

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 16, 2011

Mr. John Nohrstedt U.S. Army Corps of Engineers Engineering and Support Center, Huntsville Attn: CEHNC-FS-IS 4820 University Square Huntsville, Alabama 35816-1822

SUBJECT: Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB)

Grounds and Army Response to EPA Comments on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds, Seneca Army

Depot Activity; Contract W912DY-08-D-0003, Task Order 0008

Dear Mr. Nohrstedt:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, Seneca County, New York. In addition, please find copies of the Army's Response to EPA Comments, dated February 11, 2011 on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning Grounds. This work was performed in accordance with the Scope of Work for Task Order 0008 under Contract No. W912DY-08-D-0003. This report provides a review of long-term monitoring completed during 2010 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

Enclosures

cc: S. Absolom, SEDA

R. Battaglia, USACE, NY District

K. Hoddinott, USACHPPM

PARSONS

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 16, 2011

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, NY 10007

Mr. Kuldeep K. Gupta, P.E. New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Remedial Bureau A, Section C 625 Broadway Albany, NY 12233

Mr. Mark Sergott Bureau of Environmental Exposure Investigation, Room 300 New York State Department of Health 547 River Street, Flanigan Square Troy, NY 12180

SUBJECT: Draft Final 2010 Long-Term Monitoring Annual Report and Army Response to

EPA Comments on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds, Seneca Army Depot Activity; Contract W912DY-08-

D-0003, Task Order 0008

Dear Mr. Vazquez/Mr. Gupta/Mr. Sergott:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, Seneca County, New York (EPA Site ID# NY0213820830 and NY Site ID# 8-50-006). In addition, please find copies of the Army's Response to EPA Comments, dated February 11, 2011 on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning Grounds. This report provides a review of long-term monitoring completed during 2010 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

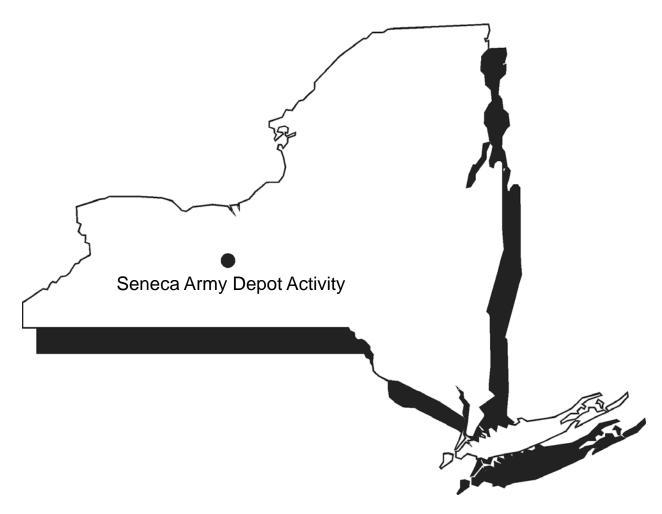
Todd Heino, P.E. Program Manager

Enclosures

cc: J. Nohrstedt, USACE, Huntsville S. Absolom, SEDA K. Hoddinott, USACHPPM R. Walton, USAEC

R. Walton, USAEC M. Heaney, TechLaw

R. Battaglia, USACE, NY


US Army, Engineering & Support Center Huntsville, AL

00490

Seneca Army Depot Activity Romulus, NY

DRAFT FINAL LONG-TERM MONITORING ANNUAL REPORT 2010

OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS

MARCH 2011

DRAFT FINAL

2010 LONG-TERM MONITORING ANNUAL REPORT

FOR THE OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY, ROMULUS, NEW YORK

Prepared for:

U.S. ARMY, CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE

HUNTSVILLE, ALABAMA

and

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared by:

PARSONS

100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

March 2011

TABLE OF CONTENTS

Table of	of Conte	nts	i
List of	Tables		ii
List of	Figures		ii
List of	Append	ices	iii
1.0	INTRO	DDUCTION	1-1
2.0	SITE E	BACKGROUND	2-1
	2.1	Site Description	2-1
	2.2	Site Hydrology	2-1
	2.3	Summary of the Remedial Action	2-2
3.0	LONG	-TERM GROUNDWATER MONITORING	3-1
	3.1	Groundwater Elevations	3-1
	3.2	Analytical Data	3-2
4.0	SOIL	COVER INSPECTION	4-1
	4.1	August 2008	4-1
	4.2	August 2010	4-1
5.0	REED	ER CREEK INSPECTION	5-1
	5.1	April 2009	5-1
	5.2	August 2010	5-1
	5.3	Inspection Observations	5-3
6.0	LONG	-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS	6-1
7.0	REFEI	RENCES	7-1

LIST OF TABLES

Table 1	Site-Specific Cleanup Goals for Groundwater
Γable 2	Groundwater Elevation Data
Table 3	Summary of COCs Detected in Groundwater
Гable 4	Soil Cover Inspection Log

LIST OF FIGURES

Figure 1	SEDA Site Map and AOC Location
Figure 2	Open Burning Grounds Site
Figure 3	Historic Groundwater Contours with August 2010 Elevations
Figure 4	Groundwater Elevation Profile
Figure 5	Concentrations of Lead and Copper at MW23-1
Figure 6	Concentrations of Lead and Copper at MW23-2
Figure 7	Concentrations of Lead and Copper at MW23-3
Figure 8	Concentrations of Lead and Copper at MW23-4
Figure 9	Concentrations of Lead and Copper at MW23-5
Figure 10	Concentrations of Lead and Copper at MW23-6
Figure 11	Open Burning Grounds Soil Cover Areas and Well Locations
Figure 12	OB Grounds Completion Report Map Overlain on Aerial Photo
Figure 13	Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection Comments Identified
Figure 14	Reeder Creek Inspection Photo Locations

March 2011 Page ii

LIST OF APPENDICES

A	Open Burning Grounds Round 5 Field Forms
В	Log Book 08/05/2010 Notes and Transcript of Reeder Creek Inspection
C	Reeder Creek Inspection Photos
D	Laboratory Report
E	Data Validation

March 2011 Page iii

1.0 INTRODUCTION

This Annual Report provides a review of long-term monitoring (LTM) conducted during the past year (2010) for the Open Burning (OB) Grounds located at the Seneca Army Depot Activity (SEDA or the Depot) in Seneca County, New York. The LTM for the OB Grounds includes annual collection and analysis of groundwater samples for lead and copper, the inspection of the vegetated, compacted soil cover that has been constructed over lead contaminated soil that is interred at the site, and the inspection of Reeder Creek along the length where it abuts the OB Grounds for evidence of inward migration and redeposition of soil from the area of the OB Grounds. This report presents and summarizes the results of the most recent annual LTM event and provides recommendations for future long-term monitoring at OB Grounds.

Long-term monitoring is an integral component of the approved remedy implemented at the OB Grounds. The "Record of Decision (ROD) Former Open Burning Grounds Site, Final" (Parsons, 1999) indicated that monitoring of groundwater and the vegetated soil cover at the OB Grounds, and of the sediment within Reeder Creek was required. Specifically, the ROD required:

- Periodic monitoring of groundwater quality at the OB Grounds for lead and copper content;
- Periodic monitoring of the vegetated, compacted soil cover placed over the lead contaminated soil remaining at the OB Grounds to assess whether evidence of erosion or protective cover breaching were present, which could result in the potential migration of contaminated soil; and,
- Periodic monitoring of the sediment in Reeder Creek for lead and copper content.

The LTM that is being conducted at the OB Grounds is being performed in accordance with the "Long-Term Monitoring Plan for the Open Burning Grounds, Final" (LTM Plan) (Parsons, 2007). The collection of groundwater quality data is needed to monitor the effectiveness of the implemented remedy at the site for preventing future impacts to groundwater at the OB Grounds and to sediments in Reeder Creek. Additionally, monitoring of the vegetated compacted soil cover placed over the buried soils at the OB Grounds is required to assure its long-term integrity and to prevent direct contact to, and incidental ingestion of, soils containing lead at concentrations up to 500 mg/kg by terrestrial wildlife at the site.

Part of the OB Grounds annual monitoring includes a qualitative assessment (i.e., visual inspection) for evidence of migration of material via surface water flow or groundwater transport of contaminants into the remediated section of Reeder Creek adjacent and downgradient to the OB Grounds. The visual inspection consists of walking the creek bed (or embankment) looking for evidence of soil erosion or sloughing from the OB Grounds side of the creek embankment and/or the accumulation of sediment along the stream bed. Groundwater transport of contaminants is monitored by the annual groundwater sampling of the OB Grounds wells. Presently quantitative monitoring of sediment

March 2011 Page 1-1

quality (i.e., submitting samples for analysis) is not included in the annual monitoring; the U.S. Army Corps of Engineers (Army), the U.S. Environmental Protection Agency (EPA), and the New York State Department of Environmental Conservation (NYSDEC) agreed that until such time as data indicating that either a groundwater pathway of contaminant flow or soil transport from the OB Grounds was occurring, sampling and analysis of creek sediments would not be required.

The overall objectives of the OB Grounds' LTM program is to monitor the effectiveness of the remedial actions completed at the site with respect to preventing future groundwater quality deterioration and the erosion or breaching of the vegetated, soil cover. The soil cover is intended to prevent incidental contact and ingestion of contaminated soil left buried at the site by indigenous terrestrial wildlife, and the potential mobilization and migration of lead contaminated soil interred beneath the cover. In addition to assessing the quality of site groundwater and the integrity of the cover, the results of the periodic monitoring will be used to assess the need for design and implementation of any sediment monitoring program that may subsequently be needed to assess potential OB Grounds impacts to the sediment quality found in Reeder Creek.

When the Army began LTM at the OB Grounds site, it was scheduled to occur on a quarterly basis. The first round of post-remedial action LTM was conducted between November 21, 2007 and November 28, 2007. The OB Grounds cover was first inspected on January 11, 2008. The results of the first LTM event were presented in a technical memo submitted on January 25, 2008. The second round of LTM sampling and cover inspections were completed between February 25, 2008 and February 26, 2008. The results of the second LTM event were presented in a technical memo submitted on May 19, 2008. The third round of LTM sampling and cover inspections were completed between May 20, 2008 and May 21, 2008. The results of the third monitoring event were presented in a technical memo submitted on September 16, 2008. The fourth round of groundwater sampling and cover inspections were completed between August 25, 2008 and August 26, 2008. The results of the fourth monitoring event were presented in a technical memo submitted on November 13, 2008.

The results of the first four LTM events were combined and summarized in the OB Grounds LTM Annual Report and Year One Review; this document was initially submitted as a draft in December 2008 and this document recommended changing the monitoring frequency from quarterly to an annual event. In February 2009, the Army received preliminary comments from the EPA that indicated that monitoring of Reeder Creek was required per terms of the OB Grounds ROD, and questioning why the results of such inspections had not been reported. The EPA also indicated that they did not concur with the Army's recommended change in monitoring frequency, and requesting that monitoring be conducted twice a year, once in the spring and again in the fall. NYSDEC provided additional comments on the draft report in March 2009, indicating that they also believed that inspection of Reeder Creek was required, but indicating that they had no objection to the decrease in monitoring frequency from quarterly to annual.

March 2011 Page 1-2

The Army authorized performance of a Reeder Creek inspection as a result of these comments, but this work was delayed until April 2009 when safe access could be gained into that portion of Reeder Creek that is adjacent to the OB Grounds. The observations and conclusions of this inspection were then appended to subsequent versions of the OB Grounds Report (i.e., draft final, final). However, resolution of the approved monitoring frequency was not finalized until February 2010, once the final OB Grounds Report was approved by the EPA and NYSDEC and all parties agreed to an annual monitoring event frequency. LTM of the OB Grounds was also disrupted due to the expiration of the Army's ordering period under the contracting vehicle used to perform the original work. Due to the uncertainty associated with the requirements and frequency of the monitoring, the Army could not program necessary funding and contract authorizations until an agreement was reached between all parties. The new contract vehicle and funding were awarded for the continuation of the work in May 2010, and the next round of LTM for the OB Grounds was performed between August 2 and August 5, 2010, approximately two years after the last groundwater and soil cap inspection. Inspection of Reeder Creek was also conducted during this event. The results of the fifth monitoring event are presented and discussed in this annual report.

2.0 SITE BACKGROUND

2.1 Site Description

SEDA is a 10,587-acre former military facility located in Seneca County in the towns of Varick and Romulus, New York, which was owned by the United States Government and operated by the Department of the Army between 1941 and 2000. In 2000, the Army closed the Depot and assumed a care-takers role over the property, pending the closeout of its continuing environmental obligations and the leasing or transfer of property to other public or private parties for beneficial reuse purposes. Since 2000, more than 8,250 acres of land have been transferred to other parties.

SEDA is located between Seneca Lake and Cayuga Lake and is bordered by sparsely populated farmland and New York State Highway 96 on the east, New York State Highway 96A on the west, and sparsely populated farmland on the north and south. The former OB Grounds is located in the northwestern portion of the Depot, as shown in **Figure 1**, where the planned future use of the land is currently designated for conservation purposes. The former OB Grounds site sits on gently sloping terrain as shown in **Figure 2**. As situated, OB Grounds sits a minimum of 1,780 feet away from the nearest SEDA boundary, which is located to the west of the area of concern (AOC). The OB Grounds is bounded on the east by Reeder Creek, which is a perennial creek that is generally less than 1 foot deep and eventually flows into Seneca Lake. The quality of surface water in Reeder Creek has been designated by the State of New York as a Class C water body (best usage of fresh water is fishing; the waters shall be suitable for fish propagation and survival). Seneca Lake is located approximately 10,000 feet west of the OB Grounds site and is used as a source of drinking water for numerous surrounding communities and the SEDA.

The OB Grounds is vegetated with grass and brush and there are no permanent structures within the area other than small concrete bunkers and a metal garage structure. The former Open Detonation Area (SEAD-45) is located immediately north of the OB Grounds, and the former Explosive Ordnance Disposal Area (SEAD-57) is located approximately 4,000 to 5,000 feet south of the former OB Grounds. A site plan of the former OB Grounds prior to the removal of contaminated soil is provided in **Figure 3**.

2.2 Site Hydrology

The stratigraphy of the OB Grounds generally consists of between 2 and 10 feet of glacially derived till below which is a zone of weathered bedrock. The depth to groundwater in the till/weathered shale aquifer varies seasonally between approximately 2 and 7 feet below the ground surface. Infiltration of precipitation is the sole source of groundwater for the overburden aquifer and the direction of the groundwater flow in the till/weathered shale aquifer at the OB Grounds is generally to the east towards Reeder Creek as shown in **Figure 3**.

March 2011 Page 2-1

Historic groundwater elevation monitoring in wells located at the OB Grounds prior to the remedial action indicated the presence of a groundwater divide near the western edge of the site. The approximate location of the apparent groundwater divide found in April 1993 is highlighted on **Figure 3** and represents a high point of the upgradient groundwater flow regime. The divide diverts a portion of the groundwater to the west, away from Reeder Creek, which lies to the east. Historic sampling results from wells located west of the identified divide suggest that the quality of groundwater has not been impacted by soils at the OB Grounds.

Pre-remedial action surface water drainage from the OB Grounds was primarily to the east-northeast via a series of man-made drainage ditches, culverts, and spillways to Reeder Creek. During the remedial action, many of the drainage ditches and culverts were destroyed or filled, altering the surface flow patterns. Additionally, the historic surface water spillways connecting the OB Grounds and Reeder Creek were plugged during the remedial action to prevent surface overflow to the creek.

Little of the current storm event runoff impacting the former OB Grounds reaches the creek via overland flow because it is captured in one of the numerous, localized topographic lows that are scattered throughout the former AOC. The topographic lows result from the soil removal and interment action performed at the AOC. The captured storm water subsequently infiltrates into the soil or evaporates.

2.3 Summary of the Remedial Action

The remedy specified in the ROD for the OB Grounds included:

- Removal of the berms surrounding the historic burn pads;
- Removal of at least 1-foot of all soils;
- Placement of a 9-inch vegetative cover over any soils with lead concentrations greater than 60 mg/kg, but less than or equal to 500 mg/kg;
- Excavation of sediments in Reeder Creek with elevated levels of copper or lead; and
- Implementation of a monitoring program for groundwater, sediment, and the capped areas.

The first four of these required remedial actions were conducted between June 1999 and May 2004. Groundwater monitoring at the site began in November 2007, and inspections of the cover began in January of 2008.

March 2011 Page 2-2

3.0 LONG-TERM GROUNDWATER MONITORING

Four rounds of sampling were conducted at the OB Grounds from November 2007 to August 2008 and reported in the Final OB Grounds Long-Term Monitoring Annual Report and One Year Review (Parsons, 2009). The first round was completed between November 21, 2007 and November 28, 2007. The second round was completed between February 25, 2008 and February 26, 2008. The third round was completed between May 20, 2008 and May 21, 2008. The fourth round was completed between August 25, 2008 and August 26, 2008. The fifth round of sampling was conducted between August 2, 2010 and August 3, 2010 and the results are presented in this report. Six monitoring wells (MW23-1, MW23-2, MW23-3, MW23-4, MW23-5, and MW23-6) that were installed in 2007 to replace the historic monitoring well network that existed at the site prior to the remedial action were sampled as part of these monitoring events.

OB Grounds groundwater samples were collected using low flow sampling techniques. Sampling procedures, sample handling and custody, holding times, and collection of field parameters were conducted in accordance with the "Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP)" (Parsons, 2005).

Groundwater samples and groundwater elevation measurements were collected from the six wells located at OB Grounds during each of the five monitoring events. Groundwater samples were collected and submitted to Columbia Analytical Services (CAS) in Rochester, New York for the analysis of total copper and total lead by USEPA SW846 Method 6010B¹. Analytical results reported for copper and lead were compared to site-specific action levels that are defined in **Table 1**.

In addition, the following geochemical parameters were measured and recorded in the field for each groundwater sample:

pH

- Dissolved oxygen
- Temperature

ORP

- Conductivity
- Turbidity

The pH, ORP, conductivity, and temperature of the groundwater were measured with a Horiba U-22 water quality meter, turbidity was measured with a LaMotto 2020 Turbidometer, and dissolved oxygen content was measured with an YSI 85 Dissolved Oxygen Meter. Data from the geochemical parameters were used to assess when the well was purged and stabilized adequately prior to sampling and to assess macro-groundwater quality.

3.1 Groundwater Elevations

Groundwater levels were recorded on November 20, 2007 (Round 1), February 25, 2008 (Round 2), May 20, 2008 (Round 3), August 25, 2008 (Round 4), and August 2, 2010 (Round 5). The

March 2011 Page 3-1

Groundwater samples were analyzed by SW-846 6010B by Columbia Analytical Services Inc (CAS). CAS is currently not certified for the SW-846 6010C analysis method; and SW-846 6010C is presently not required by NYS. SW-846 6010C will be implemented in NYS April 1, 2011.

groundwater elevation range found during the five monitoring events is presented on **Table 2**. Appendix A provides the Round 5 field form documenting groundwater elevations prior to the collection of groundwater samples at this site. The missing well cap for MW23-5 was located on the ground adjacent to the well and was re-installed. The current OB Grounds monitoring well network provides insufficient data to develop current day groundwater contours with the level of detail that was provided by the pre-remedial action well network. However, the available current day groundwater data indicate an overall west-to-east, or possibly east-northeast, groundwater flow direction across the OB Grounds site, groundwater elevation data from the Round 5 (August 2010) monitoring event are shown superimposed over the April 1993 groundwater contours in Figure 3. Review of this figure and the new elevation data alone indicates that generally groundwater at the site moves west-to-east from wells MW23-5 and MW23-4 towards wells MW23-6, and then wells MW23-2, MW23-1, and MW23-3. There is also an indication that groundwater along the western side of the site may flow to the north, as the elevations observed at MW23-5 are higher than those recorded at MW23-4 during all five of the events (See Table 2). Along the eastern edge (Reeder Creek side) of the OB Grounds site, the groundwater elevations measured at MW23-2 in the center of the boundary, are always higher than those measured at MW23-1 and MW23-3. These data suggest some flow variations to the south and the north, away from the west-to-east prevailing flow direction. However, when the new data are evaluated with consideration of the April 1993 contours, the continuing presence of the apparent groundwater divide in the western portion of the site can not be ruled out.

Further, evaluation of the new groundwater elevation data indicates that all of the highest elevations were found during the Round 2 (February 2008) monitoring event, with five of the six wells (all except MW23-4) reaching their lowest elevations during the Round 4 (August 2008) event. The lowest groundwater level measured at MW23-4 was recorded during the Round 1 (November 2007) event.

3.2 Analytical Data

The groundwater results are presented in **Table 3**, where they are compared to the groundwater cleanup goals listed in **Table 1**. Field forms documenting the collection of groundwater during Round 5 at this site are provided in **Appendix A**. Generally, neither total copper nor total lead has been detected in any of the six wells during the five post-remedial action monitoring events. Four exceptions to this general trend exist, each for measured lead concentrations: Round 2, MW23-4 (5.4 ug/L); and Round 5, MW23-4 (2.7 J ug/L), MW23-5 (2.4 J ug/L), and MW23-6 (3.6 J ug/L). Each of these levels is below the groundwater cleanup goal of 15 ug/L. Chemical specific detection limits for both copper and lead were below action levels.

The LTM data support that groundwater at the site has not been impacted above action levels by residual levels of copper that remain in the soils at the site. The recent detection of lead in wells MW23-4, MW23-5, and MW23-6 at levels below cleanup goals suggests that further monitoring is warranted to assess future trends for lead. The detection in MW23-4 is the second time lead has been

March 2011 Page 3-2

found in this well since the beginning of LTM and is suspect because the data is reported as The detection in MW23-5 is suspect since lead was detected at an estimated concentration in the duplicate sample; but was not found in the parent sample. The detection in MW23-6 is the first time lead has been found in this well since the beginning of LTM and is suspect because the data is reported as "estimated". Prior to the remedial action, lead was sporadically found in groundwater wells located at the OB Grounds; but since the remedial action, lead was only been detected once during the first four LTM sampling events before being found in three separate wells during the most recent sampling (Round 5) event. Again, each of these wells contained lead at concentrations below the established cleanup goal, and none of these wells are located adjacent to Reeder Creek suggesting that lead has not been released from the site to the creek. Two of the affected wells are located beyond the suspected groundwater divide that lies along the western edge of the former OB Grounds site, while the third (MW23-6) is located at a location believed to be sidegradient to the OB Grounds site. Groundwater pH levels measured in the three affected wells during the Round 5 event showed very weak acidic to weak basic (initial pH levels of 6.2 or higher rising to a pH level of greater than 7.0 prior to sampling) which suggests that lead should not be especially mobile.

Figure 5 through **Figure 10** present a summary of the groundwater sampling results for monitoring wells MW23-1 through MW23-6 from all the monitoring events conducted since the remedial action was completed (November 2007, February 2008, May 2008, August 2008, and August 2010). As may be noted from a review of these figures, neither copper nor lead has been detected above the groundwater cleanup goals in any of the wells sampled during any of the monitoring events.

March 2011 Page 3-3

4.0 SOIL COVER INSPECTION

The cover inspection consisted of documenting observations of the 25, 125- by 125-foot grids, where soils with residual lead concentrations between 60 mg/Kg and 500 mg/Kg were interred under a 9-inch soil cover. The locations of the grids are shown on **Figure 11**, which is a figure that was originally produced by Weston Solutions in the 2005 "Completion Report for the Open Burning Grounds Soil and Sediment Remediation" (Weston Solutions, 2005). The original map has been overlain on a recent aerial image of the OB Grounds obtained from Bing.com to help field inspectors more accurately orient where the interred soil areas are located; this presentation is provided as **Figure 12**. Cover inspections were completed on January 10, February 25, May 20, and August 25, 2008 and August 5, 2010, without the benefit of this figure. Observations from the August 2010 inspection have been updated in this report to reflect the current understanding of where interred soil resides. Observations made during the August 2008 and August 2010 cover inspections are noted below.

A cover inspection log for all five monitoring events is provided in **Table 4**. Inspection forms documenting the Round 5 soil cover inspection at this site are provided in **Appendix A**.

4.1 August 2008

Minimal erosion and a lack of animal burrowing activity were observed in the capped areas. At Grid Cell R8, a mouse hole approximately 6 inches wide and approximately 6 inches deep was observed. The mouse hole was repaired in August 2008.

4.2 August 2010

A lack of animal burrowing activity was observed in all of the capped areas. Minor erosion was observed in Grid Cell J8, adjacent to the location where a buried pipe runs beneath one of the site roads to allow surface water run-off to flow from the western portion of the site towards Reeder Creek. The noted erosion is on the northern side of the flow channel and affects vegetated soil that is outside of areas where the contaminated soil was interred on the southern side of the drainage channel. The condition of this location will be reassessed during the next inspection event to determine if corrective measures are needed.

More significant evidence of erosion was noted in Grid Cell L7 where a portion of the access road that leads past former Burn Pad B and Burn Pad C has apparently been overtopped by the water which has cut an erosion channel through the road allowing runoff to spill into the area of the former Burn Pad C. Erosion in this location, incorrectly referenced to Grid Cell L8 in 2008, was previously noted during the January and May 2008 inspections, but was repaired by the Army and was not observed in August 2008. This erosion channel is outside of the area where lead contaminated soil is interred beneath clean soil, and thus the Army currently does not intend to make repairs. This site

March 2011 Page 4-1

will be reassessed during future inspections and if conditions appear to be worsening, corrective measures may be implemented.

The drainage cut that was constructed along the southern side of the former OB Grounds as part of the remedial action to promote drainage of the accumulated water in the area located between the former site of the former Burn Pad G, the southern access road, and the southern bound of the OB Grounds site in Grid Cells I4 and I5 was also inspected during the site inspection. There were no obvious signs of erosion along its length, it was surrounded and covered with vegetation, and the underlying soil showed signs of cracking at numerous locations suggesting that it may have been dry for an extended period of time.

All of the features discussed above are labeled and shown in an aerial photograph of the OB Grounds site, that focuses on the area beginning in the vicinity of the southeastern corner of Grid Cell P4 (upper left hand corner of aerial), proceeding north-northeasterly (downward) to the approximate midpoint of Grid Cell R10, then proceeding westerly (right) to the approximate midpoint of Grid Cell H9 and finally proceeding south (up) to the southwestern corner of Grid Cell H4 is provided as **Figure 13**.

Soil erosion was observed on the east side of the paved access road leading into the OB Grounds (southeastern corner of Grid Cell S10). This location is not associated with any of the lead contaminated soil that has been interred at the site under the 9-inch soil cover. The noted erosion undermined the paved surface, along the eastern side of the road to a point where future vehicular access into the OB Grounds was being threatened. The Army retained a contractor to reconstruct the culvert and the roadway in September, 2010, and accepted the work as completed. This location will be reassessed during the next inspection tour of the site.

March 2011 Page 4-2

5.0 REEDER CREEK INSPECTION

Accessible portions of Reeder Creek adjacent to the OB Grounds were inspected by walking along the creek bed and making observations of the creek bottom and the side walls. Access to all portions of the creek was not possible due to water depths greater than 2 to 3 feet in the area upgradient of MW23-3 and the absence of any walk surface adjacent to the steep, earthen sidewalls of the creek. Non-accessible portions of Reeder Creek were viewed from locations where access from the higher OB Grounds site could be gained down stable pathways located in the side wall.

5.1 April 2009

The Army performed a visual inspection of the Reeder Creek streambed in April of 2009 at locations adjacent to the OB Grounds. This inspection indicated that surface water flow within Reeder Creek had continued to scour the bedrock surface, and had limited and for the most part precluded, the redeposition of sediment adjacent to the OB Grounds. Soil sloughing from upland surfaces bordering both edges of the creek is observed at many locations along the creek bed; however, these are only noted at places where the creek's course broadens and where the wetted watercourse represents but a portion of the entire creek bed's width. There is no evidence that the sloughed soil has migrated into, and deposited as sediment within, the main flow channel of Reeder Creek.

Examination of the spillways where surface water from the OB Grounds to Reeder Creek previously flowed into the creek, but which were closed as part of the overall OB Grounds remedial action, indicated that there was no visible evidence that overland surface water flow had transported soils from the OB Grounds into Reeder Creek. The spillways, which are shale based, were free of any accumulation of excessive debris and soil. Field observations also noted that the mechanisms that were placed at the OB Grounds to prevent surface water flow from entering the spillways were still evident and working.

5.2 August 2010

A visual inspection of the Reeder Creek streambed was conducted on August 5, 2010 at locations adjacent, downgradient, and upgradient to the OB Grounds. Locations downgradient and adjacent to the OB Grounds consisted of exposed bedrock streambeds with no observable sediment. The majority of the Reeder Creek streambed from OD Grounds to upgradient of OB Grounds was walked using the appropriate health and safety equipment; areas that were deeper than 2 feet or where vegetation prevented access were observed from the creek banks.

Sediment was not observed in the low spots of the bedrock streambed in either the downgradient or adjacent portions of Reeder Creek to the OB Grounds. However, a thin brown slim-like material measuring only a few millimeters thick was observed in various segments of the creek in areas where the water was deeper than 6 inches. These locations were typically associated with downstream bedrock outcrops which allow the creek water to pool until it exceeds the height of the outcrop and

March 2011 Page 5-1

then flow over the top of the outcrop; the brown material was not observed beyond the outcrop overflow points. Sediment was observed upgradient of the OB Grounds in areas that were outside the prior creek bed excavation areas.

The banks or Reeder Creek were inspected for evidence of material collapsing into the creek. With the exception of the erosion point that is located along the eastern edge of the OB/OD Grounds access road in Grid Cell S10, no other locations of soil erosion were noted on the southwest side of Reeder Creek (OB Grounds side). Erosion in Grid Cell S10 is due to the undermining of the paved access road; this material's source is from the subgrade to the paved access road and is not from the OB Grounds soil cover. The northeast bank of Reeder Creek (non OB Grounds side) generally exhibited similar conditions as the southwest bank, although several locations where deer trails descend the creek bank had visible signs of sidewall material collapse, migration, and accumulation down in the creek bed. These locations appeared to be solely related to deer activity and not from surface water run-off.

Appendix B provides a scan of the Log Book notes from August 5, 2010 Reeder Creek inspection and a transcript of the associated Log Book notes. Photos of Reeder Creek were taken to document the exposed bedrock streambed and creek banks current condition; **Figure 12** shows the locations photos were taken. Reeder Creek Photo #01 through Photo #06 are provided in **Appendix C**.

Photo #01 – Standing downgradient of MW23-3, looking up stream. Exposed bedrock creek bottom is visible. No sediment was observed.

Photo #02 – Standing parallel to MW23-3, looking up stream. This section of creek was greater than 2 feet deep. The creek bottom was competent bedrock with lose shale rocks scattered about. A brown slim/gelatinous like material, previous mentioned, was observed on top of the bedrock creek bottom in this section and a few localized spots where bedrock outcrops allow water to pool.

Photo #03 – Upgradient of MW23-3, looking down stream. This section of the creek was about 1 foot deep and the banks were heavy vegetated. The creek bottom was competent bedrock and the brown slim/gelatinous material was observed and appeared to be a few millimeters thick.

Photo #04 - Downgradient side of beaver dam and MW23-2, looking up stream. The area immediately downgradient of the beaver dam had an exposed bedrock creek bottom (not visible in photo). The brown slim/gelatinous material was observed between the exposed bedrock outcrop and the downgradient side of the beaver dam. Broken shale bits were observed on a deer trail accumulating on the northeast side of the creek (buffer area side) but had not migrated into the creek itself. The location of the beaver dam is marked on **Figure 12**.

Photo #05 - Upgradient side of beaver dam and parallel to MW23-2, looking down stream. The water was 2 to 3 feet deep in this section. The area upgradient of the beaver dam was not directly accessible due to thick vegetation along the creek bank. There was an access point about 150 feet upgradient of

March 2011 Page 5-2

the beaver dam due to the erosion on the northeast side of the paved access road. The paved access road's subgrade material is migrating down into the creek from surface water runoff erosion. The creek bottom could not be visually observed but a shovel was used to gauge the condition of the creek bottom; no sediment was observed. The creek bottom felt (striking with the shovel) like competent bedrock, and the brown slim/gelatinous material that was a few millimeters thick was observed on top of rocks examined from the creek bottom.

Photo #06 – Downgradient to MW23-1, looking up stream. Water was greater than 2 feet deep. The vantage point looking up stream was from the paved access road access point, where material from the roads subgrade was observed migrating into the creek. The left side of the photo (northeast bank/buffer area) had a couple locations where bank material was migrating down to the creek, and appeared to be associated with deer trail activity.

5.3 Inspection Observations

As is reported above, the groundwater data collected during historic sampling events as well as during the five rounds of the Long-Term Monitoring Program shows no evidence of the release of copper or lead from the OB Grounds. The prior soil cover inspections did reveal that occasional animal burrows and shallow erosion depressions were present in the cover at the contaminated soil burial areas, but none of the past noted burrow holes or depressions were sufficiently sized to allow buried soils to escape their containment. All of the noted holes and depressions were repaired in August 2008 as part of the Army's continuing maintenance activities. Other than the discussed location where material to the east of the access roadway had eroded and collapsed into the Reeder Creek (repaired September 3, 2010), there are no other visible signs that OB Grounds site soils are being released via overland flow to Reeder Creek. Soil from the location that had collapsed is not located near lead contaminated soil that was interred beneath the soil cover that was constructed during the remedial action, and there is no indication that soils from the west side of the access road have collapsed into the creek. As such, the Army does not see any evidence to suggest that a release of lead or copper above background levels is occurring from the OB Grounds site. The recent detections of lead in three wells (MW23-4, MW23-5, and MW23-6) below the action level were located on the western edge of the OB Grounds (MW23-4 and MW23-5) and south of the OB Grounds (MW23-6). The absence of detectable concentrations of lead and copper in the three wells (MW23-1, MW23-2, and MW23-3) immediately adjacent to Reeder Creek supports the observation that Reeder Creek has not been impacted by lead or copper.

Based on these data and this information, the Army has not conducted sediment sampling and analysis of Reeder Creek as part of the long-term monitoring at the OB Grounds. The Army will conduct another visual inspection of the creek bed and spillways connecting the OB Grounds to Reeder Creek during the next scheduled annual monitoring event, and if evidence of overland transport of soil or groundwater migration of contaminants from the OB Grounds to Reeder Creek is identified, a plan will be prepared and submitted for approval which will identify a sediment monitoring program that will be conducted.

March 2011 Page 5-3

6.0 LONG-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS

Based on the results of fifth round of LTM at the OB Grounds, the following conclusions have been reached:

- Residual lead and copper concentrations remaining in the soils have not impacted groundwater at, or in the immediate vicinity of, the site above the action levels;
- The integrity of the vegetated soil cover overlying interred contaminated soils at the site was intact and there was no evidence that terrestrial wildlife are exposed to the contaminated soils below the 9-inch cover;
- The washout area noted during in Grid Cell L7 in (identified as L8 in 2008 Report) during the February and May 2008 inspections is again evident in the August 2010 inspection. Information provided in Section 4.2 indicates that this is outside of areas where contaminated soils were interred beneath clean soil, so this area will not be repaired at this time by the Army. If the next inspection suggests that this area is enlarging, the Army will evaluate a more permanent repair;
- The Army will continue to monitor cover erosion, and note any instance of cover erosion or exposed native soil;
- Based on the groundwater data and the cover inspection, there is no evidence to suggest that the OB Grounds may be contributing to the degradation of sediment quality in Reeder Creek;
- Sediment deposition in Reeder Creek adjacent to the OB Grounds was not noted during the August 2010 inspection; and,
- The Army will continue to inspect Reeder Creek for evidence of sediment deposition and if it is observed, a sediment sampling and analysis program plan will be prepared, submitted for approval, and implemented for Reeder Creek at locations adjacent to the OB Grounds.

Based on the result of the LTM events conducted at the OB Grounds, the Army recommends continuing the monitoring frequency of once per year. As presented and summarized above, available monitoring data shows no evidence of lead or copper in the groundwater above the cleanup goals subsequent to the completion of the remedial action for the site. These findings are consistent with the groundwater sample results obtained during the remedial investigation stage (1990s) of work at the site, indicating that there is no evidence of groundwater quality deterioration over the past 15 years. Further, the annual inspections of the soil cover have shown minimal evidence of erosion or animal breaching of the protective soil cover. Additionally, the examination of spillways connecting the OB Grounds to Reeder Creek indicate that measures performed to eliminate overland surface water flow the OB Grounds to Reeder Creek continue to exist and have been effective, as there is no

March 2011 Page 6-1

indication that soil or debris from the OB Grounds is located in the spillways downgradient of the control measures. Finally, the inspections of Reeder Creek indicate that the bedrock that underlies the watercourse adjacent to the OB Grounds continues to be scoured by the perennial flow within the creek. There is no current indication that sediment is being redeposited at locations from which it was previously excavated. Therefore, due to the absence of any evidence that suggests contaminants of concern have been mobilized from the OB Grounds either via the groundwater or overland flow of storm-event waters, and due to the continued scouring of the creek bed by the perennial flow of water, there is no reason to develop or implement a sediment monitoring plan for Reeder Creek at this time.

The next LTM sampling, soil cover inspection, and Reeder Creek inspection events are scheduled to occur in August 2011. Results of the next year's monitoring efforts at the OB Grounds will be evaluated, and recommendations of necessary changes to the frequency or extent of monitoring will be made at that time. Subsequent rounds of LTM for the OB Grounds are expected to continue at yearly intervals thereafter, unless altered by mutual agreement of all parties.

March 2011 Page 6-2

7.0 REFERENCES

Final Remedial Investigation Report at the Open Burning (OB) Grounds, Seneca Army Depot Activity, 3 Volumes, Parsons 1994.

Final Record of Decision, Open Burning (OB) Grounds, Seneca Army Depot Activity, Parsons 1999.

Final Long-Term Monitoring Plan for the Open Burning (OB) Grounds, Seneca Army Depot Activity, Parsons 2007.

Final OB Grounds Long-Term Monitoring Annual Report and One Year Review, Seneca Army Depot Activity, Parsons 2009.

Completion Report, Soil and Sediment Remediation Open Burning Grounds, Seneca Army Depot, Romulus, New York, Weston Solutions 2005.

March 2011 Page 7-1

TABLES

Γable 1	Site-Specific Cleanup Goals for Groundwater
Γable 2	Groundwater Elevation Data
Γable 3	Summary of COCs Detected in Groundwater
Γable 4	Soil Cover Inspection Log

Table 1
Site-Specific Cleanup Goals for Groundwater
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

ANALYTES	Contract Required Quantitation Limits Water (µg/L)	Action Level Water (µg/L)
Copper	20	200
Lead	5	15

- Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998 through addendum June 2004).
- Lead action level is from USEPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Referenced from Table 5-1 in "Final Long-Term Monitoring Plan for the Open Burn (OB) Grounds", (Parsons, Jan 2007)

Table 2 Groundwater Elevation Data OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

	Top of	Roun	ıd 1 - November	2007	Roui	nd 2 - February	2008	Round 3 - May 2008			
Monitoring Well	Riser Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	
MW23-1	622.64	11/20/2007	12	610.635	02/25/2008	11.46	611.175	05/20/2008	11.63	611.005	
MW23-2	622.28	11/20/2007	9.6	612.68	02/25/2008	8.78	613.5	05/20/2008	9.17	613.11	
MW23-3	619.18	11/20/2007	10.8	608.381	02/25/2008	9.24	609.941	05/20/2008	9.68	609.501	
MW23-4	637.11	11/20/2007	8.6	628.507	02/25/2008	3.2	633.907	05/20/2008	4.14	632.967	
MW23-5	639.47	11/20/2007	7	632.472	02/25/2008	2.85	636.622	05/20/2008	5.19	634.282	
MW23-6	632.59	11/20/2007	8.35	624.244	02/25/2008	3.78	628.814	05/20/2008	5.54	627.054	

	Ton of	Rot	und 4 - August 2	8008	Rou	ınd 5 - August 2	2010	Historical Data				
	Top of Riser		Depth to	Water Level		Depth to	Water Level	Groun				
Monitoring	Elevation		Groundwater	Elevation		Groundwater	Elevation				Well Depth	
Well	(ft)	Date	(ft)	(ft)	Date	(ft)	(ft)	Maximum	Minimum	Range	(ft)	
MW23-1	622.64	08/25/2008	12.10	610.54	08/02/2010	12.06	610.58	611.18	610.54	0.64	15.50	
MW23-2	622.28	08/25/2008	9.84	612.44	08/02/2010	9.4	612.88	613.50	612.44	1.06	15.50	
MW23-3	619.18	08/25/2008	10.59	608.59	08/02/2010	9.97	609.21	609.94	608.38	1.56	15.50	
MW23-4	637.11	08/25/2008	7.82	629.29	08/02/2010	5.81	631.30	633.91	628.51	5.40	17.50	
MW23-5	639.47	08/25/2008	8.33	631.14	08/02/2010	7.51	631.96	636.62	631.14	5.48	17.50	
MW23-6	632.59	08/25/2008	10.08	622.51	08/02/2010	8.79	623.80	628.81	622.51	6.30	17.60	

Project:	OB Grounds					
Location ID:	MW23-1	MW23-1	MW23-1	MW23-1	MW23-1	MW23-1
Matrix:	GW	GW	GW	GW	GW	GW
Sample ID:	OBLM20001	OBLM20009	OBLM20008	OBLM20015	OBLM20022	OBLM20029
Date:	11/21/2007	02/26/08	02/26/08	5/21/2008	8/26/2008	8/3/2010
QC Code:	SA	DU	SA	SA	SA	SA
Study ID:	LTM	LTM	LTM	LTM	LTM	LTM
Study Round	1	2	2	3	4	5

			Frequency	Action		Number	Number	Number						
		Maximum	of	Level	Action	of	of Times	of Samples						
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)					
Copper	UG/L	0	0%	GA	200	0	0	35	20 U					
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	5 U	5 U
Turbidity	NTU								0	2.09	2.09	0.42	0.9	1.3

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL),
 Source http://www.epa.gov/safewater/mcl.html#inorganic.html

Project:	OB Grounds					
Location ID:	MW23-2	MW23-2	MW23-2	MW23-2	MW23-2	MW23-2
Matrix:	GW	GW	GW	GW	GW	GW
Sample ID:	OBLM20002	OBLM20010	OBLM20017	OBLM20016	OBLM20023	OBLM20030
Date:	11/21/07	2/25/2008	5/21/2008	5/21/2008	8/26/2008	8/3/2010
QC Code:	SA	SA	DU	SA	SA	SA
Study ID:	LTM	LTM	LTM	LTM	LTM	LTM
Study Round	1	2	3	3	4	5

			Frequency	Action		Number	Number	Number						
		Maximum	of	Level	Action	of	of Times	of Samples						
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)					
Copper	UG/L	0	0%	GA	200	0	0	35	20 U					
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	5 U	5 U
Turbidity	NTU								0	2.37	0.15	0.15	0.85	3.4

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL),
 Source http://www.epa.gov/safewater/mcl.html#inorganic.html

Project:	OB Grounds					
Location ID:	MW23-3	MW23-3	MW23-3	MW23-3	MW23-3	MW23-3
Matrix:	GW	GW	GW	GW	GW	GW
Sample ID:	OBLM20004	OBLM20003	OBLM20011	OBLM20018	OBLM20024	OBLM20031
Date:	11/21/07	11/21/2007	2/25/2008	5/21/2008	08/26/08	8/2/2010
QC Code:	DU	SA	SA	SA	SA	SA
Study ID:	LTM	LTM	LTM	LTM	LTM	LTM
Study Round	1	1	2	3	4	5

			Frequency	Action		Number	Number	Number						
		Maximum	of	Level	Action	of	of Times	of Samples						
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)					
Copper	UG/L	0	0%	GA	200	0	0	35	20 U					
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	5 U	5 U
Turbidity	NTU								0	0	9.91	2	7.9	1.5

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

Project:	OB Grounds					
Location ID:	MW23-4	MW23-4	MW23-4	MW23-4	MW23-4	MW23-4
Matrix:	GW	GW	GW	GW	GW	GW
Sample ID:	OBLM20005	OBLM20012	OBLM20019	OBLM20026	OBLM20025	OBLM20032
Date:	11/21/2007	3/3/2008	5/21/2008	08/25/08	8/25/2008	8/2/2010
QC Code:	SA	SA	SA	DU	SA	SA
Study ID:	LTM	LTM	LTM	LTM	LTM	LTM
Study Round	1	2	3	4	4	5

			Frequency	Action		Number	Number	Number						
		Maximum	of	Level	Action	of	of Times	of Samples						
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)					
Copper	UG/L	0	0%	GA	200	0	0	35	20 U					
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5.4	5 U	5 U	5 U	2.7 J
Turbidity	NTU								2	41.1	6.3	5.27	5.27	1.6

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL),
 Source http://www.epa.gov/safewater/mcl.html#inorganic.html

Project:	OB Grounds					
Location ID:	MW23-5	MW23-5	MW23-5	MW23-5	MW23-5	MW23-5
Matrix:	GW	GW	GW	GW	GW	GW
Sample ID:	OBLM20006	OBLM20013	OBLM20020	OBLM20027	OBLM20034	OBLM20033
Date:	11/21/2007	02/26/08	5/21/2008	8/25/2008	8/2/2010	8/2/2010
QC Code:	SA	SA	SA	SA	DU	SA
Study ID:	LTM	LTM	LTM	LTM	LTM	LTM
Study Round	1	2	3	4	5	5

			Frequency	Action		Number	Number	Number						
		Maximum	of	Level	Action	of	of Times	of Samples						
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)					
Copper	UG/L	0	0%	GA	200	0	0	35	20 U					
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	2.4 J	5 U
Turbidity	NTU								0	6.72	4.5	2.13	1	1

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL),
 Source http://www.epa.gov/safewater/mcl.html#inorganic.html

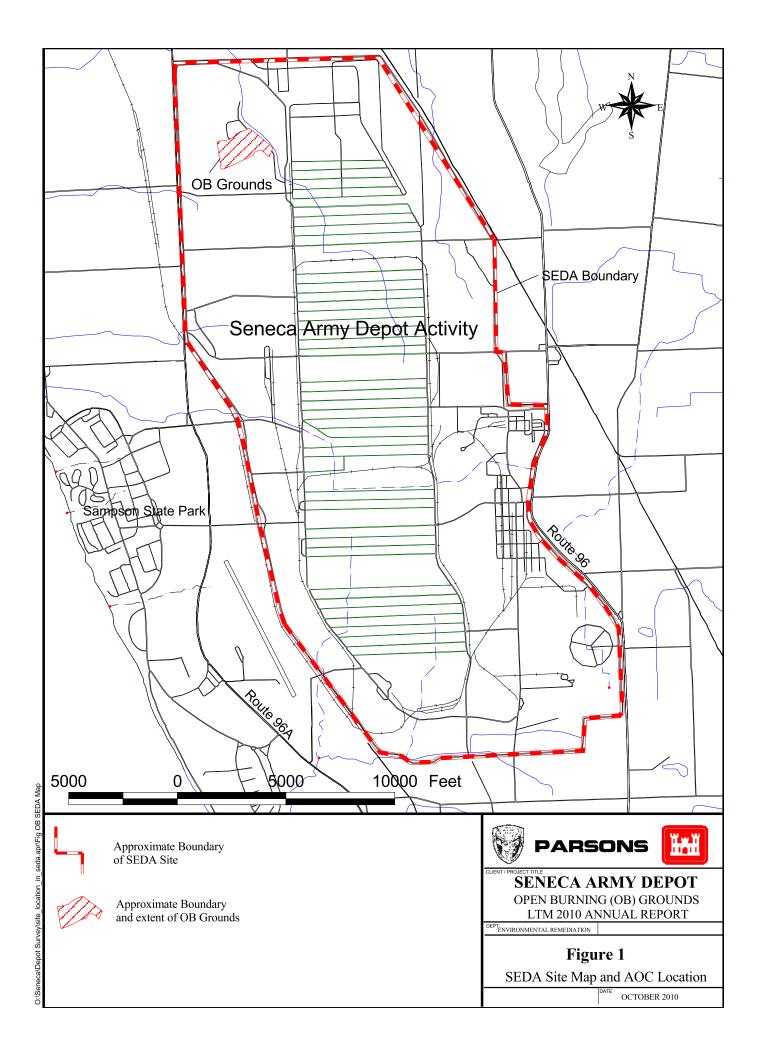
Project:	OB Grounds				
Location ID:	MW23-6	MW23-6	MW23-6	MW23-6	MW23-6
Matrix:	GW	GW	GW	GW	GW
Sample ID:	OBLM20007	OBLM20014	OBLM20021	OBLM20028	OBLM20035
Date:	11/28/2007	2/26/2008	5/20/2008	8/26/2008	8/3/2010
QC Code:	SA	SA	SA	SA	SA
Study ID:	LTM	LTM	LTM	LTM	LTM
Study Round	1	2	3	4	5

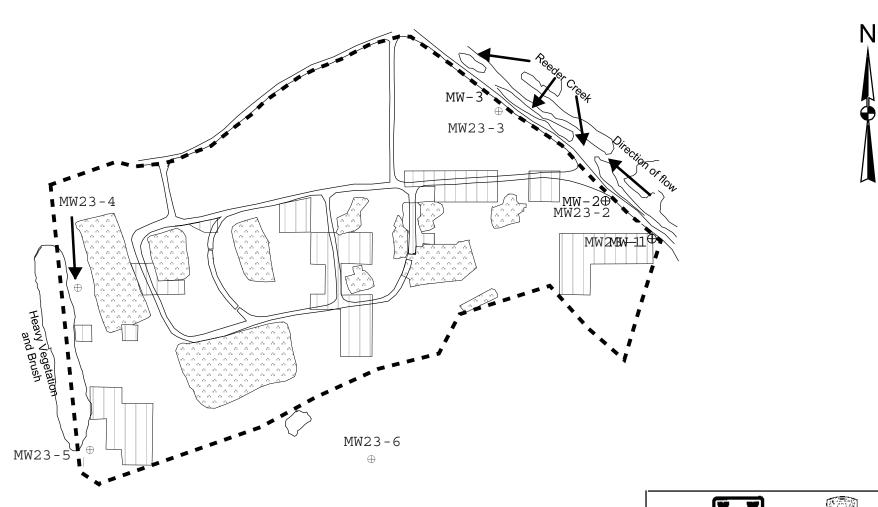
			Frequency	Action		Number	Number	Number					
		Maximum	of	Level	Action	of	of Times	of Samples					
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)				
Copper	UG/L	0	0%	GA	200	0	0	35	20 U				
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	3.6 J
Turbidity	NTU								8	2.84	8.2	48	10

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

Table 4 Soil Cap Inspection Log OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Observations


		Observations		
Grid #	Round 1 - January 2008	Round 2 - February 2008	Round 3 - May 2008	Round 4 - August 2008
S8	Several 1" to 2" size mice holes were observed	No change	No change	No change
S8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	No change
R8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	A mouse hole approximately 6" wide and approximately 6" deep was observed. Hole was repaired August 2008.
Q8	2" mice hole was observed on the ground surface.	No change	No change	No change
Q8	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change
P10	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change
L9	Two mice holes approximately 6" deep	No change	No change	No change
L9	A mouse hole approximately 6"deep was observed	No change	No change	No change
L9	A mouse hole approximately 6"deep and 6" diameter was observed	No change	No change	No change
L8	Minor erosion along the edge of the soil cap from surface water flow.	Surface water runoff path forming. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change
18	A mouse hole about 2" to 3" in size was observed	Vegetation spotty, large amounts of surface soil exposed. Reseeded May 2008.	Reseeded May 2008.	No change
18	Minor erosion of the soil cap.	Surface water runoff path forming. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change
16	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change
J6	2" mice holes were observed on the ground surface.	Short surface water drainage path; native soil not visible. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change
H9	Two mice 2" size holes was observed.	No change	No change	No change
D7	Two mice 2" size holes was observed.	No change	No change	No change
В3	A mouse hole approximately 6" wide and approximately 6" deep was observed	No change	No change	No change


Grid #	Round 5 - August 2010
S8	No animal holes were observed.
S8	No animal holes were observed.
R8	No animal holes were observed.
Q8	No animal holes were observed.
Q8	No animal holes were observed.
P10	No animal holes were observed.
L9	No animal holes were observed.
L9	No animal holes were observed.
L9	No animal holes were observed.
L8	Erosion of road area due to surface water flow.
J8	Erosion along road edge due to surface water flow off of road surface.
J8	Erosion around a culvert outlet due to surface water flow off of road surface.
18	No animal holes were observed.
16	No animal holes were observed.
J6	No animal holes were observed.
H9	No animal holes were observed.
D7	No animal holes were observed.
B3	No animal holes were observed.

- 1. All grids capped areas were inspected. Grids with no signs of erosion or other disturbances to the cover are not included in this log.
- 2. The Army repaired the washout areas noted above, and reseeded areas with sparse vegetation on or before May 22, 2008.

FIGURES

Figure 1	SEDA Site Map and AOC Location
Figure 2	Open Burning Grounds Site
Figure 3	Historic Groundwater Contours with August 2010 Elevations
Figure 4	Groundwater Elevation Profile
Figure 5	Concentrations of Lead and Copper at MW23-1
Figure 6	Concentrations of Lead and Copper at MW23-2
Figure 7	Concentrations of Lead and Copper at MW23-3
Figure 8	Concentrations of Lead and Copper at MW23-4
Figure 9	Concentrations of Lead and Copper at MW23-5
Figure 10	Concentrations of Lead and Copper at MW23-6
Figure 11	Open Burning Grounds Soil Cover Areas and Well Locations
Figure 12	OB Grounds Completion Report Map Overlain on Aerial Photo
Figure 13	Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection Comments Identified
Figure 14	Reeder Creek Inspection Photo Locations

Approximate Location of Interred Soils

Former Burning Pads

OB Grounds Boundary

Monitoring Well Location

Map not to scale. Site features derived from information presented in "Soil and Sediment Remediation, Open Burning Grounds, Completion Report." See Figure 4-13.

(Weston Solutions, Inc. June 2005)

PARSONS

SENECA ARMY DEPOT ACTIVITY OPEN BURNING (OB) GROUNDS LONG-TERM MONITORING 2010 ANNUAL REPORT

> FIGURE 2 Open Burning Grounds Site

> > DATE: October 2010

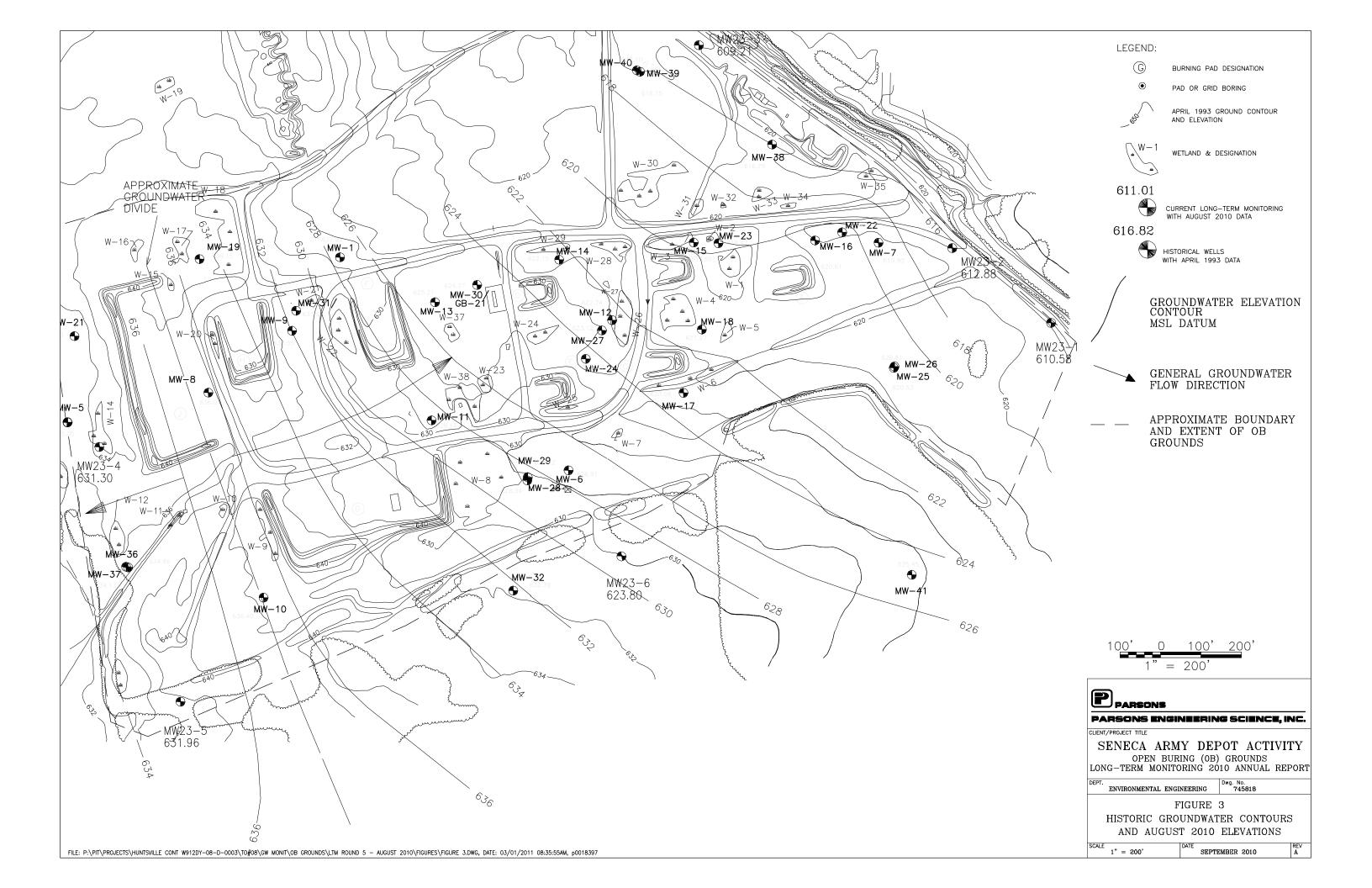


Figure 4
OB Grounds Groundwater Elevation
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

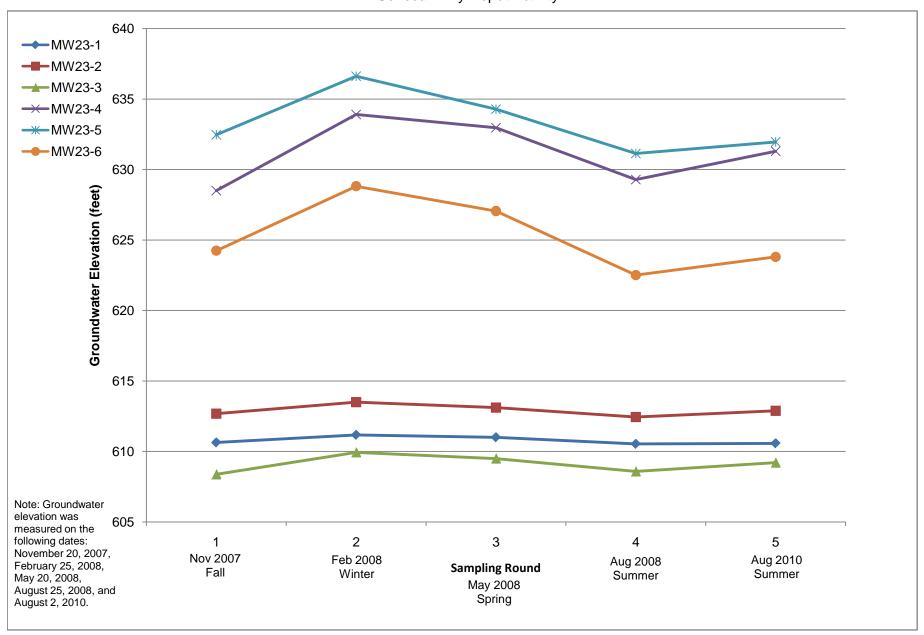
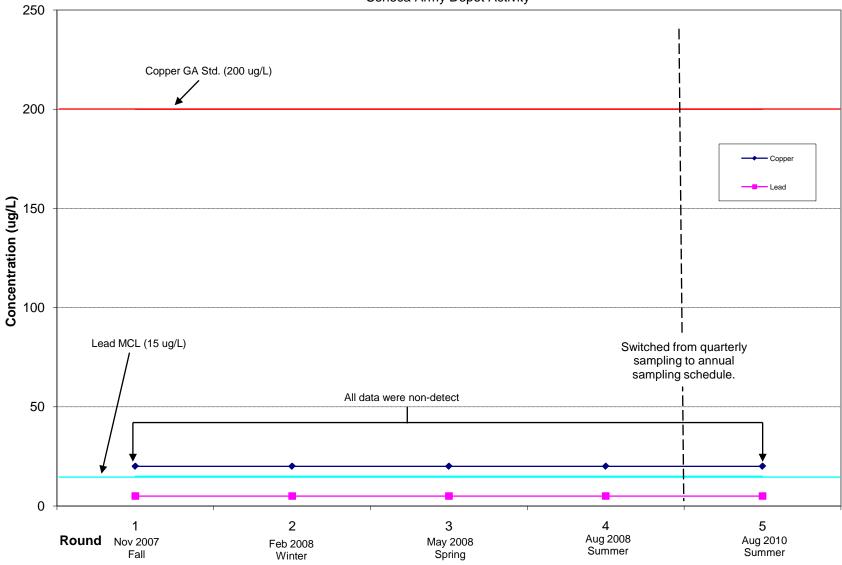
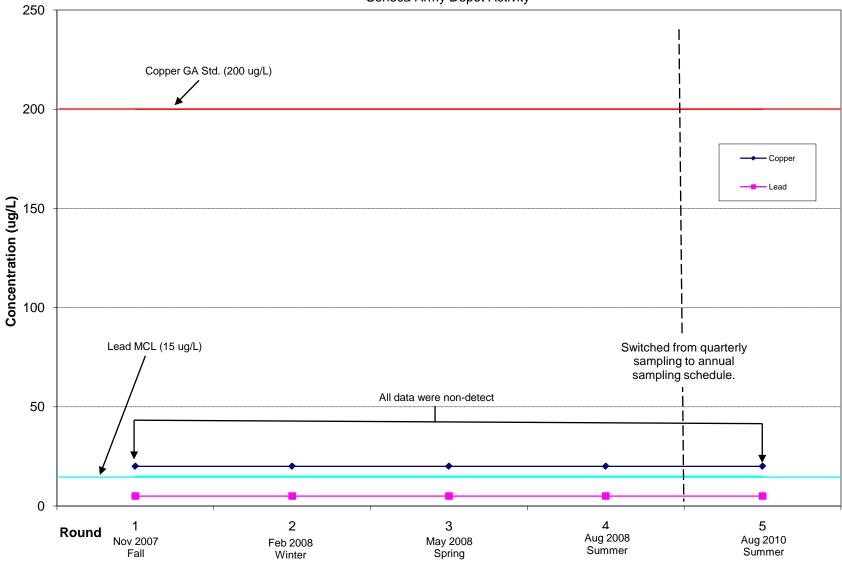




Figure 5
Concentrations of Lead and Copper at MW23-1
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

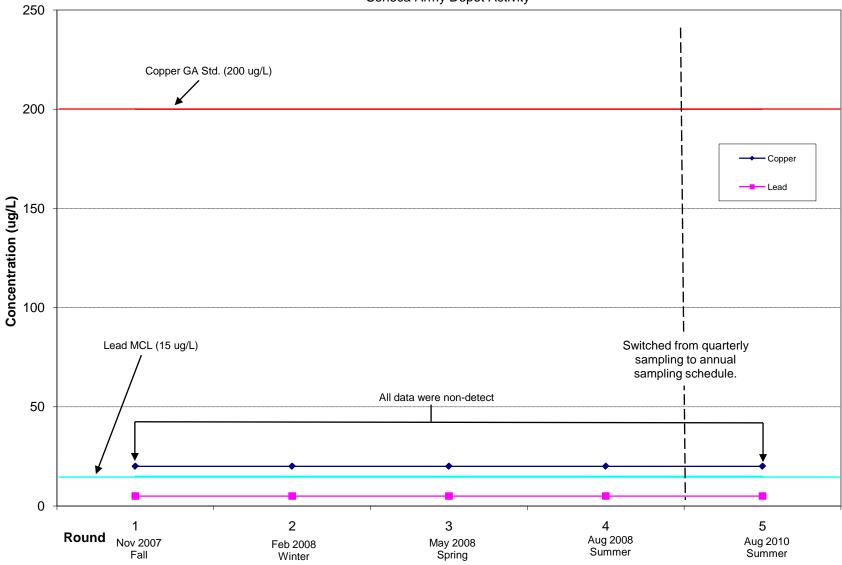

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

Figure 6
Concentrations of Lead and Copper at MW23-2
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

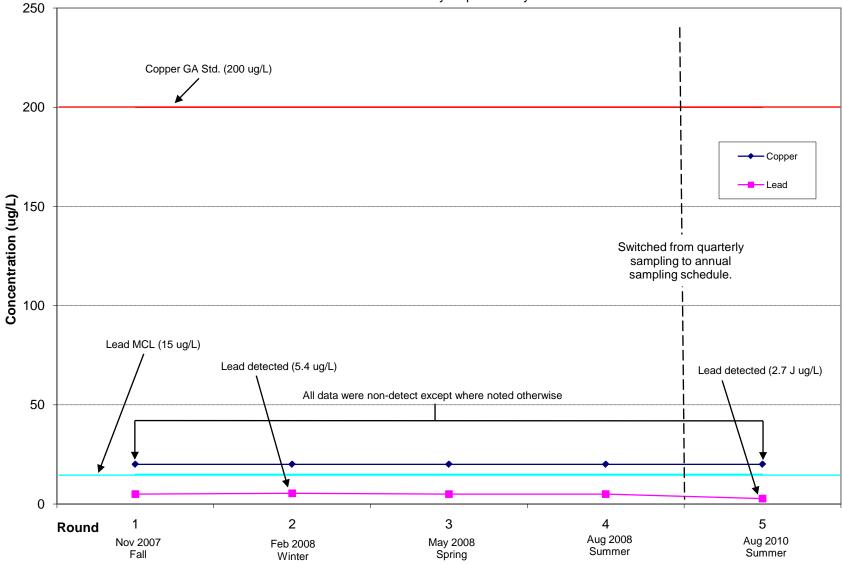

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

Figure 7
Concentrations of Lead and Copper at MW23-3
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

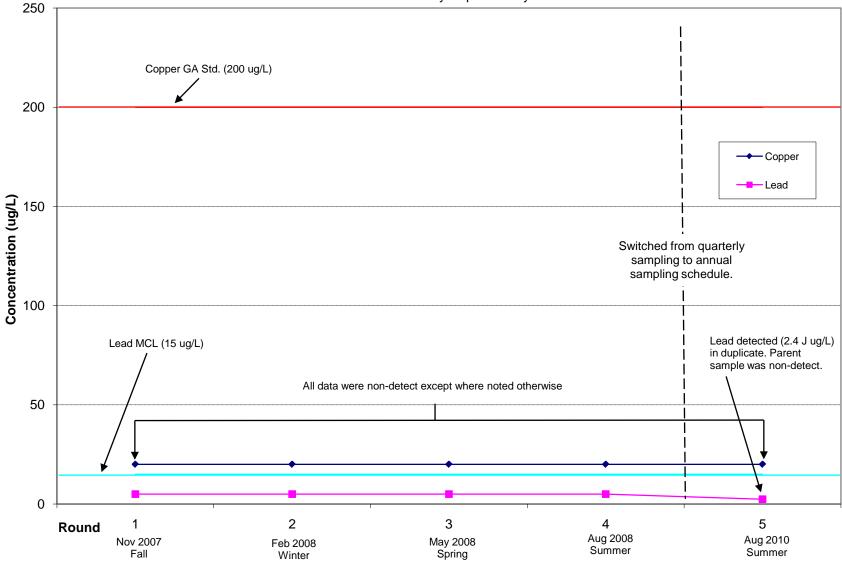

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

Figure 8
Concentrations of Lead and Copper at MW23-4
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

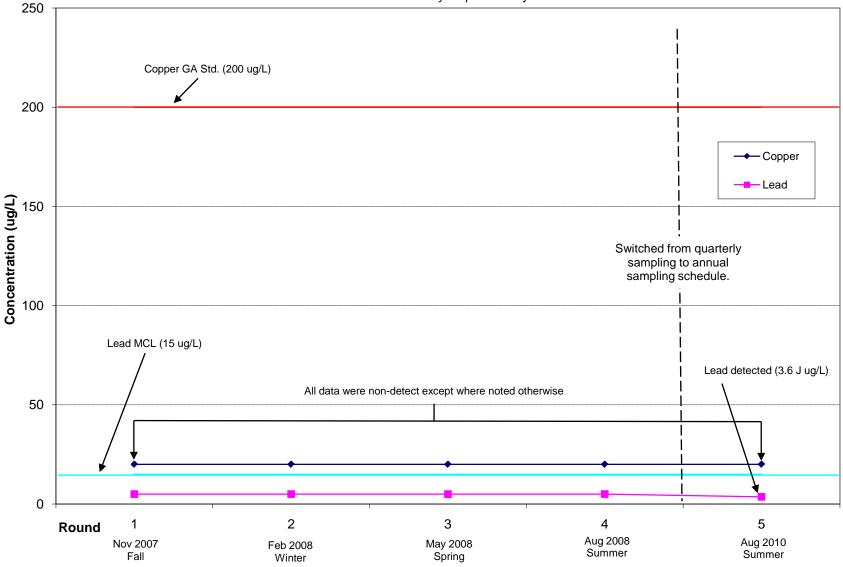

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

Figure 9
Concentrations of Lead and Copper at MW23-5
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

Figure 10
Concentrations of Lead and Copper at MW23-6
OB Grounds LTM 2010 Annual Report
Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

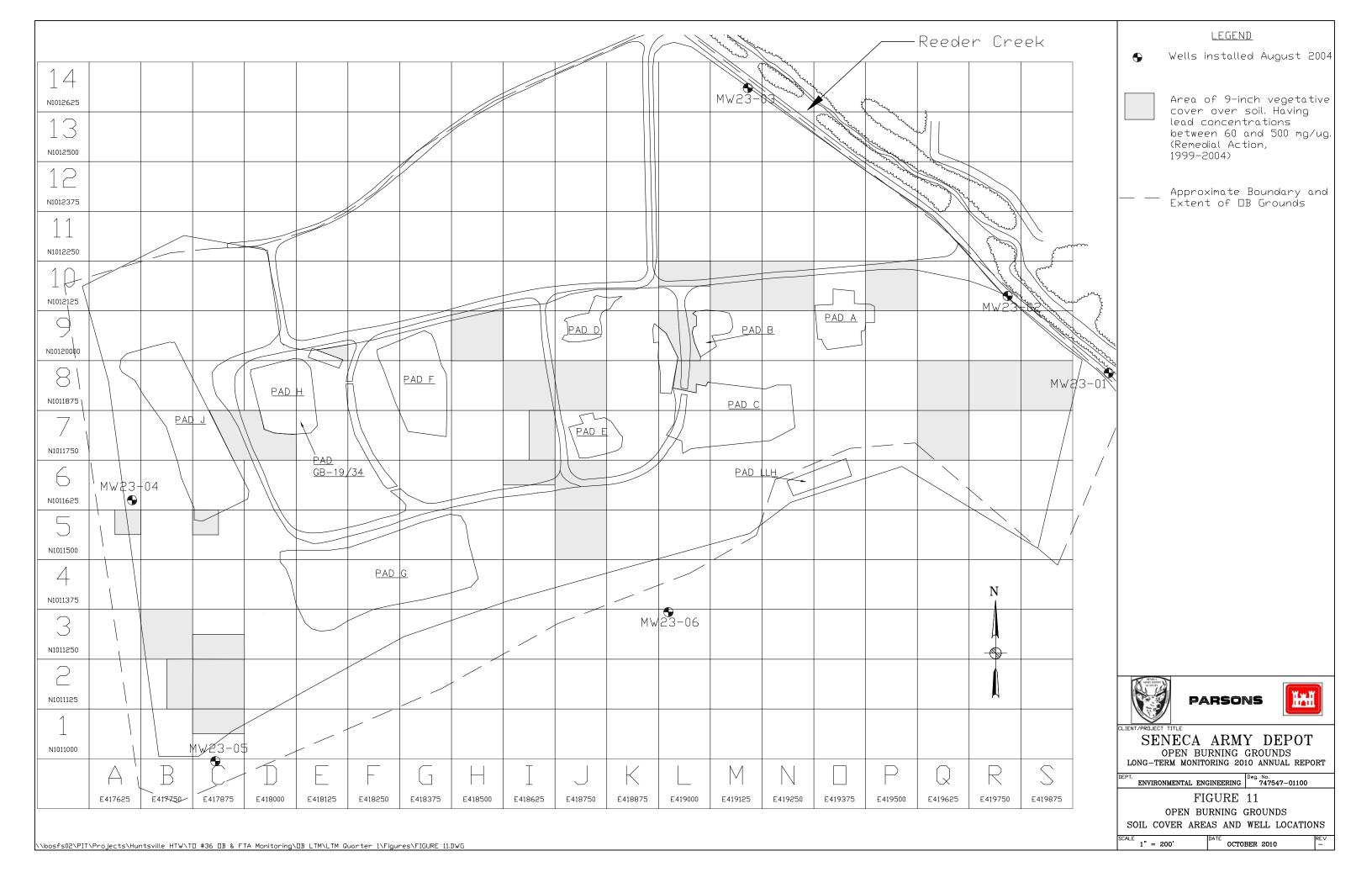
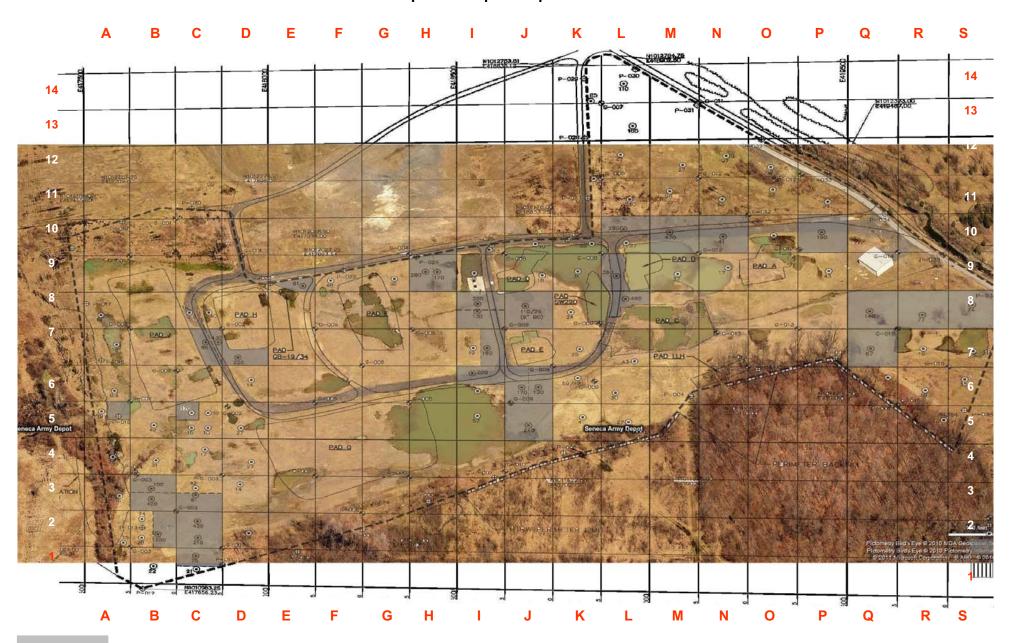
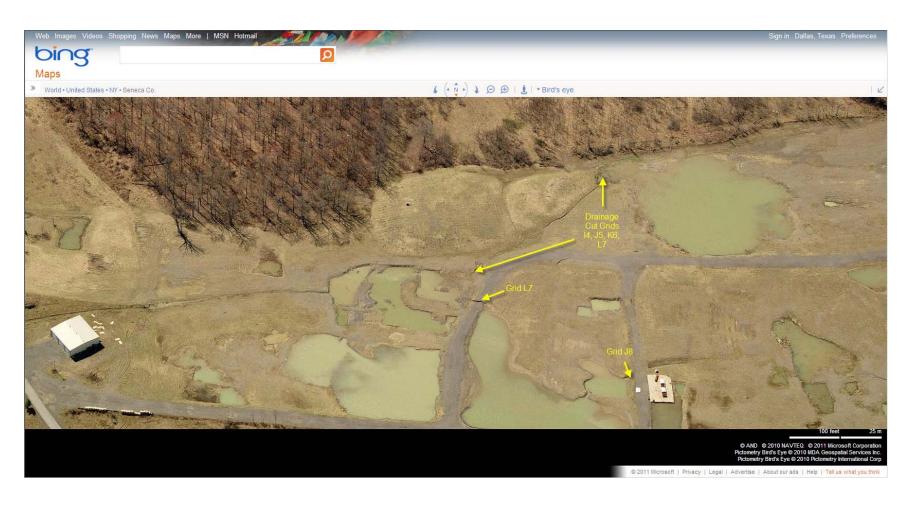
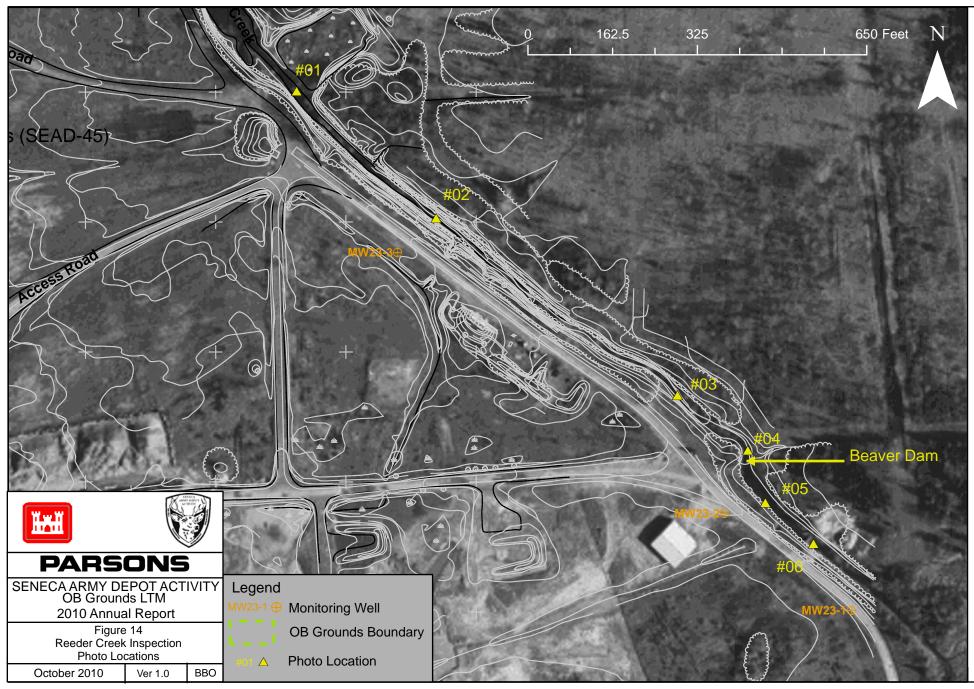



Figure 12
OB Grounds Completion Report Map Overlain on Aerial Photo



Location where lead contaminated soil interred


Map Source: Weston Solution, Inc. Completion Report, Soil and Sediment Remediation, Open burning Grounds, Seneca Army Depot, June 2005.

Aerial Photo Source: www.bing.com, March 2, 2011, Bird's eye view looking north.

Figure 13
Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection Comments Identified

Aerial Photo Source: www.bing.com, March 2, 2011, Bird's eye view looking south .

