PARSONS

100 Summer Street, 8th Floor • Boston, Massachusetts 02110 • (617) 457-7900 • Fax: (617) 457-7979 • www.parsons.com

October 5, 2004

Mr. Scott Bradley U.S. Army Corps of Engineers Engineering and Support Center, Huntsville ATTN: CEHNC-IS-FS 4820 University Square Huntsville, Alabama 35816-1822

SUBJECT: Revised Final Characterization Report Small Arms Range Airfield Parcel (SEAD-122B) Seneca Army Depot Activity Romulus, New York

Dear Mr. Bradley:

Parsons Engineering Science, Inc. (Parsons) is pleased to submit electronic and hardcopy versions of the Revised Final Characterization Report for the Small Arms Range Airfield Parcel (SEAD-122B) at the Seneca Army Depot Activity in Romulus, New York.

Since this last version of this document was submitted in March 2004, this Characterization Report has been updated to (1) incorporate responses to EPA comments on the March 2004 document and to (2) include data from a reanalysis of a confirmation sample and from the collection of a new confirmation sample from the area where soil was stockpiled.

This work was performed in accordance with Delivery Order 21 as described in the Parsons Contract DACA87-02-D-0005.

Parsons appreciates the opportunity to provide you with this report. Should you have any questions, please do not hesitate to call me at (617) 457-7905 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

cc: S. Absolom, SEDA R. Battaglia, USACE – NY District K. Hoddinott, USACHPPM C. Boes, USACE

PARSONS

100 Summer Street, 8th Floor • Boston, Massachusetts 02110 • (617) 457-7900 • Fax: (617) 457-7979 • www.parsons.com

October 5, 2004

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, New York 10007-1866

Mr. A. Joseph White New York State Department of Environmental Conservation (NYSDEC) Bureau of Eastern Remedial Action Division of Hazardous Waste Remediation 625 Broadway 11th Floor Albany, New York 12233-7015

SUBJECT: Final Characterization Report Small Arms Range Airfield Parcel (SEAD-122B) Seneca Army Depot Activity Romulus, New York

Dear Mr. Vazquez / Mr. White:

Parsons Engineering Science, Inc. (Parsons) is pleased to submit electronic and hardcopy versions of the Revised Final Characterization Report for the Small Arms Range Airfield Parcel (SEAD-122B) at the Seneca Army Depot Activity in Romulus, New York.

Since the last version of this document was submitted in March 2004, this Characterization Report has been updated to (1) incorporate responses to EPA comments on the March 2004 document and to (2) include data from a reanalysis of a confirmation sample and from the analysis of an additional confirmation sample collected from the area where soil was stockpiled.

Should you have any questions, please do not hesitate to call me at (617) 457-7905 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

cc: E. Kashdan, Gannett Fleming Inc.
C. Bethoney, NYSDOH
S. Bradley, USACE
S. Absolom, SEDA
R. Battaglia, USACE – NY District
K. Hoddinott, USACHPPM
C. Boes, USACE

CHARACTERIZATION REPORT FOR THE SENECA ARMY DEPOT ACTIVITY SMALL ARMS RANGE AIRFIELD PARCEL (SEAD-122B)

Prepared For:

Seneca Army Depot Activity

5786 State Route 96 Romulus, NY 14541

U.S. Army Corps of Engineers

Engineering and Support Center, Huntsville and New York District

Prepared By:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 &

100 Summer St, Suite 800 Boston, Massachusetts 02110

EPA SITE ID# NY0213820830 NY State ID# 8-50-006 CONTRACT # DACA87-95-D-0031 DELIVERY ORDER #32 PROJECT # 741401

October 2004

LISTING OF ACRONYMS

ASP	Analytical Services Protocol
ATV	All-terrain Vehicle
bgs	Below ground surface
BRAC	Base Realignment and Closure
CERCLA	Comprehensive Environmental Response, Compensation, and Liabilities Act
су	cubic yards
FFA	Federal Facilities Agreement
GEL	General Engineering Laboratories, LLC
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MW	Monitoring Well
NGVD	National Geodetic Vertical Datum
NTU	Nephelometric Turbidity Units
NY	New York
NYSDEC	New York State Department of Environmental Conservation
PID	Photoionization detector
PVC	Polyvinyl chloride
ppb	Part(s) per billion or micrograms per Kilogram (ug/Kg) or micrograms per Liter (ug/L)
ppm	Part(s) per million or milligrams per Kilogram (mg/Kg)
QA/QC	Quality Assurance/Quality Control
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
SAR	Small Arms Range
SCIDA	Seneca County Industrial Development Agency
SEDA	Seneca Army Depot Activity
SOP	Standard Operating Procedures
SPLP	Synthetic Precipitation Leach Procedure
STL	Severn Trent Laboratories
TAGM	Technical and Administrative Guidance Memorandum
TAL	Target Analyte List
TCLP	Toxicity Characteristic Leaching Procedure
TOC	Total Organic Carbon
UFPO	Underground Facilities Protection Organization
ug/L	Microgram per liter (equal to a part per billion in water)
USEPA	United States Environmental Protection Agency

Listing of Acronyms (continued)

VOCs Volatile organic compounds

TABLE OF CONTENTS

SECTION	DESCRIPTION PAGE
LISTING O	F ACRONYMSII
TABLE OF	CONTENTSIV
LIST OF FI	GURESVI
LIST OF TA	BLES VII
LIST OF AP	PENDICESVIII
SECTION 1	INTRODUCTION1-1
1.1	PURPOSE OF INVESTIGATION WORK1-1
1.2	SITE BACKGROUND1-2
1.3 1.3.1 1.3.2	PROJECT TEAM
1.4	ORGANIZATION OF THIS REPORT1-5
SECTION 2	WORK SCOPE2-1
2.1	SITE RECONNAISSANCE AND MAPPING2-1
2.2 2.2.1 2.2.2	INITIAL SITE INVESTIGATION (JUNE – JULY 2002)2-1 Soil Sampling2-1 Site Monitoring Well Installation, Testing, and Sampling2-2
2.3 2.3.1 2.3.2	TREATABILITY STUDY (JANUARY – FEBRUARY 2004)2-3Study Overview
2.4	INVESTIGATION-DERIVED WASTE
2.5	LABORATORY ANALYSIS2-4

2.6	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROGRAM	2-5
2.7	DATA VALIDATION	2-5
SECTION 3	CHARACTERIZATION RESULTS	3-1
3.1	FIELD SAMPLING PROGRAM (JUNE/JULY 2002)	3-1
3.1.	1 Site Observations	3-1
3.1.	2 Soil Results	3-1
3.1.	3 Groundwater Results	3-4
3.2	TREATABILITY STUDY SOIL SAMPLING (JAN – FEB 2004)	3-6
3.3	SITE CHARACTERIZATION CONCLUSIONS	3-6
SECTION 4	RECOMMENDATIONS	4-1
SECTION 5	LIST OF REFERENCES	5-1

LIST OF FIGURES

FIGURE 1.1 NEW YORK STATE VICINITY MAP

- FIGURE 1.2 SITE LOCATION MAP
- FIGURE 2.1 SAMPLE LOCATIONS
- FIGURE 2.2 EXCAVATION AREAS

FIGURE 3.1 ALL SURFACE SOIL ANALYTICAL RESULTS FOR LEAD

FIGURE 3.2 FINAL SURFACE SOIL CONDITIONS - ANALYTICAL RESULTS FOR LEAD

LIST OF TABLES

TABLE 2.1SOIL AND GROUNDWATER SAMPLES COLLECTED
AND ANALYTICAL METHODS

- TABLE 2.2
 GROUNDWATER LEVELS AT SHALLOW MONITORING WELLS
- TABLE 3.1RESULTS OF SOIL TOTAL METALS ANALYSES 2002
SITE INVESTIGATION
- TABLE 3.2SOIL LEAD SAMPLE RESULTS GREATER THAN 400PPM DURING 2002 SITE INVESTIGATION
- TABLE 3.3RESULTS OF SPLP ANALYSES
- TABLE 3.4RESULTS OF TCLP ANALYSES
- TABLE 3.5GROUNDWATER TOTAL METAL RESULTS
- TABLE 3.6RESULTS OF CONFIRMATIONAL SAMPLING
- TABLE 3.7
 SOIL TOTAL LEAD RESULTS FOR CURRENT SITE CONDITIONS

LIST OF APPENDICES

APPENDIX A MONITORING WELL LOGS, SOIL BORING REPORTS, AND SLUG TEST RESULTS

APPENDIX B PHOTOGRAPHIC LOGS

APPENDIX C DATA VALIDATION REPORT AND LABORATORY CASE NARRATIVE

APPENDIX D RESPONSE TO COMMENTS

SECTION 1

INTRODUCTION

1.1 PURPOSE OF INVESTIGATION WORK

The purpose of this report is to describe site characterization activities conducted at the Small Arms Range (SAR) within the Airfield Parcel (SEAD-122B) at the Seneca Army Depot Activity in Romulus, New York between late June 2002 and February 2004 (Figure 1.1). Ultimately, it is the Army's goal to transfer this property to the Seneca County Industrial Development Agency (SCIDA), and the SCIDA's identified future user of the site, the New York State Police, has indicated that they intend to use the range for arms training.

The characterization activities included the collection and chemical laboratory analysis of soil and shallow groundwater samples followed by analysis of the resulting data versus federal and state recommended soil cleanup objectives and groundwater quality standards. Site characterization activities were completed in two phases. First, a site investigation was performed throughout the area of the SAR to obtain data defining the nature and extent of potential residual contaminants present at the site. The site investigation was followed by a limited treatability study, which focused on documenting whether physical separation techniques in which spent bullets, bullet fragments, and shell casing were removed from the soil, could be used to mitigate identified site contamination caused primarily by lead. The treatability study included confirmational sampling and analysis of soil from the locations where soils were excavated and used as source material within the treatability study. The post treatability study confirmational soil sampling results are included in this report in order to fully characterize current site conditions at the SAR, Airfield. The scope of the treatability study and a description of the results achieved will be presented in a separate report for the treatability study, which will be issued after this report is issued.

Fieldwork described in this report was conducted in accordance with the *Characterization Work Plan* (Parsons June 2002), the *Treatability Study Work Plan for the Airfield Small Arms Range* (Parsons, November 2003), and with the *Generic Installation Remedial Investigation/ Feasibility Study (RI/FS) Work Plan for the Seneca Army Depot Activity* (Parsons 1995a). No significant deviations from the planned field activities were needed.

The project objectives for the characterization activities conducted at the Airfield SAR have been met. These objectives were to:

• Characterize the nature and extent of site-related contaminants in soil and groundwater at the Airfield SAR;

- Characterize the nature and extent of site-related contaminants in the soil following completion of the treatability study; and
- Provide the data necessary to assess whether future efforts are required prior to transferring the parcel to the State for use as an active small arms range.

The scope of the site investigation work was based on the United States Environmental Protection Agency (USEPA) Region 2 guidance document "Best Management Practices for Lead at Outdoor Shooting Ranges" (USEPA, 2001). The Army has determined that for small arms ranges, the major issues are residual lead contamination and erosion. This is referenced in the document *Prevention of Lead Migration and Erosion from Small Arms Ranges*, (U.S. Army Environmental Center, 1998).

Based on the findings for the site summarized below, the Army submits that no further action is needed and the site is suitable for transfer to the State for unrestricted reuse.

1.2 SITE BACKGROUND

The Air Force, Navy, and Army have operated the Airfield SAR since the 1950s for small arms qualification of base and security personnel. The Seneca Airfield SAR consists of two bermed small arms ranges, one of which was previously used for small arms training while the second was used for machine gun targeting. There have been modifications to the size and shape of the firing lanes and berms since initial construction by the Air Force in the 1950s. The current configuration, constructed by the Army in the early 1980s, consists of a 20-lane small arms range with protective wooden baffles, and a two-lane machine gun range. Each of the firing line areas are surrounded on three sides (north, east and south) by earthen berms that measure up to 28 feet in height. Underlying the firing lines within each range area is a network of footer drains that capture surface water runoff from within the firing lines and conveys it to the open area located west of the SAR where it is discharged..

The berms are constructed of brown to dark brown to gray, silt with clay with interbedded shale, and traces of fine sand and fine to medium gravel. The berms form a horseshoe-shaped protective barrier around each range to trap stray rounds and to protect the bunker and airfield areas behind the range. The west-trending topographic gradient is relatively flat.

Seneca Army Depot Activity (SEDA) is a historic military facility that was selected for closure under the nationwide Base Realignment and Closure (BRAC) program in 1995. The Army has been working with the SCIDA to identify and transfer lands from the Army to parties for beneficial reuses. The SCIDA is currently working with the New York (NY) State Police to transfer the Airfield Parcel, including the Airfield SAR, for state use. The State Police and other state and local entities plan to use the airfield for training in high-speed pursuits and driving skills, and use the Airfield SAR for target practice needed for qualification of enforcement agency staff (similar to past use of the Airfield SAR). The State's need for the land is immediate. Requirements of the Army covenant on transferring properties (i.e., the risk to the current and future receptors must be controlled or mitigated) will be met prior to transfer.

The Airfield SAR is located in the southwest corner of SEDA adjacent to the SEDA Airfield Parcel (see Figure 1.2). The elevation of the site varies from 600 to 640 feet above mean sea level according to the National Geodetic Vertical Datum (NGVD) of 1929. The land slopes gently towards Seneca Lake (elevation 445 feet above mean sea level), which is located approximately 5,000 feet to the west. The site is bounded on the north by the gorge of the Kendaia Creek and by Indian Creek on the south. Kendaia Creek and Indian Creek are classified as Class C fresh surface waters on the base property and change to Class CTS (trout spawning) downstream of the base. For reference, Kendaia Creek is 2 miles to the north of the Airfield SAR and Indian Creek is 3,000 feet to the east of the Airfield SAR.

Subsurface characterization activities conducted in the vicinity of the Airfield indicate that glacial till and calcareous black shale are the two major geologic deposits. The till is light brown and composed of silt and clay, and some black shale fragments. Competent, calcareous black shale has been encountered at other SEDA sites at depths between approximately 9 and 14 feet below the ground surface. The elevations of the competent bedrock determined during the drilling and seismic programs at nearby SEAD-11 (located to the east of the Airfield SAR) suggest that the bedrock surface slopes to the west, mimicking the slope land surface. Immediately above the competent shale is a one to three-foot thick weathered zone (Parsons, 1995b).

Estimated depth to groundwater at the Airfield SAR is approximately between 8 and 15 feet below ground surface (bgs), based on data collected at the nearby SEAD-11 (Parsons, 1995b). The nature of the groundwater flow at the Airfield SAR is uncertain. Similar to SEAD-11, the groundwater flow in the overburden is anticipated to follow the general trend of the land towards the west and Seneca Lake.

Previous investigations indicate that surface water flow from precipitation events is controlled by local topography. The west-trending topographic gradient is relatively flat in the immediate vicinity of the Airfield SAR, but becomes progressively steeper in the direction of Seneca Lake. Based on local topography, surface water flow at the Airfield SAR is generally to the west toward Seneca Lake. As is indicated above, surface water from within the bermed area is conveyed to the west of the SAR. The Airfield SAR has a network of footer drains along each baffle/target line. These drains collect runoff from the berms (maximum height 28 feet) to grassed expanses that convey surface water to the open area located west of the Airfield SAR. No obvious depressions where surface water could collect are apparent at this site.

Previous contaminant investigation work done at this site included the collection of six surface soil samples (including one duplicate) at impact points along the berms. The samples were analyzed for total metals concentrations. The analytical results are reported in a report titled *Investigation of Environmental Baseline Survey Non-Evaluated Sites*

SEAD-119A, SEAD-122(A,B,C,D,E), and SEAD-123 (A,B,C,D,E,F), SEAD-46, SEAD-68, and SEAD-120(A,B,C,D,E,F,G,H,I,J), SEAD-121 (A,B,C,D,E,F,G,H,I) (Parsons, 1999). Based on the results of this preliminary work, the Army recommended that additional soil sampling and analyses be performed to determine the extent of impacts from metals. This report focuses on the results from the subsequent investigations of the Small Arms Range, Airfield parcel including work conducted as part of an initial site investigation (2002) and the treatability study (2004).

1.3 PROJECT TEAM

1.3.1 Army's Consulting Engineer - Parsons

Parsons project team for the SEDA Airfield SAR Characterization included the following personnel: Mr. Todd Heino, P.E., is the overall Seneca Army Depot Activity Program Manager, and he serves as Technical Director for the project. Mr. David Babcock, P.E., was Parsons' initial Project Manager, as well as Parsons' primary Army contact, and his role was to ensure that the project and client requirements were met in a timely manner. Mr. Babcock was replaced by Mr. Dan Hoffner, who served in an equivalent role, once Mr. Babcock moved to a new position within Parsons. The project supporting staff included environmental and civil engineers, geologist, and field technicians from Parsons Boston, Syracuse, and Buffalo offices.

1.3.2 Parsons' Subcontractors

Severn Trent Laboratories, Inc. Burlington (June – July 2002, STL, Burlington, VT) and General Engineering Laboratories, LLC (January – February, 2004, GEL, Charleston SC) performed the project chemical analyses. Soil analyses included lead, other Target Analyte List (TAL) metals, Total Organic Carbon (TOC), Synthetic Precipitation Leach Procedure (SPLP), and Toxicity Characteristic Leach Procedure (TCLP). Groundwater was analyzed for TAL metals.

North Star Drilling (Cortland, NY) performed drilling activities during the characterization project, which included seven soil borings and installation of three shallow monitoring wells. An all-terrain vehicle (ATV) drill rig was used to maneuver around and on top of the berms.

Welch Construction (Interlaken, NY) was subcontracted to grade down the berm surrounding the machine gun targeting area in order for the ATV drill rig to position itself atop the berm.

Deborah A. Naybor, PLS, P.C. (Alden, NY WBE) provided land topographic surveying and mapping services.

Data Validation Services (North Creek, NY WBE) performed data validation for the chemical characterization efforts completed during the 2002 sampling; Parsons self performed data validation for the 2004 chemical results.

1.4 ORGANIZATION OF THIS REPORT

Section 1 of this report presents the project purpose, site characteristics, team, and report organization. Section 2 outlines the scope of work conducted during the initial site investigation (2002) and the treatability study (2004). Section 3 presents the investigation results for soil and groundwater. Section 4 presents the Army's recommendation for the site. Section 5 contains the list of cited references. The figures and tables are presented at the end of each section to facilitate the review in context with the text. Appendix A contains the geological logs of soil borings and monitoring wells completed during the initial site investigation and the treatability study. Appendix B contains photographic logs. Appendix C contains the Data Validation Reports and analytical results.

SECTION 2

WORK SCOPE

2.1 SITE RECONNAISSANCE AND MAPPING

The identified sample locations were field checked for access and general condition. Various agencies were contacted through the Underground Facilities Protection Organization (UFPO) utility locating service to ascertain buried utility locations. Seneca site representatives were also consulted to help identify buried utility locations.

After completing the field sampling effort, a licensed New York surveyor surveyed the site topography, sample locations and other significant features. The surveyor then generated site mapping that is used for all the figures presented in Section 3.

2.2 INITIAL SITE INVESTIGATION (JUNE – JULY 2002)

2.2.1 Soil Sampling

Soil samples were collected to assess the lateral and vertical extent of the impacted soil during a field program performed in June and July 2002. Surface soil (0 to 2 ft bgs.) samples were collected at 25 locations. Subsurface soil boring samples were collected from 8 locations. Table 2.1 presents the sample identification numbers, the sample depths, and the analyses performed on each sample. Figure 2.1 presents sample locations. Fieldwork documentation summaries are presented in Appendix A.

Surface soil samples were collected at 25 different locations within the SAR. The objective was to assess the lateral and vertical extent of soil impacted by previous small arms training activities at the site. Surface debris, gravel, or grass was scraped from the sampling point before the sample was collected. Two samples were taken at each location (one from 0 to 6 inches bgs. and a second from 18 to 24 inches bgs.) except that only one sample (0 to 6 inches bgs.) was collected from sample location 1025. Each sample was screened for visible bullets and bullet fragments before being sent to the laboratory for analysis. Although the Work Plan states that a No. 10 sieve would be used to screen each sample for bullets, a No. 5 sieve was used for some samples due to the clay content.

Subsurface soil samples were collected during June and July 2002 at seven different boring locations throughout the two berms and three monitoring well locations (Figure 2.1). Between three and seven samples were taken at each of the seven boring locations within the berms and one sample was collected at each monitoring well location, for a total of 32 (plus one duplicate) samples ranging in depth from 0 to 2 feet bgs to 28 to 30 feet bgs into the native soil at the Site. Soil from the berms was comprised of brown to dark brown to gray silt with clay, interbedded shale, traces of fine sand, and traces of fine to medium gravel.

Subsurface soil borings were performed using an ATV drill rig operated by North Star Drilling of Cortland, New York under the observation of a Parsons geologist. Split spoon samplers were driven in advance of hollow stem augers to collect soil samples. Each split spoon sample was examined by a geologist immediately after recovery and monitored for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). The samples were placed in containers and the headspace was measured with a PID. The soil samples collected from each boring did not show any visual evidence of bullet fragments or elevated PID reading.

2.2.2 Site Monitoring Well Installation, Testing, and Sampling

Three monitoring wells (i.e., MW-1, MW-2, and MW-3) were constructed during the week of July 22, 2002 from borings advanced to depths of 15 to 17.5 feet (see Figure 2.1 for locations). The monitoring wells were constructed of 2-inch diameter, flush-joint, Schedule 40 polyvinyl chloride (PVC) well screen and casing. The final depth of the borings and screened intervals were determined in the field based upon the data collected at the time when the monitoring wells were drilled. The wells were constructed with 10 feet of well screen with 0.010-inch slot size. The well screens were positioned to straddle the water table to account for seasonal groundwater fluctuations. The assembled well pipes were installed through the augers and quartz sand was backfilled through the annulus between the well pipe and auger. The sand pack was extended above the top of each well screen. Above the sand pack, bentonite pellets were placed to form a seal. Cement/ bentonite grout was backfilled from the top of the seal to ground surface. The PVC casing was completed with a vented locking cap and covered by a steel protective casing. The protective casing was grouted in place to limit disturbance to the PVC well pipe. Drilling equipment that came into contact with the subsurface was thoroughly decontaminated by steam cleaning prior to setting up at new drilling locations.

After completing well construction, each of the three monitoring wells was developed and allowed to equilibrate for a minimum of ten days prior to sampling. Each of the wells was developed using an electric Waterra pump. During development, high levels of turbidity were recorded for each of the wells even though at least 50 gallons of water were removed from two of the wells (i.e., MW-1 and MW-3) and the third well was pumped dry three times.

After equilibration, each well was purged prior to collecting samples. A minimum of three well volume equivalents was removed from each of the wells during pre-sampling purging operations, as per standard well development procedures. Temperature, pH, electrical conductivity, and turbidity were measured at periodic intervals (5 - 10 minutes) during pre-sampling purging activities at each well.

Standard procedure calls for monitoring of the aforementioned field parameters and removal of water until the monitoring wells produce clean, sediment-free samples [50 Nephelometric Turbidity Units (NTUs) or less, if possible] and field parameters (temperature, pH, and electrical conductivity) stabilize. Stabilization is considered to be reached when three temperature, pH, and electrical conductivity readings measured at

least 10 minutes apart, are within 10% of each other and the level of turbidity has stabilized. If the field conditions preclude the above-mentioned criteria, the monitoring well development methods and field conditions are then reviewed to determine whether the achieved turbidity is acceptable. Groundwater pH was in the range of 7.2 to 7.4. Prior to the collection of samples, turbidity was measured at a level of 82.9 NTUs, 161 NTUs, and 184 NTUs for MW-1, MW-2, and MW-3, respectively prior to the collection of samples.

Based on field conditions, it was concluded that the achieved turbidity was acceptable. This conclusion was made based on the fact that each well was developed for an hour or greater without any significant decrease in turbidity (i.e., decrease in turbidity <20 NTU) and the fact that the lithological formation encountered was primarily made up of fine material (silt and clay) making the groundwater naturally turbid.

Groundwater samples were collected using low-flow procedures and peristaltic pumps with dedicated tubing following prescribed work plan procedures. The groundwater samples were analyzed for all TAL metals.

Static groundwater levels were measured on July 22, 2002 (see Table 2.2 for results). Groundwater level measurements and elevations based on surveyed top of casing elevations show water levels declining from east to west toward Seneca Lake parallel to and at approximately the same extent as local ground surface elevations.

Slug tests were performed on the three newly-installed groundwater monitoring wells (MW-1, MW-2, and MW-3) on July 24, 2002. The slug tests were performed to determine the hydraulic conductivity of the subsurface at SEAD-122B. Testing was conducted using a Hermit 2000 data logger, a six-foot metal slug, and nylon rope. All equipment was decontaminated between test locations. Both injection (falling head) and withdrawal (rising head) tests were performed at each well location. Results of the slug tests indicate that a wide-range of hydraulic conductivities exist within the subsurface at SEAD-122B. Based on test results, the southeastern section of the site (area in the vicinity of MW-1) exhibited a hydraulic conductivity of 10^{-2} cm/sec, while the southwestern section of the site (area in the vicinity of MW-3) was observed to exhibit a hydraulic conductivity of 10^{-1} cm/sec. Graphs showing slug test analysis and graphs are provided in Appendix A.

2.3 TREATABILITY STUDY (JANUARY – FEBRUARY 2004)

2.3.1 Study Overview

In January 2004, a limited treatability study was conducted at the Airfield SAR to determine if physical screening represented a viable alternative for treating identified soil with lead contamination, especially if the contamination resulted from the deposition of bullets and bullet fragments. As part of the treatability study, additional sampling and analyses were performed to document the treatability study and the condition of the soil

remaining at the site at the completion of the study (i.e., after the excavation conducted during the study).

Approximately 500 cubic yards (cy) of soil were excavated from the impacted areas, which included the western face of the backstop berm and a drainage swale used to carry surface water runoff away from the firing range area. The western face of the berm was excavated to a depth of 2 to 3 feet below grade surface; this accounted for approximately 250 cy of the soil treated. Approximately 100 cy of soil were excavated from the bottom of the drainage swale and included in the treatability study. These areas were selected for excavation as part of the treatability study due to the high levels of lead detected during the 2002 site investigation program as is reflected in data from sample locations 1010A, 1011A, 1013A, and 1018. Finally, after completion of the treatability study, the top 3 inches of soil underlying the range floor (approximately 150 cy) were excavated from the area confined by the SAR berm. All of the excavated soil was stockpiled, screened, managed within the larger bermed area, and then disposed of off-site at a licensed municipal waste facility.

Additional details of the treatability study will be presented in a separate report for documenting the performance of the treatability study that will be issued in the future for this site.

2.3.2 Confirmational Soil Sampling

Confirmation soil samples were collected from the bottom of areas where soil was excavated for use as source material in the treatability study, and one sample was collected from the area where excavated soil had been stockpiled on a poly-liner prior to disposal. Discrete soil samples were collected from 11 locations as is shown on Figure 2.2; each of these samples was collected 0 to 6 inches below grade. Table 2.1 presents the confirmation sample IDs, sample depths, and analytical methods. Manual grab sampling methods were employed to collect all confirmation samples.

2.4 INVESTIGATION-DERIVED WASTE

Investigation-derived waste resulting from the 2002 site investigation program included soil from monitoring well borings, development and purge water, and site dedicated disposable clothing. Investigation-derived waste was segregated by type and placed in 55-gallon drums and was disposed in accordance with regulatory requirements at off-site facilities. Wastes resulting from the treatability study will be disposed at a licensed off-site facility. Final disposal of treatability study residues will be documented in the report prepared for the treatability study.

2.5 LABORATORY ANALYSIS

The analytical procedures used during the site investigation and treatability study sampling efforts were performed in accordance with USEPA SW846 methods and were reported in accordance with the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B deliverables. Analytical holding times as specified in the NYSDEC ASP were followed. Table 2.1 presents a listing of all samples collected from the site and the analytical methods used.

Within the site characterization effort, each of the soil samples was analyzed initially for total lead. Then, based on the results for total lead, the most impacted soil samples were analyzed for TAL metals and leach water generated for each of the most impacted samples using the SPLP and TCLP methods. Thirteen soil samples were analyzed for all of these parameters (Table 2.1). The purpose of the SPLP and TCLP tests was to assess the leaching potential of identified impacted soil.

Within the treatability study, conformation samples were analyzed solely to determine the total lead concentration present at a site in the soil.

Groundwater samples from each of the three monitoring wells installed as part of the 2002 site characterization effort were analyzed for TAL metals.

2.6 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROGRAM

During the site characterization effort (June – July 2002) and the confirmational sampling effort associated with the treatability study (January – February 2004), QA/QC samples were collected to ensure that the reported sample results were representative, accurate, and precise. The QA/QC samples were analyzed for the same analytes as the corresponding field samples. Field duplicate samples are collected and analyzed to assess the representativeness of the sampling procedures. Matrix spike and matrix spike duplicate (MS/MSD) analyses were conducted using samples collected at the site to assess the presence and magnitude of potential interferences caused by the sample matrix. All site investigative samples characterized during this effort were maintained and shipped following approved sample custody and security procedures.

2.7 DATA VALIDATION

Data validation was performed in accordance with the guidelines set forth in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2002), the Region 2 RCRA and CERCLA Data Validation Standard Operating Procedures (SOPs) - SOP HW-2 (USEPA, 1992), and NYSDEC Contract Laboratory Program Analytical Services Protocol, with consideration for the methodology and project requirements. The data validation reports are presented in Appendix C.

SECTION 3

CHARACTERIZATION RESULTS

This section provides a summary of the site characterization findings during the initial site investigation and treatability study, and presents overall conclusions about the presence or absence of impacts, which are attributable to current or historical activities at the Airfield Small Arms Range. The results of the site characterization effort are initially reported separately, segregated by field activity (i.e., 2002 versus 2004 event), and by matrix. Once all results are presented and discussed separately, the overall conclusions of the site characterization effort are summarized and discussed. Comparisons of analytical results obtained from site investigative sampling and analysis procedures are made to State of New York soil cleanup guidance criterion and groundwater standard values.

3.1 FIELD SAMPLING PROGRAM (JUNE/JULY 2002)

3.1.1 Site Observations

The following field observations were made during the initial site characterization effort (June – July 2002):

- A bullet casing, somewhat new in appearance, was observed at the small arms shooting range;
- Bullet fragments were only observed during soil collection at locations 1010 and 1024 within the 0 to 0.5 feet bgs interval; and
- A wooden stand with a metal screen, possibly a weapon cleaning station, was observed at the small arms range.
- The small arms range and machine gun firing range berms were comprised of approximately 28 to 30 feet of brown to dark brown to gray, silt with clay with interbedded shale, and traces of fine sand and fine to medium gravel. The above soil description was based on the drilling of seven soil borings (PSB-1 through PSB-7) on top of the berms in June 2002.

3.1.2 Soil Results

All soil data from the initial site characterization effort are presented in Table 3-1 through Table 3-4.

Lead is the primary contaminant of concern at small arms ranges. Available literature indicates that small arms firing ranges contain lead, antimony, copper, zinc and arsenic contamination resulting from shell casings, non-exploding bullets and bullet fragments; however, lead has been assessed as the primary risk driver (ITRC, 2003).

Lead Results

Soil samples were collected at locations on the range floor, the face of the berms, and from adjacent drainage swales on June 28 and 29, 2002. The data for lead were compared to the federal guidance value of 400 milligrams per Kilogram (mg/Kg) or parts per million (ppm) (USEPA, 1998), and these results are summarized in Table 3.1 and Figure 3-1. Table 3.2 shows results of samples with total lead above 400 ppm.

Four of the surface soil samples showed lead concentrations greater than 400 ppm, which is the screening level recommended by USEPA (1998) for lead in soil at residential properties. The two samples located at target height along the east side of the berm (impact area), 1010A and 1011A, showed the highest lead levels, with concentrations of an estimated (i.e., "J") 7,320 ppm (the average of the sample and the field duplicate) and an estimated 60,650 ppm (the average of the sample and the field duplicate), respectively. The maximum lead value (88,700 J ppm) was detected in one of the duplicate pair samples collected at location 1011A, at the southeastern perimeter of the small arms berm.

Sample 1018A collected from the drainage swale in the 0-6 inch interval showed lead at 927 ppm. The lead concentration in the 18-24-inch interval at the same location was 19.3 ppm. Thus, the contamination was surficial only. Sample 1019A was collected further downstream and was 13.7 ppm. Thus, the end point (clean sample) was found and the lateral contamination is limited. Soil from the drainage swale, between the location of the range and sample 1019A was excavated and used in the treatability study operation.

No samples from the 18 to 24-inch interval below ground surface showed lead concentrations equal to or greater than 400 ppm.

Other TAL Metals Results

TAL total metal results for the 2002 samples are presented in Table 3.1. The concentrations at several locations were above the maximum SEDA-specific background levels for metals including antimony, arsenic, copper, lead, silver, sodium, thallium, and zinc. Although calcium and magnesium were detected above the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 soil cleanup objectives at one surface soil sample location (1015A and 1001A for calcium and magnesium, respectively), the maximum calcium and magnesium concentrations were below the maximum SEDA-specific background levels.

Antimony

Antimony can be used as a hardening agent in bullets. Antimony was detected above the NYSDEC TAGM 4046 soil cleanup objective of 5.9 ppm in two surface soil (i.e., 0 to 6-inch depth) samples (1010A and 1011A). The maximum antimony concentration of 670 J ppm was observed at the same sample location (1011A) where lead was detected at

88,700 J ppm. Antimony concentration detected in sample 1010A was 109 J ppm. Both Sample 1010A and Sample 1011A were within the proposed excavation area for the treatability study.

Arsenic

Arsenic was detected above the TAGM 4046 soil cleanup objective of 8.2 ppm at the two surface soil sample locations: 1011A and 1013A. The concentrations were 84.6 J ppm and 11.5 ppm, respectively. Sample locations of 1011A and 1013A were within the proposed excavation area for the treatability study.

Copper

Five of the surface soil samples (1001A, 1011A, 1013A, 1024A) showed copper concentrations above the NYSDEC TAGM 4046 soil cleanup objective of 33 ppm. The maximum copper concentration of 5,690 J ppm was detected at sample location 1011A (0 to 6-inch depth) collected near the southeastern perimeter of the berm where lead was 88,700 J ppm. The copper concentrations detected at 1001A, 1013A, 1024A, and 1025A were comparable to the maximum Seneca background concentration (i.e., 41.2~75ppm vs. 62.8 ppm). Sample locations of 1001A, 1011A, and 1013A were within the proposed excavation area for the treatability study.

Silver

Silver was detected above the TAGM 4046 soil cleanup objective at 0 to 0.5 ft bgs at 1011A (3.4 J ppm vs. 0.75 ppm). Sample location of 1011A was within the proposed excavation area for the treatability study.

Sodium

Sodium was detected above the TAGM 4046 soil cleanup objective of 172 ppm at the following three locations: 0 to 0.5 ft bgs. at 1008A and 1009A and 1.5 to 2 ft bgs. at 1002B. The concentrations were 182 J ppm, 388 J ppm, and 343 J ppm, respectively. Sample locations of 1008A and 1009A were within the proposed excavation area for the treatability study. It should be noted that sodium is not a chemical of potential concern associated with small arms ranges and ammunition.

<u>Thallium</u>

Thallium was detected above the TAGM 4046 soil cleanup objective of 0.7 ppm at the following two locations: 0 to 0.5 ft bgs. at 1011A and 1.5 to 2 ft bgs. at 1024B. The concentrations were 1.7 J ppm and 0.74 J ppm, respectively. Sample location of 1011A was within the proposed excavation area for the treatability study.

<u>Zinc</u>

Zinc was detected above the TAGM 4046 soil cleanup objective at 0 to 0.5 ft bgs at 1011A (630 J ppm vs. 110 ppm). Sample location of 1011A was within the proposed excavation area for the treatability study.

SPLP Metals Results

SPLP results for soil samples are shown on Table 3.3.

Antimony SPLP concentrations exceeded the groundwater standard of 3 ug/L for eight soil samples (0-2 ft bgs) collected from 1030, 1002B, 1010A, 1011A, 1013B, 1018A, 1024A, and 1025A. The highest antimony SPLP value was 180 ug/L at sample location 1011A. Four of the eight sample locations were within the proposed excavation area for the treatability study. Three samples are in the machine gun range, where antimony concentrations in soil are below the maximum Seneca background concentration. One SPLP sample (1002B, 5.4 J ug/L) is on the firing line.

The iron SPLP leach results showed exceedances of the groundwater standard of 300 ug/L in several samples, with a high value of 2,030 ug/L, collected at sample location 1011A. Based on Seneca background groundwater quality of 4,480 ug/L, the iron results are consistent with Seneca background.

Thallium had three minor exceedances of the Class GA groundwater standards. These exceedances were in areas where thallium in soil was found at concentrations within the maximum Seneca background concentration.

TCLP Metals Results

TCLP results (Table 3.4) showed a single exceedance of the Resource Conservation and Recovery Act (RCRA) limit for lead of 5,000 ug/L. This exceedance (i.e., 99,900 ug/L) was observed at surface soil location 1011A, where the maximum total lead concentration of 88,700 J ppm was observed in soil at SAR. Sample 1011A was within the proposed area of excavation for the treatability study. This TCLP result indicates that this sample is considered to be hazardous by characteristic. However, it should be noted that the TCLP tests were conducted for the purpose of site soil characterization as versus soil disposal or treatment. All other TCLP results were below RCRA hazardous waste limits.

3.1.3 Groundwater Results

All groundwater data from the initial site characterization effort are presented in Table 3-5.

Groundwater occurs within the overburden beneath the Airfield Small Arms Range. Groundwater flow is from the higher elevations in the east toward the lower elevations to the west toward Seneca Lake. MW-1 is the upgradient well; MW-2 and MW-3 are downgradient of the SAR (See Figure 2.1 for locations). The depth to groundwater is approximately 8 feet below ground surface.

The groundwater sample results for lead were all non-detect below 1.5 ug/L, so no impact to groundwater is evident from overlying soil.

All metal concentrations detected in MW-1, MW-2, and MW-3 were below the Class GA standards with the exception of antimony and iron. The antimony concentrations detected in all three monitoring wells exceeded the Class GA standard (estimated 14.4 ~26.7 ppb vs. 3 ppb). The antimony concentrations detected in the two downgradient monitoring wells (i.e., MW-2 and MW-3) were slightly above the concentration detected in the upgradient well MW-1 (estimated 18.1 ~26.7 ppb vs. 14.4 ppb). It should be noted that the elevated antimony concentrations were likely due to the elevated turbidity in the samples. As discussed in Section 2.2.2, high levels of turbidity were recorded during the well development for each of the wells. Even though groundwater samples were collected when no significant decrease in turbidity was observed (i.e., decrease in turbidity <20 NTU), the turbidities observed immediately prior to the sampling were elevated compared to the standard procedure requirement (i.e., <50 NTU if possible). Therefore, elevated turbidities in the three monitoring wells contributed to the elevated concentrations. Further, the elevated turbidities for samples collected from downgradient wells MW-2 and MW-3 (161~184 NTU vs. 82.9 NTU) contributed to the elevated antimony concentrations observed in these wells compared to MW-1. In summary, the elevated antimony concentrations in the monitoring wells were related to the elevated turbidities.

The iron concentrations detected in MW-1 and MW-2 exceeded the Class GA standard (421~580 ppb vs. 300 ppb); however, the iron concentrations detected in MW-3, one of the downgradient wells, were below the Class GA standard. It is concluded that groundwater at the site is not impacted by soil based on the following facts: 1). the elevated concentrations detected in MW-1 and MW-2 were related to the elevated turbidities; 2). there is no indication of impact to the downgradient well MW-3; 3). the observed concentrations at the three wells were below the SEDA-specific background level (i.e., 421~580 ppb vs. 4480ppb).

In summary, all metal concentrations detected in groundwater were below the Class GA standards with the exception of antimony and iron. The elevated antimony and iron concentrations were likely due to the elevated turbidities of the samples. The antimony and iron concentrations detected in the downgradient wells were generally consistent with the concentrations in the upgradient well. In addition, lead, the primary contaminant of concern at small arms ranges, was not detected in any of the groundwater samples. Based on the above discussion, it is concluded that groundwater is not impacted by the SAR site soil.

3.2 TREATABILITY STUDY SOIL SAMPLING (JAN – FEB 2004)

During the treatability study conducted between January and February 2004, soil was excavated in a few discrete areas surrounding sample locations 1010, 1011, 1013, and 1018 as shown on Figure 3.1. As a result of these soil excavation activities, analytical results obtained in 2002 from these sample locations are no longer representative of site conditions. Once the limited excavation was completed, confirmation samples were collected at ten locations. If a sample contained lead greater than 400 ppm, additional soil was excavated from that location and then a new confirmation sample was collected from the same location. Results of all soil samples collected during the treatability study are presented in Table 3.6.

During the initial confirmation sampling, lead was detected at a concentration greater than 400 ppm at sample locations CS001, CS005, CS009, and CS010. The maximum detection was 13,860 J ppm at CS001. Additional soil was excavated around these four locations and new confirmation samples were collected, labeled CS001A, CS005A, CS009A, and CS010A, and the lead concentrations were below 400 ppm in all of these samples. The final confirmation samples show that all sample locations detected lead at levels less than 400 ppm, as shown on Table 3.7 and Figure 3.2. The maximum detection of lead in the final confirmation samples was 213 ppm at CS005A.

3.3 SITE CHARACTERIZATION CONCLUSIONS

All lead data that characterizes current site conditions are presented in Table 3.7 and Figure 3.2; samples that were removed during excavation and preliminary confirmation samples that were subsequently dug out are not part of the final data set since they are no longer representative of current soil conditions at the range.

The analytical results indicate the following:

- Impacts attributable to Seneca Airfield range use are limited in nature and extent;
- TAL metals other than lead were either not detected above SEDA site background values or were consistent with SEDA site background values;
- Following soil excavation during the treatability study, lead was not detected at a concentration greater than 400 ppm in any location, and
- Groundwater has not been impacted by range operations.

The final confirmation samples show that all sample locations detected lead at levels less than 400 ppm, as shown on Table 3.7 and Figure 3.2. The maximum detection of lead in the final confirmation samples was 213 ppm at CS005A.

All metal concentrations detected in groundwater were below the Class GA standards with the exception of antimony and iron. The elevated antimony and iron

concentrations were likely due to the elevated turbidities of the samples. The antimony and iron concentrations detected in the downgradient wells were generally consistent with the concentrations in the upgradient well. In addition, lead, the primary contaminant of concern at small arms ranges, was not detected in any of the groundwater samples. Therefore, it is concluded that groundwater is not impacted by the SAR site soil.

Based on the investigation results, the investigation-derived waste from the work reported herein is manageable. Soil from the monitoring wells is managed with other soils from the site, and water extracted from the monitoring wells can be released on site to infiltrate back to the local groundwater. The investigation-derived waste will be disposed at a certified municipal disposal facility and the disposal will be presented in the report prepared for the treatability study.

Based on these findings, no further action is recommended for soil at this site.

SECTION 4

RECOMMENDATIONS

No further action is recommended for the Small Arms Range at the Airfield at the Seneca Army Depot. The site is considered suitable for transfer to the State for unrestricted use. The site should be closed out in accordance with procedures established in the Seneca Army Depot Activity Federal Facilities Agreement (FFA) (USEPA et al., 1993). The Army will prepare a No Further Action Proposed Plan and Record of Decision (ROD) for this site, in accordance with the FFA, for concurrence by USEPA and NYSDEC.

SECTION 5

LIST OF REFERENCES

- ITRC, January 2003. Characterization and Remediation of Soils at Closed Small Arms Firing Ranges.
- Parsons, 1995a. Generic Installation Remedial Investigation/Feasibility Study (RI/FS) Workplan for Seneca Army Depot Activity. Final. August 1995.
- Parsons, 1995b. Expanded Site Inspection Report, Three Areas of Concern, Seneca Army Depot, Romulus, New York. December 1995.
- Parsons, 1999. Investigation of Environmental Baseline Survey Non-Evaluated Sites SEAD-119A, SEAD-122(A,B,C,D,E), and SEAD-123 (A,B,C,D,E,F), SEAD-46, SEAD-68, and SEAD-120(A,B,C,D,E,F,G,H,I,J), SEAD-121 (A,B,C,D,E,F,G,H,I). May.
- Parsons, 2002. Characterization Work Plan for the Airfield Parcel (SEAD-122B) Small Arms Range, Seneca Army Depot Activity. June.
- Parsons, 2003. Treatability Study Work Plan for the Airfield Small Arms Range, Seneca Army Depot Activity. Final. November.
- U.S. Army Environmental Center, 1998. Prevention of Lead Migration and Erosion from Small Arms Ranges. Produced by the U.S. Army Environmental Center's Range XXI Team and the U.S. Army Training Support Center. August 1998.
- USEPA, 1992. Region 2 RCRA and CERCLA Data Validation Standard Operating Procedures: SOP HW-2, Revision 11, January 1992: Evaluation of Metals Data for the CLP Program. EPA Region 2. 1992.
- USEPA, Army, and NYSDEC, 1993. Federal Facility Agreement Under CERCLA Section 120, Docket Number: II-CERCLA-FFA-00202, January 1993.
- USEPA, 1998. Clarification to the 1994 Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. EPA/540/F-98/030.
- USEPA, 2001, Best Management Practices for Lead at Outdoor Shooting Ranges. U.S. Environmental Protection Agency, Region II. EPA-902-B-01-001. January 2001. Downloaded from <u>www.epa.gov/region02/waste/leadshot/download.htm</u> in March 2002.
- USEPA, 2002. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-01-008.

