

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 16, 2011

Mr. John Nohrstedt U.S. Army Corps of Engineers Engineering and Support Center, Huntsville Attn: CEHNC-FS-IS 4820 University Square Huntsville, Alabama 35816-1822

SUBJECT: Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds and Army Response to EPA Comments on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds, Seneca Army Depot Activity; Contract W912DY-08-D-0003, Task Order 0008

Dear Mr. Nohrstedt:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, Seneca County, New York. In addition, please find copies of the Army's Response to EPA Comments, dated February 11, 2011 on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning Grounds. This work was performed in accordance with the Scope of Work for Task Order 0008 under Contract No. W912DY-08-D-0003. This report provides a review of long-term monitoring completed during 2010 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

<7.N

Todd Heino, P.E. Program Manager

Enclosures

cc: S. Absolom, SEDA R. Battaglia, USACE, NY District K. Hoddinott, USACHPPM

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 16, 2011

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, NY 10007

Mr. Kuldeep K. Gupta, P.E. New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Remedial Bureau A, Section C 625 Broadway Albany, NY 12233

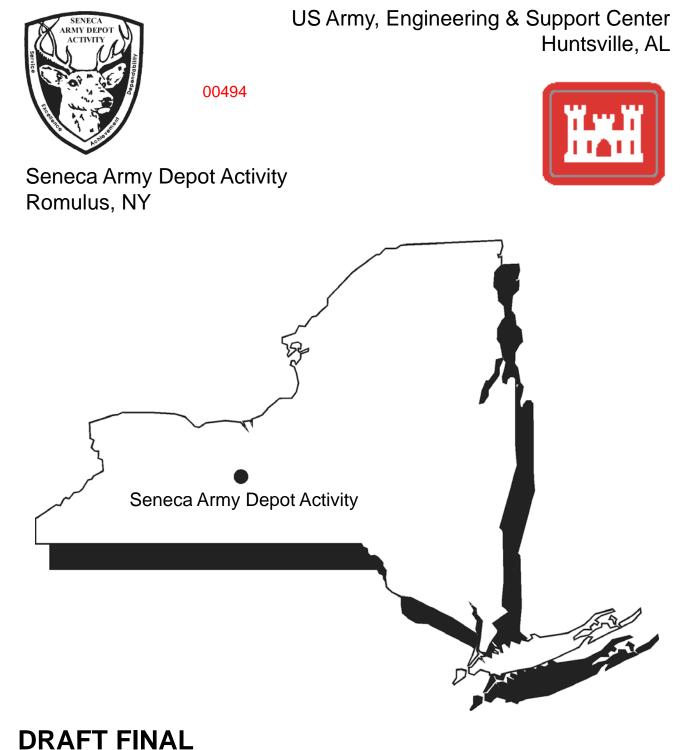
Mr. Mark Sergott Bureau of Environmental Exposure Investigation, Room 300 New York State Department of Health 547 River Street, Flanigan Square Troy, NY 12180

SUBJECT: Draft Final 2010 Long-Term Monitoring Annual Report and Army Response to EPA Comments on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds, Seneca Army Depot Activity; Contract W912DY-08-D-0003, Task Order 0008

Dear Mr. Vazquez/Mr. Gupta/Mr. Sergott:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, Seneca County, New York (EPA Site ID# NY0213820830 and NY Site ID# 8-50-006). In addition, please find copies of the Army's Response to EPA Comments, dated February 11, 2011 on the Draft 2010 Long-Term Monitoring Annual Report for the Open Burning Grounds. This report provides a review of long-term monitoring completed during 2010 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.


Sincerely,

Todd Heino, P.E. Program Manager

Enclosures cc: J. Nohrstedt, USACE, Huntsville K. Hoddinott, USACHPPM

S. Absolom, SEDA R. Walton, USAEC R. Battaglia, USACE, NY M. Heaney, TechLaw

DRAFT FINAL LONG-TERM MONITORING ANNUAL REPORT 2010

OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

MARCH 2011

DRAFT FINAL

2010 LONG-TERM MONITORING ANNUAL REPORT

FOR THE OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY, ROMULUS, NEW YORK

Prepared for:

U.S. ARMY, CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE

HUNTSVILLE, ALABAMA

and

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared by:

PARSONS

100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

March 2011

TABLE OF CONTENTS

Table o	of Conten	ntsi
List of	Tables	ii
List of	Figures	ii
List of	Append	icesiii
1.0	INTRO	DUCTION1-1
2.0	SITE B	ACKGROUND
	2.1	Site Description
	2.2	Site Hydrology
	2.3	Summary of the Remedial Action2-2
3.0	LONG	-TERM GROUNDWATER MONITORING
	3.1	Groundwater Elevations
	3.2	Analytical Data
4.0	SOIL	COVER INSPECTION
	4.1	August 2008
	4.2	August 2010
5.0	REEDI	ER CREEK INSPECTION
	5.1	April 2009
	5.2	August 2010
	5.3	Inspection Observations
6.0	LONG	-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS6-1
7.0	REFER	RENCES

LIST OF TABLES

- Table 1 Site-Specific Cleanup Goals for Groundwater
- Table 2 Groundwater Elevation Data
- Table 3 Summary of COCs Detected in Groundwater
- Table 4 Soil Cover Inspection Log

LIST OF FIGURES

- Figure 1 SEDA Site Map and AOC Location
- Figure 2 **Open Burning Grounds Site**
- Figure 3 Historic Groundwater Contours with August 2010 Elevations
- Figure 4 **Groundwater Elevation Profile**
- Figure 5 Concentrations of Lead and Copper at MW23-1
- Figure 6 Concentrations of Lead and Copper at MW23-2
- Figure 7 Concentrations of Lead and Copper at MW23-3
- Figure 8 Concentrations of Lead and Copper at MW23-4
- Figure 9 Concentrations of Lead and Copper at MW23-5
- Figure 10 Concentrations of Lead and Copper at MW23-6
- Figure 11 Open Burning Grounds Soil Cover Areas and Well Locations
- Figure 12 OB Grounds Completion Report Map Overlain on Aerial Photo
- Figure 13 Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection **Comments Identified**
- Figure 14 **Reeder Creek Inspection Photo Locations**