APPENDICES

A	Open Burning Grounds Round 5 Field Forms
В	Log Book 08/05/2010 Notes and Transcript of Reeder Creek Inspection
C	Reeder Creek Inspection Photos
D	Laboratory Report
E	Data Validation

APPENDIX A

OPEN BURNING GROUNDS ROUND 5 FIELD FORMS

		-		GROUN	JDWA'	TER E	LEVA	ΓΙΟΝ	REPORT
PARS				CLIENT:		TEXT D.	DE VIII	TOIT	DATE: 8(2/(0
PROJECT;	CB Gr	ounds L	TM RE	parid 5					PROJECTNO \$/2/10 38 a 5/2
LOCATION	<u> </u>						-		PROJECT NO: 36240 380 5/2 INSPECTOR: BDO (50
MONITORIN INSTRUMENT	G EQUIPMENT	BGD	TIME	REMARKS	WATER LEV	VEL INDICATOR			COMMENTS:
				III. III.	INSTRU	AIISINI	CORRECT	ION FACTOR	1
	 			 					
WELL	TIME	DEP	PRODUCT	CORRECTED WATER LEVEL	MEASURED POW	INSTALLED	PRODUCT	<u> </u>	WELL STATUS / COMMENTS
23-1	927	17.06	THE PARTY OF	WAILE LEVEL.	POW	POW	SPEC GRAV	d _a	kk? Well 69 Surface Distribute? Roser marked? Conditioned riser, contract protective enting etc.)
23-2	928	9.40							
23-3	931	9.97			-				
23-4	935	5.81							
	939	7.51							ell cup
23-6	945	8.79						<u> </u>	C 1 (4)

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

		SAM	PLING R	E	CO	RI) -	GR	OU	ND	W	ATER	?	
S	ENECA	A ARMY I	DEPOT ACTIVITY				PAR	50 N	15		WE	LL #: 1	J Z	-3-1
	ROJECT CATIO		OB Grounds I			water S US, N		g - Roun	085		INSP	DATE: 7/ PECTORS: 7 IP#: Peris	530	0/50
W	EATHE	R/ FIELD	CONDITIONS CHEC				ECORD				SAM	PLE ID #:		
T.	IME	ТЕМР	WEATHER		EL. HDITY	WIN		ROM) ECTION		ID/SITE FACE	<u>() () (</u>	LA ZOO MONIT	_	
	HR)	(APPRX)	(APPRX)		EN)	(APP		- 360)		ITI <u>O</u> NS	INST	TRUMENT		ETECTOR
9	12	757	scuttered clarks						e/415	4		OVM-580		PID
G.	METER (I ALLONS / LITERS/F	INCHES): / FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0 654 2 475	6 1 47 5 564	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT)		.)
			DEPTH TO POINT OF WELL			TH TO	SCREEN	n	WELL EVELOPME	OMT.	DEV	WELL ELOPMENT	Di	WELL EVELOPMENT
'	HISTORIC	DATA	15.3 2.08	Top		N (TOC)	(FT)		TURBIDIT		<i>p</i>	pH		SPEC COND
DAT	TA COLLE		PID READING (OPENING WELL)		WAT	DEPTH I STATIO ER LEVE			DEPTILTO STABILIZE ER LEVEL	D		NE TO PUMP INTAKE (TOC)	PU.	MPING START TIME
					1	2.0	8							
RAD	IATION SO DATA	CREENING A	PUMP PRIOR TO SAMPLING (cps)					S/	PUMP AFTI Ampling (ER eps)				
		MON	NITORING DATA	CO	LLEC	TED	DURI	NG P	URGII	NG OP	ERA	TIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV (YGEN (n		TEMP (C)		COND	рН		ORP (mV)		TURBIDITY (NTU)
713	12.08	Punp	Started at											
920	1	~110		(0,90	2	17.2	10,9	03	(2.3	-	210		45
925	12.22			(0.8	5	16.9	Ö,9	386	6.43	2	180		8,7
930	12.22	110			0.8		16.7	0.8	79	6.47	,	144		6,7
935	12.22	~165			0.8	72	16.7	0.8	73	6.5	3	81		5,5
940	12,28				0.8		16.5	018	71	6,60	2	52		.3.9
945	12.28	~150		1	0.8	Ī	11.3	0,8	56	6.64		3 3		4.1
150	12.28			0	.60	2	16.4			6.7	_	19		2.0
955				0	.70					6.7		14		1.9
1000	12.28		~1.75gnls		.80		16.4			6.75		10		1,7
		2-155		0	. 79				543			8		1.6
1010	12.24	•		0.	77				140			6		1.4
1015	12.29		2,39915	0.	76		(6.7	0,8	740	6.7	ष्ठ	5		1.3
1216											_			
1016		Sample	c (ollected	٥.	אומ	20	20				+			
			Sample ID	11			29				\dashv			
			Sanple Time	10	20									
											+		-	
			-								-			

flow on

	S	AM	PLING R	B	CO	RD	-	GR	OU	ND	V	ATER	2
SENE	CA	ARMY [DEPOT ACTIVITY	,			PAF	1501	ıs		W	ELL #: //W	27-2
PROJE LOCAT	ION		OB Grounds I	R	OMU1	JUS, NY	ı'				PU	DATE: 8 SPECTORS: IMP #: Perk	30/50
WEAT	HER	/ FIELD	CONDITIONS CHEC	1	T EL.	(RI WIN		MAJOE FROM)	CHAN	GES) D/SITE		MPLE ID #:	20
TIME		TEMP	WEATHER	l	IIDITY	VELOC	- 	RECTION	1	FACE		MONIT	
(24 HR)		(APPRX)	(APPRX)		EN)	(APPI		0 - 360)		ITIONS	IN	STRUMENT	DETECTOR
		75	nextly summer						254	54		OVM-580	PID
										*			
DIAMETE GALLO: LITEI	NS/F	CHES): OOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 9.165 0.010 0.151 0.617	TORS 3 0 367 1 389		6 1 47 5 564	ON	E W ELL VO				ABILIZED WATER L R FACTOR (GALJFT)	
1,111,1	<u> </u>	01	DEPTH TO POINT	1.202	DEP	тн то	SCREEN		WELL			WELL	WELL.
HISTO	UC D	ATA	OF WELL (TOC)			P OF EN (TOC)	LENGTH (FT)	C	FVELOPMI TURBIDIT		1	DEVELOPMENT pH	DEVELOPMENT SPEC COND
			15,2+0,2	7									
DATA CO	LLECT		PID READING (OPENING WELL)		WAT	DEPTH 1 STATIC TER LEVE		WA	DEPTILTO STABILIZE TER LEVEL	D	DI	EPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
					9	<u>,44</u>							
RADIATIO: D	N SCR	EENING	PUMP PRIOR TO SAMPLING (cps)						PUMP AFTI AMPLING (
		MON	ITORING DATA	CO	LLEC	CTED	DUR	ING F	URGII	NG OF	ER	ATIONS	
TIME WATE		PUMPING ATE (mVmin)	CUMULATIVE VOL (GALLONS)		DISSOLV XYGEN (1		TEMP (C)		. COND	pli		ORP (mV)	TURBIDITY (NTU)
9:44	2	n 54.	tal at 1030		YSF		Har. In	+		ļ		(,,,,	Latots
1043 18	5	2150			2.30	6	17.2	0.6	02	7.15	5	109	31
1048 10.0	6 1	-200		6	0.07		16.8	-		7.11		108	12
1053 10.1	8	220		C	>.0	((7.0	0.0	612	7.10		107	8,3
1058 10.7	25	~160	0.75 9219	0	.04		17.1	0.6	30	7.1	2	164	4,4
1103 10-	_			0	.03		17.4	0.6	,33	7.17	2	102	2.7
	32	~150		 	.02		17.4	0.6	32	7.16	ł	101	2.4
1113 10.	35		~1.5 gals	C	.07	,	17.3			7.14		101	3.4
			21.75 sals	Day.	red								
1117	<	Sample	Collected										
			21.75 sals Collected Sample ID Sample Time	0	BL	4 26	203	b					
			Sample Time	l	120								
								Ï					
	1												
	+											<u> </u>	
	+			\vdash									
	+												
-	+												
				I				1					

Shar (a)

		SAM	PLING R	E	CO	RI) -	GR	OU	ND	W	ATER	2		
S	ENEC.	A ARMY	DEPOT ACTIVITY				PAR	50 N	15		WI	ELL #: 144	ノて	3-3	
			OB Grounds I			JiS, N	Y				PU!	PECTORS: T	BO		
W	EATHE	R/ FIELD	CONDITIONS CHEC										21		
T	IME	TEMP	WEATHER				- 		1	1			_	NG	
			1	(G	EN)	(APP	RX) (0	- 360)	COND	TIONS	INS	STRUMENT	DE	TECTOR	
162	2	7-3	Butty cloudy	<u> </u>					200	5-7		OVM-580		PID	
G:	ALLONS	(INCHES): /FOOT:	0.25 1 2 0 163 0 0026 0 041 0 163 0 010 0 151 0 617 DEPTH TO POINT	TORS 3 0 367 1 389			SCREEN	1	WFLL	VELL DIAM	ETER	FACTOR (GAL/FT) WELL	1	WELL	
1	HISTORIC	DATA	(TOC)	12 4	SCREE		LENGTH (FT)	D			Di	pH pH		VELOPMENT PEC COND	
DAT			PID READING (OPENING WELL)		WAT	STATIC WATER LEVE			STABILIZE	D	DĿ	PTH TO PUMP INTAKE (TOC)	PUM	IPING START TIME	
RADI			PUMP PRIOR TO												
NSPECTORS: SOPPHINE INSPECTORS: SOPPHINE SAMPLE ID SAMPLE ID SOPPHINE SAMPLE ID SOPPHINE SAMPLE ID SOPPHINE SOPPHINE															
(min)		PUMPING	CUMULATIVE VOL	03	VGEN (F	ED	TEMP	SPEC.	COND		ERA	ORP		TURBIDITY (NTU)	
9.96		Pup	Started at	`	154		Herly				4		_	Lar. Ho	
	_			(0,0		 	0.6	-(1		9	-17	4	18	
1640	10.08	2162					17.6						_	7.6	
1645			~1,0				17.3	 			-		_	4,0	
				0	112		17.Z	0.5	93	6.97	8			2.6	
		-1100		D	- 1	<u> </u>	17.2	-	<u>>92</u>	6.9	1	-40	\dashv	1.9	
* * · · ·			<u> </u>	_0	01.0		17.3	-	40		1	-41	_	2.1	
1785	10.00			8	.10							-42	_	1.6	
17/0	10.00			ŀ				0.5	70	6.9	1	- 42		1.5	
1717		Sary	de Collectes	01	مرا (1200	031				+				
			Search Time	1-	117										
					•										
											\neg		\dashv		
			† 										\neg		

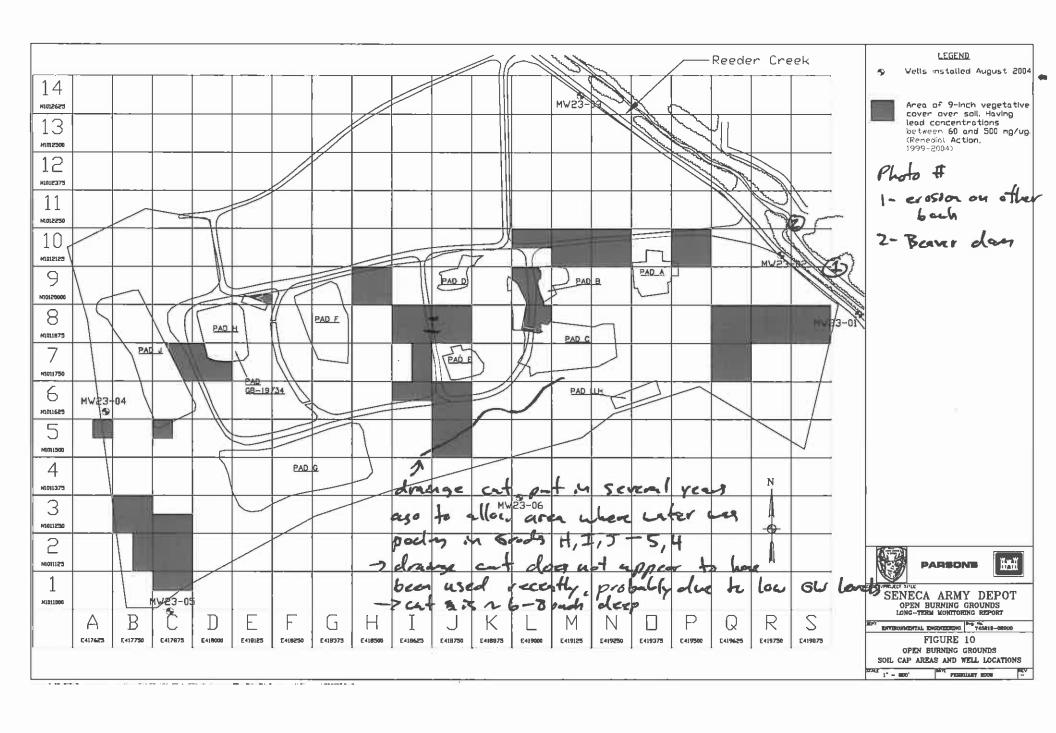
1626

SENECA	ARMY I	DEPOT ACTIVITY				PAR	1901	ıs		WE	LL #: /14	123-4
PROJECT	:	OB Grounds I	тм с	Ground	water !	Sampling	g - Roun	d (5			DATE: 8	2116
LOCATION	N:		R	<u>OMUL</u>	JUS, N	<u>Y</u>			.]	INSP	PECTORS:	180/5D
WEATHE	R/ FIELD	CONDITIONS CHEC	KLIS	Γ	(R	ECORD	MAJOR	CHAN		SAM	IPLE ID #:	
TIME	TEMP	WEATHER		EL.	VELO	<u>`</u>	FROM) RECTION	GROUN	D/SITE FACE	001	MONIT	
(24 IIR)	(APPRX)			IDITY EN)	(APP		GC1108 1 - 360)		ITIONS	INST	TRUMENT	DETECTOR
1454	73	scattered clad			5-(() SI	-7/ /4	Spech	/		OVM-580	PID
	WELLVOI	JUME CALCULATION FAC	1085			IONE	WELLYC	I DMF (CA	L) = KPON	- STARI	LIZED WATER I	EVELY
DIAMETER (I GALLONS /	NCHES): FOOT:	0.25 1 2 0.0026 0.041 0.163	3 0 367	4 0 654	6 1 47	0.4					ACTOR (GAL/FT	
LJTERS/F	ООТ	0 010 0 151 0 617 DEPTH TO POINT	1 389	2 475 DEF	5 564 TH TO	SCREEN		WELL			WELL	WFLL
HISTORIC	DATA	OF WELL (TOC)			P OF N (TOC)	LENGTH (FT)	D	EVELOPMI TURBIDIT		DFV	VELOPMENT pH	DIVELOPMENT SPEC COND
		17.9 +0.29										
DATA COLLEG	CTED AT	PID READING			DEPTH STATIO			DEPTH TO STABILIZE			TH TO PUMP INTAKE	PUMPING START
WELL SI	TE	(OPENING WELL)			ER LEVE	EL (TOC)	WAT	ER LEVEL	(TOC)	_	(TOC)	
RADIATION SC		PUMP PRIOR TO	_	3	1 1			PUMP AFT				
DATA		SAMPLING (cps)	<u> </u>							DED A	TIONS	
TIME WATER	PLMPING	CUMULATIVE VOL	ľ	DISSOLV	ED	TEMP	SPEC	COND		EKA	TIONS ORP	TURBIDITY
(mln) LEVEL	RATE (ml/min)	(GALLONS)		YGEN (1	ng/L.)	(C)	(un	nhos)	pll		(mV)	(NTU)
300 697	103	JIWIT D		7.7	ζ	19.9	0.0	180	7.5	4	41	15
305 7.67	103		_	.2/		19.1	0.6		7.5	$\overline{}$	18	9.3
310 739	104			.ZZ		18.9	0.6		7.5		-2	5-5
575 8.48		-0.5 gals	C	11.	_	18.5			7.5	3	-8	4.0
15208.19		,	C	1, 0	Z _	18.4	0.6		7.4	9	- 5	3.1
1525 925			0	.11		17.1	0.6		7.4		-2	2,4
1	-112	21,05013	0	.17		18.3	0.6		7.4	_	4	2.3
535 10.24			0	61			0.6		74		9	1.9
545 10.58		21.5gals		,46			0.6		7.4		13	2.5
1550 11.09	116		0	56			0.6		7.4		16	1.9
1555 11.31		~2.0 2015		55		17 2	0.6	46	7.43	7		1.7
1605 11.76		- 410 7413		52			0.6		7.4		22	1.6
					-	17.0		• ,	7.1	_		110
1612	Sample	Collected										
		Sangle ID	0	BLA	120	032	1					
		Time 161	2_									

1500 1505 1510

adjusted to proper to the property of the prop

		SAM	PLING R	E(CO	RI) -	G	RO	U	ND	W	ATE	₹	
S	ENEC	A ARMY I	DEPOT ACTIVITY				PA	R50		•		W	ELL #: // (123-5	
	ROJECT CATIO		OB Grounds I		Fround OMUL			ling - R	ou nd	5			DATE: 8/ SPECTORS: 1 MP #: Pers	80/50	
W	EATHE	ER / FIELD	CONDITIONS CHEC	KLIS	l.	(R	ECOR	D MA	JOR C	HAN	GES)	SA!	MPLE ID #:		
					EL.	WE					D/SITE	08		>/00LAZ	XD 3.4
	IME (HR)	(APPRX)	WEATHER		IDITY EN)	VELO:	- 1	DIRECT			FACE ITIONS	ING	MONIT STRUMENT	ORING DETECTOR	
	40	73	- 10	- (G	EIN)	(APP	KA)	(0 - 36		OND		105	OVM-580	PID	
	10	1//	Sum Closely				\dashv		۲,		7—		O A MI-200	FID	
G.	METER (ALLONS LITERS/	(INCHES): /FOOT:	0.25 1 2 0.026 0 (M) 0.163 0.010 0.151 0.617	TORS 3 0 367 1 389	4 0 654 2 475	6 1 47 5 564	ľ	DNE WEL	L VOLUM				BILIZED WATER I FACTOR (GAL/FT)		
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)	A 5 2	TOI	TH TO P OF N (TOC)	SCRE LENG (FI	TH	DEVE	WELL LOPME RBIDIT		DI	WELL EVELOPMENT pH	WELL DEVELOPMENT SPEC COND	
			17.43*	, ot											
DAT	TA COLLE	ECTED AT SITE	PID READING (OPENING WELL)			DEPTH STATI ER LEVI	C EL (T OC	,		PTH TO BILIZE LEVEL	D	DE	PTH TO PUMP INTAKE (TOC)	PUMPING START TIME	
					7	<u> 7.5'</u>									
RAD	DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)							P AFTE LING (
		MON	ITORING DATA	CO	LLEC	CTED	DU	RING	PUE	RGII	NG OF	PERA	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	l .	DISSOLV YGEN (n		TEM (C		PEC. CO		pН		ORP (mV)	TURBIDITY (NTU)	
1340	7.5	' Purp	Startal,		727		4	~						Larotto	
1345	8.48	~140		0	,00		16:	8 (2.66	0	7.30	6	-62	3,0	
1350	8.83			0.	24		17.	30	1.64	17	7.17	2	-39	2.0	
1355	8.97	~140		0	05		16.	6 C	.65	-4	7.12	-	-41	1.9	
1400	1.05			0.	04		16:	8 0	.64	5	7.11		-42	1.8	
1405	1.14		~1.0596	0	07		17.	00	63	6	7.05	-	-29	1.3	
1410	1.20				20		17.	00	.63	4	7.04		-18	1.4	
1415	7.24			0.	24		17.0	0 0	.63	2_	7.0	-	-(9	1.1	
1420	9.19		~1.259915	0.	27			$\overline{}$	63		7.03	_	-17	1.0	
			Sprile ID	07	سماح	120	03	3	ı	42	8				
			,	013	M	Z00	33	<u> </u>	L	42	8				
									PI	42	8				
					4					43	4	0	P		
													′		


		SAI	N	PLING R	E)	CO	RD	-	(3R	OU.	ND	V	ATER	2	
S	ENEC	A ARM	ΥI	DEPOT ACTIVITY	,			PAI	75	ON	15		W	'ELL #: /(ሬ	123-6	
	ROJEC CATIC	_		OB Grounds I			water S US, NY		ng -	Round	165			DATE: 8/ SPECTORS: 15 IMP #: 64	30/5	D
W	EATH	ER/FIE	LD	CONDITIONS CHEC	KLIS	ľ	(RI	ECORI) M.	AJOR	CHAN	JES)	SA	MPLE ID #:		= I
					R	EL.	WIN	(D	(FR	OM)		D/SITE	0	BLM 20		
	IME	TEN		WEATHER		IDITY	VELOC			TION	SURI		<u> </u>	MONIT	· · · · · · · · · · · · · · · · · · ·	
(24	HR)	(APP	(XX)	(APPRX)	(G	EN)	(APP)		(0 - 3			TIONS	1.5	STRUMENT	DETECT	
))		<u> </u>	SHARY SCATIONAL	1		0-11	9	W - 7	NE	5/ess	7 —	_	OVM-580	PI	Ы
G/		(INCHES); / FOOT:		UNIE CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.017	TORS 3 0 367 1 389	4 0 654 2 475	6 1 47 5 564	l:	7.4	(- {	5,75	L) = [(POW VELIL DIAM = 8,	-ST/	ABILIZED WATER L	405 6	
١.	IISTORIC	" DATA		DEPTH TO POINT OF WELL (TOC)		TO1	TH TO P OF N (TOC)	SCREE LENGT (FT)			WELL EVELOPME TURBIDITY		I	WELL DEVELOPMENT pH	WELL DEVELOPN SPEC CO	JENT
	1131061	DAIA		17.41		N KEE	(100)	(41)			ТСКИПОТТ				SPEC CO	.,,,,,
DAT	A COLL	ECTED AT SITE		PID READING (OPENING WELL)		WAT	DEPTH 1 STATIC ER LEVE	2		5	DEPTH TO STABILIZE ER LEVEL	D	D	EPTH TO PUMP INTAKE (TOC)	PUMPING S TIME	TART
RADI	IATION S	CREENING	Ħ	PUMP PRIOR TO SAMPLING (cps)		0	-7 (1		UMP AFTE					
		M	ON	ITORING DATA	CO	LLEC	TED	DUF	ZIN(G P	URGIN	NG OF	ER	ATIONS		
TIME	WATER	PUMPIS	G	CUMULATIVE VOL	450)ISSOLV	ED	TEMP	_	SPEC.	COND			ORP	TURB	
(min)	LEVEL	RATE (ml	min)	(GALLONS)	. 03	A'GEN (n	ng/L)	(C)	<u>, </u>	(um	hos)	pH		(mV)	(NT	τ)
1020	8.6	3	Per	up State	1	72	ر المارول	194	+						إبحرها	TE
1025	10.4	7-130	2	,		0.0	1	15,	1	0.6	79	6.2	6	140	38	
1030	11.14	~13	0		_ (2.10		15.8	1 4	0,6	12	647		131	18	
1035	11.8	3 417	4		6	1.2	0	16.1		0.6	,70	6.73	2	95	6.6	
1040	12.3	8			C	.20	2	16.0	, [0.6	.72	6.80	2	85	4.8	
1045	12.7	5		~laal	6	2.2	0	16.1	٦,	2.6	77	1.9	3	72-	4.0	
10.50	0.85	102		, ,,,		0.30	2	16.4	1 1	9.6	56	7.64	1	67	2.9	
10:55		-		ايم 1.3 سد		.4		16:	 		-	7.0	6	69	3.2	
		108		7		,29				2.6		7.07		72	3.9	
1115						.28		16.3	_	3.6	-	7.0	2	11	2.3	
1120				22 gals		. 26		16.1	4	6.6	59	7.00		71	2.7	
1:12.)					_	_			A	7	1					\vdash
1139	~	ampl	2	Sample ID	50	LM	206			<u>ایان</u> حا	1	- C	<u>.</u>	peristral	Central	
	BIS	8/2/1	/	Sarple FA	$\overline{}$	74			\downarrow	[w.	rter	Ime	4	Il down	De pu	7 1
				~				rec	an	u Ca	-1	44	2	1	ver	he
							tad	ad.		73	Jen		UL.	40.		
1136	14.53	~101	0	22.3926	0	.14		16.	3	0.6	70	7.10		77	90	
1141					0	.16		16.5			64	7.13	3	72	19	
1146					0	.13	5	16.4			68	7.19	5	68	11	

Page 2 - 72

		SAI	/ []	PLING 1	R	E(CO	RI) -		GR	OU	ND	V	ATER	2	
SI	ENEC.	A ARM	Y D	EPOT ACTIVIT	Y				PA	R	50N	15		W	ELL #: // ረ	12.	3-6
I.O	OJEC CATIO	N: _		OB Ground		R	OMUL.	US, N	· ·					Pξ	DATE: T SPECTORS: T MP #: Pevr	Bo	10 ISD
W	EATHE	ER / FIE	ָ מָן	CONDITIONS CHE	ECH						T	CHAN		SA	MPLE ID #:	<u>. 4</u>	
Tri	OLATS	2010	,,	WEATHER			EL.	WIN		÷	ROM) ECTION	GROUN	D7SITE FACE	0	MONIT	0 D I	NC.
	ME IIR)	TEN (APP)	- 1	WEATHER (APPRX)		(G)	IDITY EN)	(APP	- 1		- 360)	CONDI		IN	STRUMENT	_	ETECTOR
(27	1111,	(.2.7.2	/	()	\forall	(0)	,	(<u> </u>	(0	200,	00112			OVM-580	-	PID
			\dashv		\forall					_							
G/	METER ALLONS	(INCHES): / FOOT :	VOL	UME CALCULATION F 0,25 1 2 0 0026 0 041 0 16 0 010 0 151 0 61	3	ORS 3 0.367 1.389	4 0 654 2 475	6 1 47 5 564	0	NE '	WELL VO				BILIZED WATER L FACTOR (GAL/FT)		.)
			_	DEPTH TO POIN			DEP	TH TO	SCREE			WFLL			WELL		WELL
1	HSTORIC	DATA		OF WELL (TOC)				P OF N (TOC)	LENG! (FT)			EVELOPME TURBIDIT		I	DEVELOPMENT pH		EVELOPMENT SPEC COND
													$\neg \neg$				
DAT	A COLLE	ECTED AT SITE		PID READING (OPENING WELL	.)		WAT	DEPTH T STATIO ER LEVE	Γ			DEPTH TO STABILIZE ER LEVEL	D	D	EPTH TO PUMP INTAKE (TOC)	bf:3	MPING START TIME
				<u></u>													
RADI	ATION S DAT	CREENING A		PUMP PRIOR TO SAMPLING teps								PUMP AFTI AMPLING (
		M	ON	ITORING DAT	Ά	COI	LLEC	CTED	DUI	RI		URGI	NG OF	ER	ATIONS		
TIME (mln)	WATER	PUMPIN RATE (mb		CUMULATIVE VOL (GALLONS)			ISSOLV YGEN (r		TEM (C)			COND thou)	pH		ORP (mV)		TURBIDITY (NTU)
1153	£ 15	an	,	(dilbions)	\dashv	14		0.14	14.	3	0.6	68	7.14	ł	66		14
1159	5.4	10	\dashv		\dashv		0.	D 4	15.	7	0.6	71	7.2	1	64		24
1756	15%	7 110	5	23.00	7.		7 .12	7	15.7		0.6	41	1.20	3	61		20
2111	150	7 110		71- 54	9		. 1 (<u> </u>	15	7	0 /	1.67	7.2		28		11
1000	12.1	F 110			\dashv		.0:		10.	_	2.(065	•		30	$\overline{}$	4
140	16.2	2	\dashv	_	\dashv	0	.0-	<u> </u>	12.3	4	0.6	1	7.2	7	22	\dashv	70
1224		247	14	red prap	,	P	<u>uc</u>	+2)	h	4	ed	10	Sest		in line	\dashv	
		4-31	71	+14 Col	4	17-	, 	- <u>, (14e</u> /	1	4	Un	++ Lfe	we di	Ş	ach e1"	\dashv	
		Hal	٧	~ 1.54	-	1	<u> </u>	124	اد	31	M	Le(/				\dashv	
1317		-11.	/	Jet A. Prosed to Lurbody		4.6	170		5	_	h		- +2	s.	du issu		
1001		1	7	2	(4	7	- 7	Ī	1	_		4	(2)				A. a. et tetra
			4	Chasen to	\dashv	1	~ C	1		\exists	UI	1	20/	7	DEEN	71	401100-
_		10 9	34	c turbody	H	10	<u>~~</u>	42	5	4	lle	doc	M	_		\dashv	
					\dashv					\dashv						\dashv	
					\dashv					-				-		-	
					\dashv					\dashv				_		\dashv	
			_		4					4						_	
					_												
					T												
					\dashv												
		1			\dashv											\neg	

880 5/3 Vege # St

	1	SAM	PLING F	Œ	CO	RD) -	(GR	OU.	ND	W	ATER	R	
SI	ENEC	A ARMY	DEPOT ACTIVITY	,			PA	75	ON	IS		W	ELL #: / [ረ	52	3-6
PR	OJEC1	r:	OB Grounds					ng -	Round	185			DATE: 8/	_	
LO	CATIO	N:		R	OMUL	JUS, NY	<u> </u>				.		SPECTORS: T		
W	EATHE	R/ FIELD	CONDITIONS CHEC	KLIS	Т	(RI	CORI) M	IAJOR	CHAN	GES)	SA	MPLE ID #:		
		m20.45		"	EL.	WIN		`	OM)		D/SITE	00	314200		
	ME HR)	TEMP (APPRX	WEATHER (APPRX)		HDITY EN)	VELOC (APPI			CTION 360)		FACE ITIONS	IN:	MONITO STRUMENT		NG ETECTOR
1(3		75	Scattern (clark	4	132.17)	<u>u</u>	200)	91			OVM-580	.,	PID
									Ì						
GA	METER (LLONS/ LITERS/I	INCHES): FOOT:	0.25 1 2 0.026 0.041 0.163 0.010 0.151 0.617	TORS 3 0 367 1 389		6 1 47 5 564	02	EW	ELL VO				BILIZED WATER L FACTOR (GAL/FT))
,	4112/09/1	1001	DEPTH TO POINT	1 369	DEP	DI TO	SCREE			WELL			WELL.		WELL.
н	ISTORIC	DATA	OF WELL (TOC)		1	P OF N (TOC)	LENGT (FT)	I L		EVELOPME TURBIDIT		D	EVELOPMENT pH		EVELOPMENT SPEC COND
			17.41+0.2	LLe											
DAT	A COLLE	CTED AT	PID READING	777		DEPTH T		T		DEPTH TO		DI	PTH TO PUMP INTAKE	PU?	MPING START TIME
	WELL S	SITE	(OPENING WELL)		•	1.28		╁	WAT	ER LEVEL	(TOC)		(TOC)		
RADI		CREENING	PUMP PRIOR TO			1.20		Ť		UMP AFTI					
	DATA		SAMPLING (cps) NITORING DATA	CO	LLEC	TED	DUI	IN		URGIN		FR	ATIONS	_	
	WATER	PUMPING	CUMULATIVE VOL		DISSOLV	ED	TEMI		SPEC.	COND			ORP		TURBIDITY
(mln)	1.28	RATE (ml/min	(1)	7	AYGEN (r	ng/L)	(C)	+	(um	thos)	pН	_	(mV)		(NTU)
1142		~(40	1 tarted a	+	1.53		15-	7	0.7	18	7,29	3	195		22
	10.88				.73		16.0	$\overline{}$	0.7		7.1	_	198		19
1152	11.46	_		_	.74		16.6	—		108	7.17	-	196		15
		~102		_	18		(6.3	$\overline{}$	0.7		7.2	$\overline{}$	192		11
1202	12.54		~0.5995	2	.84		17.	\neg	0.7		7.20	1	189		8.9
1207	2.78			_	.8-	$\overline{}$	17.2	_ (0.7	02	7.29		186		7.1
1212	12.98	~102	,	2	.98	•	17.0	1	0.7	02	7.2		182		6.1
(217	13.16		21.092(5	3	.10		16.2	5 6	0.7	04	7.2	5	185		7.0
[222]	13.36			3	.27		16.8	F (0.7	03	7.25	5	185		6.2
1227	13.5		_	3.	28		16.7	1	0.7	02	7.2	5	185		5.0
123Z	13.7		~1.5 gals	3.	37					06	7.2	3	186		7.4
1237	14,10				24		16:	7	0.7	08	7.2	3	187		10
			~1.75 gals					\perp							
(Z40		Sampl	Collected					\perp							
			Sarple ID	01		120	03	7							
			Sample Ton	_	124										
			•					\perp							

OB Grounds Task Order #36 Round *Inspection

Date of Inspection: 8/5/2010

Weather Conditions: Survey, nix of clouds, Temp low 80%. which N-75

Scattered rain sharers carlier their nevering, new clear.

Observations should include assessment of integrity of 9-inch soil cap placed over residual lead contaminated soil in 25 125'x125' grids.

Assessment should be made with respect to caps ability to ensure that indegenous terrestrial wildlife are not exposed via direct dermal contact or incidental ingestion.

Note signs of erosion or animal burrowing to ensure underlying soils are not exposed to the environment.

	Grid No.	Observations/Location of Disturbed Soils
1	A5	No Animal heles were observed
2	C5	4 11
3	B3	No Animal holes were observed
4	B2	(1) 4
5	<u>C3</u>	4 4
6	C2	4 4
7	C1	4 4
8	C7	4
9	D7	1 4
10	E9	4 4
11	H9	9 4
12	16	No Annal hels obsered
13	17	4 1,
14	18	No Annal holes abson
15	J5	No Annal lules observed. Dramse cut, see n
16	J6	No Animal holes observed
17	J8	No Animals holes observed. Surface enter cross

OB Grounds Task Order #36 Round 2 Inspection

		Tround 2 mopoulot.
	Grid No.	Observations/Location of Disturbed Soils
18	L8	No turn holes observed, Prosion of road L8/LL
19	L9	No Annal holes dosend
20	L10	No Animal holes observed
21	M10	4
22	N10	4 4
23	P10	No Animal holes observed,
24	Q7	Hot No animal holes observed
25	Q8	"
26	R8	No arinal hole, observed
27	S8	11

Inspector
Does not
appear to
have sognine
--Change
from 08
Inspections

APPENDIX B

LOG BOOK NOTES AND TRANSCRIPTS OF REEDER CREEK INSPECTION

Jeff A. may wont us to stay extra night and check GW levels Tomorrow, morning and sample if possible.

1323 Arvived at OB Grounds to conduct soil cap inspection as Reeder Crock inspection.

1450 Sorl Cap respection complete No turned rules were observed in any of inspected Grids. > The drainage cat m Grads H, I, J 315 455 495 that has previously been observed in sool cap inspections is stall present, Cut's ~6-8 inches in depth, But no signs of recent run off were observed. -) Grid J8 his some serfice water runoff erostan from road surface into low spot where vater collects. Also obscrred was eros ion educent to a

existing colvert pope trosion appears to be due to surface water run of, -> Grad L& still here drainage cut in road to allow water to draw from west sale of road to the east. Cut his been observed an past inspection. But does not appear to have grown in size or depth. 1540 Carplete Reader Crech - Started at North Tree lae edge of the OD Grounds and walked upstream along the creek bed. -2 observed exposed book rock shale at botten of creek in numerous locatores. -> 1754+ brown color slin/then sediement like rentural observed In area where the strem flow has pooled dee to outcrops in the exposed bedrock, natural is only a few militative thich and

surface beweath it appears to

be competent bedrock (shake,

-> locartows where the bedrock onterop

are exposed bedrock with no

brown sum material present, probably

due to the constant flowing

water.

=> TEXIT Reeder Creek ~ 100 North of

MW23-3. Berver dan is Located

at don't save docation as MWZJ-1

PRe-entered Reeder Creek new garage baoldon ~ 150ff South of Beaver dan does appear to be same dam, but 500 8/5.

Expessed shale was visible howeve the water appears to be desper than a foot. Brown sha Isodinate like restoral is also present. Probably due to the Beaver dan preventy the normal stream flow.

area between MW23-1 and garage building due to steep drop of and these vegetation along the over looking bank.

That able to gash access to creek ~ 100 f. South of MUZJ-1.

This area does not appear to have been part of the removal action. Bedrock is not vossible and the creek bed has sedment/ maddy creek bottom.

finding of Soil cap inspectors and Reader Cuch Inspectors. Photo documentation of cucel was taken

1620 Depart OB Grounds for SEAD-25 to check GW recharge at wells.

1630 Arrival et 5-25.

1630 Arrival et 5-25.

1636

1640 Returned to fuel of see to pech

1640 Returned to fuel of see to prohi

Appendix B Transcript of Log Book notes from 8/5/2010 Reeder Creek inspection OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: implied words or missing suffixes have been included in (###)

1540 – Completed Reader Creek inspection

- Started at north tree line edge of the OD Grounds and walked upstream along the creek bed
- Observed exposed bedrock shale at bottom of creek in numerous locations.
- Light brown color slim/thin sediment like material observed in area(s) where the stream flow has pooled due to outcrops in the exposed bedrock. Material is only a few millimeter thick and surface beneath it appears to be competent bedrock/shale.
- Locations where the bedrock outcrop are exposed(,) bedrock with no brown slim material present, probably due to the constant flowing water
- Exit Reeder Creek ~100 (ft) north of MW23-3. Beaver dam is located at about same location as MW23-1 (correction MW23-2)
- Re-entered Reeder Creek near garage building ~150 ft south of beaver dam, does not appear to be same dam (statement is incorrect, only a single beaver dam was observed). Exposed shale was visible however the water appears to be deeper than a foot. Brown slim/sediment like material is also present. Probably due to the beaver dam preventing the normal stream flow.
- Unable to gain access to creek area between MW23-1 and garage building due to steep drop off and thick vegetation along the overlooking bank (OB Grounds side of bank).
- Was able to gain access to creek ~100 ft south of MW23-1. This area does not appear to have been part of the removal action. Bedrock is not visible and the creek bed has sediment/muddy creek bottom.

APPENDIX C

REEDER CREEK INSPECTION PHOTOS

Photo #01 - Downgradient of MW23-3, looking up stream

Photo #02 – Parallel to MW23-3, looking up stream. Water was greater than 2 feet deep.

Photo #03 – Upgradient of MW23-3, looking down stream

Photo #04 - Downgradient side of beaver dam and MW23-2, looking up stream

Photo #05 - Upgradient side of beaver dam (center of photo) and parallel to MW23-2, looking down stream

Appendix C Reeder Creek Inspection OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Photo #06 – Downgradient to MW23-1, looking up stream. Water was greater than 2 feet deep.

APPENDIX D

LABORATORY REPORT

August 27, 2010

Service Request No: R1004141

Mr. Brendan Baranek-Olmstead Parsons Engineering Science 100 High St. 4th Floor Boston, MA 02110

Laboratory Results for: SEAD OB Grounds/747547-01100

Dear Mr. Baranek-Olmstead:

Enclosed are the results of the sample(s) submitted to our laboratory on August 4, 2010. For your reference, these analyses have been assigned our service request number **R1004141**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 129. You may also contact me via email at MPerry@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Michael Perry

Laboratory Manager

Page 1 of 22

 $\mathbf{q} \in \mathbf{I}$

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Parsons Engineering Science

Project:

SEAD OB Grounds

Sample Matrix:

Water

Service Request No.: R1004141

Project No.:

747547-01100

Date Received:

8/04/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV, ASP-B deliverables. When appropriate to the method, method blank, and LCS results have been reported with each analytical test.

Sample Receipt

Water samples were collected on 8/03/10 and received at CAS on 8/04/10 in good condition at cooler temperature of 6 °C as noted on the cooler receipt and preservation check form. The samples were stored in a refrigerator at 1 - 6 °C upon receipt at the laboratory. See the CAS CLP Batching sheets for a crossreference between Client ID and CAS Job # and analyses requested.

Metals Analysis

Seven water samples were analyzed for Copper and Lead using SW-846 ICP method 6010B. The data between the MDL and the specified MRL has been flagged with a "J".

The initial and continuing calibration criteria were met for all analytes.

All blank spike (LCS) recoveries were within QC limits of 80 - 120 %.

The matrix spike and duplicate analysis was performed on sample OBLM20033, as requested. All Matrix Spike Recoveries were within QC limits of 75 - 125 %. The RPD were all within QC limits.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

8/27/10

Michael K. Perry Laboratory Manager

AAAA?

CAS ASP/CLP Batching Form/Login Sheet

Client Proj #: 747547-01100 Batch Complete: Yes Date Revised:
Submission: R1004141 Diskette Requested: No Date Due: 8/25/10
Client: Parsons Engineering Science Date: 8/6/10 Protocol: SW846

Client: Parsons Engineering Science Date: 8/6/10 Protocol: SW846
Client Rep: MPERRY Custody Seal: Present/Absent: Shipping No.:
Project: SEAD OB Grounds Chain of Custody: Present/Absent: SDG #:

CAS Job#	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks
R1004141-001	OBLM20029	Water	6010B	8/3/10	8/4/10	(Colids)	Johas	Sample Condition
R1004141-002	OBLM20030	Water	6010B	8/3/10	8/4/10			
R1004141-003	OBLM20031	Water	6010B	8/2/10	8/4/10			
R1004141-004	OBLM20032	Water	6010B	8/2/10	8/4/10			
1004141-005QC		Water	6010B	8/2/10	8/4/10			
R1004141-006	OBLM20034	Water	6010B	8/2/10	8/4/10			
R1004141-007	OBLM20035	Water	6010B	8/3/10	8/4/10			

Folder Comments:

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited

Navy Facilities Engineering Service Center Approved

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at www.caslab.com.

()	
Ø	
(17	

															age.	1 of	1					
		ANALYSI	IS REQUES	T AND CH	AIN OF CUSTODY	/ RE	CORD				1 Mu Roch ph.:5	hester, 585-288	St., s , NY ⁻ 8-538	suite 25 14609 80	i0		Pos	rial or ssible zards	le	: 03-08-10 Unkno		no e en La Tagler
PROJECT & C	CLIENT IN	FORMATIC	N		Project State	٦						585-28					Sar	mple)			***************************************
PROJECT REFERENC Open Burning (OB) Gro	ICE/NAME		PROJECT NO.	-	NY NY	+	Occasio I				С- Піа	iii: mpe		@roches	7		d Dis	posa	ai:		isposal OF 1	
LAB PROJECT MANAG		Monitoring	747547-0110	30	CONTRACT/Quote NO.	\bot	Sample in	nformation	 _			· ·	RE	QUIRED	ANAL	YSES					,	
Mike Perry			747547-0110	00	747547-01100			†			and		1	i I			7		Catego			e): ASP2000
CLIENT (SITE) PM Jeff Adams/Brend	ıdan Baranek-	Olmstead	CLIENT PHONE 617-449-152		CLIENT FAX 617-946-9777	LE ID					Copper and						EDD 15 <u>business days</u> TAT/ DATE DUE 15 <u>business days</u> QAP/Quote			usiness days	Рег	
CLIENT NAME Parsons		CLIENT EMAIL Brendan.Baranek-Olmstead@parsons.com				SAMP					Method 6010B - (Lead								FAX	DITED REPORT EMAIL (DATE DUE	i" (circle one) POST Othe	r
CLIENT ADDRESS 100 High Street, 4 Samplers Signatu		iton, MA 0211	10			LABORATORY SAMPLE		YPE	FIELD FILTERED	-	Method				NUMBER OF COOLERS SUBMITTED PER SHIPMENT:							
SAMPLE	ED ON] 🖁		SAMPLE TYPE	FIE	×[1				\Box	I		\Box	┦ _			
DATE	TIME		SAMPLE	E IDENTIFICAT	TION	3		SAMF	FELD	MATRIX		NUMBI	ER OI	F CONTA	AINER	S SUBI	VITTE	TED REMARKS				
8/3/2010	1020	OBLM20	0029					N	1 G	\neg	1		\Box		T		\prod	T	1. Rt	ın straight	sample a	nalysis
8/3/2010	1120	OBLM20	0030					N	\neg	-	1		\exists		_	_	+		-(With	out dilution s for copp)) for ever	y sample.
8/2/2010	1717	OBLM20	0031					IN		_	1			_	+	_	++	+	be le	ss than 25	ug/L and	l 20 ug/L
8/2/2010		OBLM20				 		IN	 -	-					+	+	++	+	- tor co	opper and	lead, resp	ectively.
8/2/2010		OBLM20		***************************************				N		\rightarrow	1	\Box	-		+	+	++	+	-			
8/2/2010		OBLM20						N			-	\sqcap	一	+	-	+	++	+	\dashv			
8/2/2010	T	'	0033MSD					N			1	\Box	-	-	+		++	+	-	servativ	<u></u>	
8/2/2010		OBLM20						N			1	\sqcap	\neg	+	+	+	++	+	-	301 Vativ	е	
8/3/2010		OBLM20		******				N N		\neg	1		\top	_	+	_	++	-	\dashv			
										\top					1		++	\top	_	1 HNO ₃		
	<u> </u>									\top			\Box			\top	11	\top	— —	· · · · · - u		
RELINQUISHED I	Li-es		B/3/10	1746	RELINQUISHED BY:	(SIGNA	TURE)					DATE	T	TIME	RE	RELINQUISHED BY: (SIGNATURE) DATE TIME						
REGEIVEDBY: (s	(SIGNATURE)		DATE 8/4/10	TIME 094C/	RECEIVED BY: (sign,	ATURE)	J			-		DATE	T	TIME	RE	ECEIVE	D BY:	(SIGNA	ATURE)	DATE	TIME	,
RECEIVED FOR I	LADODATOR	Why.		7=272	1	T-11-	LABORATOR		ONLY													-
(SIGNATURE)	LABORATOR	Y B1;	DATE	TIME	CUSTODY INTACT YES NO	CUST	TODY SEAL N	0.			LABOR REMAR	ratory RKS:	,—									

														ige 1	of 1						
		ANALYSI	IS REQUES	T AND CH	AIN OF CUSTODY	/ RE	CORD			1 Mi Roc ph.:	hester, 585-28	St., s NY 8-53	r suite 250 14609 80	·			ible	OC #. (03-08-10 Unkno		
PROJECT & (CLIENT IN	FORMATIC)N		Project State	7					585-28					Sam	ole				
PROJECT REFERENC	E/NAME		PROJECT NO.		NY NY	╆				e-ma	ail: mpe		@rochest			Disp	osal:	PAGE	Lab Di	sposal	
Open Burning (OB) Gro LAB PROJECT MANAC		Monitoring	747547-0110	00	CONTRACT/Quote NO.	<u> </u>	Sample Infor	metion				RE	QUIRED A	NALYS:	E\$			PAGE	'	OF 1	
Mike Perry			747547-0110		747547-01100					and								Category	oort Type (Circ B 6 business da): ASP2000
CLIENT (SITE) PM Jeff Adams/Brend	Jan Baranek-	Olmstead	617-449-152		CLIENT FAX 617-946-9777					Coppe									TE DUE 15 bu	_	Per
CLIENT NAME Parsons	arsons Brendan.Baranek-Olmstead@parsons.com				SAMPLE				Method 6010B - Copper and Lead								EXPEDIT	ED REPORT	(circle one) OST Other		
LIENT ADDRESS 00 High Street, 4th Floor, Boston, MA 02110 Samplers Signature & Initials:				LABORATORY		SAMPLE TYPE		Method									OF COOLER				
SAMPLE DATE	D ON TIME		SAMPLE	IDENTIFICA	TION	A B I		WPLE	MATRIX	<u>'</u>	NUMBI		F CONTAI	MEDE e	LIBMI'	TED.					<u></u>
8/3/2010		OBLM20	2020			┤┤			 	<u> </u>	1101112		I GONTAI	T T	T	1150		4 0		MARKS	
				7.4	-	├—		<u> </u>	GW	1				_	-		Ш	(withou	straight ut dilution	sample al) for ever	iaiysis / sample.
8/3/2010		OBLM20				ļ		N	GW	1								2. RLs	for copp	er and lea	d should
8/2/2010	<u> 1717</u>	OBLM20	0031				*	<u>N</u>	GW	_ 1				1				tor cor	s than 25 oper and I	ug/L and ead: resn	20 ug/L ectively
8/2/2010	1612	OBLM20	0032					N	GW	1										,	Journally.
8/2/2010	1428	OBLM20	0033					N	GW	1				1						e di .	
8/2/2010	1428	OBLM20	0033MS					N	GW	1				+		_	+				4.5
8/2/2010	1428	OBLM20	0033MSD					N	GW	1		\neg		 	\vdash		+	Duna	ervative		· ·
8/2/2010	**	OBLM20	***				<u>.</u>	N	GW	1			 -				+	ries	ervative	•	
8/3/2010	1243	OBLM20	0035					N	GW	1											
				·- <u>·</u> ··												_ _		1	HNO₃		
RELINOUISHED I	BY: (MGNATUR	E)	IDATE	TIME	RELINQUISHED BY:	(0)0)14															
/hut	/le-	<u> </u>	B/3/10	1746	MEERINGOIONED DY,	(SIGIA)	ioke)				DATE		TIME	KELIN	งผบเธ	HED E	Y: (SIG	NATURE	DATE	TIME	
RECEIVED BY: (s			DATE 8/4/10	71ME 0940	RECEIVED BY: (SIGN.	ATURE)					DATE		TIME	RECE	IVED	BY: (si	GNATU	RE)	DATE	TIME	
RECEIVED FOR L (SIGNATURE)	ABORATOR'	Ÿ BY:	DATE	TIME	CUSTODY INTACT YES ON	CUST	LABORATORY ODY SEAL NO.	USE O		LABOI REMA	RATORY RKS:	,				7.4					

Cooler Receipt And Preservation Check Form

Pro	oject/Cliem	Pirso	<u> 135</u>	Seneco Me	1005 E14/10	,	_Submiss	sion Nu	mber_	R10-414	11	
Co	oler receiv	ed on	814,	110	by:0fw	CO	URIER:	CAS	UPS	REDEX	VBL(OCITY CL
1. 2. 3. 4. 5. 6. 7.	Were of Did all Did an Were & Where	bottle y VO. CEOT did th	ly pa es an A via Ice p le bo	pers pro rive in g als have packs pr ttles ori		ed out (i lition (u nt* air b	ibroken)?	f, etc.)?		YES YES YES CASAR	NO NO NO NO NO ĐC, CI	N/A LIENT
	Is the te	mper	ature	within	0° - 6° С	?:	X es	Yes		Yes	Yes	Yes
	If No, E	xplai	in Be	elow			No	No		No	No	No
	Date/Tir	ne Te	mpe	ratures '	Taken: 8	14/10/	207			•	-10	140
PC 36	Thermon of Tempe condary R	ratur eview	D: re, no ':	ote pac	king/ice	conditio	n, Client	Appro	om: T	emp Blank Run Samp	/ Sam	ole Bottle
Cooler 1. 2. 3.	Thermone of Tempe condary Roman Were all both Were corn Air Samp	ratureview n: I cottle ttle la ect co	D: ce, no	ote pach	king/ice Ref. 8/9/ Alete (i.e. as agree wed for the	eondition 8/ analysis with cust tests income	n, Client 4116 preserva	Approby:by:_ tion, et	cc.)?	Run Samp Muc VES	NO NO NO	
Cooler I. 2. 3. 4. Explain	Thermone of Temper condary Research Were all both Were con	ratureview n: I cottle ttle la ect co	D: ce, no	ote pach	king/ice Ref. 8/9/ Alete (i.e. as agree wed for the	eondition 8/ analysis with cust tests income	n, Client 4116 , preserva ody paper licated?	Approby:by:_ tion, et	cc.)?	Run Samp	NO NO NO	
Cooler 1. 2. 3. 4. Explain	Thermone of Tempe condary Roman Were all both Were corn Air Samp	ratureview n: I cottle ttle la ect co	D: ce, no	ote pack :	king/ice Ref. 8/9/ Alete (i.e. as agree wed for the	eondition 8/ analysis with cust tests income	n, Client 4116 , preserva ody paper licated?	by:_by:_tion, et	cc.)?	Run Samp	NO NO NO	
Cooler Cooler	Thermone of Temper condary Reagent NaOH Hormone Temper condary Reagent Reagent NaOH HNO3	ratur eview n: I cottle ttle la ect co les:	D: Ce, no labe labels ontai Cass ies:	ettes / T	king/ice Ref. 8 / 9/ elete (i.e. s agree ved for the Tubes Inter	eondition 8/ analysis vith cust tests income	n, Client 4116 preserva ody paper licated? Canisters 1	by:_by:_tion, et	ized	Run Samp Muc YES YES Tedlar®	NO NO NO Bags In	flated N/A Yes = All samples OK
Cooler Cooler Cooler Cooler Cooler Cooler	Thermone of Temper condary Research NaOH HNO3 H2SO4	ratur eview on: I cottle ttle la ect co les: epanc	D: Ce, no labe labels ontai Cass ies:	ettes / T	king/ice W & 4 elete (i.e. s agree v ed for the Tubes Inter- Received	analysis vith cust tests incact Exp	n, Client 4116 preserva ody paper licated? Canisters 1	by:_by:_tion, et	ized	Run Samp Muc YES YES Tedlar®	NO NO NO Bags In	flated N/A Yes = All samples OK No =
Cooler Cooler	Thermone of Temper condary Reagent NaOH Hormone Temper condary Reagent Reagent NaOH HNO3	ratur eview on: I cottle ttle la ect co les: epanc	D: Ce, no labe labels ontai Cass ies:	cote pace ls comp and tag ners use ettes / T	king/ice W & 4 elete (i.e. s agree v ed for the Tubes Inter- Received	analysis vith cust tests incact	n, Client 4116 preserva ody paper licated? Canisters 1	by:_by:_tion, et	ized	Run Samp Muc YES YES Tedlar®	NO NO NO Bags In	flated N/A Yes = All samples OK No = Samples were preserved at
Cooler Cooler	Thermone of Tempe condary Research NaOH HNO3 H2SO4	ratur eview on: I cottle ttle la ect co les: epanc	D: Ce, no labe labels ontai Cass ies:	cote pace ls comp and tag ners use ettes / T	king/ice S G S G S A S	analysis vith cust tests incact	n, Client 4// preserva ody paper licated? Canisters l	by:_by:_ation, et	ized	Run Samp Muc VES VES Tedlar®	NO NO NO Bags In:	Yes = All samples OK No = Samples were preserved at lab as listed
Cooler 1. 2. 3.	Thermone of Temper condary Research NaOH HNO3 H2SO4 For TCN and Phenol	ratureview n: I cottle la cect colles: yes	D: ce, no labe labels ontai Cass ies:	cote pace ls comp and tag ners use ettes / T	king/ice S G S G S A S	analysis vith cust tests incact	n, Client 4/16 preserva ody paper licated? Canisters I	by:_by:_ation, et	ized Vol.	Run Samp Muc YES YES Tedlar® Lot Added analysis - pH OAs or Geno	NO NO NO Bags In	flated N/A Yes = All samples OK No = Samples were preserved at

Secondary Review: MV8 27/10

*significant air bubbles are greater than 5-6 mm

3MODOCS\Cooler Receipt 2.doc

METAIS

COVER PAGE - INOI	METAL RGANIC AN	.5 NALYSIS DATA PACKA	GE	
Contract: R1004141			SDG No.	: OBLM20029
Lab Code: Case No.:	· · · · · · · · · · · · · · · · · · ·	_ _	SAS No.	_
SOW No.: SW846 CLP-M	·			
			<u> </u>	
Sample ID.		Lab Sample No.		
OBLM20029		R1004141-001		
OBLM20030		R1004141-002		
OBLM20031		R1004141-003		
OBLM20032		R1004141-004		
OBLM20033	:	R1004141-005		
OBLM20033D		R1004141-005D		
OBLM20033S	;	R1004141-005S		
OBLM20034		R1004141-006		
OBLM20035		R1004141-007		
	•			
Were ICP interelement corrections applied?			Yes/No	YES
Were ICP background corrections applied?				
If yes-were raw data generated before			Yes/No	YES
application of background corrections?			Yes/No	мо
-			Tes/NO	<u> </u>
Comments: See Attached Case Newscire				
See Attatched Case Narrative				
			<u>.</u>	
				·
			·	
Signature:	Name:	Michael Perry		
The state of the s				
Date:	mi La -	Tabanatan		
<u> </u>	Title:	Laboratory Direc	tor	

	-1-		
INORGANIC	ANALYSIS	DATA	SHEET

SAMPLE	NO.		

Lab Code: Case No.: SAS No.: SDG NO.: OBIM20029	Contract: F	R1004141			OBLM20029	
<u></u>	Lab Code:	Case	No.: SAS No.	: sı	SDG NO.: OBLM20029	
Matrix (soil/water): WATER Lab Sample ID: R1004141-001	Matrix (soil,	/water): WATER		Lab Sample ID: R100	04141-001	
Level (low/med): LOW Date Received: 8/4/2010	Level (low/me	ed): LOW	- -	Date Received: 8/4/	/2010	

CAS No.	Analyte	Concentration	С	Q	М
7440-50-8	Copper	2.5	J	<u> </u>	P
7439-92-1	Lead	1.9	ן טן		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
	·				
		·			

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.			
OBLM200	30			

Contract:	R1004141

Lab Code: Case No.:

SAS No.:

SDG NO.:

OBLM20029

Matrix (soil/water):

WATER

Lab Sample ID:

R1004141-002

Level (low/med):

LOW

Date Received:

8/4/2010

CAS No.	Analyte	Concentration	С	Q	М
7440-50-8	Copper	2.8	J	 -	P
7439-92-1	Lead	1.9	ט		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					

INORGANIC ANALYSIS DATA SHEET

Date Received:

8/4/2010

SAMPLE NO.

Contract:	R1004141			OBLM200)31	
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029	

Matrix (soil/water): WATER Lab Sample ID: R1004141-003 Level (low/med): LOW

CAS No.	Analyte	Analyte Concentration		Q	М
7440-50-8	Copper	2.3	 		P
7439-92-1	Lead	1.9	<u>ja j</u>		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

INORGANIC ANALYSIS DATA SHEET

Date Received:

SAMPLE	NO.

8/4/2010

Contract: R1004141			OBLM20032
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-004
Level (low/med): LO	W	Date Received:	8/4/2010

CAS No.	Analyte	Concentration	C	Q	М
7440-50-8	Copper	2.7	J	 -	P
7439-92-1	Lead	2.7	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					_

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

				-
Contract: R1	004141		OBLM20033	
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029	
Matrix (soil/w	ater): WATER	Lab Sample ID:	R1004141-005	
Level (low/med): LOW	Date Received:	8/4/2010	

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	1.6	Ū		P
7439-92-1	Lead	1.9	ן טן		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004141			OBLM20034
Lab Code:		Case No.:	SAS No.:	SDG NO.: ORIM20020

Matrix (soil/water): WATER

Lab Sample ID: R1004141-006

Level (low/med): LOW

Date Received: 8/4/2010

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	1.7	J		P
7439-92-1	Lead	2.4	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:				_	

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

			OBLM20035	_
Contract: R10041	41			
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029	
Matrix (soil/water)): WATER	Lab Sample ID:	R1004141-007	
Level (low/med):	LOW	Date Received:	8/4/2010	

CAS No.	Analyte	Concentration		Q	М
7440-50-8	Copper	4.3	J	<u> </u>	 P
7439-92-1	Lead	3.6	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	· · · · · · · · · · · · · · · · · · ·				

Columbia Analyt	ical Services
-----------------	---------------

-3-

BLANKS

Contract:	R1004141					
Lab Code:		Case No.:	SAS No.:		SDG NO.:	OBLM20029
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	ration Units	(ug/L or mg/kg):	ng\r		

Ann I see a	Initial Calib. Blank	alib.		Continuing Calibration Blank (ug/L)			Preparation Blank				
Analyte	(19/11/	С	1	C	2	C	3	c		С	М
Copper	5.03	L4 J	4.22	2 J	3.68	31 J	9.36	7 3	1.620	lπ	l IP
Lead	1.87	70 U	1.87	ाण	1.87	70 ਹ	1.87	0 0	1.870	!	P

Columbia	Anal	vtical	Services
Common	zznun	vucui	DEIVLEEN

-3-

BLANKS

Contract:	R1004141			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029
Preparation	Blank Matrix (soil/water):	WATER		
Preparation	Blank Concentration Units	(ug/L or mg/kg): UG/L		

Initial Calib. Blank (ug/L)			Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte	(ug/L)	c	1	С	2	С	3	c		С	M
Copper	1		7.16	0 J	3.2	20 J J	3.394	IJ	<u> </u>	1	 P
Lead			1.87	이미	1.8	70 U	1.870	10		 	- P

Columbia	Analy	vtical	Services
COUNTROCK	ZAILUL	riicui	Deirices

-3-

BLANKS

Contract:	R1004141					
Lab Code:		Case No.:	SAS	No.:	SDG NO.:	OBLM20029
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	ration Units	(ug/L or mg/kg):	UG/L		

		Continuing Calibration Blank (ug/L)						Preparation Blank			
Analyte	(ug/L)	С	1	C	2	С	3	ا ء		С	М
Copper	1	<u> </u>	3.670	[J]		11		- 	1	1	<u> </u>
Lead]	丁丁	1.870	— —		- - -				 	l IP

METALS -5A-

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Contract: R1004141			OBLM20033S			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029		
Matrix (soil/water):	WATER	Leve	- l (low/med):	LOW		
% Solids for Sample:	0.0					

	Conc	entration Units	(ug/I	L or mg/kg dry weig	ght): UG/L			
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR) C	Spike Added (SA)	%R	Q	м
Copper	75 - 125	250.0	0	1.62 U	250.0			P
Lead	75 - 125	532.0	0	1.87 ប	500.00			P

METALS -5B-

POST DIGEST SPIKE SAMPLE RECOVERY

						SAMPLE NO.
Contract:	R1004141				OBLM2003	33A
Lab Code:		Case No.:	SAS No.:		SDG NO.:	OBLM20029
Matrix (so	il/water):	WATER	•	Level (1	.ow/med):	LOW
						

	Co	ncentration Units:	u	g/L			•		
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	c z	Spike Added(SA)	%R	Q	м
Copper		247.00		1.62 ប	, 	250.0	99		P
Lead	_	518.00		1.87 ປ	寸	500.0	104		P

METALS -6DUPLICATES

SAMPLE	NO.
--------	-----

Contract: R1004141	OBLM2003	3D		
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029
Matrix (soil/water):	WATER	Level	(low/med):	LOW
% Solids for Sample:	0.0	% Solids for	Duplicate:	0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L .

Analyte	Control Limit	Sample (S)	С	Duplicate (D) C	RPD	Q	м
Copper	1	1.6	2 U		1.62 U		<u> </u>	P
Lead		1.8	37 U		1.87 ប		Ц]	P

-7-

LABORATORY CONTROL SAMPLE

Contract:	R1004141				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029
Solid LCS	Source:				
Aqueous LC	S Source:	CPI			
					

	Aqueous	(ug/L)			Soli	.d (mg/)	rg)	·
Analyte	True	Found	%R	True	Found	С	Limits	%R
Copper	250	258	103			11		
Lead	500	507	101		<u> </u>	- 		

August 27, 2010

Service Request No: R1004141

Mr. Brendan Baranek-Olmstead Parsons Engineering Science 100 High St. 4th Floor Boston, MA 02110

Laboratory Results for: SEAD OB Grounds/747547-01100

Dear Mr. Baranek-Olmstead:

Enclosed are the results of the sample(s) submitted to our laboratory on August 4, 2010. For your reference, these analyses have been assigned our service request number **R1004141**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 129. You may also contact me via email at MPerry@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Michael Perry

: 11 | 1

Laboratory Manager

Page 1 of 142

SDG NARRATIVE

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Parsons Engineering Science Project:

SEAD OB Grounds

Sample Matrix: Water Service Request No.: R1004141 **Project No.:** 747547-01100 Date Received: 8/04/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CÁS). This report contains analytical results for samples designated for Tier IV, ASP-B deliverables. When appropriate to the method, method blank, and LCS results have been reported with each analytical test.

Sample Receipt

Water samples were collected on 8/03/10 and received at CAS on 8/04/10 in good condition at cooler temperature of 6 °C as noted on the cooler receipt and preservation check form. The samples were stored in a refrigerator at 1 - 6 °C upon receipt at the laboratory. See the CAS CLP Batching sheets for a crossreference between Client ID and CAS Job # and analyses requested.

Metals Analysis

Seven water samples were analyzed for Copper and Lead using SW-846 ICP method 6010B. The data between the MDL and the specified MRL has been flagged with a "J".

The initial and continuing calibration criteria were met for all analytes.

All blank spike (LCS) recoveries were within QC limits of 80 - 120 %.

The matrix spike and duplicate analysis was performed on sample OBLM20033, as requested. All Matrix Spike Recoveries were within QC limits of 75 - 125 %. The RPD were all within QC limits.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry Laboratory Manager

20003

CAS ASP/CLP Batching Form/Login Sheet

Client Proj #: 747547-01100 Batch Complete: Yes Date Revised: Submission: R1004141 Diskette Requested: No Date Due: 8/25/10 Client: Parsons Engineering Science Date: 8/6/10 Protocol: SW846 Client Rep: MPERRY Custody Seal: Present/Absent: Shipping No.: Project: SEAD OB Grounds Chain of Custody: Present/Absent: SDG #:

CAS Job #	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Colido)	%	Remarks
R1004141-001	CDI MOCOCO		-			(Solids)	Solids	Sample Condition
	OBLM20029	Water	6010B	8/3/10	8/4/10			
R1004141-002	OBLM20030	Water	6010B	8/3/10	8/4/10		-	
R1004141-003	OBLM20031	Water	6010B	8/2/10	8/4/10	-		· · · · · · · · · · · · · · · · · · ·
R1004141-004	OBLM20032	Water	6010B	8/2/10	8/4/10			··· <u>·</u>
R1004141-005QC	OBLM20033	Water	6010B	8/2/10	8/4/10			
R1004141-006	OBLM20034	Water	6010B	8/2/10	8/4/10			
R1004141-007	OBLM20035	Water	6010B	8/3/10	8/4/10			

Folder Comments:

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

Navy Facilities Engineering Service Center Approved

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at www.caslab.com.

CHAINS OF CUSTODY INTERNAL CHAINS

S
5
2
uty _k

										10.0				ige 1	of 1	<u> </u>				***	
		ANALYSI	S REQUES	Γ AND CH#	AIN OF CUSTODY	/ RE	CORD		,		S/Roche ustard		r suite 250	į		Serial	or CC	<u> </u>	3-08-10_2		
l										Roc	hester,	NY	14609			Poss	ible	JO #. 0	3-00-10_2		
i											585-28 585-28					Haza			Unknow	n	
PROJECT & C		ORMATIC			Project State	1							175 @rochest	ler.casl		Samp Dispo			Lab Disp	nneal	_
PROJECT REFERENCE Open Burning (OB) Grou	ounds Long Term N	Monitoring	PROJECT NO. 747547-01100	0	NŸ	Sample Information				REQUIRED ANALYSES								PAGE	1	OF 1	
LAB PROJECT MANAG Mike Perry	SER	7	P.O. NUMBER 747547-01100	0	CONTRACT/Quote NO. 747547-01100					rand							- I - I	Category E	ort Type (Circle B business days	-	ASP2000
L	dams/Brendan Baranek-Olmstead 617-449-1522 617-946-9777					ZE ID			'	Coppe								TAT/ DATI	E DUE 15 <u>busir</u> le	ness daysF	² er
CLIENT NAME Parsons	arsons Brendan,Baranek-Olmstead@parsons.com					SAMPLE			'	Method 6010B - Copper and Lead							1 1	FAX TAT/ DATE	ED REPORT (cl EMAIL POS E DUE	rcie one) 3T Other	
CLIENT ADDRESS 100 High Street, 4 Samplers Signatu		ton, MA 0211	10			ABORATORY				Method									OF COOLERS		
· -						\¥		TYPE		1	т т		 					SUBMITTE	ED PER SHIPM	ENT:	
SAMPLEI DATE	D ON	[SAMPLE	IDENTIFICAT	TION	J A	1	SAMPLE TYPE	MATRIX	<u> </u>	NUMB	ER 0	F CONTAIN	L NERS S	UBMI [*]	TTED	ᆛ		REN	IARKS	
8/3/2010		OBLM20	0029			 -	 		GW	1	ΓΤ	\neg		1					straight sa	mple analy	
8/3/2010		OBLM20		-		 		N N	GW	1	 	\dashv		+-		+		(withou	it dilution) i	for every sa	ample.
8/2/2010	 	OBLM20				\Box			GW	1				-	H	+	be less than 25 ug/L and 20 ug/ for copper and lead, respectivel			ug/L	
8/2/2010		OBLM20						N	GW	1	1	\neg		+	\vdash	\top	\forall	ioi cop _i	per anu rea	ad, respecti	iveiy.
8/2/2010	1428	OBLM20	0033					N	GW	1		\neg		1	\Box		\Box	1			
8/2/2010	1428	OBLM20)033MS					N	GW	1							\prod				
8/2/2010	1428	OBLM20	0033MSD					N	GW	1								Prese	ervative		
8/2/2010	1434	OBLM20)034			<u> </u>		N	GW	1											
8/3/2010	1243	OBLM20)035					N	GW	1							\prod				
						<u></u> —'		<u> </u>				\Box			Ш		\coprod	1	HNO ₃		
		<u> </u>				<u> </u>	<u> </u>	'	<u> </u>												
MI	SHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY				`	•				DATE		TIME	RELIN	IQUIS	HED B	Y: (sig	3NATURE)	DATE	TIME		
REGEIVEDBY: (S James h				TIME 094C/	RÉCEIVED BY: (sign/	ATURE)					DATE		TIME	RECE	IVED	BY: (sı	GNATUR	RE)	DATE	TIME	
5505" (50 500)		720	1	T=::::			LABORATORY														
RECEIVED FOR L (SIGNATURE)	LABORATOR	/ BY:	DATE		YES ON	CUST	TODY SEAL NO.			LABOI REMA	RATOR\ \RKS:	<i>'</i> 			****						

R1004141 Parsons Engineering Science
SEAD OB Grounds

														ge 1	of 1	!					
		ANALYSI	S REQUES	T AND CH	AIN OF CUSTODY	RE	CORD				Roch		r suite 250								
						-\-	COND						14609			Poss		OC #: 0	3-08-10_2		
											585-28					Haza			Unknow	n	
DDO JEOT A					=	-					585-28					Sam	ple		01,,,,,,,,,,,		
PROJECT & (ORMATIC	PROJECT NO.		Project State	e-				e-mail: mperry@rochester.caslab.c Disp					Disp						
Open Burning (OB) Gro	ounds Long Term N	Aonitoring	747547-0110	00		Sample Information			REQUIRED ANALYSES							PAGE	1	OF 1			
LAB PROJECT MANAG Mike Perry	3ER	P.O. NUMBER CONTRACT/Quote NO. 747547-01100 747547-01100					-			rand			1 -					Category		at least one): A	SP2000
	#Brendan Baranek-Olmstead 617-449-1522 617-946-9777				LE ID				Coppe								TAT/ DAT	E DUE 15 <u>busl</u> ie	ness days Pe	r	
CLIENT NAME Parsons			CLIENT EMAIL Brendan Ban	anek-Olmstea	d@parsons.com	SAMPLE				Method 6010B - Copper and Lead								FAX TAT/ DAT	ED REPORT (c EMAIL PO E DUE	ircle one) ST Other	:
CLIENT ADDRESS 100 High Street, 4		ton, MA 0211	10			LABORATORY				Method ead								h	05 000 500		
Samplers Signatu	ire & initials:					ַּֿֿן		SAMPLE TYPE		Į Į	-l-,,		<u> </u>	7	+	<u> </u>			OF COOLERS ED PER SHIPM	ENT:	
SAMPLE	D ON		•			ٳۜۺ		SAMPLE TYPE	¥	1								Ĺ			
DATE	TIME		SAMPLE	IDENTIFICA	TION	[₹		SAME	MATRIX		NUMB	ER O	F CONTAI	NERS S	SUBMI	TTED			REN	IARKS	
8/3/2010	1020	OBLM20	0029					N	GW	1								Run straight sample analysis (without dilution) for every sample.			is .
8/3/2010	1120	OBLM20	0030					N	GW	1							1	2. RLs	for copper	and lead sh	ould
8/2/2010	1717	OBLM20	0031					N	GW	1				<u> </u>				be less	than 25 u	g/L and 20 u ad, respectiv	g/L
8/2/2010	1612	OBLM20	0032					N	GW	1				<u> </u>				10. 00	per and le	au, reopeon	C.y.
8/2/2010	1428	OBLM20	0033					N	GW	1							1	1			1
8/2/2010	1428	OBLM20	0033MS					N	GW	1											
8/2/2010	1428	OBLM20	0033MSD					N	GW	1								Prese	ervative		
8/2/2010	1434	OBLM20	0034		·			N	GW	1											
8/3/2010	1243	OBLM20	0035					N	GW	1											
			***************************************		·													1	HNO ₃		
RELINQUISHED	/le-) E	DATE 8/3/10	1746	RELINQUISHED BY:	(SIGN	ATURE)				DATE		TIME	RELI	NQUIS	SHED	BY: (st	GNATURE)	DATE	TIME	
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) 8/4/10 0940			ATURE)				DATE		TIME	RECI	EIVED	BY: (s	IGNATL	IRE)	DATE	TIME				
VIII UV	· www		1	L			LABORATORY	HOE	NII V											ļ	
RECEIVED FOR I	LABORATOR	Y BY:	DATE	TIME	CUSTODY INTACT	cus	TODY SEAL NO			LABO	RATOR	Ý									
(SIGNATURE) YES NO								REMA													
					•							17.71	·								

Cooler Receipt And Preservation Check Form

Pro	ject/Client	Pales.	m35	eneco Men	1005 81416	,	_Submiss	ion Nu	mber_	R10-414	u	- *
Cod	oler receive	ed on	814,	טוי	by:0fw	CO	URIER:	CAS	UPS	REDEX	VELO	OCITY CL
1. 2. 3. 4. 5. 6. 7.	Were of Did all Did any Were & Where	bottly VO CEor did tl	dy pa les ar lA via Ice p he bo	pers pro rive in g als have packs pr ttles orig		ed out (ir lition (un nt* air bi	broken)?	, etc.)?		YES YES YES YES CASAR	NO NO NO NO NO SO, CI	N/A LIENT
	Is the te	mpei	rature	within	0° - 6° C	?:	Yes	Yes		Yes	Yes	Yes
	If No, E	xpla	in B	elow			No	No		No	No	No
	Date/Tir	ne T	empe	ratures '	Taken: 8	14/10/x	NV.					210
PC Se Cooler	condary Ro r Breakdow	ratu eviev	re, n v: Date	ote pac // :	king/ice M 8/4	conditio	n, Client	Appro	oval to	emp Blank Run Samp Muc		ple Bottle
Cooler	of Tempe condary Ro Breakdow Were all l Did all bo Were com Air Sampl	ratureviev vn: l bottle ttle l cect c les:	re, n v: Date e labe abels ontai Cass	ote pacl	king/ice Ref. 8/4/ elete (i.e. s agree wed for the	eondition 8/4 analysis, with custo tests ind	n, Client 7// preserva ody paper icated?	Appro by:_ tion, et	oval to	Run Sam	NO NO NO NO	
Cooler	of Tempe condary Ro Breakdow Were all l Did all bo Were com Air Sampl any discre	ratureviev vn: l bottle ttle l cect c les:	re, n v: Date e labe abels ontai Cass	ote pacles of the compand tageners use settes / T	king/ice B/4 elete (i.e. s agree wed for the Tubes Inte	eondition 8/4 analysis, with custo tests ind	n, Client 7// preserva ody paper icated?	Appro by:_ tion, et	oval to	Run Samp Muc VES YES	NO NO NO NO	
Cooler	conformer condary Recondary Recondendary Recondary Recondary Recondary Recondary Recondary Recondendary Recondary Recondendary Recondary	ratureviev vn: l bottle ttle l cect c les:	re, n v: Date e labe abels ontai Cass cies:	ote pacles of the compand tageners use settes / T	king/ice Ref. 8/4/ elete (i.e. s agree wed for the	eondition 8/4 analysis, with custo tests ind	n, Client 7// preserva ody paper icated?	by:tion, et	oval to	Run Samp Muc VES YES	NO NO NO NO	flated (N/
Cooler	of Tempe condary Ro Breakdow Were all l Did all bo Were com Air Sampl any discre	ratureviev vn: le le le les: epano	re, n v: Date e labe abels ontai Cass cies:	ote pacl	king/ice & & & & & & & & & & & & & & & & & & &	eondition 8/4 analysis, vith custo tests indiact Exp	n, Client /// c preserva ody paper licated? anisters I	by:tion, et	cc.)?	Run Samp Muc YES YES Tedlar®	NO NO NO NO Bags In	flated N/ Yes = All samples OK
Cooler Cooler	of Tempe condary Rescondary Resco	ratureviev vn: le cottle le cottle les: epano	re, n v: Date e labe abels ontai Cass cies:	ote pacl	king/ice B/4 elete (i.e. s agree wed for the Tubes Inte	eonditio 8/4 analysis, vith custo tests inde	n, Client /// c preserva ody paper licated? anisters I	by:tion, et	cc.)?	Run Samp Muc YES YES Tedlar®	NO NO NO NO Bags In	flated N Yes = All samples OK No =
Cooler Cooler Explain	of Tempe condary Research NaOH HNO3 H2SO4 For TCN and Phenol	ratureviev vn: le cottle le cottle les: epano	re, n v: Date e labe abels ontai Cass cies:	cote pack :	king/ice & & & & & & & & & & & & & & & & & & &	eondition 8/2 analysis, with custo tests independent Compact Compact Compact Compact Similar S	n, Client /// c preserva ody paper licated? anisters I	by:tion, et	cc.)?	Run Samp Muc YES YES Tedlar®	NO NO NO NO Bags In	flated N/ Yes = All samples OK
Cooler Cooler Explain	of Tempe condary Research NaOH HNO3 H ₂ SO ₄ For TCN and Phenol NaOH Na ₂ S ₂ O ₃	ratureviev vn: le cottle le cottle les: epano	re, n v: Date e labe abels ontai Cass cies:	cote pack :	king/ice (& & / & / / & / / & / / / & / / / / /	eondition 8/2 analysis, with custo tests independent Compact Compact Compact Compact Similar S	preserva ody paper icated? anisters I	by:tion, et s? Pressuri	ized Vol.	Run Samp Muc VES YES Tedlar® Lot Added	NO NO NO Bags In	flated N/ Yes = All samples OK No = Samples were preserved at lab as listed
PC Se Cooler 1. 2. 1.	of Tempe condary Research NaOH HNO3 H2SO4 For TCN and Phenol	ratureviev vn: le ottle le ttle les: epano yes	re, n v: Date e labe abels ontai Cass cies:	cote pack :	king/ice (& & / & / / & / / & / / / & / / / / /	eondition 8/2 analysis, with custo tests independent Compact Compact Compact Compact Similar S	preserva ody paper icated? anisters I	by:tion, et s? Pressuri	ized Vol. Added before	Run Samp Muc YES YES Tedlar® Lot Added	NO NO NO Bags In	flated N/ Yes = All samples OK No = Samples were preserved at

Secondary Review: MV8 27/10

*significant air bubbles are greater than 5-6 mm

SMODOCS\Cooler Receipt 2.doc

Columbia Analytical Services, Inc. Chain of Custody Report

Client:

Parsons Engineering Science

Project:

SEAD OB Grounds/747547-01100

Service Request: R1004141

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
R1004141-001.01		-			
	6010B				
,		8/4/10	1320	SMO / GLAFORCE	
•		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
•		8/16/10	1210	R-LTS-MET / BDOYLE	
R1004141-002.01	COLOR				
	6010B	8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
		8/16/10	1210	R-LTS-MET / BDOYLE	-
R1004141-003.01					
X1004141-003.01	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
		8/16/10	1210	R-LTS-MET / BDOYLE	
R1004141-004.01					
	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
```		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-005.01					
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
R1004141-005.02					
	6010B				
4		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-005.03					
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
R1004141-006.01					
	6010B	<b></b>		aa. / a :=====	
		8/4/10	1320	SMO / GLAFORCE	

## Columbia Analytical Services, Inc. Chain of Custody Report

Client:

Parsons Engineering Science

Project:

SEAD OB Grounds/747547-01100

Service Request: R1004141

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
		8/4/10	1326	R-A01 / DWARD	··· ·
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-007.01					<del></del>
	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	

## **METALS DATA**

	COVER PAGE - INOR	METALS RGANIC AN	S ALYSIS DATA PACKA	CF	
Contract:	R1004141	TOTAL TO THE	MISIS DATATACKA	SDG No.:	OBLM20029
Lab Code:	Case No.:	·-		SAS No.:	
SOW No.:	SW846 CLP-M		_		
	Sample ID.		ab Sample No.		
	OBLM20029	F	R1004141-001		
	OBLM20030		1004141-002		
	OBLM20031		1004141-003	<del></del>	
	OBLM20032		1004141-004	<del></del>	
	OBLM20033		1004141-005		
	OBLM20033D		1004141-005D	<del></del>	
	OBLM20033S		1004141-005s		
	OBLM20034		1004141-006	<del></del>	
	OBLM20035	R	1004141-007	<del></del>	
Were ICP i	nterelement corrections applied?			Yes/No	YES
Were ICP h	ackground corrections applied?				<del></del>
If ve	es-were raw data generated before			Yes/No	YES
	ication of background corrections?			Yes/No	NO
	•			165/NO	<del></del>
Comments:					
commencs:	See Attatched Case Narrative				
·		<del></del>			
		<del></del>		٠.	<u> </u>
<del></del>		·			<u>.</u>
Signature	pulpant file	Name:	Michael Perry		
Date:	8/2)/10	Title:	Laboratory Direc	tor	

-	
INORGANIC ANALYSIS DATA	SHEET

SAMPLE NO.

8/4/2010

Contract:	R1004141			OBLM20	029
Lab Code:		Case No.:	SAS No.:	SDG NO ·	ORIMANOSO

SDG NO.: OBLM20029 Matrix (soil/water): WATER

Lab Sample ID: R1004141-001 Level (low/med): LOW Date Received:

CAS No.	Analyte	Concentration	С	Q	М
7440-50-8	Copper	2.5	J		P
7439-92-1	Lead	1.9	ן ט		i P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					

-1-

SAMPLE NO

Contract:	R1004141			OBLM20030	
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029	
Matrix (so	il/water):	WATER	Lab Sample ID:	R1004141-002	-
Level (low,	/med): <u>L</u>	OW	Date Received:	8/4/2010	

CAS No.	Analyte	Concentration	C	Q	М
7440-50-8	Copper	2.8	J		† P
7439-92-1	Lead	1.9	ן טן		P P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

#### INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004141			OBLM20031
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	l/water):	WATER	Lab Sample ID:	R1004141-003
Level (low/	med):	LOW	Date Received:	8/4/2010

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	2.3	J	_	P
7439-92-1	Lead	1.9	U	-	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

_1_

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004141			OBLM20032
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	1/water):	WATER	Lab Sample ID:	R1004141-004
Level (low/	med): L	OW	Date Received:	8/4/2010

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	2.7	J		P
7439-92-1	Lead	2.7	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	···				
		<del>-</del>			

-1-

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract: R1	.004141	OBLM20033		
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029	-
Matrix (soil/w	water): WATER	Lab Sample ID:	R1004141-005	
Level (low/med	LOW	Date Received:	8/4/2010	

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	1.6	U	*	P
7439-92-1	Lead	1.9	U		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

#### 1

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract: R100414	1		OBLM20034
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-006
Level (low/med):	LOW	Date Received:	8/4/2010

CAS No.	Analyte	Concentration	С	Q	М
7440-50-8	Copper	1.7	J		P
7439-92-1	Lead	2.4	JJ		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
			7		

-1-

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004141		OBLM20035	
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	.1/water):	WATER	Lab Sample ID:	R1004141-007
Level (low/	med): I	LOW	Date Received:	8/4/2010
				<del></del>

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	4.3	J		P
7439-92-1	Lead	3.6	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
<u> </u>				<del></del>	

#### METALS -2A-

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code:	Case	No.:	SAS No.:	SDG NO.:	OBLM20029
Initial Calibra	ation Source:	PERKIN ELMER			
Continuing Cal:	ibration Source:	PERKIN ELMER	<u>-</u> -	 	

Concentration Units: ug/L

	Initial Ca	libration		Contin	uing Calibra	ation			$\Box$
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Copper	1250	1220	98	1250	1250	100	1210	)  97	l P
Lead	500	498	100	500	514	103	496	<del></del>	<del>!                                    </del>

-2A-

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	R1004141				
Lab Code:	Case	No.:	SAS No.:	SDG NO.:	OBLM20029
Initial Ca	libration Source:	PERKIN ELMER		 	
Continuing	Calibration Source:	PERKIN ELMER			

Concentration Units: ug/L

	Initial	Calibration		Contin		·			
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Copper	Ĭ			1250	1240	99	1220	98	   Р
Lead				500	508	102	506		P

#### METALS -2A-

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	R1004141				
Lab Code:	Case	No.:	SAS No.:	 SDG NO.:	OBLM20029
Initial Cal	ibration Source:	PERKIN ELMER			
Continuing	Calibration Source:	PERKIN ELME	R	- <del></del>	
	•			 	

Concentration Units: ug/L

	Initial	Calibration		Contin	uing Calibra	ation		<u> </u>	Τ
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Copper				1250	1210	97	1,22	0 98	I P
Lead	<u> </u>			500	504	101	51	<del></del>	P

## INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	R1004141						
Lab Code:	Cas	e No.:		SAS No.:		SDG NO.:	OBLM20029
Initial Cal	libration Source:	PERKIN E	LMER				-
Continuing	Calibration Source	PER	KIN ELMER			<del></del>	
	<del>-</del>				<del></del>	<del></del>	

Concentration Units: ug/L

	Initial	Calibration		Contin		T			
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Copper				1250	1240	99		<del></del> -	I P
Lead	1			500	522	104			P

# METALS -2BCRDL STANDARD FOR AA AND ICP

Contract:	R1004141					
Lab Code:		Case No.:	SAS No.:	_	SDG No.:	OBLM20029
AA CRDL Sta	undard Source:	ENV. EXPRESS				
ICP CRDL St	andard Source:					

Concentration Units: ug/L

	CRDL Sta	ndard for AA		CRDL Standard for ICP					
Analyte			i	Init	ial		Final		
	True	Found	%R	True	Found	%R	Found	%R	
Copper			Li	25.0	25.43	102	24.67	99	
Lead				10.0	10.40	104	10.20	102	

#### METALS -2B-CRDL STANDARD FOR AA AND ICP

Contract: R1004141					
Lab Code:	Case No.:	SAS No.:		SDG No.:	OBLM20029
AA CRDL Standard Source:	ENV. EXPRESS				
ICP CRDL Standard Source:	··	<u> </u>			
<del></del>	<del></del>		<del></del>	<del></del>	

Concentration Units: ug/L

	CRDL St	andard for AA	CRDL Standard for ICP					
37				Init	ial		Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Copper				25.0			24.60	98
Lead				10.0			10.99	110

-3-

#### BLANKS

Contract:	R10043	L41							
Lab Code:			Case No.:		SAS No.:		SDG NO.: OBL		
Preparation	Blank	Matrix	(soil/water):	WATER					
Preparation	Blank	Concent	ration Units	(ug/L or mg/	kg):	UG/L			

ana lasti s	Initial Calib. Blank (ug/L)		Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte		C	1	C	2	C	3	c l		c	M
Copper	5.01	.4 J	4.222	J	3.68	L   J	9.36	7   J	1.620	<u>ס</u>	<u>                                     </u>
Lead	1.87	'0 υ	1.870	ן ט	1.87	ן ט (	1.87	0 0	1.870	U	P

-3-

#### BLANKS

Contract:	R1004141					
Lab Code:		Case No.:	SAS No.:		SDG NO.:	OBLM20029
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	ration Units (ug	g/L or mg/kg):	UG/L	·	

	Initial Calib. Blank			Preparation Blank	-						
Analyte	(ug/L)	с	1	C	2	C	3	c		С	M
Copper			7.16	[0]J	3.220	) J J	3.394	IJ	<u> </u>		<u>                                     </u>
Lead			1.87	יס   ס	1.870	ן ט (	1.870	<u></u> ד		<u> </u>	I P

-3-

#### BLANKS

Contract:	R1004141			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029
Preparation	Blank Matrix (soil/water)	: WATER		
Preparation	Blank Concentration Units	(ug/L or mg/kg):	UG/L	

	Initial Calib. Blank			Cont	Preparation Blank						
Analyte	(ug/L)	С	1	C	2	C	3	c		С	м
Copper	1	<u> </u>	3.67	이기	_	1 1			<u>                                       </u>		l IP
Lead	J		1.87	0 0	<del>-</del> .	<del>-    </del>	**		<del> </del>	1	P

-4-

## ICP INTERFERENCE CHECK SAMPLE

R1004141						
**-	Case No.:	SAS No.:		SDG NO.:	OBLM20029	
oer: Optima	ICP 4		ICS Source:	PERKIN	ELMER	
			Case No.: SAS No.:	Case No.: SAS No.:	Case No.: SAS No.: SDG NO.:	Case No.: SAS No.: SDG NO.: OBLM20029

Concentration Units):

	Tru	e	Initi	Initial Found			Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R		
Copper		500	-2.7	514	103	-3.0	511	102		
Lead	<u> </u>	50	0.2	51	102	1.8	52	1.04		

ug/L

Lead

## **METALS**

4.

## ICP INTERFERENCE CHECK SAMPLE

tract: R	1004141									
Code: _		Case	No.:		AS No.:			SDG N	O.: OBLM2	0029
ID Number	: Optima	ICP 4			<del></del>	ICS	Sour	ce: PER	KIN ELMER	
·,		Concen	tration Unit	s): <u>u</u>	g/L	<u></u>	<del>- ,</del>	<u> </u>		
		True	<b>1</b>	Ini	itial Found			Final	Found	
Analyt	e so	ol.A	Sol.AB	Sol.A	Sol.AB		%R	Sol.A	Sol.AB	%R
Copper			500					-3.3	512	102

50

0.5

104

#### METALS -5A-

#### SPIKE SAMPLE RECOVERY

SAMPLE NO.

ab Code:	Case No.:	SAS No.:	s	DG NO.:	OBLM20029
Matrix (soil/water):	WATER	_	Level (low/me	ed):	FOM
Solids for Sample:	0.0				

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR) C	Spike Added (SA)	%R	Q	м
Copper	75 - 125	250.00	Ī	1.62 U	250.0	100	<u> </u>	P
Lead	75 - 125	532.00		1.87 U	500.00	106	 	P

#### METALS -5B-

## POST DIGEST SPIKE SAMPLE RECOVERY

					SAMPLE NO.	
Contract: <u>R1004141</u>				OBLM2003	3A	
Lab Code:	Case No.:	SAS No.:		SDG NO.:	OBLM20029	
Matrix (soil/water):	WATER	-	Level	(low/med):	FOM	

Concentration Units:

ug/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	c	Spike Added(SA)	%R	Q	м
Copper	<u> </u>	247.	00	1.62	ט	250.0	99		P
Lead	1	518.0	00	1.87	ס	500.0	104		P

## METALS -6DUPLICATES

SAMPLE	NO

OBLM20033D	 	

Contract: <u>R1004141</u>

Lab Code:

Case No.:

SAS No.:

SDG NO.:

OBLM20029

Matrix (soil/water):

WATER

Level (low/med):

LOW

% Solids for Sample:

0.0

% Solids for Duplicate:

0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Copper	<u> </u>	1.62	2   ប		1.62 U		<del>                                     </del>	P
Lead	1	1.8	ן ט   ן		1.87 0		1	P

-7-

## LABORATORY CONTROL SAMPLE

Contract: R1004	1141			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029
Solid LCS Source:	:			
Aqueous LCS Sourc	ce: CPI		<del></del>	

	(ug/L)			Soli	d (mg/k			
Analyte	True	Found	%R	True	Found	C	Limits	%R
Copper	250	258	103	'.'		11		<del>-</del> 1
Lead	500	507	101	<u> </u>	<del></del>	<del>- i i -</del>		1

-9-

## ICP SERIAL DILUTIONS

SA	MPLE	NO.

Contract:	R1004141				OBLM20033	L
Lab Code:		Case No.:	SAS No.:		SDG NO.:	OBLM20029
Matrix (so	il/water):	WATER		Level	(low/med):	LOW
	<u> </u>	<u></u>	<del></del>			

Concentration Units:

ug/L

Analyte	Initial Sample Result (I)	Serial Dilution Result (S)	С	% . Differ- ence	Q	м
Copper	1.62 U		12.50 J	100.0		P
Lead	1.87 ਪ		9.35 0		İ	P

## METALS -10-

## **DETECTION LIMITS**

Contract: R1	004141			
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029	
ICP ID Number:	Optima ICP 4	Date: 4/8/2010		
Flame AA ID Nur	mber:			
Furnace AA ID 1	Number:	<del></del>		

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Copper	324.752		20.0	1.62	P
Lead	220.353		50.0	1.87	P

#### -11A-

## ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract:	R1004141				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029

ICP ID Number: Optima ICP 4 Date: 8/10/2010

	Optima 1	CF 4	Date:	8/10/2010		
	Wave- length		Interelement	Correction Fac	tors for:	
Analyte	(nm)	Al	Ca	Fe	Mg	
Aluminum	308.215	0.0000000	0.1139400	0.0180156	0.0746449	
Antimony	206.836	0.0075988	0.0009323	0.0083420	0.0023085	<del></del>
Arsenic	188.979	0.0069260	-0.0039422	-0.4075890	-0.0038014	
Barium	233.527	0.0001586	0.0074942	0.0487265	0.0035068	<del></del>
Beryllium	313.107	-0.0003080	-0.0005275	-0.0000827	-0.0001369	<del></del>
Boron	249.772	0.1410650	0.0999030	2.8555701	0.0593830	
Cadmium	226.502	-0.0008028	-0.0004658	0.0838332	0.0003168	<del></del> -
Calcium	227.546	-0.9921060	0.0000000	-52.4505997	0.0335220	<del></del>
Chromium	267.716	0.0004880	0.0009171	-0.0363622	-0.0079755	
Cobalt	228.616	-0.0011300	0.0010784	0.0226828	-0.0003179	
Copper	324.752	0.0075819	0.0051749	-0.1825400	0.0172969	
Iron	238.863	0.1891440	0.0879009	0.0000000	0.1754410	
Lead	220.353	-0.1180180	-0.0081253	0.0703138	0.0025618	<u> </u>
Magnesium	279.077	-0.0087380	-0.0031261	0.6149970	0.0000000	
Manganese	257.610	-0.0030587	-0.0001808	0.0040839	0.0315104	
Molybdenum	202.031	-0.0107077	0.0006973	-0.0408572	0.0002125	
Nickel	231.604	-0.0002009	0.0024560	0.0015315	0.0021349	
Potassium	404.721	1.0406600	4.9624801	-30.8682995	1.7453200	
Selenium	196.026	0.0319897	0.0105760	-0.2887070	0.0046860	
Silver	328.068	0.0011998	0.0023358	-0.0646018	0.0012400	
Sodium	330.237	0.3158310	0.7843770	-2.6892400	0.0653133	
Strontium	460.733	-0.0046893	0.0219937	0.0065786	-0.0011589	
Thallium	190.801	-0.0296921	-0.0014104	-0.0439918	-0.0086815	
Tin .	189.927	-0.0179655	-0.0687362	-0.1417700	-0.0654611	
ritanium	337.279	-0.0003164	0.0033811	0.0038453	0.0109301	
Vanadium	292.402	0.0004349	0.0004036	-0.0932130	-0.0001970	
Zinc	206.200	0.0011789	0.0061781	0.0157473	0.0364618	<del></del>

Comments:						
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<del></del>	·	

Lead

## METALS -12-ICP LINEAR RANGES (QUARTERLY)

Contract:	R1004141					
Lab Code:		Case No.:	SAS No	o.:	SDG NO.:	OBLM20029
ICP ID Numb	er: Optim	na ICP 4	Date	: 4/8/2010		
		Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м	
		Copper	0.200	5000	— <del>   </del>	

10000

0.200

-13-

#### PREPARATION LOG

Contract:	R1004141				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029

Method: P

Sample ID	Preparation Date	Initial Volume	Final Volume (mL)
LCSW	8/11/2010	50.0	50.0
PBW	8/11/2010	50.0	50.0
OBLM20029	8/11/2010	50.0	50.0
OBLM20030	8/11/2010	50.0	50.0
OBLM20031	8/11/2010	50.0	50.0
OBLM20032	8/11/2010	50.0	50.0
OBLM20033	8/11/2010	50.0	50.0
OBLM20033D	8/11/2010	50.0	50.0
OBLM20033S	8/11/2010	50.0	50.0
OBLM20034	8/11/2010	50.0	50.0
OBLM20035	8/11/2010	50.0	50.0

#### METALS -14-

#### ANALYSIS RUN LOG

Contract:	R1004141				_			
Lab Code: _	<del>-</del>		Case	No.:	SAS No.:		SDG No.:	OBLM20029
Instrument I	D Number:	Optima	ICP	4	Method:	P		
Start Date:	8/13/2010			. <del>.</del>	End Date:	8/13/2010		

<u> </u>		1	]	T										Ana	lly	te	3				_		_		_	
Sample ID.	D/F	Time	% R	A L	S	A S		B E	C	C A	C R	C 0	C	F	P	М	М	H G	N	к	S E		N A	T L	v	Z
Calib Blank 1	1.00	14:44								Γ			х		х					┢		┪				_
Calib Std 1	1.00	14:50											х		х							_				_
Calib Std 2	1.00	14:56											İ									Ĺ	i			
Calib Std 3	1.00	15:00											х		х											
Calib Std 4	1.00	15:05											х		х								ĺ			
ICV1	1.00	15:09											x		х											
ICB1	1.00	15:14											х		х									_	寸	_
CRDL1	1.00	15:19											x		х							-	┪	7	寸	-
ICS-A1	1.00	15:25											x		х									<del>-</del>		
ICS-AB1	1.00	15:29	_									_	х		x		i						_	ᅥ	_	$\dashv$
CCV1	1.00	15:34										_	х		х									_		_
CCB1	1.00	15:38											х		x	寸	ij				T		<u> </u>	┪	┪	_
ZZZZZZ	1.00	15:44										i			i		Ť						┪	┪	Ť	┪
ZZZZZZ	5.00	15:49	<u> </u>									i		-	i		i	ij	i				T	┪	1	┪
ZZZZZZ	1.00	15:54					_					j	T	i	寸	Ť	寸	i	T		Ť		<u> </u>	1	_	┪
ZZZZZZ	1.00	15:58								İ		Ì	T	j	Ť	T	ᅧ	T		┪	寸	T	_	_	Ť	ᅥ
ZZZZZZ	1.00	16:02							Ì	i		i		i	T	i	┪		┪	j	<del>- i</del>	7	┪	┪	Ť	ᅥ
ZZZZZZ	1.00	16:06			İ			j	İ			T	寸	T	j	j	j	i	Ť	Ť	Ħ		t	_		ᅻ
ZZZZZZ	5.00	16:11	-					j	T	j		Ť	寸	i	╗	<u> </u>	┪		i		┪	٦	寸	┪	┪	ᅥ
ZZZZZZ	1.00	16:17	-					Ī	1	T		Ť	Ť	T	┪	T	ij	T	┪	Ť	┪	_	┪	┪	寸	┪
ZZZZZZ	1.00	16:21		-				j	T	i		Ť	T		Ť	-	┪	i	İ	┪	j	Τİ	寸	┪	+	┪
ZZZZZZ	1.00	16:25		7			7		j	i		İ	i		┪	┪	┪	Ť	┪	1	1	┪	$\dagger$	┪	$\dashv$	┱
ZZZZZZ	1.00	16:29		┪				寸	T				┪	_	1	T	十	<del>- i</del>	┪	┪		┪	+	+	Ħ	ᅻ
ZZZZZZ	1.00	16:34		寸	1	7	7	┪	┪	T	$\neg$	$\dashv$	┪	7	_	Ť	┪	┪	ᅥ	┪	┪	+	÷	╅	┪	ᅻ
ZZZZZZ	1.00	16:39					T	7	寸	i	$\neg$	寸	ì	Ħ	_	Ť	寸	1	┪	Ť	Ħ	+	十	╅	╅	ᅷ
ZZZZZZ	1.00	16:44					1	Ì	T	7	+	Ť	┪	寸	1	Ħ	Ť	Ť	寸	寸	1	┪	┪	$\forall$	+	ᅻ
ZZZZZZ	1.00	16:48		$\neg$	$\dashv$	寸	$\neg$	7	+	寸	寸	寸	+	$\dashv$	7	$\forall$	寸	寸	┪	$\frac{1}{1}$	Ť	┱	十	┿	寸	┿
ZZZZZZ	1.00	16:52		$\dashv$	_	$\dashv$	+	i	寸	寸	寸	Ť	┪	$\dashv$	┪	┪	$\dashv$	┪	┪	$\dashv$	寸	+	十	╁	$\dagger$	┿
ZZZZZZ	1.00			+		+	$\dashv$	寸	寸	$\forall$	$\dashv$	T	寸	寸	廿	寸	ᅷ	$\dashv$	┪	$\dashv$	$\dashv$	ᆉ	+	+	+	┿
ZZZZZZ	1.00			$\dashv$	+	$\dashv$	寸	$\dashv$	┪	寸	$\dashv$	7	1		┪	$\dashv$	+	+	╅	1	$\dashv$	+	$\dashv$	+	+	+
ZZZZZZ	1.00			$\dashv$	$\dashv$	$\dashv$	$\dashv$	寸	<del>-</del> †	$\dashv$	$\dashv$	_	╁	+	+	+	$\dashv$	+	十	$\dashv$	$\dashv$	┿	+	+	+	+
ZZZZZZ	1.00			$\forall$	$\dashv$	$\dagger$	+	┪	Ť	寸	$\dashv$	ᅡ	╅	$\dashv$	╁	$\dagger$	╅	$\dashv$	+	+	$\dashv$	╁	+	+	+	ᅷ
ZZZZZZ	1.00		_	+	+	+	$\dashv$	┿	+	+	+	+	+	+		+	+	ᅷ	+	+	<u> </u>	+	+	+	<del> </del>	ᅷ

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

#### METALS -14-

#### ANALYSIS RUN LOG

Contract:	R1004141					
Lab Code:		Case No.:	SAS No.:		SDG No.:	OBLM20029
Instrument	ID Number:	Optima ICP 4	Method:	P		
Start Date:	8/13/2010		End Date:	9/13/2010		

		<del>-</del>						En					_			_				_						
Sample	D/F	Time	  % R	_											ıly											
ID.			" "	L			B A		C D	C A	C R	0	ี ด	F E	P B	M G	M	H G	N	K	S	A G	N A	T	V	Z N
ZZZZZZ	1.00	17:18											1					-	<u> </u>			┢	_	<u> </u>		
ZZZZZZ	1.00	17:23				-							T	j								<u> </u>				
ZZZZZZ	1.00	17:27											T							┢		_				_
ZZZZZZ	1.00	17:33											Ť	j						<u>-</u> -						_
ZZZZZZ	1.00	17:37								j		i	Ť	j											┪	_
ZZZZZZ	1.00	17:41										i	寸	Ť	┪										┪	
ZZZZZZ	1.00	17:46			_		_			T			寸	_	┪						_				-	
ZZZZZZ	1.00	17:50							T	j		i	Ť	7	1									_	ᅥ	_
ZZZZZZ	1.00	17:55							i	Ť		j	寸	İ	<u> </u>	٦	┪							+	<del>-</del> ¦	
CCV2	1.00	18:00	-						T	ij	ᅥ	ᅥ	x	+	x		-		$\dashv$					ᅥ	+	_
CCB2	1.00	18:04							┪	寸	┪	_	x	-	ж	ᇹ	┪							ᅥ	<del>-</del> ¦	
CRDL2	1.00	18:10							┪	Ť	$\neg$		x	_	x	寸	-	7	┪	┪	┪		<del>-  </del>	-	┪	
ICS-A2	1.00	18:15	_			$\dashv$		7	┪	寸	$\dashv$	_	x	÷	x	ᅥ	ᆉ		┪	<u>-</u> ¦	┪			<del>-</del> ¦	$\frac{1}{1}$	_
ICS-AB2		18:20			_	ᅥ	7	ᅥ	┪	<del>-</del> †	+	÷	x	÷	x	Ħ	┪	┪	ᅥ	ᅥ	┪	_ <u> </u>		+	닉	
HLCCV2	1.00	18:24					┪	┪	ᅥ	寸	-	_	x	÷	x	┪	┪	$\dashv$	┪	-	<del>-</del>	┪	$\dashv$	┽	+	-
HLCCV1	1.00	18:29						Ť	i	Ť	$\dashv$	<del>-</del>	x	÷	x	+	┪	T	┪	┪	┪	┪	_	ᅻ	+	┪
CCV3	1.00	18:33		$\dashv$		7	7	7	t	t	+	_	x	÷	х	t	$\dashv$	1	1	-	_	<u> </u>	_{	$\dashv$	+	ᆛ
ССВЗ		18:38					7	Ť	+	Ť	_	<del>-</del>	x	-÷	x	Ħ	+	1	_	ᅥ	H	┪	+	╅	+	┽
ZZZZZZ		18:44			7	+	7	┪	┪	┪	$\dashv$	+	<u> </u>	t	<del></del> +	$\dashv$	╅	┪	┪	┪	$\pm$	╣	╅	┪	+	┽
ZZZZZZ	1.00				$\dashv$	7	┪	┪	t	寸	+	十	╁	$\dagger$	┪	╁	┪	$\dashv$	╅	┪	$\dashv$	ᅥ	<del>-</del> +	$\dashv$	+	┽
ZZZZZ	1.00			+		+	$\dashv$	_	┪	t	╅	+	╁	$\dagger$	$^{+}$	寸	╅	$\dashv$	+	+	+	_	+	+	+	+
ZZZZZZ	1.00			+	$\dashv$	$\dashv$	$\dashv$	7	┪	$\dot{\top}$	+	$^{+}$	┿	t	+	┰	÷	$\dashv$	┽	1	+	$\dashv$	$\dashv$	┿	+	+
ZZZZZZ	1.00			$\dashv$	╼┼	+	╅	_	+	┿	+	$^{+}$	╁	$^{+}$	$\frac{1}{1}$	+	ᅻ	+	+	$\dashv$	_	+	+	+	+	<u> </u>
ZZZZZZ	1.00			$\dashv$	$\dashv$	$\dashv$	+	$\dashv$	+	+	+	$\dashv$	╁	+	+	+	ᅷ	十	$\frac{1}{1}$	_	+	<del>-</del> ¦	+	<u> </u>	+	<del>-</del>
ZZZZZZ	1.00			$\dashv$	$\dashv$	+	$\dashv$	$\dashv$	+	$\dashv$	+	+	+	$\frac{1}{1}$	+	$\pm$	+	+	+	+	+	+	+	+	<u> </u>	<del>-</del>
ZZZZZ	1.00		·	_	$\dashv$	$\dashv$	+	$\dashv$	<del>-</del> †	+	+	+	+	+	+	$^{+}$	+	+	+	+	$\frac{1}{1}$	<del>-</del> +	+	+	+	+
ZZZZZZ	1.00			$\dashv$	$\dashv$	+	+	+	+	┿	+	÷	<del>-</del>  -	$^{+}$	$\frac{1}{1}$	+	$\frac{1}{1}$	<u> </u>	$\frac{1}{1}$	+	+	$\dashv$	+	+	+	+
ZZZZZ	1.00			$\dashv$	$\dashv$	$\dashv$	$\dashv$	$\dashv$	十	$\dagger$	+	+	+	+	$\frac{1}{1}$	$\pm$	+	+	+	+	+	<del>-</del>	+	<u> </u>	+	+
CCV4	1.00			+	+	+	+	十	+	+	+	2	+	+,	x	+	+	+	+	+	+	<u> </u>	ᅷ	十	+	<u> </u>
CCB4	1.00	——————————————————————————————————————		$\dashv$	$\dashv$	+	+	+	+	+	+	X	_	÷	<u>~  </u>	+	ᅷ	<del>-</del> ¦	+	1	+	+	+	+	$\frac{1}{1}$	4
ZZZZZ	1.00			+	+	+	┿	+	+	+	+	1	+	+	· <u> </u>	+	ᅷ	+	+	<u> </u>	+	<u>-¦</u>	+	+	+	$\frac{\perp}{\uparrow}$
ZZZZZ	1.00			+	+	+	+	+	+	+	+	+	+	Ť	$\frac{1}{1}$	+	+	+	+	+	<del>-</del>	+	<del>-</del>	$\dotplus$	1	4
ZZZZZ	1.00			+	+	+	-	4	_		4			_	<u> </u>	_							l_		1	1

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

#### METALS -14-

## ANALYSIS RUN LOG

Contract:	R1004141				 _				
Lab Code:	<del></del>		Case	No.;	 SAS No.:		SDG No.:	OBLM20029	
Instrument	ID Number:	Optima	ICP	4	 Method:	P			
Start Date:	8/13/2010				End Date:	8/13/2010			

													_							-							
Sample	D/F	Time	% R											Ana	ıly	te	3						_				_
ID.	D/F	Time	* R	A L	S B	A S	B A	B E	C	C A	C R	0		F E	P B	M G	M N	H G	N	K	S E	A G	N A	T L		Z N	C
ZZZZZZ	5.00	19:52															Н			_					7	十	-
ZZZZZZ	1.00	19:58																							┪	十	_
ZZZZZZ	1.00	20:02	<del></del>								_					_								+	_	十	-
PBW	1.00	20:06											х		х									┪	┪	+	-
LCSW	1.00	20:12								i			х		х									┪	$\dashv$	十	_
OBLM20029	1.00	20:16								j			х		х		j	i						+	┪	十	_
OBLM20030	1.00	20:20								i			х		x		T							<del>-</del>	┪	┿	_
CCV5	1.00	20:24								寸			х	_	x		<del>-                                    </del>	┪	T				-	<del>-</del> †	+	┿	_
CCB5	1.00	20:29								Ť			х		х		<del>-  </del>	7	┪					$\dashv$	÷	÷	-
OBLM20031	1.00	20:35	ii.							j		_	х	_	х		寸	i	┪	i			_	$\dashv$	Ħ	┿	_
OBLM20032	1.00	20:39							Ī	T			х	<del>-</del>	x	T	┪	ᅥ	┪	_	┪		ᅥ	┪	ᅻ	十	-
OBLM20033	1.00	20:43								T	$\exists$	÷	x	_	х	1	┪	寸	7	ᅥ			┪	╅	十	+	-
OBLM20033D	1.00	20:47							i	Ť	7	j	х		х	ij	T	1	┪	Ť	j	-i	1	┪	$\dashv$	十	_
OBLM20033S	1.00	20:51						j	T	Ť		÷	x	-	х	T		T	┪	T	ij	_	Ť	┪	$\dagger$	十	_
OBLM20033A	1.00	20:56				Ì	一	Ť	T	Ť		İ	хİ	Ť	хİ	j	<u> </u>		┪	7	Ť		7	寸	╅	十	_
OBLM20033L	5.00	21:00						T	Ť	T		1	x	Ť	х	Ť	j	T	Ť	┪	┪	<del>-</del>	┪	÷		十	_
OBLM20034	1.00	21:06						Ť	İ	Ť		<del>-</del>	х	<del></del>	хİ		寸	Ť	T	T	T	ij	┪	十	$\dagger$	十	_
OBLM20035	1.00	21:10						İ	寸	Ť	寸	1	x i	_	х	Ì	ij	寸	1	7	寸	┪	1	十	Ŧ	十	-
CCV6	1.00	21:14		7	_				寸	Ť	7	T:	х	Ť	хİ	T	_	寸	┪	┪	1	┪	┪	$\dagger$	÷	十	-
ССВ6	1.00	21:18		Ť			7	T	Ť	Ť	┪	_	х	<del>-</del>	х	Ť	┪	寸	┪	┪	+	┪	Ť	┪	$\dagger$	十	-
CRDL3	1.00	21:24		$\neg$	T		T	i	Ť	寸	7		х	_	x i	Ħ	┪	Ť	t		寸	+	Ť	$\pm$	+	十	_
ICS-A3	1.00	21:30		寸	寸	7	_	┪	T	寸	+	<u> </u>	x	-	х	寸	寸	<del>-</del>	寸	┪	┪	┪	十	$\dagger$	╁	十	_
ICS-AB3	1.00	21:34	-	+	寸	7	$\dashv$		ij		$\forall$		x	÷	x	╅	Ť	$\dagger$	+	+	Ť	┿	$\dashv$	+	t	÷	_
CCV7	1.00	21:38		$\dashv$	寸	7	寸	j	Ť	寸	$\dashv$	÷	x	_ <u></u>	х	┪	廿	$\overline{}$	┪	t	╁	┪	÷	$\dot{\top}$	╁	$\dot{m{+}}$	-
CCB7	1.00	21:43	-	+	十	十	$\dashv$	寸	┪	Ť	$\dashv$	_	х	_	x	╁	$\dashv$	╁	╁	$\dashv$	┪	+	$\dashv$	÷	$\pm$	┿	_

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

## **Metals Cover Page**

Analyst: Des

Date: 8/13/10

Instrument: Opt 4

Data File: 4 Aug 13a

Reviewed By: Des 8/15/10

Entered By: CKS/16/10

Approval: (18)

Starlims Run #	Analytes Used	Batch ID	Method	Failed Analytes	Comments/ Problems
212676	Ag As Ba Cd Cr Pb Sc	117264	6010		repeat
					005,007,015,017 A
					009,019 Se
2121078	Ag AlAs De Cd CrCu Mani PhshSavza	117097	200.7	Fe	R4263-DD27665
			]		•
			Ĺ		
212680	Cu Pb	117216	6010		
			-		
	,				
-					
			[_		

Package Data:

Client Sub#	TIER	Analytes Used	Batch ID	Stds Attached?	Raw Data Copied?
R-4314	IV/ ILM	Ay As Da Cd Cr Pb Se (Icheus Pb)	117264	(Yes / No	Yes / No
R-4141	(V) ILM	CU Ph	1172/6	Yes / No	Yes / No
J	IV / ILM			Yes / No	Yes / No
	IV / ILM			Yes / No	Yes / No
-	IV / ILM			Yes / No	Yes / No
	IV / ILM			Yes / No	Yes / No
·	IV / ILM			Yes / No	Yes / No
	IV / ILM		1	Yes / Nose	LI Mes / No

Analysis Begun

Start Time: 8/13/2010 2:44:56 PM Plasma On Time: 8/13/2010 5:49:41 AM

Logged In Analyst: ROCACQMET01 Technique: ICP Continuous Spectrometer Model: Optima 5300 DV, S/N 077N6052202Autosampler Model: AS-93plus

Sample Information File: C:\pe\Optima4\Sample Information\routine1.sif

Batch ID:

Results Data Set: 4Aug13a

Results Library: C:\pe\Optima4\Results\Aug10.mdb

8/13/10

Method Loaded

Method Name: AXIAL200-6010 L Opt4

Method Last Saved: 8/13/2010 6:27:18 AM IEC File: 081010.iec MSF File:

Method Description: 5300DV TAL Metals Method 200.7/6010B-Optima 4

Analyte	Calibration Equation	Processing	View	Internal Standard	IEC
Ag 328.068	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Al 308.215	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
As 188.979	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
B 249.772	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Ba 233.527	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Be 313.107	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Cd 226.502	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Co 228.616	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Cr 267.716	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Cu 324.752	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Fe 238.863	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
K 404.721	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Mg 279.077	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Mn 257.610	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Mo 202.031	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Ni 231.604	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Na 330.237	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Pb 220.353	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Sb 206.836	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Se 196.026	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Sn 189.927	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Ti 337.279	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Tl 190.801	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
V 292.402	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Y 371.029	Lin, Calc Int	Peak Area	Axial	n/a	n/a
Zn 206.200	Lin Thru O	Peak Area	Axial	Y 371.029	Yes
Ca 227.546	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes
Sr 460.733	Lin Thru 0	Peak Area	Axial	Y 371.029	Yes

______

Sequence No.: 1

Sample ID: Calib Blank 1

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 8/13/2010 2:44:56 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean	Data:	Calib	Blank 1	
			Mean	C
Analyte			In	ıt

	mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
Y 371.029	8731871.6	15101.02	0.17%	1.000 mg/L
Ag 328.068†	3783.0	183.83	4.86%	[0.00] mg/L
Al 308.215†	7106.8	51.19	0.72%	[0.00] mg/L
As 188.979†	-46.7	14.83	31.74%	[0.00] mg/L
B 249.772†	16414.2	114.92	0.70%	[0.00] mg/L
Ba 233.527†	2177.7	25.80	1.18%	[0.00] mg/L
Be 313.107†	-11865.8	234.00	1.97%	[0.00] mg/L
Cd 226.502†	-59.1	29.07	49.17%	[0.00] mg/L
Co 228.616†	-62.0	17.09	27.55%	[0.00] mg/L
Cr 267.716†	-63.5	13.83	21.77%	[0.00] mg/L
Cu 324.752†	5219.7	18.38	0.35%	[0.00] mg/L
Fe 238.863†	31319.9	65.39	0.21%	[0.00] mg/L

Method: AXIAL200-6010 L Opt4 Page 2 Date: 8/13/2010 3:00:22 PM 45.63 12.22% K 404.721† 373.4 [0.00] mg/L 17.19 1.03% 20.82 2.96% Mg 279.077† -1674.1 [0.00] mg/L Mn 257.610† 703.4 [0.00] mg/L Mo 202.031† -221.1 0.37 0.17% [0.00] mg/L [0.00] mg/L [0.00] mg/L Ni 231.604† 2.1 16.27 788.71% 4204.0 41.52 0.99% Na 330.237† 163.1 1.95 1.20% Pb 220.353† [0.00] mg/L Sb 206.836† 1.60 8.15% 4.85 3.27% 8.03 4.31% [0.00] mg/L 19.6 [0.00] mg/L [0.00] mg/L Se 196.026† 148.5 Sn 189.927t 186.1 107.33 2.88% Ti 337.279† -3729.7 [0.00] mg/L Tl 190.801t -46.9 2.31 4.93% 50.99 5.78% [0.00] mg/L V 292.402† 881.8 [0.00] mg/L 17.08 9.36% [0.00] mg/L Zn 206.200† 182.4 Ca 227.546† -785.6 2.65 0.34% [0.00] mg/L Sr 460.733† -1597.0 122.66 7.68% [0.00] mg/L Sequence No.: 2 Autosampler Location: 9 Sample ID: Calib Std 1 Date Collected: 8/13/2010 2:50:39 PM Analyst: Data Type: Original Initial Sample Vol: Initial Sample Wt: Dilution: Sample Prep Vol: ----Mean Data: Calib Std 1 Mean Corrected Calib Intensity Std. Dev. 279592.11 Conc. Units Analyte RSD 0.9902 mg/L Y 371.029 3.23% 23.56 2.18% Al 308.215† 1079.2 [0.0200] mg/L 0.19 0.46% 297.81 4.32% 24.98 6.65% 10.84 2.68% 41.4 As 188.979† [0.0050] mg/L [0.0200] mg/L [0.0010] mg/L Ba 233.527† 6892.4 375.5 Cd 226.502† 404.3 Co 228.616† [0.0030] mg/L 10.84 2.686 18.83 7.86% 225.33 4.65% 671.23 3.89% 239.5 Cr 267.716† [0.0010] mg/L 4845.1 Cu 324.752† [0.0100] mg/L 17252.2 [0.0100] mg/L Mn 257.610† 24.61 1.85% 23.38 3.10% 35.14 20.40% 1.17 2.38% 2.12 8.45% 1.45 2.42% 4.33 0.59% Mo 202.031t 1333.0 [0.0250] mg/L Ni 231.604† 755.2 172.2 755.2 [0.0050] mg/L Pb 220.353† [0.0050] mg/L 49.2 25.1 Sb 206.836† [0.0100] mg/L Se 196.026† [0.0050] mg/L Tl 190.801† 60.0 [0.0100] mg/L 732.9 V 292.402† [0.0030] mg/L 128.73 3.72% [0.0100] mg/L Zn 206,200† 3456.5 Sequence No.: 3 Autosampler Location: 10 Sample ID: Calib Std 2 Date Collected: 8/13/2010 2:56:19 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: ______ Mean Data: Calib Std 2 Mean Corrected Calib 
 Intensity
 Std.Dev.
 KSD

 8652898.5
 40063.27
 0.46%
 0.9910 mg/L

 3567.2
 130.65
 3.66%
 [0.0100] mg/L

 9340.3
 334.01
 3.58%
 [0.0500] mg/L

 1 71
 0.01%
 [0.0050] mg/L
 Analyte Conc. Units Y 371.029 Ag 328.068† B 249.772† 1.71 0.01% [0.0050] mg/L 213.66 3.42% [0.1000] mg/L Be 313.107† 6244.9 213.66 3.42% [0.1000] mg/L -60.9 127.91 209.99% [0.5000] mg/L Fe 238.863† K 404.721† No calibration curve because standard intensity and concentration values are not in the same order. Mg 279.077† 20541.1 28.87 0.14% [0.5000] mg/L Na 330.237† 343.4 37.96 11.05% [0.5000] mg/L Sn 189.927† 3043.0 1.52 0.05% [0.1000] mg/L Ti 337.279† 25149.7 1192.74 [0.0500] mg/L 4.74% 232.5 Ca 227.546† 60.19 25.89% [0.5000] mg/L [0.0500] mg/L Sr 460.7331 12167.3 92.88 0.76%

Sequence No.: 4
Sample ID: Calib Std 3
Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 11
Date Collected: 8/13/2010 3:00:22 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: Calib Std 3 Mean Corrected Calib Intensity Std.Dev. .... 24822.17 0.29% Conc. Units Analyte 0.9866 mg/L Y 371.029 8614636.9 411.51 0.56% Ag 328.068† 74031.8 [0.2000] mg/L Al 308.215† 171369.6 948.24 0.55% 6.43 0.19% [4.0000] mg/L As 188.979† 3364.7 [0.4000] mg/L 221460.0 1832.24 0.000 8804.56 0.60% 3853.95 0.60% 4.48 0.01% 1832.24 0.83% [1.0000] mg/L B 249.772† Ba 233.527† 1477458.4 [4.0000] mg/L 647463.5 [0.1000] mg/L [0.2000] mg/L Be 313.107† Cd 226.502† 76277.1 833.60 0.62% 135279.9 Co 228.616† [1.0000] mg/L 43958.2 98.72 0.22% [0.2000] mg/L
235473.7 1524.25 0.65% [0.5000] mg/L
121800.2 602.22 0.49% [2.0000] mg/L
1566.7 19.93 1.27% [10.000] mg/L Cr 267.716† Cu 324.752† [2.0000] mg/L [10.000] mg/L Fe 238.863† K 404.721† No calibration curve because standard intensity and concentration values are not in the same order. Mg 279.077† 401996.3 2223.19 0.55% [10.000] mg/L Mn 257.610† 518034.7 2853.02 0.55% [0.3000] mg/L 294.39 0.56% [1.0000] mg/L 497.05 0.41% [0.8000] mg/L 33.85 0.21% [10.000] mg/L 13.07 0.24% [0.2000] mg/L Mo 202.031† 52290.0 Ni 231.604† Na 330.237† 122364.9 16196.3 Pb 220.353† 5507.6 11403.0 227.06 1.99% [2.0000] mg/L 1130.9 21.42 1.89% [0.2000] mg/L 59503.3 100.55 0.17% [2.0000] mg/L 509479.8 4243.51 0.83% [1.0000] mg/L Sb 206.836t Se 196.026† Sn 189.927t Ti 337.279† Tl 190.801† 15.19 0.49% 1164.05 0.44% 709.34 0.58% 15.65 0.28% 3110.4 [0.4000] mg/L 265243.0 V 292.402† [1.0000] mg/L [0.4000] mg/L Zn 206.200† 122344.3 Ca 227.546† 5611.8 [10.000] mg/L Sr 460.733† 250769.0 [1.0000] mg/L 1981.52 0.79%

Sequence No.: 5
Sample ID: Calib Std 4
Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 2
Date Collected: 8/13/2010 3:05:27 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: Calib Std 4 Mean Corrected Calib Intensity Conc. Units Analyte Std.Dev. RSD 124537.32 1.51% Y 371.029 0.9418 mg/L 8223756.5 Ag 328.068† 373032.0 4053.54 1.09% [1.0000] mg/L 862485.6 17111.5 18268.37 2.12% [20.000] mg/L 259.45 1.52% [2.0000] mg/L 33034.79 2.86% [5.0000] mg/L Al 308.215† As 188.979† 1156617.2 B 249.772† Ba 233.527† 7192869.6 145812.59 2.03% [20.000] mg/L 69914.40 2.13% [0.5000] mg/L 7673.08 2.01% [1.0000] mg/L 14086.65 2.11% [5.0000] mg/L Be 313.107† 3286719.0 382375.5 668076.8 Cd 226.502† Co 228.616† 221330.8 Cr 267.716t 4698.91 2.12% [1.0000] mg/L 25702.76 2.18% 14708.13 2.43% 7.90 0.09% 1181140.5 [2.5000] mg/L Cu 324.752t 605394.1 Fe 238.863† [10.000] mg/L [50.000] mg/L K 404.721† 8916.6 No calibration curve because standard intensity and concentration values are not in the same order. Mg 279.077† 1964046.0 41833.74 2.13% [50.000] mg/L Mn 257.610† 2570392.3 52430.18 2.04% [1.5000] mg/L [1.5000] mg/L 9692.77 3.62% [5.0000] mg/L Mo 202.031† 267511.3 9942.14 1.66% [4.0000] mg/L Ni 231.604† 599597.3 91604.6 27426.6 1997.41 2.18% 60.09 0.22% [50.000] mg/L Na 330.237† Pb 220.353† [1.0000] mg/L 722.02 1.26% Sb 206.836† 57193.7 [10.000] mg/L

Method: AXIAL:	200-601	0 L Opt4		Page 4		Date:	8/13/2010	3:11:50 PM
Se 196.026†		E004 0	61 77	1.06% [1.0	0001/1			
Sn 189.927†		5804.8 304322.7		• • • •	000] mg/L 000] mg/L			
Ti 337.279†		2554726.3			000] mg/L			
Tl 190.801†		15352.4		•	000] mg/L			
V 292.402†		1345806.2		-	000] mg/L			
Zn 206.200†		608323.9			000] mg/L			
Ca 227.546†		28928.6	382.59		000) mg/L			
Sr 460.733†		1293719.0		1.21% [5.0	000] mg/L			
Calibration Su								
	-	<b>7</b>		<b>47</b>		<b></b>		<b>.</b>
Analyte	Stds.	Equation	Intercep		Curvature		r. Coef.	Reslope
Ag 328.068 Al 308.215	3 3	Lin Thru 0 Lin Thru 0	0.		0.00000		0.999999	
As 188.979	3	Lin Thru 0	0. 0.		0.00000		0.999999	
B 249.772	3	Lin Thru 0	0.		0.00000		).999995 ).999965	
Ba 233.527	3	Lin Thru 0	0.		0.00000		1.999987	
Be 313.107	3	Lin Thru 0	0.		0.00000		.999996	
Cd 226.502	3	Lin Thru 0	0.		0.00000		.000000	
Co 228.616	3	Lin Thru 0	0.		0.00000		.999997	
Cr 267.716	3	Lin Thru 0	0.		0.00000		.999999	
Cu 324.752	3	Lin Thru 0	0.		0.00000		000000	
Fe 238.863	3	Lin Thru 0	0.		0.00000	C	.999999	
Mg 279.077	3	Lin Thru 0	0.0	39320	0.00000	0	.999990	
Mn 257.610	3	Lin Thru 0	0.0	1714000	0.00000	0	.999999	
Mo 202.031	3	Lin Thru 0	0.0	53460	0.00000	0	.999990	
Ni 231.604	3	Lin Thru 0	0.0		0.00000		.999992	
Na 330.237	3	Lin Thru 0	0.1		0.00000		.999731	
Pb 220.353	3	Lin Thru 0	0.0		0.00000		.999999	
Sb 206.836	3	Lin Thru 0	0.0		0.00000		.000000	
Se 196.026 Sn 189.927	3 3	Lin Thru 0 Lin Thru 0	0.0		0.00000		.999987	
Ti 337.279	3	Lin Thru 0	0.0		0.00000		.999991	
Tl 190.801	3	Lin Thru 0	0.0		0.00000		.999996	
V 292.402	3	Lin Thru 0	0.0		0.00000		.999996	
Zn 206.200	3	Lin Thru 0	0.0		0.00000		.999999	
Ca 227.546	3	Lin Thru 0	0.0		0.00000		.999981	
\$r 460.733	3	Lin Thru 0	0.0		0.00000		.999982	
			=======================================				===========	======
Sequence No.:				_	Location: 3		40 224	
Sample ID: ICV Analyst:					ted: 8/13/20	10 3:03:	49 PM	
Initial Sample	w+.			Data Type: Initial Sam				
Dilution:	: HC:			Sample Prep	_			
<b></b>				-				
Mean Data: ICV	· · · · · · · · · · · · · · · · · · ·							
		an Corrected	Calib	<b>)</b>		Sample		
Analyte		Intensity	Conc. Units		Conc.	Units	Std.Dev	. RSD
Y 371.029		8489717.2	0.9723 mg/L	0.00171			_ =======	0.18%
Ag 328.068†		182859.8	0.4906 mg/L	0.00360		mq/L	0.00360	
QC value wi	thin li	mits for Ag 3:				<b></b> .		
Al 308.215†		420827.6	9.756 mg/L	0.0084	9.756	mg/L	0.0084	0.09%
QC value wi	thin li	mits for Al 3		ry = 97.56%		-		
As 188.979†	44 da - 7 d	8398.8	0.9844 mg/L	0.00147	0.9844	mg/L	0.00147	0.15%

Mean Data: ICV							
	Mean Corrected	Calib		Sample			
Analyte	Intensity C	onc. Units	Std.Dev. Co	nc. Units	Std.Dev.	RSD	
Y 371.029	8489717.2 0. 182859.8 0.	9723 mg/L	0.00171			0.18%	
				906 mg/L	0.00360	0.73%	
	limits for Ag 328.0						
	420827.6 9			756 mg/L	0.0084	0.09%	
	limits for Al 308.2						
	8398.8 0.			844 mg/L	0.00147	0.15%	
	limits for As 188.9						
	559395.3 2			403 mg/L	0.0048	0.20%	
	limits for B 249.77						
	3545246.5 9			847 mg/L	0.0084	0.09%	
	limits for Ba 233.5						
	1601492.0 0.			438 mg/L	0.00040	0.17%	
	limits for Be 313.1						
	187277.9 0.			894 mg/L	0.00239	0.49%	
	limits for Cd 226.5						
	325791.8 2			437 mg/L	0.0036	0.15%	
	limits for Co 228.6						
	108996.2 0.			929 mg/L	0.00170	0.35%	
	limits for Cr 267.7						
	577260.0 1			222 mg/L	0.0009	0.07%	
QC value within	limits for Cu 324.7	52 Recovery =	97.78%				

Method: AXIAL200-6010 L Opt4	Page 5	Date:	8/13/2010 3:17:41 PM
Fe 238.863† 296846.7 QC value within limits for Fe	4.894 mg/L 0.0140	4.894 mg/L	0.0140 0.29%
K 404.721† 3987.4	236.863 Recovery = 97.86%		60.78 1.52%
Unable to evaluate QC.			
Mg 279.077† 973416.2	24.76 mg/L 0.071	24.76 mg/L	0.071 0.29%
QC value within limits for Mg	279.077 Recovery = 99.02%		
	0.7391 mg/L 0.00069	0.7391 mg/L	0.00069 0.09%
QC value within limits for Mn	257.610 Recovery = 98.55%		
Mo 202.031† 129638.4	2.425 mg/L 0.0309	$2.425~\mathrm{mg/L}$	0.0309 1.27%
QC value within limits for Mo	202.031 Recovery = 97.02%	_	
Ni 231.604† 296735.9	1.978 mg/L 0.0096	1.978 mg/L	0.0096 0.49%
QC value within limits for Ni			
Na 330.237† 41573.8	22.78 mg/L 0.096	22.78 mg/L	0.096 0.42%
QC value less than the lower 1:		= 91.14%	
	0.4978 mg/L 0.00246		0.00246 0.49%
QC value within limits for Pb	220.353 Recovery = 99.56%		
Sb 206.836† 28187.8	4.929 mg/L 0.0463	4.929 mg/L	0.0463 0.94%
QC value within limits for Sb :	206.836 Recovery = 98.58%		
Se 196.026† 2837.6	0.4901 mg/L 0.00385	0.4901 mg/L	0.00385 0.79%
QC value within limits for Se : Sn 189.927† 149116.8		1 222 /*	0.0000 0.470
QC value within limits for Sn	4.908 mg/L 0.0220	4.908 mg/L	0.0220 0.45%
Ti 337.279† 1245263.0	2.437  mg/L = 98.178 $2.437  mg/L = 0.0377$	2.437 mg/L	0.0333 1.558
QC value within limits for Ti	2.43/ IIIG/L 0.03//	2.437 mg/L	0.0377 1.55%
Tl 190.801† 7639.4	0.9952 mg/L 0.00779	0.9952 mg/L	0.00779 0.78%
QC value within limits for Tl		0.9952 mg/h	0.00779 0.78%
		2.429 mg/L	0.0108 0.45%
QC value within limits for V 29	2.425 mg/H 0.0100	2.425 119/11	0.0100 0.43%
	0.9854 mg/L 0.00195	0.9854 mg/L	0.00195 0.20%
QC value within limits for Zn 2	$206 \ 200 \ \text{Recovery} = 98 \ 54\%$	0.3034 1119/11	0.00195 0.20%
Ca 227.546† 14076.9		24.62 mg/L	0.118 0.48%
QC value within limits for Ca 2	227.546 Recovery = $98.50$ %	21102	0.110 0.400
Sr 460.733† 626550.4		2.424 mg/L	0.0025 0.10%
QC value within limits for Sr 4	60.733 Recovery = 96.96%	2.121 119/12	0.0023 0.100
QC Failed. Continue with analysis			

Sequence No.: 7 Autosampler Location: 1 Date Collected: 8/13/2010 3:14:09 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: Sample ID: ICB

Analyst: Initial Sample Wt: Dilution:

Mean Data: ICB							
Analyte Y 371.029	Mean Corrected	i Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8668608.8	0.9928 mg/L	0.00050				0.05%
Ag 328.068†	-40.9	-0.0001 mg/L	0.00048	-0.0001	mg/L	0.00048	437.58%
QC value within	limits for Aq	328.068 Recovery	= Not calcula	ıted			
Al 308.215†	-112.6	-0.0026 mg/L	0.00165	-0.0026	mg/L	0.00165	63.26%
QC value within	limits for Al	308.215 Recovery	= Not calcula	ited			
As 188.979†	9.3	0.0011 mg/L	0.00018	0.0011	mg/L	0.00018	16.05%
QC value within	limits for As	188.979 Recovery	= Not calcula	ited			
B 249.772†	2561.4	0.0111 mg/L	0.00251	0.0111	mg/L	0.00251	22.62%
QC value within	limits for B 2	249.772 Recovery =	Not calculat	:ed			
Ba 233.527†	1061.7	0.0029 mg/L	0.00036	0.0029	mg/L	0.00036	12.14%
QC value within	limits for Ba	233.527 Recovery	= Not calcula	ted			
Be 313.107†	574.9	0.0001 mg/L	0.00004	0.0001	mg/L	0.00004	43.11%
QC value within	limits for Be	313.107 Recovery	= Not calcula	.ted			
Cd 226.502†	5.2	0.0000 mg/L	0.00005	0.0000	mg/L	0.00005	404.58%
QC value within	limits for Cd	226.502 Recovery	= Not calcula	ted			
Co 228.616†	65.4	0.0005 mg/L	0.00002	0.0005	mg/L	0.00002	4.72%
QC value within	limits for Co	228.616 Recovery	≈ Not calcula	ted			
Cr 267.716†	5.4	0.0000 mg/L	0.00001	0.0000	mg/L	0.00001	33.84%
OC value within	limits for Cr	267.716 Recovery	≃ Not calcula	ted			
Cu 324.752†	2368.5	0.0050 mg/L	0.00129	0.0050	mg/L	0.00129	25.68%
OC value within	limite for Cu	324 752 Pagazzaru	- Not calcula	+ ~ ~			
Fe 238.863†	163.4	0.0027 mg/L	0.00021	0.0027	mq/L	0.00021	7.83%
QC value within	limits for Fe	238.863 Recovery	= Not calcula	ted	<del>-</del>		
K 404.721†	-38.3	-				59.27	154.68%
Unable to evalua	ate QC.						

Method: AXIAL200-6010 L Opt4	Page 6	Date: 8/13/2010 3:2	3:20 PM
Mg 279.077† 8.7 0.0002 m		mg/L 0.00065 2	95.39%
QC value within limits for Mg 279.077 Re-	covery = Not calculated		
Mn 257.610† 686.2 0.0004 m		mg/L 0.00004	9.63%
QC value within limits for Mn 257.610 Re			
Mo 202.031† 85.8 0.0016 mg		mg/L 0.00060	37.23%
QC value within limits for Mo 202.031 Re			_
Ni 231.604† 63.8 0.0004 m		mg/L $0.00006$	14.41%
QC value within limits for Ni 231.604 Re			
Na 330.237† -286.3 -0.1570 mg		mg/L 0.05700	36.31%
QC value within limits for Na 330.237 Rec		•	
Pb 220.353† 30.5 0.0011 mg	g/L 0.00003 0.0011	mg/L 0.00003	2.51%
QC value within limits for Pb 220.353 Re	covery = Not calculated		
Sb 206.836† 6.6 0.0012 mg	g/L 0.00153 0.0012	mg/L 0.00153 1	33.01%
QC value within limits for Sb 206.836 Red	covery = Not calculated		
Se 196.026t -1.4 -0.0002 mg QC value within limits for Se 196.026 Rea	g/L 0.00157 -0.0002	mg/L 0.00157 6	75.36%
QC value within limits for Se 196.026 Rec	covery = Not calculated		
Sn 189.927† 503.1 0.0165 mg	g/L 0.00205 0.0165	mg/L 0.00205	12.41%
QC value within limits for Sn 189.927 Rec			
Ti 337.279† 59.5 0.0001 mg		mg/L 0.00008	65.39%
QC value within limits for Ti 337.279 Rec			
Tl 190.801† 10.8 0.0014 mg		mg/L 0.00033	23.17%
QC value within limits for Tl 190.801 Red	covery = Not calculated		
V 292.402† 126.7 0.0005 mg		mg/L 0.00015	31.32%
QC value within limits for V 292.402 Reco			
Zn 206.200† 55.2 0.0002 mg	g/L 0.00007 0.0002 1	mg/L 0.00007	41.34%
QC value within limits for Zn 206.200 Rec	covery = Not calculated		
Ca 227.546† 9.3 0.0161 mg	g/L 0.03673 0.0161 1	mg/L 0.03673 2:	27.42%
QC value within limits for Ca 227.546 Rec	covery = Not calculated		
Sr 460.733† 43.4 0.0002 mg	g/L 0.00069 0.0002	mg/L 0.00069 4:	10.45%
QC value within limits for Sr 460.733 Red			
All analyte(s) passed QC. One or more analyte	es were not evaluated.		
=======================================		=======================================	222===
Sequence No.: 8	Autosampler Location: 6		
Sample ID: MRL	Date Collected: 8/13/201		
Analyst	Data Type: Original		

Sample ID: MRL Date Collected: 8/13/2010 3:19:58 PM
Analyst: Data Type: Original
Initial Sample Wt: Initial Sample Vol:
Dilution: Sample Prep Vol:

Mean Data: MRL							
Analyte Y 371.029	Mean Corrected	l Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8801647.1	1.008 mg/L	0.0023				0.22%
Ag 328.068†	3626.8	0.0097 mg/L	0.00017	0.0097	mg/L	0.00017	1.79%
		328.068 Recovery :					
Al 308.215†	8029.2	0.1861 mg/L	0.00453	0.1861	mg/L	0.00453	2.43%
QC value within	limits for Al	308.215 Recovery :	= 93.03%				
As 188.979†	176.5	0.0207 mg/L ["]	0.00022	0.0207	mg/L	0.00022	1.07%
QC value within	limits for As	188.979 Recovery :	= 103.42%				
B 249.772†	41854.8	0.1808 mg/L	0.00467	0.1808	mg/L	0.00467	2.59%
QC value within	limits for B 2	49.772 Recovery =	90.40%				
Ba 233.527t	72838.4	0.2023 mg/L	0.00258	0.2023	mg/L	0.00258	1.28%
QC value within	limits for Ba	233.527 Recovery :	= 101.15%				
Be 313.107†	30982.4	0.0047 mg/L	0.00006	0.0047	mg/L	0.00006	1.32%
		313.107 Recovery :					
Cd 226.502†	3743.1	0.0098 mg/L	0.00001	0.0098	mg/L	0.00001	0.13%
QC value within	limits for Cd	226.502 Recovery :	97.82%				
Co 228.616†	6647.8	0.0497 mg/L	0.00010	0.0497	mg/L	0.00010	0.21%
		228.616 Recovery =					
Cr 267.716†	2193.7	0.0099 mg/L	0.00006	0.0099	mg/L	0.00006	0.60%
QC value within	limits for Cr	267.716 Recovery =	= 99.25%				
Cu 324.752†	12015.3	0.0254 mg/L	0.00023	0.0254	mg/L	0.00023	0.90%
QC value within	limits for Cu	324.752 Recovery :	= 101.71%				
Fe 238.863†	5743.6	0.0946 mg/L	0.00121	0.0946	mg/L	0.00121	1.28%
		238.863 Recovery =	= 94.56%				
K 404.721†	28.3	<del>-</del>				142.05 5	02.47%
Unable to evalua	ate QC.						
Mg 279.077†	39723.0	1.010 mg/L	0.0146	1.010	mg/L	0.0146	1.44%
		279.077 Recovery =			<u> </u>		
Mn 257.610†		0.0151 mg/L		0.0151	mg/L	0.00018	1.16%
QC value within	limits for Mn	257.610 Recovery =	= 100.81%		٠.		
-		4					

Me	thod: AXI	AL200-6010 L Opt4	Page	7		Date:	8/13/2010 3:	27:32 PM
Мо	202.031†	1339.5	0.0251 mg/L	0.00005	0.0251	mq/L	0.00005	0.21%
	QC value	within limits for Mo	202.031 Recovery =	100.25%		٠,		
Ni	231.604t	5972.1	0.0398 mg/L	0.00008	0.0398	mg/L	0.00008	0.21%
	QC value	within limits for Ni	231.604 Recovery =	99.51%				
Na	330.237†	1307.2	0.7162 mg/L	0.08277	0.7162	mg/L	0.08277	11.56%
	QC value	less than the lower 1	limit for Na 330.237	Recovery	= 71.62%			
Pb	220.353†	284.8	$0.0104~{ m mg/L}$	0.00022	0.0104	mg/L	0.00022	2.15%
	ot. varue	- Wienin limies for Po	22U-151 RECOVERV =	104.038				
Sb	206.836†	313.6	0.0548 mg/L	0.00121	0.0548	mg/L	0.00121	2.20%
		within limits for Sb				_		
		42.3				mg/L	0.00221	30.19%
		less than the lower 1			= 73.05%			
		15620.3				mg/L	0.00198	0.39%
<b></b> ,	QC value	within limits for Sn	189.927 Recovery =	102.77%		,_		
		25630.3			0.0502	mg/L	0.00042	0.83%
		within limits for Ti				,_		
1.1	190.8011	152.8	0.0199 mg/L	0.00037	0.0199	mg/L	0.00037	1.84%
77 -	QC value	within limits for Tl	190.801 Recovery =	99.52*	0.0480	/-		
		12650.0			0.0470	mg/L	0.00078	1.66%
		within limits for V 2			0 0105	/T	0.00010	0.50%
		5957.0 within limits for Zn			0.0195	mg/L	0.00010	0.50%
Ca	227 E46+	513.6	206.200 Recovery =	97.676	0 0000	mg/L	0.01669	1.87%
		within limits for Ca			0.6936	шg/ п	0.01669	1.0/6
		23202.8			0 0000	ma/T.	0.00087	0.97%
		within limits for Sr			0.0038	ш <b>д</b> / п	0.00087	0.2/6
		Continue with analysi		09.100				
20	· ATTER.	concinde with analysi						

Sequence No.: 9
Sample ID: ICSA
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 7
Date Collected: 8/13/2010 3:25:37 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: ICSA					
	Mean Correcte	d Calib		Sample Units Std.Dev. RSD 1.67% mg/L 0.00031 40.82%	
Analyte	Intensity	Conc. Units	Std.Dev. Conc.	Units Std.Dev. RSD	
Y 371.029	7943674.0	0.9097 mg/L	0.01517	1.67%	
Ag 328.068†	-2064.8	-0.0007 mg/L	0.00031 -0.0007	mg/L 0.00031 40.82%	
OC value within	limits for Ad	328.068 Recovery	= Not calculated		
Al 308.215†	10420754.6	241.7 mg/L	1.92 241.7	mg/L 1.92 0.79%	
QC value within	limits for Al	308.215 Recovery	= 96.66%		
As 188.979†	-301.8	0.0023 mg/L	0.00849 0.0023	mg/L 0.00849 363.21%	
QC value within	limits for As	188.979 Recovery	= Not calculated		
B 249.772†	79522.2	0.0096 mg/L	0.00397 0.0096	mg/L 0.00397 41.35%	
Ba 233.527†	3406.9	0.0023 mg/L	0.00038 0.0023	mg/L 0.00397 41.35% mg/L 0.00038 16.57% mg/L 0.00002 45.92%	
Be 313.107†	-1343.8	0.0000 mg/L	0.00002 0.0000	mg/L 0.00002 45.92%	
QC value within	limits for Be	313.107 Recovery			
Cd 226.502†	2664.0	-0.0005 mg/L	0.00035 -0.0005	mg/L 0.00035 69.62%	
QC value within	limits for Cd	226.502 Recovery	= Not calculated	_	
Co 228.616†	233.1	-0.0003 mg/L	0.00045 -0.0003	mg/L 0.00045 175.50%	
QC value within	limits for Co	228.616 Recovery	= Not calculated		
Cr 267.716†	-1429.6	-0.0016 mg/L	0.00006 -0.0016	mg/L 0.00006 3.72%	
QC value within	limits for Cr	267.716 Recovery	= Not calculated		
Cu 324.752†	-5838.5	-0.0027 mg/L	0.00030 -0.0027	mg/L 0.00030 11.01%	
QC value within	limits for Cu	324.752 Recovery	= Not calculated		
Fe 238.863†	5564362.5	91.78 mg/L	1.047 91.78	mg/L 1.047 1.14%	
QC value within	limits for Fe	238.863 Recovery	= 91.78%		
K 404.721†	-300.1		1.69 235.2	91.65 30.54%	
Mg 279.077†	9250702.0	235.2 mg/L	1.69 235.2	mg/L 1.69 0.72%	
QC value within	limits for Mg	279.077 Recovery	= 94.09%		
Mn 257.610†	131.6	-0.0069 mg/L	0.00004 -0.0069	mg/L 0.00004 0.52%	
QC value within	limits for Mn	257.610 Recovery	= Not calculated		
Mo 202.031†	-322.5	0.0001 mg/L	0.00023 0.0001	mg/L 0.00023 255.97%	
Ni 231.604†	101.5	-0.0005 mg/L	0.00067 -0.0005	mg/L 0.00023 255.97% mg/L 0.00067 130.85%	
QC value within	limits for Ni	231.604 Recovery	= Not calculated		
Na 330.237†	-21.2	-0.0468 mg/L	0.05476 -0.0468	mg/L 0.05476 117.10%	
Pb 220.353†	-637.2	0.0002 mg/L	0.00063 0.0002	mg/L 0.05476 117.10% mg/L 0.00063 305.65%	
QC value within	limits for Pb	220.353 Recovery	■ Not calculated		
Sb 206.836†	-16.1	-0.0062 mg/L	0.00183 -0.0062	mg/L 0.00183 29.61%	

QC value within limits for Sb	206.836 Recovery = Not calcu	ılated	
Se 196.026† -121.2	-0.0058 mg/L 0.00168	-0.0058 mg/L	0.00168 29.04%
QC value within limits for Se	: 196.026 Recovery = Not calcu	ulated	
Sn 189.927† 149.8	0.0544 mg/L 0.00055	0.0544 mg/L	0.00055 1.02%
Ti 337.279† 687.0	-0.0023 mg/L 0.00004	-0.0023 mg/L	0.00004 1.61%
Tl 190.801† -39.2	0.0020 mg/L 0.00315	0.0020 mg/L	0.00315 154.59%
QC value within limits for Tl	. 190.801 Recovery = Not calcu	ılated	
V 292.402† -2608.7	-0.0013 mg/L 0.00024	-0.0013 mg/L	0.00024 18.76%
QC value within limits for V	292.402 Recovery = Not calcul	ated	
Zn 206.200† 980.2	-0.0112 mg/L 0.00053	-0.0112 mg/L	0.00053 4.74%
QC value within limits for Zn	206.200 Recovery = Not calcu	ılated	•
Ca 227.546† 140387.6	248.0 mg/L 2.22	248.0 mg/L	2.22 0.90%
QC value within limits for Ca	227.546 Recovery = 99.19%		
Sr 460.733† 1774.6	0.0021 mg/L 0.00011	0.0021 mg/L	0.00011 5.38%
All analyte(s) passed QC.			

Sequence No.: 10 Sample ID: ICSAB Analyst: Initial Sample Wt: Dilution: Autosampler Location: 8
Date Collected: 8/13/2010 3:29:50 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data	· TCSAB								
Mean Data	· ICDAD	Mean Correcte	a	Calib			Sample		
Analyte		Intensity	Cona	Traite	Ctd Dow	Conc	Units	Std.Dev	. RSD
Y 371 029		7768245 6	0 8896	malt	0.00005	cone.	Units	sca.nev	0.01%
Ac 328 06	R t	7768245.6 77782.7	0.0090	mg/L	0.00003	0 2125	mq/L	0.00077	
OC val	ue within	limits for Ag	320 050	Pagozorza		0.2135	mg/ n	0.00077	0.366
Al 308.21		10686730.6		mq/L	1.25	247 0	mg/L	7 05	0.51%
		limits for Al		Decorrory		447.0	mg/ n	1.25	0.514
As 188.97		596.0			0.00011	0 1005	m~ /T	0 00011	0 100
		limits for As		Bodowow.		0.1085	ma\ r	0.00011	0.10%
B 249.772		83108.7	0.0154		0.00490	0.0154	ma /T	0.00490	21 556
Ba 233.52		189459.2		mg/L					31.77%
	'' ue within	limits for Ba	777 577	Bodomora.	- 102 708	0.5189	шg/ь	0.00300	0.58%
Be 313.10		3357862.1	0.5114		0.00094	0 5114	/-	0 00004	0 100
	•	limits for Be				0.5114	шg/ь	0.00094	0.18%
Cd 226.50		380223.5	0.9868		0.00333	0.0000	/T	0 00000	0 340
		limits for Cd				0.9868	шg/ц	0.00333	0.34%
Co 228.61		66111.6				0 4005	/*	0 00177	
		limits for Co		mg/ L	0.00155	0.4925	ωg/ Γ	0.00155	0.31%
Cr 267.71		110598.5	0.5049		0.00186	0 5040	/T	0 00100	0.000
		limits for Cr				0.5049	ագյե	0.00186	0.37%
Cu 324.75		238092.1	20/./IO	recovery		0 5120	/-	0 00.55	
		limits for Cu	224 752	mg/L	0.00419	0.5139	md\r	0.00419	0.82%
Fe 238.86		5729126.0				04 50	/ -		
		limits for Fe	94.50		0.213	94.50	mg/r	0.213	0.23%
K 404.721		-247.1	230.003	recovery	= 94.50*			4 00	
Mq 279.07			242.0	/=	1 15	240.0		4.92	1.99%
_			242.0		1.15	242.0	mg/L	1.15	0.48%
Mn 257.61		limits for Mg .882904.3	0.5079	recovery		0 5050	/ =	0 00044	0 4 50
		limits for Mn	0.50/9	mg/r	0.00241	0.5079	шд\г	0.00241	0.47%
Mo 202.03	TE MICHIE	-343.3	25/.610	Recovery		0 0001	17		1.50 000
Ni 231.60			0.9757		0.00022	-0.0001		0.00022	
		limits for Ni			0.00362	0.9757	mg/L	0.00362	0.37%
Na 330.23			-0.4840			0 4040	/-	0 00000	0.000
Pb 220.35	•	750 5	0.0514	mg/1	0.00968 0.00113	0.0514	mg/L		
		limits for Pb	220 252 3	"IIG/ LI		0.0514	mg/ n	0.00113	2.21%
Sb 206.83		3665.3	0.6375		0.00671	0 6375	/T	0 0000	1 050
		limits for Sb	206 026 1	mg/ n	- 106 3E%	0.6375	mg/ L	0.00671	1.05%
Se 196.026	10 WICHIII 5+	161.9	0.0435			0 0425	/T	0 00000	7.39%
		limits for Se			0.00322	0.0435	шд/г	0.00322	7.39%
Sn 189.92	7+	140 7	0.0558		0.00034	0.0558	/*	0 00004	0.61%
Ti 337.279	1 +	619.0	-0.0026		0.00034	-0.0026		0.00034	
Tl 190.80	†	149.7 618.0 725.2	0.1018		0.00004	0.1018		0.00004	1.73%
	 16 within	limits for Tl	100 001	mg/ H		0.1018	ш <b>9</b> / Б	0.00462	4.53%
V 292.4021		131349.3	0.4969		0.00046	0 4060	ma /T	0 00045	0.000
		limits for V 2				0.4969	mg/L	0.00046	0.09%
Zn 206.200		304615.8	0.9865		0.00395	0.9865	mor/T.	۸ ۵۵۵۵۲	0.400
		limits for Zn				V.2005	((연) T	0.00395	0.40%
20 .01		TTTOD TOT DIE	200.200	recovery	- 20.05%				

QC value within limits for Ca 227.546 Recovery = 101.88% Sr 460.733† 1754.7 0.0019 mg/L 0.00018 All analyte(s) passed QC.

Sequence No.: 11 Sample ID: CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 3
Date Collected: 8/13/2010 3:34:09 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

0.0019 mg/L

0.00018 9.46%

Mean Data: CCV							
	Mean Correcte	d Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8336875.3	0.9548 mg/L	0.00053				0.06%
Ag 328.068t	188760.2	$0.5064~{ m mg/L}$	0.00046	0.5064	mg/L	0.00046	0.09%
		328.068 Recovery	= 101.28%				
Al 308.215†	431604.7		0.020	10.01	mg/L	0.020	0.20%
QC value within	limits for Al	308.215 Recovery	= 100.06%				
As 188.979†	8543.3	$1.001~{ m mg/L}$	0.0003	1.001	mg/L	0.0003	0.03%
QC value within	limits for As	188.979 Recovery	= 100.14%				
B 249.772†	565454.1	2.429 mg/L	0.0187	2.429	mg/L	0.0187	0.77%
QC value within	limits for B	249.772 Recovery :	= 97.15%				
Ba 233.527†	3625217.3		0.023	10.07	mq/L	0.023	0.23%
QC value within	limits for Ba	233.527 Recovery	≈ 100.69%				
Be 313.107†	1636333.7	0.2491 mg/L	0.00028	0.2491	mq/L	0.00028	0.11%
QC value within	limits for Be	313.107 Recovery	= 99.64%		٥,		
Cd 226.502†	191350.1		0.00278	0.5001	ma/L	0.00278	0.56%
QC value within	limits for Cd	226.502 Recovery	= 100.01%		5,		
Co 228.616†	332997.3	2.491 mg/L	0.0062	2.491	ma/L	0.0062	0.25%
QC value within		228.616 Recovery			3, —	******	0.250
Cr 267.716†	111274.2		0.00285	0.5032	ma/T	0.00285	0.57%
		267.716 Recovery		0.5052	111972	0.00203	0.578
Cu 324.752†	589097.2	1.247 mg/L	0.0054	1.247	ma/I.	0.0054	0.44%
		324.752 Recovery		1,247	mg/ B	0.0034	0.446
Fe 238.863†	305068.7			5.029	/T	0.0166	0.33%
		238.863 Recovery		5.025	шg/п	0.0100	0.335
K 404.721†	4203.0	230.003 Recovery	= 100.55%			04.03	2 260
Unable to evalua						94.83	2.26%
	-	25 22 /1	0.000	05.00	/*		
OC value within	limite for Me	25.32 mg/L 279.077 Recovery	0.072	25.32	mg/L	0.072	0.29%
Mn 257.610†				0 5556	17	0.004.0	
	1296531.8	0.7556 mg/L	0.00142	0.7556	шg/г	0.00142	0.19%
		257.610 Recovery					
Mo 202.031†	130561.3	2.443 mg/L	0.0282	2.443	mg/ĭ	0.0282	1.15%
		202.031 Recovery					
Ni 231.604†	305497.8	2.036 mg/L	0.0025	2.036	mg/L	0.0025	0.12%
		231.604 Recovery					
Na 330.237†	42719.7	23.41 mg/L	0.045	23.41	mg/L	0.045	0.19%
		330.237 Recovery					
Pb 220.353†	14083.6	0.5144 mg/L	0.00735	0.5144	mg/L	0.00735	1.43%
		220.353 Recovery	= 102.88%				
Sb 206.836†	28812.3	5.038 mg/L	0.0589	5.038	mg/L	0.0589	1.17%
		206.836 Recovery	100.76%				
Se 196.026†	2920.0	$0.5043~\mathrm{mg/L}$	0.00362	0.5043	mg/L	0.00362	0.72%
		196.026 Recovery	= 100.86%				
Sn 189.927†	150599.3	4.957 mg/L	0.0375	4.957	mg/L	0.0375	0.76%
		189.927 Recovery	= 99.14%				
Ti 337.279†	1301545.6	2.547 mg/L	0.0299	2.547	mg/L	0.0299	1.18%
QC value within	limits for Ti	337.279 Recovery	= 101.89%				
Tl 190.801†	7804.1	1.017 mg/L	0.0105	1.017	mg/L	0.0105	1.03%
QC value within	limits for Tl	190.801 Recovery	= 101.67%				
V 292.402†	666092.7	2.477 mg/L	0.0183	2.477	mq/L	0.0183	0.74%
QC value within	limits for V 2	92.402 Recovery =	99.06%				
Zn 206.200†	306500.3	1.006 mg/L	0.0034	1.006	mq/L	0.0034	0.34%
QC value within	limits for Zn	206.200 Recovery	= 100.62%		٥.		
Ca 227.546†	14375.3	25.15 mg/L	0.145	25.15	mg/L	0.145	0.57%
QC value within	limits for Ca	227.546 Recovery					
Sr 460.733†	641885.5	2.483 mg/L	0.0052	2.483	mq/L	0.0052	0.21%
QC value within	limits for Sr	460.733 Recovery	= 99.33%		J. –		· ·
All analyte(s) pass	sed QC. One or	more analytes were	not evaluated.				
- · · · · -		•					

Sequence No.: 12 Sample ID: CCB Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 1 Date Collected: 8/13/2010 3:38:30 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Wass Date GGD								
Mean Data: CCB	Moon Commonts	3	Galib			G7		
Analyte Y 371.029 Ag 328.068†	Thtonsity		Callb	Chd Daw	G	Sambre	043 D	Dan
V 271 A20	ruceusicy	Conc.	Units	Std.Dev.	Cone.	Units	Std.Dev	3.82%
Ag 328 068+	-134 9	-0.9773	mg/I	0.03735	-0.0004	mg/L	0 00050	3.025
QC value within	limite for Na	220 050 5	MG/D	- Not calculat	-0.0004	mg/ n	0.00059	163.65%
Al 308.215†		0.0052		- NOL CATCULAL	.eu A AAFS	mg/L	0 00500	115.50%
QC value within				- Not golgylat	0.0052	mg/ E	0.00556	113.50%
	14.5					mg/L	0 00003	1.86%
QC value within						11197 H	0.00003	1.00%
B 249.772†		0.0066				mg/L	0 00400	C3 C08
QC value within				0.00423	۵،006	шg/ь	0.00423	63.698
Ba 233.527†				0.00087		/T	0.0007	16.23%
QC value within	limita for Pa	0.0054	mg/ L	- Not eslaviot	0.0054	mg/L	0.00087	10.236
Be 313.107†		0.0000		0.00007		mq/L	0 00007	101 100
QC value within					0.0000	ագյո	0.00007	191.12%
Cd 226.502†						/ T	0 00000	25 500
QC value within	1imita for Ca	0.0001	1119/11	0.00003	0.0001	mg/L	0.00003	25.72%
						/*	0 00010	
Co 228.616† QC value within	72.2	0.0005	11197 L	0.00018		mg/L	0.00018	33.31%
Cr 267.716†	18.5	220.010 K	ecovery	= NOC CAICUIAC	ea	/*	0 00015	104 100
QC value within	10.5	0.0001	шд/ ь	0.00015	0.0001	mg/L	0.00015	174.19%
	1000 4	20/./10 K	ecovery	= NOC Calculat 0.00139		1=	0 00110	20 000
Cu 324.752† QC value within	1992.4	0.0042	щg/ь	0.00139	0.0042	mg/L	0.00139	32.97%
Oc value within	ilmits for Cu	324./52 K	ecovery :	⇒ Not calculat		/		
Fe 238.863†	1385.6	0.0229	md\r	0.02093	0.0229	mg/L	0.02093	91.46%
QC value within		238.863 R	ecovery	= Not calculat	ea			
K 404.721†	-150.1						7.43	4.95%
Unable to evalua	ate QC.	0 0010	17			1		
Mg 279.077†	104./	0.0042	ша\г	0.00067	0.0042	mg/L	0.00067	16.00%
QC value within Mn 257.610†	Timites for Mg	279.077 R	ecovery :	= NOT CALCULAT	ea	/-		
	517.6					mg/L	0.00008	26.53%
QC value within						/7		
Mo 202.031†	56.9	0.0011	md\r	0.00021	0.0011	mg/L	0.00021	20.06%
QC value within	TIMILES TOT MO	202.031 R	ecovery :	= Not carcurat	ea	1-		
Ni 231.604†	66.9	0.0004	ma\π	0.00008	0.0004	mg/L	0.00008	17.51%
QC value within	limits for Ni	231.604 R	ecovery :	= Not carcurat		/-		
Na 330.237†	-91.1	-0.0499	ma\r	0.091/2	-0.0499	mg/L	0.09172	183.88%
QC value within	IIIIIILS FOR Na	33U.23/ R	ecovery :	= NOT CAICUIAT	ea nan			
Pb 220.353†	6.1	0.0002	шд\г	0.00082	0.0002	mg/L	0.00082	372.07%
QC value within	limits for PD	220.353 R	ecovery					
Sb 206.836† QC value within	6.1	0.0011	шд/г	0.00120	0.0011	mg/L	0.00120	111.81%
Se 196.026†	-5.9	206.836 K	ecovery :	= NOT Calculate				
QC value within	-5.9	10C 00C T	mg/ L	0.00130	-0.0010	mg/L	0.00130	178.018
Sn 189.927t						17	0 00071	16 120
QC value within		0.0143		0.00231	0.0143	mg/L	0.00231	16.13%
						17		<b>50</b> 000
QC value within	86.3	0.0002	mg/ n	V.VVVIZ	0.0002	mg/r	0.00012	12.99%
_								
Tl 190.801†	14.0	0.0017	11197 F	0.00007	0.0017	mg/r	0.00007	4.04%
QC value within						/~		
V 292.402†	85.8	0.0003	mg/ь	0.00013	0.0003	mg/r	0.00013	39.30%
QC value within					2	1=		
Zn 206.200†	68.0	0.0002		0.00012	0.0002	mg/L	0.00012	51.56%
QC value within						/-		
Ca 227.546†	-20.6	-0.0344		0.03206	-0.0344	mg/L	0.03206	93.08%
QC value within						/~		
Sr 460.733†	157.8	0.0006		0.00034	0.0006	mg/r	0.00034	55.87%
QC value within								
All analyte(s) pass	sea QC. One or	more analy	ces were	not evaluated	-			

Autosampler Location: 38 Sequence No.: 13 Sample ID: PBS-117264

Date Collected: 8/13/2010 3:44:11 PM

Analyst: Initial Sample Wt: 1 g Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: P	BS-117264							