P:\PIT\Projects\Huntsville HTW\TO #21 Airfield Arms Range\Final Characterization Rpt\figuresFIG1-1.PPT

<u>LEGEND</u>

- MW-1 MONITORING WELL LOCATION (3 WELLS)
 - HAND AUGER BORING LOCATION (24 BORINGS) (SAMPLED IN JUNE/JULY 2002)
 - SAMPLE LOCATION WAS EXCAVATED DURING TREATABILITY STUDY (JAN/FEB 2004) AND NO LONGER EXISTS.
 - CONFIRMATION SAMPLE LOCATION FOR TREATABILITY STUDY (JAN/FEB 2004)
 - ⊖ SOIL BORING LOCATION (7 BORINGS)
 - ---- APPROXIMATE LOCATION OF DRAINAGE SWALE
 - BERM BOUNDARY

(SAMPLE DESIGNATIONS FROM SOIL BORINGS AND MONITORING WELL BORINGS ARE SHOWN IN PARENTHESIS TO THE LEFT)

	NORTHING	EASTING	EL	TOC	TOW
MONITORING WELL-1	986840.19	739802.90	635.14	637.16	637.01
MONITORING WELL-2	986779.02	739393.06	624.83	626.82	626.59
MONITORING WELL-3	987014.26	739409.59	625.82	627.94	627.69

1 STORY CONC. BLDG. #2302

NORTHING	EASTING	ELEVATION
986742.65	739576.34	638.41
986806.36	739617.89	645.53
986858.49	739618.57	642.63
986908.17	739727.19	655.38
987006.16	739727.42	658.05
987097.43	739717.64	655.72
987117.93	739611.31	644.32
987032.12	739502.32	628.58
986969.76	739505.42	629.34
986920.24	739508.82	629.06
987032.09	739562.69	628.53
986972.61	739566.05	628.41
986924.62	739568.07	628.33
987035.25	739614.74	628.51
986975.51	739623.87	628.55
986927.09	739623.04	628.54
987019.06	739685.24	634.93
986930.13	739694.64	635.21
987069.04	739602.83	628.25
987065.73	739541.90	628.73
987066.96	739441.84	626.06
987068.18	739399.02	625.41
986886.15	739609.36	629.56
986883.03	739552.69	629.51
986850.87	739440.69	625.68
986837.04	739417.47	625.53
986800.60	739524.75	628.50
986768.66	739563.27	628.68
986806.08	739559.10	627.42
986825.83	739551.68	628.16
986810.35	739582.45	630.53
986942 43	739691.63	630.60
986991 70	739686 37	631.45
987037.28	739685 71	631.77
986849 64	730438 27	624.97
086855.07	730462.40	625.26
9000000,07	739402.40	620.12
097067.57	730545 70	609 77
30/00/.03	739545.70	628.40
9009/7.46	739269.81	028,48
986916.61	739612.71	627.65
	140667723	627.65
	NORTHING 986742.65 986806.36 986806.36 986806.36 986806.36 986908.17 987006.16 987097.43 987032.12 986969.76 986920.24 986920.24 986920.24 986920.24 986972.61 986927.09 986972.61 986975.51 986975.51 986975.51 986930.13 987065.73 986930.13 987065.73 98683.03 987065.73 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 986883.03 9868410.35	NORTHINGEASTING986742.65739576.34986806.36739617.89986806.36739618.57986908.17739727.19987006.16739727.42987097.43739717.64987032.12739501.31987032.12739502.32986920.24739508.82987032.09739566.05986920.24739566.05986920.24739568.07986920.24739568.07986927.01739623.04987035.25739614.74986927.09739623.04987069.04739623.04987069.04739602.83987065.7373964.64987066.96739441.84987068.1873939.02986883.03739552.69986850.87739440.69986850.87739440.69986850.87739551.68986883.03739551.68986810.35739551.68986810.35739582.45986810.35739582.45986825.83739551.68986810.35739582.45986810.35739582.45986810.35739582.45986810.35739582.4598685.07739582.4598685.08739551.6898685.07739582.4598685.07739582.4598685.07739582.4598685.07739582.4598685.07739582.4598685.07739582.4598685.08739568.3798685.07739568.3798685.07739

LEGEND

		DRAINAGE SWALE		
		CHAIN LINK FENCE		
GP	Δ	GUARD POSTS		
ST MH	0	STORM MANHOLE		
UP	ø	UTILITY POLE		
UPL	0-1	UTILITY POLE W/ LIGHT		
OHW		OVERHEAD WIRES		
CONC		CONCRETE		
	9	MONITORING WELL		
122B-CS008 41.1		CONFIRMATION SAMPLE LOCATION FOR TREATABILITY STUDY (JAN/FEB 2004) WITH LEAD CONCENTRATION (ppm) SEE NOTE BELOW		
PSB-1 13.2J O		SAMPLE LOCATION FROM JUNE/JUL 2002 SAMPLING WITH LEAD CONCENTRATION (ppm) SEE NOTE BELOW		

EXCAVATION AREA 2-3' BELOW GRADE SURFACE EXCAVATION AREA 6" BELOW GRADE SURFACE EXCAVATION AREA 3" BELOW GRADE SURFACE/ STOCKPILE SCREENING AREA

NOTES:

CONCENTRATIONS IN GRAY AND ITALICS DENOTE RESULTS THAT ARE NO LONGER CHARACTERISTIC OF SITE CONDITIONS DUE TO EXCAVATION OF THAT AREA DURING THE TREATABILITY STUDY (JAN/FEB 2004)

LOCATION IDS IN GRAY AND ITALICS DENOTE SAMPLE LOCATIONS THAT WERE EXCAVATED DURING THE TREATABILITY STUDY (JAN/FEB 2004) AND NO LONGER EXIST.

AVERAGE CONCENTRATIONS ARE PRESENTED FOR SAMPLE LOCATION WITH DUPLICATE SAMPLES.

MONITORING WELL-1

FIGURE 3.1

SENECA ARMY DEPOT ROMULUS, NEW YORK

ALL SURFACE SOIL ANALYTICAL RESULTS FOR LEAD (0-6" BELOW GROUND SURFACE)

SCALE: 1"=40'

80

PARSONS 290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

	NORTHING	EASTING	EL	TOC	TOW
MONITORING WELL-1	986840.19	739802.90	635.14	637.16	637.01
MONITORING WELL-2	986779.02	739393.06	624.83	626.82	626.59
MONITORING WELL-3	987014.26	739409.59	625.82	627.94	627.69

1 STORY CONC. BLDG. #2302

	NORTHING	EASTING	ELEVATION
PSB-1	986742.65	739576.34	638.41
PSB-2	986806,36	739617.89	645.53
PSB-3	986858.49	739618.57	642.63
PSB-4	986908.17	739727.19	655,38
PSB-5	987006.16	739727.42	658.05
PSB-6	987097.43	739717.64	655.72
PSB-7	987117.93	739611.31	644.32
SS122B-1001-A,B	987032.12	739502.32	628.58
SS122B-1002-A,B	986969.76	739505.42	629.34
SS122B-1003-A,B	986920.24	739508.82	629.06
SS122B-1004-A,B	987032.09	739562.69	628.53
SS122B-1005-A,B	986972.61	739566.05	628.41
SS122B-1006-A,B	986924.62	739568.07	628.33
SS122B-1007-A,B	987035.25	739614.74	628.51
SS122B-1008-A,B	986975.51	739623.87	628.55
SS122B-1009-A,B	986927.09	739623.04	628.54
SS122B-1010-A,B	987019.06	739685.24	634.93
SS122B-1011-A,B	986930.13	739694.64	635.21
SS122B-1012-A,B	987069.04	739602.83	628.25
SS122B-1013-A,B	987065.73	739541.90	628.73
SS122B-1014-A,B	987066.96	739441.84	626.06
SS122B-1015-A,B	987068.18	739399.02	625.41
SS122B-1016-A,B	986886.15	739609.36	629.56
SS122B-1017-A,B	986883.03	739552.69	629.51
SS122B-1018-A,B	986850.87	739440.69	625.68
SS122B-1019-A,B	986837.04	739417.47	625.53
SS122B-1020-A,B	986800.60	739524.75	628.50
SS122B-1021-A,B	986768.66	739563.27	628.68
SS122B-1022-A,B	986806.08	739559.10	627.42
SS122B-1023-A,B	986825.83	739551.68	628.16
SS122B-1024-A,B	986810.35	739582.45	630.53
CS-001A,1	986942.43	739691.63	630.60
CS-002	986991.70	739686.37	631.45
CS-003	987037.28	739685.71	631.77
CS-004	986849.64	739438.27	624.97
CS-005A,5	986855.07	739462.40	625.26
CS-006	987048.07	739274.16	620.12
CS-007	987067.53	739545.70	628.77
CS-008	986977.46	739569.81	628.48
CS-009A,9	986916.61	739612.71	627.65
CS-010A,10	987033.32	739657.23	627.65
CS-012*	987085.64	739574.41	631.50

* LOCATION APPROXIMATED.

LEGEND

		DRAINAGE SWALE		
		CHAIN LINK FENCE		
GP	Δ	GUARD POSTS		
ST MH	0	STORM MANHOLE		
UP	ø	UTILITY POLE		
UPL	0-1	UTILITY POLE W/ LIGHT		
OHW		OVERHEAD WIRES		
CONC		CONCRETE		
	9	MONITORING WELL		
122B-CS008 41.1		CONFIRMATION SAMPLE LOCATION FOR TREATABILITY STUDY (JAN/FEB 2004) WITH LEAD CONCENTRATION (ppm) SEE NOTE BELOW		
PSB-1 13.2J O		SAMPLE LOCATION FROM JUNE/JULY 2002 SAMPLING WITH LEAD CONCENTRATION (ppm) SEE NOTE BELOW		

EXCAVATION AREA 2-3' BELOW GRADE SURFACE EXCAVATION AREA 6" BELOW GRADE SURFACE EXCAVATION AREA 3" BELOW GRADE SURFACE/ STOCKPILE SCREENING AREA

NOTES:

LOCATIONS AND CONCENTRATIONS ASSOCIATED WITH SOILS EXCAVATED DURING THE TREATABILITY STUDY ARE NO LONGER EXIST AND NOT PRESENTED.

AVERAGE CONCENTRATIONS ARE PRESENTED FOR SAMPLE LOCATION WITH DUPLICATE SAMPLES.

MONITORING WELL-1

FIGURE 3.2

SENECA ARMY DEPOT ROMULUS, NEW YORK

FINAL SURFACE SOIL CONDITIONS ANALYTICAL RESULTS FOR LEAD (0-6" BELOW GROUND SURFACE)

40 20 0 40

SCALE: 1"=40'

80

PARSONS 290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

PARSONS

TABLE 2.1

SOIL AND GROUNDWATER SAMPLES COLLECTED AND ANALYTICAL METHODS SENECA AIRFIELD SMALL ARMS RANGE

				Total			
	Depth	Total Lead	TAL Metals	Organic	TCLP (SW-846	SPLP (SW-846	
Sample No.	(ft bgs)	(SW-846)	(SW-846)	Carbon	Method 1311)	Method 1312)	
Hand Auger Soil Samples							
1001A	0 to 0.5	Х	X	Г Х			
1001B	1.5 to 2	Х					
1002A	0 to 0.5	Х		X			
1002B	1.5 to 2	Х	Х		Х	Х	
1003A	0 to 0.5	Х		Х			
1003B	1.5 to 2	Х					
1004A	0 to 0.5	Х					
1004B	1.5 to 2	Х		Х			
1005A	0 to 0.5	Х					
1005B	1.5 to 2	Х		Х			
1006A	0 to 0.5	Х					
1006B	1.5 to 2	Х		Х			
1007A	0 to 0.5	Х					
1007B	1.5 to 2	Х		X			
1008A	0 to 0.5	Х	Х				
1008B	1.5 to 2	Х		Х			
1009A	0 to 0.5	Х	Х				
1009B	1.5 to 2	Х		Х			
1010A	0 to 0.5	Х	Х	Х	Х	Х	
1010A DUP	0 to 0.5	Х					
1010B	1.5 to 2	Х		Х			
1011A	0 to 0.5	Х	Х		Х	Х	
1011A DUP	0 to 0.5	Х					
1011B	1.5 to 2	Х	Х	Х			
1012A	0 to 0.5	Х					
1012B	1.5 to 2	Х		X			
1013A	0 to 0.5	Х	Х				
1013B	1.5 to 2	Х	Х	Х	Х	Х	
1014A	0 to 0.5	Х					
1014B	1.5 to 2	Х		X			
1015A	0 to 0.5	Х	Х	Х	Х	Х	
1015B	1.5 to 2	X		Х			
1016A	0 to 0.5	X					
1016B	1.5 to 2	X		X			
1017A	0 to 0.5	X					
1017B	1.5 to 2	X					
1018A	0 to 0.5	X	X		Х	Х	
1018B	1.5 to 2	X		X			
1019A	0 to 0.5	X					
1019B	1.5 to 2	X					
1020A	0 to 0.5	X	Х	X			
1020B	1.5 to 2	X		X			
1021A	0 to 0.5	X					
1021B	1.5 to 2	X		X			
1022A	0 to 0.5	X					
PARSONS

TABLE 2.1

SOIL AND GROUNDWATER SAMPLES COLLECTED AND ANALYTICAL METHODS SENECA AIRFIELD SMALL ARMS RANGE

				Total		
	Depth	Total Lead	TAL Metals	Organic	TCLP (SW-846	SPLP (SW-846
Sample No.	(ft bgs)	(SW-846)	(SW-846)	Carbon	Method 1311)	Method 1312)
1022B	1.5 to 2	X		Х	,	· · · ·
1023A	0 to 0.5	Х				
1023B	1.5 to 2	Х				
1024A	0 to 0.5	Х	Х	Х	Х	Х
1024B	1.5 to 2	Х	Х	Х		
1025A	0 to 0.5	Х	Х			
		Berm	Borehole Soil S	amples		
PSB-2				_		
1026	2.0 to 4	Х	Х			
1027	6. to 8	Х		Х		
1028	12.0 to 14	Х				
1029	22 to 24	Х		X		
PSB-3						-
1030	0 to 2	Х	Х		Х	Х
1031	10. to 12	Х	Х	Х	Х	Х
1032	16 to 18	Х		X		
1033MS	16 to 18	Х		X		
PSB-7						
1034	4 to 6	Х				
1035	6 to 8	Х		Х		
1036	14 to 16	Х	Х			
1037	18 to 20	Χ		X		
1038MS	18 to 20	Х				
1039MSD	18 to 20	Х				
PSB-4						
1043	4 to 6	X				
1044	6 to 8	X		X		
1045	16 to 18	Χ				
1046	20 to 22	Χ	Х	X	Χ	Х
1047	28 to 30	Х				
PSB-5				-		
1048	2 to 4	X		X		
1049	10 to 12	X				
1050	12 to 14	X		X		
1051	18 to 20	X				
1052	28 to 30	Х				
PSB-6						
1053	28 to 30	Χ		X		
1054	2 to 4	X				
1055	8 to 10	X		X		
1056MS	8 to 10	X				
1057MSD	8 to 10	Х				
1058	12 to 14	Х				
1059	22 to 24	X	Х	X	X	Х
1060	28 to 28.8	Х				

PARSONS

TABLE 2.1

SOIL AND GROUNDWATER SAMPLES COLLECTED AND ANALYTICAL METHODS SENECA AIRFIELD SMALL ARMS RANGE

				Total		
	Depth	Total Lead	TAL Metals	Organic	TCLP (SW-846	SPLP (SW-846
Sample No.	(ft bgs)	(SW-846)	(SW-846)	Carbon	Method 1311)	Method 1312)
PSB-1						
1061	0 to 2	Х		Х		
1062	8. to 10	Х				
1063	14 to 16	Х	Х	Х		
		Monit	toring Well Soil S	amples		
1040	12 to 14	Х	Х			
1041	14 to 16	Х	Х			
1042	12 to 14	Х	Х		Х	Х
		Confirm	ation Surface So	il Samples		
CS001A	0 to 0.5	Х				
CS002	0 to 0.5	Х				
CS003	0 to 0.5	Х				
CS004	0 to 0.5	Х				
CS005A	0 to 0.5	Х				
CS006	0 to 0.5	Х				
CS007	0 to 0.5	Х				
CS008	0 to 0.5	Х				
CS009A	0 to 0.5	Х				
CS010A	0 to 0.5	Х				
CS012	0 to 0.5	Х				
		Monitorin	g Well Groundwa	ter Sample	es s	
2000		Х	Х			
2001		X	X			
2004		Х	Х			
2005		Х	Х			

Note: Total organic carbon was measured using the Lloyd Kahn Method consistent with the work plan.

bgs - below ground surface

SPLP - Synthetic Characteristic Leaching Procedure

TAL - Target Analyte List

TCLP - Toxicity Characteristic Leaching Procedure

TABLE 2.2

GROUNDWATER LEVELS AT SHALLOW MONITORING WELLS (MWs) SENECA AIRFIELD SMALL ARMS RANGE

	Surveyed TOC Elevation, feet above mean sea level	July 22, 2002 Status Groundwater Level, feet below TOC	July 22, 2002 Static Groundwater Elevation, feet above mean sea level
MW-1	637.16	7.02	630.14
MW-2	626.82	7.38	619.44
MW-3	627.94	6.44	621.50

Notes:

TOC - top of casing

Water levels were also recorded on July 11 and July 24, 2002 (See Appendix A).

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								MW-1	MW-2	MW-3	PSB-1
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1040	122B-1041	122B-1042	122B-1061
Sample Depth TOP								12	14	12	0
Sample Depth BOT								14	16	14	2
Sample Date								7/8/02	7/9/02	7/9/02	7/11/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	13500 ົ໌	11800 ໌	14200	()
Antimony	MG/KG	670	50%	5.9	2	13	26	1.2 UJ	1.4 UJ	1.5 UJ	
Arsenic	MG/KG	84.6	100%	8.2	2	26	26	3.7	6 J	3.3 J	
Barium	MG/KG	129	100%	300	0	26	26	97.1	23.6 J	51.9	
Beryllium	MG/KG	0.81	100%	1.1	0	26	26	0.56 J	0.42 J	0.62 J	
Cadmium	MG/KG	0.9	65%	2.3	0	17	26	0.18 J	0.25 J	0.25 J	
Calcium	MG/KG	191000	100%	121000	1	26	26	52100	68500	47100	
Chromium	MG/KG	26.8	100%	29.6	0	26	26	23.9 J	21.4 J	26.8 J	
Cobalt	MG/KG	13.2	100%	30	0	26	26	10.4	10.7	13.2	
Copper	MG/KG	5690	100%	33	5	26	26	17 J	15.3 J	19.9 J	
Iron	MG/KG	28700	100%	36500	0	26	26	27600	26000	28700	
Lead	MG/KG	88700	100%	400	6	85	85	6.5	8.5 J	10.6 J	13.2 J
Magnesium	MG/KG	24100	100%	21500	1	26	26	9710	8000	8650	
Manganese	MG/KG	789	100%	1060	0	26	26	457	608	519	
Mercury	MG/KG	0.078	8%	0.1	0	2	26	0.05 U	0.053 U	0.046 U	
Nickel	MG/KG	40.4	100%	49	0	26	26	35.9	32	40.4	
Potassium	MG/KG	2350	100%	2380	0	26	26	2160	1570	2240	
Selenium	MG/KG	1.7	35%	2	0	9	26	1.3 J	1.4 J	1.6 J	
Silver	MG/KG	3.4	8%	0.75	1	2	26	0.53 U	0.64 U	0.66 U	
Sodium	MG/KG	388	35%	172	3	9	26	91.6 U	110 U	113 U	
Thallium	MG/KG	1.7	15%	0.7	2	4	26	0.82 U	0.98 U	1 U	
Vanadium	MG/KG	25.3	100%	150	0	26	26	18.4	15.7	19.1	
Zinc	MG/KG	630	100%	110	1	26	26	52 J	63.6 J	103 J	
Total Organic Carbon	MG/KG	56500	100%		0	43	43				24500 J

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-1	PSB-1	PSB-2	PSB-2
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1062	122B-1063	122B-1026	122B-1027
Sample Depth TOP								8	14	2	6
Sample Depth BOT								10	16	4	8
Sample Date								7/11/02	7/11/02	7/1/02	7/1/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		13700	13900	
Antimony	MG/KG	670	50%	5.9	2	13	26		1.4 UJ	1.3 UJ	
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		1.9 J	2	
Barium	MG/KG	129	100%	300	0	26	26		84.7	83.2	
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.6 J	0.66 J	
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.17 J	0.16 U	
Calcium	MG/KG	191000	100%	121000	1	26	26		20400	26300	
Chromium	MG/KG	26.8	100%	29.6	0	26	26		21.1 J	20.5	
Cobalt	MG/KG	13.2	100%	30	0	26	26		9.5 J	9.4 J	
Copper	MG/KG	5690	100%	33	5	26	26		23.4 J	22 J	
Iron	MG/KG	28700	100%	36500	0	26	26		24800	23900	
Lead	MG/KG	88700	100%	400	6	85	85	11.7 J	11.4 J	11.3 J	8.4 J
Magnesium	MG/KG	24100	100%	21500	1	26	26		7190	6890	
Manganese	MG/KG	789	100%	1060	0	26	26		572	605	
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.051 U	0.046 U	
Nickel	MG/KG	40.4	100%	49	0	26	26		30.2	26.3	
Potassium	MG/KG	2350	100%	2380	0	26	26		1650	1990	
Selenium	MG/KG	1.7	35%	2	0	9	26		1.3	0.57 U	
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.62 U	0.59 U	
Sodium	MG/KG	388	35%	172	3	9	26		107 U	156 J	
Thallium	MG/KG	1.7	15%	0.7	2	4	26		0.96 U	0.91 U	
Vanadium	MG/KG	25.3	100%	150	0	26	26		20	20.7	
Zinc	MG/KG	630	100%	110	1	26	26		76.5 J	74.1	
Total Organic Carbon	MG/KG	56500	100%		0	43	43		9630		10400 J

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-2	PSB-2	PSB-3	PSB-3
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1028	122B-1029	122B-1030	122B-1031
Sample Depth TOP								12	22	0	10
Sample Depth BOT								14	24	2	12
Sample Date								7/1/02	7/1/02	7/2/02	7/2/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	. ,	. ,	14500	15000
Antimony	MG/KG	670	50%	5.9	2	13	26			1.4 UJ	1.6 UJ
Arsenic	MG/KG	84.6	100%	8.2	2	26	26			2.6 J	3.3 J
Barium	MG/KG	129	100%	300	0	26	26			95.3	92.8
Beryllium	MG/KG	0.81	100%	1.1	0	26	26			0.68 J	0.75 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26			0.22 J	0.19 U
Calcium	MG/KG	191000	100%	121000	1	26	26			33400	30200
Chromium	MG/KG	26.8	100%	29.6	0	26	26			23.5	22.3
Cobalt	MG/KG	13.2	100%	30	0	26	26			9.9 J	10 J
Copper	MG/KG	5690	100%	33	5	26	26			28.7 J	29.5 J
Iron	MG/KG	28700	100%	36500	0	26	26			28600	26500
Lead	MG/KG	88700	100%	400	6	85	85	9.7 J	11.4 J	212 J	145 J
Magnesium	MG/KG	24100	100%	21500	1	26	26			8220	7040
Manganese	MG/KG	789	100%	1060	0	26	26			510	604
Mercury	MG/KG	0.078	8%	0.1	0	2	26			0.047 J	0.041 U
Nickel	MG/KG	40.4	100%	49	0	26	26			27.3	29.2
Potassium	MG/KG	2350	100%	2380	0	26	26			1760	2160
Selenium	MG/KG	1.7	35%	2	0	9	26			0.59 U	0.69 U
Silver	MG/KG	3.4	8%	0.75	1	2	26			0.61 U	0.71 U
Sodium	MG/KG	388	35%	172	3	9	26			106 U	123 U
Thallium	MG/KG	1.7	15%	0.7	2	4	26			0.94 U	1.1 U
Vanadium	MG/KG	25.3	100%	150	0	26	26			23.4	23.7
Zinc	MG/KG	630	100%	110	1	26	26			70.9	78.6
Total Organic Carbon	MG/KG	56500	100%		0	43	43		4960 J		36400

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-3	PSB-3	PSB-4	PSB-4
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1032	122B-1033	122B-1043	122B-1044
Sample Depth TOP								16	16	4	6
Sample Depth BOT								18	18	6	8
Sample Date								7/2/02	7/2/02	7/10/02	7/10/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	()	()	()	
Antimony	MG/KG	670	50%	5.9	2	13	26				
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				
Barium	MG/KG	129	100%	300	0	26	26				
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				
Calcium	MG/KG	191000	100%	121000	1	26	26				
Chromium	MG/KG	26.8	100%	29.6	0	26	26				
Cobalt	MG/KG	13.2	100%	30	0	26	26				
Copper	MG/KG	5690	100%	33	5	26	26				
Iron	MG/KG	28700	100%	36500	0	26	26				
Lead	MG/KG	88700	100%	400	6	85	85	7.9 J	8.3 J	10.8 J	10.6 J
Magnesium	MG/KG	24100	100%	21500	1	26	26				
Manganese	MG/KG	789	100%	1060	0	26	26				
Mercury	MG/KG	0.078	8%	0.1	0	2	26				
Nickel	MG/KG	40.4	100%	49	0	26	26				
Potassium	MG/KG	2350	100%	2380	0	26	26				
Selenium	MG/KG	1.7	35%	2	0	9	26				
Silver	MG/KG	3.4	8%	0.75	1	2	26				
Sodium	MG/KG	388	35%	172	3	9	26				
Thallium	MG/KG	1.7	15%	0.7	2	4	26				
Vanadium	MG/KG	25.3	100%	150	0	26	26				
Zinc	MG/KG	630	100%	110	1	26	26				
Total Organic Carbon	MG/KG	56500	100%		0	43	43	4190 J	3300 J		5720

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-4	PSB-4	PSB-4	PSB-5
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1045	122B-1046	122B-1047	122B-1048
Sample Depth TOP								16	20	28	2
Sample Depth BOT								18	22	30	4
Sample Date								7/10/02	7/10/02	7/10/02	7/10/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		14100		
Antimony	MG/KG	670	50%	5.9	2	13	26		1.6 UJ		
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		2.6 J		
Barium	MG/KG	129	100%	300	0	26	26		95.1		
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.66 J		
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.2 J		
Calcium	MG/KG	191000	100%	121000	1	26	26		14600		
Chromium	MG/KG	26.8	100%	29.6	0	26	26		22.1 J		
Cobalt	MG/KG	13.2	100%	30	0	26	26		9.3 J		
Copper	MG/KG	5690	100%	33	5	26	26		21.6 J		
Iron	MG/KG	28700	100%	36500	0	26	26		23200		
Lead	MG/KG	88700	100%	400	6	85	85	6.4 J	18.8 J	6.2 J	5.2 J
Magnesium	MG/KG	24100	100%	21500	1	26	26		6110		
Manganese	MG/KG	789	100%	1060	0	26	26		539		
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.063 U		
Nickel	MG/KG	40.4	100%	49	0	26	26		26.8		
Potassium	MG/KG	2350	100%	2380	0	26	26		2310		
Selenium	MG/KG	1.7	35%	2	0	9	26		1.7 J		
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.74 U		
Sodium	MG/KG	388	35%	172	3	9	26		127 U		
Thallium	MG/KG	1.7	15%	0.7	2	4	26		1.1 U		
Vanadium	MG/KG	25.3	100%	150	0	26	26		22.8		
Zinc	MG/KG	630	100%	110	1	26	26		77.3 J		
Total Organic Carbon	MG/KG	56500	100%		0	43	43		27400		12600 J

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-5	PSB-5	PSB-5	PSB-5
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1049	122B-1050	122B-1051	122B-1052
Sample Depth TOP								10	12	18	28
Sample Depth BOT								12	14	20	30
Sample Date								7/10/02	7/10/02	7/10/02	7/10/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				
Antimony	MG/KG	670	50%	5.9	2	13	26				
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				
Barium	MG/KG	129	100%	300	0	26	26				
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				
Calcium	MG/KG	191000	100%	121000	1	26	26				
Chromium	MG/KG	26.8	100%	29.6	0	26	26				
Cobalt	MG/KG	13.2	100%	30	0	26	26				
Copper	MG/KG	5690	100%	33	5	26	26				
Iron	MG/KG	28700	100%	36500	0	26	26				
Lead	MG/KG	88700	100%	400	6	85	85	8.1 J	10.2 J	9.7 J	7.6 J
Magnesium	MG/KG	24100	100%	21500	1	26	26				
Manganese	MG/KG	789	100%	1060	0	26	26				
Mercury	MG/KG	0.078	8%	0.1	0	2	26				
Nickel	MG/KG	40.4	100%	49	0	26	26				
Potassium	MG/KG	2350	100%	2380	0	26	26				
Selenium	MG/KG	1.7	35%	2	0	9	26				
Silver	MG/KG	3.4	8%	0.75	1	2	26				
Sodium	MG/KG	388	35%	172	3	9	26				
Thallium	MG/KG	1.7	15%	0.7	2	4	26				
Vanadium	MG/KG	25.3	100%	150	0	26	26				
Zinc	MG/KG	630	100%	110	1	26	26				
Total Organic Carbon	MG/KG	56500	100%		0	43	43		8240 J		13000 J

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc ID								PSB-5	PSB-6	PSB-6	PSB-6
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1053	122B-1054	122B-1055	122B-1057RFP
Sample Depth TOP								28	2	8	8
Sample Depth BOT								30	4	10	10
Sample Date								7/10/02	7/11/02	7/11/02	7/11/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q) Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	9680			,
Antimony	MG/KG	670	50%	5.9	2	13	26	1.3 UJ			
Arsenic	MG/KG	84.6	100%	8.2	2	26	26	2.3 J			
Barium	MG/KG	129	100%	300	0	26	26	86.9			
Bervllium	MG/KG	0.81	100%	1.1	0	26	26	0.37 J			
Cadmium	MG/KG	0.9	65%	2.3	0	17	26	0.16 U			
Calcium	MG/KG	191000	100%	121000	1	26	26	60400			
Chromium	MG/KG	26.8	100%	29.6	0	26	26	18.3 J			
Cobalt	MG/KG	13.2	100%	30	0	26	26	6.9 J			
Copper	MG/KG	5690	100%	33	5	26	26	18.1 J			
Iron	MG/KG	28700	100%	36500	0	26	26	18800			
Lead	MG/KG	88700	100%	400	6	85	85	10.8 J	9.1 J	10.1 J	
Magnesium	MG/KG	24100	100%	21500	1	26	26	15600			
Manganese	MG/KG	789	100%	1060	0	26	26	493			
Mercury	MG/KG	0.078	8%	0.1	0	2	26	0.055 U			
Nickel	MG/KG	40.4	100%	49	0	26	26	22.8			
Potassium	MG/KG	2350	100%	2380	0	26	26	1490			
Selenium	MG/KG	1.7	35%	2	0	9	26	1.3			
Silver	MG/KG	3.4	8%	0.75	1	2	26	0.61 U			
Sodium	MG/KG	388	35%	172	3	9	26	105 U			
Thallium	MG/KG	1.7	15%	0.7	2	4	26	0.93 U			
Vanadium	MG/KG	25.3	100%	150	0	26	26	16.1			
Zinc	MG/KG	630	100%	110	1	26	26	55 J			
Total Organic Carbon	MG/KG	56500	100%		0	43	43	15900 J		7770 J	9630

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

							SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
							PSB-6	PSB-6	PSB-6	PSB-7
							SOIL	SOIL	SOIL	SOIL
							122B-1058	122B-1059	122B-1060	122B-1034
							12	22	28	4
							14	24	28.8	6
							7/11/02	7/11/02	7/11/02	7/3/02
							SA	SA	SA	SA
		Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
	Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
MG/KG	15100	100%	19300	0	26	26		13400		
MG/KG	670	50%	5.9	2	13	26		1.7 UJ		
MG/KG	84.6	100%	8.2	2	26	26		3 J		
MG/KG	129	100%	300	0	26	26		104		
MG/KG	0.81	100%	1.1	0	26	26		0.64 J		
MG/KG	0.9	65%	2.3	0	17	26		0.34 J		
MG/KG	191000	100%	121000	1	26	26		21200		
MG/KG	26.8	100%	29.6	0	26	26		24.8 J		
MG/KG	13.2	100%	30	0	26	26		9.8 J		
MG/KG	5690	100%	33	5	26	26		24.3 J		
MG/KG	28700	100%	36500	0	26	26		25500		
MG/KG	88700	100%	400	6	85	85	11.8 J	24.3 J	12.5 J	10.8 J
MG/KG	24100	100%	21500	1	26	26		5960		
MG/KG	789	100%	1060	0	26	26		731		
MG/KG	0.078	8%	0.1	0	2	26		0.078 J		
MG/KG	40.4	100%	49	0	26	26		28.4		
MG/KG	2350	100%	2380	0	26	26		2350		
MG/KG	1.7	35%	2	0	9	26		1.7		
MG/KG	3.4	8%	0.75	1	2	26		0.79 U		
MG/KG	388	35%	172	3	9	26		167 J		
MG/KG	1.7	15%	0.7	2	4	26		1.2 U		
MG/KG	25.3	100%	150	0	26	26		21.7		
MG/KG	630	100%	110	1	26	26		85.5 J		
MG/KG	56500	100%		0	43	43		17100 J		
	Units MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	Maximum Units Value MG/KG 15100 MG/KG 670 MG/KG 646 MG/KG 129 MG/KG 0.81 MG/KG 0.81 MG/KG 191000 MG/KG 26.8 MG/KG 28700 MG/KG 28700 MG/KG 24100 MG/KG 24100 MG/KG 2350 MG/KG 3.4 MG/KG 3.4 MG/KG 3.88 MG/KG 1.7 MG/KG 3.4 MG/KG 3.4 MG/KG 3.4 MG/KG 3.5.3 MG/KG 5.5.3 MG/KG 6.30	Maximum of Units Value Detection MG/KG 15100 100% MG/KG 670 50% MG/KG 670 50% MG/KG 84.6 100% MG/KG 129 100% MG/KG 0.9 65% MG/KG 191000 100% MG/KG 26.8 100% MG/KG 28700 100% MG/KG 28100 100% MG/KG 28100 100% </td <td>Maximum of Criteria Units Value Detection Level MG/KG 15100 100% 19300 MG/KG 670 50% 5.9 MG/KG 670 50% 5.9 MG/KG 84.6 100% 8.2 MG/KG 129 100% 300 MG/KG 0.81 100% 1.1 MG/KG 0.9 65% 2.3 MG/KG 191000 100% 121000 MG/KG 26.8 100% 29.6 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 21500 MG/KG 28700 100% 21500 MG/KG 24100 100% 21500 MG/KG 2350 100% 2380 MG/KG 2350 100% 2380 <tr< td=""><td>Frequency Number Maximum of Criteria of Units Value Detection Level Exceedances MG/KG 15100 100% 19300 0 MG/KG 670 50% 5.9 2 MG/KG 84.6 100% 8.2 2 MG/KG 0.81 100% 3.00 0 MG/KG 0.9 65% 2.3 0 MG/KG 191000 100% 121000 1 MG/KG 13.2 100% 30 0 MG/KG 26.8 100% 23.6 0 MG/KG 13.2 100% 30 0 MG/KG 28700 100% 33 5 MG/KG 28700 100% 36500 0 MG/KG 28700 100% 21500 1 MG/KG 24100 100% 21500 1 MG/KG 24100 10</td><td>Maximum of Criteria of of Units Value Detection Level Exceedances Detected MG/KG 15100 100% 19300 0 26 MG/KG 670 50% 5.9 2 13 MG/KG 84.6 100% 8.2 2 26 MG/KG 129 100% 300 0 26 MG/KG 0.81 100% 1.1 0 26 MG/KG 191000 100% 121000 1 26 MG/KG 191000 100% 2.3 0 17 MG/KG 191000 100% 121000 1 26 MG/KG 13.2 100% 33 5 26 MG/KG 13.2 100% 33 5 26 MG/KG 28700 100% 265 26 26 26 MG/KG 28700 100% 21500</td><td>Maximum of Number Number Number Minite Value Detection Level Exceedances Detected Collected MG/KG 15100 100% 19300 0 26 26 MG/KG 670 50% 5.9 2 13 26 MG/KG 129 100% 8.2 2 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 191000 100% 1.1 0 26 26 MG/KG 191000 100% 23.5 26 26 26 MG/KG 13.2 100% 30 0 26 26 MG/KG 28700 100% 33 5 26 26 MG/KG 8870</td><td>NumberNumberNumberNumberMaximumofNumberNumberNamerNumberNamerNamerNamer1228-103NamerNamerNamer1228-103NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1239NamerNamerNamer1249NamerNamerNamer1249NamerNamerNamer1249N</td><td>Karner Number Number Sead-122B SEAD-122B SEAD-122B Value Value</td><td>Karine SEAD-122B SEAD-122B SEAD-122B SEAD-122B PSB-6 PSB-6 PSB-6 PSB-6 PSB-6 SOIL SOIL</td></tr<></td>	Maximum of Criteria Units Value Detection Level MG/KG 15100 100% 19300 MG/KG 670 50% 5.9 MG/KG 670 50% 5.9 MG/KG 84.6 100% 8.2 MG/KG 129 100% 300 MG/KG 0.81 100% 1.1 MG/KG 0.9 65% 2.3 MG/KG 191000 100% 121000 MG/KG 26.8 100% 29.6 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 21500 MG/KG 28700 100% 21500 MG/KG 24100 100% 21500 MG/KG 2350 100% 2380 MG/KG 2350 100% 2380 <tr< td=""><td>Frequency Number Maximum of Criteria of Units Value Detection Level Exceedances MG/KG 15100 100% 19300 0 MG/KG 670 50% 5.9 2 MG/KG 84.6 100% 8.2 2 MG/KG 0.81 100% 3.00 0 MG/KG 0.9 65% 2.3 0 MG/KG 191000 100% 121000 1 MG/KG 13.2 100% 30 0 MG/KG 26.8 100% 23.6 0 MG/KG 13.2 100% 30 0 MG/KG 28700 100% 33 5 MG/KG 28700 100% 36500 0 MG/KG 28700 100% 21500 1 MG/KG 24100 100% 21500 1 MG/KG 24100 10</td><td>Maximum of Criteria of of Units Value Detection Level Exceedances Detected MG/KG 15100 100% 19300 0 26 MG/KG 670 50% 5.9 2 13 MG/KG 84.6 100% 8.2 2 26 MG/KG 129 100% 300 0 26 MG/KG 0.81 100% 1.1 0 26 MG/KG 191000 100% 121000 1 26 MG/KG 191000 100% 2.3 0 17 MG/KG 191000 100% 121000 1 26 MG/KG 13.2 100% 33 5 26 MG/KG 13.2 100% 33 5 26 MG/KG 28700 100% 265 26 26 26 MG/KG 28700 100% 21500</td><td>Maximum of Number Number Number Minite Value Detection Level Exceedances Detected Collected MG/KG 15100 100% 19300 0 26 26 MG/KG 670 50% 5.9 2 13 26 MG/KG 129 100% 8.2 2 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 191000 100% 1.1 0 26 26 MG/KG 191000 100% 23.5 26 26 26 MG/KG 13.2 100% 30 0 26 26 MG/KG 28700 100% 33 5 26 26 MG/KG 8870</td><td>NumberNumberNumberNumberMaximumofNumberNumberNamerNumberNamerNamerNamer1228-103NamerNamerNamer1228-103NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1239NamerNamerNamer1249NamerNamerNamer1249NamerNamerNamer1249N</td><td>Karner Number Number Sead-122B SEAD-122B SEAD-122B Value Value</td><td>Karine SEAD-122B SEAD-122B SEAD-122B SEAD-122B PSB-6 PSB-6 PSB-6 PSB-6 PSB-6 SOIL SOIL</td></tr<>	Frequency Number Maximum of Criteria of Units Value Detection Level Exceedances MG/KG 15100 100% 19300 0 MG/KG 670 50% 5.9 2 MG/KG 84.6 100% 8.2 2 MG/KG 0.81 100% 3.00 0 MG/KG 0.9 65% 2.3 0 MG/KG 191000 100% 121000 1 MG/KG 13.2 100% 30 0 MG/KG 26.8 100% 23.6 0 MG/KG 13.2 100% 30 0 MG/KG 28700 100% 33 5 MG/KG 28700 100% 36500 0 MG/KG 28700 100% 21500 1 MG/KG 24100 100% 21500 1 MG/KG 24100 10	Maximum of Criteria of of Units Value Detection Level Exceedances Detected MG/KG 15100 100% 19300 0 26 MG/KG 670 50% 5.9 2 13 MG/KG 84.6 100% 8.2 2 26 MG/KG 129 100% 300 0 26 MG/KG 0.81 100% 1.1 0 26 MG/KG 191000 100% 121000 1 26 MG/KG 191000 100% 2.3 0 17 MG/KG 191000 100% 121000 1 26 MG/KG 13.2 100% 33 5 26 MG/KG 13.2 100% 33 5 26 MG/KG 28700 100% 265 26 26 26 MG/KG 28700 100% 21500	Maximum of Number Number Number Minite Value Detection Level Exceedances Detected Collected MG/KG 15100 100% 19300 0 26 26 MG/KG 670 50% 5.9 2 13 26 MG/KG 129 100% 8.2 2 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 191000 100% 1.1 0 26 26 MG/KG 191000 100% 23.5 26 26 26 MG/KG 13.2 100% 30 0 26 26 MG/KG 28700 100% 33 5 26 26 MG/KG 8870	NumberNumberNumberNumberMaximumofNumberNumberNamerNumberNamerNamerNamer1228-103NamerNamerNamer1228-103NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1228-101NamerNamerNamer1239NamerNamerNamer1249NamerNamerNamer1249NamerNamerNamer1249N	Karner Number Number Sead-122B SEAD-122B SEAD-122B Value Value	Karine SEAD-122B SEAD-122B SEAD-122B SEAD-122B PSB-6 PSB-6 PSB-6 PSB-6 PSB-6 SOIL SOIL

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B SS122B-
Loc ID								PSB-7	PSB-7	PSB-7	1001-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1035	122B-1036	122B-1037	122B-1001A
Sample Depth TOP								6	14	18	0
Sample Depth BOT								8	16	20	0.5
Sample Date								7/3/02	7/3/02	7/3/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		15100		7630
Antimony	MG/KG	670	50%	5.9	2	13	26		1.5 UJ		4.9 J
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		1.8 J		4.8
Barium	MG/KG	129	100%	300	0	26	26		108		87.4
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.79 J		0.36 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.18 U		0.49 J
Calcium	MG/KG	191000	100%	121000	1	26	26		23100		66700
Chromium	MG/KG	26.8	100%	29.6	0	26	26		23.1		14.6
Cobalt	MG/KG	13.2	100%	30	0	26	26		10.1 J		5.9 J
Copper	MG/KG	5690	100%	33	5	26	26		22.6 J		71.5 J
Iron	MG/KG	28700	100%	36500	0	26	26		26000		15100
Lead	MG/KG	88700	100%	400	6	85	85	10.9 J	12.7 J	5.3 J	55.6
Magnesium	MG/KG	24100	100%	21500	1	26	26		6770		24100
Manganese	MG/KG	789	100%	1060	0	26	26		670		473
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.054 U		0.045 U
Nickel	MG/KG	40.4	100%	49	0	26	26		29.9		14.8
Potassium	MG/KG	2350	100%	2380	0	26	26		1890		1610
Selenium	MG/KG	1.7	35%	2	0	9	26		0.81 J		0.53 U
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.68 U		0.31 U
Sodium	MG/KG	388	35%	172	3	9	26		141 J		125 J
Thallium	MG/KG	1.7	15%	0.7	2	4	26		1 U		1.2 U
Vanadium	MG/KG	25.3	100%	150	0	26	26		23.2		12.6
Zinc	MG/KG	630	100%	110	1	26	26		74.9		57.3
Total Organic Carbon	MG/KG	56500	100%		0	43	43	13200		14600 J	17800

