 1300 13000 UG/KG 13000 61 Benzo[a]pyrene 12000 100.00% 1100 7840 4 1500 12000 UG/KG Benzo[b]fluoranthene 100.00% 50000 0 4 4 820 8100 Benzo[ghi]perylene UG/KG 8100 1500 15000 15000 100.00% 1100 78400 4 Benzo[k]fluoranthene UG/KG 0 470 U 7400 U Bis(2-Chloroethoxy)methane UG/KG 0 0.00% 0 0 470 U 7400 U Bis(2-Chloroethyl)ether UG/KG 0 0.00% 5203 0 0 0 470 U 7400 U Bis(2-Chloroisopropyl)ether UG/KG 0 0.00% 81760 0 51 JB 7400 U 408800 3 Bis(2-Ethylhexyl)phthalate UG/KG 230 75.00% 50000 470 U 7400 U 0 0 UG/KG 0 0.00% 50000 105120000 Butylbenzylphthalate 230 J 3100 J 0 UG/KG 3100 100.00% 286160 4 Carbazole 1700 16000 400 784000 4 4 Chrysene UG/KG 16000 100.00% 0 45 JB 7400 U Di-n-butylphthalate UG/KG 45 25.00% 8100 1 7400 U 50000 10512000 0 0 470 U Di-n-octylphthalate UG/KG 0 0.00% 4 4 350 J J 14 784 Dibenz[a,h]anthracene UG/KG 4600 100.00% 440 J 6200 2102400 n 29 J 100.00% Dibenzofuran UG/KG 440

Table 34-2 SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM Non Evaluated Sites

SITE. DESCRIPTION:											SEAD-12	211	SEA	D-121I	
LOC ID:											SS121I-1		SS1	211-2	
SAMP_ID ⁻											EB147		EB1	50	
QC CODE.											SA		SA		
SAMP DEPTH TOP:												0		(0
SAMP. DEPTH BOT:												0.2		0.3	2
MATRIX											SOIL		SOIL		
SAMP DATE			FREQUENCY			NUMBER		NUMBER		NUMBER	_	/lar-98		10-Mar-91	8
			OF			ABOVE		OF		OF					
PARAMETER	UNIT	MAXIMUM	DETECTION	NYSDEC TAGM	PRG-IND	TAGM		DETECTS		ANALYSES	VALUE	Q	VAL	JE	Q
Diethyl phthalate	UG/KG	0	0.00%	7100	420480000		0		0		4	470 U		740	
Dimethylphthalate	UG/KG	0	0.00%	2000	5256000000		0		0		4	470 U			0 U
Fluoranthene	UG/KG	35000	100.00%	50000	21024000		0		4		4	3200		3500	-
Fluorene	UG/KG	1100	100.00%	50000	21024000		0		4		4	83 J		110	
Hexachlorobenzene	UG/KG	0	0.00%	410	3577		0		0		4	470 U		740	0 U
Hexachlorobutadiene	UG/KG	0	0 00%		73374		0		0		4	470 U			0 U
Hexachlorocyclopentadiene	UG/KG	0	0.00%		3679200		0		0		4	470 U		740	0 U
Hexachloroethane	UG/KG	0	0.00%		408800		0		0		4	470 U		740	0 U
Indeno[1,2,3-cd]pyrene	UG/KG	8000	100.00%	3200	7840		1		4		4	760		800	0
Isophorone	UG/KG	0	0.00%	4400			0		0		4	470 U		740	0 U
N-Nitrosodiphenylamine	UG/KG	0	0.00%		1168000		0		0		4	470 U		740	0 U
N-Nitrosodipropylamine	UG/KG	0	0.00%		818		0		0		4	470 U		740	0 U
Naphthalene	UG/KG	51	25.00%	13000	21024000		0		1		4	470 U		740	0 U
Nitrobenzene	UG/KG	0	0.00%	200	262800		0		0		4	470 U		740	0 U
Pentachlorophenol	UG/KG	0	0.00%	1000	47693		0		0		4	1100 U		1800	0 U
Phenanthrene	UG/KG	15000	100.00%	50000			0		4		4	1200		1500	0
Phenol	UG/KG	0	0.00%	30	315360000		0		0		4	470 U		740	0 U
Pyrene	UG/KG	23000	100.00%	50000	15768000		0		4		4	2700		2300	0
TPH	MG/KG	452	75.00%				0		3		4	43.9		10	8

Table 34-2
SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM
Non Evaluated Sites

SITE:		SEAD-121I	SEAD-1211
DESCRIPTION:			
LOC ID:		SS121I-3	SS121I-4
SAMP_ID:		EB149	EB148
QC CODE:		SA	SA
SAMP. DEPTH TOP:		0	0
SAMP. DEPTH BOT:		0.2	0.2
MATRIX:		SOIL	SOIL
SAMP. DATE:		35864	35864
PARAMETER	UNIT	VALUE Q	VALUE Q
1,2,4-Trichlorobenzene	UG/KG	770 U	550 U
1,2-Dichlorobenzene	UG/KG	770 U	550 U
1,3-Dichlorobenzene	UG/KG	770 U	550 U
1,4-Dichlorobenzene	UG/KG	770 U	550 U
2,4,5-Trichlorophenol	UG/KG	1900 U	1300 U
2,4,6-Trichlorophenol	UG/KG	770 U	550 U
2,4-Dichlorophenol	UG/KG	770 U	550 U
2,4-Dimethylphenol	UG/KG	770 U	550 U
2,4-Dinitrophenol	UG/KG	1900 U	1300 U
2,4-Dinitrotoluene	UG/KG	770 U	550 U
2,6-Dinitrotoluene	UG/KG	770 U	550 U
2-Chloronaphthalene	UG/KG	770 U	550 U
2-Chlorophenol	UG/KG	770 U	550 U
2-Methylnaphthalene	UG/KG	54 J	550 U
2-Methylphenol	UG/KG	770 U	550 U
2-Nitroaniline	UG/KG	1900 U	1300 U
2-Nitrophenol	UG/KG	770 U	550 U
3,3'-Dichlorobenzidine	UG/KG	770 U	550 U
3-Nitroaniline	UG/KG	1900 U	1300 U
4,6-Dinitro-2-methylphenol	UG/KG	1900 U	1300 U
4-Bromophenyl phenyl ether	UG/KG	770 U	550 U
4-Chloro-3-methylphenol	UG/KG	770 U	550 U
4-Chloroaniline	UG/KG	770 U	550 U
4-Chlorophenyl phenyl ether	UG/KG	770 U	550 U
4-Methylphenol	UG/KG	770 U	550 U
4-Nitroaniline	UG/KG	1900 U	1300 U
4-Nitrophenol	UG/KG	1900 U	1300 U
Acenaphthene	UG/KG	140 J	320 J
Acenaphthylene	UG/KG	770 U	550 U
Anthracene	UG/KG	220 J	230 J
Benzo[a]anthracene	UG/KG	" 1600 B	1700
Benzo[a]pyrene	UG/KG	1800 B	1600
Benzo[b]fluoranthene	UG/KG	2100 B	1700
Benzo[ghi]perylene	UG/KG	1600 B	940
Benzo[k]fluoranthene	UG/KG	2500 B	1800
Bis(2-Chloroethoxy)methane	UG/KG	770 U	550 U
Bis(2-Chloroethyl)ether	UG/KG	770 U	550 U
Bis(2-Chloroisopropyl)ether	UG/KG	770 U	550 U
Bis(2-Ethylhexyl)phthalate	UG/KG	230 J	47 JB
Butylbenzylphthalate	UG/KG	770 U	550 U
Carbazole	UG/KG	320 J	380 J
Chrysene	UG/KG	2000 B	1900
Di-n-butylphthalate	UG/KG	770 U	550 U
Di-n-octylphthalate	UG/KG	770 U	550 U
Dibenz[a,h]anthracene	UG/KG	720 J	720 J
Dibenzofuran	UG/KG	42 J	63 J
DIDENZUMAN	COING	42 3	00 0

Table 34-2
SEAD-121I - Semivolatiles/TPH in Soil vs. NYTAGM
Non Evaluated Sites

SITE:		SEAD-121I	SEAD-121I
DESCRIPTION:			
LOC ID:		SS121I-3	SS121I-4
SAMP_ID:		EB149	EB148
QC CODE:		SA	SA
SAMP, DEPTH TOP:		0	0
SAMP. DEPTH BOT.		0.2	0.2
MATRIX:		SOIL	SOIL
SAMP. DATE:		35864	35864
	=		
PARAMETER	UNIT	VALUE Q	VALUE Q
Diethyl phthalate	UG/KG	770 U	550 U
Dimethylphthalate	UG/KG	770 U	550 U
Fluoranthene	UG/KG	4000 B	4100
Fluorene	UG/KG	98 J	160 J
Hexachlorobenzene	UG/KG	770 U	550 U
Hexachlorobutadiene	UG/KG	770 U	550 U
Hexachlorocyclopentadiene	UG/KG	770 U	550 U
Hexachloroethane	UG/KG	770 U	550 U
Indeno[1,2,3-cd]pyrene	UG/KG	1600 B	950
Isophorone	UG/KG	770 U	550 U
N-Nitrosodiphenylamine	UG/KG	770 U	550 U
N-Nitrosodipropylamine	UG/KG	770 U	550 U
Naphthalene	UG/KG	770 U	51 J
Nitrobenzene	UG/KG	770 U	550 U
Pentachlorophenol	UG/KG	1900 U	1300 U
Phenanthrene	UG/KG	1400 B	1800
Phenol	UG/KG	770 U	550 U
Pyrene	UG/KG	3000 B	3200
TPH	MG/KG	452	20.3 U

Table 34-3
SEAD-121I - Semivolatiles/TPH in Soil vs PRG-IND
Non Evaluated Sites

SEAD-1211

4

4

4

350 J

29 J

470 U

470 U

83 J

470 U

470 U

3200

SEAD-1218

DESCRIPTION-SS121I-1 SS121I-2 LOC ID: SAMP_ID: EB147 EB150 QC CODE: SA SA SAMP. DEPTH TOP: 0 0 SAMP. DEPTH BOT: 0.2 0.2 MATRIX SOIL SOIL NUMBER NUMBER NUMBER SAMP. DATE: FREQUENCY 10-Mar-98 10-Mar-98 ABOVE OF OF OF PARAMETER UNIT MAXIMUM DETECTION NYSDEC TAGM PRG-IND TAGM DETECTS **ANALYSES** VALUE Q VALUE 3400 5256000 0 470 U 7400 1,2,4-Trichlorobenzene UG/KG 0.00% 0 UG/KG 0 0.00% 7900 47304000 0 0 470 U 7400 1,2-Dichlorobenzene 46778400 7400 1,3-Dichlorobenzene UG/KG 0 0.00% 1600 0 0 4 470 U UG/KG 0.00% 8500 238467 0 0 470 U 7400 0 1.4-Dichlorobenzene 2,4,5-Trichlorophenol **UG/KG** 0 00% 100 52560000 0 0 1100 U 18000 0 0.00% 520291 0 0 4 470 U 7400 UG/KG 2,4,6-Trichlorophenol 2,4-Dichlorophenol UG/KG 0 0.00% 400 1576800 0 0 470 U 7400 UG/KG 0 0.00% 10512000 0 0 470 U 7400 2,4-Dimethylphenol 2,4-Dinitrophenol UG/KG 0.00% 200 1051200 0 0 1100 U 18000 0 1051200 0 4 470 U 7400 2,4-Dinitrotoluene UG/KG 0.00% 0 UG/KG 0 0.00% 1000 525600 0 0 470 U 7400 2.6-Dinitrotoluene 0 470 U 7400 0.00% 2-Chloronaphthalene UG/KG 0 0 800 2628000 0 0 470 U 7400 2-Chlorophenol UG/KG 0 0.00% 4 470 U 7400 54 36400 0 2-Methylnaphthalene UG/KG 25.00% 0 26280000 0 470 U 7400 2-Methylphenol UG/KG 0.00% 100 0 1100 U 18000 430 2-Nitroaniline UG/KG 0 0.00% 31536 0 0 4 470 U 7400 2-Nitrophenol UG/KG 0 0.00% 330 12718 0 4 470 U 7400 3,3'-Dichlorobenzidine UG/KG 0 0.00% 0 UG/KG 0 0.00% 500 1576800 0 0 1100 U 18000 3-Nitroaniline 4,6-Dinitro-2-methylphenol UG/KG 0 0.00% 0 0 4 1100 U 18000 30484800 470 U 7400 UG/KG 0 0.00% 0 0 4-Bromophenyl phenyl ether 470 U 7400 4-Chloro-3-methylphenol UG/KG 0 0.00% 240 0 0 470 U 7400 UG/KG 0 0.00% 220 2102400 0 0 4 4-Chloroaniline 7400 470 U **UG/KG** 0 0.00% 0 0 4-Chlorophenyl phenyl ether 470 U 7400 UG/KG 0.00% 900 0 0 0 4-Methylphenol 1100 U 18000 UG/KG 0 0.00% 1576800 0 0 4-Nitroaniline 1100 U 18000 100 31536000 0 0 4 UG/KG 0 0.00% 4-Nitrophenol UG/KG 1900 100.00% 50000 0 4 170 J 1900 Acenaphthene 0 470 U 7400 UG/KG 0.00% 41000 0 Acenaphthylene 0 2600 100.00% 50000 157680000 0 4 170 J 2600 Anthracene UG/KG 13000 100.00% 224 7840 4 1400 Benzo[a]anthracene UG/KG UG/KG 13000 100.00% 61 784 4 4 1300 Benzo[a]pyrene 1500 Benzo[b]fluoranthene UG/KG 12000 100.00% 1100 7840 0 820 8100 Benzo[ghi]perylene UG/KG 8100 100.00% 50000 1500 15000 78400 0 4 Benzo[k]fluoranthene UG/KG 15000 100.00% 1100 0 4 470 U 7400 UG/KG 0.00% 0 Bis(2-Chloroethoxy)methane 0 470 U 7400 5203 4 UG/KG 0 0.00% 0 0 Bis(2-Chloroethyl)ether 470 U 7400 UG/KG 0.00% 81760 0 0 Bis(2-Chloroisopropyl)ether 7400 0 51 JB UG/KG 230 75.00% 50000 408800 3 Bis(2-Ethylhexyl)phthalate 470 U 7400 50000 105120000 0 0 UG/KG 0.00% Butylbenzylphthalate 0 230 J 3100 UG/KG 3100 100.00% 286160 0 4 Carbazole 784000 0 1700 16000 UG/KG 16000 100.00% 400 Chrysene 25.00% 8100 0 45 JB 7400 Di-n-butylphthalate UG/KG 45 470 U 7400 50000 10512000 0 0 4 Di-n-octylphthalate UG/KG 0 0.00%

784

2102400

420480000

5256000000

21024000

21024000

3577

73374

1

0

0

0

0

0

0

4

0

4

0

440

7400

7400

35000

1100

7400

7400

Dibenz[a,h]anthracene

Dibenzofuran

Fluoranthene ·

Fluorene

Diethyl phthalate

Dimethylphthalate

Hexachlorobenzene

Hexachlorobutadiene

UG/KG

UG/KG

UG/KG

UG/KG

UG/KG

UG/KG

UG/KG

UG/KG

4600

440

0

0

0

0

35000

1100

100.00%

100.00%

0.00%

0.00%

100.00%

100.00%

0.00%

0.00%

14

6200

7100

2000

50000

50000

410

SITE:

Table 34-3 SEAD-121I - Semivolatiles/TPH in Soil vs PRG-IND Non Evaluated Sites

SITE DESCRIPTION LOCID										SEAD-1		SEAD-121I
SAMP_ID										SS121I-	.1	SS121I-2
QC CODE										EB147		EB150
SAMP DEPTH TOP										SA		SA
SAMP DEPTH BOT											0	0
MATRIX										SOIL	0.2	0 2
SAMP DATE			FREQUENCY			NUMBER	NUMBER		NUMBER		Mar-98	SOIL
			OF			ABOVE	OF		OF	10-1	viai-96	10-Mar-98
PARAMETER	UNIT	MAXIMUM	DETECTION	NYSDEC TAGM F	RG-IND	TAGM	DETECTS		ANALYSES	VALUE	Q	VALUE
Hexachlorocyclopentadiene	UG/KG	0	0 00%		3679200	0		0	WALL DES	4	470 U	7400
Hexachloroethane	UG/KG	0	0 00%		408800	0		0		4	470 U	7400
Indeno[1,2,3-cd]pyrene	UG/KG	8000	100 00%	3200	7840	1		4		4	760	8000
Isophorone	UG/KG	0	0 00%	4400		0		0		4	470 U	7400
N-Nitrosodiphenylamine	UG/KG	0	0 00%		1168000	0		0		4	470 U	7400
N-Nitrosodipropylamine	UG/KG	0	0 00%		818	0		0		4	470 U	7400
Naphthalene	UG/KG	51	25 00%	13000	21024000	0		1		4	470 U	7400
Nitrobenzene	UG/KG	0	0 00%	200	262800	0		0		4	470 U	7400
Pentachlorophenol	UG/KG	0	0 00%	1000	47693	0		0		4	1100 U	18000
Phenanthrene	UG/KG	15000	100 00%	50000		0		4		4	1200	15000
Phenol	UG/KG	0	0.00%	30	315360000	0		0		4	470 U	7400
Pyrene	UG/KG	23000	100 00%	50000	15768000	0		4		4	2700	23000
TPH	MG/KG	452	75 00%			0		3		4	43 9	108

Table 34-3
SEAD-1211 - Semivolatiles/TPH in Soil vs. PRG-IND
Non Evaluated Sites

SITE			SEAD-121I	SEAD-121I
DESCRIPTION			SEAD-1211	SEAD-1211
LOCID			S\$121I-3	SS121I-4
SAMP ID			EB149	EB148
QC CODE			SA	SA
SAMP DEPTH TOP			0	0
SAMP DEPTH BOT			0 2	0 2
MATRIX			SOIL	SOIL
SAMP DATE			35864	35864
PARAMETER	UNIT	Q	VALUE Q	VALUE Q
1.2.4-Trichlorobenzene	UG/KG	U	770 U	550 U
1.2-Dichlorobenzene	UG/KG	U	770 U	550 U
1,3-Dichlorobenzene	UG/KG	U	770 U	550 U
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	UG/KG UG/KG	U	770 U 1900 U	550 U 1300 U
2.4.6-Trichlorophenol	UG/KG	u	770 U	550 U
2.4-Dichlorophenol	UG/KG	Ü	770 U	550 U
2.4-Dimethylphenol	UG/KG	ŭ	770 U	550 U
2.4-Dinitrophenol	UG/KG	Ü	1900 U	1300 U
2,4-Dinitrotoluene	UG/KG	U	770 U	550 U
2,6-Dinitrotoluene	UG/KG	U	770 U	550 U
2-Chloronaphthalene	UG/KG	U	770 U	550 U
2-Chlorophenol	UG/KG	U	770 U	550 ∪
2-Methylnaphthalene	UG/KG	U	54 J	550 U
2-Methylphenol	UG/KG	U	770 U	550 U
2-Nitroaniline 2-Nitrophenol	UG/KG UG/KG	U	1900 U 770 U	1300 U 550 U
3,3°-Dichlorobenzidine	UG/KG	U	770 U	550 U
3-Nitroaniline	UG/KG	U	1900 U	1300 U
4,6-Dinitro-2-methylphenol	UG/KG	Ü	1900 U	1300 U
4-Bromophenyl phenyl ether	UG/KG	Ŭ	770 U	550 U
4-Chloro-3-methylphenol	UG/KG	Ü	770 U	550 U
4-Chloroaniline	UG/KG	U	770 U	550 U
4-Chiorophenyl phenyl ether	UG/KG	U	770 U	550 U
4-Methylphenol	UG/KG	U	770 U	550 U
4-Nitroaniline	UG/KG	U	1900 U	1300 U
4-Nitrophenol	UG/KG	U	1900 U	1300 U
Acenaphthene	UG/KG	J	140 J 770 U	320 J 550 U
Acenaphthylene Anthracene	UG/KG UG/KG	n U	220 J	230 J
Benzo[a]anthracene	UG/KG	J	1600 B	1700
Benzo(a)pyrene	UG/KG		1800 B	1600
Benzolbifluoranthene	UG/KG		2100 B	1700
Benzo[ghi]perylene	UG/KG		1600 B	940
Benzo[k]fluoranthene	UG/KG		2500 B	1800
Bis(2-Chloroethoxy)methane	UG/KG	U	770 U	550 U
Bis(2-Chloroethyl)ether	UG/KG	U	770 U	550 U
Bis(2-Chloroisopropyl)ether	UG/KG	U	770 U	550 U
Bis(2-Ethylhexyl)phthalate	UG/KG	U	230 J	47 JB
Butylbenzylphthalate	UG/KG	7 U	770 U 320 J	550 U 380 J
Carbazole Chrysene	UG/KG UG/KG	J	2000 B	1900
Di-n-butylphthalate	UG/KG	U	770 U	550 U
Di-n-octylphthalate	UG/KG	Ü	770 U	550 U
Dibenz[a,h]anthracene	UG/KG	ľ	720 J	420 J
Dibenzofuran	UG/KG	J	42 J	63 J
Diethyl phthalate	UG/KG	Ū	770 U	550 U
Dimethylphthalate	UG/KG	U	770 U	550 ∪
Fluoranthene	UG/KG		4000 B	4100
Fluorene	UG/KG	J	98 J	160 J
Hexachlorobenzene	UG/KG	U	770 U	550 U
Hexachlorobutadiene	UG/KG	U	770 U	550 U

Table 34-3 SEAD-121I - Semivolatiles/TPH in Soil vs. PRG-IND Non Evaluated Sites

SITE DESCRIPTION			SEAD-121I	SEAD-1211
LOC ID SAMP, ID			SS121I-3 EB149	SS121I-4 EB148
QC CODE			SA	SA SA
SAMP DEPTH TOP			0	0
SAMP DEPTH BOT			02	0 2
MATRIX			SOIL	SOIL
SAMP DATE			35864	35864
PARAMETER	UNIT	Q	VALUE Q	VALUE Q
Hexachlorocyclopentadiene	UG/KG	U	770 U	550 U
Hexachioroethane	UG/KG	U	770 U	550 U
Indeno[1,2,3-cd]pyrene	UG/KG		1600 B	950
Isophorone	UG/KG	U	770 U	550 U
N-Nitrosodiphenylamine	UG/KG	U	770 U	550 U
N-Nitrosodipropylamine	UG/KG	U	770 U	550 U
Naphthalene	UG/KG	U	770 U	51 J
Nitrobenzene	UG/KG	U	770 U	550 ∪
Pentachlorophenol	UG/KG	U	1900 U	1300 U
Phenanthrene	UG/KG		1400 B	1800
Phenol	UG/KG	U	770 U	550 U
Pyrene	UG/KG		3000 B	3200
TPH	MG/KG		452	20 3 U

Table 34-4 SEAD-121I -Semivolatile/TPH in Sediment vs. NYS Criteria Non-Evaluated Sites

SEAD-121

SEAD-1211

DESCRIPTION SS121I-1 SS1211-2 LOC ID SAMP_ID EB151 EB152 QC CODE SA SA SAMP DEPTH TOP SAMP DEPTH BOT 02 0.2 SEDIMENT SEDIMENT MATRIX SAMP DATE FREQUENCY NUMBER NUMBER NUMBER 10-Mar-98 10-Mar-98 ABOVE OF OF PARAMETER UNIT MAXIMUM DETECTION CRITERIA TYPE LEVEL TAGM DETECTS ANALYSES VALUE VALUE 480 II 4400 11 1,2,4-Trichlorobenzene **UG/KG** 0.00% 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 12000 1.2-Dichlorobenzene UG/KG 480 U 4400 U 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 1.3-Dichlorobenzene UG/KG 12000 480 U 4400 U 0 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA UG/KG 12000 480 U 4400 U 1.4-Dichlorobenzene 2,4,5-Trichlorophenol UG/KG 0 00% 1200 U 11000 U 2,4,6-Trichlorophenol UG/KG 0 00% 4400 U 2,4-Dichlorophenol UG/KG 0 00% 480 U 4400 U 2,4-Dimethylphenol UG/KG 0 00% 480 U 4400 U 2,4-Dinitrophenol UG/KG 0 0 00% 1200 U 11000 U 2 4-Dmitrotohiane UG/KG 0.00% 480 U 4400 U 480 U 4400 U UG/KG 2 6-Dintrotoluene 0.00% 480 U 4400 U 2-Chloronaphthalene UG/KG 0 00% UG/KG 0 00% 480 U 4400 U 2-Chlorophenol 2-Methylnaphthalene UG/KG 33 50 00% 33 J 4400 U 4400 U 2-Methylphenol UG/KG ٥ 0.00% 480 U UG/KG 0.00% 1200 U 11000 U 2-Nitroaniline 480 U 4400 U 2-Nitrophenol UG/KG 0 00% 3,3'-Dichlorobenzidine UG/KG 0.00% 480 U 4400 U 3-Ndroanihne UG/KG 0.00% 1200 U 11000 D 4,6-Dinitro-2-methylphenol UG/KG 0 00% 1200 U 11000 U 4400 U 480 U 4-Bromophenyl phenyl ether HG/KG 0 0.00% UG/KG 480 U 4400 U 0.00% 4-Chloro-3-methylphenol 4400 U UG/KG 4-Chloroanilme 0 00% UG/KG 480 U 4400 U 4-Chlorophenyl phenyl ether 0 00% 4-Methylphenol UG/KG 0 00% 480 U 4400 11 11000 U 4-Nitroaniline UG/KG 0.00% 1200 11 4-Nitrophenol UG/KG 0.00% 1200 U 11000 U 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 140000 140 J 390 J UG/KG 390 Acenaphthene 480 U 420 J UG/KG 420 50 00% Acenaphthylene UG/KG 1800 100.00% 260 J 1800 J Anthracene 14000 B 16000 B 22000 B Benzo[a]anthracene UG/KG 14000 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 1300 B 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA UG/KG 16000 1300 1300 B Benzo(a)pyrene 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 Benzo[b]fluorenthene UG/KG 22000 12000 B Benzo[ghi]perylene UG/KG 12000 100 00% 840 E 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 2 KJ Jan + B 23600 B Benzo[k]fluoranthene UG/KG 23000 4400 U Bis(2-Chloroethoxy)methane UG/KG 0.00% 480 U 4400 U Brs(2-Chloroethyl)ether UG/KG 0.00% Brs(2-Chlororsopropyl)ether UG/KG 0 00% 480 U 4400 U 50.00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 4400 U Brs(2-Ethylhexyl)phthalate UG/KG 25 200000 25 J 480 U 4400 U Butylbenzylphthalate UG/KG 0.00% 410 J 1600 J UG/KG 1600 100 00% Carbazole UG/KG 25000 100 00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 5. B B Chrysene 480 U 4400 U Di-n-butylphthalate UG/KG 0.00% UG/KG 0 00% 480 U 4400 U Di-n-octylphthalate 5000 400 J Dibenz[a,h]enthracene UG/KG 5000 100.00% 4400 U 58 J Dibenzofuran UG/KG 58 50 00% 4400 U Diethyl phthalate UG/KG 0 00% 480 U 4400 U UG/KG 0.00% Dimethylphthalate UG/KG 24000 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 102000 3400 B 24000 B Fluoranthene UG/KG 360 130 J 360 .1 Fluorene 4400 U UG/KG 0.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 150 480 U Hexachlorobenzene 480 U 4400 U Hexachlorobutadiene UG/KG 0.00% 4400 U 480 U Hexachlorocyclopentadiene UG/KG 0 00% 480 U 4400 U Hexachloroethane UG/KG 0.00% 100.00% NYS HUMAN HEALTH BIOACCUMULATION CRITERIA 1300 850 B B B Indeno[1,2,3-cd]pyrene UG/KG 12000 480 U 4400 U UG/KG 0.00% Isophorone 4400 U 480 U N-Nitrosodiphenylamine UG/KG 0 00% N-Nitrosodipropylamine UG/KG 0 00% 480 U 4400 U 480 U 4400 U UG/KG 0 00% Naphthalene 4400 U 480 U Nitrobenzene UG/KG 0 00% 1200 U 11000 U Pentachlorophenol UG/KG 0.00% 100 00% NYS BENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA 120000 1600 B 4400 JB Phenanthrene UG/KG 4400 480 U 4400 U Phenot UG/KG 0.00% 2700 B 17000 B 100.00% 17000 Pyrene UG/KG MG/KG 370 100 00% 136 370