	Mean Correc	ted	Calib			Sample		
Analyte	Intensit	y Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	8808871.9	1.009	mg/L	0.0137				1.36%
Ag 328.068†	57.3	0.0002	mg/L	0.00058				375.38%
Al 308.215†	-167.4	-0.0039	mg/L	0.00231				59.54%
As 188.979†	-16.8	-0.0020	mg/L	0.00221				112.83%
B 249.772†	-209.2	-0.0010	mg/L	0.00018				19.17%
Ba 233.527†	1101.6	0.0031	mg/L	0.00043				14.04%
Be 313.107†	649.5			0.00006				61.18%
Cd 226.502†	-25.1	-0.0001	mg/L	0.00002				28.34%
Co 228.616†	96.1	0.0007	mg/L	0.00012				16.05%
Cr 267.716†	190.7	0.0009	mg/L	0.00003				3.31%
Cu 324.752†	811.6	0.0017	mg/L	0.00023				13.44%
Fe 238.863†	1100.2	0.0182	mg/L	0.00898				49.42%
K 404.721†	-122.0						68.94	56.52%
Mg 279.077†	86.1	0.0022	mg/L	0.00737				338.06%
Mn 257.610†	724.8	0.0004	mg/L	0.00002				4.56%
Mo 202.031t	56.1	0.0011	mg/L	0.00003				3.07%
Ni 231.604†	113.8	0.0008	mg/L	0.00001				1.03%
Na 330.237†	394.9	0.2166	mg/L	0.03897				17.99%
Pb 220.353†	29.0	0.0011		0.00035				33.14%
Sb 206.836†	-3.8	-0.0007	mg/L	0.00072				109.19%
Se 196.026†	2.6	0.0005	mg/L	0.00115				255.57%
\$n 189.927†	991.2	0.0326	mg/L	0.00538				16.50%
Ti 337.279†	224.9	0.0004	mg/L	0.00024				53.60%
Tl 190.801†	-5.3	-0.0007	mg/L	0.00008				12.38%
V 292.402†	69.4	0.0003		0.00002				5.79%
Zn 206.200†	499.3	0.0016	mg/L	0.00008				4.64%
Ca 227.546†	-19.4	-0.0326	mg/L	0.00843				25.88%
Sr 460.733†	-43.4	-0.0002	mg/L	0.00028				169.52%
Sample conc.	not calculated. No			ial Wt. required OF	R sampl	e units	incorrect.	

Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 14

Sample ID: LCSS 1/5

Analyst:

Initial Sample Wt: 1.01 g

Dilution: 5X

Autosampler Location: 39 Date Collected: 8/13/2010 3:49:52 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: LCSS 1/	/5							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8613318.5	0.9864	mg/L	0.00134				0.14%
Ag 328.068†	61570.9	0.1675	mg/L	0.00077				0.46%
Al 308.215†	982179.1	22.78	mg/L	0.076				0.34%
As 188.979†	1425.8	0.1825	mg/L	0.00404				2.21%
B 249.772†	81688.3	0.2377	mg/L	0.00107				0.45%
Ba 233.527†	338072.0	0.9370	mg/L	0.00188				0.20%
Be 313.107†	794204.7	0.1209	mg/L	0.00003				0.03%
Cd 226.502†	72645.8	0.1868	mg/L	0.00232				1.24%
Co 228.616†	57034.4	0.4258	mg/L	0.00493				1.16%
Cr 267.716†	68526.0	0.3111	mg/L	0.00010				0.03%
Cu 324.752†	233813.6	0.5016	mg/L	0.00231				0.46%
Fe 238.863†	2343152.1	38.69	mg/L	0.088				0.23%
K 404.721†	1702.2						1.36	0.08%
Mg 279.077†	355940.5	9.030	mg/L	0.0247				0.27%
Mn 257.610†	1941323.7	1.132	mg/L	0.0025				0.22%
Mo 202.031†	7094.4	0.1345	mg/L	0.00380				2.82%
Ni 231.604†	66379.4	0.4424	mg/L	0.00032				0.07%
Na 330.237†	1659.5	0.9926	mg/L	0.06956				7.01%
Pb 220.353†	6482.0	0.2364	mg/L	0.00229				0.97%
Sb 206.836†	1797.3	0.3138	mg/L	0.00624				1.99%
Se 196.026†	2259.7	0.3999	mg/L	0.00423				1.06%
Sn 189.927†	10149.6	0.3415	mg/L	0.00486				1.42%
Ti 337.279†	467472.8	0.9147	mg/L	0.00192				0.21%

Method: AXIAL200-6010 L Opt4 Page 12 Date: 8/13/2010 4:00:17 PM Tl 190.801† 4050.7 0.5293 mg/L 0.00890 1.68% V 292.402† 98978.1 0.3715 mg/L 0.00079 0.21% Zn 206.200† 186713.6 0.6124 mg/L 0.00106 0.17% 19.35 mg/L Ca 227.546† 9994.3 0.085 0.44% 0.2703 mg/L Sr 460.7331 70001.3 0.00084 Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 15 Autosampler Location: 40 Sample ID: R1004314-001 Date Collected: 8/13/2010 3:54:09 PM Analyst: Data Type: Original Initial Sample Wt: 1 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL Mean Data: R1004314-001 Mean Corrected Calib Sample Conc. Units Conc. Units Analyte Std.Dev. Std.Dev. RSD Y 371.029 0.55% 8531657.7 0.00542 Ag 328.068† -3348.0 -0.0031 mg/L 0.00089 28.35% 4073516.0 Al 308.215† 94.48 mg/L 0.378 0.40% -194.1 As 188.979† 0.0143 mg/L 0.00050 3.47% 0.0761 mg/L 81678.2 B 249.772† 0.00629 8.26% Ba 233.527† 103691.7 0.2835 mg/L 0.00120 0,42% 11889.1 0.0018 mg/L Be 313.107† 0.00003 1.87% Cd 226.502† 3095.0 1819.2 0.0004 mg/L 0.00010 22.73% 0.0116 mg/L Co 228.616† 0.00040 3.46% 1819.2 21658.6 Cr 267.716† 0.1012 mg/L 0.00099 0.98% 22550.1 0.0638 mg/L Cu 324.752† 0.00016 0.24% Fe 238.863† 5597983.5 92.43 mg/L 0.569 0.62% K 404.721t 1271.6 111.17 8.74% 133211.3 0.0189 Mg 279.077† 3.332 mg/L 0.57% Mn 257.610† 942853.4 0.5499 mg/L 0.00196 0.36% Mo 202.031† -65.6 3461.0 0.0036 mg/L 0.00070 19.76% Ni 231.604† 0.0229 mg/L 0.00007 0.30% -280.3 0.0646 mg/L Na 330.237† 39.45% 0.02550 5731.1 Pb 220.353† 0.2136 mg/L 0.00062 0.29% 10.7 0.0004 mg/L Sb 206.8361 0.00136 356.28% -105.0 0.0055 mg/L Se 196.026† 0.00127 22.91% 701.2 Sn 189.927t 0.0381 mg/L 0.00013 0.33% Ti 337.279† 686941.1 1.344 mg/L0.0107 0.79% -0.0004 mg/L Tl 190.801t -36.9 0.00493 >999.9% 0.2596 mg/L V 292.402† 67523.8 0.00274 1.05% Zn 206.200† 34616.7 0.1111 mg/L 0.00101 0.91% Ca 227.546† 160.1 5.219 mg/L 0.0645 1.23% 0.0099 mg/L Sr 460.733† 2602.2 0.00041 4.11% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Autosampler Location: 41 Sequence No.: 16 Sample ID: R1004314-001D Date Collected: 8/13/2010 3:58:22 PM Analyst: Data Type: Original Initial Sample Wt: 1.01 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL Mean Data: R1004314-001D Mean Corrected Calib Sample Intensity Std.Dev. Conc. Units Analyte Conc. Units Std.Dev. RSD Y 371.029 8528022.9 0.9767 mg/L 0.00415 0.42% -0.0032 mg/L Ag 328.068† -3441.6 0.00098 30.60% Al 308.215† 4362218.7 101.2 mg/L0.10 0.10% -186.5 83185.0 0.0164 mg/L As 188.979† 0.00090 5.51% B 249.772† 0.0732 mg/L0.01477 20.19% 0.3025 mg/L 110575.8 Ba 233,527† 0.00015 0.05% 12584.9 Be 313.107† 0.0020 mg/L0.00001 0.32% Cd 226.502† 3186.3 1989.1 0.0004 mg/L 0.00030 72.54% 1989.1 23122.6 Co 228.616† 0.0128 mg/L 0.00002 0.13% Cr 267.716† 0.1079 mg/L 0.00104 0.97% 0.0660 mg/L 0.00027 23338.0 Cu 324.752† 0.41% Fe 238.863† 5779107.5 95.42 mg/L 0.590 0.62%

K 404.721†

1641.3

109.56 6.68%

Method: AXIAL200-6010 L Opt4 Page 13 Date: 8/13/2010 4:08:56 PM 149662.3 Mg 279.077† 3.749 mg/L 0.0086 0.23% 0.5584 mg/L Mn 257.610† 957563.7 0.00017 0.03% Mo 202.031† -93.5 0.0032 mg/L0.00036 11.27% Ni 231.604† 3789.1 0.0251 mg/L 0.00027 1.07% Na 330.237† 0.0826 mg/L -258.7 0.05283 63.94% Pb 220.353† 7212.9 0.2682 mg/L 0.00515 1.92% Sb 206.836t 26.7 0.0031 mg/L 0.00240 77.59% Se 196.026† -118.5 0.0039 mg/L0.00436 112.99% Sn 189.927† 732.9 0.0397 mg/L 0.00096 2.42% Ti 337.279† 0.0507 820788.9 1.606 mg/L 3.15% -0.0016 mg/L Tl 190.801† -47.1 0.00024 15.20% V 292.402† 70575.4 0.2712 mg/L 0.00271 1.00% Zn 206.200† 36984.4 0.1187 mg/L0.00123 1.04% Ca 227.546† -30.1 5.054 mg/L 0.0008 0.02% 0.0091 mg/L Sr 460.733† 2397.1 0.00040 4.37% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 17

Sample ID: R1004314-001S

Analyst:

Initial Sample Wt: 1 g

Dilution:

Autosampler Location: 42

Date Collected: 8/13/2010 4:02:36 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Woon Data - D1004214 0015

Mean Data: R	1004314-001S							
	Mean Corre	cted	Calib			Sample		
Analyte	Intensi	ty Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8387442.	8 0.9606	mg/L	0.00012				0.01%
Ag 328.068t	16635.	8 0.0502	mg/L	0.00016				0.32%
Al 308.215†	4578592.	3 106.2	mg/L	0.40				0.38%
As 188.979†	163.	6 0.0548	mg/L	0.00227				4.15%
B 249 772†	292968.			0.01438				1.44%
Ba 233.527†	874869.	8 2.426	mg/L	0.0056				0.23%
Be 313.107†	350766.	5 0.0534	mg/L	0.00009				0.17%
Cd 226.502†	22509.	8 0.0515	mg/L	0.00065				1.25%
Co 228.616t	72742.			0.00707				1.30%
Cr 267.716†	69496.	5 0.3173	mg/L	0.00132				0.42%
Cu 324.752†	147600.			0.00123				0.37%
Fe 238.863†	5404228.	9 89.23	mq/L	0.240				0.27%
K 404.721†	4772.	8	2.				11.76	0.25%
Mg 279.077†	225890.	1 5.691	mg/L	0.0144				0.25%
Mn 257.610†	1692310.	7 0.9871	mg/L	0.00232				0.24%
Mo 202.031†	25721.	0.4859	mg/L	0.00545				1.12%
Ni 231.604†	73603.			0.00373				0.76%
Na 330.237†	36412.	4 20.17	mg/L	0.102				0.51%
Pb 220.353†	20568.	5 0.7561	mg/L	0.01018				1.35%
Sb 206.836†	2029.	9 0.3534	mg/L	0.01276				3.61%
Se 196.026†	5410.	8 0.9554	mg/L	0.00364				0.38%
Sn 189.927†	168664.	0 5.562	mg/L	0.0302				0.54%
Ti 337.279†	1000664.			0.0284				1.45%
Tl 190.801†	15407.			0.0315				1.57%
V 292.402†	205005.	4 0.7703	mg/L	0.00054				0.07%
Zn 206.200†	195843.			0.00149				0.23%
Ca 227.546†	1357.			0.0121				0.17%
Sr 460.733†	2948.			0.00044				3.88%
Sample conc.	not calculated. 1	Nominal Wt. AN	D Initial		OR sampl	e units	incorrect.	

Sequence No.: 18

Sample ID: R1004314-001A

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 43

Date Collected: 8/13/2010 4:06:55 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004314-001A

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8357262.1	0.9571	mg/L	0.00411				0.43%
Ag 328.068†	15172.1	0.0465	mg/L	0.00061				1.32%
Al 308.215†	4096598.1	95.02	mg/L	0.084				0.09%

Method: AXIA	L200-6010 L Opt4	Pa	ge 14	Date: 8/13/2010 4:17:00 P	M
As 188.979†	167.7	0.0566 mg/L	0.00042	0.74%	
B 249.772†	293944.9	0.9956 mg/L	0.00870	0.87%	
Ba 233.527†	820522.7	2.275 mg/L	0.0013	0.06%	
Be 313.107†	327640.0	0.0499 mg/L	0.00003	0.06%	
Cd 226.502†	21280.8	0.0480 mg/L	0.00051	1.06%	
Co 228.616†	68465.8	0.5102 mg/L	0.00083	0.16%	
Cr 267.716†	65265.5	0.2983 mg/L	0.00047	0.16%	
Cu 324.752†	139284.9	0.3109 mg/L	0.00063	0.20%	
Fe 238.863†	5583482.3	92.19 mg/L	0.324	0.35%	
K 404.721†	4545.4	_		107.39 2.36%	
Mg 279.077†	209379.9	5.270 mg/L	0.0127	0.24%	
Mn 257.610†	1787000.4	1.042 mg/L	0.0001	0.01%	
Mo 202.031†	26110.1	0.4932 mg/L	0.00871	1.77%	
Ni 231.604†	69583.2	0.4637 mg/L	0.00150	0.32%	
Na 330.237†	33869.7	18.79 mg/L	0.016	0.09%	
Pb 220.353†	18906.8	0.6940 mg/L	0.01126	1.62%	
Sb 206.836†	2766.4	0.4822 mg/L	0.00781	1.62%	
Se 196.026†	5701.7	1.007 mg/L	0.0041	0.41%	
Sn 189.927†	670.8	0.0373 mg/L	0.00282	7.54%	
Ti 337.279†	943007.6	1.845 mg/L	0.0322	1.74%	
Tl 190.801†	14500.0	1.892 mg/L	0.0155	0.82%	
V 292.402†	195492.0	0.7353 mg/L	0.00465	0.63%	
Zn 206.200†	184551.8	0.6038 mg/L	0.00002	0.00%	
Ca 227.546†	1218.3	7.039 mg/L	0.1793	2.55%	
Sr 460.733†	2823.2	0.0107 mg/L	0.00042	3.94%	
Sample conc.	not calculated. Sam	ıple Prep. Vol. AND	Initial Vol.	required OR sample units incorrect.	

Sequence No.: 19

Sample ID: R1004314-001L

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 44

Date Collected: 8/13/2010 4:11:14 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R	1004314-001L							
	Mean Correc	cted	Calib			Sample		
Analyte	Intensit	ty Conc.	Units	Std.Dev.	Conc.	Units	Std.I	ev. RSD
Y 371.029	8821456.0	1.010	mg/L	0.0067				0.66%
Ag 328.068†	-843.0			0.00007				6.97%
Al 308.215†	852468.6	5 19.77	mg/L	0.443				2.24%
As 188.979†	-44.5	0.0026	mg/L	0.00009				3.45%
B 249.772†	14010.5	0.0024	mg/L	0.00295				124.63%
Ba 233.527†	21299.5	0.0582	mg/L	0.00184				3.17%
Be 313.107†	2870.4	0.0004	mg/L	0.00001				1.21%
Cd 226.502†	610.9	0.0000	mg/L	0.00004				262.83%
Co 228.616†	417.8	0.0027	mg/L	0.00031				11.48%
Cr 267.716†	4436.8	0.0208	mg/L	0.00060				2.87%
Cu 324.752†	4933.8	0.0138	mg/L	0.00082				5.93%
Fe 238.863†	1176024.6	19.42	mg/L	0.466				2.40%
K 404.721†	385.3	3					149.	27 38.74%
Mg 279.077†	27782.1	L 0.6949	mg/L	0.01665				2.40%
Mn 257.610†	196533.2	0.1146	mg/L	0.00277				2.42%
Mo 202.031†	-5.1	0.0009	mg/L	0.00027				30.05%
Ni 231.604†	753.5	0.0050	mg/L	0.00031				6.20%
Na 330.237†	-233.9	-0.0824	mg/L	0.00495				6.00%
Pb 220.353†	1182.7	7 0.0441	mg/L	0.00100				2.28%
Sb 206.836†	3.5	0.0003	mg/L	0.00009				30.15%
Se 196.026†	-25.6	0.0006	mg/L	0.00073				130.21%
Sn 189.927†	208.2	0.0100	mg/L	0.00043				4.29%
Ti 337.279†	141466.7	7 0.2768	mg/L	0.00574				2.07%
Tl 190.801f	15.1	0.0029	mg/L	0.00206				71.42%
V 292.402†	13789.7			0.00163				3.08%
Zn 206.200†	8180.1	0.0263	mg/L	0.00073				2.77%
Ca 227.546†	42.4	1.112	mg/L	0.0391				3.51%
Sr 460.733†	589.7	0.0022	mg/L	0.00006				2.87%
Sample conc.	not calculated. S	Sample Prep. 7	Vol. AND	Initial Vol.	required O	R sample	units i	ncorrect.

Sequence No.: 20 Sample ID: R1004314-002 Analyst: Autosampler Location: 45
Date Collected: 8/13/2010 4:17:00 PM
Data Type: Original

Initial Sample Wt: 1.05 g Dilution:

Initial Sample Vol: Sample Prep Vol: 100 mL

			<b></b> -					
Mean Data: R	21004314-002	<b>:</b>						
	Mean Corre	cted	Calib			Sample		
Analyte	Intensi	ty Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	RSD
Y 371.029	8717272.	5 0.9983	mg/L	0.00283				0.28%
Ag 328.068†	-2504.	6 -0.0019	mg/L	0.00060				32.13%
Al 308.215†	2348390.	8 54.47	mg/L	0.160				0.29%
As 188.979†	-250.	1 0.0013	mg/L	0.00160				122.44%
B 249.772†	61960.	9 0.0441	mg/L	0.00096				2.18%
Ba 233.527†	29447.4	4 0.0781	mg/L	0.00115				1.47%
Be 313.107†	10984.0	0.0017	mg/L	0.00002				0.97%
Cd 226.502†	2292.	1 -0.0003	mg/L	0.00036				109.19%
Co 228.616†	1384.	7 0.0087	mg/L	0.00028				3.19%
Cr 267.716†	17091.2	2 0.0800	mg/L	0.00082				1.02%
Cu 324.752†	24214.	9 0.0647	mg/L	0.00036				0.56%
Fe 238.863†	4596782.	0 75.90	mg/L	0.456				0.60%
K 404.721†	627.	В					58.64	9.34%
Mg 279.077†	49262.			0.0009				0.07%
Mn 257.610†	127561.8			0.00021				0.28%
Mo 202.031†	3.0	0.0037	mg/L	0.00066				17.62%
Ni 231.604†	2258.3	3 0.0150	mg/L	0.00015				0.99%
Na 330.237†	-463.	1 -0.0643	mg/L	0.04726				73.52%
Pb 220.353†	1406.2	2 0.0523	mg/L	0.00177				3.39%
Sb 206.836†	17.4	4 -0.0020	mg/L	0.00539				269.95%
Se 196.026†	-114.6	0.0004	mg/L	0.00293				668.09%
Sn 189.927†	407.	7 0.0250	mg/L	0.00005				0.21%
Ti 337.279†	593155.6	1.161	mg/L	0.0039				0.33%
Tl 190.801†	9.0			0.00359				76.58%
V 292.402†	68781.3	7 0.2627	mg/L	0.00111				0.42%
Zn 206.200†	16573.2	0.0526	mg/L	0.00083				1.58%
Ca 227.546†	-2057.6			0.05975				12.57%
Sr 460.733†	-152.3			0.00047				61.87%
Sample conc.	not calculated. N	Nominal Wt. Al	ND Initi	al Wt. required	OR sampl	e units	incorrect.	

Sequence No.: 21 Sample ID: R1004314-003

Analyst:

Initial Sample Wt: 1.02 g

Dilution:

Autosampler Location: 46

Date Collected: 8/13/2010 4:21:13 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004	314-003						
	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8580006.8	0.9826 mg/L	0.00090				0.09%

8580006.8	0.9826	mg/L	0.00090	0.09%
-3800.2	-0.0024	mg/L	0.00064	26.83%
4779779.1	110.9	mg/L	0.20	0.18%
-300.2	0.0142	mg/L	0.00043	3.07%
105323.3	0.0899	mg/L	0.00432	4.80%
120677.5	0.3292	mg/L	0.00004	0.01%
14371.6	0.0022	mg/L	0.00002	0.80%
4370.3	0.0012	mg/L	0.00014	11.28%
2361.4	0.0150	mg/L	0.00001	0.03%
26271.8	0.1232	mg/L	0.00090	0.73%
30727.7	0.0866	mg/L	0.00061	0.70%
.7433833.2	122.7	mg/L	0.34	0.28%
1098.8				150.15 13.66%
141417.6	3.522	mg/L	0.0056	0.16%
1093742.9	0.6378	mg/L	0.00069	0.11%
-160.3	0.0032	mg/L	0.00025	7.88%
4168.1	0.0276	mg/L	0.00013	0.47%
-537.2	0.0023	mg/L	0.00070	31.04%
4827.0	0.1804	mg/L	0.00132	0.73%
7.1	-0.0006	mg/L	0.00268	427.31%
-150.2	0.0060	mg/L	0.00381	63.48%
642.5			0.00060	1.48%
823559.7			0.0094	0.58%
-45.9	-0.0002	mg/L	0.00185	869.31%
	-3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8 141417.6 1093742.9 -160.3 4168.1 -537.2 4827.0 7.1 -150.2 642.5 823559.7	-3800.2 -0.0024 4779779.1 110.9 -300.2 0.0142 105323.3 0.0899 120677.5 0.3292 14371.6 0.0022 4370.3 0.0012 2361.4 0.0150 26271.8 0.1232 30727.7 0.0866 7433833.2 122.7 1098.8 141417.6 3.522 1093742.9 0.6378 -160.3 0.0032 4168.1 0.0276 -537.2 0.0023 4827.0 0.1804 7.1 -0.0066 -150.2 0.0060 642.5 0.0406 823559.7 1.612	-3800.2	-3800.2

Page 16 Method: AXIAL200-6010 L Opt4 Date: 8/13/2010 4:31:44 PM V 292.402† 80192.0 0.3095 mg/L 0.00079 0.26% Zn 206.200† 56867.3 0.00128 0.70% 0.1836 mg/L Ca 227.546† -1411.5 4.106 mg/L 0.1992 4.85% 0.0150 mg/L Sr 460.733† 3937.3 0.00036 2.41% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 22 Autosampler Location: 47

Sample ID: R1004314-004 Analyst: Initial Sample Wt: 1.03 g Dilution:

Date Collected: 8/13/2010 4:25:27 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004	314-004							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	8550938.4	0.9793	mg/L	0.00624				0.64%
Ag 328.068†	-3580.4	-0.0041	mg/L	0.00011				2.64%
Al 308.215†	4503375.0	104.5	mg/L	0.27				0.26%
As 188.979†	-256.6	0.0051	mg/L	0.00231				45.60%
B 249.772†	71626.3	0.0445	mg/L	0.00292				6.57%
Ba 233.527†	122467.0	0.3359	mg/L	0.00080				0.24%
Be 313.107†	13150.5	0.0020	mg/L	0.00001				0.26%
Cd 226.502†	2786.4	0.0000	mg/L	0.00011				>999.9%
Co 228.616†	2116.5	0.0140	mg/L	0.00044				3.19%
Cr 267.716†	25948.0	0.1205	mg/L	0.00004				0.04%
Cu 324.752†	33289.6	0.0856	mg/L	0.00039				0.46%
Fe 238.863†	5316135.0	87.77	mg/L	0.060				0.07%
K 404.721†	1765.5						11.38	0.64%
Mg 279.077†	209294.6	5.270	mg/L	0.0054				0.10%
Mn 257.610†	677310.3	0.3949	mg/L	0.00053				0.13%
Mo 202.031†	25.1	0.0052	mg/L	0.00056				10.79%
Ni 231.604†	4094.2	0.0272	mg/L	0.00003				0.10%
Na 330.237†	-1.84.5	0.1021	mg/L	0.06464				63.31%
Pb 220.353†	3886.1	0.1478	mg/L	0.00309				2.09%
Sb 206.836†	23.3	0.0025	mg/L	0.00055				21.80%
Se 196.026†	-96.5	0.0053	mg/L	0.00220				41.14%
Sn 189.927†	634.6	0.0355	mg/L	0.00053				1.50%
Ti 337.279†	1028526.4	2.013	mg/L	0.0023				0.11%
Tl 190.801†	1.3	0.0044	mg/L	0.00229				52.20%
V 292.402†	72263.0	0.2768	mg/L	0.00043				0.15%
Zn 206.200†	41803.8	0.1346	mg/L	0.00047				0.35%
Ca 227.546†	-358.5	4.088	mg/L	0.1297				3.17%
Sr 460.733†	1956.6	0.0075	mg/L	0.00010				1.35%
Sample conc. not	calculated. Nomin	al Wt. A	ND Initial	Wt. required	OR samp	le units	incorrect.	

Sequence No.: 23 Sample ID: CCV Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 8/13/2010 4:29:42 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV							
	Mean Corrected	Calib			Sample		
		nc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8549893.2 0.9	792 mg/L	0.00181				0.19%
Ag 328.068t	186687.6 0.5	008 mg/L	0.00288	0.5008	mg/L	0.00288	0.58%
QC value within	limits for Ag 328.06	8 Recovery =	100.17%				
Al 308.215†		923 mg/L		9.923	mg/L	0.0052	0.05%
QC value within	limits for Al 308.21	5 Recovery =	99.23%				
As 188.979†	8432.3 0.9	884 mg/L	0.00098	0.9884	mg/L	0.00098	0.10%
QC value within	limits for As 188.97	9 Recovery =	98.84%				
B 249.772†	551279.4 2.	368 mg/L	0.0096	2.368	mg/L	0.0096	0.41%
QC value within	limits for B 249.772	Recovery = 5	94.70%				
Ba 233.527†	3577203.7 9.	936 mg/L	0.0132	9.936	mg/L	0.0132	0.13%
QC value within	limits for Ba 233.52	7 Recovery =	99.36%				
Be 313.107†	1612459.8 0.2			0.2455	mg/L	0.00032	0.13%
QC value within	limits for Be 313.10	7 Recovery =	98.18%				
Cd 226.502†	188523.7 0.4	927 mg/L	0.00193	0.4927	mg/L	0.00193	0.39%

Method: AXIAL200-6010 L Opt4	Page 17		Date: 8/13/2010 4	:37:29 PM
00	00.500			·
QC value within limits for Cd 226.502 F Co 228.616† 328888.6 2.460		2.460 m	ag/L 0.0057	0.23%
QC value within limits for Co 228.616		2.460 10	ag/L 0.005/	0.238
Cr 267.716† 110046.9 0.4977		0 4077 m	ng/L 0.00046	0.09%
QC value within limits for Cr 267.716 F		0.49// 11	MG/L 0.00046	0.098
Cu 324.752† 579388.6 1.227	<b>4</b>	1.227 m	ng/L 0.0044	0.36%
QC value within limits for Cu 324.752 F		1.227 11	.g/1 0.0044	0.30%
Fe 238.863† 302638.0 4.989		4 989 m	ng/L 0.0105	0.21%
QC value within limits for Fe 238.863		4.505 11	.97.5 0.0105	0.21
K 404.721† 4268.4			144.86	3.39%
Unable to evaluate QC.			144.00	3.376
Mg 279.077† 980894.8 24.95	mg/L 0.006	24.95 m	ng/L 0.006	0.03%
QC value within limits for Mg 279.077 F		24.55 11	1971 0.000	0.05
Mn 257.610† 1279879.5 0.7459		0.7459 m	ng/L 0.00098	0.13%
QC value within limits for Mn 257.610 F		017105 1	.57 2 0.00030	0.150
Mo 202.031† 129054.0 2.415		2.415 m	ng/L 0.0203	0.84%
QC value within limits for Mo 202.031 F		2.120	.5,2	0.010
Ni 231.604† 301495.2 2.010		2.010 m	ng/L 0.0069	0.34%
QC value within limits for Ni 231.604 F		27020	.5, _ 0.0002	0.0.0
Na 330.237† 42264.0 23.16		23.16 m	ng/L 0.034	0.15%
QC value within limits for Na 330.237 F			.,, _	*****
Pb 220.353† 13670.0 0.4993		0.4993 m	q/L 0.00740	1.48%
QC value within limits for Pb 220.353 F	<u> </u>		5,	
Sb 206.836† 28409.7 4.968		4.968 m	q/L 0.0474	0.95%
QC value within limits for Sb 206.836 F				
Se 196.026† 2881.5 0.4976		0.4976 m	ıq/L 0.00026	0.05%
QC value within limits for Se 196.026 R	Recovery = 99.53%		J.	
Sn 189.927† 149384.4 4.917		4.917 m	q/L 0.0019	0.04%
QC value within limits for Sn 189.927 F			<u> </u>	
Ti 337.279† 1294288.6 2.533	mg/L 0.0382	2.533 m	g/L 0.0382	1.51%
QC value within limits for Ti 337.279 R	Recovery = 101.32%		<u>.</u>	
Tl 190.801† 7695.5 1.003	mg/L 0.0021	1.003 m	g/L 0.0021	0.20%
QC value within limits for Tl 190.801 R	Recovery = 100.25%			
V 292.402† 656413.1 2.441		2.441 m	g/L 0.0094	0.39%
QC value within limits for V 292.402 Re	covery = 97.62%		<u>-</u> :	
Zn 206.200† 301848.1 0.9909	mg/L 0.00129	0.9909 m	g/L 0.00129	0.13%
QC value within limits for Zn 206.200 R	lecovery = 99.09%			
Ca 227.546† 14163.4 24.78	mg/L 0.063	24.78 m	g/L 0.063	0.26%
QC value within limits for Ca 227.546 R	Recovery = 99.12%			
Sr 460.733† 632115.9 2.445	mg/L 0.0012	2.445 m	g/L 0.0012	0.05%
QC value within limits for Sr 460.733 R	lecovery = 97.82%			
All analyte(s) passed QC. One or more analy	tes were not evaluated	l.		
#######================================				======
Sequence No.: 24	Autosampler Loc			
Sample ID: CCB	Date Collected:		4:34:03 PM	
Analyst:	Data Type: Orig			
Initial Sample Wt:	Initial Sample			
Dilution:	Sample Prep Vol			

Dilution: Sample Prep Vol:

Mean Data: CCB							
	Mean Corrected	i Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
		/-					0.45%
Y 371.029 Ag 328.068†	-109.4	-0.0003 mg/L	0.00025	-0.0003	mg/L	0.00025	83.70%
QC value within	limits for Ag	328.068 Recovery	= Not calcula	ited			
Al 308.215†	-283.1	-0.0066 mg/L	0.00127	-0.0066	mg/L	0.00127	19.35%
		308.215 Recovery					
As 188.979†					mg/L	0.00046	343.52%
		188.979 Recovery					
B 249.772†	-4397.6	-0.0190 mg/L	0.00252	-0.0190	mg/L	0.00252	13.24%
		249.772 Recovery =					
Ba 233.527†					mg/L	0.00022	25.26%
		233.527 Recovery					
Be 313.107†	818.6	0.0001 mg/L	0.00001	0.0001	mg/L	0.00001	10.56%
		313.107 Recovery					
Cd 226.502†					mg/L	0.00000	74.05%
		226.502 Recovery					
Co 228.616†					mg/L	0.00003	10.82%
QC value within							
Cr 267.716†	7.5	0.0000 mg/L	0.00007	0.0000	mg/L	0.00007	214.60%

Method: AXIAL200-6010 L Opt4	Page 18	Date: 8/13/2010 4:41:42 PM
QC value within limits for Cr 267.716	Recovery = Not calculated	-

QC value within limits for Cr 267.716 Recovery = Not calculated	
Cu 324.752t 1544.7 0.0033 mg/L 0.00072 0.0033 mg/L	0.00072 21.89%
OC value within limits for Cu 324 752 Pecovery - Not calculated	
Fe 238.863† -102.6 -0.0017 mg/L 0.00257 -0.0017 mg/L	0.00257 151.23%
QC value within limits for Fe 238.863 Recovery = Not calculated	
K 404.721† -96.2	111.70 116.14%
Unable to evaluate QC.	
Mg 279.077† -89.7 -0.0023 mg/L 0.00237 -0.0023 mg/L	0.00237 104.11%
QC value within limits for Mg 279.077 Recovery = Not calculated	
Mn 257.610† 282.7 0.0002 mg/L 0.00002 0.0002 mg/L	0.00002 12.53%
QC value within limits for Mn 257.610 Recovery = Not calculated	
Mo 202.031† 58.6 0.0011 mg/L 0.00021 0.0011 mg/L	0.00021 19.33%
QC value within limits for Mo 202.031 Recovery = Not calculated	
Ni 231.604† 13.6 0.0001 mg/L 0.00000 0.0001 mg/L	0.00000 2.93%
QC value within limits for Ni 231.604 Recovery = Not calculated	
Na 330.237† -475.7 -0.2609 mg/L 0.01357 -0.2609 mg/L	0.01357 5.20%
QC value within limits for Na 330.237 Recovery = Not calculated	
Pb 220.353† 16.0 0.0006 mg/L 0.00001 0.0006 mg/L QC value within limits for Pb 220.353 Recovery = Not calculated	0.00001 1.10%
QC value within limits for Pb 220.353 Recovery = Not calculated	
Sb 206.836† 6.5 0.0011 mg/L 0.00018 0.0011 mg/L QC value within limits for Sb 206.836 Recovery = Not calculated	0.00018 15.45%
QC value within limits for Sb 206.836 Recovery = Not calculated	
Se $196.026\dagger$ -7.2 -0.0013 mg/L 0.00092 -0.0013 mg/L QC value within limits for Se 196.026 Recovery = Not calculated	0.00092 73.21%
QC value within limits for Se 196.026 Recovery = Not calculated	
Sn $189.927$ † 284.8 0.0094 mg/L 0.00142 0.0094 mg/L QC value within limits for Sn $189.927$ Recovery = Not calculated	0.00142 15.20%
QC value within limits for Sn 189.927 Recovery = Not calculated	
Ti 337.279† 158.2 0.0003 mg/L 0.00002 0.0003 mg/L	0.00002 6.11%
QC value within limits for Ti 337.279 Recovery = Not calculated	
Tl 190.801† 19.0 0.0025 mg/L 0.00013 0.0025 mg/L	0.00013 5.19%
QC value within limits for Tl 190.801 Recovery = Not calculated	
V 292.402† 36.6 0.0001 mg/L 0.00007 0.0001 mg/L	0.00007 50.95%
QC value within limits for V 292.402 Recovery = Not calculated	
Zn 206.200† 55.9 0.0002 mg/L 0.00001 0.0002 mg/L	0.00001 7.18%
QC value within limits for Zn 206.200 Recovery = Not calculated	
Ca 227.546† 23.2 0.0400 mg/L 0.00757 0.0400 mg/L	0.00757 18.93%
QC value within limits for Ca 227.546 Recovery = Not calculated Sr 460.733† 146.2 0.0006 mg/L 0.00007 0.0006 mg/L	0 00007 44 000
	0.00007 11.83%
QC value within limits for Sr 460.733 Recovery = Not calculated	
All analyte(s) passed QC. One or more analytes were not evaluated.	

_______ Sequence No.: 25 Sample ID: R1004314-005 Analyst:

Initial Sample Wt: 1 g Dilution:

Autosampler Location: 48 Date Collected: 8/13/2010 4:39:46 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R10043	14-005							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8569270.4	0.9814	mg/L	0.00068				0.07%
Ag 328.068†	-3101.4	-0.0017	mg/L	0.00037				21.55%
Al 308.215†	4948643.4	114.8	mg/L	0.17				0.15%
As 188.979†	-240.6	0.0136	mg/L	0.00827				60.89%
B 249.772†	88070.8	0.0671	mg/L	0.00392				5.83%
Ba 233.527†	108293.8	0.2957	mg/L	0.00012				0.04%
Be 313.107†	14027.3	0.0022	mg/L	0.00002				0.75%
Cd 226.502†	3507.4	0.0005	mg/L	0.00025				46.88%
Co 228.616†	2306.9	0.0150	mg/L	0.00042				2.79%
Cr 267.716†	23677.8	0.1108	mg/L	0.00195				1.76%
Cu 324.752†	23223.9	0.0673	mg/L	0.00009				0.13%
Fe 238.863†	6312018.8	104.2	mg/L	0.10				0.10%
K 404.721†	1229.6						161.23	13.11%
Mg 279.077†	137843.8	3.443	mg/L	0.0030				0.09%
Mn 257.610†	1198037.4	0.6987	mg/L	0.00015				0.02%
Mo 202.031†	-168.8	0.0023	mg/L	0.00028				12.11%
Ni 231.604†	4571.5	0.0303	mg/L	0.00054				1.78%
Na 330.237t	-651.9	-0.1148	mg/L	0.02087				18.18%
Pb 220.353†	5797.4	0.2176	mg/L	0.00400				1.84%
Sb 206.836†	4.9	-0.0009	mg/L	0.00273				305.78%
Se 196.026†	-144.1	0.0015	mg/L	0.00213				138.73%
Sn 189.927†	737.4	0.0414	mg/L	0.00087				2.10%

Method: AXIAL200-6010 L Opt4 Page 19 Date: 8/13/2010 4:50:23 PM Ti 337.279† 1.679 mg/L 858233.0 0.0096 0.57% 858233.0 1.679 mg/L 0.0056 -10.6 0.0036 mg/L 0.00117 69017.5 0.2662 mg/L 0.00034 38249.6 0.1226 mg/L 0.00239 888.2 7.118 mg/L 0.0583 4052.7 0.0155 mg/L 0.00036 Tl 190.801† 32.68% V 292.402† 0.13% Zn 206.200† 1.95% Ca 227.546† 0.82% Sr 460.733† 2.30% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 26 Autosampler Location: 49 Sample ID: R1004314-006 Date Collected: 8/13/2010 4:44:02 PM Data Type: Original Initial Sample Wt: 1.04 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL Mean Data: R1004314-006 Mean Corrected Mean Correct
Intensity Conc. Units
0.9978 mg/L Sample 
 Mean Corrected
 Calib

 Intensity
 Conc. Units
 Std.Dev.

 8713033.0
 0.9978 mg/L
 0.00293

 -3664.7
 -0.0050 mg/L
 0.00029

 5110166.5
 118.5 mg/L
 0.11

 -213.8
 0.0057 mg/L
 0.00152
 Conc. Units Std.Dev. RSD Analyte Y 371.029 0.29% Ag 328.068† 5.89% Al 308.215† 0.09% -213.8 0.00152 0.00060 As 188.979† 26.54% B 249.772† 62354.6 0.0321 mg/L1.86% 62354.6 185409.3 16504.5 2317.5 2418.3 31498.0 27690.0 4685828.1 0.5112 mg/L 0.0026 mg/L Ba 233.527† 0.00039 0.08% Be 313.107† 0.00002 0.83% Cd 226.502† -0.0003 mg/L 0.00005 13.93% 0.0165 mg/L 0.1452 mg/L Co 228.616† 0.00042 2.58% 0.1452 mg/L 0.0717 mg/L Cr 267.716† 0.00185 1.28% Cu 324.752† 0.00023 0.32% Fe 238.863† 77.36 mg/L 0.198 0.26% K 404.721† 3002.5 42.72 1.42% 3002.5 320743.8 Mg 279.077† 8.111 mg/L 0.0018 0.02% 8.111 mg/L 0.3502 mg/L 0.00008 0.00051 0.00028 Mn 257.610† 600691.9 0.02% -75.4 Mo 202.031† 0.0030 mg/L 16.82% Ni 231.604† Na 330.237† 0.0319 mg/L 0.0617 mg/L 4805.0 0.89% -201.4 0.00781 12.66% 0.0944 mg/L Pb 220.353† 2356.8 0.00223 2.37% Sb 206.836† 0.0018 mg/L 19.2 0.00587 328.32% -77.3 0.0052 mg/L 663.8 0.0353 mg/L 1564882.5 3.063 mg/L -30.3 -0.0001 mg/L 0.00155 663.8 Se 196.026† Sn 189.927† 29.84% 0.56% Ti 337.279† 0.0101 0.33% 0.00384 Tl 190.801† >999.9% 68434.2 0.2616 mg/L V 292.402† 
 Zn 206.200†
 38403.7
 0.1233 mg/L
 0.00139

 Ca 227.546†
 -1446.4
 1.673 mg/L
 0.0287

 Sr 460.733†
 299.0
 0.0013 mg/L
 0.00025

 Sample conc. not calculated Nomical States
 0.0025
 0.00161 0.62% 1.13% 1.72% 19.83% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. ______ Sequence No.: 27 Autosampler Location: 50 Date Collected: 8/13/2010 4:48:17 PM Sample ID: R1004314-007 Data Type: Original Analvst: Initial Sample Wt: 1.05 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL R1004314-007

Mean Corrected Callo

Totalsity Conc. Units Mean Data: R1004314-007 Intensity Conc. Units 0.9465 mg/L Sample Analyte Std.Dev. Conc. Units Std.Dev. RSD 0.00420 Y 371.029 0.44% 8264694.1 0.9465 mg/L -5971.8 -0.0018 mg/L 6928721.9 160.7 mg/L -631.3 0.0161 mg/L 0.00019 Ag 328.068† 10.62% Al 308.215† As 188.979† 6928721.9 0.78 0.49% 0.78 0.00560 0.01641 0.00171 0.00004 -631.3 192378.4 34.82% 0.1730 mg/L B 249.772† 9.48% 95037.5 0.2531~mg/LBa 233.527t 0.68% 19998.7 0.0031 mg/L -0.0009 mg/L Be 313.107† 1.27% Cd 226.502† 6763.5 3631.6 44360.1 23440.1 0.00007 8.14% Co 228.616† 0.0223 mg/L 0.00015 0.69%

 $0.2086~{
m mg/L}$ 

0.0891 mg/L 223.3 mg/L

0.00084

0.00078

1.19

Cr 267.716†

Cu 324.752† 23440.1 Fe 238.863† 13525105.0

0.40%

0.87%

0.53%

Method: AXIAL200-6010 L Opt4 Page 20 Date: 8/13/2010 4:59:03 PM K 404.721† 172.6 19.94 11.55% 152116.0 893638.7 Mg 279.077†  $3.733~\mathrm{mg/L}$ 0.0131 0.35% 0.5208 mg/L Mn 257.610† 0.00275 0.53% -301.3 Mo 202.031† 0.0052 mg/L 0.00016 3.07% Ni 231.604† 6380.1 0.0422 mg/L0.00034 0.81% Na 330.237† -347.9 0.3642 mg/L 0.03676 10.09% Pb 220.353† 2745.2 0.1033 mg/L 0.00360 3.49% 0.0000 mg/L Sb 206.8361 17.8 0.00284 >999.9% Se 196.026† -293.1 741.4 0.0089 mg/L 0.00219 24.74% 0.00069 Sn 189.927t 0.0587 mg/L 1.18% Ti 337.279† 1445294.6 2.828 mg/L 0.0129 0.46% 0.0007 mg/L 0.00416 Tl 190.801† -74.1 607.81% V 292.402† 122712.6 0.4769 mg/L0.00021 0.04% Zn 206.200† 0.00033 43988.1 0.1391 mg/L 0.24% Ca 227.546† -3903.3 5.120 mg/L 0.0490 0.96% 0.0357 mg/L 9382.6 Sr 460.733t 0.00056 1.57% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 28 Autosampler Location: 51 Sample ID: R1004314-008 Date Collected: 8/13/2010 4:52:41 PM Analyst: Data Type: Original Initial Sample Wt: 1.03 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL

Mean Data: R	1004314-008							<b>-</b>
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	-	Std.Dev.	RSD
Y 371.029	8471903.9	0.9702	mg/L	0.02067				2.13%
Ag 328.068t	-4473.0	-0.0054		0.00003				0.60%
Al 308.215†	4321044.6	100.2	mg/L	2.05				2.04%
As 188.979†	-308.5	0.0055	mg/L	0.00085			1	5.40%
B 249.772†	88457.3	0.0725	mg/L	0.00135				1.86%
Ba 233.527†	128653.1	0.3523		0.00698				1.98%
Be 313.107†	21048.2	0.0032	mg/L	0.00002				0.67%
Cd 226.502†	3135.3	-0.0004		0.00008				7.76%
Co 228.616†	3219.9	0.0219		0.00086				3.92%
Cr 267.716†	26513.6	0.1236	mg/L	0.00197				1.59%
Cu 324.752†	28022.2	0.0774	mg/L	0.00159				2.05%
Fe 238.863†	6284681.7	103.8	mg/L	2.43				2.34%
K 404.721†	3486.8						46.38	1.33%
Mg 279.077t	358696.9	9.060	mg/L	0.1797				1.98%
Mn 257.610†	502452.6	0.2927		0.00596				2.04%
Mo 202.031†	-161.1	0.0023	mg/L	0.00069			3	0.01%
Ni 231.604†	4532.9	0.0301		0.00064				2.13%
Na 330.237†	-557.7	-0.0549		0.02335			4	2.50%
Pb 220.353†	2690.3	0.1025		0.00313				3.05%
Sb 206.836†	-6.5	-0.0028	mg/L	0.00411			14	7.56%
Se 196.026†	-134.1	0.0036		0.00303				3.39%
Sn 189.927†	435.6	0.0311	mg/L	0.00011				0.37%
Ti 337.279†	1930485.6	3.778	mg/L	0.0734				1.94%
Tl 190.801;	-9.1	0.0037		0.00127			3	3.82%
V 292.402†		0.3097		0.00730				2.36%
Zn 206.200†		0.1337		0.00142				1.06%
Ca 227.546†	-2953.8	0.4316	mg/L	0.02369				5.49%
Sr 460.733†	-2479.5	-0.0097		0.00029				3.01%
Sample conc	not calculated Momin	al W+ ΔN	m Tritia	1 Wt required	OD campl	a unite		

Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 29

Autosampler Location: 52

Sample ID: R1004314-009 Date Collected: 8/13/2

Analyst:

Initial Sample Wt: 1.03 g

Dilution:

Date Collected: 8/13/2010 4:56:55 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 100 mL

 Mean Data: R1004314-009

 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 Y 371.029
 8622595.4
 0.9875 mg/L
 0.00527
 0.53%

 Ag 328.068t
 -5207.7
 -0.0015 mg/L
 0.00021
 13.95%

Method: AXIA	L200-6010 L Opt4		Page 21	Date: 8/13/2010 5:05:45 PM
Al 308.215†	5721978.8	3 132.7 mg/I	G 0.22	0.17%
As 188.979†	-556.8			0.71%
B 249.772†	170524.7			0.69%
Ba 233.527†	100318.5			0.10%
Be 313.107†	18888.5	0.0029 mg/I	0.00002	0.81%
Cd 226.502†	5958.0	-0.0007 mg/I	0.00024	36.50%
Co 228.616†	3516.0	0.0220 mg/I	0.00006	0.25%
Cr 267.716†	43298.6	0.2027 mg/I	0.00018	0.09%
Cu 324.752†	18419.4	0.0735 mg/I	0.00020	0.27%
Fe 238.863†	11809450.2	195.0 mg/I	0.64	0.33%
K 404.721†	542.6			84.74 15.62%
Mg 279.077†	145338.0			0.11%
Mn 257.610†	1017188.6	0.5929 mg/I	0.00036	0.06%
Mo 202.031†	-267.5	0.0044 mg/I	0.00050	11.49%
Ni 231.604†	5335.7	0.0353 mg/I	0.00007	0.20%
Na 330.237†	49.0	0.5131 mg/L	0.07305	14.24%
Pb 220.353†	3184.4	0.1180 mg/L	0.00068	0.57%
Sb 206.836†	31.2	0.0028 mg/I	0.00015	5.37%
Se 196.026†	-243.5	0.0101 mg/L	0.00338	33.41%
Sn 189.927†	577.3	0.0489 mg/I	0.00121	2.48%
Ti 337.279†	1347686.8	2.637 mg/L	0.0068	0.26%
Tl 190.801†	-57.5	0.0015 mg/L	0.00260	171.03%
V 292.402†	106822.2	0.4152 mg/L	0.00054	0.13%
Zn 206.200†	38154.2	0.1207 mg/L	0.00018	0.15%
Ca 227.546†	-2861.6			1.76%
Sr 460.733†	8799.7			0.96%
Sample conc.	not calculated. N	ominal Wt. AND In	itial Wt. require	d OR sample units incorrect.

Sequence No.: 30 Sample ID: R1004314-010

Analyst:

Initial Sample Wt: 1.02 g

Dilution:

Autosampler Location: 53

Date Collected: 8/13/2010 5:01:22 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R100			a 111					
3	Mean Corrected		Calib		_	Sample		
Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	
Y 371.029	8466147.8			0.00387				0.40%
Ag 328.068†	-4374.7			0.00048				24.03%
Al 308.215†	5655805.6	131.2		0.41				0.32%
As 188.979†	-387.8	0.0160		0.00107				6.64%
B 249.772†	133368.1	0.1229		0.00259				2.11%
Ba 233.527†	84877.6	0.2283		0.00078				0.34%
Be 313.107†	10869.0	0.0017		0.00001				0.69%
Cd 226.502†	4424.8	-0.0011		0.00001				0.62%
Co 228.616†	1606.8	0.0087	mg/L	0.00022				2.58%
Cr 267.716†	41648.3	0.1938	mg/L	0.00117				0.60%
Cu 324.752†	13621.5	0.0557	mg/L	0.00014				0.25%
Fe 238.863†	9259562.6	152.9	mg/L	0.01				0.00%
K 404.721†	809.6						123.28	15.23%
Mg 279.077†	119338.0	2.942	mg/L	0.0106				0.36%
Mn 257.610†	221635.8	0.1290	mg/L	0.00029				0.23%
Mo 202.031†	-248.0	0.0030	mg/L	0.00015				4.97%
Ni 231.604†	4075.9	0.0270	mg/L	0.00092				3.41%
Na 330.237†	-612.8	0.0398		0.11512				289.27%
Pb 220.353†	2931.6	0.1115		0.00102				0.92%
Sb 206.836†	15.9	0.0005	mq/L	0.00228				448.78%
Se 196.026†	-193.6	0.0066	mq/L	0.00108				16.31%
Sn 189.927†	581.3	0.0428	mg/L	0.00030				0.69%
Ti 337.279†	789703.1	1.545	_,	0.0001				0.01%
Tl 190.801t	-29.6	0.0033		0.00120				36.53%
V 292.402†	75834.9	0.2961		0.00133				0.45%
Zn 206.200†	26036.6	0.0816		0.00152				1.86%
Ca 227.546†	-4577.4	0.2297		0.16134				70.23%
Sr 460.733†	-890.3	-0.0037		0.00015				3.98%
·	t calculated. Nomir				OR samp	le units	incorrect.	2.300

______

Sequence No : 31

Sample ID: R1004314-011

Autosampler Location: 54
Date Collected: 8/13/2010 5:05:45 PM

Analyst: Initial Sample Wt: 1.02 g Dilution: Data Type: Original Initial Sample Vol: Sample Frep Vol: 100 mL

Mean Data: F								
	Mean Correcte	ed	Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8397856.7	0.9617	mg/L	0.00263			C	0.27%
Ag 328.068†	-4857.7	-0.0004	mg/L	0.00123			327	7.67%
Al 308.215†	5632480.4	130.6	mg/L	0.13			0	0.10%
As 188.979†	-516.0	0.0195	mg/L	0.00244			12	2.48%
B 249.772†	177740.0	0.1854		0.03033			16	5.36%
Ba 233.527†	113990.7	0.3070		0.00228			O	0.74%
Be 313.107†	15981.1	0.0025	mg/L	0.00002			0	0.77%
Cd 226.502†	5977.1	-0.0009	mg/L	0.00010			11	1.37%
Co 228.616†	2727.2	0.0161	mg/L	0.00007			0	0.45%
Cr 267.716†	39191.7	0.1843		0.00107			0	0.58%
Cu 324.752t	18400.7	0.0741	mg/L	0.00051			0	0.69%
Fe 238.863†	12001551.3	198.2	mg/L	0.53			0	).27%
K 404.721†	113.9		_				130.00 114	1.10%
Mg 279.077†	143350.3	3.525	mg/L	0.0318			0	0.90%
Mn 257.610†	553679.1	0.3225	mg/L	0.00201			0	0.62%
Mo 202.031†	-243.1	0.0050	mg/L	0.00033			6	5.73%
Ni 231.604†	4417.5	0.0292	mg/L	0.00065			2	2.24%
Na 330.237†	-482.7	0.2300	mg/L	0.01348			5	.86%
Pb 220.353†	2064.2	0.0767	mg/L	0.00088			1	15%
Sb 206.836†	25.7	0.0018	mg/L	0.00087			47	7.26%
Se 196.026†	-276.4	0.0054	mg/L	0.00453			83	.91%
Sn 189.927†	566.9	0.0491	mg/L	0.00096			1	95%
Ti 337.279†	840763.7	1.645	mg/L	0.0395			2	2.40%
Tl 190.801†	-44.5	0.0033	mg/L	0.00281			84	.30%
V 292.402†	104383.2	0.4064	mg/L	0.00560			1	38%
Zn 206.200†	57894.3	0.1855		0.00094			0	).50%
Ca 227.546†	-2312.2	6.524	mg/L	0.1688			2	.59%
Sr 460.733†	11030.9	0.0421	mg/L	0.00044			1	04%
Sample conc.	not calculated. Nom	inal Wt. AN	D Initi	al Wt. required	OR sampl	e units	incorrect.	

Sequence No.: 32 Sample ID: R1004314-012 Analyst: Initial Sample Wt: 1 g Dilution: Autosampler Location: 55
Date Collected: 8/13/2010 5:10:08 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 100 mL

v. RSD
0.30%
15.34%
0.52%
39.69%
0.61%
0.88%
0.65%
62.45%
1.86%
0.32%
0.54%
0.36%
2.48%
0.75%
0.87%
6.55%
2.79%
519.21%
0.29%
113.94%
70.78%
0.95%
1.18%

Method: AXIAL200-6010 L Opt4 Page 23 Date: 8/13/2010 5:20:58 PM -72.1 Tl 190.801† 0.0000 mg/L 0.00025 >999.9% V 292.402† 102604.2 0.4004 mg/L 0.00282 0.71% Zn 206.200† 38971.7 0.1233 mg/L 0.00138 1.12% 0.1864 mg/L Ca 227.546† -6151.3 0.10055 53.93% Sr 460.733† -67.7 -0.0008 mg/L 0.00012 15.51% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 33 Autosampler Location: 56 Sample ID: R1004314-013 Date Collected: 8/13/2010 5:14:36 PM Analyst: Data Type: Original Initial Sample Wt: 1.04 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL Mean Data: R1004314-013 Calib Mean Corrected Sample Intensity Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. United States of the Conc. Unite Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8405678.5 0.65% 0.00630 Ag 328.068† -5047.1 -0.0009 mg/L 0.00039 45.02% Al 308.215† 6098658.2 141.5 mg/L 0.57 0.40% As 188.979† -514.1 0.0199 mg/L 0.00154 7.76% 174482.0 0.1682 mg/LB 249.772† 0.01350 8.03% 0.2808 mg/L Ba 233.527† 104584.0 0.00074 0.26% Be 313.107† 19290.4 0.0030 mg/L 0.00001 0.41% 7042.4 Cd 226.502† -0.0008 mg/L 0.00019 22.20% 0.0483 mg/L Co 228.616† 0.00001 0.03% 37820.8 Cr 267.716† 0.1781 mg/L 0.00068 0.38% 0.0809 mg/L Cu 324.752† 21589.0 0.00077 0.95% Fe 238.863† 198.7 mg/L 12033945.8 0.71 0.36% K 404.721† 314.9 121.73 38.66% Mg 279.077t 0.0060 132301.2 3.244 mg/L0.19% Mn 257.610t 1145478.8 0.6678 mg/L 0.00186 0.28% -235.5 0.0052 mg/L Mo 202.031† 0.00027 5 12% Ni 231.604† 5619.4 0.0372 mg/L 0.00083 2.23% 0.3995 mg/L Na 330.237† -168.3 0.05454 13.65% 2479.8 Pb 220.353† 0.0931 mg/L 0.00133 1.43% 0.0046 mg/L Sb 206.836† 41.9 0.00033 7.16% -243.2 566.8 Se 196.026† 0.0109 mg/L 0.00216 19.74% 0.0494 mg/L Sn 189.927† 0.00058 1.18% Ti 337.279† 1316926.6 2.577 mg/L 0.0194 0.75% -0.0005 mg/L Tl 190.801† -74.8 0.00358 653.51% V 292.402† 111964.1 0.4347 mg/L 0.00295 0.68% Zn 206.200† 39250.6 0.1241 mg/L0.00047 0.38% -1658.9 7.693 mg/L Ca 227.546† 0.1207 1.57% 0.0309 mg/L 8141.8 0.00026 0.84% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect. Sequence No.: 34 Autosampler Location: 57 Sample ID: R1004314-014 Date Collected: 8/13/2010 5:18:59 PM Analvst: Data Type: Original Initial Sample Wt: 1 g Initial Sample Vol: Dilution: Sample Prep Vol: 100 mL Mean Data: R1004314-014 Mean Corrected Calib Sample Intensity Analyte Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8574798.6 0.9820 mg/L 0.00493 0.50% Ag 328.068t -0.0046 mg/L -4989.3 0.00007 1.58% Al 308.215† 6186177.9 143.5 mg/L 0.51 0.36% As 188.979† -279.9 0.0224 mg/L 0.00036 1.59% 115494.5 0.0867 mg/L B 249.772t 0.00039 0.45% 0.2689 mg/L Ba 233.527† 99226.8 0.00037 0.14% 0.0024 mg/L Be 313.107† 15146.0 0.00000 0.18% 4025.9 2229.2 -0.0009 mg/L Cd 226.502t 0.00016 17.95% 0.0137 mg/L Co 228.616† 0.00061 4.44% 44645.6 0.2068 mg/L Cr 267.716† 0.00002 0.01% 0.1146 mg/L 0.00060 Cu 324.752† 42810.9 0.52%

137.8 mg/L

0.35

8343992.1

1878.0

Fe 238.863†

K 404.721†

149.30

0.25%

7.95%

Method: AXIAL200	-6010 L Opt4	Page	24	Date: 8/13/2010 5	5:25:20 PM
Mg 279.077†	215052.2	5.386 mg/L	0.0042		0.08%
Mn 257.610†	342470.1	0.1995 mg/L	0.00025		0.13%
Mo 202.031†	-149.3	0.0044 mg/L	0.00005		1.07%
Ni 231.604†	4732.2	0.0314 mg/L	0.00022		0.70%
Na 330.237†	-593.5	0.0049 mg/L	0.04986	•	>999.9%
Pb 220.353†	3339.0	0.1289 mg/L	0.00258		2.00%
Sb 206.836†	27.4	0.0025 mg/L	0.00265		104.20%
Se 196.026†	-158.6	0.0079 mg/L	0.00220		27.90%
Sn 189.927†	551.7	0.0401 mg/L	0.00044		1.08%
Ti 337.279†	752920.0	1.473 mg/L	0.0007		0.05%
Tl 190.801†	-14.0	0.0047 mg/L	0.00483		102.82%
V 292.402†	142426.7	0.5422 mg/L	0.00247		0.46%
Zn 206.200†	35652.8	0.1132 mg/L	0.00068		0.60%
Ca 227.546†	-4011.4	0.4282 mg/L	0.23778		55.53%
Sr 460.733†	-460.6	-0.0019 mg/L	0.00024		12.76%
Sample conc. not	calculated. Nomin	<b>3</b> .		OR sample units incorrect.	

Sequence No.: 35 Sample ID: CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 3
Date Collected: 8/13/2010 5:23:16 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mea	an Data: CCV								
		Mean Correcte	đ	Calib			Sample		
	alyte	Intensity			Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 3	371.029	8576396.8	0.9822	mg/L	0.00139				0.14%
Ag	328.068†	184773.4			0.00067	0.4957	mg/L	0.00067	0.13%
		hin limits for Ag							
ΑŁ	308.215†	426215.8	9.881		0.0529	9.881	mg/L	0.0529	0.54%
		thin limits for Al							
As	188.979†	8421.0	0.9871		0.00545	0.9871	mg/L	0.00545	0.55%
ъ.		hin limits for As					,_		
B 2	249.772†	543889.0	2.335		0.0071	2.335	mg/L	0.0071	0.30%
n.		thin limits for B				0.055	17	0 0000	
	233.527†	3555292.4	9.875		0.0630	9.875	шд\г	0.0630	0.64%
	313.107t	hin limits for Ba: 1597873.3				0.0400	/*	0 00730	
		thin limits for Be	0.2432		0.00138	0.2432	шдуь	0.00138	0.57%
	226.502t	188276.6	0.4920			0.4020	/T	0 00004	0 410
	•	hin limits for Cd			0.00204	0.4920	mg/ L	0.00204	0.41%
	228.616†	326922.8	2,445	_	0.0185	2.445	mar/T.	0.0185	0.76%
		hin limits for Co				2.445	mg/ n	0.0103	0.70%
	267.716t	110030.9	0.4976		0.00166	0.4976	mor/T.	0.00166	0.33%
	•	hin limits for Cr				0.4570	".G/ L	0.00100	0.55%
	324.7521	573109.1	1.213		0.0046	1.213	ma/I.	0.0046	0.38%
		hin limits for Cu				2,025		0.0010	0.500
	238.863†	303597.4	5.005		0.0186	5.005	ma/L	0.0186	0.37%
		hin limits for Fe				0.000	5, 2	0.0200	0.570
	04.721†	4184.9						268.92	6.43%
	Unable to ev	aluate QC.							
	279.077t		24.86	mq/L	0.139	24.86	ma/L	0.139	0.56%
_	QC value wit	hin limits for Mg	279.077 F	Recovery					
	257.610†	1270222.3			0.00446	0.7403	mq/L	0.00446	0.60%
	QC value wit	hin limits for Mn	257.610 F	Recovery	= 98.70%		٥.		
Mo	202.031†	128553.8	2.405	mg/L	0.0157	2.405	mg/L	0.0157	0.65%
	QC value wit	hin limits for Mo	202.031 F	Recovery	= 96.21%				
	231.604†	299474.3	1.996		0.0031	1.996	mg/L	0.0031	0.16%
		hin limits for Ni	231.604 F	Recovery	= 99.81%				
	330.237†	42547.9	23.32		0.054	23.32	mg/L	0.054	0.23%
		hin limits for Na			= 93.27%				
	220.353†	13934.4	0.5089		0.00216	0.5089	mg/L	0.00216	0.42%
		hin limits for Pb					_		
	206.836†	28083.4	4.911		0.0175	4.911	mg/L	0.0175	0.36%
		hin limits for Sb							
	196.026†	2853.5	0.4928		0.00801	0.4928	mg/L	0.00801	1.62%
		hin limits for Se					4-		
	189.927†	148967.3	4.903		0.0352	4.903	mg/L	0.0352	0.72%
		hin limits for \$n					/_		
TT	337.279†	1270064.1	2.486	mg/r	0.0062	2.486	mg/L	0.0062	0.25%

Initial Sample Wt: Dilution:		Ir	nitial Sample ample Prep Vo	Vol:			
MUGIVSTI		112	ita Type: Ori	GIUSI			
Sample ID: CCB Analyst:		Da	te Collected	: 8/13/201	LO 5:27	:39 PM	
Sequence No.: 36			tosampler Lo	cation: 1		=======================================	-====
All analyte(s) passe				d.			
QC value within 1				2.400	11197 to	0.0136	0.50%
QC value within 1 Sr 460.733†				2 460	ma/T.	0.0120	0.56%
Ca 227.546†				24.71	mg/L	0.087	0.35%
QC value within l							
Zn 206.200†	300738.8	0.9873 mg/L	0.00614	0.9873	mg/L	0.00614	0.62%
QC value within 1					J, _		
V 292.402†		_		2.432	ma/L	0.0108	0.44%
QC value within 1				0.9937	11197 H	0.00100	0.196
QC value within 1 Tl 190.801†		7.279 Recovery = 0.9957 mg/L		0 0057	ma /T.	0.00188	0.19%
·	<u>-</u>						
Method: AXIAL200-601	0 L Opt4	Page	a 25		Date:	8/13/2010 5::	31:05 PM

Mean Corrected   Calib   Std.Dev.   Conc.   Units   Std.Dev.   RSD   Y 371.029   8827033.5   1.011 mg/L   0.0070   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00023   -0.0001 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00008   -0.0037 mg/L   0.00140   -0.0004 mg/L   0.00140   -0.0004 mg/L   0.00140   -0.0004 mg/L   0.00140   -0.0004 mg/L   0.00140   -0.0004 mg/L   0.00029   -0.025 mg/L   0.00209   -0.025 mg/L   0.00209   -0.025 mg/L   0.00009   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00019   -0.0025 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00013   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0001 mg/L   0.00003   0.0
Y 371.029
Ag 328.068† -41.1
QC value within limits for Ag 328.068 Recovery = Not calculated Al 308.215† -160.1 -0.0037 mg/L 0.00008 '-0.0037 mg/L 0.00008 2.21% QC value within limits for Al 308.215 Recovery = Not calculated As 188.979† -3.1 -0.0004 mg/L 0.00140 -0.0004 mg/L 0.00140 396.42% QC value within limits for As 188.979 Recovery = Not calculated B 249.772† -6789.1 -0.0029 mg/L 0.00209 -0.0295 mg/L 0.00209 7.10% QC value within limits for B 249.772 Recovery = Not calculated Ba 233.527† -903.0 -0.0025 mg/L 0.00019 -0.0025 mg/L 0.00019 7.62% QC value within limits for Ba 233.527 Recovery = Not calculated Be 313.107† 451.2 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 41.81% QC value within limits for Ba 313.107 Recovery = Not calculated C26.502† 6.0 0.0000 mg/L 0.00002 0.0000 mg/L 0.00003 41.81% QC value within limits for Cd 226.502 Recovery = Not calculated C228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Cd 228.616 Recovery = Not calculated C267.716† 17.2 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Cd 227.716 Recovery = Not calculated C1 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cd 324.752 Recovery = Not calculated C328.663† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00084 22.15% Unable to evaluate QC C404 within limits for Cd 238.863 Recovery = Not calculated C5 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% Unable to evaluate QC C5 279.077† -235.1 -0.0060 mg/L 0.0017 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated C6 279.077† -235.1 -0.0060 mg/L 0.00010 mg/L 0.00002 13.51% QC value within limits for Mg 279.077 Recovery = Not calculated C7 279.077† -235.1 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mg 279.077 Recovery = Not calculated C7 279.077† -235.1 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mg 279.077 Recovery = Not calculated C7 279.077† -235.1 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC
Al 308.215† -160.1 -0.0037 mg/L
QC value within limits for Al 308.215 Recovery = Not calculated As 188.979†
As 188.979† -3.1 -0.0004 mg/L 0.00140 -0.0004 mg/L 0.00140 396.42% QC value within limits for As 188.979 Recovery = Not calculated  B 249.772† -6789.1 -0.0295 mg/L 0.00209 -0.0295 mg/L 0.00209 7.10% QC value within limits for B 249.772 Recovery = Not calculated  Ba 233.5271 -903.0 -0.0025 mg/L 0.00019 -0.0025 mg/L 0.00019 7.62% QC value within limits for Ba 233.527 Recovery = Not calculated  Be 313.107† 451.2 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 41.81% QC value within limits for Be 313.107 Recovery = Not calculated  Cd 226.502† 6.0 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 266.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Cu 324.751† -52.5
QC value within limits for As 188.979 Recovery = Not calculated  B 249.772†
B 249.772†
QC value within limits for B 249.772 Recovery = Not calculated  Ba 233.527† -903.0 -0.0025 mg/L 0.00019 -0.0025 mg/L 0.00019 7.62% QC value within limits for Ba 233.527 Recovery = Not calculated  Be 313.107† 451.2 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 41.81% QC value within limits for Be 313.107 Recovery = Not calculated  Cd 226.502† 6.0 0.00000 mg/L 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 mg/L 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† 52.5
Ba 233.527† -903.0 -0.0025 mg/L 0.00019 -0.0025 mg/L 0.00019 7.62% QC value within limits for Ba 233.527 Recovery = Not calculated  Be 313.107† 451.2 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 41.81% QC value within limits for Be 313.107 Recovery = Not calculated  Cd 226.502† 6.0 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 mg/L 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.00210 mg/L 0.000253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 To 0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mm 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Ba 233.527 Recovery = Not calculated 0.0003 0.0001 mg/L 0.00003 41.81% QC value within limits for Ba 313.107 Recovery = Not calculated 0.00003 0.0001 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated 0.00001 mg/L 0.00001 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 0.0038 mg
Be 313.107† 451.2 0.0001 mg/L 0.0003 0.0001 mg/L 0.00003 41.81% QC value within limits for Be 313.107 Recovery = Not calculated  Cd 226.502† 6.0 0.00000 mg/L 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5
QC value within limits for Be 313.107 Recovery = Not calculated  Cd 226.502† 6.0 0.0000 mg/L 0.00002 0.0000 mg/L QC value within limits for Cd 266.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Cd 226.502† 6.0 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated  Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.00009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Cd 226.502 Recovery = Not calculated  Co 228.616†
Co 228.616† 18.7 0.0001 mg/L 0.00013 0.0001 mg/L 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated  Cr 267.716† 17.2 0.0001 mg/L 0.00001 mg/L 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† 17.2 0.0001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated K 404.721† -52.5 75.52 143.82% Unable to evaluate QC. Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated Mn 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Cr 267.716† 17.2 0.0001 mg/L 0.00001 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Cr 267.716 Recovery = Not calculated  Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.0038 mg/L 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Cu 324.752 Recovery = Not calculated  Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Fe 238.863† 1272.8 0.0210 mg/L 0.00253 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82% Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Fe 238.863 Recovery = Not calculated  K 404.721† -52.5 75.52 143.82%  Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79%  QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51%  QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
<pre>K 404.721†</pre>
Unable to evaluate QC.  Mg 279.077† -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Mg 279.077; -235.1 -0.0060 mg/L 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated  Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Mn 257.610 Recovery = Not calculated  Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
Mo 202.031† 47.7 0.0009 mg/L 0.00050 0.0009 mg/L 0.00050 55.60%
QC value within limits for Mo 202.031 Recovery = Not calculated
Ni 231.604† 8.1 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 63.66%
QC value within limits for Ni 231.604 Recovery = Not calculated
Na 330.237† -371.7 -0.2038 mg/L 0.01571 -0.2038 mg/L 0.01571 7.71%
QC value within limits for Na 330.237 Recovery = Not calculated
Pb 220.353† 13.3 0.0005 mg/L 0.00004 0.0005 mg/L 0.00004 8.07%
QC value within limits for Pb 220.353 Recovery = Not calculated
Sb 206.836† 9.1 0.0016 mg/L 0.00023 0.0016 mg/L 0.00023 14.41%
QC value within limits for Sb 206.836 Recovery = Not calculated
Se 196.026† -4.4 -0.0008 mg/L 0.00214 -0.0008 mg/L 0.00214 283.12%
QC value within limits for Se 196.026 Recovery = Not calculated
Sn 189.927† 232.8 0.0077 mg/L 0.00111 0.0077 mg/L 0.00111 14.54%
OC realize within limite for the 100 007 Degerows - Not goldwicked
QC value within limits for Sn 189.927 Recovery = Not calculated
Ti 337.279† 112.0 0.0002 mg/L 0.00009 0.0002 mg/L 0.00009 40.94%
Ti 337.279† 112.0 0.0002 mg/L 0.00009 0.0002 mg/L 0.00009 40.94% QC value within limits for Ti 337.279 Recovery = Not calculated
Ti 337.279† 112.0 0.0002 mg/L 0.00009 0.0002 mg/L 0.00009 40.94% QC value within limits for Ti 337.279 Recovery = Not calculated Tl 190.801† 3.9 0.0005 mg/L 0.00122 0.0005 mg/L 0.00122 236.35%
Ti 337.279† 112.0 0.0002 mg/L 0.00009 0.0002 mg/L 0.00009 40.94% QC value within limits for Ti 337.279 Recovery = Not calculated

QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.00016 80.43% Zn 206.200† 61.6 0.0002 mg/L 0.00016 QC value within limits for Zn 206.200 Recovery = Not calculated Ca 227.546† 0.9 0.0026 mg/L 0.01022 0.0026 mg/L 0.01022 387.70% QC value within limits for Ca 227.546 Recovery = Not calculated Sr 460.733† 94.7 0.0004 mg/L 0.00016 0.0004 mg/L 0.00016 42.92% QC value within limits for Sr 460.733 Recovery = Not calculated All analyte(s) passed QC. One or more analytes were not evaluated.

Sequence No.: 37

Sample ID: R1004314-015

Analyst:

Initial Sample Wt: 1.02 g

Dilution:

Autosampler Location: 58 Date Collected: 8/13/2010 5:33:22 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Moan Data, P1004314-01E

Mean Data: R10	04314-015							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	8838469.2	1.012	mg/L	0.0050				0.49%
Ag 328.068†	-4466.4	-0.0017	mg/L	0.00013				7.42%
Al 308.215†	4641525.2	107.7	mg/L	0.17				0.16%
As 188.979†	-438.6	,0.0134	mg/L	0.00417				31.14%
B 249.772†	136928.8	0.1196		0.00116				0.97%
Ba 233.527†	83644.4	0.2245	mg/L	0.00204				0.91%
Be 313.107†	15675.1	0.0024	mg/L	0.00003				1.14%
Cd 226.502†	4800.6	-0.0008		0.00003				3.81%
Co 228.616†	2708.4	0.0167	mg/L	0.00024				1.45%
Cr 267.716†	47069.2	0.2185	mg/L	0.00172				0.79%
Cu 324.752†	16410.4	0.0632		0.00041				0.64%
Fe 238.863†	9723345.9	160.6	mg/L	0.02				0.01%
K 404.721†	391.4		_				77.32	19.76%
Mg 279.077†	121453.3	2.991	mg/L	0.0317				1.06%
Mn 257.610†	866290.6	0.5050	mg/L	0.00428				0.85%
Mo 202.031†	-193.1	0.0041	mg/L	0.00034				8.23%
Ni 231.604†	3788.3	0.0250		0.00047				1.88%
Na 330.237†	-467.9	0.1457	mg/L	0.15379				105.53%
Pb 220.353†	2053.4	0.0762	mg/L	0.00020				0.26%
Sb 206.836†	33.7	0.0037		0.00520				139.07%
Se 196.026†	-206.0	0.0074	mg/L	0.00460				61.92%
Sn 189.927t	675.5	0.0467	mg/L	0.00031				0.66%
Ti 337.279†	963030.5	1.884	mg/L	0.0212				1.13%
Tl 190.801†	-46.4	0.0014	mg/L	0.00124				90.67%
V 292.402†	95944.0	0.3716	mg/L	0.00128				0.34%
Zn 206.200†	28051.8	0.0883	mg/L	0.00024				0.28%
Ca 227.546†	-3457.1	2.547	mg/L	0.0573				2.25%
Sr 460.733†	3740.6	0.0141	mg/L	0.00060				4.27%
Sample conc. no	ot calculated. Nomin	al Wt. Al	ND Initial	Wt. required	OR samp	le units	incorrect.	

Sequence No.: 38

Sample ID: R1004314-016

Analyst:

Initial Sample Wt: 1.05 g

Dilution:

Autosampler Location: 59 Date Collected: 8/13/2010 5:37:43 PM Data Type: Original Initial Sample Vol:

Sample Prep Vol: 100 mL

Mean Data: R10043	14-016							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8404138.5	0.9625	mg/L	0.00274				0.28%
Ag 328.068t	-4518.9	-0.0048	mg/L	0.00045				9.54%
Al 308.215†	5681060.0	131.8	mg/L	0.02				0.02%
As 188.979†	-335.3	0.0073	mg/L	0.00019				2.68%
B 249.772†	95709.3	0.0641	mg/L	0.01178				18.37%
Ba 233.527†	245807.9	0.6771	mg/L	0.00005				0.01%
Be 313.107†	17429.1	0.0027	mg/L	0.00000				0.08%
Cd 226.502†	3325.1	-0.0009	mg/L	0.00011				11.73%
Co 228.616†	2270.7	0.0145	mg/L	0.00042				2.88%
Cr 267.716†	32497.8	0.1511	mg/L	0.00001				0.01%
Cu 324.752†	26843.0	0.0770	mg/L	0.00042				0.54%

Method: AXIAL200-6010 L Opt4 Page 27 Date: 8/13/2010 5:48:23 PM Fe 238.863† 7040172.6 116.2 mg/L 0.42 0.36% K 404.721† 2378.4 8.08% 192.25 Mg 279.077† 217322.0 5.457 mg/L 0.0115 0.21% 0.1945 mg/L Mn 257.610† 333740.8 0.00020 0.10% Mo 202.031t -239.4 0.0017 mg/L 0.00003 1.48% 0.0285 mg/L 0.0115 mg/L Ni 231.604† 4295.1 0.00012 0.41% Na 330.237t -481.1 0.01523 132.54% 0.1345 mg/L Pb 220.353† 3489.1 0.00445 3.31% Sb 206.836† -0.0004 mg/L 8.7 0.00319 712.26% 0.0050 mg/L Se 196.026† -141.2 0.00563 111.61% 714.2 Sn 189.927† 0.0423 mg/L 0.00014 0.33% 2.339 mg/L Ti 337.279† 1195046.9 0.0382 1.63% Tl 190.801t -23.4 0.0025 mg/L 0.00296 118.91% V 292.402t 67885.6 0.2631 mg/L 0.00067 0.25% Zn 206,200t 41920.6  $0.1342~\mathrm{mg/L}$ 0.00023 0.17% -3398.3 -1213.8 0.3482 mg/L Ca 227.546† 0.09296 26.70% -0.0047 mg/L Sr 460.733† 0.00023 4.87% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 39

Sample ID: R1004314-017

Analyst:

Initial Sample Wt: 1.05 g

Dilution:

Autosampler Location: 60

Date Collected: 8/13/2010 5:41:59 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004314-017 Mean Corrected ean Correction Conc. Unitensity Conc. Unitensity 0.9578 mg/L Calib Sample Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.00353 0.37% Ag 328.068t -5189.6 -0.0027 mg/L 0.00067 24.84% Al 308.215† 5429074.3 125.9 mg/L 0.19 0.15% 0.0145 mg/L As 188.979t -481.8 0.00395 27.18% 145464.1 B 249.772† 0.1094 mg/L 0.01442 13.18% 80878.3 14953.3 Ba 233.527† 0.2161 mg/L 0.00111 0.51% Be 313.107† 0.0023 mg/L 0.00002 0.86% 5217.2 -0.0010 mg/L Cd 226.502† 0.00008 7.73% Co 228.616† 3201.4 0.0201 mg/L 0.00031 1.53% 30991.1 18428.5 0.1464 mg/L Cr 267.716† 0.00099 0.68% Cu 324.752† 0.0702 mg/L 0.00023 0.33% Fe 238.863† 10661665.4 176.0 mg/L 0.12 0.07% K 404.721† 601.1 92.90 15.46% 3.197 mg/L Mg 279.077† 129914.0 0.0151 0.47% Mn 257.610† 751543.8 0.4380 mg/L0.00248 0.57% Mo 202.031† -219.0 0.0044 mg/L 0.00029 6.48% Ni 231.604t 4406.8 0.0291 mg/L 0.00039 1.33% Na 330.237t -536.0 0.1419 mg/L 0.05041 35.54% 2406.6 Pb 220.353† 0.0902 mg/L 0.00254 2.82% 0.0020 mg/L Sb 206.836† 25.1 0.00186 94.77% -241.9 Se 196.026† 0.0051 mg/L 0.00353 69.08% Sn 189.927† 611.9 0.0474 mg/L 0.00126 2.66% Ti 337.279t 1210038.2 2.368 mg/L 0.0658 2.78% -0.0023 mg/L Tl 190.801† -79.9 0.00218 96.57% 0.3791 mg/L 97573.9 V 292.402† 0.00155 0.41% Zn 206.200† 34352.1 0.1086 mg/L 0.00055 0.51% 6.493 mg/L Ca 227.546† -1656.8 0.0674 1.04% Sr 460.7331 6823.3 0.0259 mg/L 0.00026 1.01% Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 40

Sample ID: R1004314-018

Analyst:

Initial Sample Wt: 1.05 g

Dilution:

Autosampler Location: 61

Date Collected: 8/13/2010 5:46:26 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004314-018

Mean Corrected Calib Sample Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8561211.3 0.00002 0.00%

Method: AXIAL2	00-6010 L Opt4		Pag	e 28	Date: 8/13/2010 5:55:47 PM
Ag 328.068†	-1447.1	-0.0025	mg/L	0.00009	3.65%
Al 308.215†	1945117.1	45.12	mg/L	0.081	0.18%
As 188.979†	-55.0			0.00308	120.30%
B 249.772†	11206.3	-0.0231	mg/L	0.00454	19.65%
Ba 233.527†	94016.9	0.2600	mg/L	0.00072	0.28%
Be 313.107†	5873.7	0.0009	mg/L	0.00003	2.84%
Cd 226.502†	673.6	-0.0001	mg/L	0.00001	6.21%
Co 228.616†	1027.1	0.0072	mg/L	0.00011	1.59%
Cr 267.716†	11450.1	0.0526	mg/L	0.00022	0.43%
Cu 324.752†	22737.5	0.0519	mg/L	0.00008	0.16%
Fe 238.863†	1381645.1	22.81	mg/L	0.039	0.17%
K 404.721†	1379.9				131.55 9.53%
Mg 279.077†	111410.5	2.820	mg/L	0.0030	0.10%
Mn 257.610†	137463.2	0.0802	mg/L	0.00011	0.14%
Mo 202.031†	45.7	0.0023	mg/L	0.00060	26.46%
Ni 231.604†	2453.4	0.0163	mg/L	0.00025	1.53%
Na 330.237†	89.4	0.0966		0.08211	85.02%
Pb 220.353†	1456.6	0.0568	mg/L	0.00237	4.17%
Sb 206.836†	-2.7	-0.0010	mg/L	0.00571	569.17%
Se 196.026†	-36.1	-0.0011		0.00016	14.87%
\$n 189.927†	547.7	0.0222	mg/L	0.00097	4.39%
Ti 337.279†	693992.8	1.358		0.0013	0.10%
Tl 190.801†	-23.7	-0.0019		0.00448	232.66%