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1001-A,B	1002-A,B	1002-A,B	1003-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1001B	122B-1002A	122B-1002B	122B-1003A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26			10800	
Antimony	MG/KG	670	50%	5.9	2	13	26			0.74 J	
Arsenic	MG/KG	84.6	100%	8.2	2	26	26			4.1	
Barium	MG/KG	129	100%	300	0	26	26			84.3	
Beryllium	MG/KG	0.81	100%	1.1	0	26	26			0.57 J	
Cadmium	MG/KG	0.9	65%	2.3	0	17	26			0.55 J	
Calcium	MG/KG	191000	100%	121000	1	26	26			23600	
Chromium	MG/KG	26.8	100%	29.6	0	26	26			19.6	
Cobalt	MG/KG	13.2	100%	30	0	26	26			7.8 J	
Copper	MG/KG	5690	100%	33	5	26	26			27.8	
Iron	MG/KG	28700	100%	36500	0	26	26			19800	
Lead	MG/KG	88700	100%	400	6	85	85	7.8	11.8	47.7	16.6
Magnesium	MG/KG	24100	100%	21500	1	26	26			8770	
Manganese	MG/KG	789	100%	1060	0	26	26			576	
Mercury	MG/KG	0.078	8%	0.1	0	2	26			0.05 U	
Nickel	MG/KG	40.4	100%	49	0	26	26			18.5	
Potassium	MG/KG	2350	100%	2380	0	26	26			1690	
Selenium	MG/KG	1.7	35%	2	0	9	26			0.52 U	
Silver	MG/KG	3.4	8%	0.75	1	2	26			0.3 U	
Sodium	MG/KG	388	35%	172	3	9	26			343 J	
Thallium	MG/KG	1.7	15%	0.7	2	4	26			1.2 U	
Vanadium	MG/KG	25.3	100%	150	0	26	26			18.2	
Zinc	MG/KG	630	100%	110	1	26	26			62.4	
Total Organic Carbon	MG/KG	56500	100%		0	43	43		3930		6850 J
-											

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
								1003-A,B	1004-A,B	1004-A,B	1005-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1003B	122B-1004A	122B-1004B	122B-1005A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				
Antimony	MG/KG	670	50%	5.9	2	13	26				
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				
Barium	MG/KG	129	100%	300	0	26	26				
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				
Calcium	MG/KG	191000	100%	121000	1	26	26				
Chromium	MG/KG	26.8	100%	29.6	0	26	26				
Cobalt	MG/KG	13.2	100%	30	0	26	26				
Copper	MG/KG	5690	100%	33	5	26	26				
Iron	MG/KG	28700	100%	36500	0	26	26				
Lead	MG/KG	88700	100%	400	6	85	85	6.9	36.7	12.6	29.4
Magnesium	MG/KG	24100	100%	21500	1	26	26				
Manganese	MG/KG	789	100%	1060	0	26	26				
Mercury	MG/KG	0.078	8%	0.1	0	2	26				
Nickel	MG/KG	40.4	100%	49	0	26	26				
Potassium	MG/KG	2350	100%	2380	0	26	26				
Selenium	MG/KG	1.7	35%	2	0	9	26				
Silver	MG/KG	3.4	8%	0.75	1	2	26				
Sodium	MG/KG	388	35%	172	3	9	26				
Thallium	MG/KG	1.7	15%	0.7	2	4	26				
Vanadium	MG/KG	25.3	100%	150	0	26	26				
Zinc	MG/KG	630	100%	110	1	26	26				
Total Organic Carbon	MG/KG	56500	100%		0	43	43			23300	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1005-A,B	1006-A,B	1006-A,B	1007-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1005B	122B-1006A	122B-1006B	122B-1007A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				
Antimony	MG/KG	670	50%	5.9	2	13	26				
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				
Barium	MG/KG	129	100%	300	0	26	26				
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				
Calcium	MG/KG	191000	100%	121000	1	26	26				
Chromium	MG/KG	26.8	100%	29.6	0	26	26				
Cobalt	MG/KG	13.2	100%	30	0	26	26				
Copper	MG/KG	5690	100%	33	5	26	26				
Iron	MG/KG	28700	100%	36500	0	26	26				
Lead	MG/KG	88700	100%	400	6	85	85	9.9	22.8	11.3	31.2
Magnesium	MG/KG	24100	100%	21500	1	26	26				
Manganese	MG/KG	789	100%	1060	0	26	26				
Mercury	MG/KG	0.078	8%	0.1	0	2	26				
Nickel	MG/KG	40.4	100%	49	0	26	26				
Potassium	MG/KG	2350	100%	2380	0	26	26				
Selenium	MG/KG	1.7	35%	2	0	9	26				
Silver	MG/KG	3.4	8%	0.75	1	2	26				
Sodium	MG/KG	388	35%	172	3	9	26				
Thallium	MG/KG	1.7	15%	0.7	2	4	26				
Vanadium	MG/KG	25.3	100%	150	0	26	26				
Zinc	MG/KG	630	100%	110	1	26	26				
Total Organic Carbon	MG/KG	56500	100%		0	43	43	5480 J		7480	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1007-A,B	1008-A,B	1008-A,B	1009-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1007B	122B-1008A	122B-1008B	122B-1009A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		13100		12300
Antimony	MG/KG	670	50%	5.9	2	13	26		0.48 J		0.6 J
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		7.6		7.6
Barium	MG/KG	129	100%	300	0	26	26		63		83.5
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.61 J		0.62 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.48 J		0.54 J
Calcium	MG/KG	191000	100%	121000	1	26	26		59700		40500
Chromium	MG/KG	26.8	100%	29.6	0	26	26		23.5		22.1
Cobalt	MG/KG	13.2	100%	30	0	26	26		11		10.1 J
Copper	MG/KG	5690	100%	33	5	26	26		30.4 J		31.7 J
Iron	MG/KG	28700	100%	36500	0	26	26		26200		25500
Lead	MG/KG	88700	100%	400	6	85	85	9.8	56.6	12.5	98.7
Magnesium	MG/KG	24100	100%	21500	1	26	26		12600		8500
Manganese	MG/KG	789	100%	1060	0	26	26		501		656
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.044 U		0.041 U
Nickel	MG/KG	40.4	100%	49	0	26	26		34.9		31.1
Potassium	MG/KG	2350	100%	2380	0	26	26		1620		1620
Selenium	MG/KG	1.7	35%	2	0	9	26		0.55 U		0.58 U
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.32 U		0.33 U
Sodium	MG/KG	388	35%	172	3	9	26		182 J		388 J
Thallium	MG/KG	1.7	15%	0.7	2	4	26		1.3 U		1.3 U
Vanadium	MG/KG	25.3	100%	150	0	26	26		17		17.6
Zinc	MG/KG	630	100%	110	1	26	26		86.4		80.5
Total Organic Carbon	MG/KG	56500	100%		0	43	43	9500 J		9690	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

							SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
							SS122B-	SS122B-	SS122B-	SS122B-
							1009-A,B	1010-A,B	1010-A,B	1010-A,B
							SOIL	SOIL	SUIL	SOIL
							122B-1009B	122B-1010A 122	B-1010A-DUP	122B-1010B
							1.5	0	0	1.5
							2	0.5	0.5	2
							6/26/02	6/26/02	6/26/02	6/26/02
		_					SA	SA	SA	SA
		Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
	Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
MG/KG	15100	100%	19300	0	26	26		4490		
MG/KG	670	50%	5.9	2	13	26		109 J		
MG/KG	84.6	100%	8.2	2	26	26		6		
MG/KG	129	100%	300	0	26	26		25.4 J		
MG/KG	0.81	100%	1.1	0	26	26		0.19 J		
MG/KG	0.9	65%	2.3	0	17	26		0.28 J		
MG/KG	191000	100%	121000	1	26	26		35200		
MG/KG	26.8	100%	29.6	0	26	26		7.3		
MG/KG	13.2	100%	30	0	26	26		3.8 J		
MG/KG	5690	100%	33	5	26	26		28 J		
MG/KG	28700	100%	36500	0	26	26		9130		
MG/KG	88700	100%	400	6	85	85	25.7	13100 J	1540	14.7
MG/KG	24100	100%	21500	1	26	26		10900		
MG/KG	789	100%	1060	0	26	26		329		
MG/KG	0.078	8%	0.1	0	2	26		0.042 U		
MG/KG	40.4	100%	49	0	26	26		7.6 J		
MG/KG	2350	100%	2380	0	26	26		937 J		
MG/KG	1.7	35%	2	0	9	26		0.64 J		
MG/KG	3.4	8%	0.75	1	2	26		0.37 J		
MG/KG	388	35%	172	3	9	26		142 J		
MG/KG	1.7	15%	0.7	2	4	26		1.2 U		
MG/KG	25.3	100%	150	0	26	26		8.7 J		
MG/KG	630	100%	110	1	26	26		29.3		
MG/KG	56500	100%		0	43	43	6300 J	12800 J		1730 J
	Units MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	Maximum Units Value MG/KG 15100 MG/KG 670 MG/KG 646 MG/KG 129 MG/KG 0.81 MG/KG 0.9 MG/KG 191000 MG/KG 26.8 MG/KG 28700 MG/KG 38700 MG/KG 320 MG/KG 32350 MG/KG 3.4 MG/KG 3.4 MG/KG 3.88 MG/KG 4.30 MG/KG 5.530	Maximum of Units Value Detection MG/KG 15100 100% MG/KG 670 50% MG/KG 670 50% MG/KG 84.6 100% MG/KG 129 100% MG/KG 0.9 65% MG/KG 191000 100% MG/KG 26.8 100% MG/KG 28700 100% </td <td>Maximum of Criteria Units Value Detection Level MG/KG 15100 100% 19300 MG/KG 670 50% 5.9 MG/KG 84.6 100% 8.2 MG/KG 129 100% 300 MG/KG 0.81 100% 1.1 MG/KG 0.9 65% 2.3 MG/KG 191000 100% 121000 MG/KG 26.8 100% 29.6 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 21500 MG/KG 28700 100% 21500 MG/KG 2350 100% 400 MG/KG 2350 100% 2380 MG/KG 338 35% 172</td> <td>Frequency Number Maximum of Criteria of Units Value Detection Level Exceedances MG/KG 15100 100% 19300 0 MG/KG 670 50% 5.9 2 MG/KG 84.6 100% 8.2 2 MG/KG 0.9 65% 2.3 0 MG/KG 0.9 65% 2.3 0 MG/KG 191000 100% 121000 1 MG/KG 13.2 100% 30 0 MG/KG 28700 100% 33 5 MG/KG 28700 100% 33 5 MG/KG 28700 100% 400 6 MG/KG 28700 100% 21500 1 MG/KG 24100 100% 21500 1 MG/KG 2350 100% 2380 0 MG/KG 344 8%</td> <td>Maximum Frequency Number of Ditection Exceedances Detected MG/KG 15100 100% 19300 0 26 3 MG/KG 670 50% 5.9 2 13 MG/KG 84.6 100% 8.2 2 26 MG/KG 129 100% 300 0 26 MG/KG 0.81 100% 1.1 0 26 MG/KG 191000 100% 121000 1 26 MG/KG 13.2 100% 30 0 26 MG/KG 13.2 100% 33 5 26 MG/KG 13.2 100% 33 5 26 MG/KG 28700 100% 21500 1 26 MG/KG 28700 100% 21500 1</td> <td>Frequency Number Number Number of Samples Units Value Detection Level Exceedances Detected Collected MG/KG 15100 100% 19300 0 26 26 MG/KG 670 50% 5.9 2 13 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 0.81 100% 1.1 0 26 26 MG/KG 191000 100% 121000 1 26 26 MG/KG 13.2 100% 30 0 26 26 MG/KG 13.2 100% 33 5 26 26 MG/KG 88700 100% 36500 0 26 26 MG/KG 88700 100% 21500 1 26 26</td> <td>Karimum of Number Number Number Science Maximum of Criteria of of Times 75 ampler Units Value Detection Level Exceedances Detected Collected Value Value Value Value 0 26 26 36 MG/KG 1510 100% 19300 0 26 26 Value Value Value (Q) MG/KG 15100 100% 19300 0 26 26 Value (Q) MG/KG 670 50% 5.9 2 26 26 Value (Q) MG/KG 84.6 100% 8.2 2 26 26 26 30 11 26 26 30<td>Karinum of Criteria of Number Number Number Sizes <</td><td>k k</td></td>	Maximum of Criteria Units Value Detection Level MG/KG 15100 100% 19300 MG/KG 670 50% 5.9 MG/KG 84.6 100% 8.2 MG/KG 129 100% 300 MG/KG 0.81 100% 1.1 MG/KG 0.9 65% 2.3 MG/KG 191000 100% 121000 MG/KG 26.8 100% 29.6 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 30 MG/KG 28700 100% 21500 MG/KG 28700 100% 21500 MG/KG 2350 100% 400 MG/KG 2350 100% 2380 MG/KG 338 35% 172	Frequency Number Maximum of Criteria of Units Value Detection Level Exceedances MG/KG 15100 100% 19300 0 MG/KG 670 50% 5.9 2 MG/KG 84.6 100% 8.2 2 MG/KG 0.9 65% 2.3 0 MG/KG 0.9 65% 2.3 0 MG/KG 191000 100% 121000 1 MG/KG 13.2 100% 30 0 MG/KG 28700 100% 33 5 MG/KG 28700 100% 33 5 MG/KG 28700 100% 400 6 MG/KG 28700 100% 21500 1 MG/KG 24100 100% 21500 1 MG/KG 2350 100% 2380 0 MG/KG 344 8%	Maximum Frequency Number of Ditection Exceedances Detected MG/KG 15100 100% 19300 0 26 3 MG/KG 670 50% 5.9 2 13 MG/KG 84.6 100% 8.2 2 26 MG/KG 129 100% 300 0 26 MG/KG 0.81 100% 1.1 0 26 MG/KG 191000 100% 121000 1 26 MG/KG 13.2 100% 30 0 26 MG/KG 13.2 100% 33 5 26 MG/KG 13.2 100% 33 5 26 MG/KG 28700 100% 21500 1 26 MG/KG 28700 100% 21500 1	Frequency Number Number Number of Samples Units Value Detection Level Exceedances Detected Collected MG/KG 15100 100% 19300 0 26 26 MG/KG 670 50% 5.9 2 13 26 MG/KG 129 100% 300 0 26 26 MG/KG 129 100% 300 0 26 26 MG/KG 0.81 100% 1.1 0 26 26 MG/KG 191000 100% 121000 1 26 26 MG/KG 13.2 100% 30 0 26 26 MG/KG 13.2 100% 33 5 26 26 MG/KG 88700 100% 36500 0 26 26 MG/KG 88700 100% 21500 1 26 26	Karimum of Number Number Number Science Maximum of Criteria of of Times 75 ampler Units Value Detection Level Exceedances Detected Collected Value Value Value Value 0 26 26 36 MG/KG 1510 100% 19300 0 26 26 Value Value Value (Q) MG/KG 15100 100% 19300 0 26 26 Value (Q) MG/KG 670 50% 5.9 2 26 26 Value (Q) MG/KG 84.6 100% 8.2 2 26 26 26 30 11 26 26 30 <td>Karinum of Criteria of Number Number Number Sizes <</td> <td>k k</td>	Karinum of Criteria of Number Number Number Sizes <	k k

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1011-A,B	1011-A,B	1011-A,B	1012-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1011A 122	B-1011A-DUP	122B-1011B	122B-1012A
Sample Depth TOP								0	0	1.5	0
Sample Depth BOT								0.5	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/26/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	8500		13400	
Antimony	MG/KG	670	50%	5.9	2	13	26	670 J		0.53 J	
Arsenic	MG/KG	84.6	100%	8.2	2	26	26	84.6 J		4.7	
Barium	MG/KG	129	100%	300	0	26	26	61.7		110	
Beryllium	MG/KG	0.81	100%	1.1	0	26	26	0.43 J		0.68 J	
Cadmium	MG/KG	0.9	65%	2.3	0	17	26	0.89 J		0.85 J	
Calcium	MG/KG	191000	100%	121000	1	26	26	28500		39900	
Chromium	MG/KG	26.8	100%	29.6	0	26	26	16.9		23.5	
Cobalt	MG/KG	13.2	100%	30	0	26	26	7.6 J		11.6	
Copper	MG/KG	5690	100%	33	5	26	26	5690 J		25.6	
Iron	MG/KG	28700	100%	36500	0	26	26	17000		24600	
Lead	MG/KG	88700	100%	400	6	85	85	88700 J	32600	68	42
Magnesium	MG/KG	24100	100%	21500	1	26	26	7310		8200	
Manganese	MG/KG	789	100%	1060	0	26	26	443		716	
Mercury	MG/KG	0.078	8%	0.1	0	2	26	0.047 U		0.054 U	
Nickel	MG/KG	40.4	100%	49	0	26	26	20.8		28.7	
Potassium	MG/KG	2350	100%	2380	0	26	26	1690		2110	
Selenium	MG/KG	1.7	35%	2	0	9	26	0.55 U		0.58 U	
Silver	MG/KG	3.4	8%	0.75	1	2	26	3.4 J		0.33 U	
Sodium	MG/KG	388	35%	172	3	9	26	152 J		146 U	
Thallium	MG/KG	1.7	15%	0.7	2	4	26	1.7 J		0.42 UJ	
Vanadium	MG/KG	25.3	100%	150	0	26	26	13.7		20.1	
Zinc	MG/KG	630	100%	110	1	26	26	630 J		68.5	
Total Organic Carbon	MG/KG	56500	100%		0	43	43			19500 J	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1012-A,B	1013-A,B	1013-A,B	1014-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1012B	122B-1013A	122B-1013B	122B-1014A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/26/02	6/26/02	6/26/02	6/27/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		10700	10100	
Antimony	MG/KG	670	50%	5.9	2	13	26		4.5 J	1.2 J	
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		11.5	7.1	
Barium	MG/KG	129	100%	300	0	26	26		86.3	78.2	
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.56 J	0.54 J	
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.9 J	0.8 J	
Calcium	MG/KG	191000	100%	121000	1	26	26		44500	67200	
Chromium	MG/KG	26.8	100%	29.6	0	26	26		21.8	19.4	
Cobalt	MG/KG	13.2	100%	30	0	26	26		10.2 J	12.1	
Copper	MG/KG	5690	100%	33	5	26	26		41.2	30.6	
Iron	MG/KG	28700	100%	36500	0	26	26		21200	20200	
Lead	MG/KG	88700	100%	400	6	85	85	9.7	1190	200	13.2
Magnesium	MG/KG	24100	100%	21500	1	26	26		14800	21500	
Manganese	MG/KG	789	100%	1060	0	26	26		562	601	
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.056 U	0.055 U	
Nickel	MG/KG	40.4	100%	49	0	26	26		25.8	24.9	
Potassium	MG/KG	2350	100%	2380	0	26	26		2280	1930	
Selenium	MG/KG	1.7	35%	2	0	9	26		0.6 U	0.59 U	
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.35 U	0.34 U	
Sodium	MG/KG	388	35%	172	3	9	26		150 U	148 U	
Thallium	MG/KG	1.7	15%	0.7	2	4	26		0.44 U	0.43 U	
Vanadium	MG/KG	25.3	100%	150	0	26	26		17.6	17.2	
Zinc	MG/KG	630	100%	110	1	26	26		87.7	80.3	
Total Organic Carbon	MG/KG	56500	100%		0	43	43	22400 J		30000	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SFAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1014-A.B	1015-A.B	1015-A.B	1016-A.B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1014B	122B-1015A	122B-1015B	122B-1016A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/27/02	6/27/02	6/27/02	6/27/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26		5970		
Antimony	MG/KG	670	50%	5.9	2	13	26		0.32 UJ		
Arsenic	MG/KG	84.6	100%	8.2	2	26	26		3.7		
Barium	MG/KG	129	100%	300	0	26	26		42.4		
Beryllium	MG/KG	0.81	100%	1.1	0	26	26		0.42 J		
Cadmium	MG/KG	0.9	65%	2.3	0	17	26		0.06 U		
Calcium	MG/KG	191000	100%	121000	1	26	26		191000		
Chromium	MG/KG	26.8	100%	29.6	0	26	26		11		
Cobalt	MG/KG	13.2	100%	30	0	26	26		8.5 J		
Copper	MG/KG	5690	100%	33	5	26	26		13.9		
Iron	MG/KG	28700	100%	36500	0	26	26		11400		
Lead	MG/KG	88700	100%	400	6	85	85	9	5.2	10.4	48.6
Magnesium	MG/KG	24100	100%	21500	1	26	26		11300		
Manganese	MG/KG	789	100%	1060	0	26	26		387		
Mercury	MG/KG	0.078	8%	0.1	0	2	26		0.049 U		
Nickel	MG/KG	40.4	100%	49	0	26	26		20.7		
Potassium	MG/KG	2350	100%	2380	0	26	26		1280		
Selenium	MG/KG	1.7	35%	2	0	9	26		0.52 U		
Silver	MG/KG	3.4	8%	0.75	1	2	26		0.3 U		
Sodium	MG/KG	388	35%	172	3	9	26		131 U		
Thallium	MG/KG	1.7	15%	0.7	2	4	26		0.69 J		
Vanadium	MG/KG	25.3	100%	150	0	26	26		10.1		
Zinc	MG/KG	630	100%	110	1	26	26		38		
Total Organic Carbon	MG/KG	56500	100%		0	43	43	22500	56500	6480 J	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	55122B-
								1010-А,Б СОЦ	1017-А,Б СОЦ	1017-А,Б СОЦ	1010-A,D
Semale ID								301L	301L	301L	301L
								122B-1016B	122B-1017A	122B-1017B	122B-1018A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT									C.U	۲ در/22/02	C.U
								6/27/02	6/27/02	6/27/02	6/27/02
					Number	Number	Number	5A	5A 4000 DI	5A	5A 4000 DI
Activity		Maximum	Frequency	Critoria	Number	Number	Number	IZZB-RI	IZZB-RI	IZZB-RI	122B-RI
	L lucitor	Waximum	Of Detection	Criteria	Of E	or times	or samples	λ	λ	$\lambda = \frac{1}{2}$	λ
Parameter	Units	value	Detection	Level	Exceedances	Detected	Collected	value (Q)	value (Q)	value (Q)	value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				14300
Antimony	MG/KG	670	50%	5.9	2	13	26				2.9 J
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				4.2
Barium	MG/KG	129	100%	300	0	26	26				129
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				0.81 J
	MG/KG	0.9	65%	2.3	0	17	26				0.86 J
Calcium	MG/KG	191000	100%	121000	1	26	26				12900
Chromium	MG/KG	26.8	100%	29.6	0	26	26				22.6
Cobalt	MG/KG	13.2	100%	30	0	26	26				10 J
Copper	MG/KG	5690	100%	33	5	26	26				29
Iron	MG/KG	28700	100%	36500	0	26	26				22500
Lead	MG/KG	88700	100%	400	6	85	85	26.7	19.7	17.4	927
Magnesium	MG/KG	24100	100%	21500	1	26	26				5700
Manganese	MG/KG	789	100%	1060	0	26	26				789
Mercury	MG/KG	0.078	8%	0.1	0	2	26				0.049 U
Nickel	MG/KG	40.4	100%	49	0	26	26				22.1
Potassium	MG/KG	2350	100%	2380	0	26	26				1710
Selenium	MG/KG	1.7	35%	2	0	9	26				0.61 U
Silver	MG/KG	3.4	8%	0.75	1	2	26				0.35 U
Sodium	MG/KG	388	35%	172	3	9	26				154 U
Thallium	MG/KG	1.7	15%	0.7	2	4	26				0.45 UJ
Vanadium	MG/KG	25.3	100%	150	0	26	26				25.3
Zinc	MG/KG	630	100%	110	1	26	26				60.3
Total Organic Carbon	MG/KG	56500	100%		0	43	43	11000			

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
LUC ID Motrix								1010-А,Б СОЦ	1019-А,Б	1019-А,Б СОЦ	1020-А,Б СОЦ
								SUIL		SUIL	
								122B-1018B	122B-1019A	122B-1019B	122B-1020A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/27/02	6/27/02	6/27/02	6/27/02
QC Code			_					SA	SA	SA	SA
Activity			Frequency	• • •	Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	t	of limes	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				4220
Antimony	MG/KG	670	50%	5.9	2	13	26				0.31 UJ
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				2.2
Barium	MG/KG	129	100%	300	0	26	26				23.7 J
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				0.21 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				0.06 U
Calcium	MG/KG	191000	100%	121000	1	26	26				63200
Chromium	MG/KG	26.8	100%	29.6	0	26	26				7.4
Cobalt	MG/KG	13.2	100%	30	0	26	26				3.7 J
Copper	MG/KG	5690	100%	33	5	26	26				17.1
Iron	MG/KG	28700	100%	36500	0	26	26				8980
Lead	MG/KG	88700	100%	400	6	85	85	19.3	13.7	7.7	4.2
Magnesium	MG/KG	24100	100%	21500	1	26	26				19800
Manganese	MG/KG	789	100%	1060	0	26	26				330
Mercury	MG/KG	0.078	8%	0.1	0	2	26				0.051 U
Nickel	MG/KG	40.4	100%	49	0	26	26				7 J
Potassium	MG/KG	2350	100%	2380	0	26	26				1100
Selenium	MG/KG	1.7	35%	2	0	9	26				0.5 U
Silver	MG/KG	3.4	8%	0.75	1	2	26				0.29 U
Sodium	MG/KG	388	35%	172	3	9	26				127 U
Thallium	MG/KG	1.7	15%	0.7	2	4	26				0.37 U
Vanadium	MG/KG	25.3	100%	150	0	26	26				7.6 J
Zinc	MG/KG	630	100%	110	1	26	26				36.1
Total Organic Carbon	MG/KG	56500	100%		0	43	43	6880			10900

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								1020-A B	1021-A B	1021-A B	1022-A B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1020B	122B-1021A	122B-1021B	122B-1022A
Sample Depth TOP								15	0	15	0
Sample Depth ROT								2	0.5	2	0.5
Sample Date								6/27/02	6/27/02	6/27/02	6/28/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				
Antimony	MG/KG	670	50%	5.9	2	13	26				
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				
Barium	MG/KG	129	100%	300	0	26	26				
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				
Calcium	MG/KG	191000	100%	121000	1	26	26				
Chromium	MG/KG	26.8	100%	29.6	0	26	26				
Cobalt	MG/KG	13.2	100%	30	0	26	26				
Copper	MG/KG	5690	100%	33	5	26	26				
Iron	MG/KG	28700	100%	36500	0	26	26				
Lead	MG/KG	88700	100%	400	6	85	85	3.7	4.2	2.6 J	8.4
Magnesium	MG/KG	24100	100%	21500	1	26	26				
Manganese	MG/KG	789	100%	1060	0	26	26				
Mercury	MG/KG	0.078	8%	0.1	0	2	26				
Nickel	MG/KG	40.4	100%	49	0	26	26				
Potassium	MG/KG	2350	100%	2380	0	26	26				
Selenium	MG/KG	1.7	35%	2	0	9	26				
Silver	MG/KG	3.4	8%	0.75	1	2	26				
Sodium	MG/KG	388	35%	172	3	9	26				
Thallium	MG/KG	1.7	15%	0.7	2	4	26				
Vanadium	MG/KG	25.3	100%	150	0	26	26				
Zinc	MG/KG	630	100%	110	1	26	26				
Total Organic Carbon	MG/KG	56500	100%		0	43	43	3680 J		3160	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								SS122B-	SS122B-	SS122B-	SS122B-
Loc ID								1022-A,B	1023-A,B	1023-A,B	1024-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1022B	122B-1023A	122B-1023B	122B-1024A
Sample Depth TOP								1.5	0	1.5	0
Sample Depth BOT								2	0.5	2	0.5
Sample Date								6/28/02	6/28/02	6/28/02	6/28/02
QC Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26				3380
Antimony	MG/KG	670	50%	5.9	2	13	26				0.77 J
Arsenic	MG/KG	84.6	100%	8.2	2	26	26				1.4 J
Barium	MG/KG	129	100%	300	0	26	26				19 J
Beryllium	MG/KG	0.81	100%	1.1	0	26	26				0.18 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26				0.06 U
Calcium	MG/KG	191000	100%	121000	1	26	26				31800
Chromium	MG/KG	26.8	100%	29.6	0	26	26				5.3
Cobalt	MG/KG	13.2	100%	30	0	26	26				2.7 J
Copper	MG/KG	5690	100%	33	5	26	26				75
Iron	MG/KG	28700	100%	36500	0	26	26				6720
Lead	MG/KG	88700	100%	400	6	85	85	9.2	13	13.5	69.4
Magnesium	MG/KG	24100	100%	21500	1	26	26				9980
Manganese	MG/KG	789	100%	1060	0	26	26				280
Mercury	MG/KG	0.078	8%	0.1	0	2	26				0.049 U
Nickel	MG/KG	40.4	100%	49	0	26	26				5.8 J
Potassium	MG/KG	2350	100%	2380	0	26	26				708 J
Selenium	MG/KG	1.7	35%	2	0	9	26				0.55 UJ
Silver	MG/KG	3.4	8%	0.75	1	2	26				0.31 U
Sodium	MG/KG	388	35%	172	3	9	26				137 U
Thallium	MG/KG	1.7	15%	0.7	2	4	26				0.4 U
Vanadium	MG/KG	25.3	100%	150	0	26	26				5.7 J
Zinc	MG/KG	630	100%	110	1	26	26				31.9
Total Organic Carbon	MG/KG	56500	100%		0	43	43	4920 J			4590 J

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B
								SS122B-	SS122B-
Loc ID								1024-A,B	1025A
Matrix								SOIL	SOIL
Sample ID								122B-1024B	122B-1025A
Sample Depth TOP								1.5	0
Sample Depth BOT								2	0.5
Sample Date								6/28/02	6/28/02
QC Code								SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)
Aluminum	MG/KG	15100	100%	19300	0	26	26	3040	3380
Antimony	MG/KG	670	50%	5.9	2	13	26	0.61 J	0.83 J
Arsenic	MG/KG	84.6	100%	8.2	2	26	26	1.8 J	1.8 J
Barium	MG/KG	129	100%	300	0	26	26	14.5 J	18.4 J
Beryllium	MG/KG	0.81	100%	1.1	0	26	26	0.16 J	0.18 J
Cadmium	MG/KG	0.9	65%	2.3	0	17	26	0.06 U	0.06 U
Calcium	MG/KG	191000	100%	121000	1	26	26	31400	29500
Chromium	MG/KG	26.8	100%	29.6	0	26	26	5.1	5.2
Cobalt	MG/KG	13.2	100%	30	0	26	26	2.9 J	2.8 J
Copper	MG/KG	5690	100%	33	5	26	26	22.2	44
Iron	MG/KG	28700	100%	36500	0	26	26	6570	6590
Lead	MG/KG	88700	100%	400	6	85	85	14	57.4
Magnesium	MG/KG	24100	100%	21500	1	26	26	8680	7720
Manganese	MG/KG	789	100%	1060	0	26	26	285	284
Mercury	MG/KG	0.078	8%	0.1	0	2	26	0.053 U	0.053 U
Nickel	MG/KG	40.4	100%	49	0	26	26	5.2 J	6 J
Potassium	MG/KG	2350	100%	2380	0	26	26	704 J	723 J
Selenium	MG/KG	1.7	35%	2	0	9	26	0.52 UJ	0.56 J
Silver	MG/KG	3.4	8%	0.75	1	2	26	0.3 U	0.32 U
Sodium	MG/KG	388	35%	172	3	9	26	130 U	140 U
Thallium	MG/KG	1.7	15%	0.7	2	4	26	0.74 J	0.5 J
Vanadium	MG/KG	25.3	100%	150	0	26	26	5.3 J	5.6 J
Zinc	MG/KG	630	100%	110	1	26	26	25.3	30.1
Total Organic Carbon	MG/KG	56500	100%		0	43	43	2420 J	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

TABLE 3.2 SOIL LEAD SAMPLE RESULTS - 2002 Site Investigation Airfield - Small Arms Range Seneca Army Depot Activity

Soil Total Lead Results Greater Than 400 ppm

	Lead Concentration	
Sample No.	(ppm)	Sample Depth
1010A	13100	0-6"
1010A DUP	1540	0-6"
1011A	88700	0-6"
1011A DUP	32600	0-6"
1013A	1190	0-6"
1018A	927	0-6"

Notes:

Results from Table 3.1.

A - 0- to 6-inch sample depth below ground surface

B - 18- to 24-inch sample depth below ground surface

bgs - below ground surface

DUP - Field duplicate

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								MW-3	PSB-3	PSB-3	PSB-4
Matrix								SOIL	SOIL	SOIL	SOIL
								122B-	122B-	122B-	122B-
Sample ID								1042,SPLP	1030,SPLP	1031,SPLP	1046,SPLP
Sample Depth TOP								12	0	10	20
Sample Depth BOT								14	2	12	22
Sample Date								7/24/02	7/3/02	7/3/02	7/24/02
QA Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value
SPLP Aluminum	UG/L	2340	100%		0	13	13	295	1120	466	485
SPLP Antimony	UG/L	180	69%		0	9	13	2 J	17.9 J	4.2 U	1.6
SPLP Arsenic	UG/L	5.3	46%	5000	0	6	13	1.5 U	5.3 J	3.6 U	2.6
SPLP Barium	UG/L	28.2	92%	100000	0	12	13	6 J	19.1 J	16.5 J	22
SPLP Beryllium	UG/L	0.43	46%		0	6	13	0.2 U	0.2 U	0.2 U	0.2
SPLP Cadmium	UG/L	0	0%	1000	0	0	13	0.3 U	0.8 U	0.8 U	0.3
SPLP Calcium	UG/L	20200	100%		0	13	13	8630	15000	16000	16100
SPLP Chromium	UG/L	3.3	62%	5000	0	8	13	0.8 U	2.5 J	2.1 U	0.8
SPLP Cobalt	UG/L	0	0%		0	0	13	1.5 U	3.1 U	3.1 U	1.5
SPLP Copper	UG/L	59.1	85%		0	11	13	1.8 U	12.6 J	4.2 J	1.8
SPLP Iron	UG/L	2030	100%		0	13	13	179	1080	264	446
SPLP Lead	UG/L	334	69%	5000	0	9	13	0.9 U	22.8	1.5 U	0.9
SPLP Magnesium	UG/L	2510	100%		0	13	13	1250 J	1250 J	1690 J	2420
SPLP Manganese	UG/L	34.4	100%		0	13	13	2.8 J	9 J	6.6 J	3.5
SPLP Mercury	UG/L	0	0%	200	0	0	13	0.1 UJ	10 U	10 U	0.1
SPLP Nickel	UG/L	3.2	54%		0	7	13	1.3 U	2.4 U	3.2 J	1.3
SPLP Potassium	UG/L	8010	100%		0	13	13	1970 J	1230 J	389 J	1990
SPLP Selenium	UG/L	0	0%	1000	0	0	13	2.6 U	2.9 U	2.9 U	2.6
SPLP Silver	UG/L	0	0%	5000	0	0	13	1.5 U	3 U	3 U	1.5
SPLP Sodium	UG/L	20800	85%		0	11	13	4620 J	5240 U	9670 U	4580
SPLP Thallium	UG/L	5.1	23%		0	3	13	6 UJ	6 U	6 U	6
SPLP Vanadium	UG/L	4.2	31%		0	4	13	2.3 U	2.3 U	2.3 U	2.3
SPLP Zinc	UG/L	22.7	100%		0	13	13	2.3 J	10.7 J	6.2 J	3.9

Note:

Highlighted cells indicate exceedance of criteria value.

SEAD-122B REMEDIAL INVESTIGATION

Seneca Army Depot Activity - Romulus, NY

Site Loc Matrix

Sample ID Sample Depth TOP Sample Depth BOT Sample Date QA Code Activity Frequency Number Number Number Round Maximum of Criteria of of Times of Samples Detection Collected (Q) Parameter Units Value Level Exceedances Detected SPLP Aluminum 2340 100% UG/L 0 13 13 SPLP Antimony UG/L 180 69% 0 9 13 U SPLP Arsenic UG/L 5.3 46% 5000 0 6 13 J SPLP Barium UG/L 28.2 92% 100000 0 12 13 J SPLP Beryllium UG/L 0.43 0 6 13 U 46% SPLP Cadmium UG/L 0 0% 1000 0 0 13 U SPLP Calcium UG/L 20200 100% 0 13 13 SPLP Chromium UG/L 3.3 62% 5000 0 8 13 U 0 0 0 13 U SPLP Cobalt UG/L 0% U UG/L 59.1 85% 0 11 13 SPLP Copper SPLP Iron UG/L 2030 0 13 13 100% SPLP Lead UG/L 334 5000 0 9 13 U 69% SPLP Magnesium UG/L 2510 100% 0 13 13 J SPLP Manganese UG/L 34.4 100% 0 13 13 J 0 0 0 UJ SPLP Mercury UG/L 0% 200 13 7 SPLP Nickel UG/L 3.2 54% 0 13 U SPLP Potassium UG/L 8010 0 13 13 J 100% SPLP Selenium UG/L 0 0% 1000 0 0 13 U SPLP Silver UG/L 0 0% 5000 0 0 13 U SPLP Sodium UG/L 20800 85% 0 11 13 J 3 SPLP Thallium UG/L 5.1 23% 0 13 U SPLP Vanadium UG/L 4.2 4 U 31% 0 13 SPLP Zinc UG/L 22.7 0 13 13 J 100%

Note:

Highlighted cells indicate exceedance of criteria value.

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								PSB-6	SS122B-1002-A,B	SS122B-1010-A,B	SS122B-1011-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
								122B-	122B-	122B-	122B-
Sample ID								1059,SPLP	1002B,SPLP	1010A,SPLP	1011A,SPLP
Sample Depth TOP								22	1.5	0	0
Sample Depth BOT								24	2	0.5	0.5
Sample Date								7/24/02	6/26/02	6/26/02	6/26/02
QA Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (C	Q) Value (Q) Value (0	ג) Value
SPLP Aluminum	UG/L	2340	100%		0	13	13	812	1540	2340	1900
SPLP Antimony	UG/L	180	69%		0	9	13	1.6 U	5.4 J	13.1 J	180
SPLP Arsenic	UG/L	5.3	46%	5000	0	6	13	4.9 J	1.5 L	J 2.2 J	1.5
SPLP Barium	UG/L	28.2	92%	100000	0	12	13	23.3 J	21.9 J	26.7 J	26.7
SPLP Beryllium	UG/L	0.43	46%		0	6	13	0.2 U	0.2 L	J 0.2 U	0.21
SPLP Cadmium	UG/L	0	0%	1000	0	0	13	0.3 U	0.6 L	J 0.6 U	0.3
SPLP Calcium	UG/L	20200	100%		0	13	13	17300	20200	7790	10400
SPLP Chromium	UG/L	3.3	62%	5000	0	8	13	0.8 U	1.7 J	3.3 J	2.2
SPLP Cobalt	UG/L	0	0%		0	0	13	1.5 U	1.5 L	J 1.5 U	1.5
SPLP Copper	UG/L	59.1	85%		0	11	13	2 J	7.6 J	10.4 J	59.1
SPLP Iron	UG/L	2030	100%		0	13	13	625	961	1840	2030
SPLP Lead	UG/L	334	69%	5000	0	9	13	0.9 U	2.3 J	26.9	334
SPLP Magnesium	UG/L	2510	100%		0	13	13	2300 J	2510 J	1450 J	1450
SPLP Manganese	UG/L	34.4	100%		0	13	13	5.3 J	8.2 J	14.9 J	29.8
SPLP Mercury	UG/L	0	0%	200	0	0	13	0.1 U	J 10 L	J 10 U	10
SPLP Nickel	UG/L	3.2	54%		0	7	13	1.5 J	2.1 J	2.4 J	2
SPLP Potassium	UG/L	8010	100%		0	13	13	8010	489 J	949 J	3720
SPLP Selenium	UG/L	0	0%	1000	0	0	13	2.6 U	2.6 L	J 2.6 L	2.6
SPLP Silver	UG/L	0	0%	5000	0	0	13	1.5 U	1.5 L	J 1.5 L	1.5
SPLP Sodium	UG/L	20800	85%		0	11	13	4730 J	14800	20800	8710
SPLP Thallium	UG/L	5.1	23%		0	3	13	6 U	J 6 L	J 6 L	1.9
SPLP Vanadium	UG/L	4.2	31%		0	4	13	2.3 U	3.7 J	2.9 J	2.3
SPLP Zinc	UG/L	22.7	100%		0	13	13	4.1 J	14.2 J	19 J	22.7

Note:

Highlighted cells indicate exceedance of criteria value.

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site									SEAD-122B	SEAD-122B	SEAD-122B
Loc								SS	122B-1013-A,B	SS122B-1015-A,B	SS122B-1018-A,B SS1
Matrix									SOIL	SOIL	SOIL
									122B-	122B-	122B-
Sample ID									1013B,SPLP	1015A,SPLP	1018A,SPLP
Sample Depth TOP									1.5	0	0
Sample Depth BOT									2	0.5	0.5
Sample Date									6/26/02	6/28/02	6/27/02
QA Code									SA	SA	SA
Activity			Frequency		Number	Number	Number		122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples		1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	(Q)	Value (Q) Value (Q) Value (Q)
SPLP Aluminum	UG/L	2340	100%		0	13	13		1540	1190	1830
SPLP Antimony	UG/L	180	69%		0	9	13		5.6	J 1.6 L	J 7.3 J
SPLP Arsenic	UG/L	5.3	46%	5000	0	6	13	J	1.5 เ	J 1.8 J	1.5 U
SPLP Barium	UG/L	28.2	92%	100000	0	12	13	J	21.8	J 16.6 J	28.2 J
SPLP Beryllium	UG/L	0.43	46%		0	6	13	J	0.22	J 0.38 J	0.23 J
SPLP Cadmium	UG/L	0	0%	1000	0	0	13	U	0.3 l	J 0.3 L	J 0.3 U
SPLP Calcium	UG/L	20200	100%		0	13	13		13400	13800	14800
SPLP Chromium	UG/L	3.3	62%	5000	0	8	13	J	1.6 、	J 1.1 J	1.5 J
SPLP Cobalt	UG/L	0	0%		0	0	13	U	1.5 เ	J 1.5 L	J 1.5 U
SPLP Copper	UG/L	59.1	85%		0	11	13		4.2	J 3.6 J	8 J
SPLP Iron	UG/L	2030	100%		0	13	13		1700	948	1360
SPLP Lead	UG/L	334	69%	5000	0	9	13		17.1	1.2 J	26
SPLP Magnesium	UG/L	2510	100%		0	13	13	J	1440 、	J 1470 J	1730 J
SPLP Manganese	UG/L	34.4	100%		0	13	13		15	4.7 J	8.2 J
SPLP Mercury	UG/L	0	0%	200	0	0	13	U	10 l	J 10 L	J 10 U
SPLP Nickel	UG/L	3.2	54%		0	7	13	J	2.9	J 2.4 L	J 2.3 J
SPLP Potassium	UG/L	8010	100%		0	13	13	J	2810	J 732 J	610 J
SPLP Selenium	UG/L	0	0%	1000	0	0	13	U	2.6 l	J 2.6 L	J 2.6 U
SPLP Silver	UG/L	0	0%	5000	0	0	13	U	1.5 เ	J 1.5 L	J 1.5 U
SPLP Sodium	UG/L	20800	85%		0	11	13		8430	4540 J	10500
SPLP Thallium	UG/L	5.1	23%		0	3	13	U	1.9 เ	J 5.1 J	1.9 U
SPLP Vanadium	UG/L	4.2	31%		0	4	13	U	2.3 l	J 2.6 J	4.2 J
SPLP Zinc	UG/L	22.7	100%		0	13	13		14.9	J 8.7 J	22.6

Note:

Highlighted cells indicate exceedance of criteria value.