SITE

FIGURES

SENECA ARMY DEPOT ACTIVITY Decision Criteria Flowchart

SENECA ARMY DEPOT ACTIVITY Decision Criteria Flowchart

BASELINE **FINAL** SUPPLEMENTARY **ACTIONS ACTIONS ACTIONS** DECISION ACTION NO NO -CONDUCT RI/BRA 13 NO FURTHER ACTION REUSE RESTRICTION MAY BE REQUIRED Η 14 RI/FS/RD/RA I **PHASE** YES 15 PREPARE EE/CA DO REMOVAL ACTION 16 NO FURTHER ACTION REUSE RESTRICTION MAY BE REQUIRED J NO 17 PREPARE FS K SELECT REMEDY PREPARE PRAP/ROD 18 19 PERFORM RD/RA NO FURTHER ACTION

O:\AV GIS30\SIKORSKYNP1S4\GEOLOGY\.ISOPATCHAPR

RESPONSE TO ARMY COMMENTS

Comments from the Department of the Army on the

Draft Investigation of Environmental Baseline Survey Non-Evaluated Sites

Comments by Keith Hoddinott

Comment #1 Page 5, Section 3.2

SEAD-122A, Summary of Investigation

In the comparison of the soil results to the recreational PRG it is stated that no PRGs were established for the lead (the primary COC). This explanation should be expanded to indicate that the maximum soil concentration of 143 mg/kg is less than

half the residential criteria USEPA recommends for 0-6 year old children (a

classical sensitive sub-population).

Recommendation: Expand the discussion of the PRG comparison for this site.

Response #2 Agreed. The PRG comparison has added a comparison for lead to the agreed upon

screening level of 400 mg/Kg for residential land use established by the EPA memorandum <u>"Revised Interim Soil Guidance for CERCLA Sites and RCRA Corrective Action Facilities"</u> 9355.4-12, EPA/540/F-94/043, PB94-963282. August

1994.

Comment #2 Page 9, Section 8.0

SEAD- 123A, Indoor Firing Range

I believe we can concur with the action taken and the conclusions, however, if further evaluation becomes necessary, we have recently developed a method of risk

assessing wipe sample results.

Recommendation: Consider performing a wipe sample risk assessment if further evaluation is required.

Response #2 Agreed. If the EPA requires that wipe samples be collected, a Risk Assessment will

be performed.

Comment #3 Page 17, Section 13.2

SEAD 123F

We can not agree with the conclusion that no further action is justified at this site. While the sampling was limited and biased to the conservative side, an exceedance of the residential PRG should be justification to investigate how extensive the

elevated metals are.

Recommendation: Provide further justification why additional investigation is not necessary or

perform some further investigation.

Response #3 Agreed. Although the levels exceed the residential PRG they do not exceed

the TAGM for elevated metals. Therefore no further action for these sites is

justified.

Comments From Healy

Comment #1 Section 1.3, Page 3

In Bullet two at the top of the page, we state that "If Concentrations are less than PRG's, then additional sampling (possibly via an ESI) will be performed." Regardless of the NYSDEC's reluctance to accept PRG's this reviewer would prefer not to see the Army make a blanket promise to commit more effort /finding to studies simply because TAGM's were exceeded (even though PRG's were not). Would prefer to "soften" this statement by saying that any follow-on effort will be negotiated if the "greater than TAGM's but less than PRG's" situation should arise.

Response #1

Acknowledged. The text already includes a paragraph stating that the significance of environmental impact is not strictly based on analytical data comparison, and that professional judgment will be used to develop the final recommendations.

Comment #2

Section 2.1, Page 4

In the first full sentence at the top of this page, we state "the pump station receives wastes potentially containing hazardous wastes. This would seem to be an incredibly inflammatory statement to make (did we do enough sampling/ what did we sample for, etc.) and possibly cast aspersions on the favorable conclusion drawn in the following paragraph. Recommended that the references to "potentially containing hazardous wastes" be removed.

Response #2

Agreed. The reference to "potentially containing hazardous wastes", has been removed.

Comment #3

Section 2.2, Page 4

In the Recommendations we use the acronym "PAOC". Since there is no section defining this and other acronyms, kindly define this here and throughout the document.

Response #3

Agreed. Will add fly sheet defining all acronyms.

Comment #4

Section 3.2, Page 5

In the Recommendation we use the acronym "AOC". Since there is no section defining this and other acronyms, Kindly define this here and throughout the document. "AOC" has a specific meaning in the Seneca program; however, the context suggests that this occurrence is meant differently.

Response #4

Agreed. Will add fly sheet defining all acronyms.

Comment #5

Section 4.1, Page 5

Please correct "This area was".

Response #5

Acknowledged.

Comments from Scott Bradley

Comment #1

Section 1.3, Page 1

Discussion of the Seneca Army Depot Criteria Flow Chart must be expanded to rationalize the decision which are applied to sites "...as outlined under Decision No. (sic) XX in the Decision Criteria...". This flow chart should be described in the text along with more detailed rationales for decision actions and subsequent responses required by the table at each decision point. Discussions of decision criteria and prescribed responses that are defined by regulatory criteria should include a citation to the applicable regulation. The methodology to perform the

"mini risk assessment" must be described. Regulatory concurrence with this chart should be noted if it exists, or achieved if it has not been formally accepted by regulators.

Response #1

Acknowledged. The process of the Criteria Flow Chart has essentially been agreed on by the regulators.

Comment #2

Figure 1-2

The decision process identified should be revised (unless already accepted by the regulators) to allow performance of Time Critical Removal Actions at sites with immediate property transfer needs. The argument that potential exposures to site contaminants by property recipients justifies the need for Time Critical actions has been accepted by Region II BRAC RPMs. Additionally, or as an alternative to TCRA, a Probablistic Risk Assessment methodology could be proposed in lieu of the ESI/Mini RA process identified by this figure to speed up the onset of

remediation and or transfer.

Response #2

Acknowledged. The process of the Criteria Flow chart has essentially been agreed on by regulators. 40CFR300.415 does not mention that the transfer of property changes a Non-time Critical Removal Action to a Time Critical Removal Action.

Comment #3

Section 3.2, Invest'n Sumry, Page 5

Is this data sufficient for a mini risk assessment?

Response #3

While the protocol for performing a mini risk assessment has not been finalized, it is believed that preliminary risk screening, through the mini risk assessment process can be performed with these data.

APPENDIX A. Soil Boring Logs

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 123

PROJECT NO: 733193-01001

DATE STARTED: 3/11/98
DATE COMPLETED: 3/11/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 12 DEPTH TO WATER: 3.3

BORING LOCATION: 1014587.4801 ft NORTH

741275.0416 ft EAST

Sheet 1 of 2

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 632.5536 ft
ELEVATION DATUM: NAVD88

INSPECTOR: DRG
CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	NSCS
								DESCRIPTION	
EB242	27 7 12 12		1.7	0	-1	1.	200	Brown to Dark Gray medium SAND, some silt, little coarse Sand, little fine to medium Gravel, trace Cobble, moist.	GN
						1.	· 1	Fine to medium SAND, trace medum Gravel, tight till, moist. No Recovery.	ļ
EB243	14 12 14 19		1.5	0	-3	∑ 3.	5 6 7 6	Fine to medium SAND, trace medium Gravel, tight till, saturated.	SN
1								No Recovery.	
	20 20 10 100/.2		1.7	0	-4 -5	5.		Fine to medium SAND, trace medium Gravel, tight till, trace cobble, saturated.	SM
		<u> </u>			-6		6	No Recovery.	
İ	28 100/.5		1	0			7	Weathered SHALE.	BRI
					-7			No Recovery.	
	42 100/.1	I	0.6	0	-8	8.	8	Weathered SHALE.	BRI
		_			-9			No Recovery.	
NOTES	 S:								

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 123

PROJECT NO: 733193-01001

DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 12

DEPTH TO WATER: 3.3 BORING LOCATION: 1014587.4801 ft NORTH

741275.0416 ft EAST

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: 632.5536 ft ELEVATION DATUM: NAVD88

INSPECTOR: DRG

CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION	nscs
	17		0	10 10		No Recovery.	
	22 100/. 4			-11 12			
				-12		Auger Refusal at 12'.	
						-	
NOTES	∟ S:			 			
			·	 		JNITED STATES ARMY LOG OF BORING 123B-1	
					F	JNITED STATES ARMY LOG OF BORING 123B-1 CORPS OF ENGINEERS Seneca Army Depot Romulus, New York Sheet 2 of	2

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 123

PROJECT NO: 733193-01001 DATE STARTED: 3/11/98

DATE COMPLETED: 3/11/98
DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 4.3

DEPTH TO WATER:

BORING LOCATION: 1014559.4334 ft NORTH

741258.2016 ft EAST

Sheet 1 of 1

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 631.4866 ft

ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
EB244	7	1	0			DESCRIPTION Dark Gray, SILT and Sand, little cobble, moist, frozen.	SM
	14 24 14			0.5		Olive Gray to Brown SILT and coarse Gravel, some fine to medium Sand, little Cobble, trace fine Sand, moist. No Recovery.	
EB245	21 100/.4	0.9	0	-2 2.9		Olive Gray to Brown, SILT and coarse Gravel, some fine to medium Sand, little Cobble, trace fine Sand, moist.	GN
_	100/.3	0.3	0	-3 3.2 -4 4.3		Fragments of Competant SHALE. No Recovery.	BR
						Auger Refusal at 4.3'.	
NOTES	S :					INITED STATES ARMY LOG OF BORING 123B-	

Seneca Army Depot

Romulus, New York

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 123

PROJECT NO: 733193-01001

DATE STARTED: 3/11/98
DATE COMPLETED: 3/11/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 6.3

DEPTH TO WATER: 0

BORING LOCATION: 1014635.869 ft NORTH

741331.8431 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 632.4337 ft

ELEVATION DATUM: NAVD88
INSPECTOR: DRG

CHECKED BY: ITR

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

DATE STARTED: 3/05/98
DATE COMPLETED: 3/05/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 13.9 DEPTH TO WATER: 12.5

BORING LOCATION: 987911.494 ft NORTH

LOG OF BORING 122D-1

Sheet 1 of 2

741222.1228 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 644.8973 ft
ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations. DESCRIPTION	nscs
EB201	6 7 7 8	1.5	0	-1	1.5	Light Brown, CLAY, some Silt, little +fine to coarse Gravel, moist. Roots in top 2"	CL
	5 9 15 20	1.3	0	-3	1.3	No Recovery Light Brown to Greenish Gray, CLAY, and -Silt, trace -fine Sand, little fine to coarse Gravel, moist. No Recovery	CL
	9 15 25 27	1.8	0	-4 -5		Light Brown to Greenish Gray, SILT, some +Clay, little -fine Sand, little fine to coarse Gravel, moist.	ML
EB202	13 25 25 25	1.7	0	-6 6 -7		No Recovery Light Brown, CLAY, some Silt, trace fine Sand, little +Gravel, moist. Light Brown to Greenish Gray, SILT, little +fine Sand, some -fine to coarse Gravel, trace Clay, wet.	CL
	19 33 41 50		0	-8		No Recovery Light Brown, Silt, trace fine Sand, some fine to coarse Gravel, wet.	ML

UNITED STATES ARMY CORPS OF ENGINEERS

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

DATE STARTED: 3/05/98 DATE COMPLETED: 3/05/98

DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 13.9

DEPTH TO WATER: 12.5

BORING LOCATION: 987911.494 ft NORTH

741222.1228 ft EAST

Sheet 2 of 2

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: 644.8973 ft

ELEVATION DATUM: NAVD88 INSPECTOR: MW

CHECKED BY: ITR

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

DATE STARTED: 3/05/98
DATE COMPLETED: 3/05/98
DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 14

DEPTH TO WATER: 8

BORING LOCATION: 987799.2085 ft NORTH

741278.0134 ft EAST

Sheet 1 of 2

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 643.8361 ft

ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	SOSI
							,,,,,,	DESCRIPTION	
E <u>B</u> 203	8 9 10 13		1.5	0	-1	1.5		Light Brown, CLAY, and Silt, moist, roots. Olive Gray, fine to coarse GRAVEL, some fine to coarse Sand, trace +Silt, wet.	C
		-				1		No Recovery	
	14 14 13		1.3	0	-3	3.3		Olive Gray, fine to coarse GRAVEL, and fine to coarse Sand, trace Silt, wet.	TI
							20/884	No Recovery	
	9 12 18 12		1.5	0	-4	5.5		Light Brown, SILT, little fine to coarse Gravel, moist.	MI
							~~~	No Recovery	
	12 12 16 16		1.8	0	-6 -7	7.8°		Light Brown, SILT, little fine to coarse Gravel, trace coarse Sand, moist.	MI
EB204	30	<u>+</u> ⊤	16	,	-8 Z	Z a	7777A	No Recovery	ML
	40 52 100/.1				<b>-</b> g			Light Brown, SILT, and -fine to coarse Gravel, little -fine to medium sand, saturated.	IVII
_		Τ				9.0	777/84	No Recovery	+
NOTES									

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

**ASSOCIATED AREA/UNIT: SEAD 122** 

PROJECT NO: 733193-01001 DATE STARTED: 3/05/98

DATE COMPLETED: 3/05/98 **DRILLING CONTRACTOR: Nothnagle** DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon

**TOTAL DEPTH: 14 DEPTH TO WATER: 8** 

BORING LOCATION: 987799.2085 ft NORTH

741278.0134 ft EAST

COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 643.8361 ft** 

**ELEVATION DATUM: NAVD88** INSPECTOR: MW **CHECKED BY: ITR** 

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.  DESCRIPTION	nscs
	28 46 80 100/.5	1.3	0.2	-11	.8	Light Brown, SILT, and -fine to coarse Gravel, little -fine to coarse Sand, saturated.	ML
	29 43 100/.3	1.3	0.2	-12 -13 13 -14		No Recovery Olive Gray, fine to coarse GRAVEL, some Silt, trace +fine to coarse Sand, saturated.  Weathered SHALE.  Auger Refusal at 14.0'.	GM
NOTE	S:					UNITED STATES ARMY LOG OF BORING 122D-2	2
						UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York  LOG OF BORING 122D-2  LOG OF BORING 122D-2  Sheet 2	of 2

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001 DATE STARTED: 3/06/98

DATE COMPLETED: 3/06/98 **DRILLING CONTRACTOR: Nothnagle** DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

**TOTAL DEPTH: 9.1** 

**DEPTH TO WATER: 7.2 BORING LOCATION: 987033.7607 ft NORTH** 

740754.7201 ft EAST

**COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 638.9787 ft** 

**ELEVATION DATUM: NAVD88** 

INSPECTOR: DRG **CHECKED BY: ITR** 

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
E8 <u>2</u> 05	4 14 8 14	1.9	5 0	-1		DESCRIPTION Olive Gray, SILT, little coarse Sand, trace fine Gravel, moist.	OL
	10	1.8	0	-2	1.5	No Recovery  Olive Gray, SILT, some Clay, little fine Sand, trace Cobble, wet.	CL
	15 30			-3	3.8		
	20	0.6	0	-4 -5	4.6	No Recovery Olive Gray, fine SAND, some medium Gravel, little Cobble, trace Silt, moist.  No Recovery	SP
EB207	22 87 100/.5	1.5	0	-6 -7 <u>⊽</u>	7.5	Brown fine to medium, SAND, some finer to coarse Gravel, some Cobble, trace Silt, saturated.	TL
<b>⊥</b>	100/.5	0.5	0	-8	8 8.2 8.5	No Recovery.  Olive Gray, SILT, Shale fragments.  Competant Shale.  No Recovery.	TL
NOTES	<b>6</b> :					Auger Refusal at 9.0'.  JNITED STATES ARMY LOG OF BORING 122E-1	

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

DATE COMPLETED: 3/06/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

DATE STARTED: 3/06/98

TOTAL DEPTH: 12.5

DEPTH TO WATER: 2.2

BORING LOCATION: 988958.412 ft NORTH

739018.1027 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 602,0001 ft

**ELEVATION DATUM: NAVD88** 

INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
							DESCRIPTION	
E <u>₿</u> 208	7 11 11 14		1.5	0	-1		Brown, SILT, trace fine Sand, little organics, trace coarse Gravel, trace Cobble, moist.	FL
					1.5	$\bowtie$	Olive Gray, fine SAND, little coarse Sand to fine Gravel, trace Cobble, trace Silt, iron oxide viens, moist.	
		_				XXXX	No Recovery.	
EB209	13 13 21		0.8	0	-2 \( \sum_{2.6} \)		Brown, coarse SAND and fine GRAVEL, little fine to medium Sand, trace Cobbles, wet to saturated.	FL
	13	<b>-</b> -			-3		No Recovery	
	7 7 8 22		1.5	0	5 5		Brown, coarse SAND and fine GRAVEL, little fine to medium Sand, trace Cobbles, wet to saturated.	FL
					5.5		Olive Gray, SILT and very fine SAND, little coarse Sand to fine Gravel, trace Cobble, iron oxide veins, saturated.	
							No Recovery.	
	32 100/.5		0.5	0	-6 6.5		Olive Gray, SILT and very fine SAND, little coarse Sand to fine Gravel, trace Cobble, iron oxide veins, saturated.  No Recovery.	TL
					-7			
	100/.5	Т	0.3	0	-8		Olive Gray, SHALE chips, some Silt and fine Sand, weathered Shale, wet.	BRK
	1001.0	_			8.3		No Recovery.	DIXIX
					-9			
NOTES	S:							
							UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York	

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122
PROJECT NO: 733193-01001

PROJECT NO: 733193-01001 DATE STARTED: 3/06/98

DATE COMPLETED: 3/06/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 12.5 DEPTH TO WATER: 2.2

BORING LOCATION: 988958.412 ft NORTH

739018.1027 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 602.0001 ft
ELEVATION DATUM: NAVD88

INSPECTOR: DRG
CHECKED BY: ITR

Sample Number Blow Counts	(# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
<del></del>	12	0.4	0	10 10		DESCRIPTION  Olive Gray, SHALE chips, some Silt and fine Sand, weathered Shale, wet.	BRK
6	22 666 007.4	-		-11		No Recovery.	
				12		,	
100	00/.5		0	12.5		No Recovery	
						Auger refusal at 12.5'.	

UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York

**LOG OF BORING 122E-2** 

Sheet 2 of 2

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98

DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 11.8 DEPTH TO WATER: 2.4

BORING LOCATION: 991432.0738 ft NORTH

738522.1617 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 609.7340 ft

ELEVATION DATUM: NAVD88

INSPECTOR: DRG CHECKED BY: JTR

Sample Number	Blow Counts (# Blows per 6")	Ѕащре	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
		L						DESCRIPTION	
EB210	20 18 7 7		1.2	0	-1	1.	2	Dark Brown to reddish Brown, SILT, Some fine to medium sand, littlefine Gravel, trace Clay and Cobbles, moist.	MI
								No Recovery.	
EB211	15 13 8	I	0.5	0	-2	<u>∑</u> 2.	2	Light Brown, fine GRAVEL and Coarse SAND, little fine Sand, little coarse Gravel, little Cobble, wet.  No Recovery.	GP
	16 18 12 100/.2		1.5	O	-4 -5	4.3		Light Brown, fine GRAVEL and coarse SAND, little fine to medium Sand,, little coarse Gravel, little Cobble, wet.  Olive Gray to Brown, SILT, little coarse Sand to medium Gravel, trace cobbles, very tight till, iron oxide nodes.	GF
		_			-6	6		No Recovery.	<u> </u>
	18 43 22 11		1	0	-7	7		Olive Gray to Brown, SILT, little coarse Sand to medium Gravel, trace Cobbles, very tight till, iron oxide nodes.  No Recovery.	TL
	100/.4	Τ	0.4	0	-8	8.4		Weathered SHALE.	BRH
		_			-9			No Recovery.	
NOTES	<b>5</b> :						1	INITED STATES ARMY LOG OF BORING 122E-3	
							C	ORPS OF ENGINEERS	
							5	Seneca Army Depot Comulus, New York Sheet 1	of 2

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

**ASSOCIATED AREA/UNIT: SEAD 122** PROJECT NO: 733193-01001

DATE STARTED: 3/06/98 DATE COMPLETED: 3/06/98

DRILLING CONTRACTOR: Nothnagle **DRILLING METHOD: HSA 8"** SAMPLING METHOD: Split Spoon

**TOTAL DEPTH: 11.8** DEPTH TO WATER: 2.4

BORING LOCATION: 991432.0738 ft NORTH

738522.1617 ft EAST

COORDINATE SYSTEM: NAD83 **GROUND SURFACE ELEVATION: 609.7340 ft ELEVATION DATUM: NAVD88** INSPECTOR: DRG

CHECKED BY: ITR

Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	VOVI
				10	- 47		DESCRIPTION	BF
	100/.3	0.3	3 0		10 10.3		Compensant SHALE. No Recovery.	ВГ
				-11	11.8			
							Auger Refusal at 11.8'.	
							_	

UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York

**LOG OF BORING 122E-3** 

Sheet 2 of 2

### LOG OF BORING 68-1

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 68

PROJECT NO: 733193-01001 DATE STARTED: 16/03/98

DATE COMPLETED: 16/03/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 4.8

**DEPTH TO WATER:** 

BORING LOCATION: 751298.2143 ft NORTH

995650.4533 ft EAST

Sheet 1 of 1

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 744.1963 ft

ELEVATION DATUM: NAVD88 INSPECTOR: MW

CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
EDAGO							DESCRIPTION	
EB250	4 8 4 1		1.1	0	-1 1		Light brown, fine to coarse GRAVEL, little fine to coarse Sand, trace+ Silt, wet.  Olive gray, fine to coarse GRAVEL, lttle fine to coarse Sand, moist.  No Recovery.	GW
	4 8 9 4		0.9	0	-2 -3	2	Light brown to olive gray, fine to coarse GRAVEL, some- fine to coarse Sand, trace Silt, moist to wet.  No Recovery.	GV
É <del>B25</del> 1	15 100/.2		0.6	0	-4		Olive gray, fine to coarse GRAVEL, some fine to coarse Sand, trace Silt, moist.  Auger Refusal, at 4.8'	GV
OTES	6:						UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Denot	

#### LOG OF BORING 68-2

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 68

PROJECT NO: 733193-01001 DATE STARTED: 16/03/98

DATE COMPLETED: 16/03/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

BS Sites TOTAL DEPTH: 4.5

DEPTH TO WATER:

BORING LOCATION: NORTH

EAST

COORDINATE SYSTEM:

GROUND SURFACE ELEVATION:

ELEVATION DATUM:

INSPECTOR: MW CHECKED BY: ITR



PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 120

PROJECT NO: 733193-01001 DATE STARTED: 17/03/98

DATE COMPLETED: 17/03/98

DRILLING CONTRACTOR: Nothnagie

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 11.4

DEPTH TO WATER: 8.3
BORING LOCATION: 743060.6715 ft NORTH

1015618.692 ft EAST

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: 635.2835 ft
ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	(1000)	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
		,					DESCRIPTION	014
EB258	8 9 10 18		1.3	0	0.3		Olive gray, fine to coarse SAND, little fine Gravel, trace Silt, wet.  Olive gray, SILT, trace +fine to coarse Gravel, trace fine to coarse Sand, moist.	SW
							No Recovery.	
	8 15 16 15	1	1.4	0	-2		Olive Gray, fine to coarse GRAVEL, little+ Silt, little- fine to coarse Sand, moist.	GM
					3.4	94090	No Recovery.	+
	20 24 50 100/.5		2	0	-5		Olive gray, SILT, little -fine to coarse Gravel, trace- fine to coarse Sand, moist.	ML
EB⊋59	7 19 40 85		.7	0	77		Olive gray, SILT, some+ fine to coarse Gravel, trace fine to coarse Sand, moist.	ML
	18 33 53 50	T	2	0	-8 <u>\</u>		No Recovery  Dark gray, SILT, some fine to coarse Gravel, trace fine to coarse Sand, saturated.	ML
					6.2	X/72/X	Dark gray, SHALE bedrock, fractured.	
NOTE	S:							
							INITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 120D-	

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 120

PROJECT NO: 733193-01001 DATE STARTED: 17/03/98

DATE COMPLETED: 17/03/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 11.4 DEPTH TO WATER: 8.3

BORING LOCATION: 743060.6715 ft NORTH

1015618.692 ft EAST

Sheet 2 of 2

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 635,2835 ft

ELEVATION DATUM: NAVD88 INSPECTOR: MW

CHECKED BY: ITR

Sample	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
	50	1 0.4	0	<del></del>	10 1	0	DESCRIPTION  Dark gray, SHALE bedrock, fractured.	-
	100/.1	Τ			-11 11.		Auger Refusal at 11.4'.	
diameter of the second								
OTES						<u></u>		

CORPS OF ENGINEERS

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 120

PROJECT NO: 733193-01001 DATE STARTED: 17/03/98

DATE COMPLETED: 17/03/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 6.5 DEPTH TO WATER: 4

BORING LOCATION: 738814.9635 ft NORTH

999752.4051 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 609.5927 ft

ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR



PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001 DATE STARTED: 7/3/98

DATE COMPLETED: 7/3/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 11.3 DEPTH TO WATER: 4

BORING LOCATION: 750819.9713 ft NORTH

994880.8121 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 739,0833 ft
ELEVATION DATUM: NAVD88

INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
EB212	4		1.4	0	0	××××	DESCRIPTION  Brown, SILT, some very fine Sand, little roots, organic material, trace coarse	OL
<u> </u>	8 10 16		1.4	U	-1	1.4	Sand to fine Gravel, trace Cobble. moist.	
		_					No Recovery.	
	13 25 30 100/.3	T	1.5	0	-3	2	OLive gray to yellowish orange, SILT and very fine SAND, little medium Sand, trace coarse Sand, tarce fine to coarse Gravel, trace Cobble, trace iron-oxide nodes, moist, tight Till.	M
		1					No Recovery.	$\dagger$
EB213	34 40 44 40	I	0.5	0	-4 <del>\</del> \\ \ \ -5	4.5	Olive gray to yellowish orange, SILT and very fine SAND, little medium Sand, trace coarse Sand, trace fine to coarse Gravel, trace Cobble, trace iron-oxide nodes, moist, tight Till.  No Recovery.	M
	13 100/.3			0	-6	6	No Recovery.	
					-7	6.8	No Recovery.	
	14 100/.4	T	0.9	0	-8		Yellowish orange to light brown, SILT, some fine to coarse Sand, little fine to coarse Gravel, little Cobble.	TI
		1			-9	V. 34/7/XA	No Recovery.	
NOTE	S:							
						(	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121B-	1

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 7/3/98
DATE COMPLETED: 7/3/98
DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 11.3 DEPTH TO WATER: 4

BORING LOCATION: 750819.9713 ft NORTH

994880.8121 ft EAST

Sheet 2 of 2

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: 739.0833 ft ELEVATION DATUM: NAVD88

INSPECTOR: DRG

CHECKED BY: ITR

Sample Number Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.  DESCRIPTION	nscs
100/.4		0	10 10		No Recovery.	
		ŀ	10.4	<b></b>	No Recovery.	
			-11			
			11.3		Auger Refusal at 11.3'.	BRK
NOTES:						
					UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Denot	

## **LOG OF BORING 121C-1**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98 DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon **TOTAL DEPTH: 4.3** 

**DEPTH TO WATER: 2** 

BORING LOCATION: 997305.3484 ft NORTH

749798.8895 ft EAST

COORDINATE SYSTEM: NAD83

**GROUND SURFACE ELEVATION: 729.2438 ft** 

**ELEVATION DATUM: NAVD88 INSPECTOR: DRF** 

CHECKED BY: ITR

Brown to Olive Gray SILT, some fine Sand, little medium Gravel, trace Cobble, trace Clay, trace Debris, moist.  No Recovery	Sample Number Blow Counts	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace Cobble, wet to saturated.  Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace Cobble, wet to saturated.  Weathered Shale No Recovery  Weathered Bedrock  BR	14 42	1.5	5 0	-1	1.2		FL
Weathered Shale  No Recovery  100/3  0.3 0  4.3  Weathered Bedrock BF	36		3 0	- ₂ \(\frac{\text{\sqrt}}{2}\)	2	Olive Gray to Brown Tight SILT, little fine to coarse Sand, little Gravel, trace	Т
Weathered Bedrock End of Boring	100			-3	3.3		BF
		0.3			4.3		

Romulus, New York

## **LOG OF BORING 121C-2**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001 DATE STARTED: 3/9/98

DATE COMPLETED: 3/9/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 7.2 DEPTH TO WATER: 2.1

BORING LOCATION: ft NORTH

ft EAST

**LOG OF BORING 121C-2** 

Sheet 1 of 1

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: ft

ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
						**		DESCRIPTION	
E <u>B</u> 226	10 12 9		1.2	0		0	.7	Dark Gray-Reddish Brown Coarse SAND and fine Gravl, little fine to medium Sand.	FL
	11				-1	1	2	Olive Gray SILT, some fine Sand, little coarse Sand, trace fine Gravel, wet.	TL
								No Recovery	
B <u>2</u> 28	9 12 43 100/.3		1.5	0	-3	Ţ		Olive Gray SILT, some fine Sand, little coarse Sand, trace fine Gravel, wet.	TL
		_				3.	2000	No Recovery	
	85 100/.2	T	0.7	0	-4	4		Weathered Bedrock	BRI
		<u></u>			-5	4.		No Recovery	
	21 100/.3	T	0.8	0	-6			Weathered Bedrock	BRI
		1			-7	6.		No Recovery	
						7.	2	Auger Refusal	

UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York

## **LOG OF BORING 121C-3**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

**ASSOCIATED AREA/UNIT: SEAD 121** 

PROJECT NO: 733193-01001

DATE STARTED: 3/9/98 DATE COMPLETED: 3/9/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 7.7 **DEPTH TO WATER: 0.2** 

BORING LOCATION: ft NORTH

ft EAST

**COORDINATE SYSTEM: NAD83** GROUND SURFACE ELEVATION: ft

**ELEVATION DATUM: NAVD88** 

INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
EB233	11		1.4	0	• <u>\</u>	XXXX	DESCRIPTION  Olive Gray medium to coarse GRAVEL, some fine Gravel, little fine to	FL
EĐĐ	22 7 11		1.4		-1		coarse Sand, trace Cobble, saturated.	
		_					No Recovery	
EB <u>2</u> 34	19 19	T	1	0	-2	2	Olive Gray medium to coarse GRAVEL, some fine Gravel, little fine to coarse Sand, trace Cobble, saturated.	Fl
	16 20				-3		Dark Gray to Brown SILT, trace medium Sand, trace medium to coarse Gravel, saturated. No Recovery	+
	16 20 24	T	0.8	0	4		Weathered Bedrock	BR
	100/.3	_			-5		No Recovery	
	100/.2	I	0.2	0	-6 <b>6</b> .	6	Weathered Bedrock No Recovery	BR
					-7		,	
					7.	7	Auger Refusal at 7.7'	
NOTE	S:					1	UNITED STATES ARMY LOG OF BORING 1210	7_2
							UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 1210	J <b>-3</b>
						j	Romulus, New York Sheet	l of l

### **LOG OF BORING 121C-4**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 3/9/98 DATE COMPLETED: 3/9/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 7.1 DEPTH TO WATER: 2

BORING LOCATION: 996868.9407 ft NORTH

749628.1538 ft EAST

**COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 728.1890 ft ELEVATION DATUM: NAVD88** 

INSPECTOR: DRG **CHECKED BY: ITR** 

	,	1							
Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	SOSI
								DESCRIPTION	
EB229	10 14 14 8		1.5	0	-1	1.0		Dark Gray Gravel and COBBLE, some fine to medium Sand, little coarse Sand, trace SILT, moist.	Fi
			İ			1.4	10000	No Recovery	1
EB231	40	_			-2	Ž į	****	Date One Completed CORRIES and State Conditions Conditions	FI
EB231	10		1	0				Dark Gray Gravel and COBBLE, some fine to medium Sand, little coarse Sand, trace SILT, wet.	ן ר'
Τ	8				-3	2.6		Olive Gray to Brown SILT, trace fine Sand, trace roots, organic material.	T
	30 42 100/.3		1.3	0	-4 -5	5.3		Olive gray to dark gray SILT, trace Clay, trace coarse Gravel, trace Cobble, trace organics, trace medium to coarse Sand, Saturated.	T
		_						No Recovery	
		_				6			
	100/.3		0.4	0	F-6	6.4		Weathered Bedrock	BR
								No Recovery	
					-7	7.1			_
								Auger Refusal at 7.1'.	
NOTE	S.								
							J	JNITED STATES ARMY LOG OF BORING 121C CORPS OF ENGINEERS Seneca Army Depot Somulus, New York Sheet 1	-4
							5	Seneca Army Depot Complus New York Sheet 1	of 1

Romulus, New York

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 3/11/98 DATE COMPLETED: 3/11/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 3 **DEPTH TO WATER: 0.9** 

BORING LOCATION: 999369.1146 ft NORTH

747882.6307 ft EAST

**COORDINATE SYSTEM: NAD83** 

**GROUND SURFACE ELEVATION: 721.9356 ft** 

**ELEVATION DATUM: NAVD88** INSPECTOR: DRG

CHECKED BY: ITR

Brown SILT, little fine Sand, trace roots, wet to saturated.    Sand   S	Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.  DESCRIPTION		nscs
No Recovery No Recovery No Refusal at 3.0'.		13 18	1.7		-1 -2	<u> </u>				FL
No Recovery  Auger Refusal at 3.0'.	1				,	1.2		Cobble, saturated.	e	TL
Auger Refusal at 3.0°.		100/.5		0	-2	2				
	NOTE	S:			 					_
UNITED STATES ARMY CORPS OF ENGINEERS LOG OF BORING 121D-1							(	UNITED STATES ARMY LOG OF BORING CORPS OF ENGINEERS Seneca Army Depot Romulus, New York	121D-1	

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE COMPLETED: 3/8/98 DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

DATE STARTED: 3/8/98

TOTAL DEPTH: 5.4 **DEPTH TO WATER: 4** 

BORING LOCATION: 999469.3345 ft NORTH

747872.8964 ft EAST

**COORDINATE SYSTEM: NAD83** 

**GROUND SURFACE ELEVATION: 722.2865 ft** 

**ELEVATION DATUM: NAVD88** INSPECTOR: DRG

CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Kecovery	VOC Screen-PID (ppm)	Denth (A)	(a) index	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	11676
EB218	5		1.5	0			<b>***</b>	DESCRIPTION  Olive gray to brown SILT, some coarse Gravel, some Cobbles, trace fine	F
_	9 9 12				-1	1.5		Sand, moist.  No Recovery	
	18	_	0.5	0	-2	2	***	Olive gray to brown SILT, some coarse Gravel, some Cobbles, trace fine	F
	30		0.5			2.5	$\bowtie$	Sand, moist.  No Recovery	
	22				-3 -4 \sqrt{2}	. 4			
B219	15 18	T	0.5	0	-4 <del>-</del> 2	4.5		Olive gray SILT, some very fine Sand, little coarse Sand, little fine to coarse Gravel, trace Cobble, saturated.	٦
_	100.2				-5	5.4	2//2/	No Recovery	
								Auger Refusal at 5.4'.	
NOTE	S:								
							J (	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York  LOG OF BORING 121D- Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Sheet 1 of Shee	2
								Seneca Army Depot Somulus New York Sheet 10	of I

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001 DATE STARTED: 3/11/98

DATE COMPLETED: 3/11/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 5.9 DEPTH TO WATER: 2.4

**BORING LOCATION: 999499.2027 ft NORTH** 

**LOG OF BORING 121D-3** 

Sheet 1 of 1

748148.2246 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 724.7897 ft

ELEVATION DATUM: NAVD88 INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft) Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
					DESCRIPTION	
EB222	28 32 16 17	1.8	0	-1 12	Olive gray, GRAVEL, some fine to coarse Sand, little Cobble, trace Asphalt pieces, trace Silt, dry.	FL
		5		1.5	Brown to olive gray, SILT, and fine Sand, little medium to coarse Sand, tarce medium to coarse Gravel, moist.	TL
EB <u>₹</u> 23	30 36 40 46	1.5	0	-2 2	No Recovery.  Brown to olive gray, SILT and fine sand, little medium to coarse Sand, trace medium to coarse Gravel, wet.	TL
					No Recovery.	T
	17 18 17 100/.2	17	0	-5 57	Brown to olive gray, SILT and fine Sand, little medium to coarse sand, trace medium to coarse Gravel, little Cobble, saturated.	TL
				5 g	No Recovery.  Auger refusal at 5.9'.	

UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 3/17/98 DATE COMPLETED: 3/17/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 2.5

DEPTH TO WATER: 1.1

BORING LOCATION: 999162.3325 ft NORTH

**LOG OF BORING 121E-1** 

Sheet 1 of 1

750936.1244 ft EAST

COORDINATE SYSTEM: NAD83

GROUND SURFACE ELEVATION: 740.1209 ft
ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
EB268		1.1			-i <u>√</u> 1.	1	DESCRIPTION  Olive gray fine SAND, some fine to coarse Gravel, little Silt, wet.  No Recovery	SM
					2.	5	End of Boring	
				ven by sledge				

UNITED STATES ARMY

**CORPS OF ENGINEERS** 

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 3/17/98
DATE COMPLETED: 3/17/98
DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 8.6 DEPTH TO WATER: 6.7

BORING LOCATION: 999127.1644 ft NORTH

750864.1559 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 743,1674 ft

ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID	Donth (A)	Depui (ii)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
EB256	14	1.	5 0	 •		××××	DESCRIPTION  Olive Gray, SILT, little fine Gravel, trace fine to medium Sand, moist, roots in	ML
	16				0.3	XXX	top 1".	GM
Τ	16 14			-1	1.5		OLive Gray fine to coarse GRAVEL, little Silt, trace fine Sand, moist.	
							No Recovery	
	9 9 14 20	1.	1 0	- ₂	3.1		Light brown Silt, trace fine to coarse Gravel, trace fien Sand, moist.	ML
		_				7.7.7.7.	No Recovery	
EB257	8 12 15 29		2 44	~4	4		Olive gray Silt, little fine to coarse Gravel, trace fine Sand, moist.( Petroleum Odor)	ML
	5	+ 1.	7	-6	6		Olive Gray SILT, trace fine Gravel, trace fine Sand, moist.	ML
	8						onto oray oray, trace fine oraye, trace fine oara, motor.	
	100/.5			$\bar{\Delta}$	6.7		Olive gray SILT, some fine to coarse Saand, trace fine Gravel, saturated.	ML
				-7	7.1		Olive gray SILT, trace fine to coarse Gravel, trace fine Sand, wet.	ML
		⊥.			7.4	1280	No Recovery	
	100/.3			-8	8	_	No Recovery	
	100.10				8.6		NO RECOVERY	
							Auger Refusal at 8.6'.	
NOTE	S:							
				 			JNITED STATES ARMY LOG OF BORING 121E-2	)
						(	JNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121E-2	
						- 2	Somulus New York Sheet Lot	٠,

### **LOG OF BORING 121G-1**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 7/3/98
DATE COMPLETED: 7/3/98

DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 5
DEPTH TO WATER: 4.4

BORING LOCATION: 998769.4389 ft NORTH

**LOG OF BORING 121G-1** 

Sheet 1 of 1

751317.7683 ft EAST

COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 741.7422 ft

ELEVATION DATUM: NAVD88 INSPECTOR: DRG

INSPECTOR: DRG CHECKED BY: ITR

Number Number Blow Counts	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
	1				DESCRIPTION	
B214 4 6 6	1.5	0	0.		Brown, SILT, little fine Sand, trace roots, trace Gravel, moist.	FL
3215 7			-1 1.	<b>****</b>	Black, orange, and white, layer of gravel size Coal Ash fragments.	FL
_			1.3	₩	Brown, SILT, little fine Sand, trace roots, trace Gravel, moist.	FL
				2	No Recovery.	
13 13 13	1.8	0	2.		Brown, SILT, Ittle fine Sand, trace Gravel, moist.	FL
15			-3		Yellowish to orange, very fine SAND, some Silt, trace coarse Sand.	Fl
13	0 6	0	-4		No Recovery.  Yellowish to orange, very fine SAND, some Silt, trace coarse Sand.	FL
100/.1		!	∑ 4.4 4.6		Olive gray, SILT and fine Sand, little coarse Sand, little fine Gravel, trace	TL
					coarse Gravel, trace Cobble, saturated.	
			-5	1	No Recovery.	
					Auger Refusal at 5.0'.	

**UNITED STATES ARMY** 

**CORPS OF ENGINEERS** 

### **LOG OF BORING 121G-2**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE STARTED: 7/3/98 DATE COMPLETED: 7/3/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

**TOTAL DEPTH: 5.8** 

**DEPTH TO WATER: 5.1** 

BORING LOCATION: 998762.8739 ft NORTH

751344.6764 ft EAST

**COORDINATE SYSTEM: NAD83 GROUND SURFACE ELEVATION: 744.8884 ft** 

**ELEVATION DATUM: NAVD88** 

INSPECTOR: DRG CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Recovery	VOC Screen-PID (ppm)		Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	nscs
EB216	4		1.4	0	•		XXXX	DESCRIPTION  Brown SILT, little fine Sand, trace coarse Sand to fine Gravel, moist.	FL
_	8 12								
EB217	12			0	-1	0.9 1.4		Gray to Brown to Orange to Black Gravel size fragments of COAL ASH, moist.	FL
						2		No Recovery	
	30 38	T	0.5	0	-2	2.5		Brown SILT, little fine Sand, trace coarse Saand to fine Gravel, moist.	FL
	38 42				-3			No Recovery	
	15 16 15 100/.2	T	1.3	0	-4 -5	.4 ∑.53		Olive gray to yellowish Orange SILT, some fine to coarse Sand, little fine to coarse Gravel, Ironoxide nodes, wet to saturated.	TL
						5.8	68/38/	No Recovery	
								Auger Refusal at 5.8'.	
NOTES	c.								1
NOTE	s:			<u></u>			Į (	JNITED STATES ARMY LOG OF BORING 121G- CORPS OF ENGINEERS Seneca Army Depot	2
							Ī	Seneca Army Depot Romulus, New York Sheet 1 of	of 1

## **LOG OF BORING 121H-1**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001 DATE STARTED: 3/16/98

DATE COMPLETED: 3/16/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 9.2 DEPTH TO WATER:

BORING LOCATION: 999025.081 ft NORTH

750752.5813 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 741.3367 ft

ELEVATION DATUM: NAVD88

INSPECTOR: MW CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample	Necovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	NSCS
EB254	4.1			ō	0	XXXX	DESCRIPTION  Links Brown for Assess Sand little Fire County trees Silk and	SW
EB234	14 28 36		4		0.1		Light Brown fine to coarse Sand, little Fine Gravel, trace Silt, wet.	34
1	28				0.9		Dark gray COAL, some Gravel, dry.	ML
							Olive gray SILT and Gravel, moist.	MIL
	28 28 23 21		1	0			Olive gray fine to coarse GRAVEL, little Silt, little fine Sand, moist.	GN
	21	_			_3		No Recovery	
	11 15 18 21		1.5	0	-5		Light brown SILT, little, fine to coarse Gravel, trace fine to coarse, Sand, moist.	ML
		_			6		No Recovery	
EB255	4 10 18 22		2	0	-6 -7		Light Brown SILT, little fine to coarse Gravel, trace fine to coarse Sand, moist. Zone from 6.9' to 7.5' is stained dark gray and includes coal ash fragments.	MI
	22 40 100/.2	+	1.2	0	-8 -9 9.2		Light brown SILT, little fine to coarse Gravel, trace Sand, moist.	MI
		<u> </u>					Auger Refusal at 9.2'.	
NOTE	S:			1		<u> </u>		_1
						J )	UNITED STATES ARMY CORPS OF ENGINEERS Seneca Army Depot Romulus, New York LOG OF BORING 121H	-1

### **LOG OF BORING 121H-2**

PROJECT: Seneca Non-evaluated EBS Sites

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

DATE COMPLETED: 3/16/98 DRILLING CONTRACTOR: Nothnagle

DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon

DATE STARTED: 3/16/98

TOTAL DEPTH: 7.7

**DEPTH TO WATER:** 

BORING LOCATION: 999094.7882 ft NORTH

750689.3504 ft EAST

Sheet 1 of 1

COORDINATE SYSTEM: NAD83

**GROUND SURFACE ELEVATION: 740.7130 ft** 

**ELEVATION DATUM: NAVD88** INSPECTOR: MW

CHECKED BY: ITR

Sample Number	Blow Counts (# Blows per 6")	Sample Recovery	VOC Screen-PID (ppm)	Depth (ft)	Macro Lithology	This log is part of a report prepared by Parsons Engineering-Science, Inc. for the named company and should be read together with the report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations.	USCS
					NAAAA	DESCRIPTION	-
EB252	23	1 5	0	0.	<b>.</b>	Olive gray fine to coarse SAND, some fine to coarse Gravel, trace Silt, wet.	SV
	23 23			-1		Dark gray fine to coarse GRAVEL, little fine to coarse Sand, little Silt, moist.	GN
		_				No Recovery	<b>T</b>
	15 15 23 15	1.3	o	-2		Light Brown fine to coarse GRAVEL, trace fine to coarse Sand, little Silt, moist.	GM
		1		3.3	****	No Recovery	
	8 17 20 30	2	0	-5		Light Brown Silt, some fine to coarse Gravel, little fine Sand, moist.	ML
EB253	7 53	1	0	-6		Light brown SILT, little fine Gravel, little fine Sand, moist.	Mi
	100/.3						
		_		-7		No Recovery	
				7.7		Auger Refusal at 7.7'.	
						August Nordean act 7.7	
NOTE	e.						