March 2011

LIST OF APPENDICES

- A Open Burning Grounds Round 5 Field Forms
- B Log Book 08/05/2010 Notes and Transcript of Reeder Creek Inspection
- C Reeder Creek Inspection Photos
- D Laboratory Report
- E Data Validation

1.0 INTRODUCTION

This Annual Report provides a review of long-term monitoring (LTM) conducted during the past year (2010) for the Open Burning (OB) Grounds located at the Seneca Army Depot Activity (SEDA or the Depot) in Seneca County, New York. The LTM for the OB Grounds includes annual collection and analysis of groundwater samples for lead and copper, the inspection of the vegetated, compacted soil cover that has been constructed over lead contaminated soil that is interred at the site, and the inspection of Reeder Creek along the length where it abuts the OB Grounds for evidence of inward migration and redeposition of soil from the area of the OB Grounds. This report presents and summarizes the results of the most recent annual LTM event and provides recommendations for future long-term monitoring at OB Grounds.

Long-term monitoring is an integral component of the approved remedy implemented at the OB Grounds. The "Record of Decision (ROD) Former Open Burning Grounds Site, Final" (Parsons, 1999) indicated that monitoring of groundwater and the vegetated soil cover at the OB Grounds, and of the sediment within Reeder Creek was required. Specifically, the ROD required:

- Periodic monitoring of groundwater quality at the OB Grounds for lead and copper content;
- Periodic monitoring of the vegetated, compacted soil cover placed over the lead contaminated soil remaining at the OB Grounds to assess whether evidence of erosion or protective cover breaching were present, which could result in the potential migration of contaminated soil; and,
- Periodic monitoring of the sediment in Reeder Creek for lead and copper content.

The LTM that is being conducted at the OB Grounds is being performed in accordance with the "Long-Term Monitoring Plan for the Open Burning Grounds, Final" (LTM Plan) (Parsons, 2007). The collection of groundwater quality data is needed to monitor the effectiveness of the implemented remedy at the site for preventing future impacts to groundwater at the OB Grounds and to sediments in Reeder Creek. Additionally, monitoring of the vegetated compacted soil cover placed over the buried soils at the OB Grounds is required to assure its long-term integrity and to prevent direct contact to, and incidental ingestion of, soils containing lead at concentrations up to 500 mg/kg by terrestrial wildlife at the site.

Part of the OB Grounds annual monitoring includes a qualitative assessment (i.e., visual inspection) for evidence of migration of material via surface water flow or groundwater transport of contaminants into the remediated section of Reeder Creek adjacent and downgradient to the OB Grounds. The visual inspection consists of walking the creek bed (or embankment) looking for evidence of soil erosion or sloughing from the OB Grounds side of the creek embankment and/or the accumulation of sediment along the stream bed. Groundwater transport of contaminants is monitored by the annual groundwater sampling of the OB Grounds wells. Presently quantitative monitoring of sediment

quality (i.e., submitting samples for analysis) is not included in the annual monitoring; the U.S. Army Corps of Engineers (Army), the U.S. Environmental Protection Agency (EPA), and the New York State Department of Environmental Conservation (NYSDEC) agreed that until such time as data indicating that either a groundwater pathway of contaminant flow or soil transport from the OB Grounds was occurring, sampling and analysis of creek sediments would not be required.

The overall objectives of the OB Grounds' LTM program is to monitor the effectiveness of the remedial actions completed at the site with respect to preventing future groundwater quality deterioration and the erosion or breaching of the vegetated, soil cover. The soil cover is intended to prevent incidental contact and ingestion of contaminated soil left buried at the site by indigenous terrestrial wildlife, and the potential mobilization and migration of lead contaminated soil interred beneath the cover. In addition to assessing the quality of site groundwater and the integrity of the cover, the results of the periodic monitoring will be used to assess the need for design and implementation of any sediment monitoring program that may subsequently be needed to assess potential OB Grounds impacts to the sediment quality found in Reeder Creek.

When the Army began LTM at the OB Grounds site, it was scheduled to occur on a quarterly basis. The first round of post-remedial action LTM was conducted between November 21, 2007 and November 28, 2007. The OB Grounds cover was first inspected on January 11, 2008. The results of the first LTM event were presented in a technical memo submitted on January 25, 2008. The second round of LTM sampling and cover inspections were completed between February 25, 2008 and February 26, 2008. The results of the second LTM event were presented in a technical memo submitted on May 19, 2008. The third round of LTM sampling and cover inspections were completed between May 20, 2008 and May 21, 2008. The results of the third monitoring event were presented in a technical memo submitted on September 16, 2008. The fourth round of groundwater sampling and cover inspections were completed between August 25, 2008 and August 26, 2008. The results of the fourth monitoring event were presented in a technical memo submitted on September 16, 2008 and August 26, 2008. The results of the fourth monitoring event were presented in a technical memo submitted on November 13, 2008.

The results of the first four LTM events were combined and summarized in the OB Grounds LTM Annual Report and Year One Review; this document was initially submitted as a draft in December 2008 and this document recommended changing the monitoring frequency from quarterly to an annual event. In February 2009, the Army received preliminary comments from the EPA that indicated that monitoring of Reeder Creek was required per terms of the OB Grounds ROD, and questioning why the results of such inspections had not been reported. The EPA also indicated that they did not concur with the Army's recommended change in monitoring frequency, and requesting that monitoring be conducted twice a year, once in the spring and again in the fall. NYSDEC provided additional comments on the draft report in March 2009, indicating that they also believed that inspection of Reeder Creek was required, but indicating that they had no objection to the decrease in monitoring frequency from quarterly to annual.