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B
Loc								22B-1024-A,B	SS122B-1024-A,B
Matrix								SOIL	SOIL
								122B-	122B-
Sample ID								1024A,SPLP	1025A,SPLP
Sample Depth TOP								0	0
Sample Depth BOT								0.5	0.5
Sample Date								6/28/02	6/29/02
QA Code								SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value	(Q) Value (Q)
SPLP Aluminum	UG/L	2340	100%		0	13	13	359	1470
SPLP Antimony	UG/L	180	69%		0	9	13	8.7	J 7.2 J
SPLP Arsenic	UG/L	5.3	46%	5000	0	6	13	1.5	U 1.5 U
SPLP Barium	UG/L	28.2	92%	100000	0	12	13	8.4	U 13.5 J
SPLP Beryllium	UG/L	0.43	46%		0	6	13	0.34	J 0.43 J
SPLP Cadmium	UG/L	0	0%	1000	0	0	13	0.3	U 0.3 U
SPLP Calcium	UG/L	20200	100%		0	13	13	8310	8430
SPLP Chromium	UG/L	3.3	62%	5000	0	8	13	0.8	U 1.2 J
SPLP Cobalt	UG/L	0	0%		0	0	13	1.5	U 1.5 U
SPLP Copper	UG/L	59.1	85%		0	11	13	18.8	J 21.6 J
SPLP Iron	UG/L	2030	100%		0	13	13	317	1430
SPLP Lead	UG/L	334	69%	5000	0	9	13	15.2	12.5
SPLP Magnesium	UG/L	2510	100%		0	13	13	680	J 851 J
SPLP Manganese	UG/L	34.4	100%		0	13	13	23.6	34.4
SPLP Mercury	UG/L	0	0%	200	0	0	13	10	U 10 U
SPLP Nickel	UG/L	3.2	54%		0	7	13	2.4	U 2.4 U
SPLP Potassium	UG/L	8010	100%		0	13	13	484	J 654 J
SPLP Selenium	UG/L	0	0%	1000	0	0	13	2.6	U 2.6 U
SPLP Silver	UG/L	0	0%	5000	0	0	13	1.5	U 1.5 U
SPLP Sodium	UG/L	20800	85%		0	11	13	1570	J 4020 J
SPLP Thallium	UG/L	5.1	23%		0	3	13	4	J 3.5 J
SPLP Vanadium	UG/L	4.2	31%		0	4	13	2.3	U 2.3 U
SPLP Zinc	UG/L	22.7	100%		0	13	13	5.3	J 12.2 J

Note:

Highlighted cells indicate exceedance of criteria value.

TABLE 3.4 RESULTS OF TOXICITY CHARACTERISTICS LEACHING PROCEDURE - 2002 SITE INVESTIGATION

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								MW-3	PSB-3	PSB-3	PSB-4
Matrix								SOIL	SOIL	SOIL	SOIL
								122B-	122B-	122B-	122B-
Sample ID								1042,TCLP	1030,TCLP	1031,TCLP	1046,TCLP
Sample Depth TOP								12	0	10	20
Sample Depth BOT								14	2	12	22
Sample Date								7/24/02	7/3/02	7/3/02	7/24/02
QA Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value
TCLP Aluminum	UG/L	131	62%		0	8	13	19.7 U	29.9 J	43.5 J	21.4
TCLP Antimony	UG/L	564	62%		0	8	13	1.6 U	37.2 J	4.2 U	1.6
TCLP Arsenic	UG/L	46.7	38%	5000	0	5	13	1.5 U	4.8 J	3.6 U	1.9
TCLP Barium	UG/L	1050	100%	100000	0	13	13	440	637	657	770
TCLP Beryllium	UG/L	0.57	62%		0	8	13	0.26 J	0.2 U	0.2 U	0.3
TCLP Cadmium	UG/L	2.8	100%	1000	0	13	13	0.9 J	2.2 J	2 J	1.4
TCLP Calcium	UG/L	897000	100%		0	13	13	782000	696000	665000	494000
TCLP Chromium	UG/L	40.7	85%	5000	0	11	13	19.1	4.6 J	5.3 J	35.9
TCLP Cobalt	UG/L	38.4	69%		0	9	13	33.7 J	4.2 J	16.8 J	24
TCLP Copper	UG/L	1240	100%		0	13	13	2.4 J	8.5 J	4.1 J	6.6
TCLP Iron	UG/L	468	62%		0	8	13	45.6 J	44 J	15.1 U	154
TCLP Lead	UG/L	99900	85%	5000	1	11	13	0.9 U	846	31.3	1.7
TCLP Magnesium	UG/L	66500	100%		0	13	13	15400	15000	16700	14800
TCLP Manganese	UG/L	11800	100%		0	13	13	4870	1380	11800	9120
TCLP Mercury	UG/L	0.12	8%	200	0	1	13	0.1 UJ	10 UJ	10 UJ	0.12
TCLP Nickel	UG/L	31.9	100%		0	13	13	31.9 J	4.4 J	13.3 J	21.7
TCLP Potassium	UG/L	19700	100%		0	13	13	8520	6250	3600 J	5420
TCLP Selenium	UG/L	10.2	38%	1000	0	5	13	2.6 U	8.9	10.2	3.1
TCLP Silver	UG/L	0	0%	5000	0	0	13	1.5 U	3 U	3 U	1.5
TCLP Sodium	UG/L	0	0%		0	0	13	1337000 R	1682000 U	1667000 U	1270000
TCLP Thallium	UG/L	4.4	23%		0	3	13	6 UJ	6 U	6 U	6
TCLP Vanadium	UG/L	0	0%		0	0	13	2.3 U	2.3 U	2.3 U	2.3
TCLP Zinc	UG/L	552	69%		0	9	13	13.1 J	15.8 J	17.6 J	81.5

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

TABLE 3.4 RESULTS OF TOXICITY CHARACTERISTICS LEACHING PROCEDURE - 2002 SITE INVESTIGATION

SEAD-122B REMEDIAL INVESTIGATION

Seneca Army Depot Activity - Romulus, NY

Site Loc Matrix

Sample ID Sample Depth TOP

Sample Depth BOT

Sample Date

QA Code

Activity			Frequency		Number	Number	Number	
Round		Maximum	of	Criteria	of	of Times	of Samples	
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	(Q)
TCLP Aluminum	UG/L	131	62%		0	8	13	J
TCLP Antimony	UG/L	564	62%		0	8	13	U
TCLP Arsenic	UG/L	46.7	38%	5000	0	5	13	J
TCLP Barium	UG/L	1050	100%	100000	0	13	13	
TCLP Beryllium	UG/L	0.57	62%		0	8	13	J
TCLP Cadmium	UG/L	2.8	100%	1000	0	13	13	J
TCLP Calcium	UG/L	897000	100%		0	13	13	
TCLP Chromium	UG/L	40.7	85%	5000	0	11	13	
TCLP Cobalt	UG/L	38.4	69%		0	9	13	J
TCLP Copper	UG/L	1240	100%		0	13	13	J
TCLP Iron	UG/L	468	62%		0	8	13	
TCLP Lead	UG/L	99900	85%	5000	1	11	13	J
TCLP Magnesium	UG/L	66500	100%		0	13	13	
TCLP Manganese	UG/L	11800	100%		0	13	13	
TCLP Mercury	UG/L	0.12	8%	200	0	1	13	J
TCLP Nickel	UG/L	31.9	100%		0	13	13	J
TCLP Potassium	UG/L	19700	100%		0	13	13	
TCLP Selenium	UG/L	10.2	38%	1000	0	5	13	J
TCLP Silver	UG/L	0	0%	5000	0	0	13	U
TCLP Sodium	UG/L	0	0%		0	0	13	R
TCLP Thallium	UG/L	4.4	23%		0	3	13	U
TCLP Vanadium	UG/L	0	0%		0	0	13	U
TCLP Zinc	UG/L	552	69%		0	9	13	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

TABLE 3.4 RESULTS OF TOXICITY CHARACTERISTICS LEACHING PROCEDURE - 2002 SITE INVESTIGATION

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								PSB-6	SS122B-1002-A,B	SS122B-1010-A,B	SS122B-1011-A,B
Matrix								SOIL	SOIL	SOIL	SOIL
								122B-	122B-	122B-	122B-
Sample ID								1059,TCLP	1002B,TCLP	1010A,TCLP	1011A,TCLP
Sample Depth TOP								22	1.5	0	0
Sample Depth BOT								24	2	0.5	0.5
Sample Date								7/24/02	6/26/02	6/26/02	6/26/02
QA Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (0	Q) Value	(Q) Value (Q) Value
TCLP Aluminum	UG/L	131	62%		0	8	13	131 J	97.5	J 37.4 J	19.7
TCLP Antimony	UG/L	564	62%		0	8	13	1.6 U	9.8	J 24.2 J	564
TCLP Arsenic	UG/L	46.7	38%	5000	0	5	13	7.1 J	1.5	U 2.1 J	46.7
TCLP Barium	UG/L	1050	100%	100000	0	13	13	664	471	326	1050
TCLP Beryllium	UG/L	0.57	62%		0	8	13	0.45 J	0.2	U 0.2 L	0.25
TCLP Cadmium	UG/L	2.8	100%	1000	0	13	13	1.4 J	0.99	J 2.1 J	2.8
TCLP Calcium	UG/L	897000	100%		0	13	13	290000	335000	752000	474000
TCLP Chromium	UG/L	40.7	85%	5000	0	11	13	40.7	4.2	J 13.8	17.7
TCLP Cobalt	UG/L	38.4	69%		0	9	13	38.4 J	1.5	U 5.5 J	28.8
TCLP Copper	UG/L	1240	100%		0	13	13	5.8 J	9 .	J 21 J	1240
TCLP Iron	UG/L	468	62%		0	8	13	468	31.7	J 15.1 L	61
TCLP Lead	UG/L	99900	85%	5000	1	11	13	12.2	98.4	1290	99900
TCLP Magnesium	UG/L	66500	100%		0	13	13	21000	66500	12200	10600
TCLP Manganese	UG/L	11800	100%		0	13	13	9840	855	3000	4110
TCLP Mercury	UG/L	0.12	8%	200	0	1	13	0.1 U	J 10	UJ 10 L	IJ 10
TCLP Nickel	UG/L	31.9	100%		0	13	13	18.4 J	2.7	J 6.2 J	19.5
TCLP Potassium	UG/L	19700	100%		0	13	13	19700	4430	J 1910 J	11900
TCLP Selenium	UG/L	10.2	38%	1000	0	5	13	4.4 J	2.6	U 2.6 L	J 2.6
TCLP Silver	UG/L	0	0%	5000	0	0	13	1.5 U	1.5	U 1.5 L	J 1.5
TCLP Sodium	UG/L	0	0%		0	0	13	1372000 R	1579000	U 1579000 L	1352000
TCLP Thallium	UG/L	4.4	23%		0	3	13	6 U	J 6	U 6 L	J 1.9
TCLP Vanadium	UG/L	0	0%		0	0	13	2.3 U	2.3	U 2.3 L	2.3
TCLP Zinc	UG/L	552	69%		0	9	13	220	14	UJ 21.6 L	552

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

TABLE 3.4 RESULTS OF TOXICITY CHARACTERISTICS LEACHING PROCEDURE - 2002 SITE INVESTIGATION

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site									SEAD-122B	SEAD-122B	SEAD-122B	
Loc								SS1	22B-1013-A,B	SS122B-1015-A,B	SS122B-1018-A,B SS	S1
Matrix									SOIL	SOIL	SOIL	
									122B-	122B-	122B-	
Sample ID									1013B,TCLP	1015A,TCLP	1018A,TCLP	
Sample Depth TOP									1.5	0	0	
Sample Depth BOT									2	0.5	0.5	
Sample Date									6/26/02	6/28/02	6/27/02	
QA Code									SA	SA	SA	
Activity			Frequency		Number	Number	Number		122B-RI	122B-RI	122B-RI	
Round		Maximum	of	Criteria	of	of Times	of Samples		1	1	1	
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	(Q)	Value	(Q) Value (Q) Value (Q))
TCLP Aluminum	UG/L	131	62%		0	8	13	U	19.7	U 19.7 l	J 19.7 U	
TCLP Antimony	UG/L	564	62%		0	8	13		9.1	J 1.6 l	J 11.6 J	
TCLP Arsenic	UG/L	46.7	38%	5000	0	5	13		1.5	ป 1.5 เ	J 1.5 U	
TCLP Barium	UG/L	1050	100%	100000	0	13	13		755	507	615	
TCLP Beryllium	UG/L	0.57	62%		0	8	13	J	0.22	J 0.57 、	J 0.2 U	
TCLP Cadmium	UG/L	2.8	100%	1000	0	13	13	J	0.99	J 0.5 .	J 1.7 J	
TCLP Calcium	UG/L	897000	100%		0	13	13		810000	897000	740000	
TCLP Chromium	UG/L	40.7	85%	5000	0	11	13		0.8	U 0.8 U	J 1.7 J	
TCLP Cobalt	UG/L	38.4	69%		0	9	13	J	1.5	ป 1.5 เ	J 1.5 U	
TCLP Copper	UG/L	1240	100%		0	13	13		3.7	J 5.6 .	J 5.3 J	
TCLP Iron	UG/L	468	62%		0	8	13	J	23.4	U 23.4 U	J 23.4 U	
TCLP Lead	UG/L	99900	85%	5000	1	11	13		38.5	0.9 (J 193	
TCLP Magnesium	UG/L	66500	100%		0	13	13		13800	13200	20200	
TCLP Manganese	UG/L	11800	100%		0	13	13		141	160	542	
TCLP Mercury	UG/L	0.12	8%	200	0	1	13	UJ	10	UJ 10 l	JJ 10 UJ	
TCLP Nickel	UG/L	31.9	100%		0	13	13	J	4.9	J 5.2 .	J 3.4 J	
TCLP Potassium	UG/L	19700	100%		0	13	13		10400	3130 、	J 1540 J	
TCLP Selenium	UG/L	10.2	38%	1000	0	5	13	U	2.6	U 2.6 U	J 2.6 U	
TCLP Silver	UG/L	0	0%	5000	0	0	13	U	1.5	ป 1.5 เ	J 1.5 U	
TCLP Sodium	UG/L	0	0%		0	0	13	U	1350000	U 1442000 U	J 1340000 U	
TCLP Thallium	UG/L	4.4	23%		0	3	13	U	1.9	U 2.6 .	J 1.9 U	
TCLP Vanadium	UG/L	0	0%		0	0	13	U	2.3	U 2.3 l	J 2.3 U	
TCLP Zinc	UG/L	552	69%		0	9	13		10.1	UJ 16.5 、	J 10.9 UJ	

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

TABLE 3.4 RESULTS OF TOXICITY CHARACTERISTICS LEACHING PROCEDURE - 2002 SITE INVESTIGATION

SEAD-122B REMEDIAL INVESTIGATION Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B
Loc								22B-1024-A,B	SS122B-1024-A,B
Matrix								SOIL	SOIL
								122B-	122B-
Sample ID								1024A,TCLP	1025A,TCLP
Sample Depth TOP)							0	0
Sample Depth BOT	-							0.5	0.5
Sample Date								6/28/02	6/29/02
QA Code								SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI
Round		Maximum	of	Criteria	of	of Times	of Samples	1	1
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value	(Q) Value (Q)
TCLP Aluminum	UG/L	131	62%		0	8	13	22.3	J 22 J
TCLP Antimony	UG/L	564	62%		0	8	13	14.2 .	J 12.8 J
TCLP Arsenic	UG/L	46.7	38%	5000	0	5	13	1.5	U 1.5 U
TCLP Barium	UG/L	1050	100%	100000	0	13	13	265	275
TCLP Beryllium	UG/L	0.57	62%		0	8	13	0.4	J 0.49 J
TCLP Cadmium	UG/L	2.8	100%	1000	0	13	13	0.66	J 0.7 J
TCLP Calcium	UG/L	897000	100%		0	13	13	723000	732000
TCLP Chromium	UG/L	40.7	85%	5000	0	11	13	9.2 .	J 9.4 J
TCLP Cobalt	UG/L	38.4	69%		0	9	13	3 .	J 2.8 J
TCLP Copper	UG/L	1240	100%		0	13	13	71.2	73.2
TCLP Iron	UG/L	468	62%		0	8	13	51.8	J 55.1 J
TCLP Lead	UG/L	99900	85%	5000	1	11	13	146	112
TCLP Magnesium	UG/L	66500	100%		0	13	13	11900	12600
TCLP Manganese	UG/L	11800	100%		0	13	13	2400	2340
TCLP Mercury	UG/L	0.12	8%	200	0	1	13	10	UJ 10 UJ
TCLP Nickel	UG/L	31.9	100%		0	13	13	4.5	J 4 J
TCLP Potassium	UG/L	19700	100%		0	13	13	2180 .	J 2290 J
TCLP Selenium	UG/L	10.2	38%	1000	0	5	13	3 .	J 2.6 U
TCLP Silver	UG/L	0	0%	5000	0	0	13	1.5	U 1.5 U
TCLP Sodium	UG/L	0	0%		0	0	13	1400000	U 1403000 U
TCLP Thallium	UG/L	4.4	23%		0	3	13	2.5	J 4.4 J
TCLP Vanadium	UG/L	0	0%		0	0	13	2.3	U 2.3 U
TCLP Zinc	UG/L	552	69%		0	9	13	53.1	61.4

Note:

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration
TABLE 3.5

GROUNDWATER RESULTS FOR SENECA AIRFIELD SMALL ARMS RANGE

Seneca Arm	ny Depot			Sample ID:	122B-2000	122B-2001	122B-2004	122B-2005
Groundwate	er Samples			Lab Sample Id:	494827	494828	494829	494830
				Sample Location	MW-2	MW-1	MW-3	MW-3 DUP
				Source:	STLVT	STLVT	STLVT	STLVT
				SDG:	88924	88924	88924	88924
		Seneca Average		Matrix:		Groun	dwater	•
		Background	Class GA	Sampled:	7/24/02	7/24/02	7/24/02	7/24/02
		Groundwater Quality ⁽¹⁾	Groundwater Standards	Validated:				
CAS NO.	COMPOUND			UNITS:				
	METALS							
7429-90-5	Aluminum	2730	None	ug/L	508	162 J	211	262
7440-36-0	Antimony	8.2	3	ug/L	18.1 J	14.4 J	26.7 J	19.7 J
7440-38-2	Arsenic	1.7	25	ug/L	3.6 U	3.6 U	4.6 J	3.7 J
7440-39-3	Barium	78.2	1000	ug/L	35.2 J	31.0 J	49.8 J	48.6 J
7440-41-7	Beryllium	0.21	3	ug/L	0.21 J	0.20 U	0.32 J	0.21 J
7440-43-9	Cadmium	0.5	5	ug/L	1.4 J	1.1 J	2.3 J	1.6 J
7440-70-2	Calcium	116000	None	ug/L	113000	105000	120000	118000
7440-47-3	Chromium	4.7	50	ug/L	10.2	8.7 J	12.5 J	10.2 J
7440-48-4	Cobalt	3.7	None	ug/L	3.5 U	3.5 U	3.5 U	3.5 U
7440-50-8	Copper	3.3	200	ug/L	8.8 J	7.3 J	11.3 J	8.5 J
7439-89-6	Iron	4480	300	ug/L	580	421	154	230
7439-92-1	Lead	2.5	25	ug/L	1.5 U	1.5 U	1.5 U	1.5 U
7439-95-4	Magnesium	28600	None	ug/L	34300	35800	32800	32200
7439-96-5	Manganese	224	300	ug/L	84.4	128	293	286
7439-97-6	Mercury	0.04	0.7	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
7440-02-0	Nickel	7.3	100	ug/L	2.4 U	2.4 U	3.7 J	2.4 U
7440-09-7	Potassium	3830	None	ug/L	4440 J	9920	7610	7640
7782-49-2	Selenium	1.5	10	ug/L	2.9 U	2.9 U	2.9 U	2.9 U
7440-22-4	Silver	1	50	ug/L	1.5 U	1.5 U	1.5 U	1.5 U
7440-23-5	Sodium	14600	None	ug/L	10700	10400	18400	17600
7440-28-0	Thallium	1.5	0.5 (GV)	ug/L	6.0 U	6.0 U	6.0 U	6.0 U
7440-62-2	Vanadium	5.2	None	ug/L	10.3 J	8.0 J	14.0 J	10.8 J
7440-66-6	Zinc	23.1	2000 (GV)	ug/L	6.2 J	3.8 J	7.0 J	6.2 J

Note: Highlighted cells indicate exceedance of Class GA Groundwater Standards (or guidance value - GV)

(1) Based on statistics for Seneca-wide background groundwater results as of 2001.

U - Not detected at reported concentration

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								100 ft from	100 ft from	100 ft from	1013	30 ft W	30 ft W
Loc ID								FL	FL	FL	resample	CS003	CS003
Matrix								SOIL	SOIL	SOIL	SÓIL	SOIL	SOIL
								122B-	122B-	122B-	122B-	122B-	122B-
Sample ID								CS009AD	CS009	CS009A	CS007	CS010D	CS010
Sample Depth T	OP							0	0	0	0	0	0
Sample Depth B	от							0.2	0.2	0.2	0.2	0.2	0.2
Sample Date								1/21/04	1/21/04	1/21/04	1/21/04	1/21/04	1/21/04
QC Code								DU	SA	SA	SA	SA	SA
								122B-	122B-	122B-	122B-	122B-	122B-
Activity			Frequency		Number	Number	Number	TREAT	TREAT	TREAT	TREAT	TREAT	TREAT
Round		Maximum	of	Criteria	of	of Times	of Samples	2	2	2	2	2	2
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead	MG/KG	13860	100%	400	5	21	21	22	736	16.1	45.2	1060 J	243 J

SEAD-122B TREATABILITY STUDY Seneca Army Depot Activity - Romulus, NY

Note:

* Sample 122B-CS003RA is a duplicate of sample 122B-CS003. Due to the variability in the duplicate pair of CS003 and CS003D, the Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location.

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Site							SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
							30 ft W	30 ft W				
Loc ID							CS003	CS003	Middle Berm	North Face	North Face	North Face
Matrix							SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
							122B-	122B-	122B-	122B-	122B-	122B-
Sample ID							CS010AD	CS010A	CS002	CS003D	CS003	CS003RA*
Sample Depth TOP							0	0	0	0	0	0
Sample Depth BOT							0.2	0.2	0.2	0.2	0.2	0.2
Sample Date							2/19/04	2/19/04	1/8/04	1/8/04	1/8/04	1/8/04
QC Code							SA	SA	SA	DU	SA	SA
							122B-	122B-	122B-	122B-	122B-	122B-
Activity		Frequency		Number	Number	Number	TREAT	TREAT	TREAT	TREAT	TREAT	TREAT
Round	Maximum	of	Criteria	of	of Times	of Samples	2	2	2	2	2	2
Parameter Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead MG/KG	13860	100%	400	5	21	21	44.9	24.9 J	209 J	655	20.6 J	24.6

SEAD-122B TREATABILITY STUDY Seneca Army Depot Activity - Romulus, NY

Note:

* Sample 122B-CS003RA is a duplicate of sample 122B-CS003. Due to the variability in the duplicate pair of CS003 and CS003D, the Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location.

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

SEAD-122B TREATABILITY STUDY Seneca Army Depot Activity - Romulus, NY

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
								OD E Swale		00.00			<u> </u>
Loc ID								1	OD N Berm	OD N Berm	RF cntr 60	South Face	Swale 1
Matrix								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
								122B-	122B-	122B-	122B-	122B-	122B-
Sample ID								CS005A	CS001AD	CS001A	CS008	CS001	CS004
Sample Depth T	OP							0	0	0	0	0	0
Sample Depth B	OT							0.2	0.2	0.2	0.2	0.2	0.2
Sample Date								1/21/04	1/13/04	1/13/04	1/21/04	1/8/04	1/13/04
QC Code								SA	DU	SA	SA	SA	SA
								122B-	122B-	122B-	122B-	122B-	122B-
Activity			Frequency		Number	Number	Number	TREAT	TREAT	TREAT	TREAT	TREAT	TREAT
Round		Maximum	of	Criteria	of	of Times	of Samples	2	2	2	2	2	2
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead	MG/KG	13860	100%	400	5	21	21	213	13.3	11.4	41.1	13860 J	195

Note:

* Sample 122B-CS003RA is a duplicate of sample 122B-CS003. Due to the variability in the duplicate pair of CS003 and CS003D, the Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location.

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Site								SEAD-122B	SEAD-122B	SEAD-122B Stockpile
Loc ID								Swale 1	Swale 2	Årea
Matrix								SOIL	SOIL	SOIL
								122B-	122B-	122B-
Sample ID								CS005	CS006	CS012
Sample Depth 7	ΓOP							0	0	0
Sample Depth E	BOT							0.2	0.2	0.2
Sample Date								1/13/04	1/13/04	6/24/04
QC Code								SA	SA	SA
								122B-	122B-	122B-
Activity			Frequency		Number	Number	Number	TREAT	TREAT	TREAT
Round		Maximum	of	Criteria	of	of Times	of Samples	2	2	2
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Collected	Value (Q) Value (C	Q) Value (Q)
Lead	MG/KG	13860	100%	400	5	21	21	720	42	299 J

SEAD-122B TREATABILITY STUDY Seneca Army Depot Activity - Romulus, NY

Note:

* Sample 122B-CS003RA is a duplicate of sample 122B-CS003. Due to the variability in the duplicate pair of CS003 and CS003D, the Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location.

Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B 30 ft W	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								100 ft from FL	1013 resample	CS003	MW-1	MW-2	MW-3	Middle Berm
Matrix								SOIL	SOIL	SOIL 122B-	SOIL	SOIL	SOIL	SOIL
Sample ID								122B-CS009A	122B-CS007	CS010A	122B-1040	122B-1041	122B-1042	122B-CS002
Sample Depth T	OP							0	0	0	12	14	12	0
Sample Depth B	ОТ							0.2	0.2	0.2	14	16	14	0.2
Sample Date								1/21/2004	1/21/2004	2/19/04	7/8/2002	7/9/2002	7/9/2002	1/8/2004
QA Code								SA	SA	SA	SA	SA	SA	SA
										122B-				
Activity			Frequency		Number	Number	Number	122B-TREAT	122B-TREAT	TREAT	122B-RI	122B-RI	122B-RI	122B-TREAT
Round			of	Criteria	of	of Times	of Samples	2	2	2	1	1	1	2
Parameter	Units	Maximum	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (C	Q) Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead	MG/KG	299	100%	400	0	85	85	19.1	45.2	34.9 J	6.5	8.5 J	10.6 J	209 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								North Face SOIL	OD E Swale 1 SOIL	OD N Berm SOIL	PSB-1 SOIL	PSB-1 SOIL
Sample ID Sample Depth T Sample Depth B Sample Date QA Code	OP BOT							122B-CS003* 0 0.2 1/8/2004 SA	122B-CS005A 0 0.2 1/21/2004 SA	122B-CS001A 0 0.2 1/13/2004 SA	122B-1061 0 2 7/11/2002 SA	122B-1062 8 10 7/11/2002 SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-TREAT 2 Value (Q) 22.6 J	122B-TREAT 2 Value (Q) 213	122B-TREAT 2 Value (Q) 12.4	122B-RI 1 Value (Q) 13.2 J	122B-RI 1 Value (Q) 11.7 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								PSB-1 SOIL	PSB-2 SOIL	PSB-2 SOIL	PSB-2 SOIL	PSB-2 SOIL	PSB-3 SOIL	PSB-3 SOIL
Sample ID Sample Depth T Sample Depth B Sample Date QA Code	OP BOT							122B-1063 14 16 7/11/2002 SA	122B-1026 2 4 7/1/2002 SA	122B-1027 6 8 7/1/2002 SA	122B-1028 12 14 7/1/2002 SA	122B-1029 22 24 7/1/2002 SA	122B-1030 0 2 7/2/2002 SA	122B-1031 10 12 7/2/2002 SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-RI 1 Value (Q) 11.4 J	122B-RI 1 Value (Q) 11.3 J	122B-RI 1 Value (Q) 8.4 J	122B-RI 1 Value (Q) 9.7 J	122B-RI 1 Value (Q) 11.4 J	122B-RI 1 Value (Q) 212 J	122B-RI 1 Value (Q) 145 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								PSB-3 SOIL	PSB-3 SOIL	PSB-4 SOIL	PSB-4 SOIL	PSB-4 SOIL	PSB-4 SOIL	PSB-4 SOIL
Sample ID Sample Depth To Sample Depth Bo Sample Date QA Code	OP OT							122B-1032 16 18 7/2/2002 SA	122B-1033 16 18 7/2/2002 SA	122B-1043 4 6 7/10/2002 SA	122B-1044 6 8 7/10/2002 SA	122B-1045 16 18 7/10/2002 SA	122B-1046 20 22 7/10/2002 SA	122B-1047 28 30 7/10/2002 SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-RI 1 Value (Q) 7.9 J	122B-RI 1 Value (Q) 8.3 J	122B-RI 1 Value (Q) 10.8 J	122B-RI 1 Value (Q) 10.6 J	122B-RI 1 Value (Q) 6.4 J	122B-RI 1 Value (Q) 18.8 J	122B-RI 1 Value (Q) 6.2 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								PSB-5 SOIL	PSB-5 SOIL	PSB-5 SOIL	PSB-5 SOIL	PSB-5 SOIL	PSB-5 SOIL	PSB-6 SOIL
Sample ID Sample Depth To Sample Depth Bo Sample Date QA Code	OP OT							122B-1048 2 4 7/10/2002 SA	122B-1049 10 12 7/10/2002 SA	122B-1050 12 14 7/10/2002 SA	122B-1051 18 20 7/10/2002 SA	122B-1052 28 30 7/10/2002 SA	122B-1053 28 30 7/10/2002 SA	122B-1054 2 4 7/11/2002 SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-RI 1 Value (Q) 5.2 J	122B-RI 1 Value (Q) 8.1 J	122B-RI 1 Value (Q) 10.2 J	122B-RI 1 Value (Q) 9.7 J	122B-RI 1 Value (Q) 7.6 J	122B-RI 1 Value (Q) 10.8 J	122B-RI 1 Value (Q) 9.1 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								PSB-6 SOIL	PSB-6 SOIL	PSB-6 SOIL	PSB-6 SOIL	PSB-7 SOIL	PSB-7 SOIL	PSB-7 SOIL
Sample ID Sample Depth To Sample Depth B Sample Date QA Code	OP OT							122B-1055 8 10 7/11/2002 SA	122B-1058 12 14 7/11/2002 SA	122B-1059 22 24 7/11/2002 SA	122B-1060 28 28.8 7/11/2002 SA	122B-1034 4 6 7/3/2002 SA	122B-1035 6 8 7/3/2002 SA	122B-1036 14 16 7/3/2002 SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-RI 1 Value (Q) 10.1 J	122B-RI 1 Value (Q) 11.8 J	122B-RI 1 Value (Q) 24.3 J	122B-RI 1 Value (Q) 12.5 J	122B-RI 1 Value (Q) 10.8 J	122B-RI 1 Value (Q) 10.9 J	122B-RI 1 Value (Q) 12.7 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								PSB-7	RF cntr 60 SS1	22B-1001-A,B SS12	22B-1001-A,B SS12	22B-1002-A,B SS12	22B-1002-A,B SS12
Matrix								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1037	122B-CS008	122B-1001A	122B-1001B	122B-1002A	122B-1002B
Sample Depth TO	Р							18	0	0	1.5	0	1.5
Sample Depth BO	т							20	0.2	0.5	2	0.5	2
Sample Date								7/3/2002	1/21/2004	6/26/2002	6/26/2002	6/26/2002	6/26/2002
QA Code								SA	SA	SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-TREAT	122B-RI	122B-RI	122B-RI	122B-RI
Round			of	Criteria	of	of Times	of Samples	1	2	1	1	1	1
Parameter	Units	Maximum	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead	MG/KG	299	100%	400	0	85	85	5.3 J	41.1	55.6	7.8	11.8	47.7

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								2B-1003-A,B SS1	22B-1003-A,B SS	122B-1004-A,B SS	122B-1004-A,B SS	122B-1005-A,B SS1	22B-1005-A,B SS1	22B-1006-A,B SS12
Matrix								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1003A	122B-1003B	122B-1004A	122B-1004B	122B-1005A	122B-1005B	122B-1006A
Sample Depth TOP								0	1.5	0	1.5	0	1.5	0
Sample Depth BOT								0.5	2	0.5	2	0.5	2	0.5
Sample Date								6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002
QA Code								SA	SA	SA	SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI
Round			of	Criteria	of	of Times	of Samples	1	1	1	1	1	1	1
Parameter U	Inits	Maximum	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)) Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead M0	G/KG	299	100%	400	0	85	85	16.6	6.9	36.7	12.6	29.4	9.9	22.8

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site							SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc							2B-1006-A,B SS12	22B-1007-A,B SS	122B-1007-A,B SS	122B-1008-A,B SS	122B-1008-A,B SS1	22B-1009-A,B SS1	22B-1009-A,B SS12
Matrix							SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample ID							122B-1006B	122B-1007A	122B-1007B	122B-1008A	122B-1008B	122B-1009A	122B-1009B
Sample Depth TOP							1.5	0	1.5	0	1.5	0	1.5
Sample Depth BOT							2	0.5	2	0.5	2	0.5	2
Sample Date							6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002
QA Code							SA	SA	SA	SA	SA	SA	SA
Activity		Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI
Round		of	Criteria	of	of Times	of Samples	1	1	1	1	1	1	1
Parameter Units	s Maxim	um Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)) Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead MG/K	G 299	100%	400	0	85	85	11.3	31.2	9.8	56.6	12.5	98.7	25.7

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								2B-1012-A,B SS1	22B-1012-A,B SS SOII	6122B-1014-A,B SS SOII	122B-1014-A,B SS ⁻ SOII	122B-1015-A,B SS1 SOII	22B-1015-A,B SS1 SOII	22B-1016-A,B SS12 SOII
Sample ID								122B-1012A	122B-1012B	122B-1014A	122B-1014B	122B-1015A	122B-1015B	122B-1016A
Sample Depth TC Sample Depth BC	OP OT							0 0.5	1.5 2	0 0.5	1.5 2	0 0.5	1.5 2	0 0.5
Sample Date QA Code								6/26/2002 SA	6/26/2002 SA	6/27/2002 SA	6/27/2002 SA	6/27/2002 SA	6/27/2002 SA	6/27/2002 SA
Activity Round			Frequency of	Criteria	Number of	Number of Times	Number of Samples	122B-RI 1	122B-RI 1	122B-RI 1	122B-RI 1	122B-RI 1	122B-RI 1	122B-RI 1
Parameter Lead	Units MG/KG	Maximum 299	Detection 100%	Level 400	Exceedances 0	Detected 85	Collected 85	Value (Q) 42	Value (Q 9.7) Value (Q) 13.2	Value (Q) 9	Value (Q) 5.2	Value (Q) 10.4	Value (Q) 48.6

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								2B-1016-A,B SS1	22B-1017-A,B SS	6122B-1017-A,B SS	122B-1019-A,B SS	122B-1019-A,B SS1	22B-1020-A,B SS1	22B-1020-A,B SS12
Matrix								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1016B	122B-1017A	122B-1017B	122B-1019A	122B-1019B	122B-1020A	122B-1020B
Sample Depth TOP)							1.5	0	1.5	0	1.5	0	1.5
Sample Depth BOT	-							2	0.5	2	0.5	2	0.5	2
Sample Date								6/27/2002	6/27/2002	6/27/2002	6/27/2002	6/27/2002	6/27/2002	6/27/2002
QA Code								SA	SA	SA	SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI	122B-RI
Round			of	Criteria	of	of Times	of Samples	1	1	1	1	1	1	1
Parameter	Units	Maximum	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q) Value (Q) Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead I	MG/KG	299	100%	400	0	85	85	26.7	19.7	17.4	13.7	7.7	4.2	3.7

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc Matrix								2B-1021-A,B SS1 SOIL	22B-1021-A,B SS SOIL	122B-1022-A,B SS ⁻ SOIL	122B-1022-A,B SS1 SOIL	122B-1023-A,B SS1 SOIL	22B-1023-A,B SS1 SOIL	22B-1024-A,B SS12 SOIL
Sample ID								122B-1021A	122B-1021B	122B-1022A	122B-1022B	122B-1023A	122B-1023B	122B-1024A
Sample Depth TC Sample Depth BC Sample Date	ЭР ЭТ							0 0.5 6/27/2002	1.5 2 6/27/2002	0 0.5 6/28/2002	1.5 2 6/28/2002	0 0.5 6/28/2002	1.5 2 6/28/2002	0 0.5 6/28/2002
QA Code								SA	SA	SA	SA	SA	SA	SA
Activity Round Parameter Lead	Units MG/KG	Maximum 299	Frequency of Detection 100%	Criteria Level 400	Number of Exceedances 0	Number of Times Detected 85	Number of Samples Collected 85	122B-RI 1 Value (Q) 4.2	122B-RI 1 Value (Q) 2.6 J	122B-RI 1) Value (Q) 8.4	122B-RI 1 Value (Q) 9.2	122B-RI 1 Value (Q) 13	122B-RI 1 Value (Q) 13.5	122B-RI 1 Value (Q) 69.4

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

Soil Total Lead Results For Current Site Conditions Seneca Airfield Small Arms Range

Site								SEAD-122B	SEAD-122B	SEAD-122B	SEAD-122B
Loc								2B-1024-A,B	Swale 1	Swale 2	Stockpile Area
Matrix								SOIL	SOIL	SOIL	SOIL
Sample ID								122B-1024B	122B-CS004	122B-CS006	122B-CS012
Sample Depth T	OP							1.5	0	0	0
Sample Depth B	ОТ							2	0.2	0.2	0.2
Sample Date								6/28/2002	1/13/2004	1/13/2004	6/24/04
QA Code								SA	SA	SA	SA
Activity			Frequency		Number	Number	Number	122B-RI	122B-TREAT	122B-TREAT	122B-TREAT
Round			of	Criteria	of	of Times	of Samples	1	2	2	2
Parameter	Units	Maximum	Detection	Level	Exceedances	Detected	Collected	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Lead	MG/KG	299	100%	400	0	85	85	14	195	42	299 J

Note:

* The lead result is the average of the sample (CS003 - 20.6 mg/Kg) and the duplicate reanalyzed (CS003RA - 24.6 mg/Kg). The sample was reanalyzed due to the variability in the duplicate pair of CS003 and CS003D, and therefore Army requested that the laboratory rerun the sample as CS003RA. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The Army is confident that this result is representative of that sample location. Highlighted cells indicate exceedance of criteria value.

U - Not detected at reported concentration

APPENDIX A

MONITORING WELL LOGS, SOIL BORING REPORTS, AND SLUG TEST RESULTS

					PARSONS	BORING/	Sheet # 1 of 1 #			
Contrac	ctor:	NorthSta	r Drilling	g	DRILLING RECORD	WELL NO.	MW-1			
Driller:		S. Breeds		F		Location Descript	tion:			
Inspect	or.	E Ashto		•	PROJECT NAME: Seneca Army Depot - SEAD 122B	SEE SITE PL	AN			
Dia Tyr		CME-45			PROJECT NUMBER: 741401 031					
-Ing Typ	<i>.</i>	CIIIL-15		•						
GROI	NOWA	TER OBS	FRVAT	TONS		Location Plan				
Water					Weather: Sunny - 75' F					
Level	6.00	7.02	7 48							
Date	7/11/02	7/22/02	7/24/02		Date/Time Start: 7/08/02-1020	SEE SITE PLAN				
Time	0830	0830	1035			1				
Meac	0050	0050	1055		Date/Time Finish: 7/08/02-1530					
From	TOC	тос	тос		Party Time Timbili Noord 1950	· ·	· .			
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS			
Depth	I.D.		Rec.	(maa)			stickup casing			
0-2		1/3	50	NA	(0'-2') Brown to Grey, roots, silt with clay, trace of fine sand	E	Grout 0-1.5'			
<u> </u>		5/8		<u> </u>	and fine gravel, dry. (SM/SC)					
				<u> </u>			Bentonite Pellets 1.5'-3.5'			
							2" PVC Riser			
2-4		17/22	NR	NA	(2'-4') No recovery in split-spoon.					
<u> </u>		21/20			(
		<u> </u>				4	Filtered sand			
							(# 00N) pack -			
4-6		15/17	50	NA	(4'-6') Brown, silt with trace of clay, trace of fine sand, fine to		3.5'-4'			
		23/30			medium gravel, black shale interbedded, dry. (SM (Till))		Filtered sand (#0)			
							pack - 4'-17'.5			
	· · · ·						· · · · ·			
6-8	· · · · ·	50/	20	NA	(6'-6.8') Same as above. (SM (Till)).					
		50/.3			Note: Refusal encountered at 6.8' bgs. Course gravel of black shale					
					in tip of spoon. Drilled to 8' bgs with HSAs.					
			· · ·	1			0.010 Slot PVC Screen			
Ļ	<u> </u>			1			6'-16'			
8-10		50/.3	2	NA	(8'-8.3') Same as above. (SM (Till))					
			1		Note: Refusal encountered at 8.3' bgs. Black shale predominant					
	1		<u> </u>		in spoon. Drilled to 10' bgs with HSAs.					
			1	1						
_			1							
10-12		25/31	80	NA	(10'-11.8') Brown, silt with trace clay and interbedded shale, dry.					
		50/			(SM (Till))		1			
		50/.3			Note: Refusal encountered at 11.8' bgs. Drilled to 12' bgs with HSAs.					
				1						
		1								
12-14	122B-	17/25	100	NA	(12'-14') Same as above. (SM (Till))					
	1040	40/40								
]					
14-16		65/	10	NA	(14'-14.7') Brown to Grey, silt with clay and interbedded shale, wet.		16'			
		50/.2			(SM (Till))		Sch. 40 PVC Sump			
					Note: Refusal encountered at 14.7 bgs. Attempted to drill to 20 bgs,		16.5' 16'-16.5'			
		-			but encountered auger refusal at 17.5' bgs.					
16-18		NA	NA	NA	14 A.					
							17.5'			
		1			Terminated soil boring at 17.5' bgs.	1				
					COMMENTS:					
1	SAMPLI	NG METH	OD		Collected soil sample 122B-1040 for total lead analysis.					
1	SS - SPLIT SPO	DON			6-inch PVC sump installed at bottom of well screen.					
1	A - AUGER CL	TTINGS			2-inch well installed.					
1	C = CORED									

					PARSONS	BORING/	Sheet # 1 of 1 #			
Contra	ctor:	NorthSta	r Drillin	g	DRILLING RECORD	WELL NO.	MW-2			
Driller:		S. Breed	5			Location Descript	ion:			
Inspect	or:	E. Ashto	n		PROJECT NAME: Seneca Army Depot - SEAD 122B	SEE SITE PL	AN			
Rig Typ	pe:	<u>CME-45</u>			PROJECT NUMBER: 741401.031					
GRO	INDWA	TER OBS	FRVAT	TONS		Location Plan				
Water					Weather: Cloudy - 65F					
Level	6.5	7.38	7.54			1				
Date	7/12/02	7/22/02	7/24/02		Date/Time Start: 7/09/02-0920	SEE SITE PLAN				
Time	0835	0835	1040							
Meas.	TOC	TOC	TOC		Date/Time Finish: 7/09/02-1302	Į :				
From	Sample	SPT	100	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS			
Depth	I.D.	SII	Rec.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	stickup casing			
0-2		2/3	50	NA	(0'-2') Brown, silt with clay, trace of fine sand and fine gravel, roots, dry.	4	Grout 0'-1.5'			
		3/4			(SM/SC)					
						6	Bentonite Pellets 1.5'-3.5'			
		5.0	40-				2" PVC Riser			
2-4		5/8	40	NA	(2'-4') Same as above, except no roots and color of soil brown to grey.					
		10/14		·	(SM/SC)					
							Filtered sand			
	·						(#00N) pack -			
4-6		13/23	100	NA	(4'-6') Brown, silt with clay and interbedded shale, dry. (SM/SC (Till))		3.5'-4'			
		35/40								
							0.010 Slot PVC Screen			
6-8		50/	NA	NA	(6'-8') No recovery.		6'-15.7'			
		50/.3			Note: Refusal encountered at 6.8' bgs. Drilled to 8' bgs with HSAs.		Tillered and (#0)			
				 		`	nack - 4'-16 5'			
I							puok = 4 - 10.0			
8-10		50/.3	NA	NA	(8'-10') No recovery.					
					Note: Refusal encountered at 8.3' bgs. Drilled to 10' bgs with HSAs.					
					Course gravel of black shale present in tip of spoon.		,			
		 								
10.12		27/40	50							
10-12		50/2	50	NA.	(10-11.2) Brown to Grey, silt with clay and interbedded shale, dry.					
		307.2								
12-14		34/25	100	NA	(12'-14') Grey, silt with clay and interbedded shale, moist. (SM/SC (Till))					
		23/24								
14-16	1220	22/24	80	NA	(14 16) Some as above (CN//SC (THIN)					
14-10	1041	33/50/	00		(14-10) Same as above. (SM/SC (111))					
	1041	.4			· · · · · · · · · · · · · · · · · · ·					
	· · ·						Sch. 40 PVC Sump			
16-18		50/.3	2	NA	(16'-16.3') Weathered black shale, wet. (Shale)		16' 15.7'-16'			
					Note: Refusal encountered at 16.3' bgs. Attempted to drill to 20' bgs, but		16.5'			
					encountered auger refusal at 16.5' bgs. Boring Terminated at 16.5' bgs.					
					COMMENTS:					
	SAMPLIN	NG METHO	מס		Collected soil sample 122B-1041 for total lead analysis.					
	A - AUGER (1)	TTINGS			2-inch revel installed.					
	C-CORED									

					PARSONS	BORING/	Sheet # 1 of 1 #			
Contra	tor:	NorthSta	er Drilling	Ş	DRILLING RECORD	WELL NO.	MW-3			
Driller:		S. Breed	S		DROJECT MAME, Cancer Ameri Denet SEAD 199D	Location Descrip	ANI			
Inspect	or:	E. Asht	on :		PROJECT NJIMBED: 741401 031	SEE SITE PL	AN			
- Kig Tyl		CIVIE-45		•	TROJECT NUMBER. /HT01.071					
GRO	JNDWA	TER OB	SERVAT	IONS		Location Plan				
Water					Weather: Sunny - 60'F					
Level_	5.6	6.44	6.68							
Date	7/12/02	7/22/02	7/24/02		Date/Time Start: //10/02 - 0840	SEE	SILE PLAN			
1 ime Meas	0840	0840	1045		Date/Time Finish: 7/10/02 - 0930					
From	TOC	тос	тос			l	• · · · · · · · · · · · · · · · · · · ·			
Sample	Sample	SPT	%	PID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS			
Depth	LD.		Rec.	(ppm)			stickup casing			
0-2		5/6/	80	NA	(0'-2') Brown, silt with minor clay, roots, trace of fine sand and fine to		- (Grout (0'-1.5')			
. <u> </u>		21/22			medium gravei, dry. (SM)					
						\vdash	2" PVC Riser			
2-4		22/25	2	NA	(2'-4') Fine to course gravel. Very little to no recovery in spoon.					
		23/28			•					
							Bentonite Pellets (1.5'-3')			
							Hittered sand			
4-6		23/21	80	NA	(4'-6') Greet silt with trace clay fine to medium gravel trace of fine	╏┝──┤╻	Filtered sand (#0) pack			
4-0	·	30/33			sand dry (SM)		(3.5'-15')			
		30/33		<u> </u>						
							0.010 " Slot, Sch 40 PVC			
6-8	. <u></u>	50/.3	NA	NA	(6'-6.3') No recovery.		Screen (4'-14')			
L		<u> </u>			Note: Refusal encountered at 6.3' bgs. Drilled to 8' bgs. with HSAs.		1			
		 			Course graver of black shale in up of spool.					
<u>`</u>		<u> </u>		<u> </u>						
8-10		30/	20	NA	(8'-8.8') Brown to Grey, silt with clay and interbedded shale, dry.					
		50/.3			(SM/SC (Till))					
(<u> </u>	Note: Refusal encountered at 8.8' bgs. Drilled to 10' bgs. with HSAs.		· ·			
				<u> </u>						
10-12		35/	40	NA	(10'-10.8') Same as above. (SM/SC (Till))					
		50/.3			Note: Refusal encountered at 10.8' bgs. Drilled to 12' bgs. with HSAs.					
		ļ								
12.14	1220	20/	50	NA	(12-12 8) Brown to Grow sits with alow and interstandard shale de-					
12-14	1042	50/.3		INA	(SM/SC (Till))					
		1 10			Note: Refusal encountered at 12.8' bgs. Drilled to 14' bgs. with HSAs.					
							14'			
14-16		50/.1	50	<u>NA</u>	(14'-14.1') No recovery.		Sch. 40 PVC Sump			
					Note: Refusal encountered at 14.1 bgs. Tip of spoon wet. Attempted to	II	14.5 14-14.5			
		-			Terminated soil boring at 15 bgs.		15'			
16-18										
				1						
					COMMENTS:					
SAMPLING METHOD					Collected soil sample 122B-1042 for total lead analysis.					
1	A = AUGER (11	~~~~ TTING\$			2-inch well installed.					
	C - CORED									

.