# APPENDIX B. Test Pit Logs

				NGINEERING SCIENTEST PIT RECORD	CE, INC.
	Projec	t Name:	Seneca EBS Non-evai	uated Sites	TEST PIT NO. TP123D-1
	Project f		733193-01001		Location: SEAD-123D
	Date / Tin		3/5/98 1130		
	Date / Time	e Finish:	3/5/98 1200		
		Veather:	Partly cloudy, 30's		
		ntractor:	Nothnagle Drilling Inc.		
	Insp	ector(s):	DRG		
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFI	CATION OF MATERIAL	COMMENTS
	FILL	SC	Brown SAND and SILT Gravel, trace Cobbles,	Γ, little- Clay, little coarse moist.	Fill, No staining or debris evident.
		OL	Sand, trace coarse Sa	T and CLAY, little medium nd, trace fine to coarse d organic material, wet to	Undisturbed soil, no evidence of staining or debris.
	TL	ML.		SILT, some Clay, little fine t lium Gravel, trace Cobbles, s mm in diameter.	Undisturbed Till, no evidence of staining or debris.
EXCAV/	ATION DIMEN	SIONS	(Length X Width	X Depth) 14' X 3' X 1'-2.2	?'
	NITORING DA		Background OVM		
			m Breathing Zone OVN		
71145	CAMPI	<del></del>	LOCATION		ROSS SECTION
1140	SAMPLI EBC02 MRD	- I.D.	5 south of north end		pproximate dimensions)
1140	EDUOZ MIKU		0.5 depth	(iiioiuuc a	rp. ominion aminimus)
1150	EB-109		at North end		
, , ,			1.0' in depth	South	North
					6 6302
				E3'09 22	X
				- 1	

			PARSONS E	NGINEERING SCIENC	E, INC.		
				EST PIT RECORD			
	Projec	t Name:	Seneca EBS Non-eval	uated Sites	TEST PIT NO. TP123D-		
	Project N	Number:	733193-01001		Location: SEAD-123D		
	Date / Tim	ne Start:	3/5/98 1000				
	Date / Time	e Finish:	3/5/98 1100				
		Veather:	Snow showers, heavy	at times, 30's			
		ntractor:	Nothnagle Drilling Inc.				
	Inspe	ector(s):	DRG				
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFI	CATION OF MATERIAL	COMMENTS		
0.5	FL	ML	Dark brown SILT, some roots and organic mate	e Clay, little fine Sand, trace erial, moist.	1/2 Drum on surface 5.5' north of south end of trench, no staining or ground surface or sub-surface evident.		
0.0							
			ĺ				
	TL	CL		y to reddish brown SILT and	Undisturbed Till, No staining or		
		ļ		coarse Sand, trace coarse	debris evident.		
			Gravel, trace Cobbles,	wet to saturated.			
1.5							
			Į				
			1				
EXCAV/	ATION DIMEN	ISIONS:	(Length X Width	X Depth) 15' X 3' X 1.5'			
	NITORING DA		Background OVM				
		Maximu	m Breathing Zone OVM	Reading: 0.0 ppm			
TIME	SAMPLE	E I.D.	LOCATION	CRO	OSS SECTION		
1020	EB106		5.5' north of south end,		roximate dimensions)		
			beneath drum, .5' deep				
1040	EB107		5.5' north of south end,	South	North		
			beneath drum, 1.5' deep	Drum S	ection		
				5.5'	1		
				X EB 10%			
	<b>E</b>			¥ :3 0 [±]			
					_ *		
					12		
					15		
					15 '		

			PARSONS E		RING SCIEN RECORD	CE, INC.	
	Proiec	t Name:	Seneca EBS Non-eval		NECURD	TEST PIT NO.	TP123D-3
	Project I		733193-01001		<del></del>	Location: SEAD-123	
	Date / Tim		3/4/98 1635			·   <u> </u>	
	Date / Time		3/4/98 1715				
	٧	Veather:	Overcast, windy, 30's				
		ntractor:	Nothnagle Drilling Inc.				
	Insp	ector(s):					
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFI	CATION OF	MATERIAL	COMMENTS	S
	FL	CL	trace Cobbles, trace m trace roots and organic Olive gray to brown SII Sand, trace fine to coa	Olive gray to brown SILT, some Clay, little fine Sand, trace Cobbles, trace medium to coarse Gravel, trace roots and organic material, moist.  Olive gray to brown SILT and CLAY, little medium Sand, trace fine to coarse Gravel, trace roots and organic material, wet to saturated.			ning or
	LTION DIMEN NITORING DA		(Length X Width Background OVM		16' X 3' X 0'-3'		
			m Breathing Zone OVM		0.0 ppm		<del></del>
TIME	SAMPLE	I D	LOCATION	<u> </u>		ROSS SECTION	
************	EB102	- 1.U.	At north end			pproximate dimensions)	
1650	ED (U2		0.5' deep		्मारायपट ब		
1700	EB001		4' north of south end	South			Nath
	EB103		2' deep				
		************					
					.		
			••••••••••••••••••	/	3		,
					EB103		* EB 102
	***************************************		***************************************				
					/6		-
		•••••	***************************************				
	***************************************	************					

			PARSONS E	NGINEER EST PIT F		CE, INC.		
	Projec	t Name:	Seneca EBS Non-eval	uated Sites		TEST PIT	NO	TP123D-4
	Project N		733193-01001				SEAD-1	
	Date / Tim		3/5/98 0815			-   200000000000000000000000000000000000	<u> </u>	200
	Date / Time		3/5/98 0845		<u> </u>	-		
		Veather:	Overcast, snow, heavy	at times, 20'	S	-	-	
		ntractor:	Nothnagle Drilling Inc.			-		,
	Inspe	ector(s):	DRG					
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFIC	CATION OF	MATERIAL		COMME	NTS
0.5	FL	CL	Dark brown SILT and CLAY, some roots and organic material, little Cobble, moist.				culvert sec	ground surface tions, cable, cing.
	FL	CL	Olive gray to brown SIL trace medium to coarse	e Sand, mois	t.	copper an steel cable	d steal wir e. No staini	lepth including: e, steel pipe, ing evident.
<del></del>		OL	Olive gray to brown SIL Sand, trace coarse Sar material.				mound. No	und surface o staining of
EXCAV/	ATION DIMEN	JSIONS:	(Length X Width	X Denth) 1	13' X 3' X 0'-2.	1'	<del></del>	
	NITORING DA		Background OVM	_	0.0 ppm			
MIK MOI	ALLOKING DE		ım Breathing Zone OVM			<del></del>		
			1	rtouring				
TIME	SAMPLE	I.D.	LOCATION			ROSS SECTIO		
825	EB104		2' south of north end		(Include a	pproximate dir	nension <u>s)</u>	
	ED405		0.5' deep	,	d.			<b>.</b>
835	EB105	1	at south end	> >	outh			North
	<b></b>		1' deep					
					T	2.1		
				-	* FB 105		F3104	_
	<b></b>				4			— <del>→</del>
	Banasa					13		-
.,								

### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP123D-5 733193-01001 Project Number: Location: SEAD-123D Date / Time Start: 3/4/98 1510 Date / Time Finish: 3/4/98 1600 Weather: Overcast, windy, 30's Contractor: Nothnagle Drilling Inc. Inspector(s): **DRG/KKS** DEPTH Stratigraphy FIELD IDENTIFICATION OF MATERIAL COMMENTS Macro (ft bgs) CL Dark brown SILT and CLAY, some roots and Several pieces of light copper wire FL organic material, little Cobble, moist. on ground surface, no staining. 0.5 CL FL Olive gray to brown SILT and CLAY, little fine to Fill, no evidence of staining coarse Sand, little- fine to coarse Gravel, moist or debris. **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 17' X 3' X 0'-4.2' Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm LOCATION TIME SAMPLE I.D. **CROSS SECTION** (Include approximate dimensions) 2' south of north end 1530 EB100 1.5' deep South North 1540 EB101 1' north of south end 4.1' deep 4.2

					RING SCIENCE RECORD	E, INC.
Project Name: Seneca EBS Non-e Project Number: 733193-01001 Date / Time Start: 3/5/98 1330 Date / Time Finish: Weather: Contractor: Contractor: Inspector(s): DRG						TEST PIT NO. TP123F-1 Location: SEAD-123F
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFICATION OF MATERIAL			COMMENTS
0.5	FL	CL	Dark brown SILT, some Clay, little fine to medium Sand, trace coarse Gravel, cobbles, roots, moist			Vegitation stressed on surface, no evidence of staining or debris.
3 3.7	FL	CL	Dark brown SILT, some Sand, trace coarse Gra Dark brown SILT, some Sand, little cobbles, little to medium Gravel, trac	e Clay, little e coarse G	e fine to medium	Fill, no evidence of staining or debris.  Probably former ground surface predating mound, no evidence of staining or debris.
	ATION DIMEN NITORING DA	ATA:	(Length X Width Background OVM Im Breathing Zone OVM	Reading:	21' X 3' X 0.5'-3.7' 0.0 ppm 0.0 ppm	
TIME	SAMPLE	I.D.	LOCATION		CRO	SS SECTION
1350	EB110 EB111		4' south of north end 0.5' deep 5' north of south end 1.5' deep	3 D	(Include app	Veg. tal and
				<b>L</b>	2	· · · · · · · · · · · · · · · · · · ·

	PARSONS ENGINEERING SCIENCE, INC.									
						E, INC.				
			Ţ	EST PIT	RECORD					
	Projec	t Name:	Seneca EBS Non-eval	uated Sites	3	TEST PIT NO.	TP120A-1			
	Project N		733193-01001			Location: SEAD	-120			
l	Date / Tim		3/30/98	1450						
	Date / Time	e Finish:	3/30/98	1530						
		Veather:								
	Cor	ntractor:	Nothnagle Drilling Inc.							
	Inspe	ector(s):	ITR							
	o		FIELD IDENTIFIE	OATION O	EMATERIAL	001111	NTO			
DEPTH	Stratigraphy	Macro	FIELD IDENTIFI	CATION O	FMATERIAL	СОММЕ	:NIS			
(ft bgs)										
					dan Keela Gaa ka	l				
1			Green to light brown, S							
			coarse Gravel, moist ro	ots in top (	J-6".					
2										
,						<b>!</b>				
3		ĺ				1				
					1					
4						1				
_						1				
5						j				
_										
6										
7										
'			Ì							
8						l .				
°						1				
9										
—" <u> </u>			1							
10										
'°						]				
= \( \( \) \( \) \( \)	TION 5:: 4=:	1010115	// // 3/ 18 // 18	V D = #13	0.01 01 41					
	ATION DIMEN		(Length X Width		6.2' x 2' x 4'					
AIR MOI	NITORING DA		Background OVM		0.0 ppm					
		Maximu	ım Breathing Zone OVM	1 Reading:	0.0 ppm					
TIME	SAMPLE	E I.D.	LOCATION		CRO	OSS SECTION				
1500	EB155		.5' from top of mound.	1		proximate dimension	s)			
			06" deep		•		•			
1510	EB156		2.5' from top of mound.	N			S			
l .			2-2.5' deep		6.2'					
			•							
l				, A'						
l				4' 	المراجين كر	EB155				
l				l –	EB156					
					ED 100					
1										

#### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites Project Name: TEST PIT NO. TP120A-2 733193-01001 Project Number: Location: SEAD-120 Date / Time Start: 3/31/98 0810 3/31/98 0835 Date / Time Finish: Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL **COMMENTS** (ft bgs) FILL Dark brown, SAND, little Gravel, some Clay, Building material debris found, 1 moist, debris (glass, metal). concrete, glass, metal, water pump handle. 2 3 4 5 6 8 9 10 (Length X Width X Depth) 5.2' x 2' x 4' **EXCAVATION DIMENSIONS:** AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) .5' from top of mound. 0810 EB157 0-.6" deep S Ν 0835 EB158 2.5' from top of mound. ~5.2' 2-2.5' deep EB157 EB158

### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120A-3 Project Name: 733193-01001 Location: SEAD-120 Project Number: 0810 Date / Time Start: 3/31/98 Date / Time Finish: 3/31/98 0835 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): FIELD IDENTIFICATION OF MATERIAL COMMENTS **DEPTH** Stratigraphy Macro (ft bgs) Gray to brown CLAY, little coarse Gravel, moist, 1 roots in top 0-6". 2 3 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 5.2' x 2' x 4' AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm LOCATION **CROSS SECTION** TIME SAMPLE I.D. (Include approximate dimensions) 1350 EB159 1' from top of mound. 0-.6" deep W Ε EB160 2' from top of mound. 1400 - 8.**8'** -2-2.5' deep EB159 **EB160**

### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120A-4 Project Name: 733193-01001 Location: SEAD-120 Project Number: Date / Time Start: 3/31/98 0810 Date / Time Finish: 3/31/98 0835 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) FILL Greenish brown to dark brown, SILT and CLAY, Empty drums and drum pieces some coarse Gravel, very little cobbles, moist. were located at base of mound. 2 3 4 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 9' x 2' x 6' AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 1' from top of pit. 1220 EB161 S Ν 0-.6" deep 1240 EB162 3' from top of pit. 2-2.5' deep EB161 EB162

drums

	PARSONS ENGINEERING SCIENCE, INC. TEST PIT RECORD									
	Projec	t Name:	Seneca EBS Non-eval		KECUKD	TEST PIT NO.	TP120A-5			
	Project N		733193-01001			Location: SEAD	120			
	Date / Tim		3/30/98	1025						
	Date / Time	e Finish:	3/30/98	1100						
	Weather:									
	Cor	ntractor:	Nothnagle Drilling Inc.							
Inspector(s): ITR			ITR							
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFI	CATION OF	СОММЕ	NTS				
(11231)										
1	FILL		Brown to dark brown, 0	CLAY and S	AND, little					
			coarse gravel, moist.							
2										
3										
4										
5										
6										
7										
8										
9										
4.0										
10										
EXC \\//	ATION DIMEN	ISIONS	(Length X Width	Y Denth)	9' x 2' x 6'					
	NITORING DA		Background OVM		0.0 ppm					
	VITORING DA		ım Breathing Zone OVM	_	0.0 ppm					
70.45	OALID: 7					DEC SECTION				
<u>TIME</u>	SAMPLE	<u>: I.D.</u>	0.6' from top of pit.			<u>OSS SECTION</u> proximate dimension	e)			
1030	EB163		0.6 from top of pit. 06" deep		(include app	MOXIIIIALE GIIIIENSION	,			
1040	EB164		1.8' from top of pit.	W			E			
1040	20104		1-1.2' deep		1					
					6.	2'				
						• EB163				
				_	E. 5	<i>?</i> !				
				4.	5	* EB164				
						سم- سر				

	<u>-</u>				DINIO 60171167		
					RING SCIENCE	E, INC.	
	Duning	. N.I			RECORD	TEST DIT NO	TD420D 4
	Project N	t Name:	733193-01001	Jated Sites		TEST PIT NO.  Location: SEAD-	TP120B-1
	Date / Tim		3/31/98	1055	····	Location. SEAD-	120
	Date / Time		3/31/98	1130			
		/eather:					
	Cor	ntractor:	Nothnagle Drilling Inc.				
	Inspe	ector(s):	ITR				
DEPTH	Stratigraphy	Macro	FIELD IDENTIFIC	CATION OF	MATERIAL	COMME	NTS
(ft bgs)							
1	FILL		Greenish brown, SILT a	and Clay ve	any little fine to	Small arms bullets o	of various cal
'	FILL		coarse Gravel, moist.	and Clay, ve	ery indice fine to	were lodged in mou	
2			<b>_</b>				
3							
4							
5							
6							
7							
8							
9							
10							
EXCA)//	ATION DIMEN	ISIONS:	(Length X Width	X Denth)	7' x 2' x 4'		
	NITORING DA		Background OVM		0.0 ppm		
,			m Breathing Zone OVM		0.0 ppm		
TIME	SAMPLE	I.D.	LOCATION		CRO	SS SECTION	
1100	EB165	· · · · · · · · · · · · · · · · · · ·	3' from top of pit.			roximate dimensions	5)
1105	ED466		06" deep	s			N
1125	EB166		4' from top of pit. 2-2.2' deep		<u> </u>		
				<b>4</b> '		B165 B166	No.

### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Seneca EBS Non-evaluated Sites TEST PIT NO. TP120B-2 Project Name: Project Number: 733193-01001 Location: SEAD-120 Date / Time Start: 3/31/98 1145 Date / Time Finish: 3/31/98 1210 Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) **FILL** Greenish brown, SILT and Clay, very little fine to Small arms bullets of various cal. coarse Gravel, moist. were lodged in mound. 2 3 4 5 6 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 6.8' x 2' x 3.5' Background OVM Reading: AIR MONITORING DATA: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 3.5' from top of pit. 1200 EB167 .8-1' deep Ν S 1210 EB168 4' from top of pit. _ 6.8' ___ 2-2.2' deep EB167 3.5' **EB168**

#### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** TEST PIT NO. Seneca EBS Non-evaluated Sites TP120B-3 Project Name: 733193-01001 Location: SEAD-120 Project Number: Date / Time Start: 3/31/98 1300 3/31/98 1400 Date / Time Finish: Weather: Contractor: Nothnagle Drilling Inc. Inspector(s): **DEPTH** FIELD IDENTIFICATION OF MATERIAL COMMENTS Stratigraphy Масго (ft bgs) Small arms bullets of various cal. Greenish brown, SILT and Clay, very little fine to **FILL** 1 coarse Gravel, moist. were lodged in mound. 2 3 4 5 6 7 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 7' x 2' x 3.5 AIR MONITORING DATA: Background OVM Reading: 0.0 ppm Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. LOCATION **CROSS SECTION** (Include approximate dimensions) 0' from top of pit. 1305 EB169 1-1.5' deep Ν S 3.5' from top of pit. EB170 1310 2.2-3' deep EB169 3.51 EB170

#### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP120G-1 733193-01001 Location: SEAD-120 Project Number: 1510 Date / Time Start: 5/3/98 5/3/98 1600 Date / Time Finish: Weather: Nothnagle Drilling Inc. Contractor: DRG, KKS Inspector(s): **DEPTH** FIELD IDENTIFICATION OF MATERIAL **COMMENTS** Stratigraphy Macro (ft bgs) FILL Light brown, SILT and fine Sand, little coarse Sand and fine Gravel, trace coarse Gravel, 2 trace cobbles, moist. 3 5 6 7 Light, reddish brown, SILT and CLAY, trace fine TILL No man-made debris or staining. Sand, trace coarse Sand, wet. 8 9 _10 (Length X Width X Depth) 13' x 3' x 7.5' **EXCAVATION DIMENSIONS:** Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm SAMPLE I.D. **LOCATION** TIME **CROSS SECTION** 5.0' south of north end. (Include approximate dimensions) 1540 EB112 0.5' deep. --- 13' --EB113 directly below north end. 1550 2.0' deep. S Ν 7.5' **EB112 EB113**

					RING SCIENC	E, INC.		
	Project N Date / Time Date / Time	ne Start:	Seneca EBS Non-evalue 733193-01001 6/3/98 6/3/98			TEST PIT NO.  Location: SEAD	TP120G-2	
		ntractor: ector(s):	Nothnagle Drilling Inc.					
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFIC	FIELD IDENTIFICATION OF MATERIAL			COMMENTS	
12345678	FILL		Dark brown, SILT, som trace fine to coarse Gra			Native soil appears of trench.	wet at bottom	
9 10								
	ATION DIMEN NITORING DA	ATA:	(Length X Width Background OVM ım Breathing Zone OVM	Reading:	14' x 3' x 4.7' 0.0 ppm 0.0 ppm			
<u>TIME</u>	SAMPLE	I.D.	LOCATION			OSS SECTION		
1015	EB114		south side I.5' deep		(Include ap	proximate dimension	s)	
1030	EB115		south side 3.0'deep	E 		GS  EB114  EB115	w	
***************************************					<i></i>			

	PARSONS ENGINEERING SCIENCE, INC. TEST PIT RECORD									
	Project	t Name:	Seneca EBS Non-evalu		RECORD	TEST PIT NO.	TP120G-3			
	-		733193-01001	Jaleu Oiles		Location: SEAD				
	Project N Date / Tim		3/9/98	1445		Location. SEAD	-120			
			3/9/98	1500						
	Date / Time Finish: 3/9/98 15 Weather:									
Contractor: Nothnagle Drilling Inc.										
		ector(s):	MW		<del></del>	<del></del>				
	Поре	citor(s).	IVIVV							
DEPTH (ft bgs)	Stratigraphy	Macro	FIELD IDENTIFICATION OF MATERIAL			COMME	ENTS			
(1113-)										
1	FILL		Olive gray, SILT, trace	coarse San	d, little fine					
				ravel (Sand and Gravel are Slate chips), moist.						
2			`		, ,,					
_										
3										
4										
5										
6										
7										
'										
8										
9										
10	İ									
EXCAV/	ATION DIMEN	ISIONS:	(Length X Width	X Denth)	Hand auger was u	ised				
	NITORING DA		Background OVM		0.0 ppm	1004.				
AII WO	VITORINO DA		ım Breathing Zone OVM							
						OCCUPATION.				
TIME	SAMPLE	<u> I.D.</u>	LOCATION			OSS SECTION				
1445	EB135		1' deep		(Include app	roximate dimension	s)			
1550	EB136		2' deep		(Hand Auger wee	used no erose section	m.)			
(Hand Auger was used, no cross-section.)						n.)				
1										
I				1						

				ENGINEERING SCIENCE, INC.	
			T	TEST PIT RECORD	
	Project	t Name:	Seneca EBS Non-eval	luated Sites TEST PIT NO.	TP120G-4
	Project N		733193-01001	Location: SEAD-12	0
	Date / Tim	ie Start:	6/3/98	1310	
	Date / Time	e Finish:	6/3/98	1450	
		/eather:			
		ntractor:	Nothnagle Drilling Inc.		
	Inspe	ector(s):	MW		
DEPTH	Stratigraphy	Macro	FIELD IDENTIFIC	ICATION OF MATERIAL COMMENT	ī <b>S</b>
(ft bgs)					
1	FILL		Dark brown, SILT, som		mound.
				vel to 18" Boulders, moist,	
2			roots in upper 6".		
3					
4		i			
5					
6					
_					
7					
8	l i				
9			ĺ		
10					
=><-			/I / / × \ \ / \ / \ / \ / \ / \ / \ / \ /	V D (1) 401 01 71	
	ATION DIMEN VITORING DA		(Length X Width Background OVM		<del></del>
AIR MOI	VITORING DA		Im Breathing Zone OVM		
TIME	CAMP		,		
TIME	SAMPLE	<u>: I.D.</u>	LOCATION south side	<u>CROSS SECTION</u> (Include approximate dimensions)	
1345	EB118		south side 18" deep	(include approximate dimensions)	Е
1420	EB119		south side	***	_
1420	25110		3.5' deep	ì	
				● EB118	
				7' • EB119	
			<b></b>		
					6
		***************************************	<u>}</u>	13'	
	5		·····		

#### PARSONS ENGINEERING SCIENCE, INC. **TEST PIT RECORD** Project Name: Seneca EBS Non-evaluated Sites TEST PIT NO. TP120G-5 733193-01001 Location: SEAD-120 Project Number: 1540 Date / Time Start: 6/3/98 Date / Time Finish: 6/3/98 1635 Weather: Nothnagle Drilling Inc. Contractor: Inspector(s): MW **DEPTH** Stratigraphy Macro FIELD IDENTIFICATION OF MATERIAL COMMENTS (ft bgs) 1 FILL Dark brown, SILT, little Clay, trace fine Sand, Observed piece of metal banding in moist. top of mound. Also, there are at 2 least 20 large boulders (up to 4' in diameter) in the mound. 3 Greenish gray, to reddish orange, SILT and 4 Clay, moist to wet. 5 6 7 8 9 10 **EXCAVATION DIMENSIONS:** (Length X Width X Depth) 14' x 3' x 3' Background OVM Reading: 0.0 ppm AIR MONITORING DATA: Maximum Breathing Zone OVM Reading: 0.0 ppm TIME SAMPLE I.D. **LOCATION CROSS SECTION** (Include approximate dimensions) 1550 EB120 east side. N 1' deep S 1555 EB121 east side 3.5' deep EB120 EB121 _ 14' ____

# APPENDIX C. Well Construction Diagrams

PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

WELL INSTALLATION STARTED: 3/06/98 WELL INSTALLATION COMPLETED: 3/06/98

DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 9.1 DEPTH TO WATER: 7.2

BORING LOCATION: 987033.7607 ft NORTH

740754.7201 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 638.9787 ft
ELEVATION DATUM: NAVD88



PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

WELL INSTALLATION STARTED: 3/06/98
WELL INSTALLATION COMPLETED: 3/06/98

DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 12.5 DEPTH TO WATER: 2.2

BORING LOCATION: 988958.412 ft NORTH

739018.1027 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 602.0001 ft
ELEVATION DATUM: NAVD88



PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 122

PROJECT NO: 733193-01001

WELL INSTALLATION STARTED: 3/06/98
WELL INSTALLATION COMPLETED: 3/06/98

DRILLING CONTRACTOR: Nothnagle DRILLING METHOD: HSA 8" SAMPLING METHOD: Split Spoon TOTAL DEPTH: 11.8 DEPTH TO WATER: 2.4

BORING LOCATION: 991432.0738 ft NORTH

738522.1617 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 609.7340 ft
ELEVATION DATUM: NAVD88



PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121 PROJECT NO: 733193-01001

WELL INSTALLATION STARTED: 3/11/98
WELL INSTALLATION COMPLETED: 3/11/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"
SAMPLING METHOD: Split Spoon

GROU

DEPTH TO WATER: 2

**TOTAL DEPTH: 4.3** 

BORING LOCATION: 997305.3484 ft NORTH 749798.8895 ft EAST

COORDINATE SYSTEM: NAD83
GROUND SURFACE ELEVATION: 729.2438 ft
ELEVATION DATUM: NAVD88
INSPECTOR: DRF

INSPECTOR: DRF



PROJECT LOCATION: Seneca Army Depot, Romulus, New York

ASSOCIATED AREA/UNIT: SEAD 121

PROJECT NO: 733193-01001

WELL INSTALLATION STARTED: 3/9/98
WELL INSTALLATION COMPLETED: 3/9/98
DRILLING CONTRACTOR: Nothnagle
DRILLING METHOD: HSA 8"