The Army authorized performance of a Reeder Creek inspection as a result of these comments, but this work was delayed until April 2009 when safe access could be gained into that portion of Reeder Creek that is adjacent to the OB Grounds. The observations and conclusions of this inspection were then appended to subsequent versions of the OB Grounds Report (i.e., draft final, final). However, resolution of the approved monitoring frequency was not finalized until February 2010, once the final OB Grounds Report was approved by the EPA and NYSDEC and all parties agreed to an annual monitoring event frequency. LTM of the OB Grounds was also disrupted due to the expiration of the army's ordering period under the contracting vehicle used to perform the original work. Due to the uncertainty associated with the requirements and frequency of the monitoring, the Army could not program necessary funding and contract authorizations until an agreement was reached between all parties. The new contract vehicle and funding were awarded for the continuation of the work in May 2010, and the next round of LTM for the OB Grounds was performed between August 2 and August 5, 2010, approximately two years after the last groundwater and soil cap inspection. Inspection of Reeder Creek was also conducted during this event. The results of the fifth monitoring event are presented and discussed in this annual report.

2.0 SITE BACKGROUND

2.1 Site Description

SEDA is a 10,587-acre former military facility located in Seneca County in the towns of Varick and Romulus, New York, which was owned by the United States Government and operated by the Department of the Army between 1941 and 2000. In 2000, the Army closed the Depot and assumed a care-takers role over the property, pending the closeout of its continuing environmental obligations and the leasing or transfer of property to other public or private parties for beneficial reuse purposes. Since 2000, more than 8,250 acres of land have been transferred to other parties.

SEDA is located between Seneca Lake and Cayuga Lake and is bordered by sparsely populated farmland and New York State Highway 96 on the east, New York State Highway 96A on the west, and sparsely populated farmland on the north and south. The former OB Grounds is located in the northwestern portion of the Depot, as shown in **Figure 1**, where the planned future use of the land is currently designated for conservation purposes. The former OB Grounds site sits on gently sloping terrain as shown in **Figure 2**. As situated, OB Grounds sits a minimum of 1,780 feet away from the nearest SEDA boundary, which is located to the west of the area of concern (AOC). The OB Grounds is bounded on the east by Reeder Creek, which is a perennial creek that is generally less than 1 foot deep and eventually flows into Seneca Lake. The quality of surface water in Reeder Creek has been designated by the State of New York as a Class C water body (best usage of fresh water is fishing; the waters shall be suitable for fish propagation and survival). Seneca Lake is located approximately 10,000 feet west of the OB Grounds site and is used as a source of drinking water for numerous surrounding communities and the SEDA.

The OB Grounds is vegetated with grass and brush and there are no permanent structures within the area other than small concrete bunkers and a metal garage structure. The former Open Detonation Area (SEAD-45) is located immediately north of the OB Grounds, and the former Explosive Ordnance Disposal Area (SEAD-57) is located approximately 4,000 to 5,000 feet south of the former OB Grounds. A site plan of the former OB Grounds prior to the removal of contaminated soil is provided in **Figure 3**.

2.2 Site Hydrology

The stratigraphy of the OB Grounds generally consists of between 2 and 10 feet of glacially derived till below which is a zone of weathered bedrock. The depth to groundwater in the till/weathered shale aquifer varies seasonally between approximately 2 and 7 feet below the ground surface. Infiltration of precipitation is the sole source of groundwater for the overburden aquifer and the direction of the groundwater flow in the till/weathered shale aquifer at the OB Grounds is generally to the east towards Reeder Creek as shown in **Figure 3**.

Historic groundwater elevation monitoring in wells located at the OB Grounds prior to the remedial action indicated the presence of a groundwater divide near the western edge of the site. The approximate location of the apparent groundwater divide found in April 1993 is highlighted on **Figure 3** and represents a high point of the upgradient groundwater flow regime. The divide diverts a portion of the groundwater to the west, away from Reeder Creek, which lies to the east. Historic sampling results from wells located west of the identified divide suggest that the quality of groundwater has not been impacted by soils at the OB Grounds.

Pre-remedial action surface water drainage from the OB Grounds was primarily to the east-northeast via a series of man-made drainage ditches, culverts, and spillways to Reeder Creek. During the remedial action, many of the drainage ditches and culverts were destroyed or filled, altering the surface flow patterns. Additionally, the historic surface water spillways connecting the OB Grounds and Reeder Creek were plugged during the remedial action to prevent surface overflow to the creek.

Little of the current storm event runoff impacting the former OB Grounds reaches the creek via overland flow because it is captured in one of the numerous, localized topographic lows that are scattered throughout the former AOC. The topographic lows result from the soil removal and interment action performed at the AOC. The captured storm water subsequently infiltrates into the soil or evaporates.

2.3 Summary of the Remedial Action

The remedy specified in the ROD for the OB Grounds included:

- Removal of the berms surrounding the historic burn pads;
- Removal of at least 1-foot of all soils;
- Placement of a 9-inch vegetative cover over any soils with lead concentrations greater than 60 mg/kg, but less than or equal to 500 mg/kg;
- Excavation of sediments in Reeder Creek with elevated levels of copper or lead; and
- Implementation of a monitoring program for groundwater, sediment, and the capped areas.

The first four of these required remedial actions were conducted between June 1999 and May 2004. Groundwater monitoring at the site began in November 2007, and inspections of the cover began in January of 2008.

3.0 LONG-TERM GROUNDWATER MONITORING

Four rounds of sampling were conducted at the OB Grounds from November 2007 to August 2008 and reported in the Final OB Grounds Long-Term Monitoring Annual Report and One Year Review (Parsons, 2009). The first round was completed between November 21, 2007 and November 28, 2007. The second round was completed between February 25, 2008 and February 26, 2008. The third round was completed between May 20, 2008 and May 21, 2008. The fourth round was completed between August 25, 2008 and August 26, 2008. The fifth round of sampling was conducted between August 2, 2010 and August 3, 2010 and the results are presented in this report. Six monitoring wells (MW23-1, MW23-2, MW23-3, MW23-4, MW23-5, and MW23-6) that were installed in 2007 to replace the historic monitoring well network that existed at the site prior to the remedial action were sampled as part of these monitoring events.