			PAGE 1 OF
01	ERBURDEN M	MONITORING W	/ELL
COMP	LETION REPORT	F & INSTALLATION	DETAIL
	PROTECTIVE	RISER COMPLETION	
PARSONS	CLIENT: A	COE	WELL #: /
PROJECT: Jewels	Army Depat	PROJECT NO:	74140.03100
LOCATION: Romy	45, NY	INSPECTOR:	E OAslta
		CHECKED BY:	ETASLA
DRILLING CONTRACTOR:	North Star Pilling	fn (, POW DEPTH:	16.5'
DRILLER:	Scott Breads	INSTALLATION STARTED:	7108102
DRILLING COMPLETED:	7/08/02	INSTALLATION COMPLETED:	7108/02
BORING DEPTH:	17.5	SURFACE COMPLETION DATE:	7/12/02
DRILLING METHOD(S):	Hollow Ston augos.	COMPLETION CONTRACTOR/CREW:	North STa- Milling
BORING DIAMETER(S):	6.25	BEDROCK CONFIRMED (Y/N?)	<u> </u>
ASSOCIATED SWMU/AOC:	SEAD-122B	ESTIMATED GROUND ELEVATION:	635.14
PROTECTIVE SURFACE CAS	ING:		
	DIAMETER: <u>4</u>	LENGTH: <u>3.5</u>	TOR: <u>Steel</u>
RISER:	,	•••	
тос: 637.16	TYPE: 51. 40 NVC	DIAMETER: 2 LENGTH:	8.02
REEN:			SLOT
TSC: 629.14	TYPE: Sch 40, PVC	DIAMETER: <u>2</u> " LENGTH:	10' SIZE: 10-5/07
POINT OF WELL: (SILT SUMP)		· · · · · · · · · · · · · · · · · · ·
YPE: -	BSC: 619.14	POW: 618.64	· · · · · · · · · · · · · · · · · · ·
GROUT:			· · · · · · · · · · · · · · · · · · ·
TG	: 635./4' TYPE:	Coment /Bont. LENGTH:	1.5'
	(2)(4) 7500		2'
SEAL: IBS	<u>C 2 4 67</u> TIPE:	Muris # OON (3.5-4')	
SAND PACK: TSP	: <u>6 \$7.64</u> TYPE:	• 0 (4~7. LENGTH:	
SURFACE COLLAR:			
TYPE: Concreto	RADIUS: Z'XZ'	THICKNESS CENTER: 6"	THICKNESS EDGE: 6
CENTRALIZER DEPTHS			
DEPTH 1: MA	DEPTH 2: MA	DEPTH 3: M	DEPTH 4: MA
		· · · · · · · · · · · · · · · · · · ·	
COMMENTS:			
fee	2 Boning Log fa	- in typhe details	
	0 0 .		
	* ALL DEPTH M	EASUREMENTS REFERENCED TO GRO	UND SURFACE
•		LAUGHERING NEI ERENOED TO ORO	

SEE PAGE 2 FOR SCHEMATIC

			PAGE 1 OF
01	ERBURDEN N	MONITORING	WELL
COMP	LETION REPORT	Г & INSTALLATIC	ON DETAIL
	PROTECTIVE	RISER COMPLETION	
PARSONS	CLIENT: A	COE	WELL #: 2
PROJECT: <u>Le merq</u>	King Brot	PROJECT	NO: 74/401. 03/00
LOCATION: Roma	145 MY	INSPECT	OR: ESHshta
		CHECKED	BY: EOAskton
DRILLING CONTRACTOR:	North Star Prilling, In	- C POW DEP	тн: <u>/6.0'</u>
DRILLER:	Scatt Breads	INSTALLATION START	ED: <u>7/09/02</u>
DRILLING COMPLETED:	7109/02	INSTALLATION COMPLET	ED: 7/09/02
BORING DEPTH:	16.5	SURFACE COMPLETION DA	TE: 7/12/02
DRILLING METHOD(S):	Hollow Stem anger	COMPLETION CONTRACTOR/CR	EW: North Star Milling
BORING DIAMETER(S):	<u>F. 25</u>	BEDROCK CONFIRMED (Y	N?)
ASSOCIATED SWMU/AOC:	JEAD-ILLB	ESTIMATED GROUND ELEVATI	UN: <u>629.53</u>
PROTECTIVE SURFACE CAS	ING:	2 ~ '	
	DIAMETER: <u>9</u>	LENGTH: 5. J	TOR: Jreek
RISER:	1 · ·	2 /	
TOC: 626. 82	TYPE: Sch. 40, PVC	DIAMETER: LENG	атн: <u>/- 99</u>
CREEN:			SLOT
TSC: 0/8.84	TYPE: - 14 40 /11	DIAMETER: <u>2</u> LENG	TH: <u>9.7</u> SIZE: /0-5/67
POINT OF WELL: (SILT SUMP			
YPE:	BSC: 609.15	POW: 6 68.83	· · · · · · · · · · · · · · · · · · ·
GROUT:			
TG	: <u>629,83</u> туре:	Cont/Bort, LENGTH:	1.5
SEAL: TBS	623.33' TYPE:	Relets LENGTH:	2'
SAND PACK: TSP	<u>621.33</u> TYPE:	10 C 6-15 LENGTH:	
SURFACE COLLAR:	· · · · ·		
TYPE: (antreto	RADIUS: 2x 2	THICKNESS CENTER: 6	THICKNESS EDGE:
CENTRALIZER DEPTHS	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
DEPTH 1: MA	DEPTH 2:A	DEPTH 3:	DEPTH 4:
COMMENTS:		· · · · · · · · · · · · · · · · · · ·	
f	ee Boring Log	for in depth de	Fails
1	* ALL DEPTH MI	EASUREMENTS REFERENCED TO (GROUND SURFACE

SEE PAGE 2 FOR SCHEMATIC

:

				PAGE	3 1 OF /
OVE	RBURDEN	MON	ITORING	WE]	LL
COMPL	ETION REPOR	T & IN	STALLATIC)N DI	ETAIL
	PROTECTIVE	RISER	COMPLETION	-	· · · · ·
PARSONS	CLIENT:	4(0E		WE	LL#: <i>3</i>
PROJECT: Le ~ecg	Army Derot	_	PROJECT	NO: 7	41401.03100
LOCATION: Romylus	NY	_	INSPECT	OR:	- JAshta
			CHECKED	BY:	EPAshta
DRILLING CONTRACTOR:	athster Onling In	<u>s,</u>	POW DEP	TH:	14.5'
DRILLER:	Cott Breeds	÷	INSTALLATION START	ED:	7110102
DRILLING COMPLETED:	7/10/02	IN	STALLATION COMPLET	ED:	7110102
BORING DEPTH:	15	_ SU	RFACE COMPLETION DA	NTE:	1/2/02
DRILLING METHOD(S):	allow sten Auger	COMPLE	TION CONTRACTOR/CR	EW: <u>// 9</u>	that hilling
BORING DIAMETER(S):	F.25	- BE	DROCK CONFIRMED (Y	/N?)	Y Dal
ASSOCIATED SWMU/AOC:	SFAN-(22B	ESTIMA	TED GROUND ELEVATI	ON: 6	25. 82
PROTECTIVE SURFACE CASING					
DLA	1. METER: <u>9</u>	LENGTH	1: <u>35</u>		TOR: Jel
RISER:			·		
тос: <u>621. 94</u>	TYPE: Sel 40 prc	DIAMETER	E <u>2</u> LENG	тн: <u>6</u> .	.12
SCREEN:	<u> </u>		- (1		SLOT
TSC: <u>661.86</u>	TYPE: X4 40 AVC	DIAMETER	LENG	атн: <u>/</u>	<u> </u>
POINT OF WELL: (SILT SUMP)			,		•
<u>ЧРЕ:</u>	BSC: 6//.82	PO	w: 611.32		·
GROUT:	,				ſ
TG:	525.52 TYPE	: Comt/b	LENGTH:		· 5
seal: tbs: 6	24.32' TYPE	fellet.	LENGTH:	/	:5'
	(22,52' TYPE	Man & # 60	~ (3-3, 5')		2'
SURFACE COLLAR:		77171	WARDER OFFICER.	. //	
TIPE: (UNCARG	RADIOS: 2 20		KNESS CENTER:O		
CENTRALIZER DEPTHS					
DEPTH 1: M	DEPTH 2:	_ DEPTH	3:	DI	3PTH 4: 14
COMMENTS:			· · · · ·		
		\sim			
	ter Bony La	y ter	in-dapth	¢#	kils.
	Ŭ				
·	* ALL DEPTH M	IEASUREMEN	VTS REFERENCED TO C	BROUND	SURFACE

SEE PAGE 2 FOR SCHEMATIC

.

							·	PAGE 1	OF /
1			OVER	BURD	EN BOI	RING REJ	PORT		
PA	RSONS		• •		CLIEN	T: USACOE	BORIN	IG NO.:	Mw-1
PROJEC	T:		RI FIEL	D INVEST	IGATION		START D	ATE:	7/8/02
SWMU#	(AREA)	:		SEAD-	ZZB		FINISH D	ATE:	718/02
SOP NO	:					······································	CONTRAC	TOR:	Mathster Milia
		DR	ILLING S	UMMARY	•		DRILLER:		Scott Breachs
DRILLING	HOLE	DEPTH	SAM	IPLER	H	IAMMER	INSPECTO	DR:	E.J. Ashta
METHOD	DIA.(ft)	INTERVAL (ft)	SIZE	ТҮРЕ	ТҮРЕ	WT/FALL	CHECKED	BY:	E.J. Asata
HSA	8-25	2	2'x2	22	H HR	150	CHECK D	ATE:	718102
							BORING C	ONVERTED	
				DRII	LLING ACF	RONYMS			0
HSA		HOLLOW-STEM AU	JGERS	HMR	HAMMER		SS	SPLIT SPOO	ON
DW		DRIVE-AND-WASH		SHR	SAFETY H	AMMER	CS	CONTINUO	US SAMPLING
MRSLC		MUD-ROTARY SOI	L-CORING	HHR	HYDRAULI	C HAMMER	5I	5 FT INTER	VAL SAMPLING
CA SDC		CASING ADVANCE	R .	DHK	WIRE-LINE	LE HAMMER	NS .	SHELBY TE	ING
510		SPIN CASING		W.L			35	3 INCH SPL	IT SPOON
					· .				
			MC	NITORIN	G EQUPM	ENT SUMMAI	RY - M	4	
INSTRU	IMENT	DETECTOR	RANGE		BACKGROU	JND	CALIB	RATION	WEATHER
тү	PE	TYPE/ENERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
1									
	~								
		·							
				MONIT	FORING A	CRONYMS			•
PID		PHOTO - IONIZATIO	ON DETECTOR	BGD	BACKGRO	UND	DGRT	DRAEGER	TUBES
FID		FLAME - IONIZATIO	ON DETECTOR	CPM	COUNTS P	er minute	PPB	PARTS PER	BILLION
GMD		GEIGER MUELLER	DETECTOR	PPM	PARTS PER	RMILLION	MDL	METHOD I	DETECTION LIMIT
SCT		SCINTILLATION D	ETECTOR	RAD	RADIATIO	N METER			
			INV	ESTIGAT	ION DERIV	ED WASTE			
	DATE						1		
	DITT	7	18/02						
SOI	L AMOU	JNT:	1008						
		(122	8-15 5	AD-12B					
DRUM	1 #, LOC	ATION:		7					
, CO	OMMEN	TS:				SAMPLES T	AKEN:		
						SAMPLES	1221	8-104	10
•						DUPLICATES			
Í						MS/MSD			
1						MRD			

			OVER	BURD	EN BOI	RING REI	PORT		
PAI	RSONS		•		CLIEN	T: USACOE	BORI	NG NO.:	MW-2
PROJEC	T :		RI FIEL	D INVEST	TIGATION		START D	ATE:	719/02
SWMU#	(AREA)	:		SEAD-	122B		FINISH D	ATE:	719/02
SOP NO.	:					<u> </u>	CONTRA	CTOR:	Nathstan Onilling
		DRI	LLING S	U MMARY	•		DRILLER	:	Scotbracks
DRILLING	HOLE	DEPTH	SAM	IPLER	ł	LAMMER	INSPECTO	OR:	EJ. Ashta
METHOD	DIA.(ft)	INTERVAL (ft)	SIZE	туре	ТҮРЕ	WT/FALL	CHECKEI	BY:	E.J. Ashta
HSA	\$25	2	2'*2'	J	HAL	SE1	CHECK I	DATE:	7/5/02
			l				BORING C	ONVERTED	TOMW? Y N
				DRII	LLING ACH	RONYMS			0
HSA		HOLLOW-STEM AUG	ERS	HMR	HAMMER		SS	SPLIT SPO	ON
DW		DRIVE-AND-WASH		SHR	SAFETY H	AMMER	CS	CONTINUO	OUS SAMPLING
MRSLC		MUD-ROTARY SOIL	CORING	DHR	DOWN-HO	IC HAMMER	SI NS	NOSAMPL	ING
SPC		SPIN CASING		WL		ST	SHELBY TU	JBE	
							3S	3 INCH SPL	IT SPOON
		<u> </u>	MC	NITORIN	G EOUPM	ENT SUMMA	RY M	4	······································
INSTRU	MENT	DETECTOR	RANGE		BACKGRO	UND	CALIB	RATION	WEATHER
ту	PE	TYPE/ENERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
		TH BLILLIOT		id bito		- Ditte			(12444.1, 1212, 210)
·									·
							_		
				MONIT	FORING A	CRONYMS			•
PID		PHOTO - IONIZATION	DETECTOR	BGD	BACKGRO	UND	DGRT	DRAEGER	TUBES
FID		FLAME - IONIZATION	DETECTOR	CPM	COUNTS P	ER MINUTE	PPB	PARTS PER	BILLION
SCT		SCINTILLATION DET	ECTOR	RAD	RADIATIO	N METER	MDL	METHOD	DETECTION LIMIT
			YA W		TON DEDU				
			INV	ESTIGAT	ION DERIV	VED WASTE			
	DATE		191	2					
SOI	L AMO	JNT:	1110						····
(fra	ction of	drum) 🖊 🧹	1050						
DRUM	[#, LOC	ATION: 1224	-25,5	FAD US					
CO	MMEN	TS:				SAMPLES T	AKEN:		
						SAMPLES	122B	-1041	
l						DUPLICATES			
1						MSAMSD			
						MPD			

PAGE 1	OF (
--------	------	--

		-		OVER	BURD	EN BOI	RING REF	PORT		
PAF	RSONS		·····			CLIEN	T: USACOE	BORI	NG NO.:	Мш.3
PROJEC	Γ:	-		RI FIEL	D INVEST	TIGATION		START D	ATE:	7/10/02
SWMU #	(AREA)	: _			SEAD-	IZZB_		FINISH E	ATE:	7/10/02
SOP NO.	:						·····	CONTRA	CTOR:	North Stan Billing
			DRI	LLING SU	JMMARY	·		DRILLER	: .	Scatt Brands
DRILLING	HOLE	DEP1	ГН	SAM	PLER	Н	LAMMER	INSPECT	DR:	F. J. Ashta
METHOD	DIA.(ft)	INTERV	AL (ft)	SIZE	ТҮРЕ	туре	WT/FALL	CHECKEI	D BY:	R. D. Asata
HSA	8.25	2		2"x2	55	H.H.K	150	СНЕСК І	DATE:	7/9/02
·						<u>_</u>	<u>.</u>	BORING C	ONVERTED	томия (У М
					DRI	LLING ACE	NNYMS			
HSA		HOLLOW-ST	TEM AUG	ERS	HMR	HAMMER		SS	SPLIT SPOO	N
DW		DRIVE-AND	-WASH	COBBIC	SHR	SAFETY H	AMMER	CS 61	CONTINUO	US SAMPLING
CA		CASING AD	VANCER	CURING	DHR	DOWN-HOI	E HAMMER	NS	NOSAMPLI	NG
SPC		SPIN CASIN	G		WL	WIRE-LINE		ST	SHELBY TU	IBE
								3S	3 INCH SPL	IT SPOON
				MO	NITORIN	G EQUPM	ENT SUMMAF	X -	A	
INSTRU	MENT	DETEC	TOR	RANGE		BACKGROU	JND	CALIB	RATION	WEATHER
ту	Æ	TYPE/EN	ERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
<u></u>										
	-							1		
					······					
					MONI	FORING AC	CRONYMS			•
PID		PHOTO - 101	IZATION	DETECTOR	BGD	BACKGROU	JND	DGRT	DRAEGER '	TUBES
FID		FLAME - ION	VIZATION	DETECTOR	CPM	COUNTS P	er minute	PPB	PARTS PER	BILLION
GMD		GEIGER MU	ELLER D	ETECTOR	PPM	PARTS PER	MILLION	MDL	METHOD D	DETECTION LIMIT
	<u> </u>				KAD					
				INV	ESTIGAT	ION DERIV	/ED WASTE			
	DATE	[71	9/02				1		
SOI		NT:					<u> </u>			
(fra	ction of (drum)	1224	0010 -35.5	EAD-NVB		<u></u>			·
DRUM	(#, LOC	ATION:			-/·W - 1			<u> </u>	- <u></u>	
CO	MMEN	TS:					SAMPLES T	AKEN:	, ,	0
							SAMPLES	ILLA	- 104	<u> </u>
		·					DUPLICATES			
							MS/MSD			
							MRD			

L

·····									PAGE 1	OF /
				OVER	BURD	EN BOI	RING REI	PORT		
PA	RSONS					CLIEN	T: USACOE	BORI	NG NO.:	PSB-1
PROJEC	Т:			RI FIEL	D INVEST	IGATION		START D	ATE:	7/11/02
SWMU#	(AREA)	:			SEAD-	IZB		FINISH I	DATE:	7/11/02
SOP NO	.: 	<u> </u>				· · · · · · · · · · · · · · · · · · ·	<u></u>	CONTRA	CTOR:	North Star Palling
		e	DRI	LLING SU	JMMARY	· .		DRILLER	:	ScattBreeds
DRILLING	HOLE	DEPT	н	SAM	PLER	H	IAMMER	INSPECT	OR:	F.J.Ashta
METHOD	DIA.(ft)	INTERVA	L (ft)	SIZE	ТҮРЕ	ТҮРЕ	WT/FALL	CHECKE	D BY:	F.O. Ashta
H-SA	4.25	2		2 x2	27	Http	150	CHECK I	DATE:	7/11/02
	l		<u> </u>				<u> </u>	BORING	CONVERTED	TOMW? Y N
					DRI	LLING ACF	RONYMS	-		
HSA		HOLLOW-ST	em aug	ERS	HMR	HAMMER		SS	SPLIT SPO	ON
DW		DRIVE-AND-	WASH		SHR	SAFETY H	AMMER	CS	CONTINUO	US SAMPLING
MRSLC		MUD-ROTAR	Y SOIL-	CORING	HHR	HYDRAUL	C HAMMER	51	5 FT INTER	VAL SAMPLING
CA		CASING ADV	VANCER		DHR	DOWN-HO	LE HAMMER	NS	NO SAMPLI	ING
SPC		SPIN CASING	3		WL	WIRE-LINE		ST	SHELBY TU	JBE
									3 INCH SPL	IT SPOON
				мо	NITORIN	G EQUPM	ENT SUMMAI	XY - M	A	
INSTRU	MENT	DETECT	FOR	RANGE		BACKGROU	JND	CALIB	RATION	WEATHER
TY	PE	TYPE/ENI	ERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
·										· · · · · · · · · · · · · · · · · · ·
			•							
	<u> </u>									· · · · · · · · · · · · · · · · · · ·
		L,		II	MONE	FORING AG	CRONYMS	1	<u> </u>	· ·
PID		PHOTO - ION	IZATION	DETECTOR	BGD	BACKGRO	JND	DGRT	DRAEGER	TUBES
FID		FLAME - ION	IZATION	DETECTOR	CPM	COUNTS P	ER MINUTE	PPB	PARTS PER	BILLION
GMD		GEIGER MUI	ELLER D	ETECTOR	PPM	PARTS PEF	R MILLION	MDL	METHOD I	DETECTION LIMIT
SCT		SCINTILLATI	ION DET	ECTOR	RAD	RADIATION	N METER			
				INV	ESTIGAT	ION DERIV	/ED WASTE -	- A &	•	
	17 A mm	.								
	DATE									
SOI	L AMOU	лт: 🕇					· · ·	1.		
(fra	ction of	drum) -						<u> </u>		
DRUM	1 #, LOC	ATION:								
CC	OMMEN	TS:				•	SAMPLES T	AKEN:		
R	[. Th	· • -	den	16.1		SAMPLES	[22B	-1061	1062 ; [063
		uni i	Ja		19905		DUPLICATES			
í	(N	Screb	é.				MS/MSD			
								••••••	·····	
							MRD			

1

						PAGE 1 OF					
				OVER	BURD	EN BOI	RING REI	PORT			
PAI	RSONS			•		CLIEN	T: USACOE	BORI	NG NO.:	PSB-2	
PROJEC	Γ:	-		RI FIEL	D INVEST	IGATION		START I	DATE:	711102	
SWMU #	(AREA)	:			SEAD-	IZB		FINISH I	DATE:	7/1/02	
SOP NO.	:	•						CONTRA	CTOR:	North Star Calling	
	<u> </u>		DRI	LLING SU	JMMARY	•		DRILLER	:	Scott Breachs	
DRILLING	HOLE	DEP	гн	SAM	PLER	H	IAMMER	INSPECT	OR:	EJAshta	
METHOD	DIA.(ft)	INTERV	AL (ft)	SIZE	TYPE	TYPE	WT/FALL	CHECKE	D BY:	R.J. Ashta	
#SA	4.25	2		2'x2'	22	HAR	150	СНЕСК І	DATE:	. 7/1/02	
								BORING	CONVERTED	томи? У Л	
					DRII	LING ACE	RONYMS			-	
HSA		HOLLOW-ST	TEM AUG	ERS	HMR	HAMMER		SS ·	SPLIT SPOC		
DW MRSLC		DRIVE-AND	-WASH	CORING	SHR	SAFETY H	AMMER C HAMMER	CS SI	5 FT INTER	US SAMPLING VAL SAMPLING	
CA		CASING AD	VANCER	contro	DHR	DOWN-HO	LE HAMMER	NS	NO SAMPLI	ING	
SPC		SPIN CASIN	G		WL	WIRE-LINE	: · ·	ST	SHELBY TU	JBE	
								35	3 INCH SPL	IT SPOON	
				MO	NITORIN	G EQUPM	ENT SUMMAI	RY -	M		
INSTRU	MENT	DETEC	TOR	RANGE		BACKGROU	JND	CALIE	BRATION	WEATHER	
TY	PE	TYPE/EN	ERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)	
<u></u>											
1			-								
	-								1	· · · · · · · · · · · · · · · · · · ·	
										·	
		L					CDONVMC	1	ł	·	
PIO		PHOTO - JOY	JIZ ATION	DETECTOR	MONI			DCPT		TURES	
FID		FLAME - IOI	NIZATION	DETECTOR	СРМ	COUNTS P	ER MINUTE	PPB	PARTS PER	BILLION	
GMD		GEIGER ML	Jeller D	ETECTOR	PPM	PARTS PEI	R MILLION	MDL	METHOD D	DETECTION LIMIT	
SCT		SCINTILLAT	tion det	ECTOR	RAD	RADIATIO	METER				
				INV	ESTIGAT	ION DERIV	VED WASTE	- 10	1 🗭		
	DATE	. [· · · ·			1			
	1 43401	DIT.		_							
SOI (fra	L AMOU	drum)								·	
DRUM	1 #, LOC	ATION:									
CC	OMMEN	TS:		/			SAMPLES T	AKEN:			
*	- Soil	1 (4/18	ge p	lacel .	back in	な	SAMPLES	1228-	1026.10	27 , 1028 : 1029	
	hore	46.					DUPLICATES				
1							MSMSD				
L							MIC				

.

1

									FAGE I	<u> </u>
	_			OVER	BURD	EN BOI	RING REI	PORT		
PAI	RSONS			•		CLIEN	T: USACOE	BORIN	NG NO.:	PSB-3
PROJEC	T :			RI FIEL	D INVEST	IGATION		START D	ATE:	7/2/02
SWMU#	(AREA)	: -			SEAD-	IZBB		FINISH D	ATE:	712/02
SOP NO.		-						CONTRAC	CTOR:	North Stan Polling
			DRI	LLING SU	JMMARY	•		DRILLER:		Scott Breaks
DRILLING	HOLE	DEP	пн	SAM	PLER	H	IAMMER	INSPECTO	DR:	E.J. Ashta
METHOD	DIA.(ft)	INTERV	AL (ft)	SIZE	ТҮРЕ	TYPE	WT/FALL	CHECKEL	BY:	E.J. ASWa
HSA	4.25	2		2 x2	22	HHR	150	СНЕСК D	DATE:	7/2/02
								BORING C	ONVERTED	TO MW? Y N
					DRII	LLING ACE	RONYMS			
HSA		HOLLOW-ST	TEM AUG	ERS	HMR	HAMMER		SS	SPLIT SPOO	ON
DW		DRIVE-AND	-WASH		SHR	SAFETY H	AMMER	cs	CONTINUO	US SAMPLING
MRSLC		MUD-ROTA	RY SOIL-	CORING	HHR	HHR HYDRAULIC HAMMER			5 FT INTER	VAL SAMPLING
CA		CASING AD	VANCER		DHR	DOWN-HO	LE HAMMER	NS .	NO SAMPLI	ING
SPC		SPIN CASIN	G		WL	WIRE-LINE	:	ST	SHELBY TU	JBE
								38	3 INCH SPL	IT SPOON
				MO	NITODIN	C FOURM	ENT STIMMAT	2V ~ 44	Л	·····
		DETEC	TOP	PANCE		BACKCBOI			PATION	WEATHER
INSTRU	MENI	DETEC	TOR	KANGE		BACKGROU	CALIB	RATION	WEATHER	
	PE	TYPE/EN	ERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
1										
	-	I						1		
 										
								1		
	<u> </u>	I						1		I
DID		PHOTO - 101	17 4 1101	DETECTOR	MONE			DORT	DRAFGER	TURES
FID		FLAME-10	VIZATION	DETECTOR	CDM	COUNTS D	ER MINUTE	PPR	PARTS PEP	BILLION
GMD		GEIGER MI		ETECTOR	PPM	PARTS PE	R MILLION	MDL	METHOD	DETECTION LIMIT
SCT		SCINTILLA	TION DET	ECTOR	RAD	RADIATIO	N METER			
			·	INV	ESTICAT	TON DEDD	VED WASTE		<i>o</i> ¢	
				Щ.	LOIIGAI			-N /		
	DATE									
SOI	L AMO	UNT :				•				
(fra	action of	drum)		····-						<u></u>
DRUM	1 #, LOC	ATION:					1			
CC	OMMEN	TS:		,	11		SAMPLES T	AKEN:		
1 7	* Soi	1 (11	Tinge	11000	6900	into	SAMPLES	122B	-1030	103/5 1032
	bore	L.K.					DUPLICATES	12	28-1	1033
1							MS/MSD			
							MRD			
1										

				OVER	BURD	EN BO	RING REI	PORT		
PA	RSONS			•		CLIEN	T: USACOE	BORIN	G NO.:	PSR-4
PROJEC	T:	· .		RI FIEL	D INVEST			START DA	ATE:	7/10/02
SOPNO	, (AIUA)				SEAD-	12D			TOP.	1110/00
SOF NO.	•• •••••••		DDV						IUK:	Nach Str. Inlig
		<u> </u>	DKI	LLING SU	JIVIIVIARY	I		DRILLER:		Scatt Breeds
DRILLING	HOLE	DEP	ГН	SAM	PLER	1	IAMMER	INSPECTO	R:	F.V. Ashta
METHOD	DIA.(ft)	INTERV	AL (ft)	SIZE	TYPE	TYPE	WT/FALL	CHECKED	BY:	E.J. Ashta
HSA	4,25	2	2	2 x 2	<u>22</u>	HHR	150	CHECK D/	ATE:	7/10/02
						 	[BORING CO	ONVERTED	TOMW? Y N
					DRII	LLING ACI	RONYMS			
HSA DW MRSLC CA SPC		HOLLOW-S" DRIVE-AND MUD-ROTA CASING AE SPIN CASIN	TEM AUG -WASH RY SOIL4 WANCER IG	ERS CORING	HMR SHR HHR DHR WL	HAMMER SAFETY H HYDRAUL DOWN-HO WIRE-LINE	AMMER IC HAMMER LE HAMMER	SS 3 CS 0 51 2 NS 1 ST 2 3S 3	SPLIT SPOO CONTINUO 5 FT INTER NO SAMPLI SHELBY TU 3 INCH SPL	ON IUS SAMPLING VAL SAMPLING ING JBE IT SPOON
				MO	NITORIN	G EOUPM	ENT SUMMAI	NY TA	- A	······································
INSTRI	MENT	DETEC	TOR	RANGE		BACKGRO		CALIBR		WEATHER
TW			FROM	MANUE	READING	THE	DATE	The		
	r <u>e</u>	I IPE/EF	EKG I		KEADING	TIME .	DATE	TIME	DATE	(TEMP., WIND, ETC.)
	~									
										· · · · · · · · · · · · · · · · · · ·
		1		·				11		<u>}</u>
PID FID		PHOTO - IOI FLAME - IOI	NIZATION	DETECTOR	MONI BGD CPM	BACKGRO COUNTS P	UND ER MINUTE	DGRT I PPB I	DRAEGER	TUBES BILLION
GMD		GEIGER MI	JELLER D	ETECTOR	РРМ	PARTS PE	R MILLION ·	MDL I	METHOD D	DETECTION LIMIT
SCT		SCINTILLA	TION DET	ECTOR	RAD	RADIATIO	N METER			
				INV	ESTIGAT	ION DERI	VED WASTE -	-~ f &	•	
	DATE	[· · · · · · · · · · · · · · · · · · ·	<u></u>
SOI (fra	L AMOU	JNT : drum)								
DRUM	I #, LOC	ATION:								
CC	OMMEN	TS:	• • • • • • • • •				SAMPLES T	AKEN:		
τ	* So	il an	ting	e pla	orl ba	ć	SAMPLES	1228-1	043,10	044, 1045 1045, 1047
	, w7	bare	hle	۲			DUPLICATES			
	•		•				MS/MSD			·····
							MRD			

									PAGE 1	OF /
				OVER	BURD	EN BOI	RING RE	PORT	1	
PAI	RSONS			•		CLIEN	IT: USACOE	BORI	NG NO.:	PSB-5
PROJEC	T :			RI FIEL	D INVEST	IGATION		START I	DATE:	7110/02
SWMU #	(AREA)	-			SEAD-	172B		FINISH	DATE:	7/10/02
SOP NO.		-						CONTRA	CTOR:	North the little
			DRI	LLING SI	JMMARY			DRILLER	č :	Scatt Rose des
DRILLING	HOLE	DEPT	н	SAM	PLER	H	IAMMER		OR:	E.T. ANGTA
METHOD	DIA.(ft)	INTERVA	L (ft)	SIZE	ТҮРЕ	ТҮРЕ	WT/FALL	CHECKE	D BY:	E.J.A.C.
HCA	425	2	(-7	2 42	77	Hala	150	CHECK	DATE	7/10/07
1361	1,00			0 20				BORING	CONVERTED	
	l	L		I	וזפת			BORING	CONVERTED	
неа		HOLLOWST		FRS	HMR	HAMMER		22	SPI IT SPO	ON
DW		DRIVE-AND-	WASH	640	SHR	SAFETY H	AMMER	cs	CONTINUO	US SAMPLING
MRSLC		MUD-ROTAR	Y SOIL-	CORING	HHR	HYDRAUL	IC HAMMER	51	5 FT INTER	VAL SAMPLING
CA		CASING AD	VANCER		DHR	DOWN-HO	LE HAMMER	NS	NO SAMPL	ING
SPC		SPIN CASING	3		WL	WIRE-LINE	:	ST	SHELBY TU	JBE
								3S	3 INCH SPL	IT SPOON
	<u> </u>			MC	NITORIN	G EQUPM	ENT SUMMA	RY –	nA.	· · · · · · · · · · · · · · · · · · ·
INSTRU	MENT	DETECT	FOR	RANGE		BACKGRO	UND	CALI	BRATION	WEATHER
тү	PE	TYPE/EN	ERGY		READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)
										<u> </u>
DID				DEFECTOR	MONI	FORING A		DODT		• .
FID		FLAME - ION	IZATION	DETECTOR	CPM	COUNTS P	ER MINUTE	PPR	PARTS PER	BILLION
GMD		GEIGER MU	ELLER D	ETECTOR	PPM	PARTS PE	RMILLION	MDL	METHOD I	DETECTION LIMIT
SCT		SCINTILLAT	ion det	ECTOR	RAD	RADIATIO	N METER			
	<u> </u>			INV	ESTIGAT	ION DERIV	VED WASTE	-AA*	P	······
	DATE	Г								
SOT					. <u> </u>		<u> </u>			
(fra	ction of	drum)								
DRUM	1 #, LOC	ATION:								
CC	OMMEN	TS:					SAMPLES	TAKEN:		
¥	Sail	1. 75	R And A	0/10l	back		SAMPLES	122B-	1048.1	049,1050,1051,10
• •	5 7	und!	701		9-00		DUPLICATES		12	22B-1053
	(Nº	pares	•					<u> </u>	· (
							MS/MSD	<u></u> ,		······································
							MRD			

				OVER	BURD	EN BO	RING RE	PORT		
PA	RSONS		·····	•		CLIEN	NT: USACOE	BORI	NG NO.:	BB-6
PROJEC	T:			RI FIEL	D INVEST	GATION		START E	DATE:	7/11/02
SWMU #	(AREA)):			SEAD-	IZB		FINISH I	DATE:	7/11/02
SOP NO	.:							CONTRA	CTOR:	North sta fills
			DRI	LLING S	UMMARY	-		DRILLER	:	Scatterents
DRILLING	HOLE	DEP	тн	SAM	IPLER	I	IAMMER	INSPECT	OR:	R. J. Ashta
METHOD	DIA.(ft)	INTERV	'AL (ft)	SIZE	TYPE	түре	WT/FALL	СНЕСКЕ	D BY:	E.J. Ashta
HSA	4.25	2	-	2'x2'	22	HHR	150	СНЕСК. 1	DATE:	7/1/102
								BORING	CONVERTED	TOMW? Y N
	•	·		•	DRII	LLING ACI	RONYMS			
HSA		HOLLOW-S	tem auc	ERS	HMR	HAMMER		SS	SPLIT SPO	ON
DW		DRIVE-AND)-WASH		SHR	SAFETY H	AMMER	CS	CONTINUC	OUS SAMPLING
MRSLC		MUD-ROTA	RY SOIL-	CORING	HHR	HYDRAUL	IC HAMMER	51	5 FT INTER	VAL SAMPLING
CA		CASING AL	VANCER		DHR	WIDE I IN	LE HAMMER	NS .		ING
srC		SFIN CASIN	Ū		WL	WIKE-LINE	2	35	3 INCH SPL	JT SPOON
		······								
				MC	NITORIN	G EQUPM	ENT SUMMA	RY -	A	۰ ۱
INSTRU	IMENT	DETEC	CTOR	RANGE		BACKGRO	UND	CALIE	BRATION	WEATHER
TY	YPE TYPE/ENERGY			READING	TIME	DATE	TIME	DATE	(TEMP., WIND, ETC.)	
									1	
	-									
<u> </u>									1	
										· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				-				
		_					l	_l		1
					MONI	FORING A	CRONYMS			
PID		PHOTO - 10	NIZATION	DETECTOR	BGD	BACKGRO	UND	DGRT	DRAEGER	TUBES
GMD		GEIGER MI	NIZATION	DETECTOR	CPM PPM	PARTS PE	R MILLION	MDL.	METHOD	DETECTION LIMIT
SCT	,	SCINTILLA	TION DET	ECTOR	RAD	RADIATIO	N METER			
										
				INV	'ESTIGAT	ΊΟΝ DERΓ	VED WASTE -	- A &	ι.	
	DATE							T ·		
SOI		INT		<u> </u>	<u> </u>			<u> </u>		· · · · · · · · · · · · · · · · · · ·
(fra	action of	drum)								
אוזפת		ATION								<u></u>
	1 #, LUU	TS.	l			1	SAMDI ES 7	L CAKENI		
	JATIATEU.	15:		/			SAMPLES I	AREN:	1.54	
¥	Sall	utti	ap 1	Nacol	buch	into	SAMPLES	1245.	1057,1	10 50 1057 1057 -
-	brek	k	• /			,	DUPLICATES	·		
	•	7					MS/MSD	122B	-1056	MS; (as7MSD
							I MAD	15		Chau

				OVED	DIIDN	EN ROI	DINC DE	PORT	FAGE I	
PA	RSONS	<u> </u>			JUKD		T: USACOE	BORI	NG NO.:	DCAD
					l					JSB-1
PROJEC	Τ:	_		RI FIEL	D INVEST	IGATION		START D	ATE:	713/02
SWMU#	# (AREA)	: _		· <u></u>	SEAD-	1ZZB		FINISH E	ATE:	713/02
SOP NO							······································	CONTRA	CTOR:	North stan Dilling
			DRI	L LING S U	JMMARY			DRILLER		Scatt Breads
DRILLING	HOLE	DEPT	н	SAM	PLER		LAMMER	INSPECTO	DR:	E.J. Aslita
METHOD	DIA.(ft)	INTERVA	NL (ft)	SIZE	түре	ТҮРЕ	WT/FALL	CHECKEI) BY:	E.J. Ashta
HSA	4.25	2	<u>-</u>	2'x2'	3 L	HHR	130	СНЕСК Г	ATE:	7/3/02
								BORING C	ONVERTEE	томи? У (М)
					DRII	LLING ACE	RONYMS			
HSA		HOLLOW-ST	em aug	ERS	HMR	HAMMER		SS	SPLIT SPC	ON
DW		DRIVE-AND-	WASH	CORDIC	SHR	SAFETY H	AMMER	CS	CONTINUC	DUS SAMPLING
CA		CASING AD	VANCER	LUKING	DHR	DOWN-HO	LE HAMMER	SI NS	NO SAMPL	ING
SPC		SPIN CASIN	G		WL	WIRE-LINE	;	ST	SHELBY T	UBE
								38	3 INCH SPI	LIT SPOON
				MO	NITODIN	C FOURM	ENT SIIMMAI		1	······································
INSTRI	IMENT	DETEC		RANGE		BACKGRO			PATION	WEATHER
TV	//vic/vi	TUPPER	FROM	KANUE	DE 4DRIG		DATT		DATE	
11	PE	I TPE/EN	ERGY		KEADING	IIME	DAIE	TIME	DATE	(TEMP., WIND, ETC.)
·										
	····								·	
	<u></u>							ļ		
			·		MONIT	FORING A	CRONYMS		I	
PID		PHOTO - ION	IZATION	DETECTOR	BGD	BACKGRO	UND	DGRT	DRAEGER	TUBES
FID		FLAME - ION	IZATION	DETECTOR	СРМ	COUNTS P	ER MINUTE	PPB	PARTS PER	R BILLION
GMD		GEIGER MU	ELLER D	ETECTOR	PPM	PARTS PE	R MILLION	MDL	METHOD	DETECTION LIMIT
SCI		SCINTILLAT	ION DEI	ECTOR	KAD	KADIATIO	METER			
				INV	ESTIGAT	ION DERIV	VED WASTE -	NA	4	
	DATE	Г		•			<u></u>	<u></u>		
501	T AMOI						<u></u>	<u> </u>		
(fra	action of	drum)								
DRUM	1 #, LOC	ATION:								
CC	OMMEN	TS:				<u> </u>	SAMPLES T	AKEN:	<u></u>	
7	Sail	(th	AR	plast	back	int	SAMPLES	122B-1	103410	35 1036 ; 1037
•	bank	lo	F			-	DUPLICATES	•		
	/ -12/7	~					MS/MSD	17.2R	-103	EMS 1019 ASA
1							MPD	100		

	-	(SA	M	PLIN	GR	REC	ORI) - 8	SOI	L		
S	eneca A	rmy De	pot								DATE:	7/110	2
CONSULT	ANT:	Par		n5	I <u></u>	······································					INSPECTOR:	E.J.A	sata
ROJECT:		SE	AD.	-12	ZB.				0-0-	. 1	LABORATORY:	STL.	
OCATIO	N:	Airt	eld		all An	MB R	angi	<u>e ps</u>	8-2		SAMPLING STAL	FT:N	7
VEATHER	(7 FIELI	COND	THON	S CHI	REL	(RECORI	O MAJOR	CHANGES)	GROUND	/ SITE	CHAIN OF CUS	rody <u>#:</u>	M
TIME	TEMP	WEAT	HER	ł	IUMIDITY	IDITY VELOCITY DIRECTION				CE	MONITORIN	G	
(24 HR)	(APPRX)	(GEI	N.)		(APPRX)	(AP	PRX)	(0 - 360)	CONDIT	IONS	INSTRUMENT	DECTI	ECTOR
4800	SUF	Sum	my	4-	lencon	6-5		astan	- sre	<u>د</u>	NA		A.
									<u> </u>				
LOC	SAMPLE	· D	EPTH		ТҮРЕ		GRAIN	USCS	FOREIGN	SAMPI	E CONTAINER	MON	QC SPL
ID	#	RANGE		ME	GRAB/COMP	COLOR	SIZE	CLASS	MAT. (Y/N)	DEVIC	E SIZE/TYPE	VOC/RAD	(Y/N)
1026	1	2-4	14.	30	Grab	Gr.	MA	Sulsc	N		Sct. glass	NA	N
1228- 1027	2	6-8	14	40	Gras	Br. p Gr.	MA	SA/SC	N	52	glass	M	~
1228-	3	12-14	14	ĨĨ.	Gres	Br. to	MA	SA/se	N		PCZ Chan	M	N
1228-	<i>u</i>	22-24		(a)	(rah	Gr.		SA/Se			8 ct		
029	7				0 ~5		M		N	ير	glass	M	
	-												
						1	1						
													ļ
													· ·
											•		

ł

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS SLSAMPRD.XLS
		(SA	M	PLIN	GR	EC	ORI) - 8	SOL	L			
S	eneca A	rmy De	pot								D	ATE: 7	12/0	>2
ONSULT ROJECT:	ANT:	Pa	F O	n5 - 12	ZB						INS LA	SPECTOR: BORATORY:	F.J. F ST	9sht. C
OCATIO	N:	Airt	eld	Sn	all Arr	MBR	angi	2 P.	38-3		SA	MPLING STAI	T: NA	· · ·
'EATHEI	R/ FIELI) COND	ITION	S CH	ECKLIST	(RECOR	D MAJOR	CHANGES)	r		Сн	AIN OF CUST	ODY #: .	MA
TDAE	TE) (D	NJC 4 T			REL.		WINI		GROUND	/ SITE			<u> </u>	
(24 HR)	(APPRX)	(GER	N.)		(APPRX)	(AP	PRX)	(0 - 360)	CONDIT	IONS	IN	STRUMENT	DECTE	CTOR
080	95°;	Sun	ing	4~	Icrian	0	5	ustan	fra.	32		M	M	4
LOC	SAMPLE	D	EPTH		Түре	<u> </u>	GRAIN	USCS	FOREIGN	SAMP		CONTAINER	MONE	QC SP
ID	#	RANGE	עד	VE	GRAB/COMP	COLOR	SIZE	CLASS	MAT. (Y/N)	DEVIC	æ_	SIZE/TYPE	VOC/RAD	(Y/N
22 8- 1030	5	0-2	100	0	Grab	Br. to Gr.	NA	SMISC	N	.55		Sct.	NA	\sim
228-	6	10-12	10.	30	Grab	Br. to	M	SMISC	N	22		P CB Slag	M	~
22B-	7		111	·	(rab	Br.	M	SCAR	N	.55		8 c2.	n	
128-	8	16-18	11	30	Crech	Br.	M	Sc/Sm		- רו		fez	1	4
-33					0149				/-		<u></u>	grans	NT .	
														- - -
								-					,	
											·			
											-			
· · · · · · · · · · · · · · · · · · ·											•			
												·		

9 /67	ar to	s Rg.	oct	4	er Ano	Ssr.	s Dé	Pails_			PAGE /	OF /	
		1	SAI	M	PLIN	Š R	REC	ORI) - 8	SOI	L		
Se	eneca A	rmy De	pot			<u>_</u>					DATE:	7/3/	02
CONSULT	ANT:	Pa	150	ns			·				INSPECTOR:	F.U. 1	Ishta
PROJECT:		SE	θ <u>Ŋ</u> -	-12	233		,		20 71		LABORATOR	Y: STC	·
WEATHER	/ FIELI	<u>/firty</u>	<u>elal</u>		ECKLIST	ME IC	MAIOR	CHANGES)	<u> </u>		SAMPLING S	$\frac{\text{TAFF:} \mathcal{A} \mathcal{A}}{\text{USTODY } \#}$	14
					REL.		WINI)	GROUND	/ SITE			~
TIME	TEMP	WEAT	HER	ł	IUMIDITY	VELO	DCITY	DIRECTION	SURFA	CE	MONITOR	ING	
(24 HR)	(APPRX)	(GEI	N.)		(APPRX)	(AP	PRX)	(0 - 360)	CONDIT	IONS	INSTRUMEN	T DECT	ECTOR
0830	707	Sum	7	4-	know	0	5	unteren	- 90	<u>r9.</u> 57	M		A
			·				·						
100													1
ID	SAMPLE #	L RANGE		Œ	TYPE GRAB/COMP	COLOR	GRAIN SIZE	USCS CLASS	FOREIGN MAT. (Y/N)	SAMPI DEVIC	LE CONTAIN CE SIZE/TY	PE VOC/RAD	QC SPL (Y/N)
1228-	~	• •				0		Salse			808		
1034	9	4-6	09	30	(N96	pc.	M		N	د ل	Sland	14	N
1228-	10	6-8	119	u -	Grah	Ac	iA	SC/Sm	N	<u> </u>	8 00		
(055	/-	• •				12".				53	8 an	-	~
122 5-	11	14-16	1020	,	Grad	Br.	M	scish	N	22	803	14	
10 36											glan		N
200-	12	18-20	104	5	Gres	Br.t	IA	Sc/sm	N	ىك	1000		
, 2R-						or.		1C/C-			ACE	~~~	
1038 -15	(3	15-20	104	5	Gris	Cr.	M	50132	N.	J.	£/5-1	r M	4
1228-						Br.t		selsa			807	-	
1039,000	14	18.20	104	5	0242	Gr.	M		N	17	8/45	s cA	9
				:									
	<u> </u>												
							·					-	
													<u> </u>
				<u>.</u>		·			•	<u> </u>			
											· · · · · · · · · · · · · · · · · · ·		-
													<u> </u>
													

Note: Cleaning Procedure according to SOP.