SAMPLING METHOD: Split Spoon

TOTAL DEPTH: 7.2
DEPTH TO WATER: 2.1

BORING LOCATION: ft NORTH

ft EAST

COORDINATE SYSTEM: NAD83

**GROUND SURFACE ELEVATION: ft** 

**ELEVATION DATUM: NAVD88** 



# APPENDIX D. Geophysical Data

	SEDA EBS		In Division
Easting	Northing	Quadrature Response	In-Phase Response
Easting LINE 0	Northing	Kesponse	Response
741620.6784	1016112.929 1016108.173	23.834 24.108	0.49 0.525
741620.9152 741621.1521	1016103.416	23.896	0.497
741621.3889	1016098.66	23.406	0.409
741621.6258 741621.8626	1016093.904 1016089.148	23.284 23.346	0.679 0.735
741622.0994	1016084.393	23.04	0.705
741622.3363 741622.5732	1016079.637 1016074.881	22.95 22.828	0.56 0.415
741622.81	1016070.125	22.584	0.49
741623.0469 741623.2837	1016065.369 1016060.613	22.522 22.46	0.457 0.538
741623.5206	1016055.856	22.888	0.593
741623.7574 741623.9943	1016051.1 1016046.344	22.736 22.706	0.617 0.47
741624.2312	1016041.588	22.98 22.766	0.31
741624.468 741624.7048	1016036.833 1016032.077	22.766 22.858	0.648 0.657
741624.7048	1016027.321	23.102	0.683
741625.1785 741625.4154	1016022.565 1016017.809	23.162 23.986	0.784 0.641
741625.6522	1016013.052	24.108	0.727
741625.8891	1016008.296 1016003.54	25.3 27.374	0.907 1.056
741626.126 741626.3628	1015998.784	33.082	1.198
741626.5997	1015994.028	47.364	1.887 4.466
741626.8365 741627.0733	1015989.272 1015984.517	84.32 118.744	5.76
741627.3102	1015979.761	118.256	5.141
741627.547 741627.7839	1015975.005 1015970.248	172.698 208.74	
741628.0208	1015965.492	149.506	6.647
741628.2576 741628.4945	1015960.736 1015955.98	163.208 170.502	8.544 7.871
741628.7313	1015951.224	186.248	5.69
741628.9682 741629.205	1015946.468 1015941.712	74.616 60.546	1.808 1.074
741629.4418	1015936.957	85.206	0.883
741629.6787 741629.9156	1015932.201 1015927.445	85.48 116.912	0.281 0.2 <b>4</b>
741630.3893	1015917.932	129.242	3.654
741630.6261	1015913.176 1015908.42	142.394 209.382	6.794 15.796
741630.863 741631.0998	1015903.664	241.424	16.926
741631.3367	1015898.908	211.426	10.469
741631.5735 741631.8104	1015894.152 1015889.396	162.11 139.924	6.146 6.763
741632.0472	1015884.641	138.61	13.628
741632.2841 741632.5209	1015879.884 1015875.128	119.11 83.558	11.072 1.164
741632.7578	1015870.372	48.462	-1.899
741632.9946 741633.2315	1015865.616 1015860.86	41.718 29.206	3.777 2.124
741633.4683	1015856.104	26	1.041
741633.7052 741633.9421	1015851.348 1015846.592	25.726 25.512	0.834 0.826
741634.1789	1015841.836	25.422	0.863
741634.4157 741634.6526	1015837.081 1015832.324	25.39 25.482	1.014 1.144
741634.8894	1015827.568	25.544	1.005
741635.1263 741635.3631	1015822.812 1015818.056	25.788 25.878	0.999 1.036
741635.6	1015813.3	25.878	0.92
LINE 20 741655,5752	1015814.295	25.086	0.644
741655.3384	1015819.051	24.902	0.694
741655.1015 741654.8647	1015823.807 1015828.563	24.872 24.994	0.817 1.006
741654.6278	1015833.319	24.964	1.176
741654.391	1015838.075	24.902	0.92
741654.1542 741653.9173	1015842.83 1015847.587	24.81 24.536	0.944 0.957
741653.6804	1015852.343	24.566	0.994
741653.4436 741653.2067	1015857.099 1015861.855	24.506 24.598	0.819 0.821
741652.9699	1015866.611	24.476	0.942 0.775
741652.733 741652.4962	1015871.367 1015876.123	24.322 24.75	0.79
741652.2593	1015880.879	25.268	0.872
741652.0225 741651.7856	1015885.635 1015890.39	26.276 27.344	1.192 1.19
741651.5488	1015895,147	27.344 27.192	0.834
741651.3119 741651.0751	1015899.903 1015904.659	27.13 27.222	0.718 0.747
741650.8382	1015909.415	27.558	0.78
741650.6014 741650.3753	1015914,171 1015918.71	28.32 29 114	0.672 0.819
741650.1492	1015923.251	29.51	1.06
741649.9231 741649.697	1015927.79 1015932,33	29.968 30.274	1.126 1.028
741649.471	1015936.87	30.854	1.133
741649.2448 741649.0188	1015941 41 1015945.95	31.464 31.738	1.093 1.185
741649.0188	1015950.49	31.738	1.185
741648.5666	1015955.029	31,158	1.091
741648 3405 741648 1144	1015959.57 1015964.109	30.854 30.578	0 979 0.874
741647.8884	1015968.648	30.426	0.922
741647.6622 741647.4362	1015973 189 1015977.728	30.06 29.632	1.051 0.903
741647.2101	1015982.269	29.572	0 856
741646.984 741646.7579	1015986 808 1015991.348	29.266 28.412	0 992 1.023
741646.5318	1015995.888	27.588	0.841
741646 3057 741646 0797	1016000.428 1016004.967	27.038 26.642	0.913 0.865
741645.8535	1016009.508	26.032	0.788

	OLDA LDO	Quadrature	In-Phase
Easting	Northing	Response	Response
741645.6275	1016014.047	25.422	0.992
741645.3906	1016018.803	25.3	1.087
741645.1538	1016023.559	25.422	0.898
741644.9169	1016028.316	25.208	0.891
741644.6801	1016033.072	24.78	0.869
741644.4432	1016037.828	23.53	1.047
741644.2064	1016042.583	22.644	0.933
741643.9695	1016047.339	22.858	0.722
741643.7327	1016052.095	22.918	0.797
741643.4958	1016056.851	22.858	0.823
741643.259	1016061.607	22.98	1.006
741643.0221	1016066.363	23.01	1.091 1.062
741642.7853	1016071.119	23.194	0.795
741642.5484	1016075.876	23.284	
741642.3115	1016080.632	22.95	0.611
741642.0747	1016085.388	23.072	0.749
741641.8379	1016090.143	22.828	0.769
741641.601	1016094.899	23.01	0.845
741641.3642	1016099.655	23.132	0.962
741641.1273	1016104.411	23.102	1.093
741640.8905	1016109.167	23.01	1,166
741640.6536	1016113.923	23.742	1,041
LINE 40			
741660.6288	1016114.918	23.56	0.852
741660.8657	1016110.162	23.498	0.927
741661.1026	1016105.406	23.926	0.747
741661.3394	1016100.65	23.498	0.595
741661.5763	1016095.894	23.62	0.701
741661.8131	1016091.138	23.132	0.858
741662.0499	1016086.383	22.98	1.017
741662.0499	1016081.626	22.918	0.916
741662.5236	1016076.87	23.162	0.802
741662.7605	1016072.114	22.674	0.661
741662.7003	1016067.358	23.53	0.744
741663.2342	1016062.602	23.284	0.903
741663.4711	1016057.846	23.072	0.957
741663.7079	1016053.09	23.53	0.955
741663.9448	1016048.334	23.956	0.836
741664.1816	1016043.578	23.56	0.777
741664.4184	1016038.823	22.95	0.867
741664.6553	1016034.066	23.926	1.159
741664.8922	1016029.31	24.688	0.997
741665.129	1016024.554	24.688	0.824
741665.3659	1016019.798	25.33	0.753
741665.6027	1016015.042	25.024	0.681
741665.8396	1016010.286	25.238	0.909
741666.0764	1016005.53	24.81	0.975
741666.3133	1016000.774	24.598	0.858
741666.5502	1015996.018	24.872	0.795
741666.787	1015991.261	25.054	1.076
741667.0238	1015986.506	24.994	1.027
741667.2607	1015981.75	24 78	0.795
741667.4975	1015976.994	24.932	0.779
741667.7344	1015972.238	25.3	0.858
741667.9712	1015967.482	25.086	0.992 0.975
741668.2081	1015962.726	25.238	0.839
741668.445	1015957.97	25.33	
741668.6818	1015953.214	25.238	0.848
741668.9187	1015948.458	25.452	0.689
741669.1555	1015943.701	25.422	0.889
741669.3923	1015938.946	25.422	0.85
741669.6292	1015934.19	25.634	0.836
741669.866	1015929.434	24.23	0.747
741670.1029	1015924.678	24.018	0.786
741670.3398	1015919.922	23.712	0.804
741670.5766	1015915.166	23.834	0.881
741670.8135	1015910.41	24.17	0.87
741671.0503	1015905.654	24.17	1.008
741671.2872	1015900.897	24.2	0.951
741671.524	1015896.141	24.108	0.81
741671.7609	1015891.385	24.2	0.845
741671.9977	1015886.63	24.658	0.966
741672.2346	1015881.874	25.024	1.128
741672.4714	1015877.118	24.872	0.894
741672.7083	1015872.362	24.078	0.926
741672.9451	1015867.606	23.62	0.953
741673.182	1015862.85	23.376	1.049
741673.4188	1015858.094	23.53	1.15
741673.6557	1015853.337	23.896	1.032
741673.8925	1015848.581	23.926	1.109
741674.1294	1015843.825	23.896	1.21
741674.3662	1015839.07	24.354	1.062
741674.6031	1015834.314	24.476	
741674.8399	1015829.558	24.506	
741675.0768	1015824.802	24.536	
741675.3136	1015820.046	24.658	0.861
741675.5505	1015815.29	25.024	1.168
LINE 60			
741695.5257	1015816.284	24.964	0.584
741695.2889	1015821.04	25.176	0.709
741695.052	1015825.797	25.3	0.834
741694.8152	1015830.553	24.902	0.889
741694.5783	1015835.309	24.292	1.177
741694.3415	1015840.065	24 14	1.089
741694.1046	1015844.82	24.018	
741693 8678	1015849.576	24.23	
741693 6309	1015854.332	24.444	0.841
741693.3941	1015859.088	24.292	1.038
741693.1572	1015863.844	24.17	1.065
741692.9204	1015868.6	24.23	1 039
741692.6835	1015873 357	24.566	0 937
741692 4467	1015878 113	26 124	1.006
741692 2098	1015882.869	27.74	1 284
741691 9729	1015887 625	25.208	1 039
741691.7361	1015892.38	24.566	0.878
741691 4993	1015897,136	24 414	0.999
741691 2624	1015901,892	23 834	0.896
741691.0256	1015906 648	23 742	0 722

# Site: Ice Rink

Site: Ice Rink			
SEDA EBS Sites			
		Quadrature	In-Phase
Easting	Northing	Response	Response
741690 7887	1015911.404	23.498	0.852
741690.5519 741690.315	1015916.161 1015920.917	23.56 23.468	0.933 0.981
741690.0781	1015925.673	23.346	0.982
741689.8413	1015930.429	23.284	0.848
741689.6044 741689.3676	1015935,185 1015939,941	23.132 24.018	1.003 0.975
741689.1308	1015944.696	25.054	0.76
741688.8939	1015949.452	25.116	0.887
741688.6571 741688.4202	1015954.208 1015958.965	24.842 24.688	0.876 0.837
741688.1833	1015963.721	24.81	0.812
741687.9465 741687.7096	1015968.477 1015973.233	24.81 24.81	0.997 0.988
741687.7030	1015977.989	24.75	0.894
741687.2359	1015982.745	24.262	0.942
741686.9991 741686.7623	1015987.501 1015992.256	24.262 24.384	0.852 0.795
741686.5254	1015997.012	24.414	0.863
741686.2885 741686.0517	1016001.768 1016006.525	24.17 24.14	0.942 0.817
741685.8148	1016011.281	24.048	0.841
741685.578	1016016.037	24.14	0.731 0.793
741685.3411 741685.1043	1016020.793 1016025.549	24.658 24.476	0.793
741684.8674	1016030,305	24.444	0.949
741684.6305 741684.3937	1016035.061 1016039.817	24.842 24.506	0.986 1.032
741684.1569	1016044.572	23.53	0.852
741683.92	1016049.329	23.284 23.53	0.779
741683.6832 741683.4463	1016054.085 1016058.841	23.406	0.874 1.021
741683.2095	1016063.597	23.56	0.973
741682.9726 741682.7357	1016068.353 1016073.109	23.316 23.04	0.975 0.845
741682,7337	1016073.103	23.162	0.902
741682.262	1016082.621	23.132	0.903
741682.0252 741681.7884	1016087.377 1016092.132	23.072 22.888	1.062 0.994
741681.5515	1016096.889	23.284	1.01
741681.3147	1016101.645	23.986 23.53	1.146 1.017
741681.0778 741680.841	1016106.401 1016111.157	23.682	1.122
741680.6041	1016115.913	23.498	1.242
LINE 80 741700.6291	1016115.909	23.712	0.597
741700.8883	1016110.704	23.316	0.874
741701.1474 741701.4066	1016105.501 1016100.296	22.492 22.736	0.823 0.757
741701.4000	1016095.093	23.04	0.737
741701.9249	1016089.888	22.858	1.172
741702.1841 741702.4433	1016084.685 1016079.48	22.95 22.766	1.22 0.997
741702.7024	1016074.277	23.194	0.749
741702.9616 741703.2207	1016069.072 1016063.869	23.162 23.438	0.826 0.918
741703.2207	1016058.664	23.498	1.021
741703.739	1016053.46	22.95	1.047
741703.9982 741704.2574	1016048.256 1016043.052	23.406 23.926	1.03 0.909
741704.5166	1016037.848	23.62	0.96
741704.7757	1016032.644 1016027.44	23,774 25,054	0.992 1.065
741705.0349 741705.294	1016022.236	25.116	1.073
741705.5532	1016017.032	24.566	1.049
741705.7901 741706.0269	1016012.275 1016007.519	23.864 23.986	0.83 0.903
741706.2638	1016002.763	23.926	1.006
741706.5006	1015998.007	23.712	0.881 0.935
741706.7375 741706.9743	1015993.251 1015988.496	23.774 24.414	1.065
741707.2112	1015983.74	24.994	1.062
741707.448 741707.6849	1015978.984 1015974.228	24.628 24.658	0.994 0.933
741707.9217	1015969.471	24.932	1.051
741708.1586 741708.3954	1015964.715 1015959.959	24.506 24.17	1.065 0.935
741708.6323	1015955.203	24.688	0.887
741708.8692	1015950.447	23.986	1.016
741709.106 741709.3428	1015945.691 1015940.936	24.598 24.688	1.063 0.938
741709.5797	1015936.18	24.414	1.194
741709.8165 741710.0534	1015931.424 1015926.668	22.796 22.308	1.35 0.981
741710.0334	1015921.911	23.162	0.955
741710.5271	1015917.155	23.316	1.096
741710.7758 741711.0245	1015912.162 1015907.168	23.498 23.774	1.051 1.221
741711.2732	1015902.174	24.018	1.207
741711.5219	1015897.18	25.33	1.199 1.223
741711.7706 741712.0193	1015892.186 1015887.192	26.824 31.982	1.418
741712.268	1015882.199	44 19	1.39
741712.5167 741712 7653	1015877.205 1015872.211	34.394 32.226	1.124 1.058
741713 014	1015867.217	35.43	1.12
741713.2627	1015862.223	30 396	1.034
741713.5114 741713.7601	1015857.23 1015852.236	27.192 26 032	0 893 1.085
741714.0088	1015847.242	25.36	1.352
741714.2575 741714.5062	1015842.248 1015837.254	24.902 24.932	1.179 1 091
741714.7549	1015837.254	24.598	1.223
741715 0036	1015827.267	24.536	1 15
741715.2523 741715.501	1015822.273 1015817.279	24 658 24.688	1 225 1 223
LINE 100			
741735.4762	1015818.274	25.39	0.369

	SLUA LBS		In Disease
E 41	N141 7	Quadrature	In-Phase
<b>Easting</b> 741735.2502	Northing 1015822.813	Response 25.146	Response 0.389
741733.2302	1015831.893	24.872	0.622
741734.5719	1015836.433	24.658	0.749
741734.3458	1015840.973	24.506	1.074
741734.1197 741733.8936	1015845.513 1015850.052	24.688 25.086	1.126 0.87
741733.6675	1015854.593	25.726	0.944
741733.4415	1015859.132	26.948	1.249
741733.2153	1015863.673	28.748	1.306
741732.9893 741732.7632	1015868.212 1015872.751	32.99 42.938	1.218 1.267
741732.5371	1015877.292	66.102	1.569
741732.311	1015881.831	44.982	1.418
741732.0849 741731.8589	1015886.371 1015890.911	36.834	1.21
741731.6328	1015895.451	41.32 35.4	1.096 1.03
741731.4067	1015899.991	30.152	0.942
741731.1806	1015904.531	27.282	0.994
741730.9545 741730.7284	1015909.07 1015913.611	25.756 24.932	1.062 1.085
741730.5023	1015918.15	24.566	1.069
741730.2537	1015923.144	23.986	1.039
741730.005 741729.7563	1015928.138 1015933.132	23.53 23.284	1.03 1.137
741729.5076	1015938.125	22.828	1.093
741729.2589	1015943.119	23.284	1.005
741729.0102	1015948.113	25.116	1.023
741728.7615 741728.5128	1015953.107 1015958.101	25.268 24.658	0.791 0.992
741728.2641	1015963.094	23.986	1.124
741728.0154	1015968.088	24.2	1.28
741727.7667 741727.518	1015973.082 1015978.076	24.536 24.536	1.096 1.08
741727.2693	1015983.07	24.842	1.045
741727.0206	1015988.063	24.902	0.959
741726.7719	1015993.057	24.994	1.056
741726.5232 741726.2745	1015998.051 1016003.045	24.262 24.2	1.177 1.144
741726.0259	1016008.039	24.262	1.021
741725.7772	1016013.033	24.14	0.957
741725.5285 741725.2916	1016018.026	24.2	0.935
741725.2916	1016022.782 1016027.539	24.108 24.078	0.883 0.984
741724.8179	1016032.295	23.926	1.071
741724.581	1016037.051	24.108	1.159
741724.3442 741724.1074	1016041.807 1016046.562	24.2 23.194	1.128 0.973
741723.8705	1016051.318	22.584	0.83
741723.3968	1016060.83	23.072	1.216
741723.16	1016065.586	23.072	1.161
741722.9231 741722.6862	1016070.342 1016075.099	22.858 23.01	1.005 1.124
741722.4494	1016079.855	22.858	1.271
741722.2125	1016084.611	22.828	1.199
741721.9757 741721.7389	1016089.367 1016094.122	22.736 22.828	1.056 1.093
741721 7303	1016094.122	22.4	0.973
741721.2652	1016103.634	22.492	1.076
741721.0283	1016108.39 1016113.146	22.766	1.265
741720.7914 741720.5546	1016117.903	23.01 23.59	1.288 1.212
LINE 120			
741740.5298	1016118.897	23.774	0.773
741740.7371 741740.9443	1016114.735 1016110.575	24.14 24.048	1 196 1.17
741741.1516	1016106.413	23.774	1.106
741741.3588	1016102.251	23.56	1.014
741741.566 741741.7733	1016098.09 1016093.928	23.254 23.132	1.051 1.201
741741.9806	1016089.766	23.498	1.207
741742.1878	1016085.606	23,468	1.234
741742.395 741742.6023	1016081.444	23.132	1.115
741742.8095	1016077.282 1016073.121	23.316 23.62	1.122 1.288
741743.0168	1016068.959	23.682	1.22
741743.224	1016064.797	23.53	1.128
741743.4312 741743.6385	1016060.637 1016056.475	23.406 23.406	1,157 1,198
741743.8458	1016052.313	23.896	1.073
741744.053	1016048.152	23.498	1.177
741744.2602 741744.4675	1016043.99 1016039.828	23.316 23.406	1.15 1.091
741744.6747	1016035.667	24.384	1.31
741744.882	1016031.506	24.994	1.315
741745.0892 741745.2964	1016027.344 1016023.183	24.688 24.536	1.115 1.069
741745.2964	1016023.183	24.872	0.972
741745.711	1016014.859	24.932	1.065
741745.9182	1016010.698	25.238	1.095
741746.1254 741746.3327	1016006.537 1016002.375	25.146 25.086	1.069 1.113
741746.5399	1015998.214	25.3	1.089
741746.7472	1015994.052	25.176	1.095
741746.9544 741747.1617	1015989.89 1015985 729	24 994 24 964	1.271 1.26
741747.3689	1015981.568	25.146	1.163
741747.5762	1015977.406	25.544	1.049
741747 7834	1015973.245	25.116	1.028
741747.9907 741748 1979	1015969.083 1015964.921	25.146 25.422	1 095 1.03
741748.4051	1015960 76	25.634	1 095
741748.6124	1015956.598	25.33	1 166
741748 8196 741749 0269	1015952.437 1015948.276	25 452 25 726	1.093
741749 0269	1015948.276	25.024	1 034 1 164
741749 4414	1015939 952	24.598	1 08
741749.6486	1015935.791	23.926	0 924
741749.8559	1015931 629	23 346	0 979

	SEDA EBS		I- Dhana
Easting	Northing	Quadrature	In-Phase
<b>Easting</b> 741750.0631	1015927.468	Response 23.316	Response 1.034
741750.2703	1015923.307	23.376	1.163
741750.4776 741750.6939	1015919.145 1015914.802	24.322 25.116	1.264 1.24
741750.9335	1015910.46	25.33	1.242
741751.1263	1015906.118	26	1.124
741751.3426 741751.5589	1015901.775 1015897.433	26.886 27.588	1.188 1.185
741751.7751	1015893.09	29,114	1.142
741751.9914	1015888.748	33.234	1.201
741752.2077 741752.4239	1015884.405 1015880.063	43.792 73.944	1.396 1.969
741752.6401	1015875.721	89.722	2.113
741752.8564 741753.0727	1015871.378 1015867.035	36.682 55.848	1.363 1.367
741753.2889	1015862.693	49.652	1.418
741753.5052	1015858.35	37.69	1.265
741753.7214 741753.9377	1015854.009 1015849.666	31.922 29.388	1.201 1.159
741754.1539	1015845.323	27.802	1.159
741754.3702 741754.5865	1015840.981 1015836.638	26.794 26.124	1.28 1.209
741754.8027	1015832.296	25.544	1.216
741755.0189	1015827.954	25.512	1.155
741755.2352 741755.4515	1015823.611 1015819.269	25.33 25.604	1.096 1.295
LINE 140			
741775.4267 741775.2195	1015820.263 1015824.425	25.666 25.422	1.117 1.13
741775.2195	1015828.586	25.422	1.084
741774.805	1015832.748	25.36	0.933
741774.5977 741774.3905	1015836.91 1015841.071	25.238 25.33	1.08 1.014
741774.1832	1015845.232	25.788	1.058
741773.7688	1015853.555	27.436	1.258
741773.5615 741773.3542	1015857.717 1015861.879	29.724 34.79	1.348 1.525
741773.147	1015866.04	46.814	1.479
741772.9398 741772.7325	1015870.202 1015874.363	80.413 71.594	1.765 1.534
741772.5253	1015878.524	50.934	1.344
741772.318	1015882.686	54.046	1.231
741772.1108 741771.9036	1015886.848 1015891.009	42.266 33.936	1.164 1.17
741771.6963	1015895.171	30.7	1,176
741771.489 741771.2818	1015899.332 1015903 493	28.962 27.314	1.262 1.102
741771.0746	1015907.655	26.276	1.027
741770.8673	1015911.817	25.696	1.006
741770.6601 741770.4528	1015915.978 1015920.14	25.086 24.658	1.093 1.049
741770.0203	1015928.825	24.78	1.111
741769.8041	1015933.167	24.262	1.177
741769.5878 741769.3716	1015937.509 1015941.852	23.834 23.346	1.293 1.012
741769.1553	1015946.194	24.476	0.898
741768.939 741768.5066	1015950.537 1015959.221	26.276 26.124	0.828 0.689
741768.2903	1015963.564	25.696	1.014
741768.074 741767.8578	1015967.906	25.482	1.111 0.942
741767.6415	1015972.249 1015976.592	25.116 24.872	1.019
741767.4252	1015980.934	25.086	1.115
741767.209 741766.9928	1015985.276 1015989.619	25.452 25.452	1,155 1,043
741766.7765	1015993.961	24.902	1.003
741766.5602	1015998.304 1016002.646	24.658	1.043 1.03
741766.344 741766.1277	1016002.646	24.598 24.628	1.03
741765.9115	1016011.331	24.354	1.168
741765.6952 741765.479	1016015.673 1016020.016	24.262 24.292	1.089 1.01
741765.2717	1016024.178	24.414	1.032
741765.0645	1016028.339	24.628	1.021
741764.8572 741764.65	1016032.5 1016036.662	24.566 24.536	1.087 1.032
741764.2355	1016044.985	24.322	0.962
741764.0282 741763.821	1016049.147 1016053.308	23.346 22.766	0 486 0.733
741763.6138	1016057.469	22.918	0.96
741763.4065 741763.1993	1016061.631	23.01	1.047 1.146
741763.1993	1016065.792 1016069.954	23.132 23.132	1.15
741762.5775	1016078.277	23.04	1.144
741762.3703 741762.163	1016082.439 1016086.6	23.254 23.254	1.091 1.063
741761.9558	1016090.761	22.95	1.176
741761.7485	1016094.923	22.888	1.142
741761.5413 741761.3341	1016099.085 1016103.246	23.132 23.194	1.198 1.282
741761.1268	1016107.408	22.888	1.15
741760.9195 741760.7123	1016111.569	22.918	1.139
741760.7123	1016115.73 1016119.892	23 01 23.346	1 152 1.124
LINE 160			
741780.4803 741780.6876	1016120.887 1016116.725	24 018 23 986	1.172 1.137
741780.8948	1016112.564	23.712	1.062
741781.1021 741781.3093	1016108 402 1016104 241	23.59 23.04	1 095 1.096
741781.3093	1016100 08	22 95	1 082
741781.7238	1016095 918	23.224	1 096
741781 9311 741782 1383	1016091 756 1016087.595	23 132 22 766	1 054 1 051
741782.3455	1016083 433	22.918	1 185
741782 5528	1016079 271 1016075 111	23.102	1 192
741782 76 741782 9673	1016075 111	23.072 22.828	1 102 1.089