OB Grounds groundwater samples were collected using low flow sampling techniques. Sampling procedures, sample handling and custody, holding times, and collection of field parameters were conducted in accordance with the "Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP)" (Parsons, 2005).

Groundwater samples and groundwater elevation measurements were collected from the six wells located at OB Grounds during each of the five monitoring events. Groundwater samples were collected and submitted to Columbia Analytical Services (CAS) in Rochester, New York for the analysis of total copper and total lead by USEPA SW846 Method 6010B¹. Analytical results reported for copper and lead were compared to site-specific action levels that are defined in **Table 1**.

In addition, the following geochemical parameters were measured and recorded in the field for each groundwater sample:

- pH Dissolved oxygen Temperature
- ORP
 Conductivity
 Turbidity

The pH, ORP, conductivity, and temperature of the groundwater were measured with a Horiba U-22 water quality meter, turbidity was measured with a LaMotto 2020 Turbidometer, and dissolved oxygen content was measured with an YSI 85 Dissolved Oxygen Meter. Data from the geochemical parameters were used to assess when the well was purged and stabilized adequately prior to sampling and to assess macro-groundwater quality.

3.1 Groundwater Elevations

Groundwater levels were recorded on November 20, 2007 (Round 1), February 25, 2008 (Round 2), May 20, 2008 (Round 3), August 25, 2008 (Round 4), and August 2, 2010 (Round 5). The

Groundwater samples were analyzed by SW-846 6010B by Columbia Analytical Services Inc (CAS). CAS is currently not certified for the SW-846 6010C analysis method; and SW-846 6010C is presently not required by NYS. SW-846 6010C will be implemented in NYS April 1, 2011.

groundwater elevation range found during the five monitoring events is presented on **Table 2**. Appendix A provides the Round 5 field form documenting groundwater elevations prior to the collection of groundwater samples at this site. The missing well cap for MW23-5 was located on the ground adjacent to the well and was re-installed. The current OB Grounds monitoring well network provides insufficient data to develop current day groundwater contours with the level of detail that was provided by the pre-remedial action well network. However, the available current day groundwater data indicate an overall west-to-east, or possibly east-northeast, groundwater flow direction across the OB Grounds site, groundwater elevation data from the Round 5 (August 2010) monitoring event are shown superimposed over the April 1993 groundwater contours in Figure 3. Review of this figure and the new elevation data alone indicates that generally groundwater at the site moves west-to-east from wells MW23-5 and MW23-4 towards wells MW23-6, and then wells MW23-2, MW23-1, and MW23-3. There is also an indication that groundwater along the western side of the site may flow to the north, as the elevations observed at MW23-5 are higher than those recorded at MW23-4 during all five of the events (See Table 2). Along the eastern edge (Reeder Creek side) of the OB Grounds site, the groundwater elevations measured at MW23-2 in the center of the boundary, are always higher than those measured at MW23-1 and MW23-3. These data suggest some flow variations to the south and the north, away from the west-to-east prevailing flow direction. However, when the new data are evaluated with consideration of the April 1993 contours, the continuing presence of the apparent groundwater divide in the western portion of the site can not be ruled out.

Further, evaluation of the new groundwater elevation data indicates that all of the highest elevations were found during the Round 2 (February 2008) monitoring event, with five of the six wells (all except MW23-4) reaching their lowest elevations during the Round 4 (August 2008) event. The lowest groundwater level measured at MW23-4 was recorded during the Round 1 (November 2007) event.

3.2 Analytical Data

The groundwater results are presented in **Table 3**, where they are compared to the groundwater cleanup goals listed in **Table 1**. Field forms documenting the collection of groundwater during Round 5 at this site are provided in **Appendix A**. Generally, neither total copper nor total lead has been detected in any of the six wells during the five post-remedial action monitoring events. Four exceptions to this general trend exist, each for measured lead concentrations: Round 2, MW23-4 (5.4 ug/L); and Round 5, MW23-4 (2.7 J ug/L), MW23-5 (2.4 J ug/L), and MW23-6 (3.6 J ug/L). Each of these levels is below the groundwater cleanup goal of 15 ug/L. Chemical specific detection limits for both copper and lead were below action levels.

The LTM data support that groundwater at the site has not been impacted above action levels by residual levels of copper that remain in the soils at the site. The recent detection of lead in wells MW23-4, MW23-5, and MW23-6 at levels below cleanup goals suggests that further monitoring is warranted to assess future trends for lead. The detection in MW23-4 is the second time lead has been

found in this well since the beginning of LTM and is suspect because the data is reported as "estimated". The detection in MW23-5 is suspect since lead was detected at an estimated concentration in the duplicate sample; but was not found in the parent sample. The detection in MW23-6 is the first time lead has been found in this well since the beginning of LTM and is suspect because the data is reported as "estimated". Prior to the remedial action, lead was sporadically found in groundwater wells located at the OB Grounds; but since the remedial action, lead was only been detected once during the first four LTM sampling events before being found in three separate wells during the most recent sampling (Round 5) event. Again, each of these wells contained lead at concentrations below the established cleanup goal, and none of these wells are located adjacent to Reeder Creek suggesting that lead has not been released from the site to the creek. Two of the affected wells are located beyond the suspected groundwater divide that lies along the western edge of the former OB Grounds site, while the third (MW23-6) is located at a location believed to be sidegradient to the OB Grounds site. Groundwater pH levels measured in the three affected wells during the Round 5 event showed very weak acidic to weak basic (initial pH levels of 6.2 or higher rising to a pH level of greater than 7.0 prior to sampling) which suggests that lead should not be especially mobile.