PAGE (OF /

ŧ

ver. 6/25/2002

			SA]	MI	PLINO	G R	REC	ORI) - S	SOI	L			
S	eneca A	rmy De	pot			<u></u>	<u></u>				D.	ATE: 7	18102	
ONSULT	ANT:	Par	50	ns							INS	PECTOR:	E.J. As	hta
ROJECT		SE	θĢ	-12	2B						LA	BORATORY:	STL	
OCATIO	N:	<u>/tirty</u>	<u>ela</u>		CKUST	MER	angi	$\frac{2}{M}$	<u>w-1</u>		SAN	MPLING STAL		7 7
CAINE				5 Cm	REL.	(RECOR	WINE)	GROUND	/ SITE	Ch	AIN OF COST	OD1 #:	<u>~</u> ^
TIME	TEMP	WEAT	HER	H	IUMIDITY	VELO	OCITY	DIRECTION	SURFA	CE	M	ONITORIN	G	
(24 HR)	(APPRX)	(GEI	ł.)		(APPRX)	(AP	PRX)	(0 - 360)	CONDIT	IONS	IN	STRUMENT	DECTE	CTOR
0830	15ºF	Sun	14	41	known	0-	5	4 arkon		<u>^</u>		NA	M	4
			1						J					
LOC	SAMPLE	· D	EPTH		TYPE		GRAIN	USCS	FOREIGN	SAMPL	E	CONTAINER	мою	QC SP
ID	#	RANGE		ME	GRAB/COMP	COLOR	SIZE	CLASS	MAT. (Y/N)	DEVIC	E	SIZE/TYPE	VOC/RAD	(Y/N)
22B- 040	15	12-14	13	20	Gra6	Br.	NA	Sm -	N	. Tr		Scz Slan	NA	~
														,
<u></u>														
	-													
<u></u>														
		•												
						1						1		

ŧ

			0101			<u> </u>	UKL		лК			SA.			
		19/02	ATE: 7/	D								pot	rmy Dej	eneca A	S
1	slitz	F.J. A.	PECTOR:	INS							n5	S	Par	ANT:	ONSULT
		572	BORATORY:	LAE			2	0		ZBA	-12	±D	SE		OJECT:
	M	r:	AIN OF CUST	SAN CH/			CHANGES)	CALL MAIOR	(RECORI	<u>CKLIST</u>	$- \sim m$	<u>eva</u>	$\frac{710}{100}$	N: / FIELI	EATHER
					/ SITE	GROUND)	WINI		REL.					
		G	ONITORIN	M	CE	SURFA	DIRECTION	DCITY	VELO	UMIDITY	н	HER	WEATI	темр	TIME
	CTOR	DECTE	STRUMENT	INS	IONS	CONDITI	(0 - 360)	PRX)	(AP	(APPRX)		1.)	(GEN	(APPRX)	(24 HR)
1	4	M	NA		F/	- frai	4 akoran	·	0-5	Now	ywk	4	clan	65F	1755
{															
ł	OC SPL	MON	CONTAINER		SAMP	FOREIGN	USCS	GRAIN	L	тург		EPTH	Ď	SAMPLE	LOC
	(Y/N)	VOC/RAD	SIZE/TYPE	CE	DEVI	MAT. (Y/N)	CLASS	SIZE	COLOR	GRAB/COMP	ME	T1	RANGE	#	ID
kiv.	N	NA	8 02.	r	ري . ا	N	Sm/sc	MA .	Gr.	Graf	22	11	14-18	16	122B- 1041
(mw	N	NA	Fet den		l L	N	salsc	M	Br.p. Gr.	Grab	30	16	12-14	17	1228-
· ·			0												-
. ·						· · · · ·		ļ							
ľ															
· .														-	
														·	
								i i							
													·		
			· .												
			•												

9	eneca A	rmy De	pot							DATE:	110/02	2
ONSULT	ANT	ρ_{α}	~~~~	<u>.</u>						INSPECTOR:	ET	state
ROJECT:		SE	70-12	22.B.						LABORATORY:	STO	4
OCATIO	N:	Airt	eld Sm	nall Arr	ms R	ang	e			SAMPLING STA	FF:	M
EATHER	R/ FIELI) COND	TIONS CH	REL.	(RECORI		CHANGES)	GROUND	/ SITE	CHAIN OF CUS	TODY #:	M
TIME	ТЕМР	WEAT	HER	HUMIDITY	VELO	CITY	DIRECTION	SURFA	CE	MONITORIN	łG	
(24 HR)	(APPRX)	(GEN	4.)	(APPRX)	(AP	PRX)	(0 - 360)	CONDIT	IONS	INSTRUMENT	DECTE	CTOR
0810	60F	Syn	my Us	skn an	0	5	unteren	514	s L	M	1	(A
			<u> </u>		ļ						l. 	
ID	SAMPLE	RANGE	TIME	TYPE GRAB/COMP	COLOR	GRAIN SIZE	CLASS	FOREIGN MAT. (Y/N)	DEVI	CE SIZE/TYPE	VOC/RAD	(Y/N)
12B -	18	4-5	1035	6196	Br.	MA	SM-	N	22.	8-07 F/455.	RA	N
22B- 1044	19	6-8	1055	Gras	Br.	MA	SM	N	5.	5 802 8/5.15	NA	n
122B- 1045	20	16-18	1125	6846	Br. to Gr.	MA	SM	N	22	8 03. Slass	NA	~
22 B- 1746	21	zazi	1140	Gras	Brits (r.	M	salse	N	LL.	FCT 8/455	M	~
128-	22	28-30	1155	Grab	Gr.	M	Sm/sc	N	11	8-7 8105	M	~
22B- 1048	23	2.4	1315	6846	Br.	мА	.SM	N	22	802 8/455	NA	~
228-	24	10-12	1340	brus	Br.	M	Sm/sc	~	22	for. 8/25	nt	r
1050	25	12-14	1335	Graf	Br.	MA	Sm/SC	N	55	8 02 8/6.6	NA	~
122B. (051	26	18-20	1415	Gras	Br. to Arte Br.	M	Sm/sc	N	n.	P C & 8/455	NA	N
		23.30	11045	Gras	Gr.	NA	Salse	N	رى	P 08 8 /45	14	N
122A- 1052	27		1775				1	1		•		

	ances A					<u>J I</u>					LATE. 7	1 111	<u> </u>
	епеса А		pot		l	<u> </u>					DATE: //	1110	
ONSULT	ANT:	taj	AN A		2B			·		-	INSPECTOR:	<u>E.V. /</u>	<u>ISAT</u> a
CATIO	N:	Airt	eld.	$\leq n$	all Arr	msR	ang	8_		-	SAMPLING STAL	FF: 1	A
EATHEI	R/ FIELI	D COND	ITIONS	6 CHI	ECKLIST	(RECORI	d major	CHANGES)	1		CHAIN OF CUST	rody #:	M.
					REL.		WINI		GROUND	/ SITE	MONITORIN		
11ME (24 HR)	(APPRX)	(GEN	HEK	1	(APPRX)	VELC (AP	DCH Y PRX)	(0 - 360)	CONDIT	IONS	INSTRUMENT	DECTE	CTOR
815	65°F	Sur	ng	Un	Korcun	0- :	5	cature	<i>fr 4</i> .	N	MA	r	14
	<u> </u>												<u> </u>
LOC	SAMPLE	D	EPTH		ТҮРЕ	<u> </u> ;	GRAIN	USCS	FOREIGN	SAMP	LE CONTAINER	MON	QC SPL
	#	RANGE	TIM	Œ	GRAB/COMP	COLOR	SIZE	CLASS	MAT. (Y/N)	DEVI	CE SIZE/TYPE	VOC/RÀD	(Y/N)
54	29	2-4	091	30	Grab	Br,	nA	SM-	N	1	807.	IA	N
2-13-	30	8-10'	094	5	Gras	Br.	M	54/50	RA	LT	r 8 cz.	it	N
ZB-	31	8:10	09	45	Grab	Br.	n#	Salse	LA	r	807 2/155	1A-	y
2B- 2B-	32	5-6	084	45	(rab	Br.	IA	sm/sc	M	12	802	NA	4
12B-	33	12-14	1.7		(1545	Br. #	.1	sm/sc	10		\$ 7455 \$ 07.	iA	
58 2B-	- <u>-</u> >4	22-24	11/0	2	Crah	Cr. t	M	SM/SC	n n n		8/155 802.		
59	57		/ ./ •	- 	0147	Br.	M		M		£ 1435	NA	~
60	35	28-288	1120	0	6-186	br.	M	Salse	MA	یک	806	MA	N
,2 B- 161	36	0-2	125	5	Gras	Br.	IA	SM	M	N	Fot 9/155	MA	N
12B- 62	37	8-10	/3 /:	5	Gras	Br.	MA	sm/sc	M	22	808	in	N
UZB-	38	14-16	/33	0	Grib	Br. f	M	Salse	IA	رى ا	8ct.		
10-3		7.0	1.5-	- -							<u> ç</u> / s,s	~ T	~
									· .				
											· · .		
						-	ļ						
							<u> </u>			 			<u> </u>

.

[WEI	LL DEV	ELOPME	ENT REP	ORT		<u></u>	Page 1 of /
PARSONS ⁻	· ······		CLIENT :	USACOE	WELL #:	MW -/	<u> </u>	
PROGRAM TY	PE:	REMEDIAL I	NVESTIGATION	CREW INITIALS	STAF	RT DATE	END	DATE
WMU # (AREA	A):	SEAD- 12	28	Nerth Stan	7/11/0	2 .	7/11	102
PROJECT NO. (JOB #): 7414	01.0310	70					
DR	ILLING DATE: 7/	18/02		MONITORING	BEFORE D	EVELOPMENT	AFTER DEV	/ELOPMENT
	INSTALLATION DAT	E: 718	102	INSTRUMENT	M	M	M	MA
	SOP REFERENCE NO.	& REV. NO. :	4 pust 1995	READING				·
PUM	IP EQUIPMENT: //c/y/	15 ig i Wa	attern /4mp	UNITS (ppm or cps)		(feat from TOC)		
WELL TIPE (C	SEE DIAMETER (inches)	2 DEDROCK		MEASURED WAT		from TOC)	6.0	
WELL DIAMET		0 163	0.163	WATER COLUMN	J (foot) :	Rom Tocj.	(7.0	<u></u>
POPING DIAM	ETEP (inches)	3.80	8.5	INSTALLED WAT	TER DEPTH	(feet from TOC)	11.0	
BORING DIAM		0.5804	2 955	INSTALLED WAT		from TOC).	· 0-0	
	LIERTACTOR (gaint)	0.5654	2.555				[1.0	
1. STANDING	VOLUME INSIDE WELL =	WATER COLU	MN X WELL DIAM	ETER FACTOR =			_ X	
2. STANDING	WATER IN ANNULAR SPA	CE =				<u> </u>		GAL = A
	WATER COLUMN BELOW	SEAL(ft) X (BO	ORING DIAMETER	FACTOR - WELL I	DIAMETER F.	ACTOR) X 0.3	=	
				-		·	. <i>6</i> 4	GAL. = B
3. SINGLE STA	NDING WATER VOLUME	= A + B					- 4	GAL. = C
4. MINIMUM V	OLUME TO BE REMOVED	= 3 X C					_4	GALS.
		START TIME	END TIME	GALLONS REMOVED		CONDUCTIVITY	TEMPERATURE	TURBIDITY
DATE	ACTIVITY	(military)	(military)	PER TIME PERIOD	рН	ersic ~ ×/cor (umhos/cm)	(degrees C)	(NTUs)
7/11/02	Bevelomt	1430	-	-	10.32	0.22	71.5	71,00
·	· · .	1440	-	~	10.17	0.24	68.1	>10au
	۴ و	1445	ł		10,18	0.18	6(3	71,000
•€	1.	1450		_	10.13	0.20	69.3	21,00
× 1	۰ ,	1435	*		10.08	0.20	589	71,000
· · ·	t v	1505	-	-	10.07	0.20	58.7	21,000
15	~ ,	1510		-	10.10	0.18	58.8	71,00
1.5	N #	1515		~	10.12	0.18	59.1	71,000
1	, 4	1570			10.06	017	58.0	710.
	r ;	1725	~	-	10.10	0.17	57.9	21,000
(x.	۴ ر	1530	1530	52	10.09	0.16	57.7	71,000
PUMB	l 50 Jul	Arm	well	mw-1	and	da	extrem	el
7.5	4							1
	<u></u>			· · · · · · · · · · · · · · · · · · ·				•
			· ····································	· · · · · · · · · · · · · · · · · · ·				
	TOTALOUNINA				<u>`</u>			
COMMENTS:	* (a kulation for 1	10ton Forth	tion: T.A -	ATH × ICU	× Jares	2 und a a	Se fe	<u> </u>
			17' -	- 6' × . (64 >	< 3 11	1- 3	5.40 jal	min.
WESTIGATI	UN DERIVED WASTE (ID) DATE	w): 1/1/	1/12	r		I		
GALLON	S OF WASTE WATER	5	0					
DRUM	NO. & LOCATION	1221	3-44	!				

Ĩ

H:\ENG\SENECA\FORMS\WELLDEV.XLS

	WEI	L DEV	ELOPME	ENT REP	ORT			Page 1 of
PARSONS	· <u> </u>	·	CLIENT :	USACOE	WELL #:	MW -2		
PROGRAM TY	PE :	REMEDIAL R	VESTIGATION	CREW INITIALS	STAR	TDATE	END	DATE
SWMU # (ARE	A):	SEAD- /22	B	North STar	7/1	2/02	7112	102
PROJECT NO. ((JOB #): 74140/	03/00						
DR	ULLING DATE: 7	109/02		MONITORING	BEFORE DE	EVELOPMENT	AFTER DEV	ELOPMENT
	INSTALLATION DAT	E: 7/09	102	INSTRUMENT	MA	M	nt	MA
	SOP REFERENCE NO.	& REV. NO. :	yeart 1995	READING				
PUN	AP EQUIPMENT: Puly In	biy i Was	Hera pump.	UNITS (ppm or cps)		<u> </u>		·~ U
WELL TYPE (c	ircle one)	BEDROCK	OVERBURDEN	MEASURED WAT	ER DEPTH (feet from TOC)	6.50	
WELL INNER I	RISER DIAMETER (inches)	2	2	MEASURED POW	DEPTH (feet	from TOC):	16.50	2
WELL DIAMET	FER FACTOR (gal/ft)	0.163	0.163	WATER COLUMN	(feet):		_ 10	
BORING DIAM	IETER (inches)	3.80	8.5	INSTALLED WAT	ER DEPTH ((feet from TOC)	6.Ja	>
BORING DIAM	IETER FACTOR (gal/ft)	0.5894	2.955	INSTALLED POW	DEPTH (feet	from TOC):	. 16.3	,0
1. STANDING	VOLUME INSIDE WELL =	WATER COLU	MN X WELL DIAM	IETER FACTOR =			<u> </u>	GAL. = A
2. STANDING	WATER IN ANNULAR SPAC WATER COLUMN BELOW	CE = SEAL(ft) X (BO	DRING DIAMETER	FACTOR - WELL I	DIAMETER FA	ACTOR) X 0.3 =		GAL.≃B
3. SINGLE STA	ANDING WATER VOLUME	= A + B					<i>\$</i> *	GAL.≂C
4. MINIMUM	VOLUME TO BE REMOVED	= 3 X C					*	GALS.
DATE	ACTIVITY	START TIME (military)	END TIME (military)	GALLONS REMOVED PER TIME PERIOD	pH	CONDUCTIVITY 45/c4X/c (umhos/cm)	TEMPERATURE (degrees C)	TURBIDITY (NTUs)
7/12/02	Budgement	0900	-	— ·	11.51	0.27	59.9	¥.₽
	1 1	0905	-	-	11.43	0.29	59.8	⋧≯
	۰.	0910	1	-	10.54	0.29	60.5	? *
<u> </u>	, t	0915	0.915	-	11.60	0.29	61.2	**
well p	sumper day	at o	915. Let	well.	echarj	<u>e</u> .		
£1		0930	-	-	11.45	0.29	60.3	龙教
<u>ц</u>	>	0940	0940	-	11.12	0.30	60.3	**
well	unpel day	at 09	to for s	Received 750	a les	well	rechage.	•
	·	1222	-		10.70	0.32	71.9	チチ
• •		1225		~	10.62	0.34	67.2	**
· · ·	()	1230		-	10.98	0.17	69.9	≯ ≁
<u>`</u> 1	()	1235	-	-	11.41	0.38	69.2	<u>بم</u>
· .		1240	(240	25	11.45	0.39	69.4	95 95-
well	Jumpel da	atl	240 for	third	Xme	well	pagel	day
a 707	I of three	The.						
	TOTALS/FINAL							
COMMENTS:	* Calculation for	ratarit.	Extraction: ddnig Tursid	7-0 - DTW 17-8'-6.5	×.163 × 1 7.163 × 1	Swell vol	4. = fels. = 5.55 p/ 50 0	jeb. n.m.
ANY ESTIGAT	DATE	7/12	In					
GALLON	IS OF WASTE WATER	25	A					
DRUM	NO. & LOCATION	122B-	54					

Í

H:\ENG\SENECA\FORMS\WELLDEV.XLS

	WEI	L DEV	ELOPME	ENT REP	ORT			Page 1 of /
PARSONS ⁻		**************************************	CLIENT :	USACOE	WELL #:	MW - 3	<u>a-itton</u>	
"ROGRAM TYP	РЕ:	REMEDIAL I	NVESTIGATION	CREW INITIALS	STAF	RT DATE	END	DATE
MU # (AREA	() :	SEAD- (2.	2-8	Northster	711	2/02	7/12	2/02
PROJECT NO. (JOB #): 74/40l.	03/00	- =		£			· · · · · · · · · · · · · · · · · · ·
DR	ILLING DATE: 70	9/02		MONITORING	BEFORE D	EVELOPMENT	AFTER DEV	/ELOPMENT
	INSTALLATION DAT	E: .7/10/	62	INSTRUMENT	1A.	1A.	M	15A
	SOP REFERENCE NO.	& REV. NO. :	Jupent 1995	READING	_/			-d
PUM	P EQUIPMENT: Por Ga	1: Walter	ra lun	UNITS (ppm or cps)		(6	4	<u> </u>
WELL TYPE (CI		BEDROCK	OVERBURDENS	MEASURED WAT	ER DEPTH		<u>, s.c</u>	
WELL INNER R	ISER DIAMETER (Incres)	2	2	MEASURED FOW	DEPTH (reet		15.5	·
WELL DIAMET	ER FACIOR (gal/ft)	0.163	0.163	WATER COLUMN	(feet):	(C + C TOC	9.1	
BORING DIAM	ETER (inches)	3.80	8.5	INSTALLED WAT	EK DEPTH ((feet from TOC	<u>): 3,6</u>	
BORING DIAM	ETER FACTOR (gal/ft)	0.5894	2.955	INSTALLED POW	DEPTH (feet	from TOC):	15:3	
1. STANDING	WOLUME INSIDE WELL =	WATER COLU	MN X WELL DIAN	EACTOR WELL				GAL. = A
	WATER COLUMIN BELOW	SEAL(II) A (D	DRING DIAMETER	FACIOR - WELL I	JAMEIEK F		_×	GAL - D
	NDING WATER VOLUME.	- A + D					*	GAL = C
3. SINGLE STA	NDING WATER VOLUME	- 1 Y C					6	GALS
4. MINIMOM V	OLOME TO BE REMOVED	- 3 x C					·····	GALS.
DATE	ACTIVITY	START TIME (military)	END TIME (military)	GALLONS REMOVED PER TIME PERIOD	рН	CONDUCTIVITY	TEMPERATURE (degrees C)	turbidity (NTUs)
7/12/02	Nevely net	0950	_	-	10.99	0.37	62.8	71,000
• • •	~ ·	(000	L L	-	10.49	445	67.1	71,000
	٢,	195	<i>–</i>	-	9.50	0.52	61.0	7!, aco
1.	5 .	1010	. +	_	9.60	0.52	56.3	71,00
<u>ь</u> с	(x	1015	-	-	10.18	0.60	64.6	2600
57	s (1025			10.31	0.64	65.0	71,00
٤ ٢	×	1035	-	-	11.20	0.50	69.5	21, au
C	t ,	1045	4	-	11.19	0.48	69.1	71, ao
1,	۶ .	10 35	I .	~	11.71	0.38	70.5	71.00
٢.	* :	1110			11.72	a33	71.6	>!,@
در	۲ _۲	1115	~	_	11.86	0.31	70.0	71,00
L (د.	1120		~	11.83	0.30	6F- 3	21,00
1	× ,	1125		~	11.89	0.30	68.5	71,00
	۵ ر	1130	1130	52	11.90	0.20	68.5	71,00.
lunpe	52 pl. fr.	m we	el mar 3	and w	ton 4	× the re	g. Jury	6,7
	-					 		
	TOTALS/FINAL							
COMMENTS:	* (a l'ul lets m for l	viter Eyy	ation: T.A. 13-3	DTW x 164 x -3.6 x. 164 x	3 wee 3 ' '	e vols = 1 - 4- e;	nh 77 job m. startel	, w to ke
. EGHOAIN	DATE	7/12/	102	[**			
GALLON	S OF WASTE WATER	52						
DRUM	NO. & LOCATION	122 B.	-64			I		

į

H:\ENG\SENECA\FORMS\WELLDEV.XLS

Form # ___

_	SENEC	A ARMY I	DEPOT ACTIVITY		(CONS	ULTAN	IT: PA	RSONS		W	ELL #: <u>M</u>	w-1
P	ROJECT	: So	NECA Army DR	at	SE	= 11	7- 122	-B				DATE:	7/22/02
LO	CATIO	N:	/+	R	OMUI	LUS, N	K				INS	SPECTORS:	EJAshta
		-									PU	MP #:	PESI
<u> </u>	VEATHI	ER / FIELD	CONDITIONS CHECK		C'Y	(]	ECORD	MAJOH	CHANG	ES)	SA	MPLE ID #: /	228-2001
т	IME	TEMP	WEATHER	HUM	UDITY	VELO	ומ עדור	RECTION	SURF	FACE		MONIT	ORING
(24	HR)	(APPRX)	(APPRX)	(G	EN)	(APP	RX) () - 360)	CONDI	TIONS	IN	STRUMENT	DETECTOR
08	10	80%=	Symmy	4.1	Enn	0-5	- 4.	deman	815	5	He	rbia U-2	276.
DIA	METER (WELL VO	LUME CALCULATION FAC 0.25 1 2	rors 3	4	6	ONI	WELL VO	LUME (GAL) X V) = [(POW - VELL DIAM	STABI ETER	LIZED WATER LEV FACTOR (GAL/FT)]	EL)
G	ALLONS / LITERS/F	FOOT: OOT	0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	0.654 2.475	1.47 5.564		8.2'	- 7.02	-'x.	64	x3=5	50 pels
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			DEPTH TO POINT OF WELL		DEPT	TH TO P OF	SCREEN LENGTH	,	WELL DEVELOPME	NT	D	WELL DEVELOPMENT	WELL DEVELOPMENT
	HISTORIC	DATA	(TOC)		SCREE	N (TOC)	(FT)	+	TURBIDITY			pH	SPEC. COND
		**···	18.52		8.	-02	10	2	1, 00	0		10.04	0.16 usk
DA	A COLLE	CTED AT	PID READING		WAT	DEPTH STATI		WA	DEPTH TO STABILIZED	o TOC)	DE	INTAKE (TOC)	FUMPING START
						7.0	2		7.48			16.72	1300
RAD	IATION SC	REENING	PUMP PRIOR TO		·		1		PUMP AFTE	R		18.3-1	
	DATA	MO		- CO	ILFO	<u></u>	ומות			T OPF	'BA'	<u> </u>	مى مەلەر تە ئەللىر ئو مۇرىيىر مىچىلىرى «« « خەسو»».
TIME	WATER	PUMPING	CUMULATIVE VOL		DISSOLV	ED	TEMP	SPEC	. COND			ORP	TURBIDITY
(miu)	LEVEL	RATE (ml/min)	(GALLONS)	<u> </u>	(YGEN (n	ng/L)	(C)	45/6.	1 × 1000	рН		(mV)	(UTV)
· 0	1. 50	200	0.406		0,5	/	11.0	0,	579	1.	//	-109	1.79
(505	-7.90	10	0.812		0. 9	8	18.20	0.	589	1-1	10	-130	634
(3/0	7.12	20	1.218		0.4	<u>'/</u>	15.69	0.	579	20	52	-/38	500
(3/5	7.44	200	6.6 69	ļ	0.3	/	1612	0.1	185	7.1	/	- (37	458
320	7.49	200	2.030	ļ	0,3	7	16.55	0.	575	7.5	2	- 138	251
325	7.44	20	2.436		0.30	<u> </u>	17.20	0.5	-78	7. 5	0	-139	298
330	7.41	20	2.842		0.3	۶ .	17.13	0.	576	7.5	./	-139	222
340	7.48	20	3.248		0.3	4	16.97	0,	575	7.4	8	-139	197
350	7.46	20	3.654		0.3	9	17.90	0.	576	7.4	12	-138	281
40	7.48	200	4.060		0.	36	17.3/	G.	576	7.4	3	-137	172
4/0	7.46	200	4.466		0.39	7	18.05	0	. 575	7.4	10	-135	147
420	7.48	200	4.872	6	0.38	>	(7.48	0.	576	7.	43	-135	- 84.9
430	7.48	200	5.278		0.40	1	18.10	0.	574	7.4	10	-134	100
1440	7.48	20	5.674		0	38	17.8	0.	577	7.3	9	-133	108
445	7.42	20	6.090		0,4	0	17.92	0.	575	7.3	19	-132	. 91.1
1450	740	200	6.496	1	0,	40	17.8	0	575	7.4	0	- 131	\$2.9
	1.10			1			1						
					•								
							+						
				1			1	1					

	SENECA ARMY DEPO	OT ACTIV	VITY	CONSULT	ANT: PA	RSONS T	WELL #:	MW-1
	SAMPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER	····-		COUNT/ VOLUME	TYPE	NUMBER		DATE
1	VOC -CLP(Low Level) 524.2	4 deg. C	HCL	3/ 40 ml	VOA	NA		
2	SVOC 8270		4 deg. C	2 x 1L	Am G	M		
3	PEST/PCBs 8080		4 deg. C	2 x 1L	Am G	A		•
4	TAC METALS 6010	4 deg. C	HNO3	1/ 500m L	HDPE	122B-2001	1510	ECAInz
5	CYANIDE 9012	4 deg. C	NzOH	1/250 mL	HDPE	nt		
6	Explosives 8330	4	deg. C	2 x 1L	Am G	, rA,		
7	Nitrate/Nitrogen 352.1	4 deg. C	H2SO4	1 x 250 ml	HDPE	M		
					-			
								· ·

1

COMMENTS: (QA/QC?)

Rivise Blank = 122 B- 0006

MS = 122B - 2002MS MSO = 122B - 2003MSOBupliab = 122B - 2005

IDW INFORMATION:

(See FOW Drain Form for details).

	SENECA ARMY DEPOT	ACTIVITY	CONSULT	ANT: PAI	RSONS	WELL #:	MW-1
	SAMPLING	PRESERVATIVES	BOTTL	EŚ	SAMPLE	TIME	CHECKED BY
	ORDER		COUNT/ VOLUME	ТҮРЕ	NUMBER		DATE
1	VOC -CLP(Low Level) or 524.2	4 deg. C HCL	3/ 40 ml	VOA	NA		
	DOC	4 deg. C H2SO4	3/ 40 ml	VOA	M		
2	Nitrate/Nitrogen 352.1	4 deg. C	1 x 500 ml	HDPE	NA		· · ·
5	Ferrous Iron	Field Analysis			MA		
4	Sulfide	Field Analysis			NA		
5	Alkalinity/Sulfate/Chlorides	4 deg. C	l x lL	HDPE	NA		
6							
1	DOC						
8	Hardness 130.2	4 deg. C HNO3	1 x 500 mL with #4	HDPE	NA		
9	Total Dissolved Solids 160.1	4 deg. C	l x lL	HDPE	M		
0	Chemical Oxygen Demand 410.1	4 deg. C H2SO4	1 x 50 mL with #7	HDPE	M.		
		1					
•	IMENTS: (OA/OC?)						
	IMENTS: (QA/QC?) None	of the	above C	homic	al pai	- 5 meters	4 Nigtzl
	IMENTS: (QA/QC?)	of the	above c	ho ni c	al pai	5 retos	4 Noztel
	IMENTS: (QA/QC?)	ef the	gbare C	ho mi c	al pai	5 meters	4 Nogtzl
	IMENTS: (QA/QC?)	of the	abare C	ho mi c	al pai	- 5 meters	4 Nigtzl
	IMENTS: (QA/QC?)	of the	gbore C	ho ni C	al pai	5 retos	4Noztzl
	TMENTS: (QA/QC?)	of the	gbare C	ho mi C	al pai	5 retas	4Nogtzl
	TMENTS: (QA/QC?) None	of the	abore C	ho mi C	al pai	- r neter	4 Nogtzl
	TMENTS: (QA/QC?) None	ef tho	above c	ho mi c	al pai	- s netes	4 Nogtzel
	TMENTS: (QA/QC?) None	ef Ho	abare c	homi c	al pai	- s netas	4 rigtel
	TMENTS: (QA/QC?) None	of the	abare ca	homi c	al pai	- s netes	4 Nogtel
	TMENTS: (QA/QC?) None	of Ho	above co	ho mi c	al pai	- s netes	4 Nigtel
	TMENTS: (QA/QC?) None	of Ho	above ca	ho mi c	al jai	- 5 metas	4 Nigtel

* NA	- Tu	used set	- for a contraction	• . [.	с.	and the	d 3		0	t L a	14.2	FORM #		pajo 1	07
	/4	SAM	PLING	RE	CC	RI) -	GR	OU	ND	W	ATER	2		, ,
S	ENEC	A ARMY D	EPOT ACTIVITY		(CONS	ULTAN	T: PAJ	RSONS		WI	ELL #:	M	W-2-	
PI LO	ROJECI	î: N:	ereca Arm		n of ROMU	LUS, N	<i>F AD -</i> Y	.122	В	-	INS PUN	DATE: PECTORS: AP #:	71	22/02 0Asta~	
V	VEATHE	ER/FIELD	CONDITIONS CHECKLIST			(F	ECORD	MAJOR	CHAN	GES)	SAN	IPLE ID #:	122	8-2000	
т	D/P	TEMP		R	EL.	WIN		FROM)	GROUND / SITE		L	MONT		·	
(24	HR)	(APPRX)	(APPRX)	HUM (G	EN)	(APP)	RX) ((RECTION) - 360)	COND	FACE ITIONS	INS	TRUMENT		ETECTOR	ĺ
0	500	809=	Syrmy	Un	Kolen	0-5	- 4	skan	C	615	H	ursia 4.	+ 2	276	
	· · · · ·		• • •						0				•		
DIA	METER (WELL VOL INCHES):	UME CALCULATION FAC 0.25 1 2	TORS 3	4	6	ONE	WELL VO	LUME (GAL X	.) = ((POW - WELL DIAM	STABIL IETER I	IZED WATER LE ACTOR (GAL/FT	VEL))]		
G	ALLONS /	FOOT: 000T	0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	0.654	1.47 5.564		17.8'	- 7. 30	<u>,</u> <u>7 × 1</u>	642	×3= J.1	21	ab	
	DEPTH TO POINT DEPTH TO SCREEN WELL OF WELL TOP OF LENGTH DEVELOPMENT HISTORIC DATA (TOC) SCREEN (TOC) (FT) TURBIDITY		ent Y	DE	WELL EVELOPMENT pH	D	WELL EVELOPMENT SPEC. COND								
			17.99		7.	99	10		NA	*		11.45	6	0.39.1/	m x
DA	TA COLLE WELL S	CTED AT	PID READING (OPENING WELL)		WAT	DEPTH 1 STATIC ER LEVE	ГО С L (ТОС)	WAT	DEPTH TO STABILIZE TER LEVEL) D (TOC)	DEI	TH TO PUMP INTAKE (TOC)	PU	MPING START TIME	
	NA				7-3			<u> </u>	7.30	F	_/	5.99		09.40	
RAD	IATION SO	CREENING	PUMP PRIOR TO SAMPLING (cps)			M	17	s	PUMP AFTI AMPLING (ER cps)			N	4	
		MO	NITORING DAT	A CC	OLLEO	CTED	DUR	ING P	URGIN	G OPI	ERAT	IONS			
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		VISSOLVI	ED 12/L)	TEMP (C)	SPEC	COND	Ha		ORP (mY)		TURBIDITY (NTU)	
'0	8.40	200	0.258		2.9		14.94	0.	609	7.2	4	189		FF-3	ŀ
7945	8.41	200	0.516		2.7	'6	15.37	0.0	506	7.2	6	184		75.4	
0950	8.41	200	0. 774		2.3	7	15.13	0.	609	7.2	29	175	-	(63	
935	8.44	200	1.032		2.1	0	16.40	0.6	Sol	7.2	29	165		107	ľ
1000	8.60	200	1.29		2.0	2	16.24	0.	606	7.3	0	160		121	
(ans	8.90	200	6548		. 92		15.83	0.	6 98	7.3	2	152		157	
010	9.14	200	6.806		91		1528	0.1	516	7.3	4	147		217	
US	278	20	2.064	1.	15		15.29	0	610	7.3	3	143		139	
020	10.28	200	2.322		1.60	,	15.20	0.	610	7.3	6	132		144	
1025	10,44	200	2.58		. 48		15.24	e,	607	73	4	118		219	ĺ
30	1052	200	2838		<u>, 33</u>		15.94	ar	612	7.3	71	107		218	
1035	10,60	200	3.096		15		16,14	0,1	502	7.3	32	93		314	
1040	10.60	200	3 2.54				17.01	0	601	7.3	0	7.3		281	
045	1070	20	3.612	'	1.03		16.30	0.0	Sæ	7.9	10	Er.		289	
020	10,76	20	3.27	11	7		(5.97	Or I	502	7.3	8	55		278	
035	10.84	200	4.12.8	<u> </u>	20	· · · · · · · · · · · · · · · · · · ·	15.47	0,6	/6	7.	35	44		140	
1/00	10.96	20	4.386		/3	·····-	16.12	0,6	Ol	7.4	0			14/	
1105	11.00	200	4.644	1	05		16.57	0.1	505	2.4	0	27	,	151	
	11.10	20	7.902	<u>`</u>	1,10		16.22	0	605	70	,3	/8		243	
115	11.20	200	J./6	7	10		17.05	0.	600	7.4	28	23		226	
1120	11.30	200	J. 418		201		16.51	0.3	189	7.5	20	13		172	

SEE MASTER ACRONYM LIST FOR COMPLETE LISTING OF ABBREVIATIONS Gwsamprd.xls/TYPE2

pape	Lot
------	-----

EODM #

* NA - Jurbid, ty meter was nitting during during development of new-2. SAMPLING RECORD - GROUNDWATER														
S	ENEC	A ARMY D	EPOT ACTIVITY		(CONSU	JLTAN	T: PAF	RSONS		W	ELL #:	MW	1 - 2.
PI LO	ROJECT CATIO	: <u>مل</u> ۷:	Neca Army D	ер <i>о</i> 7 Í	κοmu	EAD LUS, NY	- 122	2-8			INS	DATE: SPECTORS: MP #:	71 EJ PE	122/02 7Asht m 5-1
V	/EATHE	R/ FIELD	CONDITIONS CHECI	KLIST		(R	ECORD	MAJOR	CHANC	ES)	SAI	MPLE ID #:	122	8-2000
T	IME	TEMP	WEATHER	R) HUM	EL. IIDITY	WIN	D (I ITY DIR	(FROM) GROUND / SITE DIRECTION SURFACE			MONITORING			G
(24	HR)	(APPRX) 80%	(APPRX)	(G	EN)	(APPH		- 360)	COND	TTONS C.J.J.		Hordia 4	(- 27	276-
										755				
DIA G	METER (ALLONS/ LITERS/F	WELL VOL INCHES): FOOT: FOOT	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	FORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VOI	LUME (GAL X) - フ-コよ) = KPOW- WELL DIAM	STABI IETER 64	LIZED WATER LEF FACTOR (GAL/FT) χ 3 - \tilde{J}	vel) 11 772	fels.
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPT TOP SCREE	TH TO P OF N (TOC)	SCREEN LENGTH (FT)	D	WELL EVELOPME TURBIDITY	NT Y	D	WELL EVELOPMENT pH	DE\ SP	WELL VELOPMENT PEC. COND
			(7.99	2	7.	99	10	r	A ×			11.45	0.3	Fuslem ×1
DAT	FA COLLE WELL S	CTED AT	PID READING (OPENING WELL)		WAT	DEPTH TO STATIC ER LEVEI	о . (тос)	WAT	DEPTH TO STABILIZE	р (TOC)	DE	PTH TO PUMP INTAKE (TOC)	PUM	PING START TIME
			MA			7.30	P		7.3	8		15.99	0	940
RAD	DATION SO	CREENING	PUMP PRIOR TO SAMPLING (cps)			M	7	S	PUMP AFTE AMPLING (ER cps)		NA		۰ ۱
		MO	NITORING DATA COLLECTED DURING PURGING OPE								ERA	TIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	02	DISSOLVI (YGEN (#	ED 1g/L)	temp (C)	SPEC.	. COND	рН		0RP (mV)	_	TURBIDITY (NTU)
្រ	11.40	200	J. 676		0.83	30	1.18	0.3	593	7.37		2.		341
1130	11.42	200	5.934		0.8	20	17.86	0,3	586	7.37		3		320
1135	11.40	200	6.192	d	7.82	0	29.8)	0.1	T62	7.32		-10		568
1140	11.46	200	6.45		0. 89	6	15.98	0.	601	7.4.	3	-14-		80.4
1145	11.62	200	6.708	0	285,	/	15.86	0.3	38	7. 4	8	-15		186
1150	11.80	20	6.966		1.03		18,61	0.	525	7.4	1	-5-		206
1155	11.98	20	7.224		1.03	2	N-D	a.	586	7.1	10	-17		218
12a	12.10	20	7.482		1.0	5	16,38	0,	226	7.3	8	-13		178
1205	12,18	200	7.74		0-91	0	15.13	0.	589	7.9	10	- 20		178
1210	12.22	20	F.00		0.9	50	K. 30	0.	512	7-3	8	-16		161
												· <u> </u>		
								ļ						
·														·
					<u>.</u> ,									

	SAMP	LING	RE	CORD	- GR	OUND	WATE	R	
	SENECA ARMY DEP	OT ACTIVIT	TY	CONSULT	ANT: PA	RSONS T	WELL #: MW-2		
	SAMPLING ORDER	PRESERV	ATIVES	BOTTL COUNT/ VOLUME	ES type	SAMPLE NUMBER	TIME	CHECKED BY/	
1	VOC -CLP(Low Level) 524.2	4 deg. C	HCL	3/ 40 ml	3/ 40 ml VOA				
2	SVOC 8270	4 deg	. C	2 x 1L	Am G	M			
3	PEST/PCBs 8080	4 dej	r.C	2 x 1L	Am G	M		•	
4	TAC METALS 6010	4 deg. C	HNO3	1/ 500m L	HDPE	122/3-2000	1230	EJA/ 1/22/02	
5	CYANIDE 9012	4 deg. C	NaOH	1/250 mL	HDPE	M			
6	Explosives 8330	4 dcg.	c	2 x 1L	Am G	M			
7	Nitrate/Nitrogen 352.1	4 deg. C	H2SO4	l x 250 ml	HDPE	M			
							· · · ·		
						······			
								`	

.