	SEDA EBS		
		Quadrature	In-Phase
Easting	Northing	Response 22.736	Response 1.198
741783.1745 741783.589	1016066.787 1016058.464	23.316	1.144
741783.7963	1016054.302	22.736	1.065
741784.0035	1016050.142	22.43	1.107
741784.2107 741784.418	1016045.98 1016041.818	22.492 23.316	1,12 1,139
741784.6252	1016037.657	24,262	1.176
741784.8325	1016033.495	24.322	0.841
741785.0397 741785.2469	1016029.333 1016025.173	23.834 23.804	1.008 1.076
741785.4542	1016021.011	23.864	1.082
741785.6705	1016016.668	23.774	1.027
741785.8867 741786.1029	1016012.325 1016007.984	23.864 24.262	1.047 1.078
741786.3192	1016003.641	24.384	1.111
741786.5355	1015999.299	24.566	1.098
741786.7517 741786.968	1015994.956 1015990.613	24.566 24.506	1.115 1.12
	1015986.271	24.598	1.062
741787.1843 741787.4005	1015981.929	24.354	1.119
741787.6167 741787.833	1015977.586 1015973.244	24.658	1.093 1.091
741788.0493	1015968.901	24.81 24.78	1.005
741788.2655	1015964.559	24.872	1.06
741788.698	1015955.874	25.238	1.034
741788.9143 741789.1305	1015951.532 1015947.189	25.208 25.238	1.01 1.179
741789.3468	1015942.847	24.658	1.137
741789.5631	1015938.504	23.712	1.146
741789.7793 741789.9956	1015934.161 1015929.82	23.652 23.896	1.177 1.085
741790.2118	1015925.477	24.078	1.074
741790.4281	1015921.134	24.566	1.343
741790.6443 741790.8606	1015916.792 1015912.449	24.964 25.208	1,363 1,185
741791.0768	1015908.108	25.238	1.332
741791.2931	1015903.765	25.39	1.253
741791.5094 741791.7256	1015899.422 1015895.08	25.756 26.124	1.185 1.341
741791.9419	1015890.737	26.612	1.295
741792.1581	1015886.394	27.618	1.225
741792.3744 741792.5906	1015882.053 1015877.71	29.754 33.906	1.247 1.245
741792.8069	1015873.368	47.028	1.289
741793.0232	1015869.025	67.75	1.361
741793.2394	1015864.682	40.374 40.924	1.236 1.065
741793.4557 741793.6719	1015860.34 1015855.998	36.164	1.047
741793.8882	1015851.656	30.456	1.096
741794.1044	1015847.313	27.68	1.085
741794.3207 741794.537	1015842 97 1015838.628	26.428 25.788	1.107 1.185
741794.7532	1015834.285	25.33	1.236
741794.9694	1015829.943	25.146	1.221
741795,1857 741795,402	1015825.601 1015821.258	25.146 25.268	1.168 1.225
LINE 180	1010021.200	20.200	
741815.3772	1015822.253	25.452	1.062
741815.1783 741814.9793	1015826.248 1015830.243	25.634 25.512	1.082 1.117
741814.7803	1015834.238	25.208	1.098
741814.5814	1015838.233	25.146	1.063
741814.3824 741814.1835	1015842.228 1015846.223	25.208 25.422	1.034 1.1
741813.9845	1015850.218	25.422	1.12
741813.7856	1015854.213	25.848	1.142
741813.5866 741813.3877	1015858.208 1015862.203	26.246 26.398	1.06 1.012
741813.1887	1015866.199	26.612	1.014
741812.9897	1015870.194	25.91	1.073
741812.7908 741812.5918	1015874.189 1015878.184	26 26,458	1.054 1.128
741812.3929	1015882.179	26.52	1.063
741812.1939	1015886.174	26.276	1.03
741811.995 741811.796	1015890.169 1015894.164	26.368 26.246	0.973 1.028
741811.796	1015894.164	26.246	1.109
741811.3981	1015902.154	26.246	1.056
741811.1991	1015906.149	25.91 25.146	0.999 1.089
741811.0002 741810.8012	1015910.144 1015914.139	24.932	1.209
741810.6023	1015918.134	25.116	1.119
741810.4033	1015922.129	25.024	1.012
741810.212 741810.0207	1015925.97 1015929.812	25.024 25.116	0.986 1.021
741809.8294	1015933.653	24.72	1.08
741809.6381	1015937.495	23.956	1 137
741809.4468 741809.2555	1015941.336 1015945.178	23.59 24.2	1.109 1.15
741809.0642	1015949.019	25.94	1.37
741808.6816	1015956.701	26.246	1.093
741808.4903 741808.299	1015960.544 1015964.385	25.94 25.666	1.063 1.08
741808.1077	1015968.226	25.512	1.041
741807.9164	1015972 067	25.36	1.056
741807.7251 741807.5338	1015975.909 1015979.75	25.268 24.932	1.023 0,913
741807.3338	1015983 591	24.932	1.095
741807 1512	1015987.433	24.536	1 124
741806 7686	1015995 116	24.598	1 054 0.994
741806.5773 741806.386	1015998 957 1016002.798	24.536 24.262	1.051
741806.1947	1016006 639	23.986	1.137
741806.0033	1016010.482	23.956	11
741805 812 741805 4294	1016014.323 1016022.005	24.23 24.23	1.109 0.995
741805.2222	1016026 167	24.262	1 126
741805.015	1016030.328	24.018	1.157

	SEDA EBS		
		Quadrature	In-Phase
<b>Easting</b> 741804.8077	Northing 1016034.49	Response 24.2	Response 1.03
741804.6004	1016038.652	23.926	0.858
741804.3932 741804.186	1016042.813 1016046.974	23.438 22.46	0.975 1.089
741803.9787	1016051.136	22.37	1.071
741803.7715	1016055.297 1016059.459	22.4 22.614	1.028 1.03
741803.5642 741803.357	1016063.621	22.98	1.179
741803.1498	1016067.782	23.132	1.062
741802.9425 741802.7352	1016071.944 1016076.105	23.224 22.918	1.106 1.12
741802.528	1016080,266	22.888	1.148
741802.3208 741801.9063	1016084.428 1016092.751	22.98 22.888	1.194 1.159
741801.699	1016096.913	22.918	1.102
741801.4918 741801.2846	1016101.074 1016105.235	23.438 22.918	1.135 1.157
741801.0773	1016109.397	23.864	1.106
741800.87 741800.6628	1016113,559 1016117,72	24.262 24.292	1.209 1.295
741800.4556	1016121.882	24.078	1.242
LINE 200 741820.4308	1016122.876	24.536	1.003
741820.6381	1016118.715	25.024	1.001
741820.8453 741821.0525	1016114.554 1016110.392	24.018 24.476	1.028 1.117
741821.2598	1016106.23	24.444	1.177
741821.467 741821.6743	1016102.069 1016097.907	23.498 23.986	1.196 1.236
741821.8815	1016093.746	23.56	1.146
741822.0888 741822.296	1016089.585 1016085.423	23.04 23.62	1.03 1.073
741822.5033	1016081.261	23.62	1.277
741822.7105	1016077.1 1016072.938	23.406 23.498	1.258 1.243
741822.9178 741823.125	1016068.776	24 17	1.225
741823.3322	1016064.616	24.414 23.652	1.205
741823.5395 741823.7467	1016060,454 1016056,292	23.712	1.218 1.229
741823.954	1016052.131	23.254	1.168
741824.1612 741824.3685	1016047.969 1016043.807	22.858 23.56	1 155 1.12
741824.5757	1016039.647	22.278	1.155
741824.783 741824.9902	1016035.485 1016031.323	21.576 22.248	1.192 1.164
741825.1974	1016027.162	21.79	1.255
741825.4047 741825.612	1016023 1016018.838	21.026 20.996	1.109 1.069
741825.8192	1016014.678	21.21	1.087
741826.0264 741826.2337	1016010.516 1016006.354	21.362 21.302	1.027 1.106
741826.4409	1016002.193	21.514	1.131
741826.6482 741826.8554	1015998.031 1015993.869	21.392 21.546	1.073 1.172
741827.0626	1015989.708	21.606	1.185
741827.2699 741827.4772	1015985.547 1015981.385	21.698 22.094	1.089 1. <b>15</b> 9
741827.6844	1015977.224	22.308	1.245
741827.8916 741828.0989	1015973.062 1015968.9	23.284 24.108	1.1 1.032
741828.3061	1015964.739	21.454	0.674
741828.5134 741828.7206	1015960.578	23.194 24.658	1.049 1.26
741828.9278	1015956.416 1015952.255	23.986	1.122
741829.1351	1015948.093	23.742	1.047 1.12
741829.3424 741829.5496	1015943.931 1015939.77	24.292 24.81	1.218
741829.7568	1015935.609	25.146	1.35
741829.9641 741830.1713	1015931.447 1015927.286	25.696 25.91	1,256 1,334
741830.3786	1015923.124	26.398	1.232
741830.5948 741830.8111	1015918.781 1015914.439	26.428 26.428	1.146 1.067
741831.0273	1015910.097	26.458	1.089
741831.2436 741831.4598	1015905.755 1015901.412	26.856 26.734	1.131 1.199
741831.6761	1015897.069	26.764	1.1
741831.8924 741832.1086	1015892.727 1015888.384	26.764 26.58	1.089 1.023
741832.3249	1015884.042	26.734	1.126
741832,5411 741832,7574	1015879.7 1015875.357	26.398 26.428	
741832.9736	1015871.015	26.368	1.153
741833.1899 741833.4062	1015866.672 1015862.329	26.52 26.978	
741833.6224	1015857.988	26.824	
741833.8387	1015853.645	26.276	
741834.0549 741834.2712	1015849.302 1015844.96	25.482 25.512	0.986 1.192
741834.4874	1015840.617	25.756	
741834.7037 741834.9199	1015836.275 1015831.933	25.726 25.696	
741835 1362	1015827.59	25.756	1.085
741835.3525 LINE 220	1015823.248	26.154	1 104
741855.3277	1015824.243	26.52	1.398
741855.1016 741854.8755	1015828.782 1015833.322	26.49 26.52	1.442 1.4
741854.6495	1015837.862	26.824	1 385
741854.4233 741854 1973	1015842.402 1015846.941	27 558 28 748	1 446 1 664
741853.9712	1015851.482	30.64	1.898
741853 7451 741853 519	1015856 021 1015860 562	33 752 32 868	2 568 0 92
741853 2929	1015865.101	27.71	-1.262
741853 0668 741852.8408	1015869.641 1015874.181	33.448 33.722	1 433 2.675
741852.6147	1015878.72	28.87	0.96

# Site: Ice Rink

Site: Ice Rink			
	<b>SEDA EBS</b>	Sites	
		Quadrature	In-Phase
<b>Easting</b> 741852,3886	Northing	Response	Response
	1015883.26	24.108	-1.139
741852,1625	1015887.8	19.744	-2.081
741851.9364	1015892.34	18.31	-1.833
741851.7103	1015896.88	18.554	-1.802
741851.2582	1015905.959	18.036	-1.898
741851.0321	1015910.5	19.744	-1.635
741850.806	1015915.039	23.376	-1.166
741850.5799	1015919.579	27.68	0.624
741850.3538	1015924.119	30.334	1.582
741850.1549	1015928,114	31.678	2.015
741849.9559	1015932,109	32.348	2.276
741849.757	1015936,104	32.074	2.395
741849.558	1015940.099	31.25	1.927
741849.1601	1015948.089	29.908	
741848,9611	1015952.084	29.908	1.1 1.089
741848.7622	1015956.079	29.846	1.346
741848.5632	1015960.074	29.296	1.315
741848.3643	1015964.069	28.84	1.277
741848.1653	1015968.064	28.26	1.225
741847.9664	1015972.059	28.016	1.363
741847,7674	1015976.054	27.924	1.372
741847,5684	1015980.049	27.924	1.277
741847.3695	1015984.044	27.526	1.278 1.131
741847.1705	1015988.04	26.856	1.115
741846.9716	1015992.035	26.092	
741846.7726	1015996.03	25.878	1.106
741846.3747	1016004.02	24.566	1.005
741846.1758	1016008.015	24.322	1.113
741845.7778	1016016.005	24.17	1.096
741845.3799	1016023.995	24.444	1.3
741845.1431	1016028.751	24.81	1.107
741844.9062	1016033.507	24.598	1.324
741844.6694	1016038.263	23.194	1.444
741844.4325	1016043.019	22.614	1.308
741844.1957	1016047.776	22.766	1.304
741843.9588	1016052.531	23.254	1.265
741843.722	1016057.287	23.804	1.166
741843.4851	1016062.043	23.986	1.179
741843.2483	1016066.799	23.804	1.236
741843.0114	1016071.555	23.742	1.157
741842.7746	1016076.311	23.224	0.898
741842.5377	1016081.067	23.376	1.041
741842.3009	1016085.823	23.376	1.223
741842.064	1016090.579	23.284	1.288
741841.8271	1016095.336	23.04	1.28
741841.5903	1016100.091	22.828	1.346
741841.3535	1016104.847	23.102	1.183
741841.1166	1016109.603	23.376	1.324
741840.8798	1016114.359	23.682	1.385
741840.6429	1016119.115	23.59	1.468
741840.4061	1016123.871	23.59	1.372
LINE 240 741860.3813	1016124.866	24.292	1.186
741860.6182	1016120.11	24.444	1.218
741860.855	1016115.354		1.172
741861.0919	1016110.598	24.23 23.712	1.277
741861.3287	1016105.842	24.078	1.289
741861.5656	1016101.085	24.17	1.245
741861.8024	1016096.33	24.384	1.328
741862.0392	1016091.574	24.476	1.339
741862.2761	1016086.818	24.292	1.13
741862.513	1016082.062	24.262	0.938
741862.7498	1016077.306	24.322	1.142
741862.9867	1016072.55	24.566	1.337
741863.2235	1016067.794	24.354	1.291
741863.4604	1016063.038	24.414	1.282
741863.6972	1016058.282	24.628	1.453
741863.9341	1016053.525	24.506	1.411
741864.1709	1016048.77	24.292 24.262	1.286
741864.4078	1016044.014	24.292	1.212
741864.6446	1016039.258		1.295
741864.8815	1016034.502	23.926	1.334
741865.1183	1016029.746	23.652	1.255
741865.3552	1016024.99	23.59	1.164
741865.5865	1016020.345	23.742	1.102
741865.8179	1016015 699	24.384	1.381
741866.0492	1016011.054	25.054	1.466
741866.2806	1016006.408	26.398	1.515
741866.5119	1016001.763	29.938	2.1
741866.7432	1015997.117	40.924	5.83
741866.9746	1015992.472	68.97	14.041
741867.2059	1015987.827	169.006	33.676
741867.4372	1015983.182	238.738	33.676
741867.6686	1015978.535	289.428	33.68
741867.9	1015973.89	302.276	33.678
741868.1313	1015969.245	277.1	33.676
741868.3626	1015964.6	246.704	33.676
741868.594	1015959.954	289.948	33.68
741868 8253	1015955.309	301.972	33.678
741869.0567	1015950.663	302.308	33.676
741869.288	1015946.018	302.704	33.673
741869.5194 741869.7507	1015941.372 1015936.727	303.254	33.676
741869.982	1015932.082	286.622 208.832	33.678 33.678
741870.2134	1015927.437	210.938	33.676
741870.4448	1015922.79	195.892	33.678
741870 6761	1015918 145	175 72	33.68
741870 9074	1015913.5	167.51	33.676
741871 1388	1015908 855	185.394	33.678
741871 3701	1015904.209	165.04	33 678
741871 6014	1015899 564	173.31	33.671
741871 8328	1015894.918	154 694	26.641
741872.0642	1015890.273	160 888	30.299
741872.2955	1015885 627	150.024	25.862
741872 5268	1015880 982	89 08	8.02
741872 7582	1015876 337	64 91	4.911
741872.9895	1015871.692	49.682	4 503
741873.2209	1015867.046	35 92	0 183

		Quadrature	in-Phase
Easting	Northing	Response	Response
741873.4522	1015862.4	26.154	-2.011
741873 6835	1015857.755	17.456	-3.006
741873.9149	1015853.11	9.49	-5.953
741874.1462	1015848.465	-5.432	-19.524
741874.3776	1015843.819	-12.97	-18,153
741874.6089	1015839.173	-4.944	-5.324
741874.8403	1015834.528	5.126	1.953
741875.0716	1015829.883	7.294	1.587
741875.3029	1015825.237	10.59	1.001

	SEDA EBS	Sites	
		Quadrature	In-Phase
Easting	Northing	Response	Response
LINE 0 740206.1	1015640.6	19.406	8.492
740205.9552	1015644.764	103.852	7.41
740205.8103 740205.6655	1015648.928 1015653.092	105.408 105.224	8.38 9.959
740205.5207	1015657.257	108.552	8.005
740205.3758	1015661.42	114.074	9.826
740205.231 740205.0862	1015665.585 1015669.749	144.5 158.326	19.737 23.392
740204.9413	1015673.913	197.602	33.612
740204.7965	1015678.077	212.31	33.744
740204.6517 740204.5068	1015682.242 1015686.405	184.876 192.26	32.987 33.744
740204.362	1015690.57	199.158	33.746
740204.2172 740204.0723	1015694.734 1015698.898	239.014 242.34	33.746 33.744
740203.9275	1015703.062	205.78	32.17
740203.7827	1015707.227 1015711.39	179.108 218.414	23.57 33.744
740203.6378 740203.493	1015711.39	251.678	33.744
740203.3482	1015719.719	194.092	33.744
740203.2033 740202.9137	1015723.883 1015732.212	244.904 257.904	33.744 33.744
740202.7688	1015736.375	224.396	33.746
740202.624	1015740.54	234.162	33.742 33.742
740202.466 740202.308	1015745.082 1015749.625	244.294 209.93	28.046
740202.15	1015754.167	185.15	22.304
740201.992 740201.834	1015758.711 1015763.253	198.638 252.9	26.315 33.744
740201.676	1015767.796	239.44	33.744
740201.518	1015772.338	165.496	33.746
740201.202 740201.044	1015781.424 1015785.967	97.87 172.546	1.343 4.97
740200.886	1015790.509	197.114	16.52
740200.728	1015795.052	176.484 135.132	15.577 10.721
740200.57 740200.412	1015799.595 1015804.137	166.596	19.708
740200.254	1015808.68	179.87	20.575
740200.096	1015813.223 1015817.766	200.928 235.626	29.834 33.744
740199.938 740199.78	1015822.308	237.732	32.173
740199.622	1015826.851	250.396	30.823
740199.464 740199.306	1015831.394 1015835.937	234.284 246.49	28.528 33.744
740199.148	1015840.479	203.156	25.744
740198.99	1015845.021	181.182	27.569 23.613
740198.832 740198.674	1015849.565 1015854.107	162.812 158.448	22.609
740198.516	1015858.65	146.332	17.837
740198.358 740198.2	1015863.192 1015867.736	143.218 146.668	15.046 18.58
740198.042	1015872.278	146.088	16.968
740197.884	1015876.821	123.382	11.456
740197.726 740197.568	1015881.363 1015885.907	102.294 96.192	7.726 6.504
740197.41	1015890.449	92.956	6.734
740197.252 740197.094	1015894.991 1015899.534	108.428 122.528	11.675 15.09
740196.936	1015904.077	130.34	7.544
740196.778	1015908.62	117.432	7.127
740196.62 740196.462	1015913.162 1015917.705	129.486 121.094	12.094 13.486
740196.304	1015922.248	120.85	12.209
740196.146 740195.988	1015926.791 1015931.333	130.004 125.854	15.702 13.925
740195.83	1015935.876	113.708	12.715
740195.672	1015940.419	101.47	11.373
740195.341 740195.1754	1015949.937 1015954.696	93.14 92.194	7.899 8.288
740195.0099	1015959.455	80.474	6.649
740194.8444	1015964.214	77.728 82.856	5.901 7.656
740194.6789 740194.5134	1015968.972 1015973.732	80.658	7.202
740194.3478	1015978.491	71.656	5.786
740194.1823 740194.0168	1015983.25 1015988.009	66.498 65.978	5.13 5.177
740193.6857	1015997.527	64.698	5.391
740193.5202	1016002.286	64.056	4.876 5.659
740193.3547 740193.1891	1016007.045 1016011.805	71.198 78.124	6.469
740193.0237	1016016.563	82.642	7.055
740192.8581 740192.6926	1016021.322 1016026.081	82.154 83.19	6.842 6.765
740192.3615	1016035.599	82.214	7.364
740192.196	1016040.358	88.074	8.011
LINE 20 740212.1839	1016041.053	47.364	2.094
740212.3495	1016036.294	44.28	1.763
740212.515 740212.6805	1016031.535 1016026.776	39.978 36.346	1.433 1.164
740212.846	1016028.776	35.096	1.122
740213.0116	1016017.258	33.722	0.667
740213.1771 740213.3426	1016012.5 1016007.741	32.41 32.104	0.606 0.749
740213.5081	1016002.981	31.342	0.804
740213.6736 740213.8392	1015998.222 1015993.463	31.036 30 152	0.655 0.415
740213.6392	1015988.704	30.456	0.387
740214.1702	1015983 945	29.998	
740214.3357 740214 5013	1015979.186 1015974 427	29.816 30.242	

	SEDA EBS		
		Quadrature	In-Phase
Easting	Northing	Response	Response
740214 8323	1015964.91	30.03 29.754	0.49 0.417
740214.9978 740215.1633	1015960.15 1015955.391	29.296	0.24
740215.3289	1015950.632	28.87	0.396
740215.4944	1015945.873	28.992	0.4
740215.6599	1015941.114	28.656	0.255
740215.8255	1015936.355	28.594	0.24
740215.991 740216.322	1015931.596 1015922.077	28.594 28.962	0.251 0.209
740216.4876	1015917.318	29.114	0.222
740216.6531	1015912.56	28.84	0.453
740216.8186	1015907.801	28.84	0.422
740216.9841	1015903.042	28.9	0.42 0.474
740217.1496 740217.3152	1015898.283 1015893.524	29.144 29.084	0.474
740217.4807	1015888.765	29.266	0.409
740217.6462	1015884.005	28.87	0.134
740217.8117	1015879.246	28.686	0.135
740217.9773	1015874.487	29.388	0.27 0.235
740218.1428 740218.3083	1015869.728 1015864.97	30.12 30.334	0.251
740218.4738	1015860.211	31.524	0.266
740218.6393	1015855.452	30.944	0.417
740218.8049	1015850.693	29.51	0.262
740218.9704 740219.1359	1015845.933 1015841.174	29.542 29.266	0.071 0.066
740219.1339	1015836.632	28.93	0.011
740219.4519	1015832.089	28.442	0.099
740219.6099	1015827.547	28.076	0.036
740219.7679	1015823.003	27.618	-0.077
740219.9259 740220.0839	1015818.461 1015813.918	27.436 26.856	-0.082 -0.045
740220.0639	1015809.376	26.368	-0.121
740220.5579	1015800.29	26.612	-0.2
740220,7159	1015795.747	26.612	-0.034
740220.8739	1015791.205	26.642	0.121
740221.0319	1015786.662	26.856 27.008	0.174 -0.211
740221.1899 740221.3479	1015782.119 1015777.577	27.07	-0.053
740221.5059	1015773.034	27.282	0.174
740221.6639	1015768.491	27.436	0.056
740221.8219	1015763.948	27.374	0.055 0.075
740221.9799 740222.1379	1015759.406 1015754.863	27.404 27.77	0.18
740222,1379	1015750.32	27.984	0 154
740222.4539	1015745.777	28.046	0.281
740222.6119	1015741.235	28.046	0.248
740222.9595	1015731.241	27.862 28.35	0.615 0.745
740223.1333 740223.3071	1015726.244 1015721.247	28.686	0.319
740223.4809	1015716.25	28.382	0.297
740223.6547	1015711.253	27.618	0.251
740223.8285	1015706.256	27.558 27.984	0.095 0.161
740224.0023 740224.1761	1015701.259 1015696.262	28.046	0.374
740224.3499	1015691.265	27.984	0.374
740224.5237	1015686.268	27.618	0.056
740224.6975	1015681.271	27.984	-0.167
740224.8713	1015676.274 1015671.277	27.71 27.74	-0.069 0.012
740225.0451 740225.2189	1015666.28	27.68	0.051
740225.3927	1015661.283	27.466	-0.152
740225.5665	1015656.286	27.74	-0.145
740225.9141	1015646.292 1015641.295	27.07 26.916	-0.477 -0.275
740226.0879 LINE 40	1013041.233	20.510	4.275
740246.0758	1015641.99	25.33	-0.509
740245.9247	1015646.336	25.36	-0.433
740245.7736	1015650.681	24.72	-0.391 -0.514
740245.6225 740245.4713	1015655.026 1015659.371	24.536 24.048	-0.514 -0.661
740245.3202	1015663.716	24.14	-0.505
740245.169	1015668.062	24.048	-0.676
740245.0179	1015672.407	23.986	-0.705
740244.8668 740244.7157	1015676.752 1015681.097	23.926 23.926	-0.554 -0.67
740244.5645	1015685.442	23.896	-0.716
740244.4134	1015689.787	23.896	-0.639
740244.2623	1015694.133	23.468	-0.507
740244 1111	1015698.478	23.254	-0.758
740243.96 740243.8089	1015702.824 1015707.168	23.406 23.56	-0.81 -0.659
740243.6578	1015711.513	23.438	-0.65
740243.5066	1015715.859	23.438	-0.486
740243.3555	1015720.204	23.346	-0.525
740243.2043 740243.0532	1015724.549 1015728.895	23.102 22.95	-0.681 -0.657
740243.0532 740242.9021	1015728.895	22.584	-0.037 -0.918
740242.5998	1015741.93	21.972	-0.771
740242.4343	1015746.689	21.972	-0.532
740242.2688	1015751.448	22.492 22.522	-0.608 -0.571
740242.1033 740241.9377	1015756.207 1015760.966	22.522	-0.571 -0.551
740241.9377	1015765.726	22.522	-0.667
740241.6067	1015770.484	22.522	-0.942
740241.4412	1015775.243	22.46	-1.052
740241.1101	1015784.761 1015789.52	22.644 22.584	-0.83 -0.859
740240.9446 740240.7791	1015789.52	22.492	-0.863
740240.6135	1015799.038	22 43	-0.784
740240 448	1015803.798	22.278	-0.812
740240.2825	1015808 557	22.278	-0 87