V 292.402†	35995.0	0.1359	mg/L	0.00030	0.22%
Zn 206.200†	19466.4	0.0630		0.00041	0.66%
Ca 227.546†	-465.4	0.4361	mg/L	0.08004	18.35%
Sr 460.733†	-488.7			0.00034	18.93%
Sample conc. n	ot calculated. No	ominal Wt. AM	ND Initia	l Wt. required	OR sample units incorrect.

Sequence No.: 41 Sample ID: R1004314-019

Analyst:

Initial Sample Wt: 1.04 g

Dilution:

Autosampler Location: 62

Date Collected: 8/13/2010 5:50:42 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: F	R1004314-019							
	Mean Correcte	ed	Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8294785.8	0.9499	mg/L	0.00048				0.05%
Ag 328.068t	-6026.5	-0.0013	mg/L	0.00035				26.43%
Al 308.215†	6630425.3	153.8	mg/L	0.87				0.57%
As 188.979†	-650.1	0.0176	mg/L	0.00184				10.44%
B 249.772†	204624.2	0.2015	mg/L	0.00560				2.78%
Ba 233.527†	106854.9	0.2855	mg/L	0.00054				0.19%
Be 313.107†	18390.7	0.0029	mg/L	0.00002				0.65%
Cd 226.502†	7038.5	-0.0009	mg/L	0.00002				1.67%
Co 228.616†	3671.7	0.0224	mg/L	0.00004				0.19%
Cr 267.716†	51973.2	0.2433	mg/L	0.00119				0.49%
Cu 324.752†	24002.3	0.0920	mg/L	0.00022				0.24%
Fe 238.863†	14065745.3	232.3	mg/L	1.35				0.58%
K 404.721†	505.4						59.72	11.82%
Mg 279.077†	154371.6	3.785	mg/L	0.0087				0.23%
Mn 257.610†	1025127.3	0.5975	mg/L	0.00080				0.13%
Mo 202.031†	-340.3	0.0048		0.00139				29.13%
Ni 231.604†	5159.1	0.0341		0.00022				0.66%
Na 330.237†	311.9	0.7519		0.00119				0.16%
Pb 220.353†	2517.6	0.0935		0.00023				0.24%
Sb 206.836†	45.2	0.0048	mg/L	0.00121				25.20%
Se 196.026†	-279.2	0.0140		0.00715				50.90%
Sn 189.927†	609.8	0.0556	mg/L	0.00043				0.77%
Ti 337.279†	1104276.9	2.161	mg/L	0.0178				0.82%
Tl 190.801t	-56.4	0.0034	mg/L	0.00005				1.36%
V 292.402†	125351.7	0.4876		0.00051				0.10%
Zn 206.200†	40156.8	0.1264	mg/L	0.00046			•	0.37%
Ca 227.546†	-3711.4	5.914		0.2116				3.58%
Sr 460.733†	8865.5	0.0336	mg/L	0.00028	_			0.83%

Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sample ID: R1004314-020 Analyst:

Initial Sample Wt: 1 g Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Date Collected: 8/13/2010 5:55:47 PM

Mean Data: R	1004314-020							
	Mean Corre	ected	Calib			Sample		
Analyte	Intensi	ty Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8957186.	5 1.026	mg/L	0.0051				0.50%
Ag 328.068†	-5879.	6 -0.0039	mg/L	0.00010				2.66%
Al 308.215†	4854768.	9 112.6	mg/L	0.14				0.12%
As 188.979†	-543.	6 0.0112	mg/L	0.00089				7.96%
B 249.772†	154473.			0.00748				6.03%
Ba 233.527†	103334.	8 0.2780	mg/L	0.00162				0.58%
Be 313.107†	22120.	6 0.0034	mg/L	0.00003				0.82%
Cd 226.502†	5517.	0 -0.0010	mg/L	0.00031				30.28%
Co 228.616†	2242.	8 0.0127	mg/L	0.00020				1.57%
Cr 267.716†	33240.	7 0.1570	mg/L	0.00140				0.89%
Cu 324.752†	16043.	1 0.0670	mg/L	0.00021				0.31%
Fe 238.863†	11230859.	4 185.4	mg/L	0.10				0.05%
K 404.721†	1182.	2					11.02	0.93%
Mg 279.077t	136480.	6 3.358	mg/L	0.0249				0.74%
Mn 257.610†	251353.			0.00104				0.72%
Mo 202.031†	-339.	4 0.0024	mg/L	0.00089	•			36.53%
Ni 231.604†	3916.	6 0.0259	mg/L	0.00015				0.57%
Na 330.237†	-1166.	7 -0.1691	mg/L	0.05021				29.69%
Pb 220.353†	3086.			0.00293				2.60%
Sb 206.836†	25.	0 0.0020	mg/L	0.00106				53.89%
Se 196.026†	-268.			0.00235				62.10%
Sn 189.927†	460.			0.00132				3.07%
Ti 337.279†	865268.			0.0275				1.63%
Tl 190.801†	-45.			0.00393				151.59%
V 292.402†	66432.			0.00058				0.22%
Zn 206.200†	33591.			0.00080				0.76%
Ca 227.546†	-5630.		mg/L	0.03285				34.00%
Sr 460.733†	-1705.			0.00065				9.14%
Sample conc.	not calculated.	Nominal Wt. Al	ND Initial	. Wt. required	OR sampl	le units	incorrect.	

Sample conc. not calculated. Nominal Wt. AND Initial Wt. required OR sample units incorrect.

Sequence No.: 43 Sample ID: CCV Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 3 Date Collected: 8/13/2010 6:00:07 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV Mean Corrected Calib Sample Intensity Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8572564.3 0.9818 mg/L 0.01555 1.58% 184835.3 0.4959 mg/L 0.4959 mg/L 0.00914 Ag 328.068† 0.00914 1.84% QC value within limits for Ag 328.068 Recovery = 99.17% 426491.0 9.888 mg/L 9.888 mg/L 0.1648 Al 308.215† 0.1648 1.67% QC value within limits for Al 308.215 Recovery = 98.88% As 188.979† 0.01513 8447.8 0.9902 mg/L 0.9902 mg/L 0.01513 1.53% QC value within limits for As 188.979 Recovery = 99.02% B 249.772† 542076.4 2.328 mg/L 2.328 mg/L 0.0388 0.0388 1.67% QC value within limits for B 249.772 Recovery = 93.10% Ba 233.527† 3556090.0 9.877 mg/L 9.877 mg/L 0.1453 0.1453 1.47% QC value within limits for Ba 233.527 Recovery = 98.77% Be 313.107† 1596252.1 0.2430 mg/L 0.00326 0.2430 mg/L 0.00326 1.34% QC value within limits for Be 313.107 Recovery = 97.20% Cd 226.502† 188791.4 0.4934 mg/L 0.00684 0.4934 mg/L 0.00684 1.39% QC value within limits for Cd 226.502 Recovery = 98.67% Co 228.616† 327447.2  $2.449~{
m mg/L}$ 0.0348 2.449 mg/L 0.0348 1.42% QC value within limits for Co 228.616 Recovery = 97.97% 0.4973 mg/L Cr 267.716† 109954.0 0.4973 mg/L 0.01057 0.01057 2.13% QC value within limits for Cr 267.716 Recovery = 99.45% 1.211 mg/L Cu 324.752† 571824.9 1.211 mg/L 0.0214 0.0214 1.77% QC value within limits for Cu 324.752 Recovery = 96.86% 5.046 mg/L Fe 238.863† 306037.5 5.046 mg/L 0.0800 0.0800 1.59%

Method: AXIAL200-6	010 L Opt4	P	age 30		Date:	8/13/2010 6:	07:52 PM
K 404.721†	4237.7	238.863 Recover	y = 100.91%			55.64	1.31%
Unable to evalumg 279.077†		24.92 mg/L	0.353	24.92	ma/L	0.353	1.41%
QC value within		279.077 Recover			_		
Mn 257.610†		0.7402 mg/L	0.01111	0.7402	mg/L	0.01111	1.50%
QC value within Mo 202.031†	limits for Mn 128816.8	257.610 Recovery 2.410 mg/L	y ≃ 98.70% 0.0181	2.410	ma /I.	0.0181	0.75%
		202.031 Recover		2.410	шg/ п	0.0161	0.75%
Ni 231.604†	300182.3	2.001 mg/L	0.0331	2.001	mq/L	0.0331	1.65%
QC value within	limits for Ni	231.604 Recovery	y = 100.04%				
Na 330.237†	42668.9	23.39 mg/L	0.380	23.39	mg/L	0.380	1.62%
QC value within Pb 220.353†	. limits for Na 13592.6	330.237 Recovery 0.4965 mg/L	•	0 4965	ma /T.	0.00494	1.00%
		220.353 Recovery	0.00494 $v = 99.29$ %	0.4965	1119/12	0.00494	1.00%
Sb 206.836†		5.033 mg/L	0.1383	5.033	mg/L	0.1383	2.75%
		206.836 Recovery	y = 100.66%				
Se 196.026†	2877.3	0.4969 mg/L	0.01971	0.4969	mg/L	0.01971	3.97%
OC value within Sn 189.927;		196.026 Recovery 4.919 mg/L	y = 99.39% 0.0583	4 610	mg/L	0.0583	1.18%
		189.927 Recovery		4.919	mg/ n	0.0503	7.702
Ti 337.279†	1273482.6	2.492 mg/L	0.0499	2.492	mg/L	0.0499	2.00%
QC value within	limits for Ti	337.279 Recovery	y = 99.69%		•		
Tl 190.801†	7716.3	1.005 mg/L	0.0267	1.005	mg/L	0.0267	2.66%
QC value within V 292.402†	limits for Tl 653928.4	190.801 Recovery		2 421	m~ /T	0.0277	1.14%
		2.431 mg/L 92.402 Recovery	0.0277	2.431	mg/L	0.02//	1.148
Zn 206.200†		0.9893 mg/L	0.01396	0.9893	ma/L	0.01396	1.41%
QC value within		206.200 Recovery			3,		
Ca 227.546†	14100.4	24.67 mg/L	0.433	24.67	mg/L	0.433	1.75%
		227.546 Recovery					
Sr 460.733t	641383.4	2.481 mg/L 460.733 Recovery	0.0394	2.481	mg/L	0.0394	1.59%
All analyte(s) pas				ed -			
=======================================	#========		:==========			=======================================	=====
Sequence No.: 44			Autosampler Lo		0 6 04	0.5 735	
Sample ID: CCB Analyst:			Date Collected Data Type: Ori		.U 0:U4	:2/ PM	
Initial Sample Wt:			Initial Sample	_			
Dilution:			Sample Prep Vo				
Mean Data: CCB	a	en - 7 11			a		
	Mean Corrected	Calib			Sample		

Mean Data: CCB					
	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev. Conc.	Units	Std.Dev. RSD
Y 371.029	8789795.8	1.007 mg/L	0.0013		0.12%
Ag 328.068†	-112.4	-0.0003 mg/L	0.00083 -0.0003	mg/L	0.00083 278.63%
QC value within	limíts for Ag	328.068 Recovery	<pre>= Not calculated</pre>		
Al 308.215†	26.7	0.0006 mg/L	0.00097 0.0006	mg/L	0.00097 156.13%
QC value within					
			0.00070 0.0008	mg/L	0.00070 92.42%
QC value within	limits for As	188.979 Recovery	= Not calculated		
B 249.772†	<del>-</del> 7224.5	-0.0314 mg/L	0.00261 -0.0314	mg/L	0.00261 8.33%
		49.772 Recovery =			
			0.00032 -0.0028	mg/L	0.00032 11.33%
QC value within	limits for Ba	233.527 Recovery	≃ Not calculated		
Be 313.107†	271.3	0.0000 mg/L	0.00004 0.0000	mg/L	0.00004 99.86%
QC value within	limits for Be	313.107 Recovery	= Not calculated		
			0.00004 0.0000	mg/L	0.00004 161.25%
		226.502 Recovery			
Co 228.616†	-4.2	0.0000 mg/L	0.00013 0.0000	mg/L	0.00013 415.16%
QC value within	limits for Co	228.616 Recovery	= Not calculated		
			0.00004 0.0001	mg/L	0.00004 46.36%
QC value within	limits for Cr	267.716 Recovery	= Not calculated	•_	
			0.00077 0.0037	mg/L	0.00077 21.04%
QC value within	limits for Cu	324.752 Recovery	= Not calculated	•	
Fe 238.863†	1865.5	0.0308 mg/L	0.00084 0.0308	mg/L	0.00084 2.71%
		238.863 Recovery	= Not calculated		
K 404.721t					120.15 204.85%
Unable to evalua	ate QC.		0.00124 -0.0052	•-	
Mg 279.077†	-205.3	-0.0052 mg/L	0.00124 -0.0052	mg/L	0.00124 23.63%

Meth	od: AXI	AL200-6	010 L O	pt4	·	Pa	де	31		Date:	8/13/2010 6	:13:35 PM
0	C value	within	limits	for Ma	279.077	Recovery	=	Not calculate	ed.			
Mn 2.	57.610t		-:	303.0	-0.000	2 mg/L		0.00002	-0.0002	mg/L	0.00002	9.43%
			limits			Recovery	=	Not calculate	ed	_		
	02.031†				0.001	.0_mg/L				mg/L	0.00048	49.21%
		within	limits	for Mo	202.031	Recovery		Not calculate		,_		
	31.604†		7.7	22.0	0.000	1 mg/L		0.00002	0.0001	mg/L	0.00002	10.40%
V. Στο οτ	C value	within	limits	IOT NI	231.604	Recovery	=	Not calculate		/ =	0 10095	DC 000
Na 3.	30.23/  Caralua	within	-,- limito	43.9 for No	-U.I33	/ mg/L		0.10275 Not calculate		mg/L	0.10275	76.87%
	20.353†							0.00055		mar/T	0.00055	CO 05%
								Not calculate		шg/п	0.00055	60.95%
	06.836t		T T III T C 2	5 2	0 000	9 mg/L	=	noc carcurace		mar / T.	0.00040	44 208
				for Sb	206.836	Recovery	_	Not calculate	-d	mg/ n	0.00040	44.304
	96.0261			-7.7	-0.001	3 mg/L		0.00096		ma/T	0.00096	73.05%
		within	limits					Not calculate		5/ _	0.00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	89.927†		2	217.8	0.007	2 mg/L		0.00090		mq/L	0.00090	12.55%
Q	C value	within	limits	for Sn	189.927	Recovery	=	Not calculate	ed	<b>.</b>		
Ti 33	37.279†		1	130.3	0.000	3 mg/L		0.00001	0.0003	mg/L	0.00001	5.74%
QC	C value	within	limits	for Ti	337.279	Recovery	=	Not calculate	ed			
								0.00077		mg/L	0.00077	69.17%
		within						Not calculate				
	2.402†			L02.6	0.000	4 mg/L		0.00003		mg/L	0.00003	8.90%
		within	limits	for V 2	292.402	Recovery =	= N	ot calculated				
	06.200†					2 mg/L ¯			0.0002	mg/L	0.00002	9.46%
								Not calculate	ed	_		
	27.546†			-5.5	-0.007	9 mg/L		0.07194	-0.0079	mg/L	0.07194	907.03%
QC	C value	within	limits	for Ca	227.546	Recovery	=	Not calculate	ed			
Sr 46	60.733†		7 3 3 4	-8.6	0.000	0 mg/L		0.00051	0.0000	mg/L	0.00051	>999.9%
								Not calculate				
AII è	anaryce	s) pass	ea yc.	one or	more ana	iyces were	2 13	ot evaluated.				
=====	======	:=====	.=====		======	========		z========			:========	
Seque	ence No.	: 45				Z	lut	osampler Loca	tion: 6			
Sampl	le ID: N	IRL						e Collected:		10 6:10:	09 PM	
Analy	yst:							a Type: Origi				
Initi	ial Samp	le Wt:				3	ni	tial Sample V	ol:			

Initial Sample Wt: Dilution:

Initial Sample Vol: Sample Prep Vol:

Mean Data: MRL							
	Mean Corrected	Calib Conc. Units 1.017 mg/L			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8882237.7	1.017 mg/L	0.0064				0.63%
Ag 328.068†	3734.7	0.0100 mg/L	0.00054	0.0100	mg/L	0.00054	5.37%
QC value within	limits for Ag	328.068 Recovery =	: 100.19%				
		0.1879 mg/L		0.1879	mg/L	0.00018	0.10%
		308.215 Recovery =					
		0.0199 mg/L		0.0199	mg/L	0.00048	2.43%
		188.979 Recovery =					
B 249.772†	33557.9	0.1448 mg/L	0.00034	0.1448	mg/L	0.00034	0.24%
		imit for B 249.772					
		0.1989 mg/L		0.1989	mg/L	0.00135	0.68%
		233.527 Recovery =					
		0.0048 mg/L		0.0048	mg/L	0.00005	1.05%
		313.107 Recovery =					
		0.0097 mg/L		0.0097	mg/L	0.00001	0.12%
		226.502 Recovery =					
		0.0495 mg/L		0.0495	mg/L	0.00006	0.12%
		228.616 Recovery =					
		0.0099 mg/L		0.0099	mg/L	0.00003	0.31%
		267.716 Recovery =					
		0.0247 mg/L		0.0247	mg/L	0.00040	1.64%
		324.752 Recovery =					
		0.1209 mg/L				0.00370	3.06%
		r limit for Fe 238.	863 Recover	y = 120.88	38		
K 404.721†						36.96	44.09%
Unable to evalu	ate QC.						
Mg 279.077†	40144.5	1.021 mg/L	0.0080	1.021	mg/L	0.0080	0.78%
		279.077 Recovery =			4-		
		0.0148 mg/L		0.0148	mg/L	0.00016	1.09%
		257.610 Recovery =			*-		
Mo 202.031†	1319.1	0.0247 mg/L	0.00019	0.0247	mg/L	0.00019	0.77%

Me	thod: AXI	AL200-6010 L Opt4	Page	32		Date:	8/13/2010 6:	:17:48 PM
	OC value	within limits for Mo 202.031 Recove	~~	00 72%				
		5971.7 0.0398 mg/L			0.0200	ma /I.	0 00005	ለ ነገዬ
	OC value	within limits for Ni 231.604 Recove	737 -	0.00005	0.0396	1119/15	0.00003	0.123
Na	330.2371	1293.7 0.7088 mg/L	- y -	0 03403	0.7088	ma/I.	0.03403	4.80%
	001	lana bban the lacest limit for me 220	000	~	E0 000			
Pb	220.3531	279.2 0.0102 mg/L		0.00055	0.0102	mar/T.	0.00055	5.38%
	OC value	within limits for Pb 220.353 Recove	rv =	101.98%				3.300
Sb	206.8361	323.3 0.0565 mg/L	- 1	0.00042	0.0565	ma/L	0.00042	0.75%
	OC value	within limits for Sb 206.836 Recove	rv =	94.22%	0.000		0.00012	0
Se	196.026†	44.0 0.0076 mg/L	- 1	0.00179	0.0076	ma/L	0.00179	23.58%
	QC value	less than the lower limit for Se 196	.026	Recovery	= 75.97%	3, —		
		15633.8 0.5143 mg/L			0.5143	mg/L	0.00082	0.16%
		within limits for Sn 189.927 Recove				<b>-</b>		
		25289.4 0.0495 mg/L			0.0495	mq/L	0.00025	0.50%
		within limits for Ti 337.279 Recove				٥,		
Tl	190.801†	155.6 0.0203 mg/L	-	0.00079	0.0203	mg/L	0.00079	3.90%
		within limits for Tl 190.801 Recove				-		
		12817.4 0.0477 mg/L			0.0477	mg/L	0.00036	0.75%
	QC value	within limits for V 292.402 Recover	y = 9	95.32%				
		5981.3 0.0196 mg/L			0.0196	mg/L	0.00004	0.20%
	QC value	within limits for Zn 206.200 Recover	ry =	98.07%				
Ca	227.546†	502.8 0.8766 mg/L		0.00962	0.8766	mg/L	0.00962	1.10%
	QC value	within limits for Ca 227.546 Recove:	ry =	87.66%				
sr	460.733†	23802.2 0.0921 mg/L		0.00014	0.0921	mg/L	0.00014	0.15%
		within limits for Sr 460.733 Recover	ry =	92.08%				
QC	Failed.	Continue with analysis.						

Sequence No.: 46 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 7
Date Collected: 8/13/2010 6:15:53 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: ICSA					
	Mean Correcte	d Calib	Std.Dev. Conc. 0.00088 0.00001 -0.0014 = Not calculated	Sample	
Analyte	Intensity	Conc. Units	Std.Dev. Conc.	Units Std.Dev	. RSD
Y 371.029	7814193.2	0.8949 mg/L	0.00088		0.10%
Ag 328.068†	-2360.9	-0.0014 mg/L	0.00001 -0.0014	mg/L 0.00001	0.81%
QC value within	limits for Ag	328.068 Recovery	= Not calculated	_	
Al 308.215†	10662724.7	247.3 mg/L	0.21 247.3	mg/L 0.21	0.09%
QC value within	limits for Al	308.215 Recovery	= 98.91%		•
		-0.0053 mg/L		mg/L 0.00629	119.23%
QC value within	limits for As	188.979 Recovery	<pre>= Not calculated</pre>	_	
B 249.772†	72015.2	-0.0327 mg/L	0.00371 -0.0327	mg/L 0.00371	11.34%
Ba 233.527†	852.0	-0.0050 mg/L	0.00037 -0.0050	mg/L 0.00037	7.42%
Be 313.107†	-1875.7	0.0000 mg/L	0.00371 -0.0327 0.00037 -0.0050 0.00000 0.0000	mg/L 0.00000	2.52%
QC value within	limits for Be	313.107 Recovery	= Not calculated		
Cd 226.502†	2742.0	-0.0005 mg/L	0.00000 -0.0005	mg/L 0.00000	0.92%
QC value within	limits for Cd	226.502 Recovery	= Not calculated	_	
Co 228.616†	262.7	-0.0001 mg/L	0.00065 -0.0001	mg/L 0.00065	686.56%
QC value within	limits for Co	228.616 Recovery	= Not calculated		
Cr 267.716†	-1393.3	-0.0013 mg/L	0.00000 -0.0013	mg/L 0.00000	0.07%
QC value within	limits for Cr	267.716 Recovery	= Not calculated		
Cu 324.752t	-6120.2	-0.0030 mg/L	0.00037 -0.0030	mq/L 0.00037	12.24%
QC value within	limits for Cu	324.752 Recovery	= Not calculated		
Fe 238.863†	5736153.1	94.62 mg/L	0.196 94.62	mq/L 0.196	0.21%
QC value within	limits for Fe	238.863 Recovery	= 94.62%		
K 404.721†	-291.2	-	0.15 242.4	37.13	12.75%
Mg 279.077†	9530860.0	242.4 mg/L	0.15 242.4	mg/L 0.15	0.06%
QC value within	limits for Mg	279.077 Recovery	= 96.94%	3.	
Mn 257.610†	-630.0	-0.0076 mg/L	0.00002 -0.0076	mg/L 0.00002	0.21%
QC value within	limits for Mn	257.610 Recovery	= Not calculated		
Mo 202.031†	-360.7	-0.0005 mg/L	0.00003 -0.0005	mq/L 0.00003	7.70%
Ni 231.604†	12.5	-0.0011 mg/L	0.00003 -0.0005 0.00008 -0.0011	mg/L 0.00008	6.94%
OC value within	limits for Ni	231.604 Recovery	= Not calculated		
Na 330.237†	60.3	-0.0003 mg/L	0.07382 -0.0003	mg/L 0.07382	>999.9%
Pb 220.353†	-608.0	0.0018 mg/L	0.07382 -0.0003 0.00206 0.0018	mg/L 0.00206	117.82%
QC value within	limits for Pb	220.353 Recovery	= Not calculated		
Sb 206.836†	24.0	0.0007 mg/L	0.00012 0.0007	mg/L 0.00012	16.31%
QC value within	limits for Sb	206.836 Recovery	= Not calculated	<u>-</u> .	

ECHOU: HAIALAND-0	010 L Opt4	P	age 33		Date:	8/13/2010 6	:22:08 1
e 196.026† QC value within	limits for Se	0.0010 mg/L 196.026 Recover	v = Not calcula	ated			367.97
n 189.927† i 337.279† l 190.801†	-98.0	$0.0475~\mathrm{mg/L}$	0.00128	0.0475	mg/L	0.00128	2.709
i 337.279†	664.4	-0.0025 mg/L	0.00001	-0.0025	mg/L	0.00001	0.369
l 190.801†	-56.9	0.0000 mg/L	0.00022	0.0000	mg/L	0.00022	456.718
QC value within	limits for Tl	190.801 Recover	y = Not calcula	ated			
292.402†	-2583.2	-0.0009 mg/L	0.00028	-0.0009	mg/L	0.00028	30.50%
	limits for V	292.402 Recovery	<pre> = Not calcula</pre>		_		
n 206.200†	978.9	-0.0116 mg/L	0.00005	-0.0116	mg/L	0.00005	0.44%
	limits for Zn	206.200 Recover	y = Not calcula	ated	_		
a 227.546†	143053.5	252.7 mg/L	0.25	252.7	mg/L	0.25	0.10%
QC value within	limits for Ca	227.546 Recover	y = 101.10%		•-		
r 460.733†		0.0018 mg/L	0.00043	0.0018	mg/L	0.00043	24.38%
ll analyte(s) pass	sea QC.						
					======	======================================	======
equence No.: 47			Autosampler Lo	ocation: 8			
ample ID: ICSAB			Date Collected	d: 8/13/20	10 6:20	:07 PM	
nalyst:			Data Type: Or:	iginal			
nitial Sample Wt:			Initial Sample				
ilution:			Sample Prep Vo	ol:			
ean Data: ICSAB	Mean Corrector	i Calib			Commis		
nalyte 371.029 g 328.068†	Intensity	. Conc Unite	Std Dev	Cona	Sample	G+4 Da	ספס
371.029	7740072.1	0 8864 mg/L	0 00288	conc.	Units	acd.nev.	. KSD 0.33%
328.068†	77840.5	0.2137 mg/L	0.00200	0.2137	ma/L	0 00124	0.58%
OC value within	limits for Aq	328.068 Recover	v = 106.86%	0.2157	9/ =	0.00124	0.500
l 308.215†	10715380.5	248.5 mg/L	1.31	248.5	mar/Ti	1 31	0.53%
	limits for Al	308.215 Recovery	v = 99.40%			2.02	0.550
	607.4	0.1102 mg/L	0.00202	0.1102	ma/I	0.00202	1.83%
QC value within		188.979 Recovery				*****	2.000
249.772t	76211.7	-0.0174 mg/L	0.00285	-0.0174	ma/L	0.00285	16.39%
233.527†	187772.1	0.5141 mg/L	0.00245			0.00245	
QC value within	limits for Ba	233.527 Recovery	v = 102.83%			*********	0.100
313.107†	3359871.4	0.5117 mg/L	0.00238	0.5117	ma/L	0.00238	0.47%
QC value within	limits for Be	313.107 Recovery	v = 102.34%				
l 226.502†	383818.5	0.9961 mg/L	0.00467	0.9961	mq/L	0.00467	0.47%
QC value within	limits for Cd	226.502 Recovery	y = 99.61%		_,		
228.616†	66642.8	0.4964 mg/L	0.00306	0.4964	mg/L	0.00306	0.62%
QC value within	limits for Co	228.616 Recovery	y = 99.29%		_		
267.716†	111312.7	0.5081 mg/L	0.00252	0.5081	mg/L	0.00252	0.50%
QC value within	limits for Cr	267.716 Recovery	y = 101.63%				
324.752†	236890.5	$0.5115~\mathrm{mg/L}$	0.00493	0.5115	mg/L	0.00493	0.96%
QC value within	limits for Cu	324.752 Recovery	y = 102.30%				
238.863†	5786282.2		0.298	95.44	mg/L	0.298	0.31%
QC value within	limits for Fe	238.863 Recovery	y = 95.44%				
404.721†	-318.7						59.65%
279.077†		244.5 mg/L		244.5	mg/L	1.01	0.41%
		279.077 Recovery					
257.610†	885671.0	0.5094 mg/L	0.00247	0.5094	mg/L	0.00247	0.48%
	limits for Mn	257.610 Recovery	y = 101.88%		4		
202.031†	-348.8	-0.0002 mg/L	0.00107	-0.0002	mg/L	0.00107	580.55%
231.604†	14/372.3	0.98II mg/L	0.00650	0.9811	mg/L	0.00650	0.66%
	limits for Ni	231.604 Recovery	7 = 98.11%				
330.237†	-809.7	-0.4776 mg/L	0.00207	-0.4776 0.0525	mg/L	0.00207	
220.353†	/80.9	0.0525 mg/L	0.00203	0.0525	mg/r	0.00203	3.87%
		220.353 Recovery		0 - 1 - 1	/-		
OC value within	3714.9	0.6461 mg/L 206.836 Recovery	0.01031	0.6461	wa\r	0.01031	1.60%
196.026†				0.0507	m~ /T	0 00000	F
	218.0	0.0534 mg/L 196.026 Recovery	0.00298	0.0534	ուն/ Ի	0.00298	5.59%
189.927†	TTHITCS TOT 26	n naga we /t	/ = TOP.864	0.0407	ma /7	0 00041	E 000
	~ 30 · Z	0.0481 mg/L	0.00244	0.0481			
	405.4 726 E	-0.0029 mg/L 0.1033 mg/L	0.00014	-0.0029 0.1033	mg/1	0.00014	
337.279†	130.3	100 001   Boson	0.00358 *- 202 224	0.1033	ய <b>ி</b> ∖ ப	0.00358	3.47%
337.279† 190.801†	limite for m		/ = ユレコ。コ᠘セ				
337.279† 190.801† QC value within	limits for Tl	0 2000 w~\1	0 00164	0 5000	mor/Y	0 00101	A 770
337.279† 190.801† QC value within : 292.402†	limits for Tl 132196.6	0.5002 mg/L	0.00164	0.5002	mg/L	0.00164	0.33%
337.279† 190.801† QC value within : 292.402† QC value within :	limits for Tl 132196.6 limits for V 2	0.5002 mg/L 92.402 Recovery	0.00164 = 100.03%				
337.279† 190.801† QC value within : 292.402† QC value within : 206.200†	limits for Tl 132196.6 limits for V 2 307923.6	0.5002 mg/L 92.402 Recovery	0.00164 = 100.03% 0.00543	0.5002			

QC value within limits for Ca 227.546 Recovery = 102.11% 1786.7 0.0020 mg/L Sr 460.733† 0.00020 0.0020 mg/L 0.00020 9.90% All analyte(s) passed QC.

Sequence No.: 48 Sample ID: HLCCV2 Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 12 Date Collected: 8/13/2010 6:24:26 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

							·	
Mean Data: HLCCV2								
	Mean Corrected		Calib			Sample		
<b>Analyte</b> Y 371.029 Ag 328.068†	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7324643.3	0.8388	mg/L	0.00644				0.77%
Ag 328.068†	798845.9	2.147	mg/L	0.0542	2.147	mg/L	0.0542	2.53%
QC value within	limits for Ag	328.068	Recovery =	107.33%		<u>.</u>		
	21076920.5			7.17	488.8	mg/L	7.17	1.47%
	limits for Al					J.		
As 188.979†				0.0458	4.217	ma/L	0.0458	1.09%
QC value within						5, —		
B 249.772†	2499383.0			0.156	10 42	mar/T.	0.156	1.50%
•	limits for B 2				20.12	97 =	0.130	2.500
Ba 233.527†					40 27	mg/L	0.058	0.14%
	limits for Ba				40.27	g/ L	0.030	0.140
Be 313.107†		1 011	ma/t	0.0007	1 011	mg/L	0.0007	0.07%
	limits for Be				1.011	111g/11	0.0007	0.07%
Cd 226.502†	770080.6				2 000	m~ /T	0 0240	1.74%
QC value within	1/0000.0	2.000	11197 II	0.0349	2.006	mg/L	0.0349	1./46
					0.604	/=	0 1001	
Co 228.616†					9.684	mg/L	0.1821	1.88%
QC value within						-		
	2178842.1			0.1641	9.854	mg/L	0.1641	1.67%
QC value within								
Cu 324.752†	2446168.6			0.0731	5.183	mg/L	0.0731	1.41%
QC value within	limits for Cu	324.752 F	<pre>lecovery =</pre>	103.65%				
Fe 238.863†	5950408.0	98.07	mg/L	0.294	98.07	mg/L	0.294	0.30%
QC value within		238.863 F	Recovery =	98.07%				
K 404.721†	20.3						43.34	213.57%
Mg 279.077t	19210970.5	488.6	mg/L	1.00	488.6	mg/L	1.00	0.20%
QC value within	limits for Mg :	279.077 F	lecovery =	97.71%				
Mn 257.610†	17004665.6	9.906	mg/L	0.0172	9.906	mg/L	0.0172	0.17%
QC value within	limits for Mn :	257.610 F	Recovery =	99.06%				
Mo 202.031†				0.040	10.26	mg/L	0.040	0.39%
QC value within						<b>-</b>		* - *
Ni 231.604†		7.802	•	0.1968	7.802	ma/L	0.1968	2.52%
QC value within					7.002	9, _	0.1200	5.520
Na 330.237t	212259.4	116.3	ma/T	0.74	116 3	mq/L	0.74	0.63%
Pb 220.353†	212259.4 269433.7	9 874	mg/L	0.71	9 874	mg/L	0.74 0.0015	0.02%
QC value within	limits for Dh	220 353 E	mg/ =	98 74%	5.074		0.0015	0.020
Sh 206 836+	685 2	0 1139	ma/T.	0 00177	0 1130	mor/T.	0 00177	1.55%
Sb 206.836† Se 196.026†	11806 0	2 044	mg/L	0.00177	2 044	mg/I	0.00177 0.0195	0.96%
QC value within	limits for So	2.011 106 026 T	Mg/ D	100 108	2.044	mg/ n	0.0195	0.50%
Sn 189.927†	3E3 4	0.020	me/t	0.00067	0.0630	ma/T	0.00067	1 050
Ti 337.279†	-253.4 5296472.3	0.0035	mg/I	0.00007	0.0639	mg/L	0.00067	1.05%
00 1	3290472.3	10.30	1119/15	0.013	10.36	mg/ n	0.013	0.13%
QC value within					2 000			
Tl 190.801†		3.827		0.0521	3.827	md\r	0.0521	1.36%
QC value within						-		
	2690515.3		<u>.</u> ,		10.01	mg/L	0.198	1.98%
QC value within			-			•-		
Zn 206.200†	1214156.1			0.0691	3.964	mg/L	0.0691	1.74%
QC value within								
Ca 227.546†	147338.7			1.85	260.6	mg/L	1.85	0.71%
QC value within								
Sr 460.733†		0.0012	mg/L	0.00031	0.0012	mg/L	0.00031	26.01%
All analyte(s) pass	sed QC.							

Sequence No.: 49 Sample ID: HLCCV1 Analyst: Initial Sample Wt:

Autosampler Location: 2 Date Collected: 8/13/2010 6:29:13 PM Data Type: Original Initial Sample Vol:

Dilution:

Sample Prep Vol:

<b></b>	<b>-</b>	<b></b>	<b>-</b>					
Mean Data: HLCCV1								
	Mean Corrected		Calib			Sample		
<b>Analyte</b> Y 371.029	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8316953.5	0.9525		0.00835		-		0.88%
Ag 328.068†	371974.7			0.00277	0.9979	mg/L	0.00277	0.28%
QC value within Al 308.215†	_				20.01	m~ /T	0 149	0.74%
QC value within	863223.7			0.148	20.01	mg/ n	0.148	0.748
As 188.979†	17200.9	2.016		0.0178	2.016	ma/I.	0.0178	0.88%
QC value within					2.010	g/ 11	0.0176	0.000
B 249.772†	1144120.2	4.915	. •	0.0874	4.915	mcz/Ti	0.0874	1.78%
QC value within						5, _	0.00.0	_,,,
Ba 233.527†	7158676.7	19.88		0.063	19.88	mq/L	0.063	0.32%
QC value within	limits for Ba 2	33.527	Recovery =	99.42%		<del>-</del>		
Be 313.107†	3246877.7	0.4943	mg/L	0.00056	0.4943	mg/L	0.00056	0.11%
QC value within	limits for Be 3	13.107 I	Recovery =	98.85%				
Cd 226.502†	383179.8			0.0114	1.001	mg/L	0.0114	1.14%
QC value within						_		
Co 228.616†	664027.7			0.0513	4.967	mg/L	0.0513	1.03%
QC value within								
Cr 267.716†	221510.5			0.0112	1.002	mg/L	0.0112	1.12%
QC value within Cu 324.752†					2 400	/7	0 0050	7 040
QC value within	1176081.4	2.490		0.0259	2.490	шg/г	0.0259	1.04%
Fe 238.863†	609295.9				10.05	mar/T.	0.132	1.31%
QC value within					10.05	mg/ E	0.132	T.2T.
K 404.721†	9528.9	50.005 1	cccvcry -	100.450			21.52	0.23%
Unable to evalua	· · · · · · · · · · · · · · · · · · ·						22.32	0.250
Mg 279.077†	1972232.1	50.16	mg/L	0.561	50.16	ma/L	0.561	1.12%
QC value within						J.		
Mn 257.610†	2542970.0	1.482		0.0142	1.482	mg/L	0.0142	0.96%
QC value within	limits for Mn 2	57.610 F	Recovery =	98.80%				
Mo 202.031†	263448.0			0.1158	4.929	mg/L	0.1158	2.35%
QC value within				98.58%				
Ni 231.604†	601909.2	4.012		0.0234	4.012	mg/L	0.0234	0.58%
QC value within								
Na 330.237†	92392.8	50.64		0.713	50.64	mg/L	0.713	1.41%
QC value within					1 044	/-	0 0724	
Pb 220.353† QC value within	28586.4	1.044		0.0134	1.044	md\r	0.0134	1.28%
Sb 206.836†	56616.7				0 000	m~ /T	0 0541	0 550
QC value within		9.900		0.0541	9.900	mg/ n	0.0541	0.55%
Se 196.026†	5896.5	1.018		0.0013	1.018	ma / T.	0.0013	0.13%
QC value within			•		1.010	11197 D	0.0013	0.134
Sn 189.927t	303436.9	9.988		0.1720	9.988	mc/L	0.1720	1.72%
QC value within						5/ –	0.1.20	,_,
Ti 337.279†	2525206.7	4.942		0.0313	4.942	mq/L	0.0313	0.63%
QC value within	limits for Ti 3	37.279 R	Recovery =	98.84%		5-		
Tl 190.801†	15375.4			0.0158	2.003	mg/L	0.0158	0.79%
QC value within	limits for Tl 1	90.801 R	Recovery =	100.15%				
V 292.402†	1332179.4	4.953		0.0649	4.953	mg/L	0.0649	1.31%
QC value within				99.06%				
Zn 206.200†	609846.2	2.002		0.0216	2.002	mg/L	0.0216	1.08%
QC value within						4		
Ca 227.546†	28782.8	50.35	mg/L	0.145	50.35	mg/L	0.145	0.29%
QC value within								
Sr 460.733†	1311715.2	5.075		0.0397	5.075	mg/L	0.0397	0.78%
All analyte(s) pass	ea ye. one or mo	ore analy	ces were 1	not evaluated.	•			

Sequence No.: 50 Sample ID: CCV Analyst: Initial Sample Wt:

Autosampler Location: 3 Date Collected: 8/13/2010 6:33:40 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Dilution:

Method: AXIAL200-6	010 L Opt4	Pag	re 36		Date:	8/13/2010 6:4	12:05 PM
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8401528.2		0.00093	conc.	<b>01111</b>	DCC1DC11	0.10%
Ag 328.068†	186831.8	0.5012 mg/L	0.00380	0.5012	mg/L	0.00380	0.76%
QC value within	limits for Ag	328.068 Recovery	= 100.24%				
Al 308.215†	427727.4		0.0280	9.916	mg/L	0.0280	0.28%
		308.215 Recovery			_		
As 188.979†	8499.7	0.9963 mg/L	0.00052	0.9963	mg/L	0.00052	0.05%
		188.979 Recovery					
B 249.772†	566005.9	2.431 mg/L	0.0062	2.431	mg/L	0.0062	0.25%
Ba 233.527†		249.772 Recovery =		0 001	/ T	0 0016	
		9.981 mg/L 233.527 Recovery	0.0316	9.981	mg/ r	0.0316	0.32%
Be 313.107†	1614353.2	0.2458 mg/L	0.00038	0.2458	ma/I	0.00038	0.15%
		313.107 Recovery		0.2436	mg/ n	0.00036	0.15%
Cd 226.502†	191328.6	0.5000 mg/L	0.00048	0.5000	mo/Ti	0.00048	0.10%
		226.502 Recovery		******	5, _	0.00010	0.200
Co 228.616†		2.472 mg/L	0.0064	2.472	mg/L	0.0064	0.26%
QC value within	limits for Co	228.616 Recovery	= 98.90%				
Cr 267.716†	110864.9	0.5014 mg/L	0.00158	0.5014	mg/L	0.00158	0.31%
		267.716 Recovery					
Cu 324.752†		1.243 mg/L	0.0055	1.243	mg/L	0.0055	0.44%
		324.752 Recovery			-		
Fe 238.863†		5.023 mg/L 238.863 Recovery	0.0047	5.023	mg/L	0.0047	0.09%
K 404.721†	4116.3	236.863 Recovery	= 100.45%			131.14	3.19%
Unable to evalua						131.14	3.195
Mg 279.077†	994972.4	25.30 mg/L	0.063	25.30	mg/L	0.063	0.25%
-	limits for Ma	279.077 Recovery	= 101.22%	23.50		0.005	0.230
Mn 257.610†	1284073.1	0.7483 mg/L	0.00249	0.7483	mq/L	0.00249	0.33%
QC value within		257.610 Recovery	= 99.78%		٥.		
Mo 202.031†	130367.5	$2.439~{ m mg/L}$	0.0012	2.439	mg/L	0.0012	0.05%
		202.031 Recovery					
Ni 231.604†	303489.7		0.0111	2.023	mg/L	0.0111	0.55%
Na 330.237†	43229.6	231.604 Recovery 23.69 mg/L		22.60	/=	0.004	0 1 40
		330.237 Recovery	0.034	23.69	mg/L	0.034	0.14%
Pb 220.353†	13922.0		0.01263	0.5085	ma/I	0.01263	2.48%
		220.353 Recovery		0.5005	g, 11	0.01203	2.400
Sb 206.836†	28582.7	4.998 mg/L	0.0233	4.998	mg/L	0.0233	0.47%
QC value within	limits for Sb	206.836 Recovery	≈ 99.96%		٥,		
Se 196.026†	2948.9		0.00834	0.5093	mg/L	0.00834	1.64%
		196.026 Recovery	= 101.85%				
Sn 189.927†	152511.4	5.020 mg/L	0.0129	5.020	mg/L	0.0129	0.26%
		189.927 Recovery					
Ti 337.279†	1283437.5	2.512 mg/L 337.279 Recovery :	0.0342	2.512	mg/L	0.0342	1.36%
		<del>.</del>		1 077	ma / T	0 0020	0.20%
		1.017 mg/L 190.801 Recovery :	0.0039 - 101 67%	1.017	ш9/ ь	0.0039	0.38%
V 292.402†	659985.6	2.454 mg/L	0.0008	2.454	ma/Ti	0.0008	0.03%
QC value within		92.402 Recovery =			5,	***************************************	0.050
Zn 206.200†	306822.2	1.007 mg/L	0.0033	1.007	mg/L	0.0033	0.33%
QC value within	limits for Zn	206.200 Recovery :					-
Ca 227.546†	14150.5	24.76 mg/L	0.081	24.76	mg/L	0.081	0.33%
		227.546 Recovery					
Sr 460.733†	650994.6	2.518 mg/L	0.0129	2.518	mg/L	0.0129	0.51%
		460.733 Recovery					
All analyte(s) pass	ed QC. One or	more anaryces were	not evaluated.				
	===============	=======================================		=======	======		=====
Sequence No.: 51	<b></b>		tosampler Loca				<b></b>
Sample ID: CCB		Da	ate Collected:	8/13/201	0 6:38:4	43 PM	
Analyst:			ata Type: Origi				

Analyst: Initial Sample Wt: Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB 
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 8573385.1
 0.9818 mg/L
 0.01502
 1.53%

 136.9
 0.0004 mg/L
 0.00037
 0.0004 mg/L
 0.00037 100.35%
 Mean Corrected Analyte Y 371.029 Ag 328.068† QC value within limits for Ag 328.068 Recovery = Not calculated

QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 2313.107† QC value within 226.502† QC value within 228.616† QC value within 267.716† QC value within 267.716† QC value within 234.752† QC value within 238.863† QC value within 238.863† QC value within 279.077† QC value within 279.077† QC value within 2279.077† QC value within 2279.077† QC value within 2279.071† QC value within 2279.071† QC value within 2279.071† QC value within 2279.071† QC value within 231.604† QC value within 231.604† QC value within 220.353† QC value within 220.353† QC value within 2206.836†	27.5 limits for As	308.215 0.0032 188.979 0.0156 249.772 233.527 0.0001 313.107 0.0001 226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863 0.0010 279.077	Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	= Not calcul	ated 0.0032 ated 0.00156 ted 0.0001 ated 0.0009 ated 0.0094 ated 0.0094 ated 0.0546	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00046 0.00164 0.00032 0.00005 0.00003 0.00006 0.00015	14.15% 10.55% 15.26% 46.74% 54.14% 7.38% 27.54% 15.45%
188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107† QC value within 226.502† QC value within 228.616† QC value within 267.716† QC value within 324.752† QC value within 324.752† QC value within 238.863† QC value within 279.077† QC value within 279.077† QC value within 207.610† QC value within 201.031† QC value within 231.604† QC value within 231.604† QC value within 231.604† QC value within 231.604† QC value within 231.351† QC value within 220.3531† QC value within 220.3531† QC value within 206.8361	27.5 limits for As	0.0032 188.979 0.0156 249.772 R 0.0021 233.527 0.0001 313.107 0.0001 226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863	Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	0.00046 = Not calcul 0.00164 = Not calcula 0.00032 = Not calcul 0.00005 = Not calcul 0.00003 = Not calcul 0.00006 = Not calcul 0.00015 = Not calcul 0.00145 = Not calcul 0.00788	0.0032 ated 0.0156 ted 0.0001 ated 0.0001 ated 0.0009 ated 0.0005 ated 0.0094 ated	mg/L mg/L mg/L mg/L mg/L mg/L	0.00164 0.00032 0.00005 0.00003 0.00006 0.00015	10.55% 15.26% 46.74% 54.14% 7.38% 27.54%
249.772† QC value within 1 233.527† QC value within 1 313.107† QC value within 1 226.502† QC value within 1 228.616† QC value within 1 267.716† QC value within 1 324.752† QC value within 1 238.863† QC value within 1 238.863† QC value within 1 279.077† QC value within 1 257.610† QC value within 1 257.610† QC value within 1 257.610† QC value within 1 231.604† QC value within 1 231.604† QC value within 1 230.353† QC value within 1 220.353† QC value within 1 220.353† QC value within 1 206.836†	3628.2 limits for B 2 763.2 limits for Ba 635.4 limits for Be 22.5 limits for Cd 114.1 limits for Co 121.1 limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 ce QC. 38.8 limits for Mg 1645.6 limits for Mn	0.0156 249.772 R 0.0021 233.527 0.0001 313.107 0.0001 226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863  0.0010 279.077	mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	0.00164 = Not calcula 0.00032 = Not calcul 0.00005 = Not calcul 0.00003 = Not calcul 0.00006 = Not calcul 0.00015 = Not calcul 0.00145 = Not calcul 0.00788	0.0156 ted 0.0021 ated 0.0001 ated 0.0009 ated 0.0005 ated 0.0005 ated 0.0094	mg/L mg/L mg/L mg/L mg/L	0.00032 0.00005 0.00003 0.00006 0.00015	15.26% 46.74% 54.14% 7.38% 27.54%
233.527† QC value within 1 313.107† QC value within 1 226.502† QC value within 1 228.616† QC value within 1 267.716† QC value within 1 324.752† QC value within 1 238.863† QC value within 1 404.721† Unable to evaluat 279.077† QC value within 1 257.610† QC value within 1 202.031† QC value within 1 330.237† QC value within 1 330.237† QC value within 1 220.353† QC value within 1 220.353† QC value within 1 200.836†	763.2 limits for Ba 635.4 limits for Be 22.5 limits for Cd 114.1 limits for Co 121.1 limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 ce QC. 38.8 limits for Mg 1645.6 limits for Mn	0.0021 233.527 0.0001 313.107 0.0001 226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863	mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	0.00032 = Not calcul 0.00005 = Not calcul 0.00003 = Not calcul 0.00006 = Not calcul 0.00015 = Not calcul 0.00145 = Not calcul 0.00788	0.0021 ated 0.0001 ated 0.0009 ated 0.0005 ated 0.0094 ated 0.00546	mg/L mg/L mg/L mg/L	0.00005 0.00003 0.00006 0.00015	46.74% 54.14% 7.38% 27.54% 15.45%
313.107† QC value within 1 226.502† QC value within 1 228.616† QC value within 1 267.716† QC value within 1 324.752† QC value within 1 238.863† QC value within 1 404.721† Unable to evaluat 279.077† QC value within 1 257.610† QC value within 1 201.031† QC value within 1 201.031† QC value within 1 231.604† QC value within 1 230.353† QC value within 1 200.353† QC value within 1 200.353† QC value within 1 200.353† QC value within 1 200.353†	635.4 limits for Be 22.5 limits for Cd 114.1 limits for Co 121.1 limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 ce QC. 38.8 limits for Mg 1645.6 limits for Mn	0.0001 313.107 0.0001 226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863  0.0010 279.077	mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	0.00005 = Not calcul 0.00003 = Not calcul 0.00006 = Not calcul 0.00015 = Not calcul 0.00145 = Not calcul 0.00788	0.0001 ated 0.0001 ated 0.0009 ated 0.0005 ated 0.0094 ated 0.0546	mg/L mg/L mg/L	0.00003 0.00006 0.00015 0.00145	54.14% 7.38% 27.54% 15.45%
QC value within 1 228.616† QC value within 1 267.716† QC value within 1 324.752† QC value within 1 238.863† QC value within 1 404.721† Unable to evaluat 279.077† QC value within 1 257.610† QC value within 1 202.031† QC value within 1 231.604† QC value within 1 330.237† QC value within 1 320.353† QC value within 1 200.353† QC value within 1 200.353† QC value within 1 200.353†	limits for Cd 114.1 limits for Co 121.1 limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 limits for Fe 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.	226.502 0.0009 228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863	Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery mg/L Recovery	= Not calcul 0.00006 = Not calcul 0.00015 = Not calcul 0.00145 = Not calcul 0.00788	ated 0.0009 ated 0.0005 ated 0.0094 ated 0.0546	mg/L mg/L	0.00006 0.00015 0.00145	7.38% 27.54% 15.45%
QC value within 1267.716† QC value within 1324.752† QC value within 1238.863† QC value within 1404.721† Unable to evaluat 279.077† QC value within 1257.610† QC value within 1202.031† QC value within 1231.604† QC value within 1330.237† QC value within 1220.353† QC value within 1206.836†	limits for Co 121.1 limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 te QC. 38.8 limits for Mg 1645.6	228.616 0.0005 267.716 0.0094 324.752 0.0546 238.863 0.0010 279.077	Recovery mg/L Recovery mg/L Recovery mg/L Recovery	= Not calcul- 0.00015 = Not calcul- 0.00145 = Not calcul- 0.00788	ated 0.0005 ated 0.0094 ated 0.0546	mg/L	0.00015 0.00145	27.54% 15.45%
QC value within 1324.752† QC value within 1238.863† QC value within 1404.721† Unable to evaluat 279.077† QC value within 1257.610† QC value within 1202.031† QC value within 1231.604† QC value within 1330.237† QC value within 1320.353† QC value within 1220.353† QC value within 1206.836†	limits for Cr 4420.3 limits for Cu 3306.9 limits for Fe -20.1 ce QC. 38.8 limits for Mg 1645.6 limits for Mn	267.716 0.0094 324.752 0.0546 238.863 0.0010 279.077	Recovery mg/L Recovery mg/L Recovery	= Not calculation 0.00145 = Not calculation 0.00788	ated 0.0094 ated 0.0546	mg/L	0.00145	15.45%
QC value within 1 238.863f QC value within 1 404.721f Unable to evaluat 279.077f QC value within 1 202.031f QC value within 1 231.604f QC value within 1 330.237f QC value within 1 220.353f QC value within 1 200.853f QC value within 1 206.836f	limits for Cu 3306.9 limits for Fe -20.1 ce QC. 38.8 limits for Mg 1645.6 limits for Mn	324.752 0.0546 238.863 0.0010 279.077	Recovery mg/L Recovery	= Not calculate 0.00788	ated 0.0546			
QC value within 1404.721† Unable to evaluat 279.077† QC value within 1257.610† QC value within 1202.031† QC value within 1231.604† QC value within 1330.237† QC value within 1220.353† QC value within 1200.353† QC value within 1206.836†	limits for Fe -20.1 DE QC. 38.8 Limits for Mg 1645.6 Limits for Mn	0.0010 279.077	Recovery	= Not calcula	ated	97 =	0.00788	14 44\$
279.077† QC value within 1257.610† QC value within 1202.031† QC value within 1231.604† QC value within 1330.237† QC value within 1220.353† QC value within 1206.836†	38.8 Limits for Mg 1645.6 Limits for Mn	279.077	ma/1.					59.74%
257.610† QC value within 1 202.031† QC value within 1 231.604† QC value within 1 330.237† QC value within 1 220.353† QC value within 1 206.836†	limits for Mg 1645.6 Limits for Mn	279.077	. m≥/ □	0.00469	0.0010	mg/L		
202.031† QC value within 1 231.604† QC value within 1 330.237† QC value within 1 220.353† QC value within 1 206.836†	Limits for Mn	0.0010	Recovery mq/L	= Not calcula 0.00002	ated 0.0010			
231.604† QC value within 1 330.237† QC value within 1 220.353† QC value within 1 206.836†		0.0022	mq/L	0.00058	0.0022	mg/L	0.00058	26.96%
330.237† QC value within 1 220.353† QC value within 1 206.836†	139.7	0.0009	mg/L	0.00007	0.0009	mg/L	0.00007	7.69%
220.353† QC value within 1 206.836†	-210.9	-0.1155	mg/L	0.07769	-0.1155	mg/L	0.07769	67.29%
206.836†	22.8 imits for Pb	0.0008	mg/L Recovery	0.00028 = Not calcula	0.0008	mg/L	0.00028	34.08%
QC value within 1	10.9 imits for Sb	0.0019 206.836	mg/L Recovery	0.00014 = Not calcula	0.0019 ated	mg/L	0.00014	7.07%
QC value within 1	-1.4 imits for Se	196.026	Recovery	= Not calcula	ated	_	0.00075	322.86%
QC value within 1	563.1 imits for Sn	189.927	Recovery	= Not calcula	ated	_		
337.279† QC value within 1 190.801†	16.1 imits for Ti	337.279	Recovery	= Not calcula	ated	-		
QC value within 1	imits for Tl 89.5	190.801	Recovery	= Not calcula	ated	_		
QC value within 1 206.200†	imits for V 2	92.402 Re	ecovery =	Not calculat 0.00002	ced	_	0.00004	
QC value within 1 227.546†	imits for Zn -41.5	206.200 1 -0.0690	Recovery mg/L	= Not calcula 0.06145	eted -0.0690			
QC value within 1 460.733;	56.2	227.546 I 0.0002	Recovery mg/L	= Not calculation 0.00032	ted 0.0002	-	0.00032	
QC value within l L analyte(s) passe	imits for Sr od QC. One or i	460.733 I more analy	Recovery ytes were	= Not calcula not evaluate	uted ed.			
uence No.: 52	=========	=======					:============	:======
quence No.: 32 nple ID: PBW-11709 alyst:	7		ם	utosampler Lo Date Collected Data Type: Ori	1: 8/13/201		22 PM	
itial Sample Wt: Lution:			I S	nitial Sample Sample Prep Vo	Vol: 01: 50 mL			
n Data: PBW-11709	7							
M alyte	ean Corrected Intensity		Calib Units	Std.Dev.		Sample	Std.Dev.	RSD
371.029	8568780.1	0.9813		0.01316	conc.	OHT CO	Pro.Dev.	1.34%
328.068†	212.1	0.0006		0.00005				9.55%
308.215†	153.1		mg/L	0.00290				81.61%
188.979†	2.6		mg/L	0.00094				289.49%
249.772†	1880.4	0.0080						

0.00001

0.00004

254.4

388.6

0.0080 mg/L 0.0007 mg/L 0.0001 mg/L

B 249.772† Ba 233.527†

Be 313.107t

12.11%

0.95% 67.23%

Method: AXIA	L200-6010 L Opt4	Page	38	Date: 8/13/2010 6:57:50 PM
Cd 226.502t	-6.0	0.0000 mg/L	0.00003	124.03%
Co 228.616†	89.9	0.0007 mg/L	0.00017	25.46%
Cr 267.716†	195.2	0.0009 mg/L	0.00004	4.46%
Cu 324.752†	1983.5	0.0042 mg/L	0.00047	11.16%
Fe 238.863†	3592.0	0.0593 mg/L	0.00770	12.98%
K 404.721†	35.6	<b>-</b>		117.49 329.90%
Mg 279.077†	-127.5	-0.0033 mg/L	0.00603	183.92%
Mn 257.610†	1357.9	0.0008 mg/L	0.00002	2.83%
Mo 202.031†	48.4	0.0009 mg/L	0.00002	1.90%
Ni 231.604†	109.7	0.0007 mg/L	0.00004	4.88%
Na 330.237†	14.7	0.0083 mg/L	0.07627	922.90%
Pb 220.353†	29.8	0.0011 mg/L	0.00008	7.21%
Sb 206.836†	5.8	0.0010 mg/L	0.00072	70.40%
Se 196.026†	-0.8	-0.0001 mg/L	0.00249	>999.9%
Sn 189.927†	341.0	0.0112 mg/L	0.00146	12.98%
Ti 337.279†	-37.4	-0.0001 mg/L	0.00010	134.39%
Tl 190.801†	6.7	0.0009 mg/L	0.00029	33.30%
V 292.402†	76.5	0.0003 mg/L	0.00014	49.82%
Zn 206.200†	824.3	0.0027 mg/L	0.00000	0.04%
Ca 227.546†	-31.1	-0.0507 mg/L	0.01240	24.47%
Sr 460.733t	-123.2	-0.0005 mg/L	0.00007	14.24%
Sample conc.	not calculated. Sample	Prep. Vol. AND In	itial Vol.	required OR sample units incorrect.

Sequence No.: 53 Sample ID: LCSW-117097 Analyst: Dilution:

Initial Sample Wt:

Autosampler Location: 65 Date Collected: 8/13/2010 6:50:04 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: LCSW	7-117097							
	Mean Corrected		Calib			Sample		
Analyte .	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8819316.4	1.010	mg/L	0.0072				0.71%
Ag 328.068†	18036.7	0.0484	mg/L	0.00056				1.17%
Al 308.215†	82219.9	1.907	mg/L	0.0195				1.02%
As 188.979†	336.1	0.0397	mg/L	0.00092				2.31%
B 249.772†	206928.0	0.8926	mg/L	0.01745				1.95%
Ba 233.527†	678073.4	1.883	mg/L	0.0131				0.70%
Be 313.107†	299074.1	0.0455	mg/L	0.00036				0.78%
Cd 226.502†	18197.4	0.0475	mg/L	0.00010				0.20%
Co 228.616†	65152.6	0.4874	mg/L	0.00302				0.62%
Cr 267.716†	42202.6	0.1908	mg/L	0.00138				0.72%
Cu 324.752†	117617.6	0.2491	mg/L	0.00199				0.80%
Fe 238.863†	60455.8	0.9975	mg/L	0.01523				1.53%
K 404.721†	3015.1						41.11	1.36%
Mg 279.077†	76759.2	1.952	mg/L	0.0176				0.90%
Mn 257.610†	821946.5	0.4795	mg/L	0.00350				0.73%
Mo 202.031†	25418.6	0.4756	mg/L	0.00777				1.63%
Ni 231.604†	64801.0	0.4319	mg/L	0.00255				0.59%
Na 330.237†	32532.2	17.84	mg/L	0.221				1.24%
Pb 220.353†	13409.4	0.4890	mg/L	0.00106				0.22%
Sb 206.836†	2524.9	0.4415	mg/L	0.00429				0.97%
Se 196.026†	5453.9	0.9407	mg/L	0.00576				0.61%
Sn 189.927†	156972.8	5.163	mg/L	0.0715				1.38%
Ti 337.279†	246556.6	0.4826	mg/L	0.00074				0.15%
Tl 190.801†	14309.4	1.863	mg/L	0.0103				0.55%
V 292.402†	123817.4	0.4604		0.00507				1.10%
Zn 206.200†	152338.6	0.5006		0.00511				1.02%
Ca 227.546†	1051.2	1.873		0.0295				1.57%
Sr 460.733†	492200.2	1.904		0.0266				1.40%
Sample conc. no	t calculated. Sample	Prep. V	ol. AND	Initial Vol.	required (	R sample	units incom	rect.

Sequence No.: 54 Sample ID: R1004262-001 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 66 Date Collected: 8/13/2010 6:55:49 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R	1004262-001							
	Mean Corr	ected	Calib			Sample		
Analyte	Intens	ity Conc.	Units	Std.Dev.	Conc.	Units	Std.D	ev. RSD
Y 371.029	7374436	.1 0.8445	mg/L	0.00280				0.33%
Ag 328.068†	64	.2 0.0006	mg/L	0.00021				31.70%
Al 308.215†	23332	.3 0.5258	mg/L	0.00521				0.99%
As 188.979†	360	.3 0.0476	mg/L	0.00078				1.65%
B 249.772†	966340	.0 4.138	mg/L	0.0303				0.73%
Ba 233.527†	133698	.0 0.3699	mg/L	0.00192				0.52%
Be 313.107†	-1469	.8 -0.0002	mg/L	0.00005				30.93%
Cd 226.502†	283	.9 -0.0002	mg/L	0.00010				43.54%
Co 228.616†	31988	.7 0.2390	mg/L	0.00139				0.58%
Cr 267.716†	9933			0.00011				0.23%
Cu 324.752†	99605			0.00059				0.28%
Fe 238.863†	718951	.0 11.85	mg/L	0.102				0.86%
K 404.721†	97968	. 0					466.	27 0.48%
Mg 279.077†	2810083			0.449				0.63%
Mn 257.610†	2058209			0.0046				0.39%
Mo 202.031†	7622			0.00139				0.97%
Ni 231.604†	7116	.8 0.0471	mg/L	0.00109				2.32%
Na 330.237†	1619729			1.26				0.14%
Pb 220.353†	72.	.6 0.0024	mg/L	0.00236				98.41%
Sb 206.836†	8.			0.00347				318.13%
Se 196.026†	19.			0.00058				10.44%
Sn 189.927†	414.			0.00143				5.52%
Ti 337.279†	19569.			0.00096				2.58%
Tl 190.801†	-47.			0.00626				126.51%
V 292.402†	3138.			0.00017				1.33%
Zn 206.200†	202959.			0.00357				0.54%
Ca 227.546†	49849.			0.069				0.08%
Sr 460.733†	218415.		mg/L	0.00062				0.07%
Sample conc.	not calculated.	Sample Prep. V	Vol. AND	Initial Vol.	required O	R sample	units in	ncorrect.

Sequence No.: 55

Sample ID: R1004262-003

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 67

Date Collected: 8/13/2010 7:00:09 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7398639.4	0.8473	mg/L	0.00356				0.42%
Ag 328.068†	224.4	0.0006	mg/L	0.00038				67.66%
Al 308.215†	3522.9	0.0716	mg/L	0.00281				3.92%
As 188.979†	416.7	0.0501		0.00064				1.29%
B 249.772†	1012914.8	4.371	mg/L	0.0415				0.95%
Ba 233.527†	24050.4	0.0661	mg/L	0.00012				0.18%
Be 313.107†	-1869.9	-0.0003	mg/L	0.00003				13.80%
Cd 226.502†	110.4	0.0001	mg/L	0.00001				6.02%
Co 228.616†	17311.3	0.1294	mg/L	0.00004				0.03%
Cr 267.716†	6336.0	0.0292	mg/L	0.00009				0.30%
Cu 324.752†	44994.5	0.0943	mg/L	0.00022				0.24%
Fe 238.863†	137297.0	2.252	mg/L	0.0093				0.41%
K 404.721†	110675.4						0.94	0.00%
Mg 279.077†	2568447.6	65.33		0.259				0.40%
Mn 257.610†	263550.1	0.1517	mg/L	0.00020				0.13%
Mo 202.031†	7310.5	0.1368	mg/L	0.00266				1.95%
Ni 231.604†	7269.3	0.0482	mg/L	0.00085				1.77%
Na 330.237†	2881090.7	1580	mg/L	3.0				0.19%
Pb 220.353†	24.7	0.0010	mg/L	0.00045				47.17%
Sb 206.836†	12.8	0.0020		0.00152				74.76%
Se 196.026†	16.0	0.0026	mg/L	0.00684				260.94%
Sn 189.927†	799.9	0.0340	mg/L	0.00045				1.33%
Ti 337.279†	4417.9	0.0078	mg/L	0.00018				2.34%
Tl 190.801†	-17.0	-0.0015	mg/L	0.00343				231.63%
V 292.402†	2920.3	0.0111		0.00023				2.09%
Zn 206.200†	33915.9	0.1088	mg/L	0.00037				0.34%
Ca 227.546†	26279.9	45.59		0.267				0.59%
Sr 460.733†	81509.4	0.3144	mg/L	0.00090				0.29%

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

_______

Sequence No.: 56

Sample ID: R1004263-001

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 68

Date Collected: 8/13/2010 7:04:24 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R	1004263-001				
	Mean Correcte	d Ca	lib	Sample	
Analyte	Intensity	Conc. Un	its Std.Dev	. Conc. Units	Std.Dev. RSD
Y 371.029	8239469.1	0.9436 mg	/L 0.00128		0.14%
Ag 328.068†	-459.8	0.0005 mg	/L 0.00040		75.71%
Al 308.215†	1062566.0	24.64 mg	/L 0.051		0.21%
As 188.979†	-126.4	-0.0026 mg	/L 0.00169		63.94%
B 249.772†	35330.5	0.0592 mg			1.51%
Ba 233.527†	2349.5	0.0047 mg	/L 0.00026		5.55%
Be 313.107†	-429.7	0.0000 mg	/L 0.00002		87.42%
Cd 226.502†	710.5	-0.0006 mg	/L 0.00004		6.19%
Co 228.616†	812.2	0.0054 mg	/L 0.00039		7.34%
Cr 267.716†	2262.9	0.0113 mg	/L 0.00025		2.19%
Cu 324.752†	1997932.1	4.234 mg	/L 0.0069		0.16%
Fe 238.863†	1795724.5	29.65 mg	/L 0.076		0.26%
K 404.721†	2806.7		•		4.11 0.15%
Mg 279.077t	50436.5	1.265 mg	/L 0.0039		0.31%
Mn 257.610†	8165.0	0.0047 mg	/L 0.00004		0.82%
Mo 202.031t	366.0	0.0083 mg	/L 0.00035		4.19%
Ni 231.604†	889.7	0.0058 mg	/L 0.00004		0.75%
Na 330.237†	53195.3	29.20 mg	/L 0.050		0.17%
Pb 220.353†	203.2	0.0087 mg	/L 0.00164		18.92%
Sb 206.836†	-14.0	-0.0029 mg	/L 0.00152		51.85%
Se 196.026†	-35.6	0.0010 mg	/L 0.00432		416.65%
Sn 189.927†	6.5	0.0087 mg	/L 0.00045		5.19%
Ti 337.279†	11823.3	0.0228 mg	/L 0.00057		2.49%
Tl 190.801†	-0.3	0.0014 mg	/L 0.00501		350.37%
V 292.402†	-561.4	0.0006 mg	/L 0.00041		64.05%
Zn 206.200†	21064.8	0.0681 mg	/L 0.00027		0.40%
Ca 227.546†	31847.9	56.69 mg	/L 0.443		0.78%
Sr 460.733†	14663.9	0.0554 mg			0.60%
Sample conc.	not calculated. Samp	ole Prep. Vol	. AND Initial Vol	. required OR sampl	e units incorrect.

Sequence No.: 57

Sample ID: R1004263-002

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 69

Date Collected: 8/13/2010 7:08:37 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R10042	63-002							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8236051.3	0.9432	mg/L	0.00418				0.44%
Ag 328.068†	418.5	0.0035	mg/L	0.00028				7.97%
Al 308.215†	1780747.1	41.30	mg/L	0.064				0.16%
As 188.979†	-139.6	-0.0005	mg/L	0.00716			>	999.9%
B 249.772†	40191.6	0.0524	mg/L	0.00298				5.70%
Ba 233.527†	2874.4	0.0058	mg/L	0.00012				2.11%
Be 313.107;	-672.8	-0.0001	mg/L	0.00003				41.59%
Cd 226.502t	952.3	-0.0007	mg/L	0.00014				19.28%
Co 228.616†	240.9	0.0009		0.00059				63.88%
Cr 267.716†	2817.5	0.0141		0.00014				0.98%
Cyc 324.752t	3694643.9	7.828	mg/L	0.0043				0.06%
<b>f</b> e 238.863†	2364741.1	39.04	mg/L	0.094				0.24%
K 404.721†	72.1						307.37 4	26.29%
Mg 279.077†	46449.0	1.158	mg/L	0.0004				0.03%
Mn 257.610†	10808.8	0.0062	mg/L	0.00001				0.12%
Mo 202.031†	383.8	0.0092	mg/L	0.00047				5.13%
Ni 231.604†	689.3	0.0044	mg/L	0.00038				8.55%
Na 330.237‡	58022.4	31.87	mg/L	0.002				0.01%

Method: AXIAL200-6010 L Opt4 Page 41 Date: 8/13/2010 7:18:54 PM Pb 220.353† 337.8 0.0148 mg/L 0.00066 4.45% Sb 206.836† -0.9 -0.0008 mg/L 0.00147 173.25% Se 196.026† 0.0073 mg/L -12.7 0.00597 81.76% Sn 189.927† -30.2 0.0083 mg/L 0.00129 15.51% 0.0208 mg/L Ti 337.279† 10792.5 0.00025 1.20% Tl 190.801† -9.9 0.0006 mg/L 0.00401 640.64% V 292.402† -685.2 0.0011 mg/L 0.00021 20.05% 33071.0 Zn 206.200t 0.1073 mg/L 0.00096 0.89% Ca 227.546† 24594.1 44.65 mg/L 0.558 1.25% 12159.2 0.0461 mg/L Sr 460.733t 0.00027 0.58% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 58 Autosampler Location: 70 Sample ID: R1004263-003 Date Collected: 8/13/2010 7:12:50 PM Analyst: Data Type: Original Initial Sample Vol: Initial Sample Wt: Dilution: Sample Prep Vol: 50 mL Mean Data: R1004263-003 Mean Corrected Calib Sample Conc. Units Analyte Intensity Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8363057.5 0.9578 mg/L 0.00107 0.11% Ag 328.068† 0.0016 mg/L 85.4 0.00060 36.47% Al 308.215† 1163881.2 26.99 mg/L 0.051 0.19% As 188.979† -0.0008 mg/L -93.1 0.00712 845.23% B 249.772† 25895.4 0.0323 mg/L 0.00095 2.95% 0.0039 mg/L Ba 233.527† 2007.6 0.00015 3.84% Be 313.107† -220.9 0.0000 mg/L 0.00001 155.63% Cd 226.5021 600.0 -0.0004 mg/L 0.00003 6.20% Co 228.616† 163.4 0.0006 mg/L 0.00068 108.16% Cr 267.716† Cy 324.752† 0.0097 mg/L 5.044 mg/L 1954.0 0.00015 1.58% 2380894.9 0.0095 0.19% Fe 238.863† 1484562.1 24.51 mg/L 0.092 0.38% K 404.721† 2424.4 138.72 5.72% Mg 279.077† 32028.8 0.8000 mg/L 0.00299 0.37% 0.00003 Mn 257.610t 7622.0 0.0044 mg/L 0.59% 295.2 0.0068 mg/L Mo 202.031† 0.00063 9.29% Ni 231.604t 610.6 0.0039~mg/L0.00033 8.45% Na 330.237† 35988.1 19.74 mg/L 0.029 0.15% Pb 220.353† 0.0106 mg/L 238.3 0.00123 11.62% Sb 206.836† 0.9 -0.0003 mg/L 0.00007 22.29% Se 196.026† -9.5 0.0039 mg/L 0.00042 10.67% Sn 189.927† -83.2 0.0054 mg/L 0.00007 1.35% 0.0185 mg/L Ti 337.279† 9593.0 0.00025 1.36% Tl 190.801† -3.7 0.0008 mg/L 0.00065 85.38% 0.0005 mg/L V 292.402† -472.6 0.00004 8.36% Zn 206.200† 21447.7 0.0694 mg/L 0.00030 0.43% 60.74 mg/L Ca 227.546† 34344.2 0.189 0.31% Sr 460.7331 15531.2 0.0588 mg/L 0.00001 Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 59 Autosampler Location: 71 Date Collected: 8/13/2010 7:17:01 PM Sample ID: R1004263-004 Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL Mean Data: R1004263-004

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8435994.9	0.9661	mg/L	0.00524			1	0.54%
Ag 328.068†	-307.6	0.0006	mq/L	0.00151			24	0.84%
Al 308.215†	946563.5	21.95	mg/L	0.065			(	0.30%
As 188.979†	-113.1	-0.0033	mg/L	0.00464			140	0.75%
B 249.772†	25108.2	0.0321	mg/L	0.00541			14	6.84%
Ba 233.527†	2060.2	0.0042	mg/L	0.00007			:	1.54%
Be 313.107†	-193.1	0.0000	mg/L	0.00003			>9	99.9%
Cd 226.502†	565.5	-0.0005	mg/L	0.00024			4:	5.97%
			~					

Method: AXIAL200	-6010 L Opt4		Pag	e 42	Date: 8	3/13/2010 7:27:20 PM
Co 228.616†	215.5	0.0010	mq/L	0.00003		2.72%
Cr/267.716†	1809.6			0.00045		4.99%
9∕1 324.752†	2373173.3	5.028	mg/L W	0.0064		0.13%
/Fe 238.863†	1473889.5	24.33	mq/L	0.148		0.61%
K 404.721†	2442.4					50.86 2.08%
Mg 279.077†	31671.8	0.7909	mg/L	0.00237		0.30%
Mn 257.610†	9108.2	0.0053	mg/L	0.00001		0.17%
Mo 202.031†	230.0	0.0055	mg/L	0.00041		7.46%
Ni 231.604†	570.1	0.0037	mg/L	0.00028		7.71%
Na 330.237†	35870.7	19.70	mg/L	0.012		0.06%
Pb 220.353†	253.2	0.0104	mg/L	0.00103		9.87%
Sb 206.836†	-7.9	-0.0018	mg/L	0.00160		89.68%
Se 196.026†	-13.3	0.0036	mg/L	0.00001		0.35%
Sn 189.927†	-1.2	0.0066	mg/L	0.00134		20.44%
Ti 337.279†	9967.3	0.0193	mg/L	0.00109		5.66%
Tl 190.801†	-22.3	-0.0017	mg/L	0.00186		109.22%
V 292.402†	-488.0	0.0004	mg/L	0.00021		48.74%
Zn 206.200†	21882.2	0.0710	mg/L	0.00013		0.18%
Ca 227.546†	22853.5	40.84	mg/L	0.174		0.43%
Sr 460.733†	13201.3	0.0502	mg/L	0.00009		0.18%
Sample conc. not	calculated. Sam	nple Prep. V	ol. AND	Initial Vol.	required OR sample	units incorrect.

Sequence No.: 60 Sample ID: R1004263-005 Analyst: Initial Sample Wt:

Mean Data: R1004263-005

Dilution:

Autosampler Location: 72 Date Collected: 8/13/2010 7:21:14 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

	mean Data: KIUU4:	263-005								
		Mean Corrected		Calib			Sample			
2	Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.1	Dev.	RSD
	Y 371.029	8322662.4	0.9531	mg/L	0.00496					0.52%
	Ag 328.068†	136.3	0.0018		0.00052				;	28.30%
į	Al 308.215†	1106906.1	25.67	mg/L	0.080					0.31%
ž	As 188.979†	-87.0	0.0000		0.00301				>!	999.9%
1	B 249.772†	25515.1	0.0311	mg/L	0.00170					5.46%
1	Ba 233.527†	2001.8	0.0040	mg/L	0.00003					0.70%
]	Be 313.107†	-545.2	0.0000	mg/L	0.00001				7	19.13%
	Cd 226.502†	597.2	-0.0005		0.00018				7	37.27%
(	Co 228.616†	257.6	0.0013	mg/L	0.00014				J	10.54%
(	Cr/267.716†	1804.4	0.0090	mg/L	0.00019					2.15%
(	Cy/ 324.752†	2402057.5	5.089	mg/L W	0.0216					0.42%
1	e 238.863†	1504375.6	24.83	mg/L	0.117					0.47%
1	K 404.721t	2546.0						263	.22 J	10.34%
ľ	/lg 279.077†	31248.0	0.7799	mg/L	0.00123					0.16%
P	In 257.610†	8733.4	0.0051	mg/L	0.00000					0.10%
N	40 202.031†	239.6	0.0057	mg/L	0.00020					3.47%
1	Vi 231.604†	633.2	0.0041	mg/L	0.00005					1.35%
1	Na 330.237†	36739.0	20.17		0.108					0.54%
I	?b 220.353†	250.5	0.0108	mg/L	0.00191				1	L7.69%
٤	3b 206.836†	7.1	0.0008	mg/L	0.00223				28	32.64%
٤	Se 196.026†	-18.7	0.0026		0.00494				18	39.42%
٤	Sn 189.927†	-28.8	0.0064	mg/L	0.00097				1	L5.26%
1	ri 337.279†	9774.5	0.0189	mg/L	0.00035					1.86%
7	rl 190.801†	-6.1	0.0005	mg/L	0.00114				25	51.03%
7	7 292.402†	-463.0	0.0006	mg/L	0.00026				4	16.58%
2	In 206.200†	23591.1	0.0765	mg/L	0.00018					0.23%
	Ca 227.546†	27635.0	49.15	mg/L	0.110					0.22%
	3r 460.733†	14329.7	0.0544		0.00042					0.78%
5	Sample conc. not	calculated. Sample	Prep. V	701. AND	Initial Vol.	required C	R sample	units i	ncorr	ect.

Sequence No.: 61 Sample ID: R1004264-001 Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 73 Date Collected: 8/13/2010 7:25:26 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004264-001

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8278283.4	0.9481	mg/L	0.01903				2.01%
Ag 328.068†	13743.4	0.0367	mg/L	0.00096				2.61%
Al 308.215t	6915.0	0.1525	mg/L	0.00309.				2.02%
As 188.979†	78.9	0.0096	mg/L	0.00073				7.58%
B 249.772†	32432.1	0.1329	mg/L	0.00131				0.98%
Ba 233.527†	28035.6	0.0774	mg/L	0.00207				2.68%
Be 313.107†	-746.6	-0.0001	mg/L	0.00005				57.09%
Cd 226.502†	-63.0	-0.0002	mg/L	0.00004				27.13%
Co 228.616†	22.5	0.0001	mg/L	0.00051				507.06%
Cr 267.716†	2015.7	0.0092		0.00028				3.01%
Cu 324.752†	13979.5	0.0291	mg/L	0.00001				0.02%
Fe 238.863†	15824.9	0.2539	mg/L	0.01937				7.63%
K 404.721†	1940.9						174.54	8.99%
Mg 279.077†	465938.8	11.85		0.133				1.12%
Mn 257.610†	35748.8	0.0205	mg/L	0.00056				2.71%
Mo 202.031†	535.8	0.0100		0.00076				7.62%
Ni 231.604†	1102.8	0.0072	mg/L	0.00003				0.44%
Na 330.237†	445726.9	244.3	mg/L	4.86				1.99%
Pb 220.353†	281.0	0.0107		0.00052				4.84%
Sb 206.836†	90.3	0.0157	mg/L	0.00262				16.69%
Se 196.026†	14.3	0.0018		0.00451				246.08%
Sn 189.927†	-63.1	0.0029	mg/L	0.00012				4.00%
Ti 337.279†	682.9	0.0010	_,	0.00006				6.25%
Tl 190.801†	12.1	0.0018		0.00282				159.24%
V 292.402†	318.1	0.0012		0.00019				15.77%
Zn 206.200†	13722.4	0.0443		0.00157				3.55%
Ca 227.546t	35355.6	61.19		1.367				2.23%
Sr 460.733†	70307.5	0.2707		0.00544	*			2.01%
Sample conc. r	ot calculated. Sample	Prep. V	Ol. AND	Initial Vol.	required C	R sample	units inco	rrect.

Sequence No.: 62 Sample ID: CCV Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 8/13/2010 7:29:39 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV							
	Mean Correcte	d Calil	<b>)</b>		$\mathtt{Sample}$		
Analyte Y 371.029	Intensity	Conc. Unit:	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8504770.5	0.9740 mg/L	0.00455				0.47%
Ag 328.068†	186055.0	0.4991 mg/L	0.00780	0.4991	mg/L	0.00780	1.56%
QC value within	limits for Ag	328.068 Recove	ery = 99.83%				
Al 308.215†	426223.8	9.881 mg/L	0.0727	9.881	mg/L	0.0727	0.74%
QC value within	limits for Al	308.215 Recove	ery = 98.81%				
As 188.979†	8514.3	0.9980 mg/L	0.00474	0.9980	mg/L	0.00474	0.48%
QC value within	limits for As	188.979 Recove	ery = 99.80%				
B 249.772†				2.377	mg/L	0.0012	0.05%
QC value within							
Ba 233.527†				9.948	mg/L	0.0337	0.34%
QC value within							
Be 313.107†				0.2427	mg/L	0.00170	0.70%
QC value within	limits for Be	313.107 Recove	ery = 97.10%				
Cd 226.502†				0.4975	mg/L	0.00144	0.29%
QC value within	limits for Cd	226.502 Recove	ery = 99.51%				
Co 228.616†	328701.9	$2.459~\mathrm{mg/L}$	0.0149	2.459	mg/L	0.0149	0.60%
QC value within							
Cr 267.716†				0.4963	mg/L	0.00086	0.17%
QC value within	limits for Cr	267.716 Recove	xy = 99.27				
Cu 324.752†	573995.0	1.215 mg/L	0.0065	1.215	mg/L	0.0065	0.53%
QC value within	limits for Cu	324.752 Recove	ery = 97.23%				
Fe 238.863†				4.985	mg/L	0.0287	0.58%
QC value within		238.863 Recove	ry = 99.71%				
K 404.721†						159.37	3.26%
Unable to evalu	ate QC.						
Mg 279.077†	991473.3	25.21 mg/L	0.135	25.21	mg/L	0.135	0.54%
QC value within	limits for Mg	279.077 Recove	ry = 100.86%				
Mn 257.610†				0.7401	mg/L	0.00511	0.69%