Figure 5 through **Figure 10** present a summary of the groundwater sampling results for monitoring wells MW23-1 through MW23-6 from all the monitoring events conducted since the remedial action was completed (November 2007, February 2008, May 2008, August 2008, and August 2010). As may be noted from a review of these figures, neither copper nor lead has been detected above the groundwater cleanup goals in any of the wells sampled during any of the monitoring events.

4.0 SOIL COVER INSPECTION

The cover inspection consisted of documenting observations of the 25, 125- by 125-foot grids, where soils with residual lead concentrations between 60 mg/Kg and 500 mg/Kg were interred under a 9-inch soil cover. The locations of the grids are shown on **Figure 11**, which is a figure that was originally produced by Weston Solutions in the 2005 "Completion Report for the Open Burning Grounds Soil and Sediment Remediation" (Weston Solutions, 2005). The original map has been overlain on a recent aerial image of the OB Grounds obtained from Bing.com to help field inspectors more accurately orient where the interred soil areas are located; this presentation is provided as **Figure 12**. Cover inspections were completed on January 10, February 25, May 20, and August 25, 2008 and August 5, 2010, without the benefit of this figure. Observations from the August 2010 inspection have been updated in this report to reflect the current understanding of where interred soil resides. Observations made during the August 2008 and August 2010 cover inspections are noted below.

A cover inspection log for all five monitoring events is provided in **Table 4**. Inspection forms documenting the Round 5 soil cover inspection at this site are provided in **Appendix A**.

4.1 August 2008

Minimal erosion and a lack of animal burrowing activity were observed in the capped areas. At Grid Cell R8, a mouse hole approximately 6 inches wide and approximately 6 inches deep was observed. The mouse hole was repaired in August 2008.

4.2 August 2010

A lack of animal burrowing activity was observed in all of the capped areas. Minor erosion was observed in Grid Cell J8, adjacent to the location where a buried pipe runs beneath one of the site roads to allow surface water run-off to flow from the western portion of the site towards Reeder Creek. The noted erosion is on the northern side of the flow channel and affects vegetated soil that is outside of areas where the contaminated soil was interred on the southern side of the drainage channel. The condition of this location will be reassessed during the next inspection event to determine if corrective measures are needed.

More significant evidence of erosion was noted in Grid Cell L7 where a portion of the access road that leads past former Burn Pad B and Burn Pad C has apparently been overtopped by the water which has cut an erosion channel through the road allowing runoff to spill into the area of the former Burn Pad C. Erosion in this location, incorrectly referenced to Grid Cell L8 in 2008, was previously noted during the January and May 2008 inspections, but was repaired by the Army and was not observed in August 2008. This erosion channel is outside of the area where lead contaminated soil is interred beneath clean soil, and thus the Army currently does not intend to make repairs. This site

will be reassessed during future inspections and if conditions appear to be worsening, corrective measures may be implemented.

The drainage cut that was constructed along the southern side of the former OB Grounds as part of the remedial action to promote drainage of the accumulated water in the area located between the former site of the former Burn Pad G, the southern access road, and the southern bound of the OB Grounds site in Grid Cells I4 and I5 was also inspected during the site inspection. There were no obvious signs of erosion along its length, it was surrounded and covered with vegetation, and the underlying soil showed signs of cracking at numerous locations suggesting that it may have been dry for an extended period of time.

All of the features discussed above are labeled and shown in an aerial photograph of the OB Grounds site, that focuses on the area beginning in the vicinity of the southeastern corner of Grid Cell P4 (upper left hand corner of aerial), proceeding north-northeasterly (downward) to the approximate midpoint of Grid Cell R10, then proceeding westerly (right) to the approximate midpoint of Grid Cell H9 and finally proceeding south (up) to the southwestern corner of Grid Cell H4 is provided as **Figure 13**.

Soil erosion was observed on the east side of the paved access road leading into the OB Grounds (southeastern corner of Grid Cell S10). This location is not associated with any of the lead contaminated soil that has been interred at the site under the 9-inch soil cover. The noted erosion undermined the paved surface, along the eastern side of the road to a point where future vehicular access into the OB Grounds was being threatened. The Army retained a contractor to reconstruct the culvert and the roadway in September, 2010, and accepted the work as completed. This location will be reassessed during the next inspection tour of the site.

5.0 **REEDER CREEK INSPECTION**

Accessible portions of Reeder Creek adjacent to the OB Grounds were inspected by walking along the creek bed and making observations of the creek bottom and the side walls. Access to all portions of the creek was not possible due to water depths greater than 2 to 3 feet in the area upgradient of MW23-3 and the absence of any walk surface adjacent to the steep, earthen sidewalls of the creek. Non-accessible portions of Reeder Creek were viewed from locations where access from the higher OB Grounds site could be gained down stable pathways located in the side wall.

5.1 April 2009

The Army performed a visual inspection of the Reeder Creek streambed in April of 2009 at locations adjacent to the OB Grounds. This inspection indicated that surface water flow within Reeder Creek had continued to scour the bedrock surface, and had limited and for the most part precluded, the redeposition of sediment adjacent to the OB Grounds. Soil sloughing from upland surfaces bordering both edges of the creek is observed at many locations along the creek bed; however, these are only noted at places where the creek's course broadens and where the wetted watercourse represents but a portion of the entire creek bed's width. There is no evidence that the sloughed soil has migrated into, and deposited as sediment within, the main flow channel of Reeder Creek.

Examination of the spillways where surface water from the OB Grounds to Reeder Creek previously flowed into the creek, but which were closed as part of the overall OB Grounds remedial action, indicated that there was no visible evidence that overland surface water flow had transported soils from the OB Grounds into Reeder Creek. The spillways, which are shale based, were free of any accumulation of excessive debris and soil. Field observations also noted that the mechanisms that were placed at the OB Grounds to prevent surface water flow from entering the spillways were still evident and working.