	SEDA EDO	Oites	
		Quadrature	In-Phase
Easting	Northing	Response	Response
740240.117	1015813 316	22.43	-0.791
740239.9515	1015818.074	22.278	-0.617
740239.7859	1015822.833	22.186	-0.744
740239.6204	1015827.592	22.46	-0.633
740239.4549	1015832.351	22.584	-0.518
740239.2894	1015837.11 1015841.87	22.492 22.766	-0.556 -0.681
740239.1238	1015846.629	23.102	-0.406
740238.9583 740238.7928	1015851.388	23.284	-0.424
740238.6273	1015856.147	23.652	-0.297
740238.4617	1015860.906	23.59	-0.327
740238.2962	1015865.665	23.926	-0.519
740238.1307	1015870.423	24.14	-0.569
740237.9652 740237.7997	1015875.182	24.262	-0.49
740237.7997	1015879.942	24.354	-0.433
740237.6341	1015884.701	24.688 25.33	-0.301 -0.266
740237.4686 740237.3031	1015889.46 1015894.219	25.36	-0.395
740237.1375	1015898.978	25.176	-0.589
740236.972	1015903.737	25.238	-0.834
740236.8065	1015908.496	24.994	-0.712
740236.641	1015913.255	24.964	-0.494
740236.4755	1015918.013	24.444	-0.723
740236.3099	1015922.773	24.078	-0.824
740236.1444	1015927.532 1015932.291	24.23 24.444	-0.602 -0.613
740235.9789 7402 <b>3</b> 5.8134	1015937.05	24.476	-0.622
740235.6478	1015941.809	24.476	-0.569
740235.474	1015946,806	24.384	-0.608
740235.3002	1015951.803	24.414	-0.725
740235.1264	1015956.8	24.384	-0.687
740234.9526	1015961.797	24.354	-0.602
740234.7788	1015966.794	24.506	-0.685 -0.657
740234.4312	1015976.788	24.964	
740234.2574 740234.0836	1015981.785 1015986.782	24.932 24.75	-0.639 -0.466
740234.0636	1015991.779	24.75	-0.56
740233.736	1015996.776	24.688	-0.622
740233.5622	1016001.773	24.598	-0.711
740233.3884	1016006.77	24.658	-0.547
740233.2146	1016011.767	24.628	-0.531
740233.0408	1016016.764	25.086	-0.586
740232.867	1016021.761	25.666	-0.523 -0.562
740232.6932	1016026.758 1016031.755	25.818 26.336	-0.369
740232.5194 740232.3456	1016031.753	27.374	-0.121
740232.1718	1016041.749	28.87	0.157
LINE 60			
740252.1598	1016042.444	30.334	-0.45
740252.4758	1016033.358	28.32	-0.448
740252.6337	1016028.816	26.428	-0.457
740252.7918	1016024.273	25.634	-0.474 -0.556
740253.1078	1016015.187	24.75 24.384	-0.927
740253.2658 740253.4238	1016010.645 1016006.102	24.018	-0.874
740253.5818	1016001.56	23.804	-0.78
740253.7398	1015997.016	23.438	-0.916
740253.8978	1015992.474	23.162	-0.61
740254.0557	1015987.932	22.858	-0.791
740254.2138	1015983.389	22.522	-0.946
740254.3717	1015978.846	22.308 21.942	-0.795 -0.711
740254.5298 740254.6877	1015974.303 1015969.761	21.972	-0.876
740254.8458	1015965.218	22.338	-0.951
740255.0037	1015960.675	22.552	-0.889
740255.1618	1015956.132	22.766	-0.621
740255.3198	1015951.59	22.828	-0.845
740255.4778	1015947.047	22.918	-0.887
740255.6358	1015942.504	22.796 22.98	-0.938 -0.69
740255.9518 740256.1097	1015933.419 1015928 877	23.132	-0.655
740256.1057	1015924 333	23.406	-0.711
740256.4257	1015919.791	23.438	-0.9
740256.5838	1015915.248	23.194	-0.63
740256.8998	1015906.162	22.796	-0.839
740257.0577	1015901.62	22.828 22.584	-0.903 -0.874
740257.2158	1015897.077		-0.986
740257.3738 740257.5317	1015892.535 1015887.992	22.278 22.186	-0.878
740257.5517	1015883.449	21.972	-0.927
740257 8477	1015878.907	21.882	-0.352
740258.0058	1015874.364	21.972	-0.424
740258.1637	1015869.821	21.82	-1.082
740258.3218	1015865.278	21.698	-1.225
740258.4797	1015860.736	21.698	-1.089 -1.014
740258.6378 740258.7957	1015856.192 1015851.65	21.668 21.514	-0.955
740258.7957	1015847.107	21,088	-1.01
740259.1118	1015842.565	21.302	-1.045
740259.2773	1015837 806	21.576	-1 071
740259.4428	1015833.046	21.514	-1.054
740259.6083	1015828.287	21.728	-0.771
740259.7739	1015823.528	21.668	-0.731
740259.9394	1015818.769	21.576	-0.905 -0.96
740260.1049	1015814.011 1015809.252	21.636 21.82	-0.96
740260.2704 740260.4359	1015809.252	21.912	-1.122
740260.4339	1015799.734	21.912	-0.929
740260.767	1015794 975	21.912	-0.795
740260.9325	1015790.215	22.156	-0.911
740261.098	1015785 456	22.126	-1 146
740261.2636	1015780 697	22.186	-0 817

	SEDA EBS		
		Quadrature	In-Phase
Easting 740261.4291	Northing 1015775.938	Response 22.216	Response -1.153
740261.4291	1015771.179	22.338	-0.915
740261.7601	1015766.421	22.37	-0.874
740261.9256 740262.0912	1015761.662 1015756.903	22.522 22.552	-1.069 -0.949
740262.2567	1015752.143	22.522	-0.633
740262.4222 740262.5877	1015747.384 1015742.625	22.46 22.43	-0.674 -0.712
740262.7533	1015742.625	22.338	-0.821
740262.9188	1015733.107	22.186	-0.444
740263.0843 740263.2499	1015728.348 1015723.589	22.156 22.216	-0.569 -0.758
740263.4154	1015718.83	22.004	-0.661
740263.5809	1015714.071	21.76 21.942	-0. <b>63</b> 7 <b>-0</b> .6
740263.7464 740263.9119	1015709.312 1015704.553	22.004	-0.885
740264.0775	1015699.794	22.126	-1.085
740264.243 740264.4085	1015695.035 1015690,276	22.248 22.37	-0.736 -0.299
740264.574	1015685.517	22.43	-0.477
740264.7396	1015680.758 1015675.998	22.552 22.614	-0.913 -0.946
740264.9051 740265.0706	1015671.239	22.644	-0.964
740265.2361	1015666,481	22.552	-0.758
740265.4016 740265.5672	1015661.722 1015656.963	22.584 22.888	-1.01 -1,354
740265.7327	1015652.204	23,406	-0.933
740265.8982	1015647.445	23.774	-0.898
740266.0637 LINE 80	1015642.686	24.018	-0.823
740286.0517	1015643.381	23.956	-1.093
740285.9005	1015647.726	23.896	-1.076
740285.7494 740285.5983	1015652.072 1015656.416	23.59 23.53	-1.236 -1.159
740285.4471	1015660.761	23.346	-1.126
740285.296 740285.1449	1015665.107 1015669.452	23.102 22.918	-1,458 -1, <b>3</b> 61
740285.1449	1015673.797	22.674	-1.216
740284.8426	1015678.143	22.278	-1.111
740284.6915 740284.5404	1015682.487 1015686.833	21.942 21.79	-1.016 -1.091
740284.3892	1015691.178	21.698	-1.155
740284.2381	1015695.523	21.82 21.728	-1.148 -1.065
740284.087 740283.9358	1015699.869 1015704.214	21.726	-1.31
740283.7847	1015708.558	21.728	-1.251
740283.6336 740283.4824	1015712.904 1015717.249	22.094 22.308	-1.153 -1.15
740283.3313	1015721.595	22.004	-1.282
740283.029	1015730.285	21.698	-1.422
740282.8779 740282.5757	1015734.63 1015743.32	21.484 20.996	-1.076 -1.181
740282.4245	1015747.666	20.996	-1.084
740282.2734	1015752.011 1015756.355	21.026 21.454	-1.01 -1.19
740282.1223 740281.9711	1015750.701	21.484	-1.146
740281.82	1015765.046	21.606	-1.313
740281.6689 740281.5177	1015769.392 1015773.737	21.302 21.21	-1.063 -0.964
740281.3666	1015778.082	21.148	-1.22
740281.2155	1015782.427 1015786.772	20.996 20.782	-1.379 -1.335
740281.0644 740280.9132	1015791.117	20.66	-1.249
740280.7621	1015795.463	20.6	-1.198
740280.611 740280.3087	1015799,808 1015808,498	20.69 20.538	-1.326 -1.245
740280.3007	1015812 843	20.69	-1.157
740280.0064	1015817.189	20.722	-1.096
740279.8553 740279.7042	1015821.534 1015825.879	21.026 21.118	-1.021 -1.047
740279.553	1015830.225	21.24	-1.056
740279.4019 740279.2508	1015834.569 1015838.915	21 088 20.996	-1.01 -1.172
740279.2508	1015843.26	21.058	-1.028
740278.9341	1015848.019	21.148	-1.172
740278.7686 740278.6031	1015852.778 1015857.537	21.332 21.362	-1.051 <b>-0</b> .975
740278.4376	1015862.296	21.24	-0.898
740278.272	1015867.056	21.21	-0.931 -0.994
740278.1065 740277.941	1015871.814 1015876.573	21.148 21.118	-0.85
740277.7755	1015881.332	21.118	-0.714
740277 61 740277 4444	1015886.091 1015890.85	21.302 21.728	-0.758 -0.791
740277.2789	1015895.609	22.064	-0.768
740277.1134	1015900.368	22.338	-0.749
740276.9478 740276.7823	1015905.128 1015909.887	22.584 22.706	-0.839 -0.887
740276.6168	1015914.646	22.766	-0.903
740276.4513	1015919.404 1015924.163	23.01 22.95	-0.834 -0.817
740276.2858 740276.1202	1015924.103	22.796	-1.08
740275.9547	1015933.681	22.766	-1.262
740275.7892 740275.6237	1015938 44 1015943.2	22.706 22.492	-1.146 -1.166
740275.4581	1015947.959	22.522	-1.03
740275.2926	1015952.718 1015957 477	22.4 22.156	-0.915 -0.962
740275.1271 740274.9616	1015957 477	21 82	-1 036
740274 796	1015966.995	21.668	-1.113
740274 6305 740274 2995	1015971 753 1015981 271	21 424 21 484	-1.12 -0.619
1 4021 4.2333	.0.0001271	21 404	5013

	SEDA EBS	Sites	
		Quadrature	In-Phase
Easting	Northing	Response	Response
740274.134 740273.9684	1015986.031 1015990.79	21.76 21.972	-0.848 -1.381
740273.8029	1015995.549	21.76	-1.155
740273.4719	1016005.067	21.942 22.064	-0.994
740273.3063 740273.1408	1016009.826 1016014.585	22.064	-0.99 -0.891
740272.9753	1016019.343	22.37	-1.032
740272.8098	1016024.103	22.766	-1.028 -0.775
740272.6443 740272.4787	1016028.862 1016033.621	23.04 23.102	-0.788
740272.3132	1016038.38	23.468	-0.758
740272.1477 LINE 100	1016043.139	24.994	-0.705
740292.1356	1016043.834	26.092	-0.632
740292.2936	1016039.292	25.878	-0.674
740292.4516 740292.6096	1016034.749 1016030.207	25.176 23.926	-0.716 -0.8 <b>26</b>
740292.7676	1016025.663	23.406	-1.051
740292.9256	1016021.121	23.162	-1.177
740293.0836 740293.2416	1016016.578 1016012.035	22.828 23.01	-1.201 -0.968
740293.3996	1016007.492	22.614	-1.049
740293.5576	1016002.95	22.156	-1.218 -1.306
740293.8736 740294.0316	1015993.864 1015989.322	22.126 22.064	-1.19
740294.1896	1015984.779	22.094	-1.062
740294.3476	1015980.237	21.79 21.972	-1.177 -1.24
740294.5056 740294.6636	1015975.693 1015971.151	22.156	-1.367
740294.8216	1015966.608	22.338	-1.403
740294.9796	1015962.066	22.248 22.094	-0.905 -1.034
740295.2956 740295.4536	1015952.98 1015948.437	21.85	-1.326
740295.6116	1015943.895	21.576	-1.074
740295.7696	1015939.352	21.606	-1.113 -1.223
740295.9276 740296.0856	1015934.809 1015930.267	21.698 22.004	-1.109
740296.2436	1015925.724	22.43	-1.133
740296.4016 740296.5596	1015921.181 1015916.638	22.46 22.644	-1.394 -1.306
740296.7176	1015912.096	22.46	-1.08
740296.8756	1015907.553	22.094	-1.273
740297.0336 740297.1916	1015903.01 1015898.467	21.942 22.278	-1.161 -1.124
740297.3496	1015893.925	22.004	-1.1
740297.5076	1015889.383	21.76	-1.37
740297.6656 740297.8236	1015884.839 1015880.297	21.484 21.302	-1.299 -1.21
740297.9816	1015875.754	21.27	-1.139
740298.1396	1015871.212	20.904	-1.306
740298.2976 740298.4556	1015866.668 1015862.126	20.69 20.568	-1.232 -1.139
740298.6136	1015857.583	20.416	-1.128
740298.7716	1015853.041	20.478	-1.198
740298.9296 740299.0876	1015848.497 1015843.955	20.446 20.478	-1.192 -1.288
740299.2531	1015839.196	20.782	-1.045
740299.4186 740299.5842	1015834.437 1015829.678	20.782 20.63	-0.999 -1.01
740299.7497	1015824.919	20.936	-1.13
740299.9152	1015820.16 1015815.401	21.27 21.24	-1.148 -1.058
740300.0807 740300.2462	1015810.642	21.546	-1.407
740300.4118	1015805.883	21.76	-1.098
740300.5773	1015801.124 1015796.365	22.004 22.37	-0.852 -0.808
740300.7428 740300.9083	1015791.606	22.156	-0.823
740301.0739	1015786.847	22.46	-1.144
740301.2394 740301.4049	1015782.088 1015777.328	22.888 22.766	-1.069 -0.949
740301.5704	1015772.569	22.644	-0.709
740301.7359	1015767.811	22.584	-0.668
740301.9015 740302.067	1015763.052 1015758.293	22.828 22.95	-0.962 -1.508
740302.2325	1015753.534	22.98	-1.176
740302.398	1015748.775	22.98	-1.262
740302.5636 740302.8946	1015744.016 1015734.497	22.888 22.552	-1.096 -1.093
740303.0602	1015729.738	22.46	-0.977
740303.2257	1015724.979 1015720.22	22.278 22.126	-1.199 -1.267
740303.3912 740303.5567	1015720.22	21.85	-1.227
740303.7222	1015710.703	21.82	-1.08
740303,8878 740304,0533	1015705.944 1015701.184	22.126 22.248	-1.001 -1.027
740304.0333	1015696.425	22.126	-1.115
740304.3843	1015691 666	22.126	-1.115
740304.5499 740304.7154	1015686.907 1015682.148	22.034 22.094	-1.196 -1.19
740304.8809	1015677.389	22.308	-1.26
740305.0464	1015672.63	22.522	-1.174
740305.2119 740305.3775	1015667 872 1015663 112	22.644 22.706	-1.152 -1.017
740305.7085	1015653.594	22.766	-1.082
740305.874	1015648.835	22.98	-1.424
740306.0396 LINE 120	1015644.076	23.04	-1.379
740326.0275	1015644.771	24.414	-1.28
740325.8884 740325 7494	1015648.769 1015652.766	24.354 24 048	-1.256 -1.225
740325.6104	1015656.764	23.254	-1.234
740325 4713	1015660 762	23 04	-1 212

	SEDA EBS		
		Quadrature	In-Phase
Easting 740325.3323	Northing 1015664.759	Response 23.102	Response -1,236
740325.3323	1015668 757	23.224	-1.109
740325.0542	1015672.754	23.132	-1.15
740324.9152	1015676.752	22.98 22.828	-1.24 -1.203
740324.7761 740324.6371	1015680.749 1015684.747	22.918	-1.196
740324.498	1015688.745	22.888	-1.19
740324.359	1015692.742	22.736	-1.073
740324.22 740324.0809	1015696.74 1015700.737	22.584 22.522	-1.005 -1.03
740323.9419	1015704.735	22.766	-1.188
740323.6638	1015712.73	22.552	-1.242
740323.5248	1015716.728 1015720.725	22.674 22.46	-1.236 -1.247
740323.3857 740323.2467	1015724.723	22.4	-1.177
740323.1076	1015728.72	22.522	-1.098
740322.9686	1015732.718	22.796 22.858	-1.1 <del>6</del> 6 -1.17
740322.8296 740322.6905	1015736.716 1015740.713	22,888	-1.227
740322.5515	1015744.711	22.95	-1.289
740322.4066	1015748.875 1015753.039	23.132 23.224	-1.302 -1.238
740322.2618 740322.117	1015757.203	23.162	-1.21
740321.9721	1015761.368	23.316	-1.313
740321.8273	1015765.531	23.284	-1.251 -1.251
740321.6825 740321.3928	1015769.696 1015778.024	23.162 22.338	-1.321
740321.248	1015782.188	21.912	-1.359
740321.1031	1015786.353	21.698 21.514	-1.295
740320.9583 740320.8135	1015790.516 1015794.681	21.576	-1.236 -1.168
740320.6686	1015798.845	21.484	-1.06
740320.5238	1015803.009	21.332	-1.141
740320.379 740320.2341	1015807.173 1015811.337	21.302 21.362	-1.179 -1.253
740320.2341	1015815.501	21.484	-1.282
740319.9445	1015819.665	21.546	-1.111
740319.7996 740319.6548	1015823.83 1015827.993	21.76 21.972	-1.172 -1.223
740319.6546	1015832.158	22.004	-1.209
740319.3651	1015836.322	22.004	-1.214
740319.2203	1015840.486	22.004	-1.277 -1.159
740319.0755 740318.9244	1015844.65 1015848.996	22.216 22.37	-0.946
740318.7732	1015853.341	22.37	-0.975
740318.6221	1015857.685	22.156	-1.089
740318.471 740318.3198	1015862.031 1015866.376	22.064 22.186	-1.074 -1.159
740318,1687	1015870.722	22.308	-1.166
740318.0176	1015875.067	22.308	-1.24
740317.8664 740317.7153	1015879.412 1015883.757	22.094 22.034	-1.13 -1.196
740317.7133	1015888.102	22.216	-1.186
740317.4131	1015892.447	22.522	-1.139
740317.2619	1015896.793 1015901.138	22.614 22.828	-1.06 -0.986
740317.1108 740316.9597	1015905.484	22.766	-1.115
740316,8086	1015909.828	22.95	-1.135
740316.6574	1015914,173 1015918,519	23.01 23.162	-1.194 -1.183
740316.5063 740316.3551	1015922.864	23.346	-1.188
740316.204	1015927.209	23.04	-1.126
740316.0529	1015931.555	22.95 23.01	-1.223 -1.209
740315.9018 740315.7506	1015935.899 1015940.245	22.95	-1.19
740315.5995	1015944.59	22.888	-1.209
740315.4415	1015949.132 1015953.675	23.102 23.194	-1.243 -1.19
740315.2835 740315.1255	1015958.218	23.284	-1.223
740314.9675	1015962.761	23.346	-1.238
740314.8095	1015967.303 1015971.846	23.284 23.162	-1.146 -1.164
740314.6515 740314.4935	1015971.040	22.98	-1.194
740314.3355	1015980.932	23.01	-1.186
740314.1775	1015985.474	23.316	-1.12
740314.0195 740313.8615	1015990.017 1015994.56	23.162 22.98	-1.177 -1.19
740313.7035	1015999 102	23.102	-1.183
740313.5455	1016003.645	22.918	-1.273
740313.3875 740313.2295	1016008.187 1016012.731	22.766 22.888	-1.33 -1.192
740313.0715	1016017.273	23.04	-1.176
740312.9135	1016021.816	23.224	-1.159
740312.7555 740312.4395	1016026.358 1016035.444	23.346 23.56	-1.107 -1.141
740312.4395	1016039.987	23.804	-1.019
740312.1235	1016044.529	24.262	-0.863
LINE 140 740332,1114	1016045 225	25.024	-0.784
740332,1114	1016040 879	24.78	-0 7
740332.4137	1016036 534	24 078	-0.872
740332.5648 740332.7159	1016032 19 1016027.844	23.56 23.498	-0.975 -1.076
740332.7159	1016027.844	23.102	-1.221
740333.0182	1016019.153	23.102	-1.19
740333.1693	1016014.808 1016010.463	23.162 23.194	-1 172 -1.212
740333.3205 740333.4716	1016006.118	23.102	-1.212
740333.6227	1016001 773 1015997 428	23 01	-1.185
740333.7738	1015997.428 1015993.082	23.04	-1.22 -1.328
740333.925 740334.0761	1015993 082	23 162 23 224	-1.328 -1.271

	SEDA EBS		
		Quadrature	in-Phase
Easting	Northing	Response 23,132	Response
740334.2273 740334.3784	1015984.391 1015980.047	23.132	-1 363 -1 363
740334.5295	1015975.702	23.376	-1.37
740334.6806	1015971.356	23.56	-1.253
740334.8318	1015967 011	23.62 23.468	-1.264 -1.376
740334.9829 740335.134	1015962.666 1015958.32	23.468	-1.398
740335.2851	1015953.976	23.406	-1.328
740335.4363	1015949.63	23.682	-1.304
740335.5874 740335.7385	1015945.285 1015940.94	23.468 23.284	-1.359 -1.284
740335.8897	1015936.594	23.406	-1.232
740336.0408	1015932.25	23,468	-1.311
740336.1919	1015927.905 1015923.559	23.682 23.742	-1.293 -1.352
740336.3431 740336.4942	1015919.214	23.652	-1.315
740336.6453	1015914.868	23.04	-1.357
740336.9476	1015906.179	22.828	-1.418 -1.302
740337.0987 740337.2498	1015901.833 1015897.488	22.736 22.706	-1.401
740337.401	1015893.143	22,766	-1.493
740337.5521	1015888.797	22.552	-1.442
740337.7032 740337.8544	1015884.452 1015880.108	22.4 22.736	-1.299 -1.273
740338.0055	1015875.762	22.766	-1.341
740338.1566	1015871.417	22.888	-1.359
740338.3078 740338.4589	1015867.071 1015862.726	22.766 22.552	-1.381 -1.352
740338.61	1015858.381	22.522	-1.249
740338.7611	1015854.036	22.126	-1.255
740338.9123	1015849.691	21.882	-1.322 -1.337
740339.0634 740339.2289	1015845.346 1015840.586	21.942 21.882	-1.337
740339.3945	1015835.827	22.004	-1.13
740339.56	1015831.068	21.882	-1.198
740339.7255 740339.891	1015826.309 1015821.55	21.942 21.942	-1.334 -1.508
740340.0565	1015816.792	22.126	-1.357
740340.2221	1015812.033	22.37	-1.142
740340.3876 740340.5531	1015807.274 1015802.514	22.614 22.766	-1.199 -1.324
740340.7186	1015797.755	22.674	-1.324
740340.8842	1015792,996	22,766	-1.282
740341.0497	1015788.237 1015783.478	22.796 22.736	-1.293 -1.335
740341.2152 740341.3807	1015783.478	22.796	-1.33
740341.5463	1015773.96	23.316	-1.387
740341.7118	1015769.202	23.284	-1.265
740341.8773 740342.0428	1015764.442 1015759.683	23.316 23.284	-1.326 -1.341
740342.2083	1015754.924	23.224	-1.431
740342.3739	1015750.165	22.98	-1.433
740342.5394 740342.6905	1015745.406 1015741.061	22.828 22.552	-1.306 -1.367
740342.8417	1015736.715	22.796	-1.363
740342.9928	1015732.371	22.674	-1.335
740343.1439	1015728.025 1015723.68	22.796 22.796	-1.124 -1.282
740343.295 740343.4462	1015719.335	22.644	-1.166
740343.5973	1015714.989	22.614	-1.282
740343.7485	1015710.644	22.918 22.706	-1.332 -1.326
740343.8996 740344.0507	1015706.3 1015701.954	22.492	-1.26
740344,2018	1015697.609	22.46	-1.221
740344.353	1015693.263	22.522	-1.286 -1.236
740344.5041 740344.6552	1015688.918 1015684.573	22.674 22.338	-1.361
740344.9575	1015675.883	22.492	-1 319
740345.1086	1015671.538	22.614	-1.387
740345.2597 740345.4109	1015667 192 1015662.847	22.766 22.766	-1.306 -1.291
740345.562	1015658.502	22.796	-1.135
740345.7131	1015654.157	22.98	-1.076 -1.107
740345.8643 740346.0154	1015649.812 1015645.466	23.072 23.072	-1.107 -1.299
LINE 160			
740366.0033	1015646.162	23.864	-1.232
740365.8585 740365.7137	1015650.326 1015654.49	23.834 23.59	-1.238 -1.255
740365.5688	1015658.654	23.59	-1.242
740365.424	1015662.819	23.346	-1 225
740365.2792 740364.9895	1015666.982 1015675.311	22.95 22.522	-1.356 -1.245
740364.8447	1015679,474	22.338	-1.214
740364.6998	1015683.639	22.308	-1 291
740364.555	1015687.803 1015691.967	22.522 22.584	-1.321 -1.141
740364.4102 740364.2653	1015696.131	22.46	-1.234
740364.1205	1015700.296	22.248	-1.348
740363.9757	1015704.459	22.186 22.156	-1.425 -1.477
740363.8308 740363.5412	1015708.624 1015716.952	22.150	-1.477
740363.3963	1015721.116	22.522	-1.644
740363.2515	1015725.281	22.736	-1 517
740363.1067 740362.9618	1015729.444 1015733.609	22.766 22.95	-1 335 -1,374
740362.9616	1015737.773	22.584	-1.464
740362.5273	1015746.101	22.522	-1.515
740362.3762 740362.225	1015750 447 1015754 792	22.614 22.492	-1.449 -1.361
740362.223	1015759 136	22.278	-1.326
740361.9228	1015763 482	22 46	-1 427