QC value within	limits for Mn	257.610 Recove	xy = 98.68%				

Method: Al	IIAL200-6010 L Opt4	Page 44	Date: 8/13/2010 7:3		37:26 PM	
		2.404 mg/L 0.0139 o 202.031 Recovery = 96.18%	2.404	mg/L	0.0139	0.58%
Ni 231.604	1 303443.2	2.023 mg/L 0.0258	2.023	mg/L	0.0258	1.27%
Na 330.237	't 43785.5	i 231.604 Recovery = 101.13% 24.00 mg/L 0.069	24.00	mg/L	0.069	0.29%
		a 330.237 Recovery = 95.99% 0.5065 mg/L 0.00627	0.5065	mg/L	0.00627	1.24%
		b 220.353 Recovery = 101.30% 4.976 mg/L 0.0723	4.976	mq/L	0.0723	1.45%
QC valu	e within limits for S	b 206.836 Recovery = 99.51% 0.5058 mg/L 0.00160	0.5058			0.32%
QC valu	e within limits for S	e 196.026 Recovery = 101.16% 5.048 mg/L 0.0029			0.0029	0.06%
QC valu	e within limits for S	n 189.927 Recovery = 100.97% 2.512 mg/L 0.0510		mg/L		
QC valu	e within limits for T	i 337.279 Recovery = 100.49% 1.002 mg/L 0.0046		mg/L		0.46%
QC valu	e within limits for T	1 190.801 Recovery = 100.17% 2.433 mg/L 0.0140		mg/L		0.58%
QC valu	e within limits for V	292.402 Recovery = 97.31%		-		
QC valu	e within limits for Z	1.003 mg/L 0.0053 n 206.200 Recovery = 100.33%		mg/L		0.53%
QC valu	e within limits for C	24.69 mg/L 0.076 a 227.546 Recovery = 98.76%			0.076	0.31%
QC valu	e within limits for S	2.552 mg/L 0.0276 r 460.733 Recovery = 102.08% r more analytes were not evaluated.		mg/L	0.0276	1.08%

Sequence No.: 63
Sample ID: CCB
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 1
Date Collected: 8/13/2010 7:34:02 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: CCB							
	Mean Correcte	d Calib Conc. Units 1.004 mg/L 0.0004 mg/L			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8769955.4	1.004 mg/L	0.0032				0.32%
Ag 328.068†	144.5	0.0004 mg/L	0.00019	0.0004	mg/L	0.00019	48.46%
QC value within	n limits for Ag	328.068 Recovery	= Not calculat	ced			
		-0.0079 mg/L			mg/L	0.00092	11.74%
QC value within	n limits for Al	308.215 Recovery	= Not calculat	ed			
As 188.979†	11.2	0.0013 mg/L	0.00081	0.0013	mg/L	0.00081	61.13%
QC value within	n limits for As	188.979 Recovery	= Not calculat	:ed			
B 249.772†	2871.0	0.0123 mg/L	0.00171	0.0123	mg/L	0.00171	13.86%
QC value within	limits for B	249.772 Recovery :	Not calculate	ed			
Ba 233.527†	110.4	0.0003 mg/L	0.00019	0.0003	mg/L	0.00019	60.97%
QC value within	n limits for Ba	233.527 Recovery	= Not calculat	ed			
Be 313.107†	753.7	0.0001 mg/L	0.00002	0.0001	mg/L	0.00002	17.26%
QC value within	ı limits for Be	313.107 Recovery	= Not calculat	ed			
Cd 226.502†	18.4	0.0000 mg/L	0.00000	0.0000	mg/L	0.00000	2.14%
QC value withir	n limits for Cd	226.502 Recovery	= Not calculat	ed			
		0.0003 mg/L			mg/L	0.00011	31.16%
QC value withir	limits for Co	228.616 Recovery	Not calculat	ed			
Cr 267.716†	14.6	0.0001 mg/L	0.00004	0.0001	mg/L	0.00004	55.92%
QC value withir	ı limits for Cr	267.716 Recovery	= Not calculat	ed			
Cu 324.752†	3378.5	0.0072 mg/L	0.00103	0.0072	mg/L	0.00103	14.36%
QC value withir	ı limits for Cu	324.752 Recovery	= Not calculat	ed			
Fe 238.863†	2646.2	0.0437 mg/L	0.00094	0.0437	mg/L	0.00094	2.15%
QC value withir	limits for Fe	238.863 Recovery	= Not calculat	ed			
K 404.721†	-78.3					44.77	57.15%
Unable to evalı							
Mg 279.077†	-170.2	-0.0044 mg/L	0.00146	-0.0044	mg/L	0.00146	33.40%
QC value withir	limits for Mg	279.077 Recovery	= Not calculat	:ed			
		0.0004 mg/L		0.0004	mg/L	0.00002	5.56%
		257.610 Recovery		ed			
		0.0008 mg/L		0.0008	mg/L	0.00028	32.63%
QC value withir	n limits for Mo	202.031 Recovery	= Not calculat	.ed			
Ni 231.604†	44.9	0.0003 mg/L	0.00001	0.0003	mg/L	0.00001	4.76%
QC value withir	limits for Ni	231.604 Recovery	= Not calculat	ed			

Method: AXIAL200-6010 L Opt4	Page 45	Date:	8/13/2010 7:45:51 PM
	-0.1549 mg/L 0.02769 -0.1549	mg/L	0.02769 17.88%
Pb 220.353† 13.1	330.237 Recovery = Not calculated 0.0005 mg/L 0.00006 0.0005 220.353 Recovery = Not calculated	mg/L	0.00006 13.42%
Sb 206.836† 8.6	0.0015 mg/L 0.00034 0.0015 206.836 Recovery = Not calculated	mg/L ·	0.00034 22.68%
Se 196.026† -2.6	-0.0004 mg/L 0.00040 -0.0004 196.026 Recovery = Not calculated	mg/L	0.00040 89.85%
QC value within limits for Sn	0.0083  mg/L  0.00110  0.0083 $189.927  Recovery = Not calculated$		
QC value within limits for Ti	-0.0001 mg/L 0.00023 -0.0001 337.279 Recovery = Not calculated		
QC value within limits for Tl	0.0012 mg/L 0.00067 0.0012 190.801 Recovery = Not calculated	_	
QC value within limits for V 2	0.0005 mg/L 0.00014 0.0005 92.402 Recovery = Not calculated	J.	
QC value within limits for Zn	0.0002 mg/L 0.00012 0.0002 206.200 Recovery = Not calculated -0.0896 mg/L 0.00303 -0.0896	•	
QC value within limits for Ca	227.546 Recovery = Not calculated 0.0000 mg/L 0.00022 0.0000		
QC value within limits for Sr	460.733 Recovery = Not calculated more analytes were not evaluated.		

Sequence No.: 64 Sample ID: R1004264-001D Analyst: Initial Sample Wt: Dilution:

Mean Data: R1004264-001D

Autosampler Location: 74 Date Collected: 8/13/2010 7:39:43 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Corrected Calib Sample Intensity Conc. Units 8194558.1 0.9385 mg/L Std.Dev. Conc. Units Std.Dev. Analyte RSD Y 371.029 0.00749 0.80% 0.0366 mg/L 13706.3 Aq 328.068† 0.00007 0.20% 6315.6 Al 308.215† 0.1390 mg/L 0.00026 0.19% As 188.979† 70.4 0.0086 mg/L 0.00114 13.27% 31020.9 B 249.772† 0.1271 mg/L 0.00059 0.46% 0.0748 mg/L Ba 233.527† 27120.5 0.00021 0.28% Be 313.107† -825.2 -0.0001 mg/L 0.00001 10.65% -28.6 -0.0001 mg/L Cd 226.5021 0,00015 204.30% 40.1 Co 228.616† 0.0002 mg/L 0.00013 53.41% 1912.6 0.0087 mg/L Cr 267.716† 0.00039 4.46% 0.00002 Cu 324.752† 7898.8 0.0163 mg/L 0.15% Fe 238.863† 15712.5 0.2524 mg/L 0.00489 1.94% 12.90 0.73% K 404.721† 1768.2 Mg 279.077† 441990.5 11.24 mg/L0.050 0.44% 34050.7 Mn 257.610† 0.0195 mg/L 0.00006 0.30% Mo 202,031† 517.6 0.0097 mg/L 0.00073 1056.5 7.54% Ni 231.604† 0.0069 mg/L 0.00025 3.60% Na 330.237† 425588.7 233.3 mg/L 0.00% 331.0 0.0125 mg/L Pb 220.353† 0.00180 14.42% Sb 206.836† 113.4 0.0197 mg/L 0.00518 26.25% 0.0005 mg/L 904.38% Se 196.026† 6.3 0.00443 Sn 189.927† 41.8 0.0062 mg/L 0.00053 8.53% Ti 337.279† 620.3 0.0009 mg/L 0.00014 16.10% Tl 190.801† 14.5 0.0021 mg/L0.00570 273.89% 0.0011 mg/L V 292,402† 298.7 0.00003 3.03% Zn 206.200† 13253.9 0.0428 mg/L 0.00013 0.30% 58.38 mg/L Ca 227.546† 33731.4 0.125 0.21% 67043.3 Sr 460.733†

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 65 Autosampler Location: 75

0.00013

0.2581 mg/L

Sample ID: R1004264-001S Analyst: Initial Sample Wt: Dilution:

Date Collected: 8/13/2010 7:43:52 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

0.05%

Mean Data: R100								
	Mean Corrected	_	Calib			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.De	
Y 371.029	7807162.3	0.8941		0.00547				0.61%
Ag 328.068†	34257.5	0.0918		0.00013				0.14%
Al 308.215†	96404.5	2.228		0.0055				0.25%
As 188.979†	409.4	0.0487		0.00683				14.01%
B 249.772†	272157.1	1.167		0.0022				0.19%
Ba 233.527†	766853.5	2.129		0.0030				0.14%
Be 313.107†	333636.8	0.0508		0.00004				0.08%
Cd 226.502†	19909.6	0.0520		0.00082				1.58%
Co 228.616†	72065.4	0.5390		0.00746				1.38%
Cr 267.716†	47579.4	0.2151		0.00197				0.91%
Cu 324.752†	137502.2	0.2907		0.00032				0.11%
Fe 238.863†	83734.3	1.374	mg/L	0.0032				0.23%
K 404.721†	5940.8						93.29	1.57%
Mg 279.077†	562047.9	14.29		0.013				0.09%
Mn 257.610†	951841.7	0.5549		0.00099				0.18%
Mo 202.031†	28767.0	0.5382		0.00483				0.90%
Ni 231.604†	74269.7	0.4949		0.00163				0.33%
Na 330.237†	510648.5	279.9		0.28				0.10%
Pb 220.353†	14584.3	0.5323	mg/L	0.00588				1.10%
Sb 206.836†	3077.8	0.5381	mg/L	0.00263				0.49%
Se 196.026†	6036.9	1.041		0.0059				0.57%
Sn 189.927†	173476.7	5.711	mg/L	0.0130				0.23%
Ti 337.279†	279141.2	0.5460	mg/L	0.00663				1.218
Tl 190.801†	15498.0	2.018	mg/L	0.0197				0.98%
V 292.402†	139968.5	0.5204	mg/L	0.00140				0.27%
Zn 206.200†	180956.7	0.5938	mg/L	0.00028				0.05%
Ca 227.546†	37297.0	64.61	mg/L	0.704				1.09%
Sr 460.733†	660139.8	2.553	mg/L	0.0078				0.31%
Sample conc. no	t calculated. Sample	e Prep. V	Jol. AND	Initial Vol.	required (	OR sample	units inc	orrect.

Sequence No.: 66

Sample ID: R1004264-001A

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 76

Date Collected: 8/13/2010 7:48:10 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004264-001A	

MCGM Data. MIGGING	1 0044							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7978178.6	0.9137	mg/L	0.00362				0.40%
Ag 328.068t	32977.6	0.0884	mg/L	0.00006				0.07%
Al 308.215†	93720.5	2.166	mg/L	0.0189				0.87%
As 188.979†	414.6	0.0493	mg/L	0.00165				3.34%
B 249.772;	268101.1	1.150	mg/L	0.0114				0.99%
Ba 233.527†	748190.9	2.078	mg/L	0.0102				0.49%
Be 313.107†	325594.9	0.0496	mg/L	0.00016				0.33%
Cd 226.502†	19259.4	0.0503	mg/L	0.00034				0.67%
Co 228.616†	69732.5	0.5215	mg/L	0.00254				0.49%
Cr 267.716†	45992.1	0.2080	mg/L	0.00041				0.19%
Cu 324.752†	133459.5	0.2822	mg/L	0.00117				0.41%
Fe 238.863†	80980.9	1.329	mg/L	0.0093				0.70%
K 404.721†	5869.9						106.81	1.82%
Mg 279.077†	547203.6	13.92	mg/L	0.087				0.63%
Mn 257.610†	928420.4	0.5412	mg/L	0.00257				0.48%
Mo 202.031†	27892.0	0.5218		0.00053				0.10%
Ni 231.604†	72278.1	0.4816	mg/L	0.00177				0.37%
Na 330.237†	495529.1	271.7	mg/L	1.66				0.61%
Pb 220.353†	14114.2	0.5152		0.00120				0.23%
Sb 206.836†	3068.1	0.5364	mg/L	0.00170				0.32%
Se 196.026†	77.7	0.0130		0.00441				33.96%
Sn 189.927†	282.0	0.0147	mg/L	0.00120				8.19%
Ti 337.279†	271902.6	0.5318		0.01175				2.21%
Tl 190.801t	14995.0	1.953		0.0081				0.41%
V 292.402†	136199.2	0.5064		0.00416				0.82%
Zn 206.200†	178680.9	0.5864		0.00191				0.33%
Ca 227.546†	35969.6	62.31	mg/L	0.410				0.66%

Sr  $460.733\dagger$  70993.6 0.2733 mg/L 0.00176 0.64% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 67

Sample ID: R1004264-001L

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 77

Date Collected: 8/13/2010 7:52:27 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

	Mean Correc	ted	Calib			Sample		
Analyte	Intensit	y Conc.	Units	Std.Dev.	Conc.	Units	Std.I	Dev. RSD
Y 371.029	8685278.9	0.9947	mg/L	0.00917				0.92%
Ag 328.068†	2705.7	0.0072	mg/L	0.00002				0.29%
Al 308.215†	1047.3	0.0228	mg/L	0.00086				3.76%
As 188.979†	7.0	0.0009	mg/L	0.00086				94.89%
B 249.772†	8122.7	0.0336	mg/L	0.00093				2.78%
Ba 233.527†	5850.7	0.0162	mg/L	0.00016				0.98%
Be 313.107†	220.8	0.0000	mg/L	0.0000				8.07%
Cd 226.502†	40.7	0.0001	mg/L	0.00003				30.54%
Co 228.616†	23.8	0.0002	mg/L	0.00002				9.99%
Cr 267.716†	353.4	0.0016	mg/L	0.00006				3.43%
Cu 324.752†	1788.3	0.0037	mg/L	0.00016				4.24%
Fe 238.863†	5518.8	0.0897	mg/L	0.00468				5.22%
K 404.721†	205.3						114.	33 55.69%
Mg 279.077†	93271.5	2.372	mg/L	0.0319				1.34%
Mn 257.610†	7638.6	0.0044	mg/L	0.00005				1.12%
Mo 202.031t	119.2	0.0022	mg/L	0.00011				4.74%
Ni 231.604†	231.2			0.00001				0.47%
Na 330.237†	77418.8	42.44	mg/L	0.407				0.96%
Pb 220.353†	87.9	0.0033	mg/L	0.00065				19.75%
Sb 206.836†	16.9	0.0029	mg/L	0.00099				33.72%
Se 196.026†	0.7	0.0000	mg/L	0.00034				>999.9%
Sn 189.927†	123.1	0.0050	mg/L	0.00048				9.49%
Ti 337.279†	-3.7	-0.0001	mg/L	0.00023				311.62%
Tl 190.801†	20.1	0.0027	mg/L	0.00088				33.16%
V 292.402†	113.1			0.00002				5.38%
Zn 206.200†	3611.5	0.0117	mg/L	0.00002				0.18%
Ca 227.546†	6770.0			0.039				0.33%
Sr 460.733†	13770.0	0.0530	mg/L	0.00077				1.44%
Sample conc.	not calculated. S	ample Prep. V	ol. AND	Initial Vol.	required C	R sample	units i	ncorrect.

Sequence No.: 68

Sample ID: R1004264-002

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 78

Date Collected: 8/13/2010 7:58:09 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R10042	264-002							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7897140.9	0.9044	mg/L	0.00529				0.59%
Ag 328.068†	97996.2	0.2627	mg/L	0.00153				0.58%
Al 308.215†	24843.0	0.5699	mg/L	0.00442				0.78%
As 188.979†	34.2	0.0045	mg/L	0.00175				38.72%
B 249.772†	33130.4	0.1358	mg/L	0.00124				0.92%
Ba 233.527†	40705.3	0.1126	mg/L	0.00056				0.49%
Be 313.107†	-815.9	-0.0001	mg/L	0.00000				2.80%
Cd 226.502†	60.1	0.0001	mg/L	0.00009				81.27%
Co 228.616†	46.5	0.0003	mg/L	0.00006				19.92%
Cr 267.716†	4005.8	0.0182	mg/L	0.00051				2.79%
Cu 324.752†	12684.6	0.0265	mg/L	0.00008				0.31%
Fe 238.863†	43898.7	0.7184	mg/L	0.00325				0.45%
K 404.721†	1932.6						127.60	6.60%
Mg 279.077†	503727.3	12.81	mg/L	0.011				0.09%
Mn 257.610†	45796.8	0.0263	mg/L	0.00000				0.01%
Mo 202.031†	602.4	0.0113	mg/L	0.00004				0.33%
Ni 231.604†	1149.1	0.0075	mg/L	0.00054				7.17%

Method: AXIAL200-6010 L Opt4 Page 48 Date: 8/13/2010 8:09:56 PM 480049.6 0.15% Na 330.237t 263.2 mg/L 0.39 Pb 220.353† 443.6 0.0165 mg/L 0.00059 3.56% 0.00059 0.00235 0.00466 0.0258 mg/L Sb 206.836t 147.8 9.13% 27.9 Se 196.026† 0.0044 mg/L 105.15% 0.0055 mg/L 0.00002 Sn 189.927† 39.0 0.29% Ti 337.279† 8860.9 0.0170 mg/L 0.00012 0.70% 0.0036 mg/L Tl 190.801t 26.4 107.82% 0.00393 0.0019 mg/L V 292.402† 489.4 0.00011 6.08% 0.0585 mg/L Zn 206.200† 18037.1 0.00009 0.16% 27408.2 47.47 mg/L 0.197 75562.8 0.2913 mg/L 0.00012 Ca 227.546† 0.41% Sr 460.733† Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. 

Sequence No.: 69 Sample ID: R1004271-001 Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 79 Date Collected: 8/13/2010 8:02:21 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004271-001 Mean Corrected Calib Sample 0.00242 0.00084 0.128 Intensity Conc. Units 7993321.6 0.9154 mg/L Std.Dev. Analyte Conc. Units Std.Dev. RSD Y 371.029 0.00242 0.26% 7993321.6 0.9154 mg/L -59.0 0.0003 mg/L 2924712.9 67.83 mg/L -13.6 0.0025 mg/L 21291.2 0.0468 mg/L 15091.6 0.0410 mg/L Ag 328.068† 250.06% Al 308.215† 0.19% 0.00170 0.00050 As 188.979† 67.18% B 249.772† 1.07% Ba 233.527† 0.00015 0.36% -713.2 -0.0001 mg/L Be 313.107† 0.00001 19.44% Cd 226.502† 196.4 193.7 -0.0003 mg/L 0.00005 14.65% 0.0012 mg/L 193.7 5275.8 107568.9 649929.6 0.00001 Co 228.616† 0.99% Cr 267.716† 0.0242 mg/L 0.00008 0.35% Cu 324.752† 0.2287 mg/L 0.00072 0.31% Fe 238.863† 10.71 mg/L 0.058 0.54% K 404.721† 817.1 69,70 8.53% 392843.5 9.986 mg/L Mg 279.077† 0.0330 0.33% 0.0852 mg/L 0.0088 mg/L 0.5477 mg/L Mn 257.610† 146244.3 0.00014 0.16% Mo 202.031t 412.0 0.00008 0.96% 82188.8 Ni 231.604† 0.00271 0.50% 37.91 mg/L Na 330.237† 69188.7 0.150 0.40% 0.0035 mg/L -112.2 Pb 220.353† 0.00120 34.32% 0.0007 mg/L 7.6 Sb 206.8361 0.00412 628.16% 0.0047 mg/L Se 196.026† 24.9 0.00237 50.55% 0.0084 mg/L 0.0114 mg/L -0.0016 mg/L 54.7 Sn 189.927† 0.00186 22.25% 5974.6 Ti 337.279† 0.00007 0.63% Tl 190.801t -18.7 0.00301 186.61% 5009.8 V 292.402† 0.0196 mg/L 0.00014 0.69% 2009.8 29530.1 Ca 227.546† 26591.9 Sr 460.733† 97022.0 29530.1 0.0954 mg/L 26591.9 46.65 mg/L 97923.0 0.3781 mg/L 0.00123 1.29% 0.059 0.13% 0.00146 0.38% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 70 Sample ID: PBW-117216 Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 80 Date Collected: 8/13/2010 8:06:34 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: PBW-117216 Mean Corrected Calib Sample 1.001 mg/L
55.0 0.0002 mg/L
-208.6 -0.0048 mg/L
-3.0 -0.0003 mg/L
-1166.8 -0.0052 mg/L
-18.8 -0.0001 mg/L Intensity Conc. Units 8738824.4 1.001 mg/L Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8738824.4 55.0 0.0087 0.87% 0.00016 103.07% Ag 328.068† Al 308.215† 0.00658 136.25% 0.00066 As 188.979† 203.94% B 249.772† 0.00144 27.71% 0.00013 245.79% Ba 233.527t Be 313.107t 0.0000 mg/L 0.00001 26.69%

Method: AXIAL200	-6010 L Opt4		Page 49	Date: 8/13/2010 8:18:29 PM
Cd 226.502†	-27.6	-0.0001 mg/	L 0.00002	32.44%
Co 228.616†	-6.6	-0.0001 mg/		75.26%
Cr 267.716†	16.4	0.0001 mg/		101.44%
Cu 324.752†	473.5	0.0011 mg/		47.05%
Fe 238.863†	3280.7	0.0542 mg/		13.37%
K 404.721t	-128.1	0.0342 (1197	0.00723	82.27 64.24%
Mq 279.077†	-361.3	-0.0092 mg/	L 0.00232	25.17%
Mn 257.610†	237.8	0.0001 mg/		19.69%
Mo 202.031†	-7.3	-0.0001 mg/		6.17%
Ni 231.604†	5.9	0.0000 mg/		107.81%
Na 330.237†	269.4			31.61%
-		0.1479 mg/		
Pb 220.353†	47.6	0.0017 mg/		24.75%
Sb 206.836†	-2.1	-0.0004 mg/		368.60%
Se 196.026†	4.6	0.0008 mg/		93.09%
Sn 189.927†	46.2	0.0015 mg/		2.45%
Ti 337.279†	-27.5	-0.0001 mg/		142.84%
Tl 190.801†	0.1	0.0000 mg/		>999.9%
V 292.402†	103.4	0.0004 mg/		20.76%
Zn 206.200†	653.0	0.0021  mg/		1.05%
Ca 227.546†	-40.7	-0.0676 mg/		40.57%
Sr 460.733†	-31.1	-0.0001 mg/		534.19%
Sample conc. not	calculated. Sample	Prep. Vol.	AND Initial Vol.	required OR sample units incorrect.

Sequence No.: 71 Sample ID: LCSW-117216 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 81 Date Collected: 8/13/2010 8:12:16 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: LCS	W-117216				
	Mean Corrected	Ca	lib	Sample	
Analyte	Intensity	Conc. Un	its Std.Dev.	Conc. Units	Std.Dev. RSD
Y 371.029	8561508.6	0.9805 mg	/L 0.00726		0.74%
Ag 328.068†	18538.0	0.0498 mg	/L 0.00012		0.24%
Al 308.215†	85721.4	1.988 mg	/L 0.0099		0.50%
As 188.979†	367.9	0.0435 mg	/L 0.00266		6.11%
B 249.772†	208846.5	0.9007 mg	/L 0.00412		0.46%
Ba 233.527†	700722.1	1.946 mg	/L 0.0056		0.29%
Be 313.107†	309139.6	0.0471 mg	/L 0.00019		0.40%
Cd 226.502†	19155.9	0.0500 mg	/L 0.00024		0.48%
Co 228.616†	67919.8	0.5081 mg	/L 0.00090		0.18%
Cr 267.716†	43589.5	0.1970 mg	/L 0.00128		0.65%
Cu 324.752†	122026.9	0.2584 mg	/L 0.00033		0.13%
Fe 238.863†	64216.3	1.060 mg	/L 0.0103		0.98%
K 404.721†	3400.4				8.37 0.25%
Mg 279.077†	79790.6	2.029 mg	/L 0.0069		0.34%
Mn 257.610†	843811.3	0.4922 mg	/L 0.00132		0.27%
Mo 202.031†	25956.8	0.4856 mg	/L 0.00190		0.39%
Ni 231.604†	67390.7	0.4492 mg	/L 0.00163		0.36%
Na 330.237†	34902.7	19.14 mg	/L 0.138		0.72%
Pb 220.353†	13892.6	0.5066 mg	/L 0.00037		0.07%
Sb 206.836†	2687.8	0.4700 mg	/L 0.01195		2.54%
Se 196.026†	5895.5	1.017 mg	/L 0.0021		0.20%
Sn 189.927†	164329.4	5.405 mg	/L 0.0456		0.84%
Ti 337.279†	257254.4	0.5035 mg	/L 0.00684		1.36%
Tl 190.801†	15047.3	1.959 mg	/L 0.0151		0.77%
V 292.402†	128733.8	0.4786 mg	/L 0.00326		0.68%
Zn 206.200†	157211.3	0.5166 mg	/L 0.00225		0.44%
Ca 227.546†	1037.8	1.853 mg	/L 0.0785		4.23%
Sr 460.733†	208.2	0.0008 mg	/L 0.00037		47.89%
Sample conc. no	ot calculated. Sampl	e Prep. Vol	. AND Initial Vol.	required OR sample	units incorrect.

Sequence No.: 72 Sample ID: R1004141-001 Analyst: Initial Sample Wt:

Dilution:

Date Collected: 8/13/2010 8:16:34 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Autosampler Location: 82

Mean Data: R1004	4141-001								
	Mean Corrected		Calib			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std	.Dev.	RSD
Y 371.029	8343837.5	0.9556	mg/L	0.00816					0.85%
Ag 328.068†	-127.0	-0.0007	mg/L	0.00008				1	.1.03%
Al 308.215†	-359.3	-0.0276	mg/L	0.00136					4.93%
As 188.979†	-60.9	-0.0063	mg/L	0.00606				9	5.87%
B 249.772†	8023.7	0.0172	mg/L	0.00138					8.04%
Ba 233.527†	23114.5	0.0630	mg/L	0.00005					0.07%
Be 313.107†	-638.1	0.0000	mg/L	0.00002				14	8.38%
Cd 226.502†	-65.0	-0.0001	mg/L	0.00020				15	7.63%
Co 228.616†	122.0	0.0007	mg/L	0.00042				5	6.46%
Cr 267.716†	72.7	0.0004	mg/L	0.00040				10	4.22%
Cu 324.752†	1715.4	0.0025	mg/L	0.00025					9.90%
Fe 238.863†	16389.8	0.2531	mg/L	0.00436					1.72%
K 404.721†	457.6						8	3.02	1.75%
Mg 279.077†	903044.8	22.97	mg/L	0.015					0.06%
Mn 257.610†	117928.7	0.0681	mg/L	0.00012					0.18%
Mo 202.031†	99.7	0.0018	mg/L	0.00030				1	7.05%
Ni 231.604†	437.3	0.0025	mg/L	0.00011					4.37%
Na 330.237†	10890.8	5.850	mg/L	0.0447					0.76%
Pb 220.353†	-2.6	0.0011	mg/L	0.00085				7	8.92%
Sb 206.836†	3.2	0.0004	mg/L	0.00070				19	7.40%
Se 196.026†	15.6	0.0010	mg/L	0.00592				57	5.64%
Sn 189.927†	14.1	0.0126	mg/L	0.00135				1	0.70%
Ti 337.279†	-162.5	-0.0011	mg/L	0.00011					9.73%
Tl 190.801†	12.1	0.0020	mg/L	0.00128				6	4.22%
V 292.402†	103.6	0.0004	mg/L	0.00013				3	8.15%
Zn 206.200†	1465.6	0.0030		0.00009					3.06%
Ca 227.546†	89111.5	154.2	mg/L	0.28					0.18%
Sr 460.733†	126021.1	0.4842		0.00143					0.30%
Sample conc. not	calculated. Sample	e Prep. V	/ol. AND	Initial Vol.	required 0	R sample	units	incorr	ect.

Sequence No.: 73 Autosampler Location: 83

Sample ID: R1004141-002 Analyst:

Initial Sample Wt:

Dilution:

Date Collected: 8/13/2010 8:20:49 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R100414	11-002						
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Y 371.029	8274441.8	0.9476	mg/L	0.00480			0.51%
Ag 328.068†	98.6	0.0000	mg/L	0.00004			505.27%
Al 308.215†	51.9	-0.0121	mg/L	0.00222			18.25%
As 188.979†	-42.9	-0.0045	mg/L	0.00217			48.64%
B 249.772†	8134.3	0.0231	mg/L	0.00017			0.75%
Ba 233.527†	19019.5	0.0520	mg/L	0.00001			0.03%
Be 313.107†	-282.3	0.0000	mg/L	0.00004			243.92%
Cd 226.502†	-30.2	-0.0001	mg/L	0.00003			62.89%
Co 228.616†	11.6	0.0000		0.00007			281.97%
Cr 267.716†	80.0	0.0004		0.00011			24.90%
Cu 324.752†	1699.6	0.0028	mg/L	0.00026			9.32%
Fe 238.863†	11879.5	0.1837	mg/L	0.00365			1.99%
K 404.721†	323.7						79.65 24.61%
Mg 279.077†	739933.2	18.82		0.025			0.13%
Mn 257.610†	17804.8	0.0098		0.00007			0.68%
Mo 202.031†	135.9	0.0025		0.00057			23.06%
Ni 231.604†	106.7	0.0004		0.00012			27.89%
Na 330.237†	13414.2	7.272		0.0335			0.46%
Pb 220.353†	-3.2	0.0007		0.00095			141.33%
Sb 206.836†	7.9	0.0012		0.00071			57.45%
Se 196.026†	21.3	0.0025		0.00018			7.02%
Sn 189.927†	-73.9	0.0060		0.00174			28.84%
Ti 337.279†	-232.2	-0.0010		0.00019			18.74%
Tl 190.801†	-8.1	-0.0007		0.00125			171.79%
V 292.402†	137.3	0.0005		0.00026			53.74%
Zn 206.200†	1446.5	0.0034		0.00019			5.54%
Ca 227.546†	60556.2	104.8		0.85			0.81%
Sr 460.733†	91692.6	0.3525	mg/L	0.00111			0.31%

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 74 Sample ID: CCV Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 4 Date Collected: 8/13/2010 8:24:58 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV								
	Mean Correcte	đ	Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8413184.5	0.9635		0.01459				1.51%
Ag 328.068†	193054.0	0.5179	mg/L	0.00777	0.5179	mg/L	0.00777	1.50%
QC value within				103.58%		<u>.</u>		
Al 308.215†	432605.1	10.03	mg/L	0.212	10.03	mg/L	0.212	2.11%
QC value within	limits for Al	308.215	Recovery =	100.29%		•		
As 188.979†	8507.0	0.9971	mg/L	0.00669	0.9971	mg/L	0.00669	0.67%
QC value within	limits for As	188.979	Recovery =	99.71%		•		
B 249.772†	554982.0	2.383	mg/L	0.0724	2.383	mg/L	0.0724	3.04%
QC value within	limits for B	249.772 R	ecovery =	95.33%		•		
Ba 233.52 <b>7</b> †	3490617.1	9.695	mg/L	0.1970	9.695	mg/L	0.1970	2.03%
QC value within	limits for Ba	233.527	Recovery =	96.95%		<u> </u>		
Be 313.107†	1610164.9	0.2451		0.00570	0.2451	mg/L	0.00570	2.32%
QC value within	limits for Be	313.107	Recovery =	98.05%		_		
Cd 226.502†	190316.1	0.4974	mg/L	0.00657	0.4974	mg/L	0.00657	1.32%
QC value within	limits for Cd	226.502	Recovery =	99.47%		•		
Co 228.616†	321817.3	2.407	mg/L	0.0493	2.407	mg/L	0.0493	2.05%
QC value within	limits for Co	228.616 H	Recovery =	96.29%				
· Cr 267.716†	111263.1			0.00756	0.5032	mg/L	0.00756	1.50%
QC value within	limits for Cr	267.716 H	Recovery =	100.64%				
Cu 324.752†	573467.5	1.214	mg/L	0.0276	1.214	mg/L	0.0276	2.27%
QC value within	limits for Cu	324.752 H	Recovery =	97.14%				
Fe 238.863†	307594.3	5.071	mg/L	0.1353	5.071	mg/L	0.1353	2.67%
QC value within	limits for Fe	238.863	Recovery =	101.42%				
K 404.721†	4451.6						23.38	0.53%
Unable to evalu	ate QC.							
Mg 279.077†	1006867.9	25.61	mg/L	0.572	25.61	mg/L	0.572	2.24%
QC value within	limits for Mg	279.077 E	Recovery =	102.43%				
Mn 257.610†	1297817.3	0.7563		0.01538	0.7563	mg/L	0.01538	2.03%
QC value within	limits for Mn	257.610 H	Recovery =	100.85%				
Mo 202.031†	129706.2	2.427	mg/L	0.0759	2.427	mg/L	0.0759	3.13%
QC value within	limits for Mo			97.07%				
Ni 231.604†	308096.1	2.054	mg/L	0.0377	2.054	mg/L	0.0377	1.83%
QC value within	limits for Ni	231.604 F	Recovery =	102.68%				
Na 330.237†	44924.0	24.62		0.368	24.62	mg/L	0.368	1.49%
QC value within	limits for Na	330.237 F	Recovery =	98.49%				
Pb 220.353†	13794.2	0.5038		0.01158	0.5038	mg/L	0.01158	2.30%
QC value within	limits for Pb	220.353 F	Recovery =	100.77%				
Sb 206.836†	28292.3	4.947		0.0375	4.947	mg/L	0.0375	0.76%
QC value within	limits for Sb	206.836 F	Recovery =	98.94%				
Se 196.026†	2922.4	0.5047		0.00371	0.5047	mg/L	0.00371	0.73%
QC value within				100.94%				
Sn 189.927†	155722.4	5.126		0.1359	5.126	mg/L	0.1359	2.65%
QC value within	limits for Sn		4	102.51%				
Ti 337.279†		2.524		0.0044	2.524	mg/L	0.0044	0.17%
QC value within	limits for Ti	337.279 F	Recovery =	100.95%				
Tl 190.801†	7690.6	1.002	mg/L	0.0159	1.002	mg/L	0.0159	1.58%
QC value within								
V 292.402†	657960.6	2.446		0.0736	2.446	mg/L	0.0736	3.01%
QC value within								
Zn 206.200†	314999.6	1.034	mg/L	0.0216	1.034	mg/L	0.0216	2.09%
QC value within								
Ca 227.546†	14289.6	25.00		0.262	25.00	mg/L	0.262	1.05%
QC value within								
Sr 460.733†	678565.5	2.625		0.0302	2.625	mg/L	0.0302	1.15%
QC value within								
All analyte(s) pass	sed QC. One or	more analy	rtes were I	not evaluated.				

Sample ID: CCB Analyst: Initial Sample Wt: Dilution:

Date Collected: 8/13/2010 8:29:17 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

						<b></b>	
Mean Data: CCB							
	Mean Corrected	l Calib		_	Sample		
Analyte Y 371.029 Ag 328.068†	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 3/1.029	88/9204.5	1.01/ mg/L	0.0024	0 0003	m~ /⊤	0 00004	U.246
Ag 328.0681	limita for No	328.068 Recovery	0.00084	0.0003	mg/ n	0.00084	293.3/8
Al 308.215†		-0.0150 mg/L	0.00031	-0 0150	mg/L	0 00021	2 018
	limita for Al	308.215 Recovery		-0.0150	mg/ n	0.00031	2.045
As 188.979†		0.0031 mg/L	0.00083	0 0021	mg/L	0.00083	26 708
		188.979 Recovery		0.0031	mg/ L	0.00083	20.70%
B 249.772†		-0.0057 mg/L		-0 0057	mg/L	0.00167	29 498
	limits for B 3	249.772 Recovery =	- Not calculated	-0.00), 1	11.97 H	0.00107	23.450
Ba 233.527†		0.0027 mg/L			ma/I.	0.00032	11 85%
		233.527 Recovery			mg/ n	0.00032	11.050
Be 313.107†		0.0001 mg/L		0 0001	mg/L	0.00002	19 01%
		313.107 Recovery			9/	0.00002	13.010
Cd 226.502†		0.0000 mg/L			mg/L	0.00000	2 03%
		226.502 Recovery			97 —		
		0.0003 mg/L		0.0003	mg/L	0.00006	23 22%
		228.616 Recovery			3/ =		
Cr 267.716†	-17.3	-0.0001 mg/L	0.00027	-0.0001	mg/L	0.00027	345.39%
OC value within	limits for Cr	267.716 Recovery	= Not calculate	ed			
Cu 324.752†	1517.2	0.0032 mg/L	0.00053	0.0032	ma/L	0.00053	16.31%
OC value within	limits for Cu	324.752 Recovery	= Not calculate	ed			
Fe 238.863†		0.0420 mg/L	0.00058	0.0420	mg/L	0.00058	1.39%
		238.863 Recovery			5,		
K 404.721†	-29.1					21.14	72.63%
Unable to evalua							
Mg 279.077†	-215.9	-0.0055 mg/L	0.00108	-0.0055	mq/L	0.00108	19.49%
	limits for Mg	279.077 Recovery	≈ Not calculate	ed	٥,		
		0.0003 mg/L			mg/L	0.00002	7.67%
		257.610 Recovery			5.		
Mo 202.031†	30.5	0.0006 mg/L	0.00006		mg/L	0.00006	11.15%
		202.031 Recovery			5.		
Ni 231.604†	26.8	0.0002 mg/L [*]	0.00005	0.0002	mg/L	0.00005	28.79%
QC value within	limits for Ni	231.604 Recovery	= Not calculate	ed	-		
Na 330.237t	-265.3	-0.1453 mg/L	0.02883	-0.1453	mg/L	0.02883	19.84%
QC value within	limits for Na	330.237 Recovery	= Not calculate	ed			
			0.00027		mg/L	0.00027	41.29%
		220.353 Recovery	= Not calculate	ed			
Sb 206.8361	5.4		0.00012	0.0009	mg/L	0.00012	12.31%
QC value within	limits for Sb	206.836 Recovery	= Not calculate		•		
Se 196.026†	-0.1	0.0000 mg/L	0.00131	0.0000	mg/L	0.00131	>999.9%
QC value within	limits for Se	196.026 Recovery	= Not calculate	ed	•		
Sn 189.927†	233.6	0.0077 mg/L	0.00124		mg/L	0.00124	16.16%
QC value within	limits for Sn	189.927 Recovery	= Not calculate		<b>.</b>		
Ti 337.279†	-88.8	-0.0002 mg/L	0.00014	-0.0002	mg/L	0.00014	79.06%
QC value within	limits for Ti	337.279 Recovery	= Not calculate	ed.	_		
Tl 190.801†	10.7	0.0014 mg/L	0.00090	0.0014	mg/L	0.00090	64.21%
QC value within	limits for Tl	190.801 Recovery	= Not calculate	ed	_		
V 292.402†	52.5	0.0002 mg/L	0.00006	0.0002	mg/L	0.00006	28.83%
QC value within	limits for V 2	92.402 Recovery =	Not calculated	l			
Zn 206.200†	43.2	0.0001 mg/L	0.00002	0.0001	mg/L	0.00002	13.20%
QC value within	limits for Zn	206.200 Recovery	= Not calculate	d			
Ca 227.546†		-0.0618 mg/L	0.00522	-0.0618	mg/L	0.00522	8.45%
QC value within	limits for Ca	227.546 Recovery	= Not calculate	ed.	-		
Sr 460.733†	21.7	0.0001 mg/L	0.00030	0.0001	mg/L	0.00030	348.00%
		460.733 Recovery					
All analyte(s) pass	sed QC. One or	more analytes were	not evaluated.				
_		_					

Sequence No.: 76 Sample ID: R1004141-003 Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 84 Date Collected: 8/13/2010 8:35:01 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R	Mean Data: R1004141-003								
	Mean Corrected	Ca	alib	Sample					
Analyte	Intensity	Conc. Ur	nits Std.Dev.	Conc. Units	Std.Dev. RSD				
Y 371.029	8105621.9	0.9283 ლე	g/L 0.00283		0.31%				
Ag 328.068†	-44.9	-0.0004 mg	g/L 0.00038		99.95%				
Al 308.215†	699.6	0.0019 mg	g/L 0.00017		9.06%				
As 188.979†	-32.0	-0.0031 mg	g/L 0.00178		57.95%				
B 249.772†	20523.2	0.0752 mg			0.30%				
Ba 233.527†	23299.0	0.0638 mg	g/L 0.00026		0.41%				
Be 313.107†	-652.4	0.0000 mg	g/L 0.00000		5.87%				
Cd 226.502†	-85.6	-0.0002 mg	g/L 0.00015		70.62%				
Co 228.616†	103.6	0.0006 თვ	g/L 0.00002		3.61%				
Cr 267.716†	1419	0.0007 mg	g/L 0.00015		22.21%				
Cu 324.752†	1457.8	0.0023 mg	g/L 0.00000		0.16%				
Fe 238.863†	24913.4	0.3986 mg	g/L 0.00168		0.42%				
K 404.721†	312.6				25.50 8.16%				
Mg 279.077t	595076.5	15.14 mg	g/L 0.023		0.15%				
Mn 257.610†	180538.0	0.1049 mg	g/L 0.00000		0.00%				
Mo 202.031;	264.7	0.0049 mg	g/L 0.00027		5.43%				
Ni 231.604†	207.3	0.0011 mg	g/L 0.00003		3.21%				
Na 330.237†	17120.6	9.297 mg	g/L 0.1208		1.30%				
Pb 220.353†	14.8	0.0014 mg	J/L 0.00165		116.36%				
Sb 206.836†	-16.7	-0.0031 mg	1/L 0.00441		144.24%				
Se 196.026†	27.3	0.0035 mg	g/L 0.00203		57.36%				
Sn 189.927†	61.0	0.0110 mg	g/L 0.00079		7.16%				
Ti 337.279†	-282.5	-0.0011 mg	g/L 0.00011		9.68%				
Tl 190.801†	9.8	0.0016 mg	g/L 0.00074		46.73%				
V 292.402†	161.6	0.0006 mg	g/L 0.00010		17.22%				
Zn 206.200†	1211.7	0.0027 mg	g/L 0.00009		3.36%				
Ca 227.546†	66792.7	115.6 mg	g/L 0.02		0.02%				
Sr 460.733†	125478.3	0.4830 mg			0.31%				
Sample conc.	not calculated. Samp	le Prep. Vol	. AND Initial Vol.	required OR sample	units incorrect.				

_______

Sequence No.: 77 Sample ID: R1004141-004 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 85 Date Collected: 8/13/2010 8:39:14 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7876511.8	0.9020	mg/L	0.00107				0.12%
Ag 328.068†	140.4	0.0003	mg/L	0.00040			;	140.29%
Al 308.215†	1196.9	0.0225	mg/L	0.00278				12.36%
As 188.979†	-24.9	-0.0026	mg/L	0.00462			:	175.18%
B 249.772†	264199.0	1.139	mg/L	0.0104				0.91%
Ba 233.527†	15471.5	0.0426	mg/L	0.00061				1.42%
Be 313.107†	-807.8	-0.0001	mg/L	0.00005				44.20%
Cd 226.502†	-24.9	-0.0001	mg/L	0.00003				52.00%
Co 228.616†	-0.6	0.0000	mg/L	0.00017			4	413.78%
Cr 267.716†	40.4	0.0003	mg/L	0.00051			:	176.26%
Cu 324.752†	1466.9	0.0027	mg/L	0.00031				11.53%
Fe 238.863†	9852.1	0.1567	mg/L	0.00229				1.46%
K 404.721†	676.0						18.81	2.78%
Mg 279.077†	651897.2	16.58	mg/L	0.111				0.67%
Mn 257.610†	8900.0	0.0047	mg/L	0.00008				1.65%
Mo 202.031†	498.4	0.0093	mg/L	0.00011				1.14%
Ni 231.604†	34.5	0.0001	mg/L	0.00062			Ç	576.96%
Na 330.237†	227389.2	124.6	mg/L	0.93				0.75%
Pb 220.353†	66.7	0.0027	mg/L	0.00143				53.49%
Sb 206.836†	12.2	0.0021	mg/L	0.00135				65.78%
Se 196.026†	23.6	0.0037	mg/L	0.00589				160.66%
Sn 189.927†	54.4	0.0053	mg/L	0.00134				25.00%
Ti 337.279†	-401.9	-0.0011	mg/L	0.00005				4.88%
Tl 190.801†	1.6	0.0004	mg/L	0.00131			1	318.77%
V 292.402†	424.4	0.0016	mg/L	0.00013				8.45%
Zn 206.200†	2226.8	0.0065	ma/L	0.00019				2.90%

Method: AXIAL200-6010 L Opt4 Page 54 Date: 8/13/2010 8:49:26 PM

Ca 227.546† 20597.1 35.65 mg/L 0.332 0.93% Sr 460.733† 443114.0 1.714 mg/L 0.0005 0.03% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 78 Autosampler Location: 86

Sample ID: R1004141-005 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 86
Date Collected: 8/13/2010 8:43:26 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

Mean Data: R1004141-005 Mean Corrected Intensity Conc. ..... 0.9206 mg/L Calib Sample Conc. Units Analyte Conc. Units Std.Dev. Std.Dev. RSD Y 371.029 0.00453 0.49% Ag 328.068† 110.0  $0.0000~{
m mg/L}$ 0.00078 >999.9% 0.0033 mg/L Al 308.215† 755.9 0.00244 73.15% -46.0 As 188.979† -0.0047 mg/L 0.00441 94.15% 0.1173 mg/L 30203.5 B 249.772† 0.00280 2.39% Ba 233.527† 0.0565 mg/L 20688.4 0.00068 1.20% Be 313.107† -0.0001 mg/L -931.9 0.00002 29.26% Cd 226.502† -0.0002 mg/L -81.0 0.00013 62.86% Co 228.616† -0.0001 mg/L 5.2 0.00026 330.50% Cr 267.716† 35.2 0.0003 mg/L 0.00032 113.72% 1069.1 Cu 324.752† 0.0013 mg/L 0.00034 25.46% 0.4159 mg/L Fe 238.863t 26035.8 0.01010 2.43% K 404.721† 449.4 227.76 50.68% Mg 279.077† 1033284.4 26.28 mg/L 0.029 0.11% 0.0218 mg/L Mn 257.610† 38740.3 0.00040 1.82% Mo 202.031† 9.1 0.0001 mg/L 0,00060 555.21% 0.0003 mg/L Ni 231.604† 92.7 0.00011 37.77% 18.53 mg/L Na 330.237† 33947.2 0.010 0.05% Pb 220.353† 0.0006 mg/L -4.3 0.00081 129.96% Sb 206.836† -18.6 -0.0034 mg/L 0.00104 30.54% 0.0103 mg/L Se 196.026† 66.3 0.00382 37.14% 0.0057 mg/L Sn 189.927† -103.7 0.00008 1.37% -0.0010 mg/L Ti 337.279t 0.00016 -192.0 15.54% -0.0009 mg/L Tl 190.801† -10.3 0.00114 121.10% V 292.402† 222.0 0.0008 mg/L 0.00022 26.54% 0.0016 mg/L Zn 206.200t 982.4 0.00002 1.02% Ca 227.546t 62007.7 107.3 mg/L 1.57 1.46% Sr 460.733† 249319.7 0.9624 mg/L 0.00898 0.93% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 79

Sample ID: R1004141-005D

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 87
Date Collected: 8/13/2010 8:47:3

Date Collected: 8/13/2010 8:47:36 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R100414	11-005D							
	Mean Corrected		Calib		Sa	mple		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc. Un	its	Std.Dev.	RSD
Y 371.029	8009909.8	0.9173	mg/L	0.00096				0.10%
Ag 328.068†	49.2	-0.0001	mg/L	0.00104				851.66%
Al 308.215†	941.9	0.0077	mg/L	0.00442				57.46%
As 188.979†	-90.2	-0.0098	mg/L	0.00266				26.99%
B 249.772†	28731.8	0.1109	mg/L	0.00376				3.39%
Ba 233.527†	21215.9	0.0580	mg/L	0.00064				1.11%
Be 313.107†	-915.2	-0.0001	mg/L	0.00000				2.33%
Cd 226.502†	-66.2	-0.0002	mg/L	0.00016				95.77%
Co 228.616†	24.1	0.0001	mg/L	0.00017			:	277.15%
Cr 267.716†	139.7	0.0008	mg/L	0.00001				1.95%
Cu 324.752†	1070.4	0.0013	mg/L	0.00016				12.29%
Fe 238.863†	26796.2	0.4285	mg/L	0.01051				2.45%
K 404.721†	438.9						6.03	1.37%
Mg 279.077†	1027035.3	26.12	mg/L	0.111				0.42%
Mn 257.610†	39120.3	0.0220	mg/L	0.00037				1.67%
Mo 202.031†	21.4	0.0003	mg/L	0.00038			:	113.08%

Method: AXIAL200-6010 L Opt4 Page 55 Date: 8/13/2010 8:58:01 PM Ni 231.604† 25.7 -0.0001 mg/L0.00034 230.42% Na 330.237† 33917.6 18.51 mg/L 0.001 0.00% Pb 220.353† -14.4 0.0002 mg/L 0.00043 173.97% Sb 206.8361 5.4 0.0008 mg/L 0.00010 13.33% 0.0048 mg/L Se 196.026† 34.2 0.00004 0.86% 0.0072 mg/L Sn 189.927† -59.2 0.00099 13.71% Ti 337.279† -229.3 -0.0011 mg/L 0.00003 2.72% Tl 190.801† -20.9  $-0.0023~\mathrm{mg/L}$ 0.00087 37.31% V 292.402† 175.7 0.0007 mg/L 0.00022 33.38% Zn 206.200† 537.4 0.0001 mg/L 0.00010 68.64% 107.1 mg/L Ca 227.546† 61897.5 1.69 1.58% Sr 460.733† 246559.0 0.9517 mg/L 0.00138 0.15% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 80 Autosampler Location: 88 Sample ID: R1004141-005S Date Collected: 8/13/2010 8:51:45 PM Analyst:

Initial Sample Wt:

Dilution:

Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004141-005S Mean Corrected Calib Sample

	mean Correct	:ea	Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7954625.0	0.9110	mg/L	0.00036				0.04%
Ag 328.068†	19772.3	0.0528	mg/L	0.00004				0.07%
Al 308.215†	91184.5	2.101	mg/L	0.0076				0.36%
As 188.979†	335.4	0.0403		0.00061				1.52%
B 249.772†	256646.3	1.094	mg/L	0.0074				0.67%
Ba 233.527†	755675.0	2.098	mg/L	0.0028				0.13%
Be 313.107†	331123.4	0.0505	mg/L	0.00004				0.09%
Cd 226.502t	19493.8	0.0509	mg/L	0.00051				0.99%
Co 228.616†	68272.0	0.5106	mg/L	0.00397				0.78%
Cr 267.716†	46572.6	0.2107	mg/L	0.00236				1.12%
Cu 324.752†	118400.6	0.2499	mg/L	0.00171				0.69%
Fe 238.863†	90859.8	1.486	mg/L	0.0014				0.09%
K 404.721†	4185.6						163.44	3.90%
Mg 279.077†	1095666.5	27.87		0.047				0.17%
Mn 257.610†	952968.8	0.5551	mg/L	0.00084				0.15%
Mo 202.031†	28438.3	0.5320	mg/L	0.00697				1.31%
Ni 231.604†	68064.4	0.4534	mg/L	0.00084				0.18%
Na 330.237†	73120.0	40.01	mg/L	0.085				0.21%
Pb 220.353†	14579.6	0.5324		0.00655				1.23%
Sb 206.836†	2832.3	0.4951	mg/L	0.00111				0.22%
Se 196.026†	6224.0	1.072		0.0001				0.01%
Sn 189.927†	173048.3	5.701	mg/L	0.0392				0.69%
Ti 337.279†	273116.5	0.5339		0.00665				1.25%
Tl 190.801†	15291.1	1.991	mg/L	0.0102				0.51%
V 292.402†	140782.0	0.5234		0.00278				0.53%
Zn 206.200†	158967.5	0.5208	mg/L	0.00189				0.36%
Ca 227.546†	62130.4	107.6	mg/L	0.86				0.80%
Sr 460.733†	243792.5	0.9410	mg/L	0.00010				0.01%
Sample conc.	not calculated. Sa	mole Prep. N	/ol. AND	Initial Vol.	remuired (	)R sample	units incor	rect

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 81 Sample ID: R1004141-005A Analyst: Initial Sample Wt:

Date Collected: 8/13/2010 8:56:03 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol: 50 mL

Autosampler Location: 89

Mean Data: R100	04141-005A							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7898517.0	0.9046	mg/L	0.00014				0.02%
Ag 328.068t	18945.3	0.0506	mg/L	0.00015				0.30%
Al 308.215†	88403.5	2.036	mg/L	0.0012				0.06%
As 188.979†	317.7	0.0383	mg/L	0.00732				19.12%
B 249.772†	257149.5	1.096	mg/L	0.0046				0.42%
Ba 233.527†	733460.5	2.036	mq/L	0.0022				0.11%

Method: AXIAL20	0-6010 L Opt4	Page	56	Date: 8/13/2010 9:07:53 PM
Be 313.107†	321889.9	0.0491 mg/L	0.00000	0.00%
Cd 226.502†	18987.4	0.0496 mg/L	0.00057	1.15%
Co 228.616†	66787.1	0.4995 mg/L	0.00401	0.80%
Cr 267.716†	45716.1	0.2068 mg/L	0.00237	1.14%
Cu 324.752†	117179.8	0.2473 mg/L	0.00132	0.53%
Fe 238.863†	88961.1	1.454 mg/L	0.0010	0.07%
K 404.721†	3906.3			41.79 1.07%
Mq 279.077†	1098047.5	27.93 mg/L	0.008	0.03%
Mn 257.610†	924635.6	0.5386 mg/L	0.00044	0.08%
Mo 202.031†	43.9	0.0008 mg/L	0.00073	88.56%
Ni 231.604†	65457.6	0.4360 mg/L	0.00154	0.35%
Na 330.237†	72163.9	39.48 mg/L	0.127	0.32%
Pb 220.353†	14169.7	0.5175 mg/L	0.01415	2.74%
Sb 206.836†	9.8	0.0015 mg/L	0.00188	124.25%
Se 196.026†	105.5	0.0173 mg/L	0.00249	14.42%
Sn 189.927†	273.4	0.0185 mg/L	0.00173	9.33%
Ti 337.279†	-268.7	-0.0012 mg/L	0.00020	16.86%
Tl 190.801†	15088.7	1.965 mg/L	0.0152	0.78%
V 292.402†	136801.1	0.5086 mg/L	0.00085	0.17%
Zn 206.200†	156195.5	0.5117 mg/L	0.00127	0.25%
Ca 227.546†	62854.0	108.8 mg/L	1.03	0.94%
Sr 460.733†	246742.4	0.9524 mg/L	0.00801	0.84%
Sample conc. not	calculated. Sampl	e Prep. Vol. AND I	nitial Vol.	required OR sample units incorrect.

______

Sequence No.: 82

Sample ID: R1004141-005L

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 90

Date Collected: 8/13/2010 9:00:20 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R	1004141-005L						
	Mean Corrected		Calib	)	Sar	nple	
Analyte	Intensity	Conc.	Units	s Std.Dev.	Conc. Un:	its Std.)	Dev. RSD
Y 371.029	8484367.2	0.9717	mg/L	0.00884			0.91%
Ag 328.068†	131.6	0.0003	mg/L	0.00014			44.84%
Al 308.215†	-10.1	-0.0030	mg/L	0.00118			39.48%
As 188.979†	-1.3	0.0000	mg/L	0.00008			>999.9%
B 249.772†	4704.4	0.0176	mg/L	0.00100			5.66%
Ba 233.527†	5689.3	0.0156	mg/L	0.00043			2.72%
Be 313.107†	198.3	0.0000	mg/L	0.00002			36.90%
Cd 226.502†	1.0	0.0000	mg/L	0.00003			>999.9%
Co 228.616†	41.5	0.0003	mg/L	0.00015			52.16%
Cr 267.716†	0.3	0.0000	mg/L	0.00010			332.50%
Cu 324.752†	1261.0	0.0025		0.00048			19.08%
Fe 238.863†	8259.6	0.1336	mg/L	0.00688			5.14%
K 404.721†	~59.0		-			125	.82 213.11%
Mg 279.077†	210828.9	5.362	mg/L	0.0141			0.26%
Mn 257.610†	8658.0	0.0049	mg/L	0.00023			4.77%
Mo 202.031†	0.0	0.0000	mg/L	0.00007			709.47%
Ni 231.604†	55.9	0.0003	mg/L	0.00002			8.05%
Na 330.237†	6368.7	3.476	mg/L	0.0902			2.60%
Pb 220.353†	30.3	0.0012	mg/L	0.00026			21.03%
Sb 206.836†	1.8	0.0003	mg/L	0.00163			566.92%
Se 196.026†	7.6	0.0011	mg/L	0.00051			46.15%
Sn 189.927†	94.3	0.0049	mg/L	0.00057			11.70%
Ti 337.279†	-191.2	-0.0005	mg/L	0.00003			6.42%
Tl 190.801t	38.1	0.0050		0.00092			18.20%
V 292.402†	182.1	0.0007	mg/L	0.00002			3.63%
Zn 206.200†	1337.7	0.0041	mg/L	0.00017			4.09%
Ca 227.546†	11973.9	20.73		0.290			1.40%
Sr 460.733†	50668.5	0.1956	mg/L	0.00160			0.82%
Comple sees	mat anlawlated Campl	^ D Y	7-1 7	ATD THEFT TOTAL	manustrana OD a		

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 83
Sample ID: R1004141-006
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 91
Date Collected: 8/13/2010 9:06:03 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

Mean Data: R	1004141-006							
	Mean Correct	ed:	Calib		:	Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc. T	Jnits	Std.I	Dev. RSD
Y 371.029	8211167.4	0.9404	mg/L	0.00125				0.13%
Ag 328.068†	61.8	-0.0001	mg/L	0.00010				108.42%
Al 308.215†	196.5	-0.0091	mg/L	0.00163				17.91%
As 188.979†	-53.9	-0.0057	mg/L	0.00383				67.12%
B 249.772†	24068.5	0.0918	mg/L	0.00022				0.24%
Ba 233.527†	20207.4	0.0553	mg/L	0.00019				0.35%
Be 313.107†	-543.7	0.0000	mg/L	0.00001				44.61%
Cd 226.502†	-67.4	-0.0002	mg/L	0.00009				58.40%
Co 228.616†	-4.3	-0.0001		0.00006				46.03%
Cr 267.716†	59.5	0.0004	mg/L	0.00069				182.20%
Cu 324.752†	1214.7	0.0016	mg/L	0.00002				1.05%
Fe 238.863†	13813.0	0.2147	mg/L	0.00026				0.12%
K 404.721†	434.2						5.	24 1.21%
Mg 279.077†	973300.7	24.76	mg/L	0.071				0.29%
Mn 257.610†	19046.4	0.0103		0.00001				0.14%
Mo 202.031†	20.1	0.0003	mg/L	0.00044				143.97%
Ni 231.604†	88.9	0.0003	mg/L	0.00012				42.68%
Na 330.237†	30059.9	16.40	mg/L	0.034				0.21%
Pb 220.353†	45.0	0.0024		0.00102				42.36%
Sb 206.836†	-1.6	-0.0004	mg/L	0.00126				288.70%
Se 196.026†	48.6	0.0072		0.00035				4.85%
Sn 189.927†	-36.8	0.0075		0.00034				4.46%
Ti 337.279†	-250.7	-0.0011	mg/L	0.00001				0.65%
Tl 190.801t	-0.2	0.0003	mg/L	0.00391				>999.9%
V 292.402†	112.7	0.0004		0.00003				6.74%
Zn 206.200†	2181.1	0.0056		0.00022				3.90%
Ca 227.546†	59746.3	103.4		0.08				0.08%
Sr 460.733†	206254.8	0.7958		0.00124				0.16%
Sample conc.	not calculated. Sa	mple Prep. V	ol. AND	Initial Vol.	required OF	a sample	units i	ncorrect.

Sequence No.: 84 Sample ID: R1004141-007

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 92

Date Collected: 8/13/2010 9:10:13 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Moan Data: P1004141-007

Mean Data: R10041	41-007							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7984989.9	0.9145	mg/L	0.00120				0.13%
Ag 328.068†	141.0	0.0002	mg/L	0.00015				64.95%
Al 308.215†	118928.2	2.745	mg/L	0.0138				0.50%
As 188.979†	-51.1	-0.0047	mg/L	0.00338				71.07%
B 249.772†	37174.0	0.1438	mg/L	0.00498				3.46%
Ba 233.527†	30387.6	0.0835	mg/L	0.00126				1.51%
Be 313.107†	-429.8	0.0000	mg/L	0.00001			1	30.47%
Cd 226.502†	-19.6	-0.0002	mg/L	0.00015				91.36%
Co 228.616†	207.4	0.0014	mg/L	0.00023				16.44%
Cr 267.716†	841.5	0.0040	mg/L	0.00008				1.97%
Cu 324.752†	2367.1	0.0043	mg/L	0.00020				4.72%
Fe 238.863†	110504.0	1.811	mg/L	0.0017				0.09%
K 404.721†	746.6						12.22	1.64%
Mg 279.077†	1079697.0	27.46	mg/L	0.019				0.07%
Mn 257.610†	182501.9	0.1056	mg/L	0.00009				0.09%
Mo 202.031†	608.2	0.0114	mg/L	0.00008				0.72%
Ni 231.604†	676.9	0.0042	mg/L	0.00038				9.11%
Na 330.237†	67380.2	36.87	mg/L	0.072				0.20%
Pb 220.353†	73.1	0.0036	mg/L	0.00054				15.09%
Sb 206.836t	21.2	0.0035	mg/L	0.00434			1	23.72%
Se 196.026†	33.3	0.0050	mg/L	0.00547			1	09.53%
Sn 189.927†	-34.7	0.0078	mg/L	0.00066				8.49%
Ti 337.279†	8902.2	0.0168	mg/L	0.00047				2.81%
Tl 190.801†	9.7	0.0017	mg/L	0.00236			1	35.92%
V 292.402†	1911.1	0.0072	mg/L	0.00011				1.49%
Zn 206.200†	2638.1	0.0070	mg/L	0.00021				3.04%
Ca 227.546†	57466.2	99.54	mg/L	1.442				1.45%

Sr 460.733t 335490.2 1.296 mg/L 0.0059 0.46% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

____

Sequence No.: 85 Sample ID: CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 4
Date Collected: 8/13/2010 9:14:25 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

	Mean Data: CCV		-						
		Mean Corrected		Calib			Sample		
	Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	RSD
	Y 371.029	8381027.8	0.9598	•	0.00795				0.83%
	Ag 328.068†	193506.4	0.5191	mg/L	0.00075	0.5191	mg/L	0.00075	0.14%
	QC value within								
	Al 308.215†	435885.2	10.11		0.110	10.11	mg/L	0.110	1.09%
	QC value within				= 101.05%				
	As 188.979†		1.007		0.0032	1.007	mg/L	0.0032	0.32%
	QC value within	limits for As			= 100.67%				
	B 249.772†	552411.9	2.372		0.0376	2.372	mg/L	0.0376	1.58%
	QC value within	limits for B 2	249.772 R	ecovery =	94.88%				
		3510916.6			0.0870	9.752	mg/L	0.0870	0.89%
	QC value within	limits for Ba							
	Be 313.107†	1614945.5	0.2458		0.00205	0.2458	mg/L	0.00205	0.84%
	QC value within	limits for Be	313.107	Recovery =	= 98.34%				
	Cd 226.502†	193489.7			0.00345	0.5057	mg/L	0.00345	0.68%
	QC value within	limits for Cd	226.502	Recovery =	± 101.13%				
	Co 228.616†		2.418	mg/L	0.0222	2.418	mg/L	0.0222	0.92%
	QC value within	limits for Co	228.616	Recovery =	≈ 96.71%				
	Cr 267.716†	112308.6	0.5079	mg/L	0.00202	0.5079	mg/L	0.00202	0.40%
	QC value within	limits for Cr	267.716	Recovery =	= 101.58%				
	Cu 324.752†	574466.9	1.216	mg/L	0.0120	1.216	mg/L	0.0120	0.98%
	QC value within	limits for Cu	324.752 I	Recovery =	= 97.31%		_		
	Fe 238.863†	309838.7	5.108	mg/L	0.0649	5.108	mg/L	0.0649	1.27%
	QC value within	limits for Fe	238.863 1	Recovery =	≈ 102.16%		_		
	K 404.721†	4623.4						209.31	4.53%
	Unable to evalua	ate QC.							
	Mg 279.077†	1014545.7	25.80	mq/L	0.273	25.80	mg/L	0.273	1.06%
	QC value within	limits for Mg	279.077	Recovery =	≈ 103.21%		2.		
j	Mn 257.610†	1303286.0			0.00678	0.7595	mg/L	0.00678	0.89%
	QC value within	limits for Mn	257.610 H	Recovery =	= 101.27%		3.		
1	Mo 202.031†	130731.8	2.446		0.0640	2.446	mg/L	0.0640	2.61%
	QC value within						٠,		
j		309671.3			0.0034	2.064	mg/L	0.0034	0.17%
	QC value within						<b>-</b>		
]	Na 330.237†	45696.9	25.05		0.131	25.05	mg/L	0.131	0.52%
	QC value within								
	Pb 220.353†				0.00531	0.5172	mg/L	0.00531	1.03%
	QC value within						<b>3,</b>		
	Sb 206.836†	28052.0	4.905		0.0207	4.905	mg/L	0.0207	0.42%
	QC value within								
		2921.2			0.00002	0.5045	mg/L	0.00002	0.00%
	QC value within			<b>~</b> '					
	Sn 189.927†	156910.9	5.165		0.0827	5.165	mq/L	0.0827	1.60%
	QC value within					51205	5/ _	0.002,	
,	Ti 337.279†	1287662.5			0.0348	2.520	mg/L	0.0348	1.38%
	QC value within						57 —		
,	. <del>-</del>	7752.2		4	0.0022	1.010	ma/i	0.0022	0.21%
	QC value within						5, _	0.0022	***
1	V 292.402†	662726.7	2.464		0.0325	2.464	ma/I	0.0325	1.32%
	QC value within							*******	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Zn 206.200†	316831.8	1.040		0.0088	1.040	ma/T	0.0088	0.84%
•	QC value within								
-	Ca 227.546†	14408.3	25.21	. •	0.123	25.21	mcr/L	0.123	0.49%
•	QC value within							0.225	
,	5r 460.733†	678941.4	2.627		0.0218	2.627	ma/L	0.0218	0.83%
٠	QC value within								,
2	All analyte(s) pass								
_									

Sequence No.: 86 Sample ID: CCB Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 5 Date Collected: 8/13/2010 9:18:46 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB								
	Mean Corrected	£	Calib			Sample		
Analyte Y 371.029 Ag 328.068†	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8813592.5	1.009	mg/L	0.0052				0.52%
Ag 328.068†	179.9	0.0005	mg/L	0.00048	0.0005	mg/L	0.00048	99.67%
QC value within	limits for Ag	328.068	Recovery =	Not calculat	ed			
Al 308.215†			mg/L			mg/L	0.00213	14.92%
QC value within	limits for Al	308.215	Recovery =	Not calculat	ed	•_		
	13.5					mg/L	0.00031	19.34%
QC value within	limits for As	188.979	Recovery =	Not calculat	ed	<i>(</i>		
B 249.772†	-3334.7	-0.0146	mg/L	0.00291	-0.0146	mg/L	0.00291	19.97%
QC value within	limits for B 2	249.772 R	ecovery =	Not calculate	a aas	17	0.0040	0.000
	1654.3					mg/т	0.00040	8.80%
QC value within				NOT CATCUIAT	ea 2 2221	mg/L	0 00000	20 668
Be 313.107†		0.0001		0.00002	-3 0.000T	mg/г	0.00002	20.66%
QC value within	limits for Be	313.10/	Recovery =	NOT CATCULAT	ea	m~ /T	0.00004	170 049
Cd 226.502†	10.3	0.0000	mg/L	0.00004	0.0000	աց/ը	0.00004	170.848
QC value within				0.00006	eu ^ ^ ^ ^	mg/L	0 00000	15 00%
Co 228.616† QC value within	Jo.4	0.0004	mg/n	Not colouint	0.0004	ແຜ່ນ	0.00006	15.225
Cr 267.716†	-29.8	0 0001	ma/t	NOC CATCULAL	_0_0001	ma/T	0 00004	20 628
QC value within	-29.0	267 716 1	mg/n	Not calculat	-0.000I	mg/ n	0.00004	20.03%
Cu 324.752†			mg/L	0.00112	0 0034	mg/L	0 00112	32 96%
QC value within	limits for Cu	324 752 3	mg/b Recovery -	Not calculat	ed	g/ =	0.00112	52.500
Fe 238.863t	3068.0	0.0507	ma/L	0 00339	0 0507	mcr/Ti	0 00339	6 70%
QC value within	limits for Fe	238 863 1	Recovery =	Not calculat	ed	5/ -	0.00023	3.,,
K 404.721†	-229.7			nos carcarao			118.03	51.39%
Unable to evalua								
Mq 279.077†	-195.7	-0.0050	ma/L	0.00062	-0.0050	ma/L	0.00062	12.37%
QC value within	limits for Ma	279.077	Recovery =	Not calculat	ed	J/ =		
Mn 257.610†	365.1	0.0002	ma/L	0.00006	0.0002	mg/L	0.00006	27.91%
QC value within	limits for Mn	257.610	Recovery =	Not calculat		J.		
Mo 202.031†	35.0	0.0007	mq/L 1	0.00014	0.0007	mg/L	0.00014	21.87%
QC value within	limits for Mo	202.031	Recovery =	Not calculat	ed	5.		
Ni 231.604†	37.5	0.0003	mg/L	0.00001	0.0003	mg/L	0.00001	4.58%
QC value within	limits for Ni	231.604	Recovery =	Not calculat	ed			
Na 330.237†	-71.1	-0.0387	mg/L	0.04640	-0.0387	mg/L	0.04640	119.76%
QC value within	limits for Na	330.237	Recovery =	Not calculat	ed			
Pb 220.353†	13.8	0.0005	mg/L	0.00055	0.0005	mg/L	0.00055	110.03%
QC value within	limits for Pb	220.353 H	Recovery =	Not calculate	ed			
Sb 206.836†			mg/L			mg/L	0.00060	982.39%
QC value within	limits for Sb	206.836 I	Recovery =	Not calculate	ed			
	-9.8					mg/L	0.00068	40.83%
QC value within				Not calculat	ed			
Sn 189.927†	251.7	0.0083	mg/L	0.00158	0.0083	mg/L	0.00158	19.05%
QC value within	limits for Sn	189.927 I	Recovery =	Not calculate	ed			_
Ti 337.279†	-41.5	-0.0001	mg/L	0.00015	-0.0001	mg/L	0.00015	186.85%
QC value within					ed	t		
Tl 190.801t		0.0009		0.00056	0.0009	mg/L	0.00056	60.09%
QC value within					ed	t		
V 292.402t	51.2	0.0002		0.00002	0.0002	mg/L	0.00002	8.44%
QC value within						· · /=		
Zn 206.200†	66.0	0.0002		0.00003	0.0002	mg/г	0.00003	13.51%
QC value within							0 01505	10 0
Ca 227.546†	-53.4	-0.0897		0.01735	-0.0897	mg\r	0.01735	17.34%
QC value within						ma /T	0.00034	260 500
Sr 460.733†	16.0	0.0001		0.00024	0.0001	mg/ n	0.00024	<b>303.53</b> %
QC value within								
All analyte(s) pass	sea QC. One or	more analy	yces were	noc evaluaced	•			

Sequence No.: 87 Sample ID: MRL Analyst: Initial Sample Wt:

Autosampler Location: 6 Date Collected: 8/13/2010 9:24:28 PM Data Type: Original Initial Sample Vol:

Dilution:

## Sample Prep Vol:

Mean Data: MRL		-	a - 7 / 12			<b></b>		
33-1-	Mean Correcte	a	Calib		-	Sample	a	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
	8694069.0			0.00185	0.0300	/7	0 00011	0.19%
Ag 328.068†	4022.6			0.00011	0.0108	mg/L	0.00011	1.04%
	hin limits for Ag				0 1000	/-	0 00057	7 000
Al 308.215†	8146.8	0.1888		0.00357	0.1888	mg/L	0.00357	1.89%
	hin limits for Al					1-		
As 188.979†	188.7	0.0221		0.00006	0.0221	mg/L	0.00006	0.29%
	hin limits for As					4-		
B 249.772†	37993.5	0.1639		0.00199	0.1639	mg/L	0.00199	1.22%
	hin limits for B			81.95%		_		
Ba 233.527†	74495.2	0.2069		0.00073	0.2069	mg/L	0.00073	0.35%
QC value wit	hin limits for Ba			103.45%				
Be 313.107†	31410.5	0.0048		0.00001	0.0048	mg/L	0.00001	0.17%
QC value wit	hin limits for Be	313.107	Recovery =	95.64%				
Cd 226.502†		0.0099		0.00007	0.0099	mg/L	0.00007	0.74%
QC value wit	hin limits for Cd	226.502	Recovery =	99.50%		-		
Co 228.616†	6763.2	0.0506		0.00011	0.0506	mq/L	0.00011	0.21%
OC value wit	hin limits for Co	228.616	Recovery =	101.18%		•		
Cr 267.716†	2193.7	0.0099		0.00011	0.0099	ma/L	0.00011	1.14%
	hin limits for Cr							
Cu 324.752†	11617.8	0.0246		0.00025	0.0246	mg/L	0.00025	1.02%
	hin limits for Cu				0.0010		*******	
Fe 238.863†		0.1591		0.00095	0.1591	mcr / T.	0.00095	0.60%
	ater than the upp						0.00055	0.000
K 404.721†	8.8	C. IIIIIC X	J. IC 250.	005 RECOVERY	- 137.00	, ,	56.06 6	20 752
Unable to ev							50.00 0	33.75%
Mg 279.077t		1.046	m~ /T	0.0005	1 046	mg/L	0.0005	0.05%
	hin limits for Mg				1.040	шg/ п	0.0005	0.058
		0.0152			0 01 50	/T	0.00012	0.78%
Mn 257.610†			٠.	0.00012	0.0152	mg/L	0.00012	0.70%
	hin limits for Mn				0.0040	/*	0 00001	0.040
Mo 202.031†	1326.6	0.0248		0.00001	0.0248	mg/r	0.00001	0.04%
	hin limits for Mo					/-		
Ni 231.604†		0.0406		0.00000	0.0406	mg/ъ	0.00000	0.00%
	hin limits for Ni					4-		
Na 330.237†	1610.4	0.8826		0.03510	0.8826	mg/L	0.03510	3.98%
	hin limits for Na							
Pb 220.353†		0.0110		0.00066	0.0110	mg/L	0.00066	6.03%
QC value wit	hin limits for Pb			109.88%				
Sb 206.836†	327.2	0.0572		0.00062	0.0572	mg/L	0.00062	1.09%
QC value wit	nin limits for Sb	206.836 I	Recovery =	95.35%				
Se 196.026†	62.0	0.0107		0.00016	0.0107	mg/L	0.00016	1.50%
QC value wit	nin limits for Se	196.026 H	Recovery =	107.24%				
Sn 189.927†	16279.5	0.5356	mg/L	0.00161	0.5356	mg/L	0.00161	0.30%
QC value wit	nin limits for Sn	189.927 F	Recovery =	107.11%				
Ti 337.279†	24681.4	0.0483	mg/L	0.00088	0.0483	mg/L	0.00088	1.81%
QC value wit	nin limits for Ti	337.279 I	Recovery =	96.59%		-		
Tl 190.801†		0.0199	·	0.00142	0.0199	mq/L	0.00142	7.15%
	nin limits for Tl					•		
V 292.402†	13080.7	0.0486		0.00008	0.0486	ma/L	0.00008	0.17%
	nin limits for V							
Zn 206.200†	6134.9	0.0201	-	0.00006	0.0201	ma/L	0.00006	0.29%
	nin limits for Zn				J. 0201	⊒/ ⊷	00000	0.270
Ca 227.546†	457.9	0.8009		0.02027	0.8009	ma/I.	0.02027	2.53%
	nin limits for Ca				0.0009		0.02027	0.000
Sr 460.733†	25784.0	0.0998			0.0998	mar/T.	0.00092	0.93%
	25/84.0 nin limits for Sr			0.00092	0.0338	ma∖ n	0.00092	U.736
~			recovery =	22.13T				
Oc garred. Con	inue with analys:	ıs.						

______ Sequence No.: 88 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 7 Date Collected: 8/13/2010 9:30:11 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA

	Mean Corrected	i Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	7695587.7	0.8813 mg/L	0.00272				0.31%
Analyte Y 371.029 Ag 328.068†	-1888.9	-0.0001 mg/L	0.00068	-0.0001	mq/L	0.00068	667.63%
QC value within	limits for Aq	328.068 Recovery	r = Not calculat	ted	٥.		
Al 308.215†			0.72	248.8	mg/L	0.72	0.29%
QC value within	limits for Al	308.215 Recovery			٠.		
As 188.979†	-284.0	0.0058 mg/L	0.00232	0.0058	mg/L	0.00232	40.19%
	limits for As	188.979 Recovery	r = Not calculat	ted	٠.		
B 249.772†	79971.7	-0.0001 mg/L 0.0031 mg/L 0.0000 mg/L	0.00678	-0.0001	mq/L	0.00678	>999.9%
Ba 233.527†	3783.2 -1777.0	0.0031 mg/L	0.00026	0.0031	mg/L	0.00026	8.44%
	-1777.0	0.0000 mg/L	0.00000	0.0000	mg/L	0.00000	10.50%
QC value within	limits for Be	313.107 Recovery	r = Not calculat	ted			
Cd 226.502†	2774.3	-0.0005 mg/L	0.00004	-0.0005	mg/L	0.00004	7.67%
QC value within	limits for Cd	226.502 Recovery	r = Not calculat				
Co 228.616†	279.4	0.0000 mg/L	0.00027	0.0000	mg/L	0.00027	>999.9%
QC value within	limits for Co	228.616 Recovery	r = Not calculat	ted			
Cr 267.716†	-1373.2	-0.0011 mg/L	0.00052	-0.0011	mg/L	0.00052	46.01%
QC value within	limits for Cr	267.716 Recovery	r = Not calculat	ted			
Cu 324.752†	-6242.9	-0.0033 mg/L	0.00044	-0.0033	mg/L	0.00044	13.58%
QC value within	limits for Cu	324.752 Recovery	r = Not calculat	ted			
Fe 238.863†	5763088.5	95.06 mg/L	0.312	95.06	mg/L	0.312	0.33%
QC value within	limits for Fe	238.863 Recovery	r = 95.06%				
K 404.721†	-418.4					3.28	0.78%
Mg 279.077†	9661234.5	245.7 mg/L	0.83	245.7	mg/L	0.83	0.34%
QC value within		279.077 Recovery					
Mn 257.610†		٥.	0.00012		mg/L	0.00012	1.66%
QC value within	limits for Mn	257.610 Recovery	<pre>' = Not calculat</pre>	ced	_		
Mo 202.031t	-355.4 35.8	-0.0003 mg/L -0.0010 mg/L	0.00116	-0.0003	mg/L mg/L	0.00116	359.92%
					mg/L	0.00010	9.63%
QC value within	limits for Ni	231.604 Recovery	r = Not calculat	ed	<b>.</b>		
Na 330.237†	141.3	0.0434 mg/L 0.0005 mg/L	0.04061	0.0434	mg/L		
					mg/L	0.00058	108.67%
		220.353 Recovery			,_		
Sb 206.836†	7.3	-0.0022 mg/L	0.00339		mg/L	0.00339	153.10%
		206.836 Recovery					
Se 196.026†	-79.2	0.0021 mg/L	0.00733		mg/L	0.00733	353.11%
QC value within	limits for Se	196.026 Recovery	= Not calculat		/-		
Sn 189.927†	-47.2	0.0496 mg/L -0.0033 mg/L 0.0046 mg/L	0.00055		mg/L		1.12%
Ti 337.279†	250.4	-0.0033 mg/L	0.00006	-0.0033	mg/L mg/L	0.00006	1.91%
T1 190.801†	-22.0	0.0046 mg/L	0.00188		mg/r	0.00188	41.42%
		190.801 Recovery		cea	mg/L	0.0000	0.040
V 292.402†		-0.0011 mg/L	0.00000		шд/п	0.00000	0.24%
		92.402 Recovery	= Not calculate 0.00014	ea 0 0115	mg/L	0 00014	1.20%
Zn 206.200†		-0.0115 mg/L 206.200 Recovery		-0.0112	шд/п	0.00014	1.208
Ca 227.546†			= NOC Calculat	254 7	mg/L、	1 41	0 568
		254.3 mg/L 227.546 Recovery	101 77\$	234.3	шалт,	7.47	V.506
Sr 460.733†	1011 1	0.0021 mg/L	- TOT./24	0 0001	ma/ī.	0 00022	15 179
All analyte(s) pass	zed OC	0.00ZI IIIG/D	0.00032	0.0021	™A\ n	0.00032	T3.4.0
THE analyce (b) pass	vo.						

Sequence No.: 89 Sample ID: ICSAB Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 8 Date Collected: 8/13/2010 9:34:23 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB							
	Mean Corrected	d Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7612600.9	0.8718 mg/L	0.00058				0.07%
Ag 328.068†	79037.0	0.2170 mg/L	0.00035	0.2170	mg/L	0.00035	0.16%
QC value within	limits for Ag	328.068 Recovery	= 108.49%				
Al 308.215†	10863764.0	251.9 mg/L	0.42	251.9	mg/L	0.42	0.17%
QC value within	limits for Al	308.215 Recovery	= 100.77%				
As 188.979†	544.5	0.1033 mg/L	0.00167	0.1033	mg/L	0.00167	1.62%
QC value within	limits for As	188.979 Recovery	= 103.27%				
B 249.772†	79628.8	-0.0067 mg/L	0.00300	-0.0067	mg/L	0.00300	45.08%
Ba 233.527†	192788.6	0.5280 mg/L	0.00077	0.5280	mg/L	0.00077	0.15%
OC value within	limits for Ba	233.527 Recovery	105.60%				

Method: AXIAL200-6010 L Opt4	Page 62	Date:	8/13/2010 9:	40:45 PM
Be 313.107† 3357329.8				
QC value within limits for Be	313 107 Recovery - 102 26%	0.5115 119/1	0.00113	0.230
	1.015 mg/L 0.0007	1.015 mg/L	0.0007	0.07%
QC value within limits for Cd		1.0139, 1	0.0007	0.070
Co 228.616† 66643.7	0.4964 mg/L 0.00421	0.4964 mg/L	0.00421	0.85%
QC value within limits for Co	228.616 Recovery = 99.29%	**************************************		
	0.5124 mg/L 0.00074	0.5124 mg/L	0.00074	0.14%
QC value within limits for Cr		• • • • · · · · · · · · · · · · · · · ·		
	0.5122 mg/L 0.00150	0.5122 mg/L	0.00150	0.29%
OC value within limits for Cu	324 752 Pecovery - 102 44%			
Fe 238.863† 5851463.9	96.52 mg/L 0.231	96.52 mg/L	0.231	0.24%
QC value within limits for Fe	238.863 Recovery = 96.52%			
K 404.721† -282.6	<u>-</u>		10.85	3.84%
K 404.721† -282.6 Mg 279.077† 9818974.4	249.7 mg/L 0.63	249.7 mg/L	0.63	0.25%
QC value within limits for Mg	279.077 Recovery = 99.87%			
	0.5124 mg/L 0.00093	$0.5124~{ m mg/L}$	0.00093	0.18%
QC value within limits for Mn	257.610 Recovery = 102.49%			
Mo 202.031† -401.0	-0.0011 mg/L 0.00045 1.004 mg/L 0.0011	-0.0011  mg/L	0.00045	41.51%
Ni 231.604† 150748.5	1.004  mg/L 0.0011	1.004 mg/L	0.0011	0.11%
QC value within limits for Ni	231.604 Recovery = 100.36%			
Na 330.237† -759.0 Pb 220.353† 759.3	-0.4496 mg/L 0.09800	$-0.4496~\mathrm{mg/L}$	0.09800	
Pb 220.353† 759.3	$0.0520 \text{ mg/L} \qquad 0.00327$	0.0520 mg/L	0.00327	6.29%
QC value within limits for Pb	220.353 Recovery = 104.06%			
Sb 206.836† 3703.7	0.6441 mg/L 0.00724	$0.6441~{ m mg/L}$	0.00724	1.12%
QC value within limits for Sb	206.836 Recovery = 107.35%			
	0.0565 mg/L 0.00468	0.0565 mg/L	0.00468	8.27%
QC value within limits for Se	196.026 Recovery = 113.09%			
Sn 189.927† -98.6	0.0486 mg/L 0.00058	0.0486 mg/L	0.00058	1.20%
Sn 189.927† -98.6 Ti 337.279† 217.2 Tl 190.801† 725.2	-0.0034 mg/L 0.00009	-0.0034 mg/L 0.1019 mg/L	0.00009	2.53%
TI 190.801† 725.2	0.1019 mg/L 0.00026	0.1019 mg/L	0.00026	0.25%
QC value within limits for Tl		0 5000 - 15		0.000
	0.5028 mg/L 0.00099	0.5028 mg/L	0.00099	0.20%