5.2 August 2010

A visual inspection of the Reeder Creek streambed was conducted on August 5, 2010 at locations adjacent, downgradient, and upgradient to the OB Grounds. Locations downgradient and adjacent to the OB Grounds consisted of exposed bedrock streambeds with no observable sediment. The majority of the Reeder Creek streambed from OD Grounds to upgradient of OB Grounds was walked using the appropriate health and safety equipment; areas that were deeper than 2 feet or where vegetation prevented access were observed from the creek banks.

Sediment was not observed in the low spots of the bedrock streambed in either the downgradient or adjacent portions of Reeder Creek to the OB Grounds. However, a thin brown slim-like material measuring only a few millimeters thick was observed in various segments of the creek in areas where the water was deeper than 6 inches. These locations were typically associated with downstream bedrock outcrops which allow the creek water to pool until it exceeds the height of the outcrop and

then flow over the top of the outcrop; the brown material was not observed beyond the outcrop overflow points. Sediment was observed upgradient of the OB Grounds in areas that were outside the prior creek bed excavation areas.

The banks or Reeder Creek were inspected for evidence of material collapsing into the creek. With the exception of the erosion point that is located along the eastern edge of the OB/OD Grounds access road in Grid Cell S10, no other locations of soil erosion were noted on the southwest side of Reeder Creek (OB Grounds side). Erosion in Grid Cell S10 is due to the undermining of the paved access road; this material's source is from the subgrade to the paved access road and is not from the OB Grounds soil cover. The northeast bank of Reeder Creek (non OB Grounds side) generally exhibited similar conditions as the southwest bank, although several locations where deer trails descend the creek bank had visible signs of sidewall material collapse, migration, and accumulation down in the creek bed. These locations appeared to be solely related to deer activity and not from surface water run-off.

Appendix B provides a scan of the Log Book notes from August 5, 2010 Reeder Creek inspection and a transcript of the associated Log Book notes. Photos of Reeder Creek were taken to document the exposed bedrock streambed and creek banks current condition; **Figure 12** shows the locations photos were taken. Reeder Creek Photo #01 through Photo #06 are provided in **Appendix C**.

Photo #01 – Standing downgradient of MW23-3, looking up stream. Exposed bedrock creek bottom is visible. No sediment was observed.

Photo #02 – Standing parallel to MW23-3, looking up stream. This section of creek was greater than 2 feet deep. The creek bottom was competent bedrock with lose shale rocks scattered about. A brown slim/gelatinous like material, previous mentioned, was observed on top of the bedrock creek bottom in this section and a few localized spots where bedrock outcrops allow water to pool.

Photo #03 – Upgradient of MW23-3, looking down stream. This section of the creek was about 1 foot deep and the banks were heavy vegetated. The creek bottom was competent bedrock and the brown slim/gelatinous material was observed and appeared to be a few millimeters thick.

Photo #04 - Downgradient side of beaver dam and MW23-2, looking up stream. The area immediately downgradient of the beaver dam had an exposed bedrock creek bottom (not visible in photo). The brown slim/gelatinous material was observed between the exposed bedrock outcrop and the downgradient side of the beaver dam. Broken shale bits were observed on a deer trail accumulating on the northeast side of the creek (buffer area side) but had not migrated into the creek itself. The location of the beaver dam is marked on **Figure 12**.

Photo #05 - Upgradient side of beaver dam and parallel to MW23-2, looking down stream. The water was 2 to 3 feet deep in this section. The area upgradient of the beaver dam was not directly accessible due to thick vegetation along the creek bank. There was an access point about 150 feet upgradient of

the beaver dam due to the erosion on the northeast side of the paved access road. The paved access road's subgrade material is migrating down into the creek from surface water runoff erosion. The creek bottom could not be visually observed but a shovel was used to gauge the condition of the creek bottom; no sediment was observed. The creek bottom felt (striking with the shovel) like competent bedrock, and the brown slim/gelatinous material that was a few millimeters thick was observed on top of rocks examined from the creek bottom.

Photo #06 – Downgradient to MW23-1, looking up stream. Water was greater than 2 feet deep. The vantage point looking up stream was from the paved access road access point, where material from the roads subgrade was observed migrating into the creek. The left side of the photo (northeast bank/buffer area) had a couple locations where bank material was migrating down to the creek, and appeared to be associated with deer trail activity.

5.3 Inspection Observations

As is reported above, the groundwater data collected during historic sampling events as well as during the five rounds of the Long-Term Monitoring Program shows no evidence of the release of copper or lead from the OB Grounds. The prior soil cover inspections did reveal that occasional animal burrows and shallow erosion depressions were present in the cover at the contaminated soil burial areas, but none of the past noted burrow holes or depressions were sufficiently sized to allow buried soils to escape their containment. All of the noted holes and depressions were repaired in August 2008 as part of the Army's continuing maintenance activities. Other than the discussed location where material to the east of the access roadway had eroded and collapsed into the Reeder Creek (repaired September 3, 2010), there are no other visible signs that OB Grounds site soils are being released via overland flow to Reeder Creek. Soil from the location that had collapsed is not located near lead contaminated soil that was interred beneath the soil cover that was constructed during the remedial action, and there is no indication that soils from the west side of the access road have collapsed into the creek. As such, the Army does not see any evidence to suggest that a release of lead or copper above background levels is occurring from the OB Grounds site. The recent detections of lead in three wells (MW23-4, MW23-5, and MW23-6) below the action level were located on the western edge of the OB Grounds (MW23-4 and MW23-5) and south of the OB Grounds (MW23-6). The absence of detectable concentrations of lead and copper in the three wells (MW23-1, MW23-2, and MW23-3) immediately adjacent to Reeder Creek supports the observation that Reeder Creek has not been impacted by lead or copper.