	SEDA EBS	Sites	
		Quadrature	In-Phase
Easting	Northing	Response	Response
740361.7717	1015767.827	22.492	-1.477
740361.4694 740361.3183	1015776.518 1015780.863	22.034 21.606	-1.574 -1.471
740361.1672	1015785.208	21.576	-1.433
740361.016	1015789.553	21.546	-1.442
740360.8649	1015793.898	21.332 21.546	-1.488 -1.495
740360.7137 740360.5626	1015798.244 1015802.589	21.606	-1.495
740360.1092	1015815.624	21.606	-1.565
740359.9581	1015819.969	21.576	-1.537
740359.807 740359.6558	1015824.315 1015828.66	21.76 21.85	-1.447 -1.585
740359.5047	1015833.006	22.004	-1.576
740359.3536	1015837 35	22.004	-1.479
740359.0513 740358.9002	1015846.041 1015850.386	21.942 22.4	-1.482 -1.622
740358.749	1015854.731	22.644	-1.519
740358.5979	1015859.076	22.736	-1. <b>46</b> 8
740358.4468	1015863.421 1015867.767	22.584 22.37	-1.447 -1.526
740358.2957 740358.1445	1015872.112	22.4	-1.525
740357.9934	1015876.457	22.644	-1.578
740357.8423	1015880.803	22.552	-1.526 -1.552
740357.6912 740357.54	1015885.147 1015889.492	22.552 22.614	-1.515
740357.3889	1015893.838	22.644	-1.504
740357.2378	1015898.183	22.614	-1.631
740357.0866 740356.9355	1015902.529 1015906.874	22.522 22.492	-1.732 -2.127
740356,7844	1015911.218	22.584	-1.719
740356.6332	1015915.564	22.674	-1.565
740356.4821	1015919.909 1015924.254	22.736 22.828	-1.69 -1.673
740356.331 740356.1798	1015924.254	22.736	-1.495
740355.8776	1015937.29	22,492	-1.572
740355.7265	1015941.635	22.278	-1.526
740355.5753 740355.4242	1015945.98 1015950.326	22.584 22.918	-1.598 -1.558
740355.2731	1015954.671	22.828	-1.561
740355.1219	1015959.015	22.706	-1.565
740354.9708 740354.8197	1015963.361 1015967.706	22.736 22.4	-1.598 -1.532
740354.6685	1015972.052	22.338	-1.572
740354.5174	1015976.397	22.278	-1.591
740354.3663	1015980.742 1015985.087	22.37 22.644	-1.534 -1.521
740354.2152 740354.064	1015989.432	22.46	-1.605
740353.6106	1016002.468	22.674	-1.486
740353.4595 740353.3084	1016006.814 1016011.158	22.736 22.828	-1.482 -1.517
740353.3064	1016015.503	22.796	-1.42
740353.0061	1016019.849	22.796	-1.344
740352.855	1016024.194 1016028.539	22.706 22.858	-1.501 -1.471
740352.7038 740352.5527	1016032.885	22.828	-1.381
740352.4016	1016037.229	22.98	-1.328
740352.2505	1016041.574 1016045.92	22.918 23.498	-1.416 -1.3
740352.0993 LINE 180	1010045.92	23.430	
740372.0872	1016046 615	25.208	-1.229
740372.2384	1016042.27 1016037.924	24.872	-1.258 -1.245
740372.3895 740372.5406	1016037.924	24.108 23.62	-1.405
740372.6918	1016029.235	23.56	-1.447
740372.8429	1016024.889	23.254	-1.387
740372.994 740373.1452	1016020.544 1016016.198	22.828 22.552	-1.396 -1.462
740373.2963	1016011.853	22.37	-1.556
740373.4474	1016007.509	22.126	-1.664
740373.5985 740373.9008	1016003.163 1015994.473	22.308 22.248	-1.591 -1.519
740373.9008	1015990.127	22.43	-1.442
740374 2031	1015985.782	22.46	-1.493
740374 3542 740374 5053	1015981.437 1015977.092	22.43 22.37	-1 653 -1.624
740374.6565	1015972.747	22.278	-1.528
740374.8076	1015968.401	22.492	-1.556
740374 9587	1015964.056 1015959.711	22.43 22.584	-1 471 -1.615
740375.1099 740375.261	1015955.366	22.796	-1.701
740375.4121	1015951.021	22,644	-1.694
740375.5632	1015946.675	22.614	-1.741 -1.701
740375 7081 740375 8529	1015942.511 1015938.348	22.552 22.522	-1.697
740375 9977	1015934 183	22.278	-1.692
740376.1426	1015930.019 1015925.855	22.248 22.46	-1.688 -1.714
740376.2874 740376.4322	1015925.855	22.338	-1.683
740376 5771	1015917 526	22.46	-1.548
740376 7219	1015913 363	22.248	-1.635 -1.528
740376.8667 740377 0116	1015909 198 1015905 034	22.216 22.186	-1.528 -1.488
740377 1564	1015900 87	22.126	-1.582
740377 1564 740377 3012	1015896.706	22.308	-1 635
740377 4461 740377 5909	1015892.541 1015888.378	22.522 22.552	-1 644 -1.62
740377.7357	1015884 213	22,156	-1.73
740377 8806	1015880 049	22.216	-1.716
740378.0254 740378.1702	1015875.885 1015871.721	22.46 22.584	-1.679 -1.683
740378.1702	1015867 556	22 492	-1 633
740378.4599	1015863 393	22 644	-1 681

	SEDA EDS SILES				
		Quadrature	in-Phase		
Easting	Northing	Response	Response		
740378.6047	1015859.228	22.522 22.216	-1.712 -1.64		
740378.7496 740379.0392	1015855.064 1015846.736	22.004	-1.602		
740379.0392	1015842.391	22.248	-1.618		
740379.3415	1015838.045	22.338	-1.616		
740379.4926	1015833.701	22.492	-1.776		
740379.6437	1015829.355	22.156 22.278	-1.675		
740379,7949 740379,946	1015825.01 1015820.665	22.278	-1,648 -1,666		
740379.940	1015816.319	22.004	-1.596		
740380.2483	1015811.974	22.216	-1.554		
740380.3994	1015807.63	22.216	-1.62		
740380.5505	1015803.284	22.186	-1.622		
740380.7017	1015798.939 1015794.593	22.216 22.308	-1.644 -1.624		
740380.8528 740381.0039	1015790.248	22.46	-1.583		
740381.1551	1015785.903	22.614	-1.931		
740381.3062	1015781.558	22.614	-1.907		
740381.4573	1015777.213	22.46	-1.69		
740381.6084	1015772.868 1015768.522	22.552 22.706	-1.62 <del>9</del> -1.708		
740381.7596 740381.9107	1015764.177	23.01	-1.629		
740382.0619	1015759.831	23.376	-1.596		
740382.213	1015755.487	23.162	-1.668		
740382.3641	1015751.142	23.102	-1.673		
740382.5152	1015746.796 1015742.254	23.132 22.95	-1.657 -1.56		
740382.6732 740382.8312	1015742.234	22.736	-1.554		
740382.9892	1015733.169	22.888	-1.679		
740383.1472	1015728.625	22.796	<b>-1.646</b>		
740383.3052	1015724.083	22.706	-1.694 -1.653		
740383.4632	1015719.54 1015714.998	22.552 22.584	-1.653 -1.705		
740383.6212 740383.7792	1015714.996	22.308	-1.657		
740383.7792	1015705.912	22.004	-1.547		
740384.0952	1015701.369	22,156	-1.572		
740384.2532	1015696.827	22.278	-1.572		
740384.4112	1015692.284	21.912	-1.738 -1.683		
740384.5692 740384.7272	1015687.741 1015683.199	21.576 21.668	-1.552		
740384.8852	1015678.656	21.85	-1.436		
740385.0432	1015674.113	22.064	-1.512		
740385.2012	1015669.57	22.216	-1.534		
740385.3592	1015665.028	22.308 22.4	-1.519 -1.563		
740385.5172 740385.6752	1015660.485 1015655.942	22.216	-1,451		
740385.8332	1015651.399	22.064	-1.464		
740385.9912	1015646.857	22.46	-1.534		
LINE 200			4.500		
740405.9791	1015647.552 1015651.55	22.796 22.828	-1.532 -1.526		
740405.8401 740405.7011	1015655.547	22.674	-1.582		
740405.562	1015659.545	22.706	-1.501		
740405.423	1015663.542	22.552	-1.398		
740405.2839	1015667.54	22.186	-1.368		
740405.1449	1015671.537 1015675.535	21.79 21.882	-1,486 -1,536		
740405.0059			-1.447		
740404.8668	1015679.533	22.094 21.942			
740404.7278	1015683.53		-1.442		
740404.5887	1015687.528	21.942	-1 532		
740404.4497	1015691.525	21.972	-1.526		
740404.3107	1015695.523	21.728	-1.503		
740404.1716	1015699.521	21.79	-1 541		
740404.0326	1015703.518	21.76	-1 488		
740403.7545	1015711.513	21.912	-1.602		
740403.6155	1015715.511	21.912	-1.651		
740403 4764	1015719.508	21.882	-1 585		
740403.3374	1015723.506	21.912	-1.639		
740403.1983	1015727.504	22.004	-1.692		
740403.0593	1015731.501	21.972	-1.64		
740402.9203	1015735.499	22.064	-1.523		
	1015739.496	22.094	-1 582		
740402.7812	1015743.494	21.942	-1.627		
740402.6422					
740402.5031	1015747.492	22.064	-1.626		
740402.3583	1015751.656	22.338	-1.675		
740402.2135	1015755.82	22.552	-1.521		
740402.0686	1015759.984	22.584	-1.574		
740401 9238	1015764 148	22.644	-1 515		
740401.6341	1015772.476	22.156	-1 642		
740401 4893	1015776.641	21.882	-1.6		
740401.3445	1015780.804	22.156	-1.537		
740401.1996	1015784 969	22 46	-1.616		
740401.0548	1015789 133	22.43	-1.743		
740400.91	1015793.297	22.308	-1.642		
740400 7651	1015797 461	21 85	-1.723		
740400 6203	1015801.626	22.034	-1 729		
740400 6203	1015805.789	22.278	-1.78		
	1015809 954	22.278	-1 721		
740400.3306		22.306	-1 721 -1 585		
740400.1858	1015814.118				
740400 041	1015818.282	21 79			
740399 8961	1015822 446	21 698	-1 605		

Site: SEAD-123F SEDA EBS Sites

		Quadrature	In-Phase
Easting	Northin	g Response	Response
740399.75	101582	5.611 21.698	-1.646
740399.46	101583	4.939 21.728	-1.732
740399.31	68 1015839	9.103 21.606	-1.591
740399.1	72 1015843	3.267 21.514	-1.593
740399.02	71 101584	7.431 21.636	-1.596
740398.8	76 101585	1.777 21.79	-1.558
740398.72	49 101585	5.122 21.728	-1.583
740398.57	38 101586	0.466 21.882	-1.681
740398.42	26 101586	4.812 21.942	-1.604
740398.27	15 1015869	9.157 21.76	-1.536
740398.12	04 101587	3.502 21.728	-1.539
740397.96	92 101587	7.848 21.698	-1.46
740397.81	81 101588	2.193 21.576	-1.547
740397.6	67 101588	5.537 21.606	-1.633
740397.21	36 1015899	9.574 21.82	-1.604
740397.06	24 101590	3.919 21.942	-1.683
740396.91	13 101590	8.264 21.85	-1.734
740396.76	02 101591	2.609 21.302	-1.556
740396.60	91 101591	5.954 21.302	-1.481
740396.45	79 101592	1.299 21.392	-1.637
740396.30	68 101592	5.645 21.454	-1.653
740396.15	57 101593	29.99 21.606	-1.462
740396.00	45 101593	4.336 21.79	-1.56
740395.85	34 101593	38.68 21.82	-1.582
740395.70	23 101594	3.025 21.79	-1.57
740395.55		7.371 21.668	-1.556
740395.40		1,535 21.636	-1.605
740395.26		5.699 21.76	-1.526
740394.97		4.028 21.85	-1.576
740394.8		3.191 21.972	-1.58
740394.68		2.356 21.942	-1,526
740394.53			-1.611
740394.39			-1.653
740394.24		4.848 21.79	-1.539
740394.10		9.013 21.76	-1.547
740393.9		3.176 21.698	-1.598
740393.66		1.505 21.698	-1.648
740393.52			-1.589
740393.37		9.833 21.912	-1.582
740393.23		3.997 22.034	-1.532
740393.0			-1.602
740392.94		2.325 22.766	-1.585
740392.79			-1.462
740392.65			-1.491
740392.50			-1.396
740392.36			-1.188
740392			-1.12

# APPENDIX E. Chemical Analyses Data Qualifiers and QC Samples

### **Laboratory Qualifiers for Chemical Data**

### (not all qualifiers apply)

# Organics Qualifiers (GC/HPLC)

- U Indicates compound was analyzed for but not detected above the reporting limits
- J Indicates an estimated value. This flag is used when the result is less than he reporting limit, but greater than or equal to one half the reporting limit.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 25.0% difference for detected concentrations between the two analytical columns. The lower of the two values is reported on the Form I and flagged with a P.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag applies when the analyte is found in the associated method blank as well as in the sample. It indicates a possible/probable blank contamination and warns the data user to take appropriate action. On the samples get a B flag. The method blank does not.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. This flag alerts the data users that any discrepancies between the concentrations reported for the dilutions may be due to dilution of the sample extract. It additionally indicates that spike recoveries may have been diluted below quantifiable levels.
- E This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of calibration range, the extract shall be diluted and re-analyzed.
- Y Laboratory-defined flag for semivolatile reporting. Qantitation of benzo(b/k)fluoranthene is based on the combined instrument response of the unresolved isomer peaks. The combined response has been quantified as benzo(b)fluoranthene.
- Z The reported result is based on the combined response from coeluting compounds.

### Organics Qualifiers (GC/HPLC)

- A The reported Tentatively Identified Compound (TIC) is a suspected aldol-condensate product.
- B The reported analyte was detected in the associated method blank as well as the sample.
- D Compound is identified in an analysis which occurred at a dilution.
- E Compound quantitation is above the instrument's calibration range for this analysis.
- J Indicates an estimated quantitation value below reporting limit.
- U Compound was analyzed for but not detected.
- X The reported compound is a suspected laboratory contaminant.
- Z The reported results is based on the combined responses from coeluting compounds.

### Metals Qualifiers

- U Entered if the analyte was analyzed for but not detected.
- N Matrix spike sample recovery not within control limits.
- B Entered if the reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E (ICP) The reported value is estimated because of the presence of interference.
- * Duplicate analysis not within the control limits.
- M Duplicate injection precision not met.
- S The reported value was determined by the Method of Standard Additions.
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample concentration is less than 50% of spike concentration.
- I Correlation coefficient for the MSA is less than 0.995.

### SENECA EBS QC SAMPLES VOLATILES

			***	E TILLO	
SITE: LOC ID: SAMP ID: QC CODE:		EBS-SITE SITE EB003 TB	EBS-SITE SITE EB019 TB	SEAD-123B SS123B-1 EB017 RB	SEAD-123D TP123D-1 EB002 RB
SAMP. DETH TOP:		0	0	0	0
SAMP. DEPTH BOT:		0	0	0	0
MATRIX:		GROUNDW	GROUNDW	GROUNDW	GROUNDW
SAMP. DATE:		2-Mar-98	2-Mar-98	9-Mar-98	5-Mar-98
PARAMETER	UNIT	VALUE Q	VALUE Q	VALUE Q	VALUE Q
1,1,1-Trichloroethane	UG/L	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	UG/L	10 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	10 U	10 U	10 U	10 U
1,1-Dichloroethene	UG/L	10 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	10 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	UG/L	10 U	10 U	10 U	10 U
1,2-Dichloropropane	UG/L	10 U	10 U	10 U	10 U
Acetone	UG/L	10 U	10 U	10 U	10 U
Benzene	UG/L	10 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	10 U	10 U	10 U	10 U
Bromoform	UG/L	10 U	10 U	10 U	10 U
Carbon disulfide	UG/L	10 U	10 U	10 U	10 U
Carbon tetrachloride	UG/L	10 U	10 U	10 U	10 U
Chlorobenzene	UG/L	10 U	10 U	10 U	10 U
Chlorodibromomethane	UG/L	10 U	10 U	10 U	10 U
Chloroethane	UG/L	10 U	10 U	10 U	10 U
Chloroform	UG/L	10 U	10 U	10 U	10 U
Cis-1,3-Dichloropropene	UG/L	10 U	10 U	10 U	10 U
Ethyl benzene	UG/L	10 U	10 U	10 U	10 U
Methyl bromide	UG/L	10 U	10 U	10 U	10 U
Methyl butyl ketone	UG/L	10 U	10 U	10 U	10 U
Methyl chloride	UG/L	10 U	10 U	10 U	10 U
Methyl ethyl ketone	UG/L	10 U	10 U	10 U	10 U
Methyl isobutyl ketone	UG/L	10 U	10 U	10 U	10 U
Methylene chloride	UG/L	10 U	10 U	10 U	10 U
Styrene	UG/L	10 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	10 U	10 U	10 U	10 U
Toluene	UG/L	10 U	10 U	10 U	10 U
	UG/L	10 U	10 U	10 U	10 U
Total Xylenes		10 U	10 U	10 U	10 U
Trans-1,3-Dichloropropene	UG/L	10 U	10 U	10 U	10 U
Trichloroethene	UG/L				
Vinyl chloride	UG/L	10 U	10 U	10 U	10 U

#### SENECA EBS QC SAMPLES SEMIVOLATILES

SITE.				EBS-SITE	SEAD-	122E	SEAD-122	E	SEAD-122	SEAD-1238		SEAD-123	D
PERCENTION					Deici	ing Planes	Deicing P	Planes	Deicing Planes	Bidg. 716 a Patroles Releas	ım	Area We Bldg. 7	
DESCRIPTION LOC ID.				SITE	MW12	2E-1	MW122E-1	1	SB122E-1	SS123B-1		TP123D-1	
SAMP ID:				EB006	EB010	)	EB122		EB004	EB017		EB002	
QC CODE:				TB 0	RB	0	SA	4.1	RB 0	RB	0	RB	0
SAMP DETH TOP: SAMP, DEPTH BOT:				0		0		4.1 8.8	0		0		0
MATRIX:				GROUNDWATER	GROU	NDWATER	GROUNDV		GROUND	GROUNDW		GRQUNDV	
SAMP. DATE				2-Mar-98		8-Mar-98	8-	Mar-98	6-Mar-98	9-1	Mar-98	5-	-Mar-98
PARAMETER	UNIT	NYS CLASS GA	DRINKING WATER	VALUE C	VALUE		VALUE	Q	VALUE Q	VALUE	Q	VALUE	Q
1,2,4-Trichlorobenzene	UG/L	5	194.60			1 U		1 U			1 U		1 U
1,2-Dichlorobenzene	UG/L	4.7	268.16			1 U		1 U			1 U		1 U
1,3-Dichlorobenzene 1.4-Dichlorobenzene	UG/L UG/L	5 4.7	3248.50 2.80			1 U		1 U			1 U		1 U 1 U
2,4,5-Trichlorophenol	UG/L	***	3650.00			25 U		2.5 U			2.6 U		2.6 U
2.4.6-Trichlorophenol	UG/L		0.97			1 U		1 U			1 U		1 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/L UG/L	5	109.50 730.00			1 U 1 U		1 U 1 U			1 U 1 U		1 U
2,4-Dinitrophenol	UG/L	5	73.00			2.5 U		2.5 U			2.6 U		2.6 U
2,4-Dinitrotoluene	UG/L	5	73.00			1 U		1 U			1 U		1 U
2,6-Dinitrotoluene	UG/L	5	36.50			1 U		1 U			1 U		1 U
2-Chloronaphthalene	UG/L		100.50			1 U		1 U			1 U		1 U
2-Chlorophenol 2-Methylnaphthalene	UG/L UG/L		182.50			1 U 1 U		1 U 1 U			1 U 1 U		1 U 1 U
2-Methylphenol	UG/L	5				1 U		1 U			1 U		1 U
2-Nitroaniline	UG/L	_	0.35			2.5 ∪		2.5 U			2.6 U		2.6 U
2-Nitrophenol	UG/L					1 U		1 U			1 U		1 U
3,3'-Dichlorobenzidine 3-Nitroantine	UG/L UG/L		109.50			2.5 U		2.5 U			2.6 U		2.6 U
4,6-Dinitro-2-methylphenol	UG/L	5	100.00			2.5 U		2.5 U			2.6 U		2.6 U
4-Bromophenyl phenyl ether	UG/L		2117.00			1 U		1 U			1 U		1 U
4-Chloro-3-methylphenol	UG/L		440.00			1 0		1 U			1 U		1 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/L UG/L	5	146.00			1 U 1 U		1 0			1 U		1 U
4-Methylphenol	UG/L	5				1 U		1 U			1 U		1 U
4-Nitrosniline	UG/L	5	109.50			2.5 U		2.5 U			2.6 U		2.6 U
4-Nitrophenol	UG/L		2190.00			2.5 U		2.5 U			2.6 U		2.6 U
Acenaphthene Acenaphthylene	UG/L UG/L					1 U 1 U		1 0			1 U		1 U
Anthracene	UG/L		10950.00			1 0		1 U			1 U		1 U
Benzo(a)anthracene	UG/L					1 U		1 U			1 U		1 U
Benzo[a]pyrene	UG/L UG/L	10	0.00 0.02			1 U 1 U		1 0			1 U 1 U		1 U 1 U
Benzo[b]fluoranthene Benzo[gh]perylene	UG/L		0.02			1 U		1 0			1 U		1 0
Benzo[k]fluoranthene	UG/L		0.17			1 U		1 U			1 U		1 U
Bis(2-Chloroethoxy)methane	UG/L					1 U		1 U			1 U		1 U
Bis (2-Chloroethyl) ether	UG/L UG/L		0.01 0.26			1 U 1 U		1 U 1 U			1 U 1 U		1 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	UG/L	50	0.26			1 U		1.2 B			0.31 J		1 0
Butylbenzylphthalate	UG/L		7300.00			1 U		1 U			0.13 JB		1 U
Carbazole	UG/L		3.36			1 0		1 U			1 U		1 U
Chrysene Di-n-butylphthalate	UG/L UG/L	50	1.68			1 U		1 U			1 U 0.068 J		1 U
Di-n-octylphthalate	UG/L	30	730.00			1 U		1 U			1 U		1 U
Dibenz(a,h)anthracene	UG/L					1 U		1 U			1 U		1 U
Dibenzofuran	UG/L UG/L		146.00 29200.00			1 U 1 U		1 U 1 U			1 U 0.28 J		1 U 1 U
Diethyl phthalate Dimethylphthalate	UG/L		365000.00			1 U		1 U			1 U		1 U
Ethylene Glycol	MG/L		73000.00	50 U	J	50 U		50 U	50 U				
Fluoranthene	UG/L		1460.00			1 U		1 U			1 0		1 U
Fluorene Hexachlorobenzene	UG/L UG/L	0.35	1460.00			1 U		1 U			1 0		10
Hexachlorobutadiene	UG/L	0.33	0.14			1 0		1 U			1 U		1 U
Hexachlorocyclopentadiene	UG/L		0.15			1 U		1 U			1 U		1 U
Hexachloroethene	UG/L		0.75			1 U		1 U			1 U 1 U		1 U 1 U
Indeno[1,2,3-cd]pyrene Isophorone	UG/L UG/L		0,02			1 U 1 U		1 U			1 U		1 0
N-Nitrosodiphenylamine	UG/L		13.72			1 U		1 U			1 U		1 U
N-Nitrosodipropylamine	UG/L					1 U		1 U			1 U		1 U
Naphthalene	UG/L		1460.00			1 U 1 U		1 U 1 U			1 U 1 U		1 U 1 U
Nitrobenzene Pentschlorophenol	UG/L UG/L	1	3.39 0.56			1 U 2.5 U		1 U 2.5 U			2.6 U		2.6 U
Phenanthrene	UG/L	'	0.50			1 U		1 U			1 U		1 U
Phenol	UG/L	1	21900.00	_		1 U		1 U			1 U		1 U
Propylene Glycol	MG/L UG/L		1095.00	50 L	J	50 U 1 U		50 U 1 U	50 U		1 U		1 U
Pyrene	UG/L		1095.00			, 0		, 5			, ,		, 5

	SENECA
EBS	QC SAMPLES
	METALS

SITE:	SEAD-123B	SEAD-123D
LOC ID:	SS123B-1	TP123D-1
SAMP ID:	EB018	EB002
QC CODE:	RB	RB

SAMP. DETH TOP:	Ü	0
SAMP. DEPTH BOT:	0	0
MATRIX:	GROUNDWATE	GROUNDWATER
SAMP. DATE:	9-Mar-98	5-Mar-98

PARAMETER	UNIT	VALUE	Q	VALUE	Q
Aluminum	UG/L		18.5 B		15.1 B
Antimony	UG/L		3.5 U		3.5 U
Arsenic	UG/L		3.6 U		3.6 U
Barium	UG/L		4.2 U		4.2 U
Beryllium	UG/L		0.1 U		0.1 U
Cadmium	UG/L		0.3 U		0.3 U
Calcium	UG/L		106 U		106 U
Chromium	UG/L		1.1 U		1.1 U
Cobalt	UG/L		1.7 U		1.7 U
Copper	UG/L		2.3 U		2.3 U
Cyanide	UG/L		5 U		5 U
Iron	UG/L		34.7 B		25.8 B
Lead	UG/L		2.4 B		1.8 U
Magnesium	UG/L		127 U		127 U
Manganese	UG/L		0.48 B		0.42 B
Mercury	UG/L		0.1 U		0.1 U
Nickel	UG/L		2.1 U		2.1 U
Potassium	UG/L		220 U		354 B
Selenium	UG/L		4.7 U		4.7 U
Silver	UG/L		2.1 U		2.1 U
Sodium	UG/L		607 U		607 U
Thallium	UG/L		6.3 U		6.3 U
Vanadium	UG/L		1.6 U		1.6 U
Zinc	UG/L		4.6 B		14.2 B