QC value within limits for V	292.402 Recovery = 100.57%	7 000 /7	0 0006	0.06%
Zn 206.200† 315067.4 QC value within limits for Zn	1.020 mg/L 0.0006	1.020 mg/L	0.0006	0.06%
QC value within limits for zn	206.200 Recovery = 102.05%	257 0 mg/5	0.45	0.18%
Ca 227.546† 145444.8	257.0 mg/L 0.45	∠5/.V mg/L	0.45	0.184
QC value within limits for Ca		0.0025 mg/L	0.00000	8,85%
Sr 460.733† 1922.7 All analyte(s) passed QC.	0.0025 mg/h 0.00022	0.0025 Hg/L	0.00022	0.00%
ALL didiyec(s) passed Qc.				

Sequence No.: 90 Sample ID: CCV Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 4 Date Collected: 8/13/2010 9:38:43 PM
Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV							
	Mean Corrected	Calib			Sample		
Analyte	Intensity		Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8187153.0	0.9376 mg/L	0.00410				0.44%
		0.5230 mg/L		0.5230	mg/L	0.00291	0.56%
QC value within	limits for Ag	328.068 Recovery =	: 104.60%				
		10.23 mg/L		10.23	mg/L	0.008	0.08%
QC value within	limits for Al	308.215 Recovery =	: 102.34%		-		
As 188.979†	8808.1	1.032 mg/L	0.0062	1.032	mg/L	0.0062	0.60%
QC value within	limits for As	188.979 Recovery =	: 103.24%		_		
B 249.772t	561484.3	2.411 mg/L	0.0058	2.411	mg/L	0.0058	0.24%
OC value within	limits for B 2	49.772 Recovery =	96.44%		•		
Ba 233.527†	3551469.2	9.864 mg/L	0.0009	9.864	mg/L	0.0009	0.01%
OC value within	limits for Ba	233.527 Recovery =	98.64%		•		
		0.2495 mg/L		0.2495	mg/L	0.00080	0.32%
		313.107 Recovery =			<b>.</b>		
		0.5115 mg/L		0.5115	mg/L	0.00067	0.13%
OC value within	limits for Cd	226.502 Recovery =	: 102.30%		<b>.</b>		
		2.446 mg/L		2.446	mg/L	0.0008	0.03%
OC value within	limits for Co	228.616 Recovery =	97.85%		<b>.</b>		
Cr 267.716†	114750.3	0.5190 mg/L	0.00241	0.5190	mg/L	0.00241	0.46%
QC value within	limits for Cr	267.716 Recovery =	: 103.79%		•		
Cu 324.752†				1.236	mg/L	0.0019	0.16%
		324.752 Recovery =			<u>-</u> .		

Method: AXIAL200-6010 L Opt4	Page 63	Date:	8/13/2010 9:46:28 P	M
Fe 238.863† 315378.7 QC value within limits for Fe	5.200 mg/L 0.0078	5.200 mg/L	0.0078 0.15%	
K 404.721† 4446.8	230.003 Recovery - 103.950		31.90 0.72%	;
Unable to evaluate QC.				
	26.11 mg/L 0.024	26.11 mg/L	0.024 0.09%	;
QC value within limits for Mg				
	0.7683 mg/L 0.00004	0.7683 mg/L	0.00004 0.00%	
QC value within limits for Mn				
Mo 202.031† 132971.7	2.488  mg/L 0.0105	2.488 mg/L	0.0105 0.42%	1
QC value within limits for Mo				
	2.080 mg/L 0.0098	2.080 mg/L	0.0098 0.47%	
QC value within limits for Ni	231.604 Recovery = 104.02%			
Na 330.237† 46238.1	25.34 mg/L 0.232	25.34 mg/L	0.232 0.91%	
QC value within limits for Na				
Pb 220.353† 14289.0	0.5219 mg/L 0.00556	0.5219 mg/L	0.00556 1.06%	
QC value within limits for Pb		<u>-</u>		
Sb 206.836† 28937.2	5.060 mg/L 0.0071	5.060  mg/L	0.0071 0.14%	
QC value within limits for Sb	206.836 Recovery = 101.20%			
	0.5153 mg/L 0.00579	0.5153 mg/L	0.00579 1.12%	
QC value within limits for Se		<b>_,</b> ,		
	5.193 mg/L 0.0076	5.193 mg/L	0.0076 0.15%	
QC value within limits for Sn		5 1 2 5 5 mg/ 2	0.007,0 0.1250	
	2.532 mg/L 0.0180	2.532 mg/L	0.0180 0.71%	
QC value within limits for Ti		2.002	0.0100 010	
	1.026 mg/L 0.0061	1.026 mg/L	0.0061 0.60%	
QC value within limits for Tl		2.0203/ =	0.0002	
	2.498 mg/L 0.0137	2.498 mg/L	0.0137 0.55%	
QC value within limits for V		2.150 mg/L	0.0137 0.330	
	1.053 mg/L 0.0013	1.053 mg/L	0.0013 0.12%	
QC value within limits for Zn		1.000 119/11	0.0013 0.128	
	25.47 mg/L 0.205	25.47 mg/L	0.205 0.80%	
QC value within limits for Ca		23.4/ 1119/11	0.205 0.60%	
		2 CE1 ma/I	0.0034 0.13%	
	2.651 mg/L 0.0034	⊼∙o⊃⊤ แत\π	0.0034 0.13%	
QC value within limits for Sr				
All analyte(s) passed QC. One or	more analytes were not evaluated.			

Sequence No.: 91 Autosampler Location: 5
Sample ID: CCB Date Collected: 8/13/2010 9:43:04 PM

Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol:

Mean Data: CCB Mean Corrected Calib Sample Intensity Analyte Conc. Units Std.Dev. Conc. Units RSD Std.Dev. Y 371.029 8699060.6 0.9962 mg/L 0.00154 0.16% 0.0002 mg/L Ag 328.068† 60.0 0.00039 0.0002 mg/L 0.00039 236.15% QC value within limits for Ag 328.068 Recovery = Not calculated -0.0080 mg/L Al 308.215t -346.1 0.00440 -0.0080 mg/L 0.00440 54.87% QC value within limits for Al 308.215 Recovery = Not calculated 0.0000 mg/L As 188.979† -0.2 0.00013 0.0000 mg/L 0.00013 >999.9% QC value within limits for As 188.979 Recovery = Not calculated 0.00221 B 249.772† -2802.1 -0.0123 mg/L -0.0123 mg/L 0.00221 17.93% QC value within limits for B 249.772 Recovery = Not calculated 1905.5 0.0053 mg/L 0.0053 mg/L 0.00035 Ba 233.527† 0.00035 6.68% QC value within limits for Ba 233.527 Recovery = Not calculated 586.1 0.0001 mg/L 0.00004 0.0001 mg/L 0.00004 48.41% Be 313.107† QC value within limits for Be 313.107 Recovery = Not calculated Cd 226.502† 55.8 0.0001 mg/L 0.00005 0.0001 mg/L 0.00005 35.01% QC value within limits for Cd 226.502 Recovery = Not calculated 51.3 0.0004 mg/L 0.00008 0.0004 mg/L 0.00008 22.06% Co 228.616† QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† -2.8 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 157.91% QC value within limits for Cr 267.716 Recovery = Not calculated Cu 324.752† 1728.0 0.0037 mg/L 0.00117 0.0037 mg/L 0.00117 31.95% QC value within limits for Cu 324.752 Recovery = Not calculated Fe 238.863† 3712.7 0.0613 mg/L 0.00174 0.0613 mg/L 0.00174 2.84% QC value within limits for Fe 238.863 Recovery = Not calculated 40.44 23.87% K 404.721† -169.4 Unable to evaluate QC.

Method: AXIAL200-6010 L Opt4	Page 64	Date:	8/13/2010 9:52:13 PM
Mg 279.077† -164.7	-0.0042 mg/L 0.00284 -0.0042		0.00284 67.13%
Mn 257.610† 395.4	g 279.077 Recovery = Not calculated 0.0002 mg/L 0.00006 0.0002	mg/L	0.00006 23.89%
Mo 202.031† 29.5	1 257.610 Recovery = Not calculated 0.0006 mg/L 0.00017 0.0006 2 202.031 Recovery = Not calculated		
Ni 231.604t 47.3	0.0003 mg/L 0.00002 0.0003		
Na 330.237† -20.6 OC value within limits for Na	-0.0111 mg/L 0.01522 -0.0111 1 330.237 Recovery = Not calculated		
Pb 220.353† 22.8 OC value within limits for Pl	0.0008 mg/L 0.00009 0.0008 0 220.353 Recovery = Not calculated		
QC value within limits for S	0.0018 mg/L 0.00062 0.0018 206.836 Recovery = Not calculated	_	
OC value within limits for Se	-0.0003 mg/L 0.00025 -0.0003 e 196.026 Recovery = Not calculated	-	
QC value within limits for S:	0.0089 mg/L 0.00209 0.0089 1 189.927 Recovery = Not calculated		
QC value within limits for T:			0.00003 9.15% 0.00102 92.44%
001	0.0011 mg/L 0.0012 0.0011 190.801 Recovery = Not calculated 0.0005 mg/L 0.00024 0.0005		
	292.402 Recovery = Not calculated 0.0003 mg/L 0.00007 0.0003		
QC value within limits for Zn Ca 227.546† -46.1	-0.0765 mg/L 0.03281 -0.0765		
QC value within limits for Ca Sr 460.733† 10.9	. 227.546 Recovery = Not calculated 0.0000 mg/L 0.00021 0.0000		
All analyte(s) passed QC. One or	1 460.733 Recovery = Not calculated more analytes were not evaluated.	dru	n here
Sequence No.: 92	Autosampler Location: 93	: ===== }	

Sequence No.: 92 Sample ID: PBW-117222 Analyst: Initial Sample Wt: Dilution: Autosampler Location: 93
Date Collected: 8/13/2010 9:48:48 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

Mean Data: PBW-1	.17222							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8832381.7	1.012	mg/L	0.0152				1.50%
Ag 328.068†	-151.4	-0.0004	mg/L	0.00028				68.41%
Al 308.215†	-527.6	-0.0122	mg/L	0.00289				23.62%
As 188.979†	-6.0	-0.0007	mg/L	0.00070				102.83%
B 249.772†	-4371.8	-0.0191		0.00173				9.05%
Ba 233.527†	795.4	0.0022	mg/L	0.00029				12.91%
Be 313.107†	324.8	0.0000	mg/L	0.00003				53.86%
Cd 226.502†	0.9	0.0000	mg/L	0.00000				84.10%
Co 228.616†	2.0	0.0000	mg/L	0.00010			1	679.86%
Cr 267.716†	68.4	0.0003	mg/L	0.00003				8.37%
Cu 324.752†	246.5	0.0005	mg/L	0.00025				47.22%
Fe 238.863†	3061.2	0.0506	mg/L	0.00931				18.42%
K 404.721†	-130.2						140.16	107.65%
Mg 279.077†	-236.1	-0.0060	mg/L	0.00037				6.20%
Mn 257.610†	-80.9	0.0000	mg/L	0.00002				36.90%
Mo 202.031†	8.9	0.0002	mg/L	0.00014				81.37%
Ni 231.604†	7.8	0.0001	mg/L	0.00008				158.30%
Na 330.237†	61.8	0.0341	mg/L	0.00322				9.43%
Pb 220.353†	15.4	0.0006	mg/L	0.00038				67.93%
Sb 206.836†	1.5	0.0003	mg/L	0.00036				137.44%
Se 196.026†	-1.9	-0.0003	mg/L	0.00213			(	696.96%
Sn 189.927†	106.0	0.0035	mg/L	0.00096				27.46%
Ti 337.279†	-56.0	-0.0001		0.00003				26.16%
Tl 190.801†	6.3	0.0008	mg/L	0.00008				10.33%
V 292.402†	62.6	0.0002		0.00001				2.61%
Zn 206.200†	667.3	0.0022		0.00004				1.85%
Ca 227.546†	-50.8	-0.0853		0.01974				23.13%
Sr 460.733†	-65.1	-0.0003	mg/L	0.00032			:	128.77%
Sample conc. not	calculated. Sampl	e Prep. V	Vol. AND	Initial Vol.	required (	OR sample	units inco	rrect.

Sequence No.: 93
Sample ID: LCSW-117222

Parity TD: MCSW-II/22

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 94

Date Collected: 8/13/2010 9:54:31 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: LCSW-	117222							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	8454253.7	0.9682	mg/L	0.00107				0.11%
Ag 328.068†	19058.6	0.0512	mg/L	0.00025				0.49%
Al 308.215†	88360.3	2.049	mg/L	0.0055				0.27%
As 188.979†	374.0	0.0442	mg/L	0.00107				2.43%
B 249.772†	208732.4	0.9001	mg/L	0.00598				0.66%
Ba 233.527†	716719.0	1.991	mg/L	0.0021				0.11%
Be 313.107†	314057.3	0.0478	mg/L	0.00002				0.05%
Cd 226.502†	19580.0	0.0511	mg/L	0.00008				0.17%
Co 228.616†	69086.7	0.5168	mg/L	0.00179				0.35%
Cr 267.716†	44429.9	0.2008	mg/L	0.00009				0.04%
Cu 324.752†	124372.8	0.2634	mg/L	0.00026				0.10%
Fe 238.863†	66821.9	1.103	mg/L	0.0020				0.18%
K 404.721†	3320.8						156.64	4.72%
Mg 279.077†	81762.0	2.079 1	mg/L	0.0004				0.02%
Mn 257.610†	860743.7	0.5021 1	mg/L	0.00024				0.05%
Mo 202.031†	27264.2	0.5101 1	mg/L	0.01047				2.05%
Ni 231.604†	68718.0	0.4581 ı	mg/L	0.00079				0.17%
Na 330.237†	36078.6	19.78 ı	mg/L	0.081				0.41%
Pb 220.353†	14564.2	0.5311 1	mg/L	0.01056				1.99%
Sb 206.836†	2655.2	0.4643 1	mg/L	0.00496				1.07%
Se 196.026†	5914.9	1.020 1	mg/L	0.0019				0.19%
Sn 189.927†	168597.4	5.545	mg/L	0.0275				0.50%
Ti 337.2 <b>7</b> 9†	260584.5	0.5100 τ		0.00792				1.55%
Tl 190.801;	15196.8	1.979 t	mg/L	0.0116				0.59%
V 292.402†	131576.6	0.4892 เ		0.00361				0.74%
Zn 206.200†	161770.4	0.5316 τ	ng/L	0.00011				0.02%
Ca 227.546†	1056.5	1.888 រ	<b>-</b> ·	0.0465				2.46%
Sr 460.733†	145.3	0.0005 τ	ng/L	0.00027				51.17%
Sample conc. not	calculated. Sample	Prep. Vo	ol. AND	Initial Vol.	required (	R sample	units inco	rrect.

Sequence No.: 94

Sample ID: R1004144-001

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 95

Date Collected: 8/13/2010 9:58:50 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mong Data, P1004144 001

Mean Data: R10041	44-001							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6965297.6	0.7977	mg/L	0.00462				0.58%
Ag 328.068†	143.3	0.0010	mg/L	0.00060				59.86%
Al 308.215†	2601.0	0.0289	mg/L	0.00128				4.43%
As 188.979†	341.2	0.0489	mg/L	0.00052				1.07%
B 249.772†	198533.3	0.7778	mg/L	0.00765				0.98%
Ba 233.527†	101673.6	0.2795	mg/L	0.00056				0.20%
Be 313.107†	-2508.2	-0.0002	mg/L	0.00005				20.58%
Cd 226.502†	451.8	-0.0003	mg/L	0.00011				33.05%
Co 228.616†	-23.4	-0.0009	mg/L	0.0000				0.09%
Cr 267.716†	-171.8	0.0001	mg/L	0.00007				116.19%
Cu 324.752†	575.0	0.0027	mg/L	0.00029				10.93%
Fe 238.863†	1163886.7	19.19	mg/L	0.155				0.81%
K 404.721†	10348.1						130.26	1.26%
Mg 279.077†	1787793.9	45.46	mg/L	0.274				0.60%
Mn 257.610†	1399025.7	0.8147	mg/L	0.00373				0.46%
Mo 202.031†	5.8	0.0007	mg/L	0.00061				85.02%
Ni 231.604†	199.1	0.0006	mg/L	0.00015				24.48%
Na 330.237†	3286080.1	1802	mg/L	0.5				0.03%
Pb 220.353†	79.8	0.0034	mg/L	0.00005				1.32%

Date: 8/13/2010 10:09:25 PM Method: AXIAL200-6010 L Opt4 Page 66 Sb 206.836† -11.8 -0.0026 mg/L 0.00323 126.49% 0.0071 mg/L Se 196.026† 24.9 0.00206 29.17% Sn 189.927† 0.0212 mg/L 0.00151 7.09% -35.4 -0.0022 mg/L Ti 337.279† -412.9 0.00029 13.28% Tl 190.801† -0.0017 mg/L 0.00044 -25.0 26.62% V 292.402† -143.5 0.0012 mg/L 0.00006 5.53% Zn 206.200† 0.0000 mg/L 0.00017 1041.0 421.52% Ca 227.546† 140382.9 243.9 mg/L 1.55 0.64% 1439549.3 Sr 460.733† 5.565 mg/L 0.0015 0.03% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 95

Sample ID: R1004144-001D

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 96

Date Collected: 8/13/2010 10:03:08 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1	L004144-001D					<del></del>		
	Mean Corre	cted	Calib			Sample		
Analyte	Intensi	ty Conc.	Units	Std.Dev.	Conc.	Units	Std.I	Dev. RSD
Y 371.029	6642828.	8 0.7608	mg/L	0.00242				0.32%
Ag 328.068†	40.	2 0.0007	mg/L	0.00074				99.86%
Al 308.215†	2725.	3 0.0311	mg/L	0.00352				11.33%
As 188.979†	364.	7 0.0518	mg/L	0.00575				11.08%
B 249.772†	201013.	9 0.7865	mg/L	0.00631				0.80%
Ba 233.527†	104244.	8 0.2866	mg/L	0.00026				0.09%
Be 313.107†	-2936.	4 -0.0003	mg/L	0.00003				8.70%
Cd 226.502†	512.	4 -0.0002	mg/L	0.00017				79.40%
Co 228.616†	-64.	3 -0.0012	mg/L	0.00004				3.47%
Cr 267.716†	31.	7 0.0010	mg/L	0.00044				43.55%
Cu 324.752†	1296.	0.0043	mg/L	0.00028				6.47%
Fe 238.863†	1194822.	9 19.70	mg/L	0.012				0.06%
K 404.721†	10869.	6					169.	.76 1.56%
Mg 279.077†	1830713.	5 46.55	mg/L	0.052				0.11%
Mn 257.610†	1423619.			0.00011				0.01%
Mo 202.031†	22.			0.00033				31.44%
Ni 231.604†	178.		mg/L	0.00038				84.46%
Na 330.237†	3417590.4			1.8				0.10%
Pb 220.353†	47.			0.00217				95.97%
Sb 206.836†	-6.9			0.00100				58.53%
Se 196.026†	38.			0.00815	•			85.88%
Sn 189.927†	-112.	7 0.0192	mg/L	0.00109				5.70%
Ti 337.279†	-855.2			0.00021				6.65%
Tl 190.801†	-39.6	-0.0035	mg/L	0.00056				15.74%
V 292.402†	-174.6			0.00031				27.95%
Zn 206.200†	1438.2			0.00014				11.49%
Ca 227.546†	143418.			0.16				0.07%
Sr 460.733†	1506372.6			0.0555				0.95%
Sample conc.	not calculated. S	Sample Prep. 7	Vol. AND	Initial Vol.	required C	R sample	units i	incorrect.

Sequence No.: 96

Sample ID: R1004144-001S

57416.3

Analyst:

Initial Sample Wt:

Dilution:

Co 228.616†

Autosampler Location: 97

Date Collected: 8/13/2010 10:07:25 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

0.00095

Mean Data: R100	4144-001S							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6960073.9	0.7971	mg/L	0.00873				1.09%
Ag 328.068†	17876.9	0.0485	mg/L	0.00042				0.87%
Al 308.215†	74943.8	1.712	mg/L	0.0110				0.65%
As 188.979†	664.2	0.0857	mg/L	0.00272				3.18%
B 249.772†	362580.2	1.497	mg/L	0.0150				1.00%
Ba 233.527†	684899.8	1.900	mg/L	0.0055				0.29%
Be 313.107†	271173.9	0.0414	mg/L	0.00002				0.06%
Cd 226.502t	17498.0	0.0444	mar/L	0.00010				0.23%

0.4289 mg/L

0.22%

Method: AXIA	L200-6010 L Opt4	Pag	e 67	Date: 8/13/2010 10:18:02 PM
Cr 267.716†	37683.9	0.1711 mg/L	0.00059	0.35%
Cu 324.752†	108714.2	0.2315 mg/L	0.00034	0.15%
Fe 238.863†	1049005.2	17.30 mg/L	0.117	0.68%
K 404.721†	13194.1	_		18.60 0.14%
Mg 279.077†	1604123.4	40.79 mg/L	0.227	0.56%
Mn 257.610†	1915811.2	1.116 mg/L	0.0020	0.18%
Mo 202.031†	23552.8	0.4412 mg/L	0.00158	0.36%
Ni 231.604†	58367.8	0.3885 mg/L	0.00041	0.10%
Na 330.237†	2918853.1	1600 mg/L	13.0	0.81%
Pb 220.353†	12382.4	0.4520 mg/L	0.00372	0.82%
Sb 206.836†	2501.9	0.4371 mg/L	0.00733	1.68%
Se 196.026†	5632.2	0.9738 mg/L	0.00696	0.71%
Sn 189.927†	138194.0	4.564 mg/L	0.0624	1.37%
Ti 337.279†	220688.1	0.4308 mg/L	0.00634	1.47%
Tl 190.801;	12743.9	1.661 mg/L	0.0032	0.19%
V 292.402†	116129.9	0.4332 mg/L	0.00342	0.79%
Zn 206.200†	143960.3	0.4701 mg/L	0.00260	0.55%
Ca 227.546†	118705.1	206.3 mg/L	0.80	0.39%
Sr 460.733†	1268935.2	4.905 mg/L	0.0951	1.94%
Sample conc.	not calculated. Sample	Prep. Vol. AND	Initial Vol.	required OR sample units incorrect.

Sequence No.: 97 Sample ID: R1004144-001A Analyst: Initial Sample Wt: Dilution:

Autosampler Location: 98 Date Collected: 8/13/2010 10:11:45 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004144-001A Mean Corrected Sample Calib Intensity Conc. 0.7317 mg/L Analyte Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.00423 0.58% 19773.0 Ag 328.068† 0.0537 mg/L 0.00037 0.69% 86762.9 1.982 mg/L Al 308.215† 0.0030 0.15% As 188.979† 768.3 0.0989 mg/L 0.00535 5.41% 407040.3 782489.6 1.680 mg/L B 249.772† 0,0025 0.15% Ba 233.527† 2.171 mg/L 0.0057 0.26% 308569.2 Be 313.107† 0.0471 mg/L0.00034 0.72% 19634.6 64880.3 Cd 226.502† 0.0498 mg/L 0.00072 1.45% Co 228.616† 0.4847 mg/L 0.00551 1.14% Cr 267.716† 42823.4 0.1944 mg/L 0.00254 1.31% 124976.4 0.2661 mg/L Cu 324.752† 0.00069 0.26% Fe 238.863† 1188277.4 19.59 mg/L 0.031 0.16% K 404.721† 15438.5 192.84 1.25% 1803091.2 45.85 mg/L 1.261 mg/L Mg 279.077t 0.083 0.18% Mn 257.610† 2163410.4 0.0044 0.35% 27322.9 Mo 202.031t 0.5118 mg/L 0.00411 0.80% Ni 231.604† 66982.8 0.4458 mg/L 0.00122 0.27% 1850 mg/L Na 330.237† 3373950.5 6.0 0.33% 13883.5 Pb 220.353† 0.5068 mg/L 0.00837 1.65% 2893.6 0.5055 mg/L Sb 206.836† 0.01404 2.78% 1.172 mg/L Se 196.026† 6777.3 0.0192 1.64% 166427.4 258851.6 Sn 189.927† 5.495 mg/L 0.0085 0.15% Ti 337.279† 0.5053 mg/L 0.00182 0.36% 1.827 mg/L Tl 190.801† 14021.3 0.0374

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. 

0.00086

0.00061

0.10

0.0031

0.5003 mg/L

0.5446 mg/L

234.3 mg/L

5.739 mg/L

Sequence No.: 98 Sample ID: R1004144-001L Analyst: Initial Sample Wt:

V 292.402†

Zn 206.200†

Ca 227.546†

Dilution:

Autosampler Location: 99 Date Collected: 8/13/2010 10:16:07 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004144-001L

Mean Corrected Calib

134125.4

166730.8

134789.7

1484579.1

Sample

2.05%

0.17%

0.11%

0.04%

0.05%

Method: AXIAL2	00-6010 L Opt4	Page	68	Date: 8/13/2010 10:24:37 PM
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units Std.Dev. RSD
Y 371.029	6802324.2	0.7790 mg/L	0.00200	0.26%
Ag 328.068†	395.0	0.0012 mg/L	0.00027	22.56%
Al 308.215†	742.3	0.0109 mg/L	0.00005	0.49%
As 188.979†	99.8	0.0136 mg/L	0.00441	32.45%
B 249.772†	38958.1	0.1515 mg/L	0.00159	1.05%
Ba 233.527†	22716.6	0.0625 mg/L	0.00008	0.12%
Be 313.107†	-2385.0	-0.0003 mg/L	0.00004	. 12.57%
Cd 226.502†	95.3	-0.0001 mg/L	0.00013	170.66%
Co 228.616†	-0.2	-0.0001 mg/L	0.00060	413.53%
Cr 267.716†	-69.4	-0.0001 mg/L	0.00036	274.17%
Cu 324.752†	605.3	0.0016 mg/L	0.00010	6.20%
Fe 238.863†	249817.5	4.120 mg/L	0.0158	0.38%
K 404.721†	2123.0			378.68 17.84%
Mg 279.077†	372615.0	9.475 mg/L	0.0607	0.64%
Mn 257.610†	277021.0	0.1613 mg/L	0.00060	0.37%
Mo 202.031†	-60.6	-0.0010 mg/L	0.00034	34.36%
Ni 231.604†	32.2	0.0001 mg/L	0.00002	22.42%
Na 330.237†	684994.2	375.6 mg/L	1.41	0.37%
Pb 220.353†	62.3	0.0024 mg/L	0.00030	12.56%
Sb 206.836†	22.0	0.0037 mg/L	0.00102	27.20%
Se 196.026†	78.8	0.0142 mg/L	0.00032	2.25%
Sn 189.927†	767.2	0.0298 mg/L	0.00180	6.03%
Ti 337.279†	-1538.3	-0.0033 mg/L	0.00012	3.61%
Tl 190.801†	11.0	0.0018 mg/L	0.00557	315.38%
V 292.402†	349.0	0.0017 mg/L	0.00028	16.55%
Zn 206.200†	1392.2	0.0039 mg/L	0.00022	5.65%
Ca 227.546†	28177.3	48.97 mg/L	0.564	1.15%
Sr 460.733†	342394.2	1.324 mg/L	0.0031	0.23%
Sampre CONC. I	or carcurated. Samp	re Preb. AOI. WND I	nicial vol.	required OR sample units incorrect.

Sequence No.: 99

Sample ID: R1004144-002

Analyst:

Initial Sample Wt: Dilution: Autosampler Location: 100

Date Collected: 8/13/2010 10:20:21 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R100	4144-002							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6888164.0	0.7889	mg/L	0.00073				0.09%

Analyte	intensity	Conc. Un	nts Stalber.	Conc. Units	sta.Dev. RSD
Y 371.029	6888164.0	0.7889 mg	g/L 0.00073	•	0.09%
Ag 328.068;	576.7	0.0019 mg	g/L 0.00033		17.37%
Al 308.215†	10038.9	0.2201 mg	g/L 0.00323		1.47%
As 188.979†	55.3	0.0107 mg	J/L 0.00380		35.63%
B 249.772†	54110.9	0.1974 mg	g/L 0.00023		0.12%
Ba 233.527†	276304.7	0.7662 mg	J/L 0.00244		0.32%
Be 313.107†	-2088.7	-0.0003 mg	g/L 0.00001		4.28%
Cd 226.502†	249.9	-0.0001 mg	J/L 0.00011		134.02%
Co 228.616†	-125.8	-0.0012 mg	g/L 0.00007		5.33%
Cr 267.716†	-53.7	0.0003 mg	J/L 0.00021		75.42%
Cu 324.752†	3549.9	0.0081 mg	J/L 0.00026		3.17%
Fe 238.863†	552502.8	9.110 mg	/L 0.0157		0.17%
K 404.721†	4042.8				136.22 3.37%
Mg 279.077t	1340403.3	34.09 mg	_J /L 0.031		0.09%
Mn 257.610†	606975.6	0.3530 mg	J/L 0.00075		0.21%
Mo 202.031†	-95.0	-0.0015 mg	J/L 0.00004		2.84%
Ni 231.604†	541.2	0.0033 mg	J/L 0.00033		9.95%
Na 330.237†	549162.7	301.1 mg	J/L 0.98		0.33%
Pb 220.353†	25.6	0.0010 mg	J/L 0.00029		30.29%
Sb 206.836†	8.4	0.0012 mg	J/L 0.00105		85.39%
Se 196.026†	71.7	0.0139 mg	J/L 0.00021		1,49%
Sn 189.927†	352.4	0.0212 mg	J/L 0.00062		2.93%
Ti 337.279†	397.0	0.0001 mg	J/L 0.00017		242.75%
Tl 190.801t .	12.2	0.0024 mg	/L 0.00100		41.53%
V 292.402†	228.7	0.0017 mg	/L 0.00027		16.05%
Zn 206.200†	1825.1	0.0041 mg	7/L 0.00009		2.20%
Ca 227.546†	51099.1	88.90 mg	r/L 0.173		0.19%
Sr 460.733†	241351.0	0.9319 mg	_[ /L 0.00779		0.84%

Sr 460.733† 241351.0 0.9319 mg/L 0.00779 0.84% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 100

Sample ID: R1004293-001

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 101 Date Collected: 8/13/2010 10:24:37 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: Ri	1004293-001							
	Mean Correcte	d	Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.D	ev. RSD
Y 371.029	6688482.4	0.7660	mg/L	0.00201				0.26%
Ag 328.068†	896.5	0.0012	mg/L	0.00060				50.92%
Al 308.215†	3866.3	0.0288	mg/L	0.00092		,		3.18%
As 188.979†	9.1	0.0033	mg/L	0.00351				105.72%
B 249.772†	5486.3	-0.0306		0.00045				1.47%
Ba 233.527†	33317.1	0.0885	mg/L	0.00027				0.30%
Be 313.107†	-3649.1	-0.0003	mg/L	0.00003				9.89%
Cd 226.502†	-43.5	0.0001	mg/L	0.00006				55.82%
Co 228.616†	-32.7	-0.0008		0.00048				58.28%
Cr 267.716†	10.4	-0.0004		0.00020				50.20%
Cu 324.752†	10317.6	0.0191	mg/L	0.00034				1.80%
Fe 238.863†	21266.6	0.3037	mg/L	0.00252				0.83%
K 404.721†	846.4						143.	08 16.90%
Mg 279.077†	157494.9	4.007		0.0171				0.43%
Mn 257.610†	11367.9	0.0066	mg/L	0.00002				0.25%
Mo 202.031†	-39.3	-0.0011		0.00078				70.96%
Ni 231.604†	58.0	-0.0009		0.00042				45.19%
Na 330.237†	589377.8	322.7		1.48				0.46%
Pb 220.353†	-63.7	0.0020		0.00077				39.17%
Sb 206.836†	-14.7	-0.0031	mg/L	0.00338				109.93%
Se 196.026†	102.3	0.0121		0.00293				24.23%
Sn 189.927†	-49.2	0.0353	mg/L	0.00005				0.15%
Ti 337.279†	-1979.1	-0.0057		0.00014				2.52%
Tl 190.801t	2.8	0.0012		0.00565				483.11%
V 292.402†	989.4	0.0035		0.00006				1.70%
Zn 206.200†	4367.2	0.0109		0.00028				2.55%
Ca 227.546†	307331.5	531.8		3.00				0.56%
Sr 460.733†	147362.1	0.5585		0.00222				0.40%
Sample conc.	not calculated. Samp	ple Prep. V	ol. AND	Initial Vol.	required (	OR sample	units in	ncorrect.

Sequence No.: 101

Sample ID: R1004293-002

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 102

Date Collected: 8/13/2010 10:28:50 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004293-002

Mean Data, KI0042	93-002							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6758371.0	0.7740	mg/L	0.00040				0.05%
Ag 328.068†	806.9	0.0010	mg/L	0.00014				14.17%
Al 308.215†	2889.1	0.0080	mg/L	0.00025				3.16%
As 188.979†	9.7	0.0033	mg/L	0.00396				119.68%
B 249.772†	5719.6	-0.0278	mg/L	0.00117				4.20%
Ba 233.527†	39546.8	0.1060	mg/L	0.00028				0.27%
Be 313.107†	-3327.3	-0.0002	mg/L	0.00001				2.29%
Cd 226.502†	-60.0	0.0001	mg/L	0.00018				332.20%
Co 228.616†	-36.4	-0.0008	mg/L	0.00020				23.66%
Cr 267.716†	51.7	-0.0002	mg/L	0.00003				14.12%
Cu 324.752†	9653.9	0.0178	mg/L	0.00005				0.25%
Fe 238.863†	19044.1	0.2685	mg/L	0.00149				0.55%
K 404.721†	1010.1						29.31	2.90%
Mg 279.077†	158525.3	4.033	mg/L	0.0078				0.19%
Mn 257.610†	9913.4	0.0057	mg/L	0.0000				0.08%
Mo 202.031†	12.9	-0.0001	mg/L	0.00012				117.35%
Ni 231.604†	52.9	-0.0009	mg/L	0.00014				14.76%
Na 330.237†	575392.6	315.1	mg/L	0.64				0.20%
Pb 220.353†	-58.7	0.0020	mg/L	0.00253				125.04%
Sb 206.836†	3.9	0.0002	mg/L	0.00027				139.08%

Method: AXIAL200-6	010 L Opt4	Page	70	Date: 8/13/2	010 10:35:07 PM
Se 196.026†	72.6	0.0071 mg/L	0.00181		25.29%
Sn 189.927†	-59.7	0.0337 mg/L	0.00181		5.72%
Ti 337.279†		-0.0053 mg/L	0.00001		0.15%
Tl 190.801†	8.6	0.0019 mg/L	0.00019		10.00%
V 292.402†	842.1	0.0030 mg/L	0.00015		5.09%
Žn 206.200†	7684.6	0.0219 mg/L	0.00003		0.12%
Ca 227.546†	297532.7	514.9 mg/L	1.19		0.23%
Sr 460.733†	144852.8	0.5492 mg/L	0.00294		0.54%
Sample conc. not c	alculated. Sample	Prep. Vol. AND In	nitial Vol.	required OR sample unit:	s incorrect.

Sequence No.: 102 Sample ID: CCV Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 4 Date Collected: 8/13/2010 10:33:04 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Manlyte   Thressity   Conc. Units   Std.Dev.   Conc. Units   Std.Dev.   RSD   Y 371.029   7226539.8   0.8276 mg/L   0.00776   0.948   Ag 328.0681   198049.4   0.5313 mg/L   0.00943   0.5313 mg/L   0.00943   1.778   CC value within limits for Ag 328.068   Recovery = 106.268   Al 308.215   468601.6   10.86 mg/L   0.181   10.86 mg/L   0.181   0.085   CC value within limits for Al 308.215   Recovery = 108.648   Al 308.215   8868.4   1.040 mg/L   0.0075   1.040 mg/L   0.0075   0.728   CC value within limits for As 188.979   Recovery = 103.958   B 249.7721   54620.5   2.344 mg/L   0.0340   2.344 mg/L   0.0340   1.458   CC value within limits for Ba 249.772   Recovery = 93.768   Ba 233.5271   3572384.4   9.922 mg/L   0.1673   9.922 mg/L   0.1673   1.698   CC value within limits for Ba 233.527   Recovery = 99.278   CC value within limits for Ba 313.107   Recovery = 99.288   CC 226.6161   325421.0   2.444 mg/L   0.00483   0.2412 mg/L   0.00483   0.2412 mg/L   0.00483   0.2412 mg/L   0.00592   0.5120 mg/L   0.00592   0.520 mg/L   0.00592   0.00592   0.5120 mg/L   0.00592   0.286.6161   325421.0   2.444 mg/L   0.0039   2.434 mg/L   0.0039   1.698   0.2412 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.2412 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760   0.5162 mg/L   0.00760	Me	an Data: CCV							<del></del>	
Analyte			Mean Corrected	đ	Calib			Sample		
Y 371.029 7226539.8 0.8276 mg/L 0.00776 Ag 328.068t 198049.4 0.5313 mg/L 0.00943 0.5313 mg/L 0.00943 1.778 CC value within limits for Ag 328.068 Recovery = 106.268 Al 308.215t 468601.6 10.86 mg/L 0.182 10.86 mg/L 0.181 1.678 CC value within limits for Al 308.215 Recovery = 108.648 As 188.979t 8868.4 1.040 mg/L 0.0075 1.040 mg/L 0.0075 0.728 CC value within limits for As 188.979 Recovery = 103.958 B 249.772t 546202.5 2.344 mg/L 0.0340 2.344 mg/L 0.0340 0.673 1.698 CC value within limits for B 249.772 Recovery = 93.768 BB 233.527t 3572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.698 CC value within limits for B 249.772 Recovery = 99.728 CC value within limits for B 249.772 Recovery = 99.228 CC value within limits for Ba 233.527 Recovery = 99.228 CC value within limits for Ba 333.527 Recovery = 99.228 CC value within limits for Ba 333.107 Recovery = 96.468 CC 228.616f 325.421.0 2.434 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.728 CC value within limits for Cd 226.502 Recovery = 102.408 CC 228.616f 325.421.0 2.434 mg/L 0.0439 2.434 mg/L 0.0439 1.808 CC 228.616f 325.421.0 2.434 mg/L 0.0439 2.434 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.	An	alyte	Intensity	Conc.		Std.Dev.	Conc.		Std.Dev.	RSD
Ag 128.068t 198049.4 0.5313 mg/L 0.00943 0.5313 mg/L 0.00943 1.77\$ QC value within limits for No 2328.068 Recovery = 106.268* Al 308.215t 468601.6 10.86 mg/L 0.181 1.686 mg/L 0.201 within limits for No 2328.068 Recovery = 108.684* As 188.979t 8868.4 1.040 mg/L 0.0075 1.040 mg/L 0.0075 0.72\$ QC value within limits for No 224.727 Recovery = 103.958* B 249.7721 546202.5 2.344 mg/L 0.0340 2.344 mg/L 0.0340 1.458* QC value within limits for No 224.727 Recovery = 93.768* Ba 233.527t 3572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.698* QC value within limits for No 224.12 mg/L 0.00483 2.008* QC value within limits for Sc 249.772 Recovery = 99.228* Cd 226.502t 195933.6 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 1.168* CC value within limits for Co 226.166 Recovery = 97.378* CC 228.616t 2.55421.0 2.434 mg/L 0.00592 0.5120 mg/L 0.00592 1.168* CC value within limits for Co 236.161 Recovery = 97.378* CC 241.041 within limits for Co 236.161 Recovery = 103.258* CL 324.752t 571667.3 1.210 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.2412 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162	Y	371.029	7226539.8	0.8276	mg/L	0.00776				0.94%
Al 308.215† 468601.6 10.86 mg/L 0.181 10.86 mg/L 0.181 1.67% QC value within limits for Al 308.215 Recovery = 108.64% As 188.979† 8866.4 1.040 mg/L 0.0075 1.040 mg/L 0.0075 0.72% OC value within limits for As 188.979 Recovery = 103.95% B 249.772† 546202.5 2.344 mg/L 0.0340 2.344 mg/L 0.0340 1.45% OC value within limits for B 249.772 Recovery = 93.76% Ba 233.527† 5572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.69% OC value within limits for Ba 233.527 Recovery = 99.22% Be 313.107† 1584185.7 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020			198049.4		mg/L	0.00943	0.5313	mg/L	0.00943	1.77%
Al 308.215† 468601.6 10.86 mg/L 0.181 10.86 mg/L 0.181 1.67% QC value within limits for Al 308.215 Recovery = 108.64% As 188.979† 8866.4 1.040 mg/L 0.0075 1.040 mg/L 0.0075 0.72% OC value within limits for As 188.979 Recovery = 103.95% B 249.772† 546202.5 2.344 mg/L 0.0340 2.344 mg/L 0.0340 1.45% OC value within limits for B 249.772 Recovery = 93.76% Ba 233.527† 5572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.69% OC value within limits for Ba 233.527 Recovery = 99.22% Be 313.107† 1584185.7 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 0.2412 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 mg/L 0.00592 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020		QC value within	limits for Ag	328.068	Recovery =	106.26%				
As 188.979;	Al						10.86	mg/L	0.181	1.67%
OC value within limits for As 188.979 Recovery = 103.95%  0C value within limits for B 249.772 Recovery = 93.76%  Ba 233.5271		QC value within	limits for Al	308.215	Recovery =	108.64%				
B 249.7721   S46202.5   2.344 mg/L   0.0340   2.344 mg/L   0.0340   1.45\$	As						1.040	mg/L	0.0075	0.72%
OC value within limits for B 249.772 Recovery = 93.76% B2 233.5271 3572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.69% OC value within limits for Ba 233.527 Recovery = 99.22% BE 313.1071 1584185.7 0.2412 mg/L 0.00483 0.2412 mg/L 0.00483 2.00% OC value within limits for Ba 213.107 Recovery = 96.46% CC 226.5021 195933.6 0.55120 mg/L 0.00592 0.5120 mg/L 0.00592 1.16% OC value within limits for Cd 226.502 Recovery = 102.40% CC 228.6161 325421.0 2.434 mg/L 0.0439 2.434 mg/L 0.0439 1.80% OC value within limits for Co 228.616 Recovery = 97.37% CT 267.7161 114143.6 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 1.47% OC value within limits for CT 267.716 Recovery = 103.25% CU 324.7521 571667.3 1.210 mg/L 0.0183 1.210 mg/L 0.0183 1.51% OC value within limits for CT 267.716 Recovery = 96.84% FE 238.8631 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92% OC value within limits for Fe 238.863 Recovery = 107.74% K 404.721 540.5 Unable to evaluate QC. G2 279.0771 1047539.4 26.64 mg/L 0.480 26.64 mg/L 0.480 1.80% OC value within limits for Mg 279.077 Recovery = 106.56% Mn 257.6101 1306976.8 0.7617 mg/L 0.0349 2.507 mg/L 0.0349 1.47% OC value within limits for Mg 257.610 Recovery = 101.55% OC value within limits for Mm 257.610 Recovery = 101.55% OC value within limits for Mm 257.610 Recovery = 100.27% Ni 231.6041 314564.4 2.097 mg/L 0.0369 2.507 mg/L 0.0369 1.47% OC value within limits for Mm 257.610 Recovery = 101.55% OC value within limits for Mm 257.610 Recovery = 101.55% OC value within limits for Mm 257.610 Recovery = 101.55% OC value within limits for Mg 257.610 Recovery = 101.55% OC value within limits for Mg 257.610 Recovery = 101.55% OC value within limits for Mg 20.331 Recovery = 101.55% SD 202.331 13496.5 2.507 mg/L 0.0369 3.016 mg/L 0.0369 1.47% OC value within limits for Mg 20.353 Recovery = 105.55% SD 206.8361 29044.3 5.079 mg/L 0.0374 0.5277 mg/L 0.0034 0.5277 mg/L 0.0035 0.50% OC value within limits for SD 206.836 Recovery = 101.55% SD 206.8361 29044.3 5.079 mg/L 0.0025 5.345 mg/L 0.0025 0.550% OC value within limits		QC value within		188.979	Recovery =	103.95%				
Ba 233.527† 3572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.69% OC value within limits for Ba 233.527 Recovery = 99.22% 0.00483 0.2412 mg/L 0.00483 2.00% OC value within limits for Ba 233.527 Recovery = 96.46% 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 0.28.6161 325421.0 2.434 mg/L 0.00392 0.434 mg/L 0.0439 1.80% OC value within limits for Co 228.616 Recovery = 102.40% 0.00760 0.5162 mg/L 0.00760 1.47% OC value within limits for Co 228.616 Recovery = 97.37% 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L 0.00760 0.5182 mg/L	В						2.344	mg/L	0.0340	1.45%
QC value within limits for Ba 233.527 Recovery = 99.22% Be 313.1071										
Be 313.107† 1584185.7	Вa	•					9.922	mg/L	0.1673	1.69%
OC value within limits for Be 313.107 Recovery = 96.46%  Cd 226.502† 195933.6 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 1.16%  QC value within limits for Cd 226.502 Recovery = 102.40%  Co 228.616† 325421.0 2.434 mg/L 0.0439 2.434 mg/L 0.0439 1.80%  QC value within limits for Cd 228.616 Recovery = 97.37%  Cr 267.716† 114143.6 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 1.47%  QC value within limits for Cr 267.716 Recovery = 103.25%  Cu 324.752† 571667.3 1.210 mg/L 0.0183 1.210 mg/L 0.0183 1.51%  QC value within limits for Cu 324.752 Recovery = 96.84%  QC value within limits for Ed 324.752 Recovery = 96.84%  QC value within limits for Fe 238.863 Recovery = 107.74%  K 404.721† 5406.5 15.41 0.29%  Unable to evaluate QC.  Mg 279.077† 1047539.4 26.64 mg/L 0.480 26.64 mg/L 0.480 1.80%  QC value within limits for Mg 279.077 Recovery = 106.56%  Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76%  QC value within limits for Mg 279.077 Recovery = 101.55%  Mo 202.031† 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47%  QC value within limits for Mo 202.031 Recovery = 100.27%  Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06%  QC value within limits for Mo 202.31 Recovery = 104.84%  Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32%  QC value within limits for Mb 27.035 Recovery = 105.55%  SD 206.836† 30.4.3 0.5361 mg/L 0.0025 5.079 mg/L 0.0034 0.63%  QC value within limits for Sb 206.836 Recovery = 101.55%  Se 196.026† 3104.3 0.5361 mg/L 0.0025 5.079 mg/L 0.0036 0.5361 mg/L 0.0036 0.580  QC value within limits for Sb 206.836 Recovery = 105.55%  SD 206.836† 3104.3 0.5361 mg/L 0.0025 5.345 mg/L 0.0025 1.73%  SO 20 value within limits for Sb 189.927 Recovery = 105.55%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36%  QC value within limits for Sb 206.836 Recovery = 101.57%  SO 20 value within limits for Sb 206.836 Recovery = 105.55%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36%  TO 20 value within limits for Ti 337.279 Recovery = 102.24%  Ti 190.801† 7806.3 1.					. •			-		
Cd 226.502t 195933.6 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 1.16% QC value within limits for Cd 226.502 Recovery = 102.40% 0.0439 2.434 mg/L 0.0439 1.80% QC value within limits for Co 228.616 Recovery = 97.37% 0.00760 0.5162 mg/L 0.00760 1.47% QC value within limits for Cr 267.716 Recovery = 103.25% 0.00760 0.5162 mg/L 0.00760 1.47% QC value within limits for Cr 267.716 Recovery = 103.25% 0.00760 0.5162 mg/L 0.0183 1.51% QC value within limits for Cr 267.716 Recovery = 96.84% Fe 238.8631 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92% QC value within limits for Fe 238.863 Recovery = 107.74% K404.7211 5406.5 15.46 Mg/L 0.480 26.64 mg/L 0.29% Unable to evaluate QC. Mg 279.0771 1047539.4 26.64 mg/L 0.01342 0.7617 mg/L 0.480 1.80% QC value within limits for Mg 279.077 Recovery = 106.55% M0 220.0311 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mn 257.610 Recovery = 101.55% M0 202.031 Recovery = 100.27% Ni 231.604f 314564.4 2.097 mg/L 0.0369 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mn 257.610 Recovery = 104.84% Na 330.237f 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value within limits for No 231.604 Recovery = 104.84% Na 330.2371 14448.0 0.5277 mg/L 0.0334 0.5277 mg/L 0.0334 0.5277 mg/L 0.0334 0.5277 mg/L 0.00356 0.50% QC value within limits for Sb 206.836 Recovery = 105.55% Sb 206.836f 29044.3 0.5277 mg/L 0.00334 0.5277 mg/L 0.00356 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026f 3104.3 0.5361 mg/L 0.0025 5.345 mg/L 0.0025 5.345 mg/L 0.0025 1.73% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026f 3104.3 0.5361 mg/L 0.0026 0.5361 mg/L 0.0025 5.345 mg/L 0.0025 5.345 mg/L 0.0025 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026f 3104.3 0.5361 mg/L 0.0025 5.345 mg/L 0.0025 5.345 mg/L 0.0025 5.345 mg/L 0.0025 5.345 mg/L 0.0026 0.556 mg/L 0.0026 0.556 mg/L 0.0026 0.556 mg/L 0.0026 0.556 mg/L 0.0026 0.558 mg/L 0.0026 0.558 mg/L 0.0026 0.0580 mg/L 0.0026 0.0580 mg/L 0.0026 0.0580 mg/L	ве						0.2412	mg/L	0.00483	2.00%
QC value within limits for Cd 226.502 Recovery = 102.40%         2.434 mg/L         0.0439         2.434 mg/L         0.0439         1.80%           CO 228.616f value within limits for Co 228.616 Recovery = 97.37%         0.00760         0.5162 mg/L         0.00760         0.5162 mg/L         0.00760         1.47%           CC value within limits for Cr 267.716 Recovery = 103.25%         1.210 mg/L         0.0183         1.210 mg/L         0.0183         1.210 mg/L         0.0183         1.51%           QC value within limits for Cu 324.752 Recovery = 96.84%         8.8631         326742.8         5.387 mg/L         0.1034         1.92%           QC value within limits for Fe 238.863 Recovery = 107.74%         10.1034         5.387 mg/L         0.1034         1.92%           WA 404.721 Substitution of Value vithin limits for Mg 279.077 Recovery = 106.56%         15.41         0.29%           Mn 257.6101 1306976.8 0.7617 mg/L QC value within limits for Mg 279.077 Recovery = 101.55%         0.01342 0.7617 mg/L 0.01342         0.7617 mg/L 0.01342         0.7617 mg/L 0.01342         0.7617 mg/L 0.01342         0.7617 mg/L 0.01342         0.7617 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0369         0.507 mg/L 0.0	~~						0 5150	/ 7	0.00500	
Co 228.616† 325421.0 2.434 mg/L 0.0439 2.434 mg/L 0.0439 1.80% QC value within limits for Co 228.616 Recovery = 97.37% 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 0.5162 mg/L 0.0183 1.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.00760 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.518 0.51	Ca						0.5120	mg/π	0.00592	1.16%
QC value within limits for Co         228.616         Recovery = 97.37%         97.37%           Cr 267.716†         114143.6         0.5162 mg/L         0.00760         0.5162 mg/L         0.00760         1.47%           QC value within limits for Cr 267.716         Recovery = 103.25%         0.0183         1.210 mg/L         0.0183         1.210 mg/L         0.0183         1.51%           QC value within limits for Cu 324.752         Recovery = 96.84%         0.1034         5.387 mg/L         0.1034         1.92%           QC value within limits for Fe 238.863         Recovery = 107.74%         15.41         0.29%           Unable to evaluate QC.         5406.5         0.480         26.64 mg/L         0.480         26.64 mg/L         0.480         1.80%           Mn 279.077         1047539.4         26.64 mg/L         0.01342         0.7617 mg/L         0.01342         0.7617 mg/L         0.01342         1.76%           Mn 257.6101         1306976.8         0.7617 mg/L         0.01342         0.7617 mg/L         0.01342         0.7617 mg/L         0.0369         2.507 mg/L         0.0369         1.47%           Mo 202.031t         133976.5         2.507 mg/L         0.0369         2.507 mg/L         0.0369         1.47%           QC value within limits for Ni	Co						2 424	ma /T	0.0430	1 000
Cr 267.716† 114143.6 0.5162 mg/L 0.00760 0.5162 mg/L 0.00760 1.47% QC value within limits for Cr 267.716 Recovery = 103.25%	CO	·					4.434	ແຜ່ນກ	0.0439	1.80*
QC value within limits for Cr 267.716 Recovery = 103.25* Cu 324.752† 571667.3 1.210 mg/L 0.0183 1.210 mg/L QC value within limits for Cu 324.752 Recovery = 96.84* Fe 238.863† 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92* QC value within limits for Fe 238.863 Recovery = 107.74* K 404.721† 5406.5	Cr.						0 5163	m~ /T	0.00760	7 478
Cu 324.752† 571667.3 1.210 mg/L 0.0183 1.210 mg/L QC value within limits for Cu 324.752 Recovery = 96.84%  Fe 238.863† 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92% QC value within limits for Fe 238.863 Recovery = 107.74%  K 404.721† 5406.5	CI	·					0.5162	111G/11	0.00760	1.4/6
QC value within limits for Cu 324.752 Recovery = 96.84% Fe 238.863† 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92% QC value within limits for Fe 238.863 Recovery = 107.74%  K 404.721† 5406.5 Unable to evaluate QC. Mg 279.077† 1047539.4 26.64 mg/L 0.480 26.64 mg/L 0.480 1.80% QC value within limits for Mg 279.077 Recovery = 106.56% Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76% QC value within limits for Mn 257.610 Recovery = 101.55% M0 202.031† 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mo 202.031 Recovery = 100.27% Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84% Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66% Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 107.22% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Sc 196.026 Recovery = 107.22% Sc 198.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0026 0.25% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0026 0.25% Ti 390.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	Cu				. •		1 210	mar/T.	0 0193	1 518
Fe 238.863† 326742.8 5.387 mg/L 0.1034 5.387 mg/L QC value within limits for Fe 238.863 Recovery = 107.74%	Cu				J,		1.210	mg/ D	0.0103	1.518
QC value within limits for Fe 238.863 Recovery = 107.74% K 404.721† 5406.5	Fe						5.387	ma/I	0.1034	1 92%
Table to evaluate QC.   Mg 279.077†							5.50.	5/ _	0.2031	1.520
Unable to evaluate QC.  Mg 279.077† 1047539.4 26.64 mg/L 0.480 26.64 mg/L 0.480 1.80% QC value within limits for Mg 279.077 Recovery = 106.56%  Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76% QC value within limits for Mn 257.610 Recovery = 101.55%  Mo 202.031† 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mo 202.031 Recovery = 100.27%  Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84%  Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66%  Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55%  Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% To 31.017 mg/L 0.0026 0.25%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	K					40,,,,			15.41	0.29%
QC value within limits for Mg 279.077 Recovery = 106.56% Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76% QC value within limits for Mn 257.610 Recovery = 101.55% Mo 202.031† 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mo 202.031 Recovery = 100.27% Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84% Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66% Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22% Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%		Unable to evalua	ite QC.							
QC value within limits for Mg 279.077 Recovery = 106.56% Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76% QC value within limits for Mn 257.610 Recovery = 101.55% MO 202.031† 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mo 202.031 Recovery = 100.27% Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84% Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66% Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22% Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	Mg	279.077†	1047539.4	26.64	mg/L	0.480	26.64	mg/L	0.480	1.80%
QC value within limits for Mn 257.610 Recovery = 101.55%  Mo 202.031t	_	QC value within	limits for Mg	279.077	Recovery =	106.56%		2,		
QC value within limits for Mn 257.610 Recovery = 101.55%  Mo 202.031t	Mn	257.610†	1306976.8	0.7617	mg/L	0.01342	0.7617	mg/L	0.01342	1.76%
QC value within limits for Mo 202.031 Recovery = 100.27% Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84% Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66% Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22% Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%		QC value within	limits for Mn	257.610	Recovery =	101.55%				
Ni 231.604† 314564.4 2.097 mg/L 0.0431 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84%  Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66%  Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55%  Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	Мо						2.507	mg/L	0.0369	1.47%
QC value within limits for Ni 231.604 Recovery = 104.84%  Na 330.237†		-			. *	100.27%				
Na 330.237† 55034.6 30.16 mg/L 0.398 30.16 mg/L 0.398 1.32% QC value greater than the upper limit for Na 330.237 Recovery = 120.66%  Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55%  Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	Ni						2.097	mg/L	0.0431	2.06%
QC value greater than the upper limit for Na 330.237 Recovery = 120.66%  Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55%  Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%		-								
Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63* QC value within limits for Pb 220.353 Recovery = 105.55* Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50* QC value within limits for Sb 206.836 Recovery = 101.57* Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05* QC value within limits for Se 196.026 Recovery = 107.22* Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73* QC value within limits for Sn 189.927 Recovery = 106.89* Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36* QC value within limits for Ti 337.279 Recovery = 102.24* Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25*	Na								0.398	1.32%
QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 QC value within limits for Se 196.026 Recovery = 107.22% Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	_,						-			
Sb 206.836† 29044.3 5.079 mg/L 0.0255 5.079 mg/L 0.0255 0.50% QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	פפ						0.5277	mg/L	0.00334	0.63%
QC value within limits for Sb 206.836 Recovery = 101.57%  Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05%  QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73%  QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36%  QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	۵۱.									
Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.058  QC value within limits for Se 196.026 Recovery = 107.228  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.738  QC value within limits for Sn 189.927 Recovery = 106.898  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.368  QC value within limits for Ti 337.279 Recovery = 102.248  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.258	SD	•					5.079	mg/L	0.0255	0.50%
QC value within limits for Se 196.026 Recovery = 107.22%  Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73%  QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36%  QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	0.						0 5061	/7	0 00000	0.050
Sn 189.927† 162373.1 5.345 mg/L 0.0925 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89%  Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24%  Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	5e						0.5361	mg/ Γ	0.00026	0.05%
QC value within limits for Sn 189.927 Recovery = 106.89% Ti 337.279†	Cn.						E 24E	ma /T	0.0005	1 77%
Ti 337.279† 1305975.8 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	111	•					5.345	g/ L	0.0323	1.126
QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%	Тi						2 556	mcr/T.	0 0602	2 368
Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25%							2.556	g/ L	0.0002	2.300
	ጥገ						1 617	ma/T	0.0026	0.25%
	*-				_,		1.01/	5/ ~	0.0020	J. 23 0
V 292.402† 679973.3 2.528 mg/L 0.0479 2.528 mg/L 0.0479 1.89%	v :						2.528	ma/L	0.0479	1.89%
QC value within limits for V 292.402 Recovery = 101.13%							<b></b>	J/ —		
Zn 206.200† 326001.4 1.070 mg/L 0.0197 1.070 mg/L 0.0197 1.84%	Zn						1.070	mq/L	0.0197	1.84%
QC value within limits for Zn 206.200 Recovery = 107.02%		QC value within	limits for Zn			107.02%		<del>-</del>		

Method: AXIAL200-6	UIU L Opt4	Pa	ge 71		Date: 8	3/13/2010 10	:39:43
Ta 227.546† QC value within	limits for Ca 22	26.37 mg/L 27.546 Recovery	= 105.47%				
Fr 460.733†	856292.3	3.313 mg/L	0.0454	3.313	mg/L	0.0454	1.37%
QC value greate: C Failed. Continu	r than the upper		0.733 Recove:	ry = 132.5	1%		
c railed. Concin	ue with analysis.	•					
=======================================						========	======
equence No.: 103		:	Autosampler Lo Date Collected	ocation: 5	10 10.37.	32 DM	•
nalyst:			Data Type: Or:			5 <b>2</b> 111	
nitial Sample Wt:			Initial Sample				
Dilution:			Sample Prep Vo				
malyte 371.029 g 328.068t	Mean Corrected	Calib			Sample		
nalyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
371.029	7847842.4	0.8988 mg/L	0.00404	0 0006	ma / ī	0.00018	0.45%
OC value within	limits for Ag 32	88.068 Recovery	= Not calcula	ated	mg/ L	0.00019	31.426
1 308.215†	-817.5	-0.0189 mg/L	0.00060	-0.0189	mg/L	0.00060	3.16%
	limits for Al 30				/ T	0.00040	11 050
s 188.979† OC value within	limits for As 18	0.0044 mg/L 88.979 Recovery			mg/τ	0.00049	11.25
249.772†	-1935.9	-0.0089 mg/L	0.00127	-0.0089	mg/L	0.00127	14.35%
QC value within	limits for B 249	0.772 Recovery	= Not calculat	ed	,_		
a 233.527† OC value within	3404.9 limits for Ba 23	0.0095 mg/L 0.0095			mg/L	0.00005	0.49%
e 313.107†	-362.2	-0.0001 mg/L	0.00003	-0.0001	mg/L	0.00003	51.389
QC value within	limits for Be 31	.3.107 Recovery	= Not calcula	ated	-		
d 226.502t	82.3 limits for Cd 22		0.00009		mg/L	0.00009	46.469
	8.6				mg/L	0.00038	616.74%
QC value within	limits for Co 22	8.616 Recovery	= Not calcula	ited	-		
r 267.716†	-14.2 limits for Cr 26	-0.0001 mg/L	0.00020		mg/L	0.00020	359.19%
u 324.752†		0.0034 mg/L			mq/L	0.00014	4.25%
QC value within	limits for Cu 32	4.752 Recovery	= Not calcula	ated	_		
e 238.863†	11749.1 than the upper						1.27%
404.721†	-29.4	TIMEL TOL FE 230	RECOVE	y = NOC Co	ilcurated		193.46%
Unable to evalua	ite QC.						
g 279.077†	-898.7 limits for Mg 27				mg/L	0.00253	11.02%
n 257.610†					ma/L	0.00005	12.40%
QC value within	limits for Mn 25	7.610 Recovery	= Not calcula	ited			
00 1 1 1 1 1 1 1 -	-54.8	-0.0010 mg/L	0.00035	-0.0010	mg/L	0.00035	34.53%
QC value within i 231.604†	limits for Mo 20 -3.4	0.0000 ma/T	= NOT CAICULA 0.00013		mg/L	0.00013 !	597.30%
	limits for Ni 23	1.604 Recovery	= Not calcula	ited			
a 330.237†		0.4116 mg/L			mg/L	0.03944	9.58%
QC value within b 220.353†	limits for Na 33	0.237 Recovery 0.0023 mg/L			ma/L	0.00119	51 <b>2</b> 09
	limits for Pb 22	0.353 Recovery	= Not calcula		2/ 11	0.00113	0
206.836†	7.7	0.0013 mg/L	0.00266	0.0013	mg/L	0.00266	197.87%
	limits for Sb 20 25.4				ma/T	0 00041	0 220
	25.4 limits for Se 19				แล้งก	0.00041	3.218
n 189.927†	453.1	0.0149 mg/L	0.00137	0.0149	mg/L	0.00137	9.23%
	limits for Sn 18	9.927 Recovery	= Not calcula		/T	0.000=	0 350
i 337.279† OC value within	-948.0 limits for Ti 33	-0.0019 mg/L 7.279 Recovery			mg\r	0.00001	0.37%
. 190.801†	-0.1	0.0000 mg/L	0.00200	0.0000	mg/L	0.00200 :	>999.9%
	limits for Tl 19				/-	A 84-4-	
292.402†	312.7	0.0012 mg/L	0.00025	0.0012	ma/L	0.00025	20.97%

QC value within limits for V 292.402 Recovery = Not calculated

QC value within limits for Zn 206.200 Recovery = Not calculated

QC value within limits for Ca 227.546 Recovery = Not calculated

QC value within limits for Sr 460.733 Recovery = Not calculated

167.6 0.0007 mg/L

-1.1 0.0000 mg/L 0.00029

0.00013

-344.6 -0.5861 mg/L 0.07637

Zn 206.200t

Ca 227.546†

Sr 460.733†

0.00029 >999.9%

0.07637 13.03%

0.00013 19.70%

0.0000 mg/L

-0.5861 mg/L

0.0007 mg/L

QC Failed. Continue with analysis.

Sequence No.: 104 Autosampler Location: 103

Sample ID: R1004296-001

Analyst:

Initial Sample Wt:

Dilution:

Date Collected: 8/13/2010 10:41:42 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R	1004296-001							
	Mean Correct	eđ	Calib		:	Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc. N	Units	Std.Dev	. RSD
Y 371.029	7586756.9	0.8689	mg/L	0.00016				0.02%
Ag 328.068†	571.3	0.0015	mg/L	0.00096				62.62%
Al 308.215†	22443.0	0.5182	mg/L	0.00259				0.50%
As 188.979†	8.1	0.0013	mg/L	0.00064				47.74%
B 249.772†	663.6	-0.0015	mg/L	0.00084				56.13%
Ba 233.527†	10518.2	0.0290	mg/L	0.00023				0.79%
Be 313.107†	-807.4	-0.0001	mg/L	0.00002				16.17%
Cd 226.502†	-3.6	-0.0001	mg/L	0.00011				165.35%
Co 228.616†	21.3	0.0001	mg/L	0.00035				279.34%
Cr 267.716†	195.3	0.0009	mg/L	0.00021				22.49%
Cu 324.752†	3161.6	0.0067	mg/L	0.00009				1.30%
Fe 238.863†	48223.5	0.7940	mg/L	0.00252				0.32%
K 404.721†	204.3						133.00	65.09%
Mg 279.077†	167436.6	4.258	mg/L	0.0094				0.22%
Mn 257.610†	151399.0	0.0882		0.00037				0.42%
Mo 202.031†	-52.9	-0.0010	mg/L	0.00020				20.83%
Ni 231.604†	74.5	0.0004	mg/L	0.00013				29.76%
Na 330.237†	25893.7	14.19	mg/L	0.043				0.30%
Pb 220.353†	88.2	0.0034	mg/L	0.00069				20.60%
Sb 206.836†	25.0	0.0043	mg/L	0.00275				63.61%
Se 196.026†	39.2	0.0068	mg/L	0.00139				20.60%
Sn 189.927†	175.6	0.0074	mg/L	0.00014				1.84%
Ti 337.279†	3845.1	0.0074	mg/L	0.00013				1.81%
Tl 190.801†	23.2	0.0031	mg/L	0.00209				67.05%
V 292.402†	556.7	0.0021	mg/L	0.00042				19.79%
Zn 206.200†	3376.3	0.0108	mg/L	0.00005				0.47%
Ca 227.546†	10231.1	17.75	mg/L	0.022				0.13%
Sr 460.733†	21279.2	0.0819		0.00053				0.65%
Sample conc.	not calculated. Sam	mple Prep. V	ol. AND	Initial Vol.	required OF	R sample u	nits inco	orrect.

Sequence No.: 105

Sample ID: R1004296-001D

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 104

Date Collected: 8/13/2010 10:45:54 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004:	296-001D							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7476383.7	0.8562	mg/L	0.01136				1.33%
Ag 328.068†	326.7	0.0009	mg/L	0.00008				9.13%
Al 308.215†	23534.6	0.5435	mg/L	0.00560				1.03%
As 188.979†	25.5	0.0034	mg/L	0.00064				18.90%
B 249.772†	175.7	-0.0037	mg/L	0.00004				1.15%
Ba 233.527†	9487.6	0.0262	mg/L	0.00006				0.24%
Be 313.107†	-964.5	-0.0001	mg/L	0.00000				1.31%
Cd 226.502†	44.3	0.0001	mg/L	0.00017				323.28%
Co 228.616†	-100.7	-0.0008	mg/L	0.00026				32.71%
Cr 267.716†	276.8	0.0013	mg/L	0.00009				7.06%
Cu 324.752†	3453.9	0.0073	mg/L	0.00037				5.12%
Fe 238.863†	50584.0	0.8329	mg/L	0.00487				0.59%
K 404.721†	226.0						22.95	10.15%
Mg 279.077†	169742.1	4.317	mg/L	0.0037				0.09%
Mn 257.610†	155047.4	0.0903	mg/L	0.00005				0.05%
Mo 202.031†	-80.2	-0.0015	mg/L	0.00115				77.78%
Ni 231.604†	107.3	0.0007	mg/L	0.00035				53.16%
Na 330.237†	26254.4	14.38	mg/L	0.023				0.16%

Method: AXIAL200-6010 L Opt4 Page 73 Date: 8/13/2010 10:56:26 PM Pb 220.353† 71.6 0.0028 mg/L 0.00126 45.93% Sb 206.836† 20.5 0.0036 mg/L 0.00332 93.29% Se 196.026† 0.0076 mg/L 0.00203 26.67% 44.2 Sn 189.927† 137.7 0.0062 mg/L0.00206 33.48% Ti 337.279† 4466.1 0.0086 mg/L 0.00000 0.02% Tl 190.801† -0.0037 mg/L -28.9 0.00029 7.89% 0.0023 mg/L V 292.402† 596.7 0.00016 7.17% 0.0096 mg/L Zn 206.200† 3012.3 0.00001 0.07% Ca 227.546† 10316.9 17.90 mg/L 0.37% 0.065 21255.7 Sr 460.733† 0.0819 mg/L 0.00057 0.70% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 106 Sample ID: R1004296-001S Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 105
Date Collected: 8/13/2010 10:50:07 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

----

Mean Data: R1004	296-001S								
	Mean Corrected		Calib			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.	Dev.	RSD
Y 371.029	7254593.7	0.8308	mg/L	0.00353					0.42%
Ag 328.068†	20114.2	0.0540	mg/L	0.00012					0.22%
Al 308.215†	116472.2	2.699	mg/L	0.0016					0.06%
As 188.979†	468.0	0.0556	mg/L	0.00144					2.58%
B 249.772†	223161.4	0.9580	mg/L	0.00999					1.04%
Ba 233.527†	751098.9	2.086	mg/L	0.0038					0.18%
Be 313.107†	322072.2	0.0490	mg/L	0.00017					0.35%
Cd 226.502†	20531.5	0.0535	mg/L	0.00007					0.14%
Co 228.616†	72585.1	0.5429	mg/L	0.00389					0.72%
Cr 267.716†	47463.8	0.2146	mg/L	0.00101					0.47%
Cu 324.752†	126684.9	0.2683	mg/L	0.00122					0.46%
Fe 238.863†	116343.3	1.918	mg/L	0.0056					0.29%
K 404.721†	4523.4						46	.07	1.02%
Mg 279.077†	255207.1	6.490	mg/L	0.0274					0.42%
Mn 257.610†	1059391.5	0.6178	mg/L	0.00163					0.26%
Mo 202.031;	29588.4	0.5536	mg/L	0.00140					0.25%
Ni 231.604†	71905.9	0.4793	mg/L	0.00392					0.82%
Na 330.237†	70972.0	38.90	mg/L	0.028					0.07%
Pb 220.353†	15572.0	0.5680	mg/L	0.00369					0.65%
Sb 206.836†	2931.6	0.5126	mg/L	0.00861					1.68%
Se 196.026†	6408.8	1.105	mg/L	0.0066					0.60%
Sn 189.927†	184028.6	6.054	mg/L	0.0207					0.34%
Ti 337.279†	271895.8	0.5321	mg/L	0.00198					0.37%
Tl 190.801†	15787.3	2.056	mg/L	0.0186					0.90%
V 292.402†	141321.7	0.5255	mg/L	0.00375					0.71%
Zn 206.200†	168876.1	0.5547		0.00208					0.38%
Ca 227.546†	11669.1	20.30	mg/L	0.099					0.49%
Sr 460.733†	20641.3	0.0794		0.00032					0.40%
Sample conc. not	calculated. Sample	Prep. V	ol. AND	Initial Vol.	required (	R sample	units	incorr	ect.

Sequence No.: 107 Sample ID: R1004296-001A Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 106 Date Collected: 8/13/2010 10:54:26 PM Data Type: Original

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

20 0074							
Mean Corrected		Calib			Sample		
Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
7301824.4	0.8362	mg/L	0.00208				0.25%
19556.2	0.0525	mg/L	0.00012				0.22%
118509.4	2.746	mg/L	0.0028				0.10%
413.3	0.0492	mg/L	0.00272				5.53%
224067.8	0.9622	mg/L	0.00153				0.16%
734323.0	2.039	mg/L	0.0011				0.05%
314677.6	0.0479	mg/L	0.00020				0.42%
19885.7	0.0519	mg/L	0.00016				0.32%
	Mean Corrected Intensity 7301824.4 19556.2 118509.4 413.3 224067.8 734323.0 314677.6	Intensity Conc. 7301824.4 0.8362 19556.2 0.0525 118509.4 2.746 413.3 0.0492 224067.8 0.9622 734323.0 2.039 314677.6 0.0479	Mean Corrected         Calib           Intensity         Conc. Units           7301824.4         0.8362 mg/L           19556.2         0.0525 mg/L           118509.4         2.746 mg/L           413.3         0.0492 mg/L           224067.8         0.9622 mg/L           734323.0         2.039 mg/L           314677.6         0.0479 mg/L	Mean Corrected         Calib           Intensity         Conc. Units         Std.Dev.           7301824.4         0.8362 mg/L         0.00208           19556.2         0.0525 mg/L         0.00012           118509.4         2.746 mg/L         0.0028           413.3         0.0492 mg/L         0.00272           224067.8         0.9622 mg/L         0.00153           734323.0         2.039 mg/L         0.0011           314677.6         0.0479 mg/L         0.00020	Mean Corrected         Calib           Intensity         Conc. Units         Std.Dev.         Conc.           7301824.4         0.8362 mg/L         0.00208         0.00208           19556.2         0.0525 mg/L         0.00012         0.0028           118509.4         2.746 mg/L         0.0028         0.00272           224067.8         0.9622 mg/L         0.00153         0.00153           734323.0         2.039 mg/L         0.0011         0.00020           314677.6         0.0479 mg/L         0.00020	Mean Corrected         Calib         Sample           Intensity         Conc. Units         Std.Dev. Conc. Units           7301824.4         0.8362 mg/L 0.00208         0.00208           19556.2         0.0525 mg/L 0.00012         0.0028           118509.4         2.746 mg/L 0.0028         0.00272           224067.8         0.9622 mg/L 0.00153         0.00153           734323.0         2.039 mg/L 0.0011         0.0011           314677.6         0.0479 mg/L 0.00020         0.00020	Mean Corrected         Calib         Sample           Intensity         Conc.         Units         Std.Dev.         Conc.         Units         Std.Dev.           7301824.4         0.8362 mg/L         0.00208         Units         Std.Dev.           19556.2         0.0525 mg/L         0.00012         Units         Units         Std.Dev.           18509.4         2.746 mg/L         0.0028         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units         Units