Based on these data and this information, the Army has not conducted sediment sampling and analysis of Reeder Creek as part of the long-term monitoring at the OB Grounds. The Army will conduct another visual inspection of the creek bed and spillways connecting the OB Grounds to Reeder Creek during the next scheduled annual monitoring event, and if evidence of overland transport of soil or groundwater migration of contaminants from the OB Grounds to Reeder Creek is identified, a plan will be prepared and submitted for approval which will identify a sediment monitoring program that will be conducted.

6.0 LONG-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS

Based on the results of fifth round of LTM at the OB Grounds, the following conclusions have been reached:

- Residual lead and copper concentrations remaining in the soils have not impacted groundwater at, or in the immediate vicinity of, the site above the action levels;
- The integrity of the vegetated soil cover overlying interred contaminated soils at the site was intact and there was no evidence that terrestrial wildlife are exposed to the contaminated soils below the 9-inch cover;
- The washout area noted during in Grid Cell L7 in (identified as L8 in 2008 Report) during the February and May 2008 inspections is again evident in the August 2010 inspection. Information provided in Section 4.2 indicates that this is outside of areas where contaminated soils were interred beneath clean soil, so this area will not be repaired at this time by the Army. If the next inspection suggests that this area is enlarging, the Army will evaluate a more permanent repair;
- The Army will continue to monitor cover erosion, and note any instance of cover erosion or exposed native soil;
- Based on the groundwater data and the cover inspection, there is no evidence to suggest that the OB Grounds may be contributing to the degradation of sediment quality in Reeder Creek;
- Sediment deposition in Reeder Creek adjacent to the OB Grounds was not noted during the August 2010 inspection; and,
- The Army will continue to inspect Reeder Creek for evidence of sediment deposition and if it is observed, a sediment sampling and analysis program plan will be prepared, submitted for approval, and implemented for Reeder Creek at locations adjacent to the OB Grounds.

Based on the result of the LTM events conducted at the OB Grounds, the Army recommends continuing the monitoring frequency of once per year. As presented and summarized above, available monitoring data shows no evidence of lead or copper in the groundwater above the cleanup goals subsequent to the completion of the remedial action for the site. These findings are consistent with the groundwater sample results obtained during the remedial investigation stage (1990s) of work at the site, indicating that there is no evidence of groundwater quality deterioration over the past 15 years. Further, the annual inspections of the soil cover have shown minimal evidence of erosion or animal breaching of the protective soil cover. Additionally, the examination of spillways connecting the OB Grounds to Reeder Creek indicate that measures performed to eliminate overland surface water flow the OB Grounds to Reeder Creek continue to exist and have been effective, as there is no

indication that soil or debris from the OB Grounds is located in the spillways downgradient of the control measures. Finally, the inspections of Reeder Creek indicate that the bedrock that underlies the watercourse adjacent to the OB Grounds continues to be scoured by the perennial flow within the creek. There is no current indication that sediment is being redeposited at locations from which it was previously excavated. Therefore, due to the absence of any evidence that suggests contaminants of concern have been mobilized from the OB Grounds either via the groundwater or overland flow of storm-event waters, and due to the continued scouring of the creek bed by the perennial flow of water, there is no reason to develop or implement a sediment monitoring plan for Reeder Creek at this time.

The next LTM sampling, soil cover inspection, and Reeder Creek inspection events are scheduled to occur in August 2011. Results of the next year's monitoring efforts at the OB Grounds will be evaluated, and recommendations of necessary changes to the frequency or extent of monitoring will be made at that time. Subsequent rounds of LTM for the OB Grounds are expected to continue at yearly intervals thereafter, unless altered by mutual agreement of all parties.

7.0 **REFERENCES**

Final Remedial Investigation Report at the Open Burning (OB) Grounds, Seneca Army Depot Activity, 3 Volumes, Parsons 1994.

Final Record of Decision, Open Burning (OB) Grounds, Seneca Army Depot Activity, Parsons 1999.

Final Long-Term Monitoring Plan for the Open Burning (OB) Grounds, Seneca Army Depot Activity, Parsons 2007.

Final OB Grounds Long-Term Monitoring Annual Report and One Year Review, Seneca Army Depot Activity, Parsons 2009.

Completion Report, Soil and Sediment Remediation Open Burning Grounds, Seneca Army Depot, Romulus, New York, Weston Solutions 2005.

TABLES

- Table 1
 Site-Specific Cleanup Goals for Groundwater
- Table 2Groundwater Elevation Data
- Table 3Summary of COCs Detected in Groundwater
- Table 4Soil Cover Inspection Log

Table 1

Site-Specific Cleanup Goals for Groundwater OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

ANALYTES	Contract Required Quantitation Limits Water (µg/L)	Action Level Water (µg/L)
Copper	20	200
Lead	5	15

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998 through addendum June 2004).
- Lead action level is from USEPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Referenced from Table 5-1 in "Final Long-Term Monitoring Plan for the Open Burn (OB) Grounds", (Parsons, Jan 2007)

Table 2 Groundwater Elevation Data OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

	Top of	Roun	nd 1 - November	2007	Rou	nd 2 - February	2008	Round 3 - May 2008			
Monitoring Well	Riser Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	Date	Depth to Groundwater (ft)	Water Level Elevation (ft)	
MW23-1	622.64	11/20/2007	12	610.635	02/25/2008	11.46	611.175	05/20/2008	11.63	611.005	
MW23-2	622.28	11/20/2007	9.6	612.68	02/25/2008	8.78	613.5	05/20/2008	9.17	613.11	
MW23-3	619.18	11/20/2007	10.8	608.381	02/25/2008	9.24	609.941	05/20/2008	9.68	609.501	
MW23-4	637.11	11/20/2007	8.6	628.507	02/25/2008	3.2	633.907	05/20/2008	4.14	632.967	
MW23-5	639.47	11/20/2007	7	632.472	02/25/2008	2.85	636.622	05/20/2008	5.19	634.282	
MW23-6	632.59	11/20/2007	8.35	624.244	02/25/2008	3.78	628.814	05/20/2008	5.54	627.054	