COMMENTS: (QA/QC?)

Pirfe Blank =12-28-0006 MS = 1228-202MS MSD = (228-20375) Puplicite = 1228-2005

IDW INFORMATION:	lidran (fee FOW Arun Forn for	(et a: 1: 1)

	SENECA ARMY DEPOT	ACTIVI	ſ¥	CONSULT	ANT: PAF	SONS	WELL #: MW-2			
	SAMPLING	PRESER	ATIVES	BOTTLI	ES	SAMPLE	TIME	CHECKED BY		
	ORDER			COUNT/ VOLUME	түре	NUMBER		DATE		
1	VOC -CLP(Low Level) or 524.2	4 deg. C	HCL	3/ 40 ml	VOA	MA				
1	DOC	4 deg. C	H₂SO₄	3/ 40 ml	VOA	nA				
2	Nitrate/Nitrogen 352.1	4 deg. C		l x 500 ml	HDPE	NA	· ·	· •		
3	Ferrous Iron	Field A	nalysis			M				
4	Sulfide	Field A	nalysis			M				
5	Alkalinity/Sulfate/Chlorides	4 deg. C		l x lL	HDPE	M				
6										
7	DOC									
8	Hardness 130.2	4 deg. C	HNO3	1 x 500 mL with #4	HDPE	MA				
9	Total Dissolved Solids 160.1	4 da	g. C	1 x IL	HDPE	1A				
10	Chemical Oxygen Demand 410.1	4 deg. C	H2SO4	1 x 50 mL with #7	HDPE	M				

None of the above chemical parameters avalyzes.

IDW INFORMATION:

	SAMPLING RECORD - GROUNDWATER															
SE	NECA	ARMY D	EPOT	ACTI	VITY		(CONS	ULTAN	T: PAI	RSONS	-	WE	ELL #: M	w.	3
PRO. LOCA	JECT: ATION:	Je~	inca A	trmy	Dop	<i>et,</i> - F	S <i>E /</i> Romui	4 <i>1) - (.</i> LUS, NY	22 <u>8</u> :				INSI PUN	DATE: PECTORS: /IP #:	7/	22/02 Mshtm 5-1
WE	ATHER	/ FIELD	CONDIT	IONS	CHECH	CLIST		(R	ECORD	MAJOR	CHANG	ES)	SAMPLE ID #: 122B- 200			
	REL.								IND (FROM) GROUND/SIT			D/SITE				
TIM	E D	TEMP	WE	EATHE	R	HUM	IDITY	VELO	TTY DIR	ECTION 360)	SURI	FACE	INS	MONIT	ORING	
080	K)	Ea =	(A (A	IIIAA	,			0~	5 11 6.4		CONDI		Ha	NSTRUMENT		Th
		007	40	1~~	7				- 17.	- None	-Fr		////	51 6 71	0-	
DIAME GALI LIT	TER (INC LONS / FO TERS/FOO	WELL VOI THES): OT: T	UME CAL 0.25 0.0026 0.010	CULATI 1 0.041 0.151	ON FAC 2 0.163 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VOI	LUME (GAL X V) = [(POW - S VELL DIAME	TABIL TER F	IZED WATER LEV ACTOR (GAL/FT)	'EL) I	
HIS	TORIC DA	TA	E	DEPTH TO OF WI (TO	D POINT ELL C)		DEP TO SCREE	TH TO P OF N (TOC)	SCREEN LENGTH (FT)	D	WELL EVELOPME TURBIDITY	NT	DE	WELL EVELOPMENT pH	Di	WELL EVELOPMENT SPEC. COND
				16 6	,2		16.	12	10	:	>100	10		11.90	0.2	-8 uslom
DATA	COLLECTE VELL SITE	ED AT	(PID REA	JDING WELL)		WAT	DEPTH 1 STATIC	то 2 1. (тос)	WAI	DÉPTH TO STABILIZEI ER LEVEL	р (тос)	DEP	PTH TO PUMP INTAKE (TOC)	PUI	MPING START TIME
				~	A		e	5.4	4	6.52			/	14.62	/	525
RADIAT	TION SCRE	ENING	1	PUMP PR SAMPLIN	IOR TO IG (cps)			N	A	S	pump afte Ampling (iR (ps)	NA			
	MONITORING DATA COLLECTED DURING PURGING OPERATI										IONS					
TIME W. (mia) Ll	ATER EVEL RA	PUMPING TE (ml/min)	CUMU (G	ULATIVE GALLONS	VOL.	02	DISSOLV (YGEN (1	ED ng/L)	TEMP (C)	SPEC.	COND	pH		ORP (mV)		TURBIDITY (NTU)
56	548 2	200	0.	361		0	.890	>	19.82	0.	593	7.34		82		<i>999</i>
1530 6	6.48	200	0. 1	722			0.5	90	19.00	0. 5	795	7.31		72		822
NJ 35 6	48 2	20	1.0	F3			0.57	10	19.66	0. 3	95	7-28		64		520
1540 6.	.48	200	1.4	144			0.6.	50	19.57	0, Ś	-94	7.20	P	62		3 85-
1545 6	5.48	200	1.8	f05		0	-810	>	19.82	0.	595	7.2	2	60		309
1550 6	5.48	200	2,	160	-		1.0.	3	2(24	0,	594	7. 2-	3	60		306
1535 6	:29	200	Ζ.	52	-7		0.9	5	18:22	0.	594	7.3	4	61		265
1600 6.	,52	20	2	- 888	~	ļ'	1.00	•	17.13	0.	575	7.3	0	62		Z34
1605 6	.52	10	3.	24%	۶	<u> </u>	1. os	<u> </u>	17.85	0,	594	7.20	r	63		235
1610 6	52	20	3	6/0	2		612	•	17.54	0.	595	7.23		80		247
1615 6	1.52	20	3,	. 97	/		:18		17.11	G.	576	7.2	2	69		217
1620 6	1.52	20	4-	- 32			19		17,09	6.	589	7.2	2	70		2/6
1625 6	5.52	200	9.	693			- 2	9	17.64	0,	552	1.20	2	12		195
1650 6	5.52	200	<u>, </u>	057			(2)	/	18.21	0.	593	7.2	-	73		
1633 6	175	20	5	.4	15		$\left(\frac{3}{2}\right)$	2	11.57	0.	597	1-1	8	_//		215
1690 6		10	5	<u> </u>	/6	- /	. 4	/	11.18	0,	575	7.10	5	18		(1)
1644 6	.52	10	0	-15/		- /	. 79	7	16.55	0.	1 20	1.2	$\dot{\cdot}$	<u> </u>		10
1+0-0	2.52	10		6. 30	0		1.9	/	17.35	0.	594	1.6		18		104
							·· <u></u> ,						-+			
				····												
l						1			1			L				

Form # _____

	SENECA ARMY DEP	OT ACTIV	TY	CONSULT	ANT: PA	RSONS T	WELL #:	MW-3
	SAMPLING	PRESE	RVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT/ VOLUME	ТУРЕ	NUMBER	·	DATE
1	VOC -CLP(Low Level) 524.2	4 deg. C	HCL	3/ 40 ml	VOA	MA		
2	SVOC 8270	4	leg. C	2 x 1L	Am G	MA		
3	PEST/PCBs 8080	4	leg. C	2 x 1L	Am G	1A	• •	-
4	TAC METALS 6010	4 deg. C	HNO3	1/ 500m L	HDPE	1228- 2004	1700	EON
5	CYANIDE 9012	4 deg. C	NaOH	1/250 mL	HDPE	1A		
5	Explosives 8330	4 de	B C	2 x 1L	Am G	M		
1	Nitrate/Nitrogen 352.1	4 deg. C	H2SO4	1 x 250 ml	HDPE	M.		
					-		· · · · · · · · · · · · · · · · · · ·	
					·····			· · · · · · · · · · · · · · · · · · ·
Ō	MMENTS: (QA/QC)) se Bl MS = MSO = NSO =	q ~/e = 122B 122B -	1228-000 8-2002M 2003MJ	26 5 60			· · ·

ID W INFORMATION	1- drum
	(see I De Drum Form for Starts)

	SAMPL	ING	RE	CORD -	GR	OUND	WATEF	2	
	SENECA ARMY DEPOT	ACTIVIT	Y	CONSULT	ANT: PAF	RSONS	WELL #: MW-3		
	SAMPLING	PRESERV	ATIVES	BOTTLE	S	SAMPLE	TIME	CHECKED BY/	
_	ORDER	L		COUNT/ VOLUME	ТҮРЕ	NUMBER		DATE	
1	VOC -CLP(Low Level) or 524.2	4 deg. C	HCL	3/ 40 ml	VOA	MA			
1	DOC	4 deg. C	H2SO4	3/ 40 ml	VOA	M			
2	Nitrate/Nitrogen 352.1	4 deg. C		l x 500 ml	HDPE	M		· · ·	
3	Ferrous Iron	Field An	alysis			IA			
4	Sulfide	Field An	alysis			M			
5	Alkalinity/Sulfate/Chlorides	4 deg. C		l x lL	HDPE	M			
6									
7	DOC								
8	Hardness 130.2	4 deg. C	HNO3	I x 500 mL with #4	HDPE	it	· .		
9	Total Dissolved Solids 160.1	Total Dissolved Solids 160.1 4 deg. C			HDPE	it			
10	Chemical Oxygen Demand 410.1	gen Demand 410.1 4 deg. C H2SO4		1 x 50 mL with #7	HDPE	M			

C IMENTS: (QA/QC?)

None of the above chemical parameters ansist se.

IDW INFORMATION:

									PAGE (OF (
				GROU	NDWA	TER I	EVAT	ON REPORT	Г
PARSONS		· · · · · · · · · · · · · · · · · · ·		CLIENT:	ACCE			DATE:	7/11/02 and 7/12/02
PROJECT:	Senora	Army Da	of SE	A0-122	A			PROJECT NO	: 74/401.03100
LOCATION:	R	mulas /	vý –					INSPECTOR:	E TAshtan
MONITORING	G EQUIPMENT:				WATER LEVE	EL INDICATOR:		COMMENTS:	
INSTRUMENT	DECTECTOR	BGD	TIME	REMARKS	INSTRUM	1ENT 212	CORRECTION	N FACTOR	e attackel plates
					50178 40				it well
WELL	TIME	DEPT	TH TO PRODUCT	CORRECTED WATER LEVEL	MEASURED POW	INSTALLED POW	PRODUCT SPEC. GRAV.	(Look?, Well #?, Surface	WELL STATUS / COMMENTS • Disturbence?, Riser marked?, Condition of: riser, concrete, protective casing, etc.)
MW-1	7/11/02 0830	6.0	6.00	M	M	IA	MA	woll just	2' intrud above srale cet.
M4-2	7/12/02 0835	7.38	7.38	NA	NA	14	ost	• ~	<
Mar-3	7112122	5.60	5.60	1A	p#	1A	it	c t	ι <u>ς</u>
· ·									· · · · · · · · · · · · · · · · · · ·
								·	
	<u> </u>								
	· · · · · · · · · · · · · · · · · · ·							·····	
								•	
<u> </u>	1								
		· · · · ·							
									· · · · · · · · · · · · · · · · · · ·
							<u> </u>		
									·
									· · · · · · · · · · · · · · · · · · ·
	-								

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

٠

									PAGE OF
				GROU	NDWA'	TER	EVAT	ION R	REPORT
PARSONS	ور یستخد ت این ا ^{ین} ا			CLIENT:	ACOE		<u></u>		DATE: 7/22/02
PROJECT:	Se rec	a Ac.	ny Den	of St	FAD-12	28			PROJECT NO: 74/40/. 03/00
LOCATION:	<u>//</u>	anu/us	Ny .						INSPECTOR: EDAJ 67 4
MONITORING INSTRUMENT	EQUIPMENT: DECTECTOR	BGD	ТІМЕ	REMARKS	WATER LEVE	EL INDICATOR:	CORRECT	ION FACTOR	COMMENTS:
					Solives	+ 212			- See attached photos
			· · · ·						- of walk.
WELL	ТІМЕ	DEPI WATER	TH TO PRODUCT	CORRECTED WATER LEVEL	MEASURED POW *	INSTALLED POW 🎔	PRODUCT SPEC, GRAV.		WELL STATUS / COMMENTS (Lock?, Well \$7, Surface Disturbance?, Riser marked?, Condition of: riser, concrete, protective casing, etc.)
MW-1	0830	7.02	7.02	M	637.01	637.01	MA	Lock # Stolpro	Master Source - 370, 2'x2' concrete pool w/ ut active Casing, and 3- steel ballards.
MW-2	0835	7-38	7.38	it	626.59	626.59	M		Sque as above
M4-3	0840	6. 44	6.44	M	627.69	627.69	MA		Sen as above
					•				·
							1		
									<u>, , , , , , , , , , , , , , , , , , , </u>
								1	
								-	
	•								

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

H:\ENG\SENECA\FORMS\FIELD\Gwelev.xls

FIGURE A-18

							PAGE / OF /				
				GROU	NDWA	TER	EVATION REPORT				
PARSONS				CLIENT:			(2) Prove and a state of a sta		DATE: 7/24/02		
PROJECT:	ict: Serveca Army Dart.			SEAD-122B					PROJECT NO: 741401.03100		
LOCATION:		lonulus,	NY.						INSPECTOR:	EJAsCA	
MONITORING EQUIPMEN INSTRUMENT DECTECTOR		BQD	TIME	REMARKS	WATER LEVEL INDICATOR: INSTRUMENT		CORRECTION FACTOR		COMMENTS: See attached photos of wells		
WELL	ТІМЕ	DEPT WATER	TH TO PRODUCT	CORRECTED WATER LEVEL	MEASURED POW		PRODUCT SPEC. GRAV.		Lock?, Well \$7, Surface Dis	WELL STATUS / COMMENTS iturbance?, Riser marked?, Condition of: riser, concrete, protective casing, etc.)	
Mw.1	1035	7.48	7.48	MA	637.01	637.01	M		cee for.	n date 1122/02	
Mw.2	1040	7.54	7.54	1A	626.59	626.57	M		sa me	as above	
M4-3	1045	6-68	6.68	MA	627.69	627.69	M	· · · ·	Same a	as above	
									···		
					.,					·	
								•			
									Y		
										·	

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

.

pre

H;\ENG\SENECA\FORMS\FIELD\Gwelev.xis

٠

A.2 SLUG TEST RESULTS

PARSONS

P:\PIT\Projects\Huntsville HTW\TO #21 Airfield Arms Range\Final Characterization Rpt\Characterization Rpt DF_030804.doc March 12, 2004

.

.

APPENDIX B PHOTOGRAPHIC LOGS

LOCATION: Seneca Army Depot CLIENT: USACE

 Status as of: 79/02

 Description: View of subcontractor with bulldozer clearing path on top of firing range berm for drilling rig access (Machine Gun Range).

 Photo by:
 EJA

 Status as of: 7/9/02

 Description: View of subcontractor with bulldozer clearing path on top of firing range berm for drilling rig access (Machine Gun Range).

 Photo by:
 EJA

LOCATION: Seneca Army Depoit CLIENT: USACE

Status as of: 7/9/02 Description: View of subcontractor with bulldozer clearing path on top of firing range berm for drilling rig access (Small Arms Range). Photo by: <u>EJA</u>_____

Status as of: 7/9/02

Description: View of subcontractor with bulldozer clearing path on top of firing range berm for drilling rig access (Small Arms Range). Photo by: EJA

LOCATION: Seneca Army Depoit CLIENT: USACE

 Status as of:
 7/9/02

 Description:
 View of drillers drilling with hollow stem augers at monitoring well MW-2.

 Photo by:
 EJA

 Status as of:
 7/9/02

 Description:
 View of drillers drilling with hollow stem augers at monitoring well MW-2.

 Photo by:
 EJA

LOCATION: Seneca Army Depoit CLIENT: USACE

Status as of: 7/9/02 Description: View of drillers collecting spilt-spoon samples during the drilling of monitoring well MW-2. Photo by: EJA

 Status as of: 7/9/02

 Description: View of sand pack being installed during the installation of monitoring well MW-2.

 Photo by:
 EJA
LOCATION: Seneca Army Depoit CLIENT: USACE

 Status as of:
 7/9/02

 Description:
 View of bentonite seal being installed during the installation of monitoring well MW-2.

 Photo by:
 EJA

 Status as of:
 7/9/02

 Description:
 View of monitoring well MW-2 installed..

 Photo by:
 EJA

PHOTOGRAPHIC LOG PARSONS

PROJECT: Seneca Airfield Small Arms Range PROJECT #: 741401 LOCATION: Seneca Army Depoit CLIENT: USACE

 Status as of:
 7/9/02

 Description:
 View of path cleared by bulldozer on top of small arms range. View taken from the south.

 Photo by:
 EJA

LOCATION: Seneca Army Depoit CLIENT: USACE

 Status as of:
 <u>7/9/02</u>

 Description:
 View of path cleared by bulldozer on top of small arms range. View taken from the north.

 Photo by:
 EJA

 Status as of:
 7/9/02

 Description:
 View of drillers dredging monitoring well MW-3 using a Wattera pump and dedicated polyurethane tubing.

 Photo by:
 EJA

LOCATION: Seneca Army Depot CLIENT: USACE

 Status as of:
 7/9/02

 Description:
 View of monitoring well MW-1 after installation completed.

 Photo by:
 EJA

Status as of: 7/9/02 Description: View of monitoring well MW-2 after installation completed. Photo by: EJA

LOCATION: Seneca Army Depot

Status as of: <u>7/9/02</u> Description: View of monitoring well MW-3 after installation completed. Photo by: EJA

Status as of: 7/9/02 Description: View of IDW contained in 55-gallon DOT drums staged onsite (SEAD-122B) on wooden pallets. Photo by: EJA

APPENDIX C

DATA VALIDATION REPORT AND LABORATORY CASE NARRATIVE

2002 INITIAL INVESTIGATION

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

September 14, 2002

~ 1 h

David Babcock Parsons Engineering Science 290 Elwood Davis Rd. Liverpool, NY 13088

RE: Validation of Seneca Army Depot Site Data Packages STL-VT SDG Nos.88617, 88619, 88648, 88692, 88784, 88921, 88924, and 89606 Project Number 741401

Dear Mr. Babcock:

Review has been completed for the data packages generated by Severn Trent Laboratories which pertain to samples collected at the Seneca Army Depot Site. Sixty six soil samples were processed for total lead. Four aqueous samples and twenty seven soil samples were analyzed for TAL metals. Ten of the TAL soils were also processed for TAL metals on both SPLP and TCLP leachates of the samples. Thirty eight of the samples were analyzed for TOC by Lloyd Kahn method. Rinse blanks and matrix spikes/duplicates were also processed, and the rinse blanks were analyzed through the TCLP and SPLP leachate procedures. Methodologies utilized for the metals analysis are those of the USEPA ILM04.1

Data validation was performed in accordance with the most current editions of the USEPA Region II SOPs HW-2 and HW-7, with consideration for the methodology and project requirements. The following items were reviewed:

- Data Completeness
- * Narrative Discussion
- Custody Documentation
- * Holding Times
- Matrix Spike Recoveries
- * Laboratory and Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * ICP Interference Check Samples
- * Control Spike/Laboratory Control Samples
- * Calibration Standards
- * Instrument IDLs, IECFs, Linear Ranges
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

pg. 2/5

requirements. Most sample analyte results are usable as reported, or with minor qualification as estimated in value. The exceptions are the TCLP sodium detections, and a few of the TCLP zinc or SPLP sodium detections. These responses reflect external contamination, and are rejected as sample components.

Copies of laboratory case narratives are attached to this report, and should be reviewed in conjunction with this text. Resubmission communications, and red-ink qualified client hardcopy results tables are also included with this report.

General

Some samples were initially processed for lead only, and reanalyzed for TAL metals upon evaluation of the initial lead result. The reanalyses of these samples were reported with the same client ID in separate data packages. The field duplicates were processed for TAL metals and associated TAL matrix spikes/duplicates, and reported in a separate data package.

Accuracy and precision determinations on sample matrix spikes/duplicates showed generally acceptable results, with antimony showing consistently low recoveries. These are detailed later in this text.

There is evidence of a significant nonhomogeneous nature to the sample matrix, particularly as regards lead, copper, and antimony. This is reflected in field duplicate variances, although the laboratory duplicate correlations (which are taken from the same sample bottle) were generally good. Correlations between the "screen" lead results and the TAL lead results in a given sample are good, as expected, in that they are derived from the same digestate.

Field duplicate evaluations were performed for TAL metals in 122B-1010A and 122B-1010A-DUP (the latter was also processed for lead in two different digestates), and showed more than an order of magnitude variance (13,100 ppm, 1540 ppm, and 397 ppm). Antimony also showed a large variance (109 ppm and 3 ppm). Results for those two analytes in those samples are qualified estimated ("J").

The field duplicate evaluations for TAL metals in 122B-1011A and 122B-1011A-DUP (with a second lead digestate) showed the following outlying correlations. Results for the listed analytes are qualified estimated in those samples. Caution should be used in evaluation results of samples with similar matrix to these. Element Values, mg/kg %RPD

Element	Values, mg/kg	%RPD
Antimony	670 and 69	174
Arsenic	85 and 20	124
Copper	5700 and 290	181
Lead	89,000, 33,000, and 14,000	146
Silver	3.4 and 120	189
Zinc	630 and 120	136

There are no field duplicate evaluations for the aqueous samples. The laboratory duplicate evaluation for that matrix showed no outlying correlations.

The metals cover pages for SDGs 88648 and 88692 were not signed by the laboratory personnel. The laboratory case narratives, which contain the same verbatim statement, were signed. The laboratory case narrative for 88648 has an incorrect list of samples reported in the data package. Some of those listed are reported in SDG 88692

Discrepancies in sample identification (SDG 88619) were resolved at sample receipt.

TAL Metals, Total Lead, and SPLP and TCLP TAL Metals Analyses

As noted above, TCLP sodium detections are rejected ("R"), as it is a preparation artifact from the leaching procedure. Sample TCLP sodium constituency is unknown, except as an extrapolation as a maximum, derived from the total soil concentrations.

The sodium detections in the SPLP leachates of 122B-1030 and 122B-1031 are likewise rejected due to detection well above CRDL in the associated rinse blank (122B-0004).

Zinc detections in the TCLP leachates of 122B-1002B, 122B-1010A, 122B-1013B, 122B-1018A, are rejected ("R") per-validation protocols due to presence of zinc at similar concentrations in the associated leachate blank. However, although the data is "rejected," those originally reported concentrations, which are low level, can be considered as elevated reporting limits representing maximum sample concentrations.

Analytical data qualified "JN" or "R" may not be used to demonstrate compliance with Toxicity Characteristic or Land Ban Regulations.

Due to delays in client scheduling of the TCLP/SPLP fractions and resultant holding time violations, results for mercury in the TCLP leachates of the soils are qualified estimated ("J" and "UJ"), with a possible low bias.

Matrix spike/duplicate evaluations of lead in 122B-1003A, 122B-1016A, 122B-1021A, 122B-1037, and 122B-1055, and of TAL metals on 122B-2001 were acceptable, with the exception of the recovery for lead in 122B-1037 and 122B-1055 (134% and 129%, respectively). Results for lead in the samples in SDGs 88692 and 88784 are therefore qualified estimated ("J").

Matrix spike/duplicate evaluations of TAL metals in 122B-1010A-DUP and 122B-1011A-DUP show low recoveries for antimony (61% and 39%). All antimony results are qualified estimated. The recovery of arsenic in the latter is only 46%, and results for that element in seven of the samples are qualified estimated.

Laboratory duplicate correlations for TAL metals and lead were within validation guidelines, although that for lead in 122B-1016A (86%RPD) was just below the validation action level.

Serial dilution determinations for TAL metals in 122B-1024A, and 122B-2001, and for lead in 122B-1003A, 122B-1016A, 122B-1037, and 122B-1055, and for TCLP in 122B-1002B, 122B-1018A, 122B-1024A, and 122B-1042, and for SPLP in 122B-1002B, 122B-1018A, 122B-1024A, and 122B-1042, produced acceptable correlation. Those for TAL metals on 122B-1001A, 122B-1010A-DUP, 122B-1011A-DUP, 122B-1026, and 122B-1040 showed outliers affecting sample results are indicated

below; results are qualified as estimated:

Copper (17%D) in soil samples reported in SDG 88617

Copper (29%D) in soil samples reported in SDG 88692

Chromium (12%D) and zinc (12%D) detections in soil samples in SDG 88921

Copper (29%D) in 122B-1040, 122B-1042, 122B-1046, 122B-1053, 122B-1059, and 122B-1063

Calcium (12%D), copper (27%D), and zinc (11%D) in 122B-1010A-DUP

Arsenic (18%D), copper (17%D), iron (11%D), nickel (12%D), zinc (11%D) in 122B-1011A-DUP

Due to outlying CRI standard recoveries, the following analyte results are qualified as estimated ("J" or "UJ"). The outlying recoveries, while outside validation action range of 80% to 120%, are above 70% and below 136%.

lead (high bias) in 122B-1021B and the SPLP leachate of 122B-1002B

lead (low bias) in 122B-1010A-DUP and 122B-1011A-DUP

selenium (low bias) in 122B-1024B, 122B-1025A, 122B-1040, 122B-1041, 122B-1042, 122B-1046 mercury (low bias) in 122B-1010A-DUP, 122B-1011A-DUP, and the TCLP and SPLP leachates of 122B-1042, 122B-1046, 122B-1059

thallium (low bias) in the TCLP and SPLP leachates of 122B-1059 and 122B-1042

nickel (high bias) in the TCLP leachates of 122B-1042 and 122B-1046, and the TCLP and SPLP leachates of 122B-1059

arsenic 122B-1026, 122B-1030, and 122B-1031

chromium (high bias) in samples in 122B-2004 and 122B-2005

Thallium showed negative responses greater than CRDL for samples 122B-1011B and 122B-1018A, and results for those are qualified estimated ("J"), with a possible low bias.

Mercury results for 122B-1010A-DUP and 122B-1011A-DUP are qualified estimated, possibly biased low, due to holding time exceedence which resulted from the delay in request for TAL processing.

Rinse blanks show either all concentrations below CRDL, or analyte concentrations at least tenfold below that of the associated samples. No qualification is required.

No validation action is taken for blank values above IDL but below CRDL. Sample detections above IDL but below CRDL are flagged "B" by the laboratory, and should be used with caution.

Soil and SPLP preparation blanks show no contamination, with the exception of an elevated SPLP mercury blank reported in SDG 88921. Associated mercury samples show no detection, and are unaffected.

The raw ICP data incorrectly denotes the lab ID of 122B-1015A as "493568" rather than "495658." The associated Form 14 shows the correct client ID.

Preparation logs for SDG 88617 are not located in that package, but are found in SDG 88619.

TOC Analyses

Review was conducted for method compliance, transcription, calculations, holding times, standard and blank acceptability, accuracy and precision, etc., as applicable to the procedure.

Matrix spike/duplicate evaluations for TOC were performed on 122B-1055, and show acceptable accuracy and precision. Only one of the multiple replicate values were used for the matrix spike evaluations, and the parent sample solids content was used in the duplicate concentration determination. Recoveries and correlations are also acceptable when utilizing multiple spike replicates and the duplicate solids content.

Many of the samples exhibited elevated correlations (>20%RSD) between multiple replicates, even with repeated analysis. This is most likely due to sample nonhomogeneity. Those results are therefore qualified estimated. Affected samples are 122B-1003A, 122B-1005B, 122B-1007B, 122B-1009B, 122B-1010A, 122B-1010B, 122B-1011B, 122B-1012B, 122B-1015A, 122B-1020B, 122B-1021B, 122B-1022B, 122B-1024A, 122B-1024B, 122B-1027, 122B-1029, 122B-1032, 122B-1033, 122B-1035, 122B-1037, 122B-1048, 122B-1050, 122B-1052, 122B-1053, 122B-1055, 122B-1059, and 122B-1061

Associated sample detections were well above that of the 7/02/02 rinse blank, and no qualification is required.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

STI. Burlington 208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

July 22, 2002

ALCONT OF A

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88617

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on June 28, 2002. Laboratory numbers have been assigned and designated as follows:

<u>Lab ID</u>	Client <u>Sample ID</u>		Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: (06/28/022 ET	R No:88617	
492542	122B-1001A	06/26/02	Soil	
492543	122B-1001B	06/26/02	Soil	
492544	122B-1002A	06/26/02	Soil	
492545	122B-1002B	06/26/02	Soil	
493556	122B-1002B, TCLP	Extract		
493557	122B-1002B, SPLP	Extract		
492546	122B-1003A	06/26/02	Soil	
492546MS	122B-1003AMS	06/26/02	Soil	
492546DP	122B-1003AREP	06/26/02	Soil	
492547	122B-1003B	06/26/02	Soil	
492548	122B-1004A	06/26/02	Soil	
492549	122B-1004B	06/26/02	Soil	
492550	122B-1005A	06/26/02	Soil	
492551	122B-1005B	06/26/02	Soil	
492552	122B-1006A	06/26/02	Soil	
492553	122B-1006B	06/26/02	Soil	
492554	122B-1007A	06/26/02	Soil	
492555	122B-1007B	06/26/02	Soil	
492556	122B-1008A	06/26/02	Soil	
492557	122B-1008B	06/26/02	Soil	
492558	122B-1009A	06/26/02	Soil	
492559	122B-1009B	06/26/02	Soil	
492560	122B-1010A	06/26/02	Soil	
492561	122B-1010A-DUP	06/26/02	Soil	
493558	122B-1010A, TCLP	Extract		
493559	122B-1010A, SPLP E	Extract		

Mr. David Babcock July 22, 2002 Page 2 of 3

-

STL Burlington

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Total Organic Carbon by Lloyd Kahn Method

During the analysis which occurred on July 5th, the comparability between sample iterations was greater than the method guideline of 20%. Samples were reanalyzed on July 8th yielding similar results and confirming heterogeneity of samples.

Metals by CLP (ILM04.1) Method

Samples were initially screened for lead on June 28, 2002 and based on these results, additional analyses were assigned. Samples displaying relatively high concentrations of lead (as determined by the client) were subsequently logged in for the full target analyte list (TAL) of metals and / or the Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) followed by metals analysis. Because of this delay in assignment for TCLP extraction, the 5-day holding time between the verified time of sample receipt and the extraction procedure for mercury was not met.

Potassium and sodium were reported in relatively high concentrations during the analysis of the TCLP method prep blank. These two elements are inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for either of these elements if results were reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear range of the instrument.

Results from the serial dilution analysis of 122B-1001A were greater than the established control criteria of $\pm 10\%$ for copper (17.1%). Results from the serial dilution analysis of the TCLP Extract of 122B-1002B were greater than the established control criteria of $\pm 10\%$ for sodium (13.7%). Field sample results have been qualified with an "E" to denote what the laboratory believes to be matrix-related interference.

The TCLP preparation blank analyzed on ICP5 on July 17, 2002 yielded a result of 28.9 ug/L for zinc. Although this result does not meet control criteria under the ILM04.1 Statement of Work for preparation blanks (concentration should be less than the CRDL), it is less than the standard reporting limit for zinc in TCLP extracts (1 mg/L) as established by the laboratory.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 07444.

Mr. David Babcock July 22, 2002 Page 3 of 3

· .

STL Burlington

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely, Vickal

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

0001-0 LAST AISNA

SEVERN TRENT services

STL Burlington 208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

July 26, 2002

· . .

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88619

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on June 28, and 29, 2002. Laboratory numbers have been assigned and designated as follows:

Lab ID	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 06/28/02	ETR No:88619	
492562	122B-1010B	06/26/02	Soil
492563	122B-1011A	06/26/02	Soil
493563	122B-1011A, TCLP Extrac	t	
493564	122B-1011A, SPLP Extract		
492564	122B-1011A-DUP	06/26/02	Soil
492565	122B-1011B	06/26/02	Soil
492566	122B-1012A	06/26/02	Soil
492567	122B-1012B	06/26/02	Soil
492568	122B-1013A	06/26/02	Soil
492569	122B-1013B	06/26/02	Soil
493565	122B-1013B, TCLP Extract		
493566	122B-1013B, SPLP Extract		
	Received: 06/29/02	ETR No:88647	
492753	122B-0001	06/28/02	Water
492754	122B-0002	06/28/02	Water
492755	122B-0003	06/28/02	Water
492756	122B-1014A	06/27/02	Soil
492757	122B-1014B	06/27/02	Soil
492758	122B-1015B	06/27/02	Soil
492759	122B-1016A	06/27/02	Soil
492759MS	122B-1016AMS	06/27/02	Soil
492759DP	122B-1016AREP	06/27/02	Soil
492761	122B-1017A	06/27/02	Soil
492762	122B-1017B	06/27/02	Soil
492763	122B-1018A	06/27/02	Soil
493567	122B-1018A, TCLP Extract		

STL Burlington is a part of Severn Trent Laboratories, Inc.

Mr. David Babcock July 26, 2002 Page 2 of 3

STL Burlington

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 06/29/02 ETF	R No:88647 (Cont.)	
493568 492764 492765	122B-1018A, SPLP Extract 122B-1018B 122B-1019A	06/27/02 06/27/02	Soil Soil

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Total Organic Carbon by Lloyd Kahn Method

During the analysis which occurred on July 5th, the comparability between sample iterations was greater than the method guideline of 20%. Samples were reanalyzed on July 8th yielding similar results and confirming heterogeneity of samples.

Metals by CLP (ILM04.1) Method

Samples were initially screened for lead on July 10, 2002 and based on these results, additional analyses were assigned. Samples displaying relatively high concentrations of lead (as determined by the client) were subsequently logged in for the full target analyte list (TAL) of metals and / or the Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) followed by metals analysis. Because of this delay in assignment for TCLP extraction, the 5-day holding time between the verified time of sample receipt and the extraction procedure for mercury was not met.

Sodium was reported in relatively high concentrations during the analysis of the TCLP method prep blank. This element is inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for this element if the result was reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear range of the instrument.

The relative percent difference (RPD) between the lead results of the initial and duplicate analysis of sample 122B-1016A was 86%. The laboratory attributes this substandard precision to sample heterogeneity. Lead results have been flagged with an "*" to denote this anomaly.

The TCLP preparation blank analyzed on ICP5 on July 17, 2002 yielded a result of 29.8 ug/L for zinc. Although this result does not meet control criteria under the ILM04.1 Statement of Work for preparation blanks (concentration should be less than the CRDL), it is less than the standard reporting limit for zinc in TCLP extracts (1 mg/L) as established by the laboratory.

The following samples displayed a slight (reporting average of integrations between -10ppb and -20ppb) negative interference for thallium: 122B-1011B and 122B-1018A. Samples were analyzed three times and the results from each analysis confirmed this interference. Results were reported as less than the instrument detection limit.

Mr. David Babcock July 26, 2002 Page 3 of 3

·· ' ,

STL Burlington

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page $-\frac{1835}{2}$.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

La,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington

208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

August 2, 2002

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88648

493137

493138

493139

122B-1030

122B-1031

122B-1032

Dear Mr. Babcock:

Client Sample Sample Lab ID Sample ID Date Matrix Received: 06/29/022 ETR No:88648 492766 122B-1019B 06/27/02 Soil 492767 122B-1020B 06/27/02 Soil 122B-1021A 06/27/02 Soil 492768 122B-1021AMS 492768MS 06/27/02 Soil 492768DP 122B-1021AREP 06/27/02 Soil 492769 122B-1021B 06/27/02 Soil 122B-1022A 492770 06/28/02 Soil 492771 122B-1022B 06/28/02 Soil 492772 122B-1023A 06/28/02 Soil 492773 122B-1023B 06/28/02 Soil PLP SPP 492774 122B-1024A - 1 06/28/02 Soil 492775 Soil 122B-1024B 06/28/02 492776 122B-1025A 1020 15 R.O. 06/28/02 Soil Received: 07/03/022 ETR No:88692 493133 122B-1026 07/01/02 Soil 493134 07/01/02 Soil 122B-1027 493135 122B-1028 07/01/02 Soil 493136 122B-1029 07/01/02 Soil

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on June 29, July 03, and 12, 2002. Laboratory numbers have been assigned and designated as follows:

STL Burlington is a part of Severn Trent Laboratories, Inc.

07/02/02

07/02/02

07/02/02

Soil

Soil

Soil

Mr. David Babcock August 2, 2002 Page 2

SEVERN TRENT SERVICES

STL Burlington

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>	
	Received: 07/03/022 ET	R No:88692 (Cont.)		
493140	122B-1033	07/02/02	Soil	
493141	122B-0004	07/02/02	Water	
493142	122B-0004,TCLP Ext.	07/02/02	TCLPExt.	
493143	122B-0004,SPLP Ext.	07/02/02	SPLPExt.	
	Received: 07/12/022	ETR No:88777		
493658	122B-1015A	07/11/02	Soil	
493659	122B-1015A,SPLPExt.	07/11/02	SPLPExt.	
493660	122B-1015A,TCLPExt.	07/11/02	TCLPExt.	
493661	122B-1020A	07/11/02	Soil	

Decumentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Metals by CLP (ILM04.1) Method

Sodium was reported in relatively high concentrations during the analysis of the TCLP method prep blank. This element is inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for this element if the result was reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear range of the instrument.

Total Organic Carbon by Lloyd Kahn Method

During the analyses that occurred on July 8th, the comparability between sample iterations was greater than the method guideline of 20% for several samples in this delivery group. These samples were reanalyzed on July 9th yielding similar results and confirming heterogeneity of samples. The results from the analyses that provided the better Percent Relative Standard Deviation (%RSD) have been formally presented in this case submittal. The data from the analyses that were not reported have been included in the data package as well.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page $\frac{22772}{22762}$

0002-B LAST ALPHA

STL Burlington is a part of Severn Trent Laboratories, Inc.

Mr. David Babcock August 2, 2002 Page 3

STL Burlington

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

LAST ALPHA

STL Burlington

208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

August 5, 2002

• * -

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88692

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 03, 05, and 12, 2002. Laboratory numbers have been assigned and designated as follows:

	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	Date	Matrix
	Received: 07/03/02	2 ETR No:88692	
402122	1000 1006	07/01/02	01
493133	122B-1020	07/01/02	5011
493134	122B-1027	07/01/02	Soll
493135	122B-1028	07/01/02	Soil
493136	122B-1029	07/01/02	Soil
493137	122B-1030	07/02/02	Soil
493818	122B-1030, TCLP Ext.		
493819	122B-1030, SPLP Ext.		
493138	122B-1031	07/02/02	Soil
493820	122B-1031, TCLP Ext.		
493821	122B-1031, SPLP Ext.		
493139	122B-1032	07/02/02	Soil
493140	122B-1033	07/02/02	Soil
493141	122B-0004	07/02/02	Water
493142	122B-0004, TCLP Ext.		
493143	122B-0004,SPLP Ext.		
	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	Date	Matrix
	Received: 07/05/02	ETR No:88706	
493193	122B-1034	07/03/02	Soil
493194	122B-1035	07/03/02	Soil
	Client	Sample	Sample

Mr. David Babcock August 5, 2002 Page 2 of 3

SEVERN TRENT Services

STL Burlington

Lab_ID	Sample ID	Date	Matrix
	Received: 07/05/0	2 ETR No:88706	cont.
493195	122B-1036	07/03/02	Soil
493196	122B-1037	07/03/02	Soil
493196MS	122B-1038MS	07/03/02	Soil
493196 DP	122B-1039REP	07/03/02	Soil
	Received: 07/1	0/02 ETR No:8873	33
493359	122B-1040	07/08/02	Soil
493360	122 B-1 041	07/09/02	Soil
493361	122B-1042	07/09/02	Soil
	Received: 07/12	2/02 ETR No:8877	/8
493662	122 B- 1043	07/10/02	Soil
493663	122B-1044	07/10/02	Soil
493664	122B-1045	07/10/02	Soil
493665	122B-1046	07/10/02	Soil

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Total Organic Carbon by Lloyd Kahn Method

During the analysis which occurred on July 17th, the comparability between sample iterations was greater than the method guideline of 20%. Samples were reanalyzed on July 18th yielding similar results and confirming heterogeneity of samples.

Metals by CLP (ILM04.1) Method

Samples were initially screened for lead on July 15, 2002 and July 22, 2002. Based on these results, additional analyses were assigned. Samples displaying relatively high concentrations of lead (as determined by the client) were subsequently logged in for the full target analyte list (TAL) of metals and / or the Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) followed by metals analysis. Because of this delay in assignment for TCLP extraction, the 5-day holding time between the verified time of sample receipt and the extraction procedure for mercury was not met.

Sodium was reported in relatively high concentrations during the analysis of the TCLP method prep blank. This element is inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for this element if the result was reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear range of the instrument.

Mr. David Babcock August 5, 2002 Page 3 of 3

STL Burlington

Results from the serial dilution analysis of 122B-1026 were greater than the established control criteria of $\pm 10\%$ for copper (29.4%). Field sample results have been qualified with an "E" to denote what the laboratory believes to be matrix-related interference.

The recovery of lead from the laboratory fortified aliquot of sample 122B-1038 (134%) was above the established control range of 75-125%. Lead results have been flagged with an "N" accordingly.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 1298.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

WDI-C Just alpha

STL Burlington

208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

July 31, 2002

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88784

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 12, 2002. Laboratory numbers have been assigned and designated as follows:

	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	Date	Matrix
	Received: 07/12/02	ETR No:88784	
493731	122B-1047	07/10/02	Soil
493732	122B-1048	07/10/02	Soil
493733	122B-1049	07/10/02	Soil
493734	122B-1050	07/10/02	Soil
493735	122B-1051	07/10/02	Soil
493736	122B-1052	07/10/02	Soil
493737	122B-1053	07/10/02	Soil
493738	122B-1054	07/11/02	Soil
493739	122B-1055	07/11/02	Soil
493739 MS	122B-1056MS	07/11/02	Soil
493739DP	122B-1057REP	07/11/02	Soil
493740	122B-1058	07/11/02	Soil
493741	122B-1059	07/11/02	Soil
493742	122B-1060	07/11/02	Soil
493743	122B-1061	07/11/02	Soil
493744	122B-1062	07/11/02	Soil
493745	122B-1063	07/11/02	Soil
493746	122B-0005	07/10/02	Water
493788	122B-0005,TCLP Ext.	07/10/02	TCLPExt.
493789	122B-0005,SPLP Ext.	07/10/02	SPLPExt.

Mr. David Babcock July 31, 2002 Page 2

STL Burlington

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Mctals by CLP (ILM04.1) Method

Sodium was reported in relatively high concentrations during the analysis of the TCLP method prep blank. This element is inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for this element if the result was reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear range of the instrument.

The Lead analysis performed for the matrix spike sample 122B-1056MS yielded a percent recovery that marginally exceeded the established control limit of 125 percent.

TCLP and SPLP extraction blank samples were prepared and analyzed in the course of this analytical work. Sample 122B-0005 was a liquid sample and required only the filtration and not the rotary extraction process. However, the extraction blank results reported from the ICP analysis reflect the entire process and not just the filtration process. Please note that no target elements were detected in the analysis of these blank samples.

Total Organic Carbon by Llovd Kahn Method

During the analyses that occurred on July 18th, the comparability between sample iterations were greater than the method guideline of 20%. Samples were reanalyzed on July 21st yielding similar results and confirming heterogeneity of samples. The results from the initial analyses have been formally presented in this case submittal. The data from the re-analyses have been included in the data package as well.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

0001-8 LAST ALPHE

STL Burlington 208 South Park Drive Suite 1

Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

August 8, 2002

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88921

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on June 28, July 3 and July 12, 2002. Laboratory numbers have been assigned and designated as follows:

	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	Date	<u>Matrix</u>
	Received: 07/24/02	ETR No:88921	
494809	122 B- 1040	07/08/02	Soil
494810	122B-1041	07/09/02	Soil
494811	122B-1042	07/09/02	Soil
494812	122B-1042,TCLP Ext.	07/09/02	TCLP Ext.
494813	122B-1042,SPLP Ext.	07/09/02	SPLP Ext.
494814	122B-1046	07/10/02	Soil
494815	122B-1046,TCLP Ext.	07/10/02	TCLP Ext.
494816	122B-1046,SPLP Ext.	07/10/02	SPLP Ext.
494817	122B-1053	07/10/02	Soil
494818	122B-1059	07/11/02	Soil
494919	122B-1059,TCLP Ext.	07/11/02	TCLP Ext.
494920	122B-1059,SPLP Ext.	07/11/02	SPLP Ext.
494921	122B-1063	07/11/02	Soil

This sample delivery group (SDG) consists of samples previously screened for lead on July 22nd. This report contains results for those samples assigned analyses for TAL metals, TCLP metals, and / or SPLP metals. Because TCLP assignments were made based on preliminary screen results, the 5-day holding time between the verified time of sample receipt and the extraction procedure for mercury was not met.