Method: AXIAL20	0-6010 L Opt4	Pag	ge 74	Date: 8/13/2010 11:04:46 PM
Co 228.616†	70380.4	0.5264 mg/L	0.00192	0.36%
Cr 267.716†	45887.6	0.2075 mg/L	0.00062	0.30%
Cu 324.752†	124479.7	0.2636 mg/L	0.00003	0.01%
Fe 238.863†	113296.2	1.868 mg/L	0.0119	0.64%
K 404.721†	4329.5			200.22 4.62%
Mg 279.077†	248694.5	6.324 mg/L	0.0199	0.31%
Mn 257.610†	1032422.8	0.6021 mg/L	0.00076	0.13%
Mo 202.031†	28080.6	0.5254 mg/L	0.00200	0.38%
Ni 231.604†	70179.7	0.4677 mg/L	0.00052	0.11%
Na 330.237†	68889.2	37.76 mg/L	0.119	0.32%
Pb 220.353†	14753.9	0.5382 mg/L	0.00457	0.85%
Sb 206.836†	2905.8	0.5081 mg/L	0.00856	1.68%
Se 196.026†	6584.4	1.136 mg/L	0.0084	0.74%
Sn 189.927†	181222.9	5.962 mg/L	0.0310	0.52%
Ti 337.279†	268428.5	0.5253 mg/L	0.00841	1.60%
Tl 190.801†	15367.3	2.001 mg/L	0.0097	0.49%
V 292.402†	138168.3	0.5138 mg/L	0.00431	0.84%
Zn 206.200†	167024.4	0.5486 mg/L	0.00058	0.11%
Ca 227.546†	11286.2	19.63 mg/L	0.065	0.33%
Sr 460.733†	20210.7	0.0778 mg/L	0.00048	0.62%
Sample conc. no	t calculated. Sample	Prep. Vol. AND	Initial Vol.	required OR sample units incorrect.

Sequence No.: 108 Sample ID: R1004296-001L Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 107
Date Collected: 8/13/2010 10:58:45 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

Mean Data: R1004296-001L Mean Corrected Calib Intensity Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Cone. Co Sample Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.00049 0.05% Ag 328.068† 217.9 0.0006 mg/L 0.00047 78.88% 0.0936 mg/L Al 308.215t 4052.2 0.00264 2.82% As 188,979† 43.6 0.0052 mg/L 0.00000 0.03% -0.0061 mg/L B 249.772† -1123.3 0.00099 16.21% 3985.9 Ba 233.527† 0.0110 mg/L 0.00008 0.69% -0.0001 mg/L Be 313.107† -457.0 0.00001 11.14% Cd 226.502† 83.9 0.0002 mg/L 0.00001 2.58% -0.0006 mg/L Co 228.616† -79.0 0.00054 90.03% 0.0000 mg/L Cr 267.716† -4.5 0.00030 >999.9% 436.1 0.0009 mg/L Cu 324.752† 0.00012 13.06% 19101.5 Fe 238.863† 0.3150 mg/L 0.00365 1.16% K 404.721† 9.4 281.56 >999.9% Mg 279.077† 32904.4 0.8367 mg/L 0.00891 1.06% Mn 257.610† 30845.9 0.0180 mg/L 0.00021 1.17% -0.0017 mg/L Mo 202.031† -94.0 0.00004 2.57% Ni 231.604† -33.9 -0.0002 mg/L 0.00063 265.52% 5636.6 3.089 mg/L Na 330.237† 0.0922 2.99% Pb 220.353† -30.3 -0.0011 mg/L 0.00030 27.52% -0.0009 mg/L Sb 206.836† -5.3 0.00176 186.82% Se 196.026† 42.5 0.0074 mg/L 0.00304 41.21% 0.0155 mg/L Sn 189.927† 462.2 0.00131 8.44% Ti 337.279† 52.0 0.0001 mg/L 0.00021 260.84% Tl 190.801† 33.6 0.0044 mg/L 0.00182 41.36% V 292.402t 376.4 0.0014 mg/L 0.00004 2.95% Zn 206.200† 1912.7 0.0062 mg/L 0.00007 1.13% Ca 227.546t 1770.8 3.081~mg/L0.2388 7.75% 4538.2 0.0175 mg/L 0.00023 1.29% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 109
Sample ID: R1004296-002
Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 108
Date Collected: 8/13/2010 11:02:54 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

Mean Data: R1004296-002

	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Y 371.029	7547723.5	0.8644	mg/L	0.00329			0.38%
Ag 328.068†	318.6	0.0008	mg/L	0.00036			43.79%
Al 308.215†	395.5	0.0064	mg/L	0.00012			1.91%
As 188.979†	0.6	0.0003	mg/L	0.00618			>999.9%
B 249.772†	1967.1	0.0053	mg/L	0.00052			9.76%
Ba 233.527†	20392.2	0.0565	mg/L	0.00007			0.12%
Be 313.107†	-932.1	-0.0001	mg/L	0.00000			2.96%
Cd 226.502†	-23.5	-0.0001	mg/L	0.00007			86.49%
Co 228.616†	-11.8	-0.0001	mg/L	0.00016			141.37%
Cr 267.716†	-22.3	-0.0001	mg/L	0.00010			131.68%
Cu 324.752†	1212.4	0.0024	mg/L	0.00010			3.96%
Fe 238.863†	17308.9	0.2833	mg/L	0.00162			0.57%
K 404.721t	153.3						207.41 135.26%
Mg 279.077†	163698.3	4.164	mg/L	0.0199			0.48%
Mn 257.610†	2396.2	0.0013	mg/L	0.00007			5.66%
Mo 202.031†	-49.1	-0.0009	mg/L	0.00057			61.39%
Ni 231.604†	65.4	0.0004	mg/L	0.00005			14.14%
Na 330.237†	29873.6	16.36	mg/L	0.203			1.24%
Pb 220.353†	40.5	0.0016	mg/L	0.00045			27.66%
Sb 206.836†	2.8	0.0004	mg/L	0.00195			434.17%
Se 196.026†	42.6	0.0072	mg/L	0.00870			121.02%
Sn 189.927†	164.0	0.0072	mg/L	0.00021			2.96%
Ti 337.279†	-1026.3	-0.0021	mg/L	0.00005			2.40%
Tl 190.801†	9.7	0.0013	mg/L	0.00195			146.18%
V 292.402†	371.4	0.0014	mg/L	0.00029			20.49%
Zn 206.200†	6490.8	0.0210	mg/L	0.00031			1.49%
Ca 227.546†	12233.7	21.18		0.117			0.55%
Sr 460.733†	21608.3	0.0831		0.00002			0.03%
Sample conc.	not calculated. Sample	e Prep. V	ol. AND	Initial Vol.	required C	R sample	units incorrect.

Sequence No.: 110

Sample ID: R1004296-005

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 109

Date Collected: 8/13/2010 11:07:05 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

		<b></b>			. <del> </del>			
Mean Data: R1004	296-005							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6711299.2	0.7686	mg/L	0.00188				0.24%
Aq 328.068†	822.2	0.0014	mq/L	0.00007				5.06%
<b>31 300 01</b> €+	2265 6	0 0004						

ક Al 308.215† 3365.6 0.0384 mg/L0.00218 5.68% As 188.979† -20.2 -0.0008 mg/L 0.00400 471.38% -0.0095 mg/L B 249.772† 6066.0 0.00116 12.22% Ba 233.527† 18030.3 0.0475 mg/L 0.00067 1.41% -0.0003 mg/L Be 313.107† -3200.5 0.00001 4.42% Cd 226.502† 0.2 0.0001 mg/L 0.00006 47.13% -0.0004 mg/L Co 228.616† 1.6 0.00008 20.58% Cr 267.716† 129.2 0.0003 mg/L 0.00068 225.12% 0.0286 mg/L Cu 324.752† 14343.3 0.00032 1.13% Fe 238.863† 19940.4 0.2983 mg/L 0.00001 0.00% K 404.721† 712.4 61.42 8.62% Mg 279.077† 124688.1 3.172 mg/L 0.0024 0.08% Mn 257.610† 9508.5 0.0055 mg/L 0.00002 0.39% Mo 202.031† -12.9 -0.0005 mg/L0.00129 273.69% -0.0002 mg/L Ni 231.604† 97.2 0.00006 28.57% 391843.9 Na 330.237t 214.6 mg/L 0.31 0.14% Pb 220.353† 0.0019 mg/L -24.7 0.00281 148.60% Sb 206.836† 15.0 0.0023 mg/L 0.00111 48.52% 87.5 0.0115 mg/L Se 196.026† 0.00305 26.51% Sn 189.927t -89.5 0.0211 mg/L 0.00163 7.73% Ti 337.279† -1781.7 -0.0047~mg/L0.00014 2.96% -0.0018 mg/L Tl 190.801† -17.7 0.00294 166.14% V 292.402† 1002.3 0.0036 mg/L 0.00031 8.65% 4292.2 0.0118 mg/L0.00030 Zn 206.200† 2.50% Ca 227.546† 200169.3 346.4 mg/L0.12 0.04% 0.3761 mg/L Sr 460.733† 99171.1 0.00027 0.07%

Sequence No.: 111

Sample ID: R1004296-006

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 110
Date Collected: 8/13/2010 11:11:16 PM
Data Type: Original
Initial Sample Vol:

Sample Prep Vol: 50 mL

								- <b></b>
Mean Data: R	1004296-006							
	Mean Corre	ected	Calib			Sample		
Analyte	Intensi	-	Units	Std.Dev.	Conc.	Units	Std.I	Dev. RSD
Y 371.029	6964869			0.00585				0.73%
Ag 328.068†	519.			0.00026				43.17%
Al 308.215†	2309.			0.00379				26.87%
As 188.979†	0.			0.00239				158.88%
B 249.772†	6218.			0.00038				4.54%
Ba 233.527†	24422.			0.00068				1.04%
Be 313.107†	-2888.			0.0000				0.11%
Cd 226.502†	37.			0.00019				80.87%
Co 228.616†	-87.		mg/L	0.00050				48.88%
Cr 267.716†	129.			0.00087				283.79%
Cu 324.752†	11839.	2 0.0233	mg/L	0.00016				0.69%
Fe 238.863†	16980.		mg/L	0.00667				2.67%
K 404.721†	670.						107.	72 16.06%
Mg 279.077†	124502.			0.0001				0.00%
Mn 257.610†	6823.			0.00008				2.07%
Mo 202.031†	10.			0.00042				>999.9%
Ni 231.604†	49.			0.00028				53.50%
Na 330.237†	391943.			0.05				0.03%
Pb 220.353†	7.			0.00018				5.79%
Sb 206.836†	9.			0.00368				282.97%
Se 196.026†	60.	6 0.0069	mg/L	0.00270				39.21%
Sn 189.927†	-139.			0.00131				6.77%
Ti 337.279†	-1651.			0.00037				8.26%
Tl 190.801†	4.			0.00134				121.10%
V 292.402†	980.			0.00010				2.80%
Zn 206.200†	8949.			0.00027				1.00%
Ca 227.546†	198945.			0.52				0.15%
Sr 460.733†	98374.			0.00240				0.64%
Sample conc.	not calculated.	Sample Prep. '	Vol. AND	Initial Vol.	required (	R sample	units i	ncorrect.

Sequence No.: 112

Sample ID: R1004296-009

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 111

Date Collected: 8/13/2010 11:15:27 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1004296-009							
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Y 371.029	6991387.9	0.8007	mg/L	0.00048			0.06%
Ag 328.068†	750.0	0.0010	mg/L	0.00002			1.54%
Al 308.215†	4627.4	0.0581	mg/L	0.00432			7.44%
As 188.979†	-41.1	-0.0030	mg/L	0.00183			61.30%
B 249.772†	2017.5	-0.0353	mg/L	0.00029			0.82%
Ba 233.527†	27900.3	0.0742	mg/L	0.00039			0.52%
Be 313.107†	-2851.1	-0.0002	mg/L	0.00002			11.79%
Cd 226.502†	-70.0	0.0000	mg/L	0.00016			>999.9%
Co 228.616†	-12.5	-0.0006	mg/L	0.00004			6.70%
Cr 267.716†	-15.5	-0.0004	mg/L	0.00008			20.09%
Cu 324.752†	8976.9	0.0168	mg/L	0.00051			3.04%
Fe 238.863†	17825.5	0.2559	mg/L	0.00065			0.25%
K 404.721†	860.6						275.53 32.02%
Mg 279.077†	161812.6	4.117	mg/L	0.0594			1.44%
Mn 257.610†	5219.4	0.0030	mg/L	0.00007			2.40%
Mo 202.031;	15.4	0.0000		0.00067			>999.9%
Ni 231.604†	3.9	-0.0010	mg/L	0.00007			6.29%
Na 330.237t	467598.4	256.0		2.53			0.99%
Pb 220.353†	1.0	0.0035	mg/L	0.00232			65.99%

Method: AXIAL200-6010 L Opt4 Page 77 Date: 8/13/2010 11:25:51 PM Sb 206.836† 0.00606 15.5 0.0023 mg/L 264.59% 0.0071 mg/LSe 196.026† 66.9 0.00084 11.94% Sn 189.927† -137.3 0.0253 mg/L 0.00089 3.51% Ti 337.279† -1566.7 -0.0046 mg/L0.00035 7.62% Tl 190.801† -16.0 -0.0014 mg/L0.00015 10.55% V 292.402† 0.0033 mg/L 0.00017 938.7 5.13% Zn 206.200† 2097.9 0.0041 mg/L 0.00018 4.36% Ca 227.546† 248178.8 429.5 mg/L 5.80 1.35% Sr 460.733† 122846.8 0.4659 mg/L 0.00592 1.27% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 113 Sample ID: R1004296-010

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 112

Date Collected: 8/13/2010 11:19:39 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R100	4296-010							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	6737618.9	0.7716	mg/L	0.00455				0.59%
Ag 328.068†	840.4	0.0012	mg/L	0.00069				56.05%
Al 308.215†	3621.4 ,	0.0334	mg/L	0.00174				5.21%
As 188.979†	12.4	0.0033	mg/L	0.00473				141.90%
B 249.772†	5111.4	-0.0231	mg/L	0.00064				2.78%
Ba 233.527†	51149.1	0.1387	mg/L	0.00107				0.77%
Be 313.107†	-3470.6	-0.0003	mg/L	0.00001				2.88%
Cd 226.502†	-25.9	0.0001	mg/L	0.00001				11.11%
Co 228.616†	-46.0	0.0008	mg/L	0.00041				49.98%
Cr 267.716†	108.2	0.0001	mg/L	0.00062				476.83%
Cu 324.752†	7639.1	0.0139	mg/L	0.00024				1.71%
Fe 238.863†	19339.3	0.2798	mg/L	0.00107				0.38%
K 404.721†	755.8						1.45	0.19%
Mg 279.077†	166719.3	4.242		0.0236				0.56%
Mn 257.610†	3817.0	0.0022		0.00007				3.16%
Mo 202.031t	4.6	-0.0002		0.00029				141.08%
Ni 231.604†	65.8	-0.0007		0.00009				13.49%
Na 330.237†	479537.4	262.6	mg/L	1.07				0.41%
Pb 220.353†	45.8	0.0052	mg/L	0.00104				19.98%
Sb 206.836†	2.0	-0.0001	mg/L	0.00553				>999.9%
Se 196.026†	68.8	0.0073	mg/L	0.00239				32.87%
Sn 189.927†	-127.3	0.0265	mg/L	0.00119				4.49%
Ti 337.279†	-2041.1	-0.0055	mg/L	0.00013				2.34%
Tl 190.801†	15.4	0.0027	<u>.</u>	0.00213				79.42%
V 292.402†	961.7	0.0034		0.00004				1.10%
Zn 206.200†	12288.7	0.0375	mg/L	0.00023				0.61%
Ca 227.546†	254885.6	441.1		2.44				0.55%
Sr 460.733†	126131.3	0.4784		0.00223				0.47%
Sample conc. no	t calculated. Sampl	e Prep. V	Vol. AND	Initial Vol.	required O	R sample	units inc	orrect.

Sequence No.: 114 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4 Date Collected: 8/13/2010 11:23:50 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV Mean Corrected

	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7214333.0	0.8262 mg/L	0.00078				0.09%
Ag 328.068†	200006.3	0.5366 mg/L	0.00059	0.5366	mg/L	0.00059	0.11%
QC value within	n limits for Ag 3.	28.068 Recovery	= 107.31%				
Al 308.215†	474776.3	11.01 mg/L	0.001	11.01	mg/L	0.001	0.01%
QC value greate	er than the upper	limit for Al 308	.215 Recovery	/ = 110.0°	7%		
As 188.979†	9162.3	1.074 mg/L	0.0066	1.074	mg/L	0.0066	0.61%
QC value within	n limits for As 1	88.979 Recovery	<b>= 107.39%</b>				
B 249.772†	553509.3	2.375 mg/L	0.0154	2.375	mg/L	0.0154	0.65%
QC value within	n limits for B 24	9.772 Recovery =	95.01%		_		

Method: AXIAL2	00-6010 L Opt4	Page 78	Date:	8/13/2010 11:	30:02 PM
Ba 233.527†	3636377.7	10.10 mg/L 0.004 233.527 Recovery = 101.00%	10.10 mg/L	0.004	0.04%
Be 313.107†	1610848.2	0.2452 mg/L 0.00019	0.2452 mg/L	0.00019	0.08%
Cd 226.502†	201926.9	313.107 Recovery = 98.09% 0.5277 mg/L 0.00092	0.5277 mg/L	0.00092	0.17%
Co 228.616†	331959.1	226.502 Recovery = 105.54% 2.483 mg/L 0.0016	2.483 mg/L	0.0016	0.07%
Cr 267.716†	117075.1	228.616 Recovery = 99.32% 0.5295 mg/L 0.00019	0.5295 mg/L	0.00019	0.04%
Cu 324.752†	579890.9	267.716 Recovery = 105.90% 1.228 mg/L 0.0034	1.228 mg/L	0.0034	0.27%
Fe 238.863†	330697.7	324.752 Recovery = 98.23% 5.452 mg/L 0.0045	5.452 mg/L	0.0045	0.08%
K 404.721†	5379.6	238.863 Recovery = 109.04%		212.93	3.96%
Mg 279.077†	valuate QC. 1067909.1	27.16 mg/L 0.027	27.16 mg/L	0.027	0.10%
Mn 257.610†	1330317.1	279.077 Recovery = 108.63% 0.7753 mg/L 0.00075 257.610 Recovery = 103.37%	0.7753 mg/L	0.00075	0.10%
Mo 202.031†	137439.8		2.571 mg/L	0.0092	0.36%
Ni 231.604†	318602.4	2.124 mg/L 0.0043 231.604 Recovery = 106.18%	2.124 mg/L	0.0043	0.20%
Na 330.237†	56485.8	30.96 mg/L 0.002 : limit for Na 330.237 Recover	30.96 mg/L	0.002	0.01%
Pb 220.353†	15099.3	0.5515 mg/L 0.00186 c limit for Pb 220.353 Recover	0.5515 mg/L	0.00186	0.34%
Sb 206.836†	29523.3	5.162 mg/L 0.0375 206.836 Recovery = 103.25%		0.0375	0.73%
Se 196.026†	3193.2	0.5515 mg/L 0.00239 limit for Se 196.026 Recover	0.5515 mg/L	0.00239	0.43%
Sn 189.927†	167219.8	5.504 mg/L 0.0101 limit for Sn 189.927 Recover	5.504 mg/L	0.0101	0.18%
Ti 337.279†	1319482.3	2.582 mg/L 0.0103 37.279 Recovery = 103.29%	2.582 mg/L	0.0103	0.40%
Tl 190.801†	8009.1	1.043 mg/L 0.0074 90.801 Recovery = 104.34%	1.043 mg/L	0.0074	0.71%
V 292.402†	688608.8	2.560 mg/L 0.0049 2.402 Recovery = 102.41%	2.560 mg/L	0.0049	0.19%
Zn 206.200†	332754.1	1.092 mg/L 0.0011 06.200 Recovery = 109.24%	1.092 mg/L	0.0011	0.10%
Ca 227.546†	15523.1	27.16 mg/L 0.144 27.546 Recovery = 108.63%	27.16 mg/L	0.144	0.53%
Sr 460.733†	859832.6	3.326 mg/L 0.0070 limit for Sr 460.733 Recover	3.326 mg/L	0.0070	0.21%
	ntinue with analysis		.γ — χυυ.νοσ		
Company No. 1			=======================================	=======================================	22522

Sequence No.: 115 Sample ID: CCB Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 5
Date Collected: 8/13/2010 11:28:11 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: CCB Mean Corrected Calib Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 7851596.5 0.8992 mg/L Y 371.029 0.00039 0.04% Ag 328.068† 266.0 0.0007 mg/L 0.00015 0.0007 mg/L 0.00015 20.75% QC value within limits for Ag 328.068 Recovery = Not calculated Al 308.215† -660.3 -0.0153 mg/L 0.00206 -0.0153 mg/L 0.00206 13.47% QC value within limits for Al 308.215 Recovery = Not calculated 0.0020 mg/L 0.0020 mg/L As 188.979† 16.5 0.00745 0.00745 371.84% QC value within limits for As 188.979 Recovery = Not calculated B 249.772† -3796.7 -0.0169 mg/L -0.0169 mg/L 0.00062 0.00062 3.68% QC value within limits for B 249.772 Recovery = Not calculated 3706.6 Ba 233.527† 0.0103 mg/L 0.00002 0.0103 mg/L0.00002 0.19% QC value within limits for Ba 233.527 Recovery = Not calculated -202.0 Be 313.107† 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 53.79% QC value within limits for Be 313.107 Recovery = Not calculated

Method: AXIAL200-6010 L Opt4	Page 79	Date: 8/13/2010 11:34:14 PM
Cd 226.502† 21.4 0.000 QC value within limits for Cd 226.502	0 mg/L 0.00002 0.0000	mg/L 0.00002 46.10%
Co 228.616† -12.5 -0.000  QC value within limits for Co 228.616	1 mg/L 0.00007 -0.0001	mg/L 0.00007 72.92%
Cr 267.716† -22.4 -0.000 QC value within limits for Cr 267.716	1 mg/L 0.00029 -0.0001	mg/L 0.00029 303.62%
Cu 324.752† 1433.5 0.003 QC value within limits for Cu 324.752	<pre>1 mg/L 0.00006 0.0031 Recovery = Not calculated</pre>	mg/L 0.00006 1.85%
Fe 238.863† 11527.3 0.190  QC value greater than the upper limit	4 mg/L 0.00269 0.1904	mg/L 0.00269 1.41% alculated
K 404.721† -127.3 Unable to evaluate QC.		37.69 29.59%
Mg 279.077† -953.3 -0.024 QC value within limits for Mg 279.077	Recovery = Not calculated	
Mn 257.610† 589.1 0.000 QC value within limits for Mn 257.610	Recovery = Not calculated	mg/L 0.00002 6.91%
Mo 202.031† -10.4 -0.000 QC value within limits for Mo 202.031	Recovery = Not calculated	mg/L 0.00035 189.17%
QC value within limits for Ni 231.604	Recovery = Not calculated	mg/L 0.00027 318.38%
Na 330.237† 696.6 0.382 QC value within limits for Na 330.237 Pb 220.353† 20.7 0.000		_
QC value within limits for Pb 220.353	Recovery = Not calculated 5 mg/L 0.00504 0.0015	
OC value within limits for Sb 206.836	Recovery = Not calculated	
Se 196.026† 16.5 0.002 QC value within limits for Se 196.026 Sn 189.927† 382.5 0.012	Recovery = Not calculated 6 mg/L 0.00092 0.0126	mg/L 0.00092 7.31%
QC value within limits for Sn 189.927	Recovery = Not calculated 7 mg/L 0.00004 -0.0017	
QC value within limits for Ti 337.279 Tl 190.801† -22.1 -0.002	Recovery = Not calculated	mg/L 0.00065 22.70%
QC value within limits for Tl 190.801	Recovery = Not calculated	mg/L 0.00023 19.46%
QC value within limits for V 292.402 : Zn 206.200† 168.8 0.000	Recovery = Not calculated 6 mg/L 0.00007 0.0006	
QC value within limits for Zn 206.200 Ca 227.546† -229.4 -0.387	Recovery = Not calculated 0 mg/L 0.02039 -0.3870	mg/L 0.02039 5.27%
QC value within limits for Ca 227.546 Sr 460.733† 145.5 0.000	Recovery = Not calculated 6 mg/L 0.00058 0.0006	_
QC value within limits for Sr 460.733 QC Failed. Continue with analysis.	Recovery = Not calculated	

Sequence No.: 116
Sample ID: R1004296-013
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 113
Date Collected: 8/13/2010 11:32:21 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol: 50 mL

______

Mean Data: R10042	96-013							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7679747.1	0.8795	mg/L	0.00378				0.43%
Ag 328.068†	190.9	0.0005	mg/L	0.00008				15.82%
Al 308.215†	6533.1	0.1493	mg/L	0.00287				1.93%
As 188.979†	-1.8	0.0000	mg/L	0.00416			3	999.9%
B 249.772†	-1625.2	-0.0102	mg/L	0.00023				2.28%
Ba 233.527†	7086.1	0.0195	mg/L	0.00033				1.68%
Be 313.107†	-830.3	-0.0001	mg/L	0.00001				10.07%
Cd 226.502†	68.0	0.0001	mg/L	0.00015			3	L01.27%
Co 228.616†	-57.1	-0.0005	mg/L	0.00004				9.02%
Cr 267.716†	83.2	0.0004	mg/L	0.00016				39.12%
Cu 324.752†	1550.4	0.0032	mg/L	0.00024				7.63%
Fe 238.863†	26010.7	0.4273	mg/L	0.00087				0.20%
K 404.721†	148.6						54.82	36.88%
Mg 279.077†	161001.2	4.095	mg/L	0.0128				0.31%
Mn 257.610†	65743.6	0.0382	mg/L	0.00013				0.34%
Mo 202.031†	-74.0	-0.0014	mg/L	0.00072				52.23%
Ni 231.604†	40.0	0.0002	mg/L	0.00009				43.99%

Method: AXIAL200-6010 L Opt4 Page 80 Date: 8/13/2010 11:42:38 PM Na 330,237t 24380.3 13.36 mg/L 0.083 0.62% 0.00031 0.00236 0.00765 0.00002 32.6 0.0013 mg/L Pb 220.353† 23.99% 0.0026 mg/L 0.0110 mg/L Sb 206.836† 15.0 90.75% Se 196.026† 64.3 69.54% 0.0041 mg/L 0.0005 mg/L Sn 189.927† 80.4 0.39% Ti 337.279† 315.5 0.00009 18.03% -0.0014 mg/L Tl 190.801† -11.2 0.00162 117.55% V 292.402† 0.0018 mg/L 472.2 0.00020 11.21% 0.0064 mg/L 0.00017 Zn 206.200† 2036.6 2.70% 9745.3 16.89 mg/L Ca 227.546† 0.455 2.70% 20031.1 0.0771 mg/L 0.00007 Sr 460.733† 0.09% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 117 Autosampler Location: 114 Sample ID: R1004317-001 Date Collected: 8/13/2010 11:36:34 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL Mean Data: R1004317-001 Mean Corrected Intensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitensity Conc. Unitens Calib Sample Std.Dev. 0.00277 0.00026 0.00130 0.00080 0.00047 Conc. Units Std.Dev. Analyte Conc. Units Std.Dev. RSD Y 371.029 0.37% 0.00277 653.5 0.0006 mg/L Ag 328.068† 44.57% 6899.2 Al 308.215† 0.1019 mg/L 1.27% -0.0008 mg/L -0.0382 mg/L As 188.979t -25.4 101.49% 3201.9 B 249 772t 0.00047 1.23% Ba 233.527† 35283.0 0.0942 mg/L 0.00113 1.20% -0.0003 mg/L Be 313.107t -3718.2 0.00003 11.71% -110.9 -18.3 7.2 Cd 226.502† -0.0001 mg/L 0.00001 14.58% 0.00025 Co 228.616t 35.62% Cr 267.716† -0.0004 mg/L 0.00014 15274.7 24295.6 845.4 35.94% 0.0297 mg/L Cu 324.752† 0.00007 0.22% Fe 238.863† 0.3559 mg/L 0.00160 0.45% K 404.721† 845.4 53.29 6.30% 845.4 165918.5 Mg 279.077t 4.221 mg/L 0.0301 0.71% Mn 257.610† Mo 202.031† 91820.4 0.0535 mg/L 0.00025 0.47% 91820.4 0.0535 mg/L -40.4 -0.0011 mg/L 111.1 -0.0005 mg/L 0.00025 23.16% Ni 231.604† 0.00042 81.35% 111.1 453703.1 Na 330.237‡ 248.4 mg/L0.96 0.38% 0.0024 mg/L 0.0057 mg/L Pb 220.353† Sb 206.836† -45.5 0.00196 80.42% 35.2 0.00454 80.10% 47.7 0.0030 mg/L 0.0316 mg/L -0.0055 mg/L -0.0029 mg/L Se 196.026† 0.00033 11.25% Sn 189.927† -110.4 0.00127 4.03% Ti 337.279† -1905.4 0.00017 3.19% Tl 190.801† -28.3 0.00098 33.76% 1069.2 V 292.402† 0.0038 mg/L 0.00018 4.66% Zn 206.200† 5789.0 0.0157 mg/L Ca 227.546† 293116.6 507.2 mg/L Sr 460.733† 136534.7 0.5172 mg/L 0.00025 1.61% 2.30 0.45% 0.00355 0.69% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. _______ Sequence No.: 118 Autosampler Location: 115 Sample ID: R1004317-002 Date Collected: 8/13/2010 11:40:46 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL Mean Data: R1004317-002 Mean Corrected Calib Sample Conc. Units
0.7701 mg/L
940.3 0.0014 mg/L
3440.6 0.0225 mg/L
-29.6 -0.0013 mg/L
3146.8 -0.0375 mg/L
40672.3 0.1092 Intensity Conc. Units
6724457.5 0.7701 mg/L Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.00281 0.36% Ag 328.068† 0.00052 38.08% Al 308.215† 0.00356 15.81%

0.00158

0.00000

0.00063

0.00004

-0.0375 mg/L 0.1092 mg/L

-3315.6 -0.0002 mg/L

As 188.979†

B 249.772†

Ba 233.527t

Be 313.107†

117.35%

0.01%

0.58%

14.79%

Method: AXIA	L200-6010 L Opt4	Page	a 81	Date: 8/13/2010 11:46:59 PM
Cd 226.502†	-53.3	0.0001 mg/L	0.00034	506.06%
Co 228.616†	-45.0	-0.0009 mg/L	0.00023	25.91%
Cr 267.716†	-30.4	-0.0006 mg/L	0.00082	148.62%
Cu 324.752†	7940.2	0.0142 mg/L	0.00003	0.19%
Fe 238.863†	18535.3	0.2614 mg/L	0.00095	0.36%
K 404.721†	769.4			4.00 0.52%
Mg 279.077†	163706.4	4.165 mg/L	0.0039	0.09%
Mn 257.610†	3216.3	0.0018 mg/L	0.00007	3.91%
Mo 202.031†	-12.0	-0.0006 mg/L	0.00020	35.60%
Ni 231.604†	55.0	-0.0009 mg/L	0.00009	9.99%
Na 330.237†	448402.5	245.5 mg/L	0.55	0.22%
Pb 220.353†	-73.8	0.0014 mg/L	0.00121	89.22%
Sb 206.836†	-9.2	-0.0021 mg/L	0.00419	200.72%
Se 196.026†	56.1	0.0044 mg/L	0.00186	41.85%
Sn 189.927†	-162.4	0.0294 mg/L	0.00074	2.52%
Ti 337.279†	-1918.0	-0.0055 mg/L	0.00000	0.00%
Tl 190.801†	-6.2	-0.0001 mg/L	0.00203	>999.9%
V 292.402†	978.8	0.0035 mg/L	0.00009	2.47%
Zn 206.200†	5724.1	0.0156 mg/L	0.00004	0.25%
Ca 227.546†	289030.4	500.2 mg/L	0.80	0.16%
Sr 460.733†	134651.6	0.5100 mg/L	0.00374	0.73%
Sample conc.	not calculated. Sample	e Prep. Vol. AND 1	Initial Vol.	required OR sample units incorrect.

Sequence No.: 119 Autosampler Location: 4 Sample ID: CCV

Analyst: Initial Sample Wt:

Dilution:

Date Collected: 8/13/2010 11:44:57 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV	Mosm Corrected	1	Calib			Campla		
Analarta	Mean Corrected	Corr	Unita	Gtd Do	Co= -	Sample	Std.Dev.	RSD
<b>Analy</b> te Y 371.029	THEERSICY	0 0271	Units	stallev.	conc.	Units	Sta.Dev.	
Ag 328.068†	100016 5	0.8371	1119/L	0.00246	0 5313	/T	0.00040	0.29
QC value within	limita for Na	330 000	mg/L	- 106 25%	0.5312	шg/ь	0.00040	0.089
	470335.6			0.055	10.00	mq/L	0.055	^ [10
QC value within					10.90	ազ/r	0.055	0.519
As 188.979†	8913.8	1.045			7 045		0.0040	0 200
QC value within				0.0040	1.045	mg/ L	0.0040	0.389
B 249.772†	547323.9	2.349			2 240		0 0000	
				0.0308	2.349	™g/ r	0.0308	1.319
QC value within Ba 233.527†	3598254.3				0.004	14		
- · · · · · · · · · · · · · · · · · · ·		9.994		0.0465	9.994	шд\г	0.0465	0.47%
QC value within					0 0404	17		
Be 313.107†	1592036.7				0.2424	mg/L	0.00127	0.52%
QC value within						/-		
Cd 226.502†	197153.5			0.00722	0.5152	mg/L	0.00722	1.40%
QC value within						/		
Co 228.616†	000001.,	200		0.0106	2.456	mg\r	0.0106	0.43%
QC value within					0 5160			
Cr 267.716†		0.5169		0.00637	0.5169	mg/L	0.00637	1.23%
QC value within						-		
Cu 324.752†					1.214	mg/L	0.0073	0.60%
QC value within								
7e 238.863†				0.0329	5.398	mg/L	0.0329	0.61%
QC value within		238.863	Recovery	= 107.96%				
K 404.721†	5332.1						42.82	0.80%
Unable to evalua			-					
	1057191.4				26.89	mg/L	0.160	0.59%
QC value within								
In 257.610†		0.7668	mg/L	0.00348	0.7668	mg/L	0.00348	0.45%
QC value within								
10 202.031†		2.521		0.0428	2.521	mg/L	0.0428	1.70%
QC value within								
Ni 231.604†	316383.7	2.109		0.0050	2.109	mg/L	0.0050	0.24%
QC value within								
Ta 330.237†	56180.7	30.79		0.162			0.162	0.53%
QC value greater								
Pb 220.353†					0.5278	mg/L	0.01138	2.16%
QC value within								
3b 206.836†	29571.0	5.171	mg/L	0.0515	5.171	mg/L	0.0515	1.00%

Method: AXIA	L200-6010 L Opt4	Page 82	Date:	8/13/2010 11:51:0	9 PM
QC value	within limits for Sb 206.836	Recovery = 103.41%			
	3114.1 0.53		.5378 mg/L	0.00425 0.7	9%
QC value v	within limits for Se 196.026	Recovery = 107.56%	_		
Sn 189.927†	165576.4 5.4	50 mg/L 0.0559	5.450 mg/L	0.0559 1.0	3%
QC value v	within limits for Sn 189.927	Recovery = 109.00%			
Ti 337.279†	1303840.9 2.5	52 mg/L 0.0288	2.552 mg/L	0.0288 1.1	3%
QC value v	vithin limits for Ti 337.279	Recovery = 102.07%			
Tl 190.801†	7883.2 1.0	27 mg/L 0.0140	1.027 mg/L	0.0140 1.3	6%
QC value v	vithin limits for Tl 190.801				
	681654.0 2.5		2.534 mg/L	0.0205 0.8	18
QC value v	vithin limits for V 292.402	Recovery = 101.38%			
	329304.2 1.0		1.081 mg/L	0.0042 0.3	98
QC value v	vithin limits for Zn 206.200	Recovery = 108.11%			
Ca 227.546†	15217.9 26.	63 mg/L 0.289	26.63 mg/L	0.289 1.0	9%
QC value v	vithin limits for Ca 227.546	Recovery = 106.51%			
Sr 460.733†	852669.6 3.2	99 mg/L 0.0103	3.299 mg/L	0.0103 0.3	1%
QC value c	reater than the upper limit	for Sr 460.733 Recovery = 3	131.95%		
QC Failed. (	Continue with analysis.	_			

_____ Sequence No.: 120 Sample ID: CCB Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 5 Date Collected: 8/13/2010 11:49:18 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB							
	Mean Corrected	d Calib			Sample		
Analyte	Intensity	Conc. Units 0.8815 mg/L	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	7697341.4	0.8815 mg/L	0.00383				0.43%
Ag 328.068†	81.0	0.0002 mg/L	0.00027	0.0002	mg/L	0.00027	114.77%
QC value within	limits for Ag	328.068 Recovery	= Not calculat	ted			
Al 308.215†		-0.0153 mg/L		-0.0153	mg/L	0.00122	8.00%
QC value within	limits for Al	308.215 Recovery					
As 188.979†	26.2	0.0031 mg/L	0.00088	0.0031	mg/L	0.00088	27.99%
	limits for As	188.979 Recovery	= Not calculat				
B 249.772†		-0.0185 mg/L		-0.0185	mg/L	0.00031	1.68%
		249.772 Recovery =					
Ba 233.527†	3937.7	0.0109 mg/L	0.00024		mg/L	0.00024	2.19%
		233.527 Recovery					
Be 313.107†	-312.2	$0.0000~{ m mg/L}$	0.00002	0.0000	mg/L	0.00002	31.91%
		313.107 Recovery					
		$0.0003~{ m mg/L}$			mg/L	0.00020	72.08%
		226.502 Recovery					
Co 228.616†		0.0003 mg/L	0.00004		mg/L	0.00004	15.02%
		228.616 Recovery					
Cr 267.716†	-96.5	-0.0004 mg/L	0.00002	-0.0004	mg/L	0.00002	3.92%
		267.716 Recovery					
		0.0032 mg/L			mg/L	0.00014	4.47%
-		324.752 Recovery					
Fe 238.863†	12414.1	0.2051 mg/L	0.00141	0.2051	mg/L	0.00141	0.69%
		er limit for Fe 238	.863 Recovery	y = Not ca	alculated		
K 404.721†	9.2					146.29	>999.9%
Unable to evalua	ate QC.						_
		-0.0209 mg/L			mg/L	0.00104	4.96%
		279.077 Recovery			4		
Mn 257.610t			0.00009		mg/L	0.00009	34.16%
QC value within	limits for Mn	257.610 Recovery :			-		
		0.0002 mg/L			mg/L	0.00019	115.26%
		202.031 Recovery :					
Ni 231.604†		-0.0001 mg/L	0.00057		mg/L	0.00057	980.74%
		231.604 Recovery			1=	0.05445	
Na 330.237†	002.5	0.4409 mg/L	0.05445		mg/L	0.05445	12.35%
		330.237 Recovery =			17		255 256
		0.0006 mg/L			mg/L	0.00207	355.00%
		220.353 Recovery :			/T	0 00035	3.7 600
Sb 206.836†	11.9	0.0021 mg/L	0.00037		mg/L	0.00037	11.628
		206.836 Recovery =				0 00000	0 710
Se 196.026t	17.0	0.0030 mg/L 196.026 Recovery =	0.00002		mg/L	0.00002	0./1%
					m= /T	0 00040	10 040
Sn 189.927†	411./	0.0135 mg/L	0.00240	0.0135	mg/L	0.00240	17.748

Date	9/12	/2010	11.55	7 7	DM

Method: AXIAL200	-6010	L	Opt4
------------------	-------	---	------

Dago	0.2
Paue	0.3

QC value	within limits for Sn	189.927 Recovery :	= Not calculat	ed		
Ti 337.279†	-991.9	-0.0019 mg/L	0.00010	-0.0019 mg/L	0.00010	5.22%
QC value	within limits for Ti	337.279 Recovery :	Not calculat	ed		
Tl 190.801t	9.5	0.0012 mg/L	0.00051	0.0012 mg/L	0.00051	40.88%
	within limits for Tl					
V 292.402†	278.3	0.0011 mg/L	0.00001	0.0011 mg/L	0.00001	0.81%
	within limits for V 2					
	204.3				0.00003	4.53%
	within limits for Zn					
Ca 227.546†	-322.2	-0.5467 mg/L	0.03921	-0.5467 mg/L	0.03921	7.17%
QC value	within limits for Ca	227.546 Recovery =	Not calculat	ed		
Sr 460.733†	195.9	0.0008 mg/L	0.00016	0.0008 mg/L	0.00016	21.34%
	within limits for Sr					
QC Failed.	Continue with analysis	s.				

Sequence No.: 121 Sample ID: MRL Analyst: Initial Sample Wt: Dilution: Autosampler Location: 6
Date Collected: 8/13/2010 11:53:28 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: MRL								
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7859701.8	0.9001	mg/L	0.00038				0.04%
Y 371.029 Ag 328.068†	3925.4	0.0105	mg/L	0.00033	0.0105	mg/L	0.00033	3.15%
QC value within	limits for Ag 3	328.068	Recovery =	105.42%				
Al 308.215†	8623.9	0.1999	mg/L	0.00412	0.1999	mg/L	0.00412	2.06%
QC value within	limits for Al 3	308.215	Recovery =	99.94%		_		
As 188.979†	164.9	0.0194	mg/L	0.00023	0.0194	mg/L	0.00023	1.21%
QC value within	limits for As 1	188,979	Recovery =	97.06%				
B 249.772†	34421.8	0.1481	mg/L	0.00185	0.1481	mg/L	0.00185	1.25%
QC value less th	han the lower li	imit for !	B 249.772	Recovery = 74		<b>.</b>		
Ba 233.527†	76948.0	0.2137	mq/L	0.00145	0.2137	mq/L	0.00145	0.68%
QC value within						5.		
Be 313.107†	29040.4			0.00001	0.0044	mq/L	0.00001	0.25%
QC value within	limits for Be 3	313,107				٥.		
Cd 226.502†	3938.1			0.00004	0.0103	mq/L	0.00004	0.43%
QC value within								
Co 228.616†		0.0500		0.00074	0.0500	ma/L	0.00074	1.48%
QC value within						57		
Cr 267.716†	2043.7				0.0093	ma/L	0.00000	0.02%
QC value within						57 —		
Cu 324.752†		0.0245		0.00029	0.0245	ma/T	0.00029	1.20%
QC value within					0.0213	9/ 1	0.00025	1.200
Fe 238.863†	17785.1	0.2934	ma/T	0 00280	0.2934	ma/L	0.00280	0.96%
QC value greater							0.00200	0.50%
K 404.721†	187.6	TIME I	01 10 250.0	os Recovery	- 273.4		61.19	32.62%
Unable to evalua							02.25	32.028
Mq 279.077†	41842.3	1 064	ma/I.	0.0066	1 064	ma/I.	0 0066	0.62%
QC value within	limits for Ma 2	2.00± 279 077 3	mg/u Pecoverv -		1.004	g/ D	0.0000	0.02%
Mn 257.610†	25980.6		_	0.00011	0 0151	mg/L	0.00011	0.76%
QC value within					0.0131	g/ D	0.00011	0.70%
Mo 202.031t	1229.4			0.00042	0 0220	mg/L	0.00042	1.82%
QC value within					0.0230	mg/ n	0.00042	1.026
Ni 231.604t		0.0405		0.00064	0.0405	ma/T	0.00064	1.58%
QC value within					0.0405	mg/L	0.00064	1.584
					1 500	/T	0.0100	1 0 4 0
Na 330.237†			mg/L			mg/L	0.0188	1.24%
QC value greater				•			0 00107	
Pb 220.353†	280.4	0.0102		0.00137	0.0102	mg/L .	0.00137	13.35%
QC value within					0.000	/=		
Sb 206.836†	343.2	0.0600		0.00123	0.0600	mg/L	0.00123	2.05%
QC value within						10		
Se 196.026†	106.7			0.00654		mg/L	0.00654	35.41%
QC value greater					= 184.65	38		
Sn 189.927†	16943.5			0.00865	0.5574	mg/L	0.00865	1.55%
QC value within						<b>,</b> _		
Ti 337.279†	24331.9	0.0476		0.00010	0.0476	mg/L	0.00010	0.20%
QC value within						4-		
Tl 190.801†	154.2	0.0201	mg/L	U.00425	0.0201	mg/L	0.00425	21.14%

QC value within limits for Tl 190.801 Recovery = 100.51%		
V 292.402† 13136.6 0.0489 mg/L 0.00043 0.0489 mg/l	L 0.00043	0.89%
QC value within limits for V 292.402 Recovery = 97.72%		
Zn 206.200† 6286.0 0.0206 mg/L 0.00015 0.0206 mg/l	L 0.00015	0.71%
QC value within limits for Zn 206.200 Recovery = 103.07%		•
Ca 227.546† 292.2 0.5211 mg/L 0.08734 0.5211 mg/L	L 0.08734	16.76%
QC value less than the lower limit for Ca 227.546 Recovery = 52.11%		
Sr 460.733† 35804.9 0.1385 mg/L 0.00085 0.1385 mg/l	L 0.00085	0.61%
QC value greater than the upper limit for Sr 460.733 Recovery = 138.53%		
QC Failed. Continue with analysis.		

Sequence No.: 122 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution: Autosampler Location: 7
Date Collected: 8/13/2010 11:57:35 PM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: ICSA							
	Mean Corrected	l Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Y 371.029	6931657.4	0.7938 mg/L	0.00190				0.24%
Analyte Y 371.029 Ag 328.068†	-1743.5	0.0002 mg/L	0.00052	0.0002	mg/L	0.00052	227.03%
QC value within	limits for Ag	328.068 Recovery	= Not calcula	ted	5,		
			0.69		ma/L	0.69	0.27%
		308.215 Recovery	' = 101.78%		J.		
		0.0044 mg/L	0.00120	0.0044	mar/Ti	0.00120	27.38%
		188.979 Recovery			9/ =	0.00220	27.500
		0.0010 mg/L			mq/L	0.00358	368 788
B= 233 527+	5220 1	0.0010 mg/L	0.00338	0.0010		0.00071	9,56%
Ba 233.527† Be 313.107†	-3303 V	0.0074 mg/L	0.00071				
De 313.10/	-2393.4	-0.0001 mg/L	0.00003	-0.0001	mg/r	0.00003	23.27%
		313.107 Recovery			,_		
Cd 226.502†	2731.7	-0.0005 mg/L	0.00011	-0.0005	mg/L	0.00011	20.46%
	limits for Cd	226.502 Recovery	= Not calculat	ted			
Co 228.616†		-0.0005 mg/L			mg/L	0.00027	52.76%
		228.616 Recovery		ted			
Cr 267.716†	-1446.6	-0.0015 mg/L	0.00045	-0.0015	mg/L	0.00045	30.44%
QC value within	limits for Cr	267.716 Recovery	= Not calculat	teđ			
Cu 324.752†	-5886.6	-0.0027 mg/L	0.00037	-0.0027	mq/L	0.00037	13.65%
QC value within	limits for Cu	324.752 Recovery	= Not calculat	ted	٥.		
Fe 238.863t		94.45 mg/L	0.105	94.45	ma/L	0.105	0.11%
OC value within		238.863 Recovery	= 94.45%		5, -	*	0.110
	-62.6		3			52 76	84.23%
Mg 279.077†		247.3 mg/L	0.00	247 2	mct/I.	0.09	0.04%
		279.077 Recovery	~ 00 02%	247.5	mg/ n	0.09	0.048
Mn 257.610†				0 0075	/7	0 00000	0.000
OC reluc within	-133.1	257.610 Recovery	0.00002	-0.0075	mg/ E	0.00002	0.26%
Me 202 021+	TIMILES FOR MIN	257.610 Recovery	= NOT Calculat	cea	1		
Mo 202.031†	-416.8	-0.0014 mg/L -0.0012 mg/L	0.00152	-0.0014	mg/L	0.00152 0.00007	105.49%
Ni 231.604†	14.0	-0.0012 mg/L	0.00007	-0.0012	mg/μ	0.00007	5.77%
QC value within	limits for Ni	231.604 Recovery	≈ Not calculat	ted			
Na 330.237† Pb 220.353†	1283.5	0.6627 mg/L	0.02680	0.6627	mg/L	0.02680 0.00385	4.04%
Pb 220.353†	-640.2	0.0015 mg/L	0.00385	0.0015	mg/L	0.00385	261.19%
QC value within	limits for Pb	220.353 Recovery	= Not calculat	:ed			
Sb 206.836†	13.8	-0.0011 mg/L	0.00132	-0.0011	mg/L	0.00132	118.80%
QC value within	limits for Sb	206.836 Recovery	= Not calculat	:ed			
Se 196.026†	-41.1	0.0082 mg/L	0.00995	0.0082	mg/L	0.00995	120.81%
OC value within	limits for Se	196.026 Recovery	≈ Not calculat	ed:	٥,		
Sn 189.927†	47.1	0.0531 mg/L -0.0055 mg/L -0.0005 mg/L	0.00168		ma/L	0.00168	3.17%
Ti 337.279t	-841.0	-0.0055 mg/L	0.00001	-0.0055	mg/T	0.00001	0.26%
Tl 190.801†	-67 0	-0.0005 mg/L	0.00164	-0.0055	mg/L	0.00164	
OC value within	limite for Tl	190.801 Recovery	- Not calculat	-0.0003	mg/ n	0.00104	312.003
V 292.402†		-0.0001 mg/L	0.00076	_0_0001	ma /T.	0 00076	-000 00
•				-0.0001	ug/ n	0.00076	>999.9%
		92.402 Recovery			/=	0 0001-	
		-0.0114 mg/L		-0.0114	ω <b>3</b> \r	0.00015	1.35%
	limits for Zn	206.200 Recovery		ea	ė		
Ca 227.546†	146502.8		0.69	258.7	mg/L	0.69	0.27%
	limits for Ca	227.546 Recovery	= 103.49%				
		0.0020 mg/L	0.00059	0.0020	mg/L	0.00059	29.28%
All analyte(s) pass	ed QC.						

______

Sequence No.: 123 Sample ID: ICSAB Analyst: Initial Sample Wt: Dilution: Autosampler Location: 8
Date Collected: 8/14/2010 12:01:48 AM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Mean Data: ICSAB								
	Mean Corrected					Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6752134.2	0.7733	mg/L	0.00108				0.14%
Analyte Y 371.029 Ag 328.068†	78415.7	0.2153	mg/L	0.00126	0.2153	mg/L	0.00126	0.58%
QC value within	limits for Ag	328.068	Recovery =	: 107.66%				
Al 308.215†	11167883.3	259.0	mg/L	1.38	259.0	mg/L	1.38	0.53%
QC value within	limits for Al	308.215 I	Recovery =	103.59%				
As 188.979†	550.4	0.1041		0.00618	0.1041	mg/L	0.00618	5.94%
QC value within	limits for As	188.979 I	Recovery =	104.09%				
B 249.772†	82349.5	0.0023	mg/L	0.00505	0.0023	mg/L	0.00505	224.17%
Ba 233.527†	193931.7	0.5311	mg/L	0.00334	0.5311	mg/L	0.00334	0.63%
QC value within	limits for Ba	233.527 H	Recovery =	106.22%				
Be 313.107†	3232202.9	0.4923	mg/L	0.00189	0.4923	mg/L	0.00189	0.38%
QC value within	limits for Be			98.45%				
Cd 226.502t		1.022	mg/L	0.0049	1.022	mg/L	0.0049	0.48%
QC value within		226.502 I	Recovery =	102.20%				
Co 228.616†	65519.9	0.4880		0.00638	0.4880	mg/L	0.00638	1.31%
QC value within	limits for Co	228.616	Recovery =	97.60%				
Cr 267.716†	111993.4			0.00253	0.5113	mg/L	0.00253	0.49%
QC value within		267.716 H	Recovery =	102.26%				
Cu 324.752†	228830.3	0.4944	<b>-</b> '	0.00377	0.4944	mg/L	0.00377	0.76%
QC value within				98.89%				
Fe 238.863†	5872859.6			0.531	96.87	mg/L	0.531	0.55%
QC value within	limits for Fe	238.863 F	Recovery =	96.87%				
K 404.721†	4.0						79.06	>999.9%
Mg 279.077t		252.5	٠.		252.5	mg/L	1.32	0.52%
QC value within				101.01%				
Mn 257.610†		0.5033		0.00267	0.5033	mg/L	0.00267	0.53%
QC value within								
	-507.6			0.00017	-0.0030		0.00017	5.62%
Ni 231.604†	148447.9	0.9883		0.00095	0.9883	mg/L	0.00095	0.10%
QC value within			-					
	232.3	0.0870	~	0.04688	0.0870	mg/L mg/L	0.04688	
Pb 220.353†	806.4	0.0546		0.00022	0.0546	mg/L	0.00022	0.41%
QC value within								
Sb 206.836†	5000.5	0.6366		0.00128	0.6366	mg/L	0.00128	0.20%
QC value within			_			-		
Se 196.026†	285.0	0.0649	•	0.00153	0.0649		0.00153	2.36%
QC value greater					-			
Sn 189.927†	-69.7	0.0504		0.00076	0.0504		0.00076	1.50%
Ti 337.279†		-0.0061		0.00002	-0.0061	~-	0.00002	0.34%
TT TO:00T1	710.0	0.1005		0.00712	0.1005	mg/L	0.00712	7.08%
QC value within						1		
V 292.402†	133436.7				0.5049	mg/L	0.00276	0.55%
QC value within						-		
Zn 206.200†	318008.9	1.030		0.0057	1.030	mg/L	0.0057	0.55%
QC value within			-					
Ca 227.546†	149468.8	264.0		1.83	264.0	mg/L	1.83	0.69%
QC value within			-		0.000	/=	0 00055	20 - 22
Sr 460.733†		0.0021	шā\г	0.00063	0.0021	mg/L	0.00063	30.10%
QC Failed. Continu	ie with analysi	.S.						

Sequence No.: 124 Sample ID: CCV Analyst: Initial Sample Wt: Dilution: Autosampler Location: 4
Date Collected: 8/14/2010 12:06:25 AM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

 Mean Data: CCV
 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 Y 371.029
 7409151.0
 0.8485 mg/L
 0.00357
 0.42%

Method: AXIAL200-6	010 L Opt4	P	age 86		Date:	8/14/2010 12	12:41 AM
Ag 328.068† OC value within	193955.4 limits for Ag 328			0.5203	mg/L	0.00725	1.39%
Al 308.215†	458107.6	10.62 mg/L	0.112	10.62	mg/L	0.112	1.06%
As 188.979†		1.038 mg/L	0.0020	1.038	mg/L	0.0020	0.19%
B 249.772†		2.290 mg/L	0.0126	2.290	mg/L	0.0126	0.55%
Ba 233.527†	limits for B 249. 3504005.4	9.732 mg/L	0.0925	9.732	mg/L	0.0925	0.95%
Be 313.107†	limits for Ba 233 1556679.6	0.2370 mg/L	0.00258	0.2370	mg/L	0.00258	1.09%
QC value within Cd 226.502†	limits for Be 313 196150.1			0.5126	mg/L	0.00142	0.28%
QC value within Co 228.616†	limits for Cd 226 319347.6	.502 Recover 2.389 mg/L	y = 102.52% 0.0243		_	0.0243	1.02%
QC value within	limits for Co 228 113710.7	.616 Recover	y = 95.55%		_	0.00302	
	limits for Cr 267				_		0.77%
QC value within	limits for Cu 324	.752 Recover	y = 95.18%		mg/L		
QC value within	320371.3 limits for Fe 238			5.282	mg/L		1.10%
K 404.721† Unable to evalua						26.36	0.52%
Mg 279.077† QC value within	limits for Mg 279	.077 Recovery			J.	0.276	1.06%
Mn 257.610† QC value within	1282083.1 limits for Mn 257		0.00750 y = 99.62%	0.7472	mg/L	0.00750	1.00%
Mo 202.031†	131252.4 limits for Mo 202	2.456 mg/L	0.0130	2.456	mg/L	0.0130	0.53%
Ni 231.604†	308889.8 limits for Ni 231	2.059 mg/L	0.0313	2.059	mg/L	0.0313	1.52%
Na 330.237†	53836.5 than the upper l	29.51 mg/L	0.109	29.51 ery = 118 03	mg/L	0.109	0.37%
Pb 220.353†	14427.2 limits for Pb 220	0.5270 mg/L	0.00702	0.5270	mg/L	0.00702	1.33%
Sb 206.836†	28724.1 limits for Sb 206	5.023 mg/L	0.0470	5.023	mg/L	0.0470	0.94%
3e 196.026†	3047.4	0.5263 mg/L	0.01112	0.5263	mg/L	0.01112	2.11%
5n 189.927†	limits for Se 196 159365.6	5.246 mg/L	0.0345	5.246	mg/L	0.0345	0.66%
Гі 337.279†	limits for Sn 189 1274582.7	2.494 mg/L	0.0632	2.494	mg/L	0.0632	2.53%
rl 190.801†	limits for Ti 337 7794.6	1.015 mg/L	0.0007	1.015	mg/L	0.0007	0.07%
QC value within J 292.402†	limits for Tl 190 666076.5	.801 Recovery 2.477 mg/L	7 = 101.55% 0.0211	2.477	mg/L	0.0211	0.85%
QC value within 2n 206.200†	limits for V 292. 320181.9	402 Recovery 1.051 mg/L	= 99.06% 0.0125	1.051	mg/L	0.0125	1.18%
QC value within	limits for Zn 206 14961.3	.200 Recovery 26.18 mg/L	7 = 105.11% 0.087	26.18		0.087	0.33%
QC value within 3r 460.733t	limits for Ca 227 821641.6			3.179		0.0324	1.02%
	than the upper 1					******	11020
=======================================		=========			======	=============	=====
Sequence No.: 125 Sample ID: CCB Analyst:			Autosampler I Date Collecte Data Type: On	ed: 8/14/201	0 12:10	):51 AM	
Mnaryst: Initial Sample Wt: Dilution:			Initial Sampl Sample Prep N	le Vol:			

Mean Data: CCB

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7838770.3	0.8977	mg/L	0.00032				0.04%
Ag 328.068†	392.7	0.0011	mg/L	0.00057	0.0011	mg/L	0.00057	53.21%
QC value withi	n limits for Ag 328	.068 I	Recovery =	: Not calculate	eđ			
Al 308.215†	-491.5 -	0.0113	mg/L	0.00102	-0.0113	mg/L	0.00102	8.96%
QC value withi	n limits for Al 308	.215 H	Recovery =	Not calculate	eđ	=		

Sequence No.: 126 Sample ID: Sample116 Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 116 Date Collected: 8/14/2010 12:15:00 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: Sample116 Mean Corrected Calib Sample Intensity Analyte Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 0.8978 mg/L Y 371.029 7839471.4 0.00045 0.05% Ag 328.068† 236.2 0.0006 mg/L 0.00057 0.0006 mg/L 0.00057 88.10% Al 308.215t -627.9  $-0.0145~\mathrm{mg/L}$ 0.00178 -0.0145 mg/L0.00178 12.25% As 188.979† 7.1 0.0009 mg/L 0.00448 0.0009 mg/L0.00448 493.18% -0.0194 mg/L B 249.772† -4355.8 0.00014 -0.0194 mg/L0.00014 0.73% Ba 233.527† 2936.3 0.0081 mg/L 0.00017 0.0081 mg/L 0.00017 2.07% -293.1 0.0000 mg/L 0.0000 mg/L Be 313.107† 0.00000 0.00000 7.98% 0.0001 mg/L Cd 226.502† 49.5 0.00004 0.0001 mg/L 0.00004 34.18% Co 228.616† -37.9 -0.0003 mg/L 0.00007 -0.0003~mg/L0.00007 24,12%

Method: AXIAL200	-6010 L Opt4	Page	e 88	Date:	8/14/2010 12:16:59 AM
					•
Cr 267.716†	-121.7	-0.0005 mg/L	0.00035	-0.0005 mg/L	0.00035 64.55%
Cu 324.752†	627.9	0.0014 mg/L	0.00011	0.0014 mg/L	0.00011 8.31%
Fe 238.863†	12667.3	0.2092 mg/L	0.00243	0.2092 mg/L	0.00243 1.16%
K 404.721†	60.5	_		_	10.11 16.71%
Mg 279.077†	-771.2	-0.0197 mg/L	0.00246	-0.0197 mg/L	0.00246 12.44%
Mn 257.610†	330.0	0.0002 mg/L	0.00007	0.0002 mg/L	0.00007 34.42%
Mo 202.031†	-67.6	-0.0013 mg/L	0.00006	-0.0013 mg/L	0.00006 4.89%
Ni 231.604†	3.4	0.0000 mg/L	0.00032	0.0000 mg/L	0.00032 >999.9%
Na 330.237†	750.7	0.4126 mg/L	0.20277	0.4126 mg/L	0.20277 49.15%
Pb 220.353†	-43.4	-0.0016 mg/L	0.00203	-0.0016 mg/L	0.00203 126.28%
Sb 206.836†	11.1	0.0019 mg/L	0.00197	0.0019 mg/L	0.00197 100.87%
Se 196.026†	24.9	0.0044 mg/L	0.00004	0.0044 mg/L	0.00004 1.03%
Sn 189.927†	206.4	0.0068 mg/L	0.00021	0.0068 mg/L	0.00021 3.14%
Ti 337.279†	-1026.8	-0.0020 mg/L	0.00011	-0.0020 mg/L	0.00011 5.26%
Tl 190.801t	-9.9	-0.0013 mg/L	0.00283	-0.0013 mg/L	0.00283 220.69%
V 292.402†	355.1	0.0013 mg/L	0.00021	0.0013 mg/L	0.00021 15.74%
Zn 206.200†	787.5	0.0026 mg/L	0.00008	0.0026 mg/L	0.00008 3.08%
Ca 227.546†	-298.9	-0.5063 mg/L	0.03202	-0.5063 mg/L	0.03202 6.32%
Sr 460.733†	67.2	0.0003 mg/L	0.00020	0.0003 mg/L	0.00020 75.59%

## Preparation Information Benchsheet

Prep Run#: 117216

Team:

Metals/DKRAFTSCHIK

Prep WorkFlow: MetDigAqICP Prep Method: EPA 3010A

Status: Prepped

Prep Date/Time: 8/11/10 02:33 PM

#	Lab Code	Client ID	B#	Amt. Ext	Method /Test	рH	ΑE	BN	Final Vol	Sample Desc. (Initial/Final)	SpikeAmt./Inv. ID	Comments
1	RQ1006608-01	МВ		50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T, 6010B/Cu T, Pb T	i i			50.00mL	Colorless/Clear		HB#1, 95c
	RQ1006608-02	LCS		50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T, 6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clcar	0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
L	R1004110-001	10MB007	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		ΙV
4	RQ1006608-03	R1004110-001 DUP	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
	RQ1006608-04	R1004110-001 MS	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clcar	0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
6	R1004110-002	10MB008	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
7	R1004110-003	10MB009	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
8	R1004110-004	10MB010	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
9	R1004110-005	10MB011	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
10	R1004110-006	10MB012	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
11	R1004110-007	10MB013	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50,00mL	Colorless/Clear		
12	R1004110-009	10MB001	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
13	R1004110-010	10MB003	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
14	R1004110-011	10MB005	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
15	R1004110-012	10MB004	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T. Na T	<2			50.00mL	Colorless/Clear		
16	R1004110-013	10MB006	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
17	R1004110-014	10MB015	.01		200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
18	R1004141-001	OBLM20029	.01		6010B/Cu T, Pb T	<2	$\dashv$		50.00mL	Colorless/Clear		IV
19	R1004141-002	OBLM20030	.01	50mL	6010B/Cu T, Pb T	<2	$\dashv$		50.00mL	Colorless/Clear		
20	R1004141-003	OBLM20031	.01	50mL	6010B/Cu T, Pb T	<2	-+			Colorless/Clear		
21	R1004141-004	OBLM20032	.01	50mL	6010B/Cu T, Pb T	<2				Colorless/Clear		
22	R1004141-005	OBLM20033	.02		6010B/Cu T, Pb T	<2	$\dashv$			Colorless/Clear		<u> </u>
23	RQ1006608-05	R1004141-005 DUP	.02	50mL	6010B/Cu T, Pb T	<2	一十			Colorless/Clear		<b>-</b>
Û	RQ1006608-06	R1004141-005 MS	.02		6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear	0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
$\perp$	R1004141-006	OBLM20034	.01		6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		
26	R1004141-007	OBLM20035	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		

## Preparation Information Benchsheet

			1	теригин	ni ingorma	ton Beneau				
Prep Run# Team:	: 117216 Metals/DKRA	FTSCHIK		Prep Pr	WorkFlow: MetI ep Method: EPA	DigAqICP 3010A	:	Status: Prep Date/Time:	Prepped 8/11/10 0:	2:33 PM
Spiking So	lutions						T : 0	06/10/2011	Lot #:	0932008
-	Selenium 1000 ug	g/mL Se	Inventory ID	14325	Logbook Ref:		Expires On:	06/18/2011		10E127
Name:	Custom LCS STI	A Metals	Inventory ID	18110	Logbook Ref:		Expires On:		Lot #:	
Name:	Custom LCS STI	) B Metals	Inventory ${ m I\!D}$	18111	Logbook Ref:	M5280003O	Expires On:		Lot #:	10E127
Name:	Tin 1000 ug/mL	Sn	Inventory ID	18636	Logbook Ref:	M5280004C	Expires On:	12/11/2011	Lot#:	09F131
Preparat	ion Materials						Nitric Acid Metals Grade	e HNO3 M5280003	P (18745)	
1:1 HCl Me Thermomete Preparat		1:1 HCl (15840) 287 (12953)		Hot Block Cups	Hot Ble	ock Cups (15844)	Nitric Acid Metals Craud	5 HIVO3 INI3260003	(10243)	
Step: Started: Finished: By:	Digestion 8/11/10 14:33 8/12/10 10:11 DKRAFTSCHIK									

Comments: 8/12/10 Date: Spike Witness: SDEVITO Reviewed By:

Chain of Custody Date: Date: 10130 12/10 Extracts Examined Relinquished By: No Yes Date: R- A01 Received By:

# AXIAL OPTIMA #3 CALIBRATION STANDARD #1 / RADIAL OPTIMA #1 Calibration Standard #2 (Standard is prepared weekly or as necessary)

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot#	Expiration Date	Pipet ID
Cal Std. 1 Int.	AL	m5350138A	20.0	1.00	1000	0.020	2%HNO3	DCB 8/3/10	A	~5280003P	m5280005A	8/10/10	m is mac
	AS		5.00	]		0.0050	5%HCl	Den 8/11/10	В	~5280007 P	m518U005 A	8/18/10	715
	CD		1.00			0.00	¥1,0		C			-	
	CO		3.00			0.0030	Day		D		· <del></del> · · · · · · · · · · · · · · · · · ·		-
	CR '		1.00	]		0.0010	]		E				ļ <u>-</u>
	NI		5.00	}		0.0050			F				
	PB		5.00			0.0050	1		G			<del> </del>	<del> </del>
	SE		5.00			0.0050			H		-	<del>"</del> .	<del> </del>
	V		3.00		,	0.0030	1		I			<u> </u>	
Cal Std.	CA	m 5280005E	5000	0.100		0.500			J	<del>_</del>	-		<del> </del>
	K		5000			BELOW			K			· · · · · · · · · · · · · · · · · · ·	
	MG		5000		•	0.500			L				
	NA		5000	1		0.500			M				<del> </del>
Single Element	BA	m1780096W	1000	0.020		0.020			N				<u> </u>
	CU	m 1780090D	1000	0.010		0.010			0			<del> </del>	
	K	m 1780097 15	10000	0.150		2.00			P	<del></del>			
-	MN	m52300026	1000	0.010		0.010			Q				
[	MO	:n 17801016	1000	0.025		0.025			R	<del>- · · · · · · · · · · · · · · · · · · ·</del>			-
	SB	m 52800031	1000	0.010		0.010			S			<del> </del>	
	TL	m 178009 7]	1000	0.010		0.010			T				
	ZN	M 5280001AA	1000	0.010		0.010			U				
·							•		v				<u> </u>
									w				-
									X				
									Y			-	
									z				

OPTIMA 5300DV (#3) / AXIAL (#2) CALIBRATION STANDARD #4 / HLCCV1 (Standard is prepared weekly or as necessary) (CALIBRATION STANDARD #2 IS A 1/100 DILUTION OF THIS STANDARD) (CALIBRATION STANDARD #3 IS A 1/5 DILUTION OF THIS STANDARD)

	Metal	CAS Lot#	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot#	Expiration Date	Pipet ID
Cal Std 1	CA	W2580003E	5000	2.00	200	50.0	2%HNO3	8) 7/30/10	A	M 5280003P	M5280005A	8/6/10	424
	MG		5000			50.0	5%HCl	DCB 8/6/10	В	m5280003P	~5280005A	8/13/10	1724
	K	_	5000			50.0		x 88/11/10	C	m 5280003 p	m5280005A	8/18/10	M24
	NA		5000			50.0			D				
Cal Std 2	AG	M\$280003F	100	2.00	]	1.00			E				
	CR	<u> </u>	100	į		1.00			F				
	MN		150			1.50			G				
	NI	]	400			4.00			H				
	ZN		200			2.00			I				-
Cal Std 3	AL	M5280003G	2000	2.00		20.0			J				
	BA		2000			20.0			К				
	BE		50			0.500			L				
	CO	}	500		:	5.00	]		M				
	CU		250	}		2.50			N				
	FE		1000			10.0			0				
	V		500			5.00			P				
Cal Std 4	AS	M5280004D	100	4.00		2.00	1		Q				
	CD		50		]	1.00			R			· · · · · ·	
	PB		50	Ì		1.00			S			,	
	SE	]	50			1.00	1		T			-	
	TL	7	100	1		2.00	]		U			r.	
Single	SB	M52800031	1000	2.00	1	10.0	1		v				
Metals	SN	M528-1780101P	1000	2.00	1	10.0			w				
	В	M1780101B	1000	1.00	1	5.00	1		X				
	МО	M1780101C	1000	1.00	1	5.00	1	,,,	Y				
	TI	M1780101D	1000	1.00	1	5.00	1		Z				
	SR	M52800016	1000	1.00	1	5.00	1		AA				<del> </del>

## OPTIMA 5300DV (#3) / AXIAL (#2) ICV/CCV (Standard is prepared daily)

	Metal	CAS Lot#	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot#	Pipet ID
Cal Std 1	CA	m 528003Q	5000	1.00	200	25.0	2%HNO3	DCB 8/12/10	A	m5280003P		mzymzs
	MG		5000			25.0	5%HCl	Des xistio	В	M2780003 b	M5280005 A	m24 m23
	K		5000			25.0		231111110	C	74328CUU3 P	M528000SA	. mas
	NA		5000			25.0			D			··
Cal Std 2	AG	M 228000 27	100	1.00	1	0.500			E		<del> </del>	<del> </del>
	CR	-	100		]	0.500			F		<del>-</del>	<del>-</del>
	MN		150			0.750			G		-	-
	NI	]	400			2.00		· -	H		-	
Ī	ZN	]	200			1.00			I		<u> </u>	
Cal Std 3	AL	m52800054	2000	1.00		10.0			J			-
	BA		2000	1		10.0			<u> </u>		<del> </del>	<del> </del>
	BE	]	50			0.250			L		<del></del>	-
	CO	]	500	1		2.50			M		<del></del>	
ĺ	CU		250	]		1.25			N		<u> </u>	-
	FE		1000			5.00			0		<del> </del>	
	v	1	500	1	i	2.50						
Cal Std 4	AS	m5280004X	100	2.00		1.00			Q		<del> </del>	
[	CD		50	<del>-</del>		0.500			R	<u> </u>	<del> </del>	<del> </del>
	PB		50			0.500			S		<del></del>	<del> </del>
	SE		50			0.500	•		T			
	TL		100	i I	İ	1.00			U			
Single	SB	M1780101F	1000	1.00	ľ	5.00			v			
Metals	SN	m5180004c	1000	1.00		5.00			W		<del> </del>	<del> </del>
	В	m1780/00A	1000	0.500	-	2.50			<u> </u>			
Ī	МО	m 528 00025	1000	0.500		2.50			Y		<del></del>	<del> </del>
Ţ	TI	m1780100B	1000	0.500	ļ	2.50			Z	<u> </u>	<del> </del>	<del> </del>
[	SR	m 52800056	1000	0.500		2.50			AA	<u> </u>		<del> </del>

## OPTIMA 5300DV (#3) - HLCCV2 (Standard is prepared weekly or as necessary)

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot#	Expiration Date	Pipet ID
Cal Std 2	AG	M528003F	100	2.00	100	2.00	2%HNO3	5)7/30/10	A	M228003P	MSUSCOUS A	O lasi	HZY
	CR		100			Below	5%HCl	DCD 8/12/10	В	W27900036	1	8/13/10	726
	MN	]	150	1		Below		DCIS ATIATIO	C	W127 J0007 b	~5280005A	\$/20 /10	<del></del>
	NI		400	]		8.00			D				<u>-</u>
	ZN	]	200	1		4.00			E				
Cal Std 3	AL	M258003G	2000	2.00		Below			F				-
	BA		2000			40.0			G				
	BE	]	50	1		1.00	}		H		<del> </del>	, <u>.</u> .	
	CO, V		500		į	10.0			I		<del> </del>	<u> </u>	
	CU	<u>-</u>	250			5.00			J		<del>-</del>		
	FE	•	1000			Below			K		<del>                                     </del>		
Cal Std 4	AS, TL	MSZ80004D	100	4.00		4.00			L	<del> </del>			
	CD, SE		50			2.00			M				ļ
	PB	<b>]</b>	50			Below		<del></del>	N			<del></del> -	<u> </u>
Single	В	MITSCIOIS	1000	1.00		10.0		<del></del>	0				
Metals	МО	M1780101C	1000	1:00		10.0	! :		P				
<u> </u>	TI	M1780101)	1000	1.00		10.0			Q		<u> </u>	J.	
	SR	MSZ8000iG	1000	1.00		10.0			R				
	CA	MS28000ZE	10000	2.50		250			S			<del></del>	
	MG	MSZBOUDZF	10000	5.00	1	500			T				<u> </u>
	NA	MZSSOUGHN	10000	1.00		100			U				<u> </u>
	CR	M1780101Q	1000	0.800		10.0			V				
	FE	M1780097V	10000	0.800		100			w				
	AL	M5380002T	10000	4.60	;	500	- <del>1</del> -		X	<del></del>			<del></del>
	MN	M2580003G	1000	0.700	Ì	10.0		<u>.                                    </u>	Y			···	<del>-</del>
	PB	MS280004M	1000	0.800	ļ	10.0			Z			-·	

## **OPTIMA 5300DV (#3) MRL**

	METAL	CAS Lot #	Conc.	Vol.	Final	Final Conc.	Matrix	Analyst/	ID	Nitric Acid	Hydrochloric	Exp.	Pipet
		İ	(ppm)	(mls)	Vol.	(ppm)		Date	Letter	Lot#	Acid	Date	ID
		· - · · ·			(mls)						Lot#		i
Cal	CA	145780003E	5000	0.200	1000	1.00	5% HCL	SD 7/30110	A	M \$280003P	MEROOSA	1/30/4	MHLY
#1	K	j	5000			1.00	2%HNO3		В			1/30/11	
	MG		5000	1		1.00			C				+
	NA		5000			1.00			D			<del></del>	+
Cal	CŔ	MS28003F	100	0.100		0.0100			E			<u> </u>	+
#2	AG		100			0.0100			F				<del> </del>
	MN	1	150			0.0150			G				<del> </del>
	ZN	1	200			0.0200		·	H				<del></del>
f	NI		400			0.0400			I				<del></del>
Cal	AL	MERBOURG	2000	0.100		0.200			J		<del></del>	-	<del> </del>
#3	BA	7.0200000	2000			0.200			- К				<del> </del>
	FE		1000			0.100			L				<del> </del>
-	CO		500			0.050			M			<u> </u>	<u> </u>
}	v	-	500			0.050			N				<u> </u>
-	CU	-	250			0.025			0			1	ļ <u>.</u>
}	BE	- ·	50			0.00500					, <u> </u>	4.	<u> </u>
Cal	CD, PB, SE	M5280024D	50	0.20		0.0100			P				
#4	AS, TL	101.25.200240	100	0.20					Q				
PQL	В	<u> </u>		4 00		0.0200			R				
L		M528002D	200	1.00		0.200			T				
#2	МО	_	25			0.0250			U				
_	SN		500			0.500			V				
	TI		50			0.050			w				<del> </del>
Single	SB	W25300031	1000	0.060		0.060			X				+
Stds	SR	M52800016	1000	0.100		0.100			Y				
				J					<u>z</u>				<del> </del>

### OPTIMA #3 ICSA STANDARD

Element	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	ID Letter	Nitric Acid Lot #	Hydrochloric Acid Lot #	Expiration Date	Pipet ID
Int. A Sol'n	m5286004A	·Multi	50	1000	Multi	5% HCL	DCB 6/17/10	A	~ 5280002]	~2780007b	12/17/10	
AL		5000	* 10.	200	250	2%HNO3	> DCA 6/23/10	В	m5280002]		12/23/10	_
CA		5000			250	* 15%.HNO3	DCB 7/15/10	C	m5280003 P	m5280002P	ilista	
FE		2000			100		20013 7710710	D	1 12 2 0 0 0 0 1	13860004	11/3/11	
MG	•	5000			250			Œ	<u> </u>			
. =	•	<u></u>		•		J		F				
								G				
				•				H			<u> </u>	<u>                                     </u>
								I				
							_	J				<u>.</u>
								K				
								L				<u> </u>
								M			1	
	-		•					N				<del>                                     </del>
								0				
								P				
								Q				<del> </del>
								R				
								S				
								T				
								U				
								V				<u> </u>

### OPTIMA #3 ICSAB STANDARD

Element	CAS Lot#	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	ID Letter	Nitric Acid Lot #	Hydrochloric Acid Lot#	Expiration Date	Pipet ID
Int. A Sol'n	m 5280004 P	Multi	25	500	Multi	5 % HCl	xs 8/6/10	A	m5280003p	~5280005A	2/4/11	<del> </del>
AL		5000			250	2%HNO3		В		101-3000 374	-10/11	
CA		5000			250			C				<del> </del>
FE	•	2000			100			D				<del> </del>
MG		5000			250			E				<del> </del> -
Int. B Sol'n	m 52800040	Multi	5		Multi			F				
AG		20		•	0.200			G			<del></del>	
BA		50			0.500			H				
BE		50			0.500		· · · · · · · · · · · · · · · · · · ·	I				
CD		100			1.00			J			<u>-</u>	
CO		50			0.500			K				<del>                                  </del>
CR		50			0.500			L			<u></u>	
CU		50			0.500			M				-
MN		50			0.500			N				<del>                                     </del>
NI		100	,		1.00			0				<del>  </del>
PB	•	5			0.0500			P				<del> </del>
V		50			0.500			Q				<del> </del>
ZN		100			1.00			R				
AS		10			0.100			S			······	
SB		60		Ì	0.600			T				<b></b>
SE		5			0.0500			Ū				
TL		10			0.100			v				

Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol.	Final Conc.	Matrix
				(mls)	(ppm)	
Y	~ 5280003 J	10000	2.0	2000	10.0	5 % HC1
CS	m528000 1 KK	10000	2.0		10.0	2%HNO3
	Sorlyle			•		

Analyst/	Letter	Nitric	Hydro-	Expiration	Pipet
Date	ID	Acid Lot#	chloric Acid	Date	Î
			Lot #		
6/29/10 Des	A	m5180003f	m5280062f	12/29/10	724
507/6/10	В	MSZPOWOJP	MZSBOORS	ilolic	May
DCB 7/8/10	<u>C</u>	~5280003P	m5180002p	1/8/11	mzy
DCA 1/14/10	D	m5280003P	m5280062P	1/14/11	mly
DCB 7/15/10	E	m5280003 p	m 5280002P	ilista	mzy
DCA 7/20/10	F	m5280003P	~5180001p	1/20/11	m24
ICB 7/21/10	G	M5280003 F	m5280002P	1/2./11	mzy
DCB 7/23/N	H	m5286003P	m5280005A	1/23/0	724
507/27/10	I	M52800030	MSZ80005A	1/27/11	May
DCB 8/5/10	J	M52 POWS P	m5280665A	2/5/11	mz4
DCB 8/5/10	K	~5280003 P	MSZPOSOSA	2/5/11	m24
DCD 8/9/10	L	2 5280003 P	~5280005A	2/4/11	mzy
	M				
	N			: ''-	
	О				
	P				
	Q				
	R				
	S				
	T				
	V				

#### APPENDIX E

#### **DATA VALIDATION**

PROJECT NAME/NO. OB Grounds LTM Round 5

**SDG**: R1004141

**FRACTION:** metals (copper and lead)

LAB: CAS
MEDIA: Groundwater

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	No	Temp > 4° C	The cooler temperature was 6° C upon receipt by the laboratory. All samples were received in good condition based on the laboratory login report. Sample pH was below 2. Holding time met criteria. No action was taken on elevated temperature since it was < 10° C.	No
Calibration	Yes		Calibrations available, taken every ten samples, and within recovery limits (90-110%) for metals. Initial calibration R2 >0.99.	No
Blanks (method blank, prep blank)	No	Cu > MDL but < RL	ICB analyzed for Copper and Lead and detected Cu (5.014 ug/L) but < RL (20 ug/L). CCB analyzed for Cu and Pb every ten samples, all samples were less than the reporting limits (i.e., IDLs) for Lead. Copper was detected in all the CCBs ranging from 3.22 ug/L to 9.367 ug/L, but was < RL. Qualify all project sample Copper results as U and raise to the CRDL. Copper or lead was not detected in the preparation blank. No rinsate blank was collected for this SDG.	Yes
Interference Check Sample	Yes		Met requirements (80-120%) for Copper and Lead.	No
CRQL Standard	Yes		Initial and final CRQL Check Standards had recoveries within 70-130% for copper and lead. No action was taken.	No
Laboratory Control Sample	Yes		LCS results within limits (i.e., 80-120%) for copper and lead, no action was taken.	No
Duplicates	YES		Laboratory duplicate analysis was conducted for OBLM20033. Copper or lead was not detected either in the sample or the sample duplicate.  A field duplicate pair (OBLM20033 and OBLM20034) was collected for this SDG. Copper and lead were detected in the duplicate sample but not the parent sample. No action was taken since the absolute difference between the results was < CRDL.	No
Spike Sample Analysis	YES		Spike analysis was conducted for OBLM20033 and the spike results were within 75%-125% limits. Post digest spike results for OBLM20033 were also within the 75%-125% limits.	No
ICP Serial Dilution	YES		ICP serial dilution was conducted for OBLM20033. As copper or lead was not detected in the original sample above the reporting limts, no action was taken.	No
Detection Limits	YES		IDL's available used as reporting limits. IDLs of copper and lead are less than CRDLs. No action was taken.	No
ICP Linear Range	YES		All results within the ICP linear range.	No