Metals by CLP (ILM04.1) Method

Sodium was reported in relatively high concentrations during the analysis of the TCLP samples. This element is inherent in the extraction fluid used during the leachate procedure and as such, TCLP extracts of the field samples were not reanalyzed for this element if the result was reported above the instrument's calibration range. These results have been flagged with an "OR" to denote that the result is over the linear

Mr. David Babcock August 8, 2002 Page 2

STL Burlington

range of the instrument. In evaluating the TCLP preparation blank, the laboratory noted that the sodium concentration was relatively low. The laboratory believes that the incorrect extraction fluid (extraction fluid #2) was inadvertently used for the creation of the TCLP blank.

The SPLP preparation blank for mercury analyzed on July 30, 2002 yielded a result of 0.268 ug/L. Although this result does not meet control criteria under the ILM04.1 Statement of Work for preparation blanks (concentration should be less than the CRDL), it is less than the standard reporting limit for mercury in SPLP extracts (1 mg/L) as established by the laboratory.

Results from the serial dilution analysis of 122B-1040 were greater than the established control criteria for copper, chromium and zinc. Field sample results have been qualified with an "E" to denote what the laboratory believes to be matrix-related interference.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page $CV_{2}97$.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington 208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

July 30, 2002

:

. , '

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 88924

Dear Mr. Babcock:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 24, 2002. Laboratory numbers have been assigned and designated as follows:

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 07/24/02	ETR No:88924	
494826	122B-0006	07/22/02	Water
494827	122B-2000	07/22/02	Water
494828	122B-2001	07/22/02	Water
494828MS	122B-2002MS	07/22/02	Water
494828MD	122B-2003MSD	07/22/02	Water
494829	122B-2004	07/22/02	Water
494830	122B-2005	07/22/02	Water

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

Metals by CLP (ILM04.1) Method

The laboratory noted no exceptions to the method quality control requirements during the metals analyses of the samples associated with this delivery group.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 01444....

Mr. David Babcock July 30, 2002 Page 2

STL Burlington

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure MFW/jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

0001-B LAST ALPHA

STL Burlington 208 South Park Drive Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

September 11, 2002

Mr. David Babcock Parsons Engineering Science Inc. 290 Elwood Davis Road Suite 312 Liverpol, NY 03088

Re: Laboratory Project No.: 22035 SDG: 89606

Dear Mr. Babcock:

Enclosed are the analytical results for samples received by Severn Trent on June 26, 2002. Laboratory numbers have been assigned and designated as follows:

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 06/26/02	ETR No:89606	
500442	122B-1010A-DUP	06/26/02	Soil
500442MS	122B-1010A-DUPMS	06/26/02	Soil
500442DP	122B-1010A-DUPREP	06/26/02	Soil
500443	122B-1011A-DUP	06/26/02	Soil
500443MS	122B-1011A-DUPMS	06/26/02	Soil
500443DP	122B-1011A-DUPREP	06/26/02	Soil

In an email exchange dated September 4, 2002, the client requested additional metals analyses for samples 122B-1010A and 122B-1011A. These samples were originally analyzed for lead as part of sample delivery groups 88617 and 88619 and information regarding the condition of samples upon receipt can be found in those data packages.

Please note that the mercury analysis for these samples was performed beyond the maximum holding time of 26 days as specified under the New York State Analytical Services Protocol.

Metals by CLP (ILM04.1) Method

Results from the serial dilution analysis of 122B-1010A DUP were greater than the established control criteria for copper, calcium and zinc. Similarly, results from the serial dilution analysis of sample 122B-1011A DUP were above the control limits for aluminum, arsenic, calcium, copper, iron, nickel, and zinc. Field sample results have been qualified with an "E" to denote what the laboratory believes to be matrix-related interference.

The recovery of antimony from the laboratory fortified aliquot of sample 122B-1010A DUP was 60.9% which is below the control range of 75-125%. The recoveries of antimony (39.4%), arsenic (45.6%), and

Mr. David Babcock September 11, 2002 Page 2 of 2

STL Burlington

zinc (125.5%) from the laboratory fortified aliquot of sample 122B-1011A DUP were also outside of the established control range. These metals were adequately recovered from the associated post-digestate spike samples and from the laboratory control samples associated with the analytical sequence.

Reproducibility between results for lead from the initial and duplicate analysis of sample 122B-1010A DUP was poor with a relative percent difference of 62.6. Reproducibility for lead in sample 122B-1011A DUP proved acceptable. Arsenic results, however, yielded a relative percent difference just above the acceptance criteria of +/- 20 percent.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page $\underline{O26}$.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

2-5-

Michael F. Wheeler, Ph.D. Laboratory Director

Enclosure jta/jmm

STL Burlington is a part of Severn Trent Laboratories, Inc.

2004 TREATABILITY STUDY

TO:Dan HoffnerPROJECT NO: 741401-04100FROM:Chunhua LiuFILE NO:DATE:March 2, 2004CC:SUBJECT:Summary of Data Usability
Associated with Small Arms Range
ProjectFile No:

INTEROFFICE MEMORANDUM

This memo presents an overall summary of data usability associated with the Small Arms Range Project. The detailed validation sheets are attached to the end of this memo. The data reviewed are from the following SDGs: 104959, 105225, 105711, 106067, and 107314 submitted by General Engineering Laboratories, LLC. Total lead was analyzed in the collected soil samples by Method 6010B.

Data Validation was performed by Parsons Corporation and completed under the guidelines set forth in the "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", 2002; "Region 2 RCRA and CERCLA Data Validation Standard Operating Procedures", and NYSDEC Contract Laboratory Program Analytical Services Protocol, with consideration for the methodology and project requirements. The level III data evaluation included performance of a completeness audit and a review of the following parameters, where applicable: holding times, sample reservations, percentage of solids, quality control (QC) results of calibration, equipment/rinsate blanks, trip blanks, method blanks, matrix spike/matrix spike duplicate (MS/MSD) analyses, laboratory control sample performances, lab and field duplicates, ICP serial dilution, and surrogate recoveries. In performing the data validation, spot checks were conducted in accordance with the Region 2 SOP to evaluate whether there is any transcription error. The raw data for the field samples and QC samples were not evaluated.

Overall Summary of Data Usability

Parsons has reviewed data from General Engineering Laboratories, LLC. for the following SDGs: 104959, 105225, 105711, 106067, and 107314. The data reviewed were determined to be usable. There were no data rejected in these SDGs.

Technical Issues

All the samples were prepared and analyzed following the COC. All samples arrived at the laboratory in acceptable condition and were prepared and analyzed within the hold time required for the total lead analysis. With the exception of the issues specified as follows, all quality control/quality assurance results were acceptable. Please see the attached validation sheets for detailed information.

Precision

Precision is determined by evaluating the Relative Percent Difference (RPD) of the parent/field duplicate, parent/laboratory duplicate, and MS/MSD for the total lead analysis. The RPDs exceeded the limits for the following samples:

	RPD	SDG
CS-003 and its lab duplicate	187.8%	104959
CS-003MS/MSD	118.7%	104959
CS010 and its field duplicate CS010D	125%	105711

The Company-Wide Nonconformance Report issued by the laboratory indicated that the failed RPD was due to inhomogeneous characteristics of the sample and that CS-003 was a black wet soil, medium texture with rocks.

RPDs of other parent/laboratory duplicates (i.e., CS001, CS008, CS009A, SOAD SAR CS010A and their respective duplicates) were all below 100%. No other field duplicate pair was available.

Matrix Impacts

Spike sample and spike sample recoveries for CS-003 (SDG 104959) were 220.8% and 959%, respectively. The elevated MS/MSD recoveries may be due to the heterogeneity of the samples, as discussed above.

All the other spike sample and spike duplicate sample results (i.e., CS001A, CS008, CS009A, SOAD SAR CS010A) were all within the limits.

ICP Serial Dilution

All ICP serial dilution results met requirement with the following exception:

	RPD	SDG
CS-003	13.3%	104959

CRDL Standard Check

The recoveries of CRDL check standard were below 80% for the ICP runs in SDG 105225. However, as all lead results were above the potential affected range, no action was taken.

Validation Sheets

See attached validation sheets for detailed information.
DEFINITIONS OF DATA QUALIFIERS – INORGANICS

J	The associated value is an estimated quantity.
U	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
UJ	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data was unusable. (Note: Analyte may or may not be present.)
NA	Not analyzed.

PROJECT NAME/NO.	Airfield Small Arms Range
SDG:	<u>104959</u>
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses	If no, specify analysis		Qualifiers
	Meet all criteria	IDs which do not	Comments/Qualifying Actions	Added?
	as specified in	meet criteria		
CRITERIA	the SOPS?			
Data Completeness, Holding Times & Reservation	Yes		All three samples listed in the COC were analyzed and the results were presented in the package. Holding time met criteria. Cooler temperature was 4.6C. Solid percentage was at least 50 percent in all samples. It is not indicated on the COC whether the samples were preserved with ice, the lab receipt shows that the samples were preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	YES		CRDL Check Standard was available for each ICP run. The recovery (120%) was within the required limit of 80%~120%. No action was taken.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	NO		Duplicate analysis was conducted for CS-003 and CS-003MS. RPD between CS-003 and its duplicate was 187.8% and RPD between CS-003MS and its duplicate was 118.7%. Both RPDs were above the limit (i.e., 100%). J all results as all the samples in this SDG were considered similar. The Company-Wide Nonconformance Report indicated the failed RPD due to inhomogeneous characteristics of the sample. CS-003 was a black wet soil, medium texture with rocks.	YES
Spike Sample Analysis	NO		Spike sample and duplicate spike sample recoveries for CS-003 were 220.8% and 959%, repectively. The spike recoveries were above the upper limit defined in the Region II SOP (i.e., 125%). The elevated MS/MSD recoveries may be due to the heterogeneity of the samples. The Company-Wide Nonconformance Report indicated CS-003 was a black wet soil, medium texture with rocks. As a result, the data were considered usable and J all the detects. It should be noted that the field duplicate samples collected at the same site (SDG 105711) indicated the heterogeneity of the samples.	YES
ICP Serial Dilution	NO		ICP Serial Dilution was conducted for CS-003. The percentage of difference exceeded the requirement by Region II SOP (13.3% vs. 10%). As all detects>10*IDL, J all sample results.	YES
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for all samples greater than 50%.	No

PROJECT NAME/NO.	Airfield Small Arms Range
SDG:	105225
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses	If no, specify analysis		Qualifiers
	Meet all criteria	IDs which do not	Comments/Qualifying Actions	Added?
	as specified in	meet criteria		
CRITERIA	the SOPS?			
Data Completeness, Holding Times & Reservation	Yes		All six samples listed in the COC were analyzed and the results were presented in the package. Holding time met criteria. Cooler temperature was 3C. Solid percentage was at least 50 percent in all samples. It is not indicated on the COC whether the samples were preserved with ice, the lab receipt shows that the samples were preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	NO		CRDL Check Standard was available for each ICP run. The recoveries were below the lower limit (i.e., 80%) for both ICP runs. As all lead results were above the potential affected range, no action was taken.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	YES		Duplicate analysis was conducted for CS001A and CS001A matrix spike samples. Duplicate results met requirements for lead (i.e., RPD<50%).	NO
Spike Sample Analysis	YES		Spike sample and duplicate spike sample results for CS001A were within the limits for lead.	NO
ICP Serial Dilution	YES		ICP Serial Dilution was conducted for CS001A. The percentage of difference met requirement (i.e., <10%).	NO
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for all samples greater than 50%.	No

PROJECT NAME/NO.	Airfield Small Arms Range
SDG:	105711
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses Meet all criteria as specified in	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
CRITERIA	the SOPS?			
Data Completeness, Holding Times & Reservation	Yes		All samples listed in the COC were analyzed and the results were presented in the package. Holding time met criteria. Cooler temperature was 2.4C. Solid percentage was at least 50 percent in all samples. It is not indicated on the COC whether the samples were preserved with ice, the lab receipt shows that the samples were preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	Yes		CRDL Check Standard was available for the ICP run and the recovery was within the limits.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	NO		Duplicate analysis was conducted for CS008. Duplicate results met requirements for lead, %D<100%. A field duplicate pair was available (CS010 and CS010D). %D was above 100%, indicating heterogeneity of the samples at the Site. J both results.	Yes
Spike Sample Analysis	YES		Spike sample and duplicate spike sample results for CS008 were within the limits for lead.	No
ICP Serial Dilution	YES		ICP Serial Dilution was conducted for CS008. The percentage of difference met requirement (i.e., <10%).	No
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for all samples greater than 50%.	No

PROJECT NAME/NO.	Airfield Small Arms Range
SDG:	106067
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses Meet all criteria as specified in	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
CRITERIA	the SOPS?			
Data Completeness, Holding Times & Reservation	Yes		All samples listed in the COC were analyzed and the results were presented in the package. Holding time met criteria. Cooler temperature was 2.5C. Solid percentage was at least 50 percent in all samples. It is not indicated on the COC whether the samples were preserved with ice, the lab receipt shows that the samples were preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	Yes		CRDL Check Standard was available for the ICP run and the recovery was within the limits.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	YES		Duplicate analysis was conducted for CS009A and its spiked sample. Duplicate results met requirements for lead, %D<100%.	No
Spike Sample Analysis	YES		Spike sample and duplicate spike sample results for CS009A were within the limits for lead.	No
ICP Serial Dilution	YES		ICP Serial Dilution was conducted for CS009A. The percentage of difference met requirement (i.e., <10%).	No
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for all samples greater than 50%.	No

PROJECT NAME/NO.	Airfield Small Arms Range
SDG:	<u>107314</u>
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses Meet all criteria as specified in	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
CRITERIA	the SOPS?			
Data Completeness, Holding Times & Reservation	Yes		All samples listed in the COC were analyzed and the results were presented in the package. Holding time met criteria. Cooler temperature was 4.1C. Solid percentage was at least 50 percent in all samples. It is not indicated on the COC whether the samples were preserved with ice, the lab receipt shows that the samples were preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	Yes		CRDL Check Standard was available for the ICP run and the recovery was within the limits.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	YES		Duplicate analysis was conducted for SOAD SAR CS010A and its spiked sample. Duplicate results met requirements for lead, %D<100%. It should be noted that the lab issued a company-wide nonconformance report indicating that the RPD recovery failed due to sample not homogeneous. The nonconformance report indicated SOAD SAR CS010A was a dark gray soil with some rocks throughout and in medium texture.	No
Spike Sample Analysis	YES		Spike sample and duplicate spike sample results for SOAD SAR CS010A were within the limits for lead.	No
ICP Serial Dilution	YES		ICP Serial Dilution was conducted for SOAD SAR CS010A. The percentage of difference met requirement (i.e., <10%).	No
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for all samples greater than 50%.	No

GC/MS Volatile Organics Parsons Engineering Science, Inc (PARS) SDG 104890

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatography/Mass Spectrometer
Analytical Method:	SW846 8260B
Prep Method:	SW846 5035
Analytical Batch Number:	302968
Prep Batch Number:	303243

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
104890004	SEAD-SAR-001
104890005	SEAD-SAR-002
104890006	SEAD-SAR-003
1200554535	Method Blank (MB)
1200554836	Laboratory Control Sample (LCS)
1200554842	Laboratory Control Sample (LCS)
1200554694	Laboratory Control Sample Duplicate (LCSD)

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV# 9.

104890-VOA

Page 1 of 4

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

Continuing Calibration Verification Requirements

All the continuing calibration verification (CCV) requirements were met. In addition, the CCV was evaluated in accordance with DOD QC requirements. The criteria states that all target analytes should have a %D (Difference of Drift) of $\leq 25\%$. In the following CCV(s), the following target analyte(s) did not meet this criteria:

Date of CCV	<u>Target Analyte(s)</u>
01/14/04	Acrolein (43.5%)
	Benzyl chloride (44.1%)
	trans-1,4-Dichloro-2-butene (39.0%)

The response factor for the target analytes in each CCV was greater than the average response factor in the initial calibration. Detection and quantitation of these analytes in samples would be considered biased high.

Quality Control (QC) Information

Method Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

QC Sample Designation

Due to insufficient sample volume encountered using 5035 sampling procedures, the analysis of a matrix spike (MS) and matrix spike duplicate (MSD) was not possible. Instead, a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) were analyzed for QC purposes.

Laboratory Control Sample Recovery Statement (LCS)

All the required analyte recoveries in the LCS(s) were within the acceptance limits, except for the high recoveries for acrolein, tran-1,4-dichloro-2-butene, and benzyl chloride in 1200554836 (VBLK01SLCS). The LCS requirements were still met, since the number of failures did not exceed the allowable marginal exceedance criteria.

Laboratory Control Sample Duplicate Recovery Statement (LCSD) All the required analyte recoveries in the laboratory control sample duplicate were within the acceptance limits.

Relative Percent Difference Statement The RPD between the LCS and LCSD recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

104890-VOA

Page 2 of 4

Technical Information

Holding Time Specifications All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample delivery group/work order.

Miscellaneous Information

Electronic Package Comment

The following package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from traditional packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

TIC Comment Tentatively identified compounds (TIC) were not required for this sample delivery group/work order.

Additional Comments There were no additional comments.

104890-VOA

Page 3 of 4

System Configuration

,

The Volatile analysis was performed by Gas Chromatography/Mass Spectroscopy.				
Instrument ID	System Configuration	Column ID	Column Description	P & T Trap
VOA1.I	HP6890/HP5973	RESTEK	RTX-Volatiles, 30m x 0.25 mm, 1.0um	Trap 10

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

104890-VOA

Page 4 of 4

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Aula littan Reviewer: _

Date: 01 - 21 - 04

Metals Case Narrative Parsons Engineering Science, Inc (PARS) SDG 104890

Method/Analysis Information

302206, 302138
302200, 302137
GL-MA-E-013 REV# 8, GL-MA-E-010 REV# 13, GL-MA-E-009 REV# 10
SW846 6010B, SW846 7471A
SW846 3050B, SW846 7471A Prep

Sample Analysis

ł

ī

,

,

ļ	
Sample ID	Client ID
104890001	SEAD-SAR-001
104890002	SEAD-SAR-002
104890003	SEAD-SAR-003
104890004	SEAD-SAR-001
104890005	SEAD-SAR-002
104890006	SEAD-SAR-003
1200552013	Method Blank (MB) in batch 302206
1200552018	Laboratory Control Sample (LCS) in batch 302206
1200552015	104890001(SEAD-SAR-001L) Serial Dilution (SD) in batch 302206
1200552014	104890001(SEAD-SAR-001D) Sample Duplicate (DUP) in batch 302206
1200552016	104890001(SEAD-SAR-001S) Matrix Spike (MS) in batch, 302206
1200552017	104890001(SEAD-SAR-001SD) Matrix Spike Duplicate (MSD) in batch 302206
1200551842	Method Blank (MB) in batch 302138
1200551843	Laboratory Control Sample (LCS) in batch 302138
1200551844	104890004(SEAD-SAR-001D) Sample Duplicate (DUP) in batch 302138
1200551845	104890004(SEAD-SAR-001S) Matrix Spike (MS) in batch 302138
1200551846	104890004(SEAD-SAR-001SD) Matrix Spike Duplicate (MSD) in batch 302138

.

.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

The Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 80mL/min.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications. All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria. A bracketing CCB had a concentration of Ni that was greater than the CRDL; however, the concentration of Ni in the samples was greater than ten times the concentration detected in the CCB.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control samples (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

The following samples were selected as the quality control (QC) samples for this batch: 104890004 (SEAD-SAR-001) in batch 302138 and 104890001 (SEAD-SAR-001) in batch 302206.

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the matrix spike (MS) analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable analytes met the acceptance

criteria in batch 302138. All applicable analytes did not meet the acceptance criteria in batch 302206 due to possible matrix interference. See NCR #86403 located in the Miscellaneous Section.

Matrix Spike Duplicate Recovery Statement

The percent recovery (%R) obtained from the matrix spike duplicate (MSD) analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All applicable elements met the acceptance criteria in batch 302138. All applicable analyses did not meet the acceptance criteria in batch 302206 due to possible matrix interference. See NCR #86403 located in the Miscellaneous Section.

MSD RPD Statement

The relative percent difference (RPD) obtained from the designated matrix spike duplicate (MSD) is evaluated based on acceptance criteria of 20%. The RPD between qualifying elements results in the MS and MSD were within the acceptance limits of 20% in batch 302138. Several analytes were not within the acceptance limits in batch 302206 due to possible sample non-homogeneity. See NCR #86403 located in the Miscellaneous Section.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is 5X the contract required detection limit (RL). In cases were either the sample or duplicate value is less than 5X the contract required detection limit (RL), a control of +/-RL is used to evaluate the DUP results. All applicable analytes in batch 302138 met these requirements. Several analytes in batch 302206 did not meet these requirements due to possible sample non-homogeneity. See NCR #86403 located in the Miscellaneous Section.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. K did not met the acceptance criteria, percent difference value of <10%, as per the analytical method.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. No sample dilutions were needed in this SDG.

Preparation Information

The samples in this SDG were prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated with this SDG: #86403. A copy is included in the Miscellaneous Data section of this package.

Additional Comments

No additional comments are needed for this sample group.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: And Maufun Date: 1/19+

Metals Case Narrative Parsons Engineering Science, Inc (PARS) SDG 104959

Method/Analysis Information

Analytical Batch:	302440
Prep Batch :	302439
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-MA-E-009 REV# 10
Analytical Method:	SW846 6010B
Prep Method :	SW846 3050B

Sample Analysis

Sample ID	Client ID
104959001	CS-001
104959002	CS-002
104959003	CS-003
1200552597	Method Blank (MB) ICP
1200552602	Laboratory Control Sample (LCS)
1200552599	104959003(CS-003L) Serial Dilution (SD)
1200552598	104959003(CS-003D) Sample Duplicate (DUP)
1200552600	104959003(CS-003S) Matrix Spike (MS)
1200552601	104959003(CS-003SD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications.

All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blank analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control sample (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 104959003 (CS-003).

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. Lead did not meet the acceptance criteria, as indicated by the "N" qualifier.

Matrix Spike Duplicate Recovery Statement

The percent recovery (%R) obtained from the MSD analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. Lead did not meet the acceptance criteria, as indicated by the "N" qualifier.

MSD RPD Statement

The relative percent difference (RPD) obtained from the designated matrix spike duplicate (MSD) is evaluated based on acceptance criteria of 20%. The RPD between qualifying lead results in the MS and MSD were not within the acceptance limits of 20%, as indicated by the "*" qualifier.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit(RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of RL is used to evaluate the DUP results. Lead did not meet met these requirements, as indicated by the "*" qualifier. Failures were possibly due to non-homogeneity of the sample. It was a wet black soil that contained some rocks.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. Lead did not meet the acceptance criteria, percent difference value of <10 as indicated by the "E" qualifier.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. Sample 104959001 (CS-001) require a 10x dilution in order to bring lead within the linear range of the instrument.

Preparation Information

The samples in this SDG were prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. NCR ID 86430 was generated with this SDG. A copy was included in the Miscellaneous Data section of this package.

Additional Comments

No additional comments are needed for this sample group.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: ARSSAM. C Date	. NIS/04
--------------------------	----------

Metals Case Narrative Parsons Engineering Science, Inc (PARS) SDG 105225

Method/Analysis Information

Analytical Batch:	303392
Prep Batch :	303391
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-MA-E-009 REV# 10
Analytical Method:	SW846 6010B
Prep Method :	SW846 3050B

Sample Analysis

Sample ID	Client ID
105225001	CS 001A
105225002	CS 004
105225003	CS 005
1:05225004	CS 006
105225005	SAR 004
1'05225006	SAR 005
1'200554796	Method Blank (MB)
1200554801	Laboratory Control Sample (LCS)
1200554798	105225001(CS 001AL) Serial Dilution (SD)
1200554797	105225001(CS 001AD) Sample Duplicate (DUP)
1200554799	105225001(CS 001AS) Matrix Spike (MS)
1200554800	105225001(CS 001ASD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

, |

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and

yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications. All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blank analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control sample (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

Sample 105225001 (CS 001A) was selected as the quality control (QC) sample for this SDG.

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the matrix spike (MS) analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Matrix Spike Duplicate Recovery Statement

The percent recovery ($\Re R$) obtained from the matrix spike duplicate (MSD) analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All applicable elements met the acceptance criteria.

MS/MSD RPD Statement

The relative percent difference (RPD) obtained from the designated MSD is evaluated based on acceptance criteria of 20%. The RPD between qualifying elements results in the MS and MSD were within the acceptance limits of 20%.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is 5X the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of +/-RL is used to evaluate the DUP results. All applicable analytes met these requirements.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria, percent difference value of <10%, as per the analytical method.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. The samples 105225005 (SAR 004) and 1200554801 (LCS) required dilutions in order to bring over range concentrations within the linear calibration range of the instrument.

Preparation Information

The samples in this SDG were prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

Additional comments are not required for this SDG.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the - requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: The Willy for Date: 1/ 22/-

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 105711

Method/Analysis Information

Analytical Batch:	305361
Prep Batch :	305360
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-MA-E-009 REV# 10
Analytical Method:	SW846 6010B
Prep Method :	SW846 3050B

Sample Analysis

Sample ID	Client 1D
105711001	CS 005A
105711002	CS 007
105711003	CS 008
105711004	CS 009
105711005	CS 010
105711006	CS 010D
1200559064	Method Blank (MB) ICP
1200559069	Laboratory Control Sample (LCS)
1200559066	105711003(CS 008L) Serial Dilution (SD)
1200559065	105711003(CS 008D) Sample Duplicate (DUP)
1200559067	105711003(CS 008S) Matrix Spike (MS)
1200559068	105711003(CS 008SD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications. All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blank analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control sample (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 105711003 (CS 008).

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the MS analyses are evaluated when the

sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Matrix Spike Duplicate Recovery Statement

The percent recovery (%R) obtained from the MSD analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All applicable elements met the acceptance criteria.

MSD RPD Statement

The relative percent difference (RPD) obtained from the designated matrix spike duplicate (MSD) is evaluated based on acceptance criteria of 20%. The RPD between qualifying elements results in the MS and MSD were within the acceptance limits of 20%.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit(RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of RL is used to evaluate the DUP results. All applicable analytes met these requirements.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria, percent difference value of <10.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. No dilutions were necessary.

Preparation Information

The samples in this SDG were prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

No additional comments are needed for this sample group.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Allsad. Date: 129'04

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 106066

Method/Analysis Information

Analytical Batch:	306939
Prep Batch :	306938
TCLP Prep Batch :	306684
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-LB-E-006 REV# 7, GL-MA-E-008 REV# 9
Analytical Method:	SW846 6010B
Prep Method :	SW846 3010A
TCLP Prep Method :	SW846 1311

Sample Analysis

Sample ID	Client ID
106066001	SAR 006
1200562064	TCLP Blank (TB)
1200562671	Method Blank (MB) ICP
1200562672	Laboratory Control Sample (LCS)
1200562675	106066001(SAR 006L) Serial Dilution (SD)
1200562673	106066001(SAR 006D) Sample Duplicate (DUP)
1200562062	106066001(SAR 006S) Matrix Spike (MS)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard.

Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications. All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blank analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control sample (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 106066001 (SAR 006).

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit(RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of RL is used to evaluate the DUP results. All applicable analytes met these requirements.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria, percent difference value of <10.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. No sample dilutions were needed in this SDG.

Preparation Information

The sample and associated matrix QC were prepared at a 10x factor to minimize potential interferences arising from the high sodium content in the TCLP leaching solution.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

No additional comments are needed for this sample group.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: 0005 SADU Date: 24/04

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 106067

Method/Analysis Information

Analytical Batch:	306696
Prep Batch :	306692
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-MA-E-009 REV# 10
Analytical Method:	SW846 6010B
Prep Method :	SW846 3050B

Sample Analysis

Sample ID	Client ID
106067001	CS 009A
1200562094	Method Blank (MB) ICP
1200562099	Laboratory Control Sample (LCS)
1200562096	106067001(CS 009AL) Serial Dilution (SD)
1200562095	106067001(CS 009AD) Sample Duplicate (DUP)
1200562097	106067001(CS 009AS) Matrix Spike (MS)
1200562098	106067001(CS 009ASD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a

pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

The instrument calibrations are conducted using the method and instrument manufacturer's specifications. All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Acceptance

The method blank analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

The laboratory control sample (LCS) met the recommended acceptance criteria for percent recovery (%R) for all elements of interest.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 106067001 (CS 009A).

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Matrix Spike Duplicate Recovery Statement

The percent recovery (%R) obtained from the MSD analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All

applicable elements met the acceptance criteria.

MSD RPD Statement

The relative percent difference (RPD) obtained from the designated matrix spike duplicate (MSD) is evaluated based on acceptance criteria of 20%. The RPD between qualifying elements results in the MS and MSD were within the acceptance limits of 20%.

Duplicate RPD Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit(RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of RL is used to evaluate the DUP results. Lead did not meet these requirements, as indicated by the "*" qualifier.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria, percent difference value of <10.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the GELIMS system by hours. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures performed in association with this SDG followed the Standard Operating Procedure (SOP) guidelines.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. No sample dilutions were needed in this SDG.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. NCR ID 90135was generated with this SDG. A copy was included in the Miscellaneous Data section of this

package.

Additional Comments

No additional comments are needed for this sample group.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: allismil. a

Date: <u>2/4/04</u>

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 107312

Method/Analysis Information

Analytical Batch:	311378
Prep Batch :	311377
TCLP Prep Batch :	311053
Standard Operating Procedures:	GL-MA-E-013 REV# 8, GL-LB-E-006 REV# 7, GL-MA- E-008 REV# 10
Analytical Method:	SW846 6010B
Prep Method :	SW846 3010A
TCLP Prep Method :	SW846 1311

Sample Analysis

Sample ID	Client ID
107312001	SAR007
1200572529	TCLP Blank (TB)
1200573318	Method Blank (MB) ICP
1200573319	Laboratory Control Sample (LCS)
1200573322	107312001(SAR007L) Serial Dilution (SD)
1200573320	107312001(SAR007D) Sample Duplicate (DUP)
1200572527	107312001(SAR007S) Matrix Spike (MS)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard.

Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Statement

The MB analyzed with this SDG met the acceptance criteria.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 107312001 (SAR007).

Matrix Spike Recovery Statement

The percent recovery (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Duplicate Relative Percent Difference (RPD) Statement

The RPD obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control

of RL is used to evaluate the DUP results. All applicable analytes met these requirements.

Serial Dilution % Difference Statement

The serial dilution is used to assess interferences due to matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria, percent difference value of <10.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection of sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. The samples in this SDG did not require dilutions.

Preparation Information

The sample and associated matrix QC were prepared at a 10x factor to minimize potential interferences arising from the high sodium content in the TCLP leaching solution.

Miscellaneous Information

and the balance of the the test many states

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

Additional comments were not required for this SDG.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

A REAL PROPERTY AND A REAL
Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: allismill. Date: 2/25/04

PROJECT NAME/NO.	SAR Airfield - SEAD-122B
SDG:	<u>114543</u>
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

	Did Analyses	If no, specify analysis	Commente/Quellfring Astions	Qualifiers
	Meet all criteria	IDs which do not	Comments/qualitying Actions	Added f
CRITERIA	as specified in	meet chiena	· · · · · · · · · · · · · · · · · · ·	
Data Completeness, Holding Times & Reservation	Yes		The only sample in this SDG (CS-003) was collected on January 8, 2004 and was reanalyzed on June 11, 2004. The holding time was within 6 months. Cooler temperature was 4.6C upon receipt. Solid percentage was greater than 50 percent. The lab receipt shows that the sample was preserved with ice, no action was taken.	No
Calibration	Yes		Calibrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes	<u> </u>	ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	YES	· · · · · · · · · · · · · · · · · · ·	2XCRDL Check Standard was available for each ICP run. The recoveries were within the limits (i.e., 70-130%). No action was taken.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	YES		Duplicate analysis was conducted for CS-003 and its spiked sample. Duplicate results met requirements for metals (i.e., RPD<50%).	NO
Spike Sample Analysis	YES		Spike sample and duplicate spike sample results for CS-003 were within the limits for lead.	NO
ICP Serial Dilution	YES		ICP Serial Dilution wes conducted for CS-003. The percentage of difference met requirement (i.e., <10%).	NO
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for the sample was greater than 50%.	No

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 114543

Method/Analysis Information

Analytical Batch:	340310
Prep Batch :	340309
Standard Operating Procedures:	GL-MA-E-013 REV# 10, GL-MA-E-009 REV# 11
Analytical Method:	SW846 6010B
Prep Method :	SW846 3050B

Sample Analysis

Sample ID	Client ID
114543001	CS-003
1200641976	Method Blank (MB) ICP
1200641981	Laboratory Control Sample (LCS)
1200641978	114543001(CS-003L) Serial Dilution (SD)
1200641977	114543001(CS-003D) Sample Duplicate (DUP)
1200641979	114543001(CS-003S) Matrix Spike (MS)
1200641980	114543001(CS-003SD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Perkin Elmer 4300 Optima radial/axial-viewing inductively coupled plasma atomic emission spectromete. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium or scandium internal standard. Operating conditions for the ICP are set at a power level of 1500 watts. The instrument has a peristaltic pump flow rate of 1.4L/min, argon gas flows of 15 L/min and 0.2 L/min for the torch and auxiliary gases, and a flow setting of 0.65L/min for the

nebulizer.

Calibration Information

Instrument Calibration

All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Statement

The MB analyzed with this SDG met the acceptance criteria.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 114543001 (CS-003)-ICP.

Matrix Spike (MS) Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Matrix Spike Duplicate (MSD) Recovery Statement

The percent recovery (%R) obtained from the MSD analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All applicable elements met the acceptance criteria.

MS/MSD Relative Percent Difference (RPD) Statement

The RPD(s) between the MS and MSD met the acceptance limits.

Duplicate Relative Percent Difference (RPD) Statement

The RPD obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control of RL is used to evaluate the DUP results. All applicable analytes met these requirements.

Serial Dilution % Difference Statement

The serial dilution is used to assess matrix suppression or enhancement. Raw element concentrations that are 25X the IDL for CVAA, 50X the IDL for ICP, and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria of less than 10% difference (%D).

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection of sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. The samples in this SDG did not require dilutions.

Preparation Information

The sample in this SDG were prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports (NCRs) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. A NCR was not required for this SDG.

Additional Comments

Additional comments were not required for this SDG.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: ADDiss Date: Cale

PROJECT NAME/NO.	SAR Airfield - SEAD-122B
SDG:	<u>115672</u>
FRACTION:	Total Pb
LAB:	General Engineering Laboratories, LLC
MEDIA:	Soil

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	lf no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Reservation	No	Preservation	The only sample in this SDG (CS12) was collected on June 24, 2004 and was analyzed on June 29, 2004. The holding time was within 6 months. The sample was not preserved with ice and the cooler temperature was 22.6C upon receipt. Solid percentage was greater than 50 percent. The lab receipt shows the sample was not properly preserved with ice. As the sample was acid digested, no action was taken based on the cooler temperature based on professional judgment.	Νο
Calibration	Yes		Callbrations available, taken avery ten samples, and within recovery limits for metals.	No
Blanks (method blank, prep blank)	Yes		ICB analyzed for lead. CCB analyzed for lead every ten samples, all samples were less than the CRDL. Preparation blank analyzed for lead and within CRDL limits.	No
Interference Check Sample	Yes		Met requirements for lead.	No
CRDL Standard	YES		2XCRDL Check Standard was available for each ICP run. The recoveries were within the limits (I.e., 70-130%). No action was taken.	No
Laboratory Control Sample	Yes		Solid LCS results within limits for lead.	No
Duplicates	NA		Duplicate analysis was not conducted for CS12.	NO
Spike Sample Analysis	NA		Spike analysis was not conducted for CS12 in this SDG.	NO
ICP Serial Dilution	NA		ICP Serial Dilution was not conducted for CS12 in this SDG. J CS12 result.	YES
Detection Limits	YES		IDL's available and less than CRDL's. No transcription error found.	No
ICP Linear Range	YES		All lead concentrations were within the ICP linear range.	No
Solids Percentage	YES		Solid percentage for the sample was greater than 50%.	No

Metals Fractional Narrative Parsons Engineering Science, Inc (PARS) SDG 115672

Method/Analysis Information

Analytical Batch:	344597
Prep Batch:	344596
Standard Operating Procedures:	GL-MA-E-013 REV# 10, GL-MA-E-009 REV# 11
Analytical Method:	SW846 6010B
Prep Method:	SW846 3050B

Sample Analysis

Sample ID	Client ID
115672001	CS12
1200652384	Method Blank (MB) ICP
1200652389	Laboratory Control Sample (LCS)
1200652386	115655001(AM011XL) Serial Dilution (SD)
1200652385	115655001(AM011XD) Sample Duplicate (DUP)
1200652387	115655001(AM011XS) Matrix Spike (MS)
1200652388	115655001(AM011XSD) Matrix Spike Duplicate (MSD)

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, LLC. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Burgener nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a

pressure setting of 26 PSI for the nebulizer.

Calibration Information

Instrument Calibration

All initial calibration requirements have been met for this SDG.

CRDL Requirements

All CRDL standard(s) met the referenced advisory control limits.

ICSA/ICSAB statement

All interference check samples (ICSA and ICSAB) associated with this SDG met the established acceptance criteria.

Continuing Calibration Blank (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this batch met the established acceptance criteria.

Continuing Calibration Verification (CCV) Requirements

All continuing calibration verifications (CCV) bracketing this SDG met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Statement

The MB analyzed with this SDG met the acceptance criteria.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Quality Control (QC) Sample Statement

The following sample was selected as the quality control (QC) sample for this batch: 115655001 (AM011X) from another SDG.

Matrix Spike (MS) Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All applicable elements met the acceptance criteria.

Matrix Spike Duplicate (MSD) Recovery Statement

The percent recovery (%R) obtained from the MSD analyses are evaluated when the sample concentration is less than four time (4X) the spike concentration added. All applicable elements met the acceptance criteria.

MS/MSD Relative Percent Difference (RPD) Statement

The RPD(s) between the MS and MSD met the acceptance limits.

Duplicate Relative Percent Difference (RPD) Statement

The relative percent difference (RPD) obtained from the designated sample duplicate (DUP) is evaluated based on acceptance criteria of 20% when the sample is >5X the contract required detection limit (RL). In cases were either the sample or duplicate value is less than 5X the contract required detection limit (RL), a control of RL is used to evaluate the DUP results. Lead did not meet these requirements. No qualifier appears because the QC sample was from another SDG.

Serial Dilution % Difference Statement

The serial dilution is used to assess matrix suppression or enhancement. Raw element concentrations that are 25X the IDL for CVAA, 50X the IDL for ICP, and 100X the IDL for ICP-MS analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria of less than 10% difference (%D).

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection of sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in soil samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument. No dilution was necessary.

Preparation Information

The sample in this SDG was prepared exactly according to the cited SOP.

Miscellaneous Information

Nonconformance Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. NCR ID 123413 was generated with this SDG. A copy was included in the Miscellaneous Data section of this package.

Additional Comments

Additional comments were not required for this SDG.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: 2001 Small C Date: 71104

APPENDIX D

RESPONSE TO COMMENTS

Response to Comments from the New York State Department of Environmental Conservation

Subject: Draft Treatability Study Report for Airfield Parcel (SEAD-122B) Small Arms Range Seneca Army Depot Romulus, New York

Comments Dated: May 7, 2004

Date of Comment Response: June 22, 2004

The New York State Department of Environmental Conservation has performed a review of the above referenced document dated April 2004. Comments are as follows:

General Concerns:

Comment 1: The final verification samples collected at the site (Figure 3.2 and Tables 3.7) appear to be the same as those contained in the Treatability Study (FINAL CONFIRMATION SAMPLES, TOTAL LEAD, Table3), however the values are not the same in all cases. It appears that a few numbers may have been transposed in producing the Treatability Study Report and they need to be corrected.

Response 1: Agreed. Table 3 will be corrected to reflect the results as stated in Table 3.7 of the Final Characterization Report.

Comment 2: The Treatability Study indicates that the value obtained in CS003 is an average calculated value. Again, I think this is a transcription error since the Characterization Report indicates that the final samples are discrete sample values. Likewise the date of the CS003 sample indicates a transcription error.

Response 2: Sample CS003 was reported as an average value because the laboratory reported a laboratory generated duplicate sample result (CS003D 655ppm). CS003 was 20.6J ppm. Therefore the reported value was the average of the sample and its laboratory generated duplicate – 337.8 ppm. This is the value reported in both reports. The sample was collected on 1/8/04 on stated in both reports.

Due to the variability in the duplicate pair, the Army requested that the laboratory rerun the sample. The laboratory was instructed to ensure that the sample was well-homogenized prior to reanalysis. The result of the sample rerun (duplicate) was 24.6 ppm. The Army is confident that this result is representative of that sample location.

Comment 3: The verification samples were collected at the site during the month of January. The workplan indicated the following:

" 3.2 CONFIRMATION SAMPLING

After the proposed excavated soils are removed including soil excavated from the drainage swale and soils from the range floor under the temporary screening area, soil samples will be collected from the bottom of the excavated areas. Discrete soil samples will be collected as shown on Figure 3. Confirmation sample locations will be taken in areas that had lead greater

than 400 ppm prior to excavation and in areas affected by the treatability testing."

The logs in Appendix A of the Treatability Study indicate that soils were completely removed from the site on March 9, 2004. I realize that the intent of the workplan was to make sure that soil stockpiles, loading and mixing operations did not recontaminate the surface of the range after confirmational samples were collected. Therefore, I am requesting a resampling for the official confirmation samples as proposed in the procedures outlined in the workplan for the site.

Response 3: The intent of the language in the workplan "...After the proposed excavated soils are removed... soil samples will be collected from the bottom of the excavated areas." was to indicate that soil samples would be collected after the excavations were complete, not collected after all the soil was removed from the site. However, we do recognize that a soil sample was not collected from the area of the soil stockpiles after all the stockpiles had been removed. No sample was collected because the soil was stockpiled on poly. In addition, because the area was frozen during the duration of this Study, there was no migration of potential contaminants.

The Army proposes to collect one (1) sample in the area of the stockpiled soil to verify that the area was not contaminated from the operations. There is no reason to resample the other locations as these areas were not affected by the stockpiles. The results of the sampling in the stockpile area will be reported at a later date.

Comment 3: In addition to the measures normally taken at the site I would like to request that you post the Final Document on the internet and include the document address in the public notices that you send out and put in the local paper. You may include me as a contact for questions and put my email address on the web site for this document.

Response 3: At this time, the Army will not be posting documents on a website. While the BRAC office is pursuing the possibility of establishing a website; currently, there are no procedures in place, nor are their funds available, to enable the Army to complete this task.

Comment 4: I would like to know if other areas of the drainage swale or other settling areas downstream of the sampling point 1019 are contaminated by metals from the range.

Response 4: Sample point 1019 was found to be 13.7 ppm lead and well downstream of the range and therefore concluded to be the clean boundary downstream from the range.

Health Concerns:

Comment 5: Other TAL Metals Results, page 3-2 - the last sentence of the first paragraph is contradictory with the next seven sections. This sentence states that "All the other metals were detected below the NYSDEC TAGM soil cleanup objectives and the maximum SEDA-specific background levels". However, the next seven sections refer to metals that were detected above either of these two guidance levels. Clarification and revision is necessary.

Response 5: The last sentence of the first paragraph will be deleted for clarity.

Comment 6: Site Characterization Conclusions, page 3-6 - although the third bullet of this section states that the "(0)ther TAL metals were either not detected above their soil criteria or were consistent with SEDA site background values", I could not find any reference that they were tested post-treatability study nor could I find any reference to the original analytical results except in the section 3-2. Based on the comment above, this section is in need of revision also.

Response 6: There was no additional metals testing, other than lead, post treatability study, because there no exceedances other than those explained in Section 3.1.2.

Comment 7: I found no groundwater analytical data in the report. This information is necessary to evaluate the total characterization of the site.

Response 7: Groundwater analytical data is presented in Table 3.5.

Comment 8: Further data evaluation is needed. Table 3.6 indicates that Sample CS009AD and CS009 are duplicate samples, yet the analytical results are very dissimilar (22 mgkg and 736 mgkg, respectively). Should this data be qualified?

Response 8: Sample CS009AD is a duplicate of sample CS009A (16.1 mg/kg).