	Top of	Roi	und 4 - August 2	8008	Rou	Ind 5 - August 2	2010	Historical Data				
	Riser		Depth to	Water Level		Depth to	Water Level	Groun				
Monitoring	Elevation		Groundwater	Elevation		Groundwater	Elevation				Well Depth	
Well	(ft)	Date	(ft)	(ft)	Date	(ft)	(ft)	Maximum	Minimum	Range	(ft)	
MW23-1	622.64	08/25/2008	12.10	610.54	08/02/2010	12.06	610.58	611.18	610.54	0.64	15.50	
MW23-2	622.28	08/25/2008	9.84	612.44	08/02/2010	9.4	612.88	613.50	612.44	1.06	15.50	
MW23-3	619.18	08/25/2008	10.59	608.59	08/02/2010	9.97	609.21	609.94	608.38	1.56	15.50	
MW23-4	637.11	08/25/2008	7.82	629.29	08/02/2010	5.81	631.30	633.91	628.51	5.40	17.50	
MW23-5	639.47	08/25/2008	8.33	631.14	08/02/2010	7.51	631.96	636.62	631.14	5.48	17.50	
MW23-6	632.59	08/25/2008	10.08	622.51	08/02/2010	8.79	623.80	628.81	622.51	6.30	17.60	

Projec Location II									OB Grounds MW23-1					
Matrix	x:								GW	GW	GW	GW	GW	GW
Sample II	D:								OBLM20001	OBLM20009	OBLM20008	OBLM20015	OBLM20022	OBLM20029
Date	e:								11/21/2007	02/26/08	02/26/08	5/21/2008	8/26/2008	8/3/2010
QC Code	e:								SA	DU	SA	SA	SA	SA
Study I	D:								LTM	LTM	LTM	LTM	LTM	LTM
Study Roun	d								1	2	2	3	4	5
			Frequency	Action	A - 11 - 11	Number	Number	Number						
Demonstra	11-21-	Maximum	of	Level	Action	of	of Times	of Samples	λ) (altar (O)) (-l	Vielan (C) (-lus (O)	λ (also (O)
Parameter	Units	Value	Detection	Source	Level	Exceedances	Detected	Analyzed	Value (Q)	()	Value (Q)	(/ /	Value (Q)
Copper	UG/L	0	0%	GA	200	0	0	35	20 U	20 U	20 U	20	U 20 U	20 U
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5	U 5 U	5 U
Turbidity	NTU								0	2.09	2.09	0.42	0.9	1.3

Notes:

1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Project: Location ID: Matrix: Sample ID: Date: QC Code: Study ID: Study Round	: : : :								OB Grounds MW23-2 GW OBLM20002 11/21/07 SA LTM 1	OB Grounds MW23-2 GW OBLM20010 2/25/2008 SA LTM 2	OB Grounds MW23-2 GW OBLM20017 5/21/2008 DU LTM 3	OB Grounds MW23-2 GW OBLM20016 5/21/2008 SA LTM 3	MW23-2 GW	OB Grounds MW23-2 GW OBLM20030 8/3/2010 SA LTM 5
Parameter	Units	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Copper	UG/L	0	0%	GA MCL	200	0	0	35	20 U 5 U	20	U 20		U 20 U U 5 U	20 U 5 U
Lead Turbidity	UG/L NTU	5.4	11%	MCL	15	0	4	35	50	5 2.37	U 5 0.15	J 5 l 0.15	0 50	3.4

Notes:

1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Project Location ID Matrix Sample ID Date QC Code Study ID Study Round	: : : :								OB Grounds MW23-3 GW OBLM20004 11/21/07 DU LTM 1	OB Grounds MW23-3 GW OBLM20003 11/21/2007 SA LTM 1	OB Grounds MW23-3 GW OBLM20011 2/25/2008 SA LTM 2	OB Grounds MW23-3 GW OBLM20018 5/21/2008 SA LTM 3	OB Grounds MW23-3 GW OBLM20024 08/26/08 SA LTM 4	OB Grounds MW23-3 GW OBLM20031 8/2/2010 SA LTM 5
Parameter	Units	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value (Q)	Value (Q) Value (Q	Value (Q)	Value (Q)	Value (Q)
Copper	UG/L	0	0%	GA	200	0	0	35	20 U	20		U 20 Ú	20 U	20 U
Lead Turbidity	UG/L NTU	5.4	11%	MCL	15	0	4	35	5 U 0	5 0	U 5 9.91	U 5 U 2	5 U 7.9	5 U 1.5

Notes:

1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Project: Location ID: Matrix: Sample ID: Date: QC Code: Study ID: Study Round									OB Grounds MW23-4 GW OBLM20005 11/21/2007 SA LTM 1	OB Grounds MW23-4 GW OBLM20012 3/3/2008 SA LTM 2	OB Grounds MW23-4 GW OBLM20019 5/21/2008 SA LTM 3	MW23-4 GW	MW23-4 GW	DB Grounds MW23-4 GW DBLM20032 8/2/2010 SA LTM 5
Parameter Copper Lead	Units UG/L UG/L	Maximum Value 0 5.4	Frequency of Detection 0% 11%	Action Level Source GA MCL	Action Level 200 15	Number of Exceedances 0 0	Number of Times Detected 0 4	Number of Samples Analyzed 35 35) Value (Q) U 20 U 5.4	Value (Q) U 20 U 5 U	Value (Q) 20 U 5 U	Value (Q) 20 U 5 U	Value (Q) 20 U 2.7 J
Turbidity	NTU								2	41.1	6.3	5.27	5.27	1.6

Notes:

1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Project Location ID Matrix Sample ID Date QC Code Study ID Study Round): (:):):):):								OB Grounds MW23-5 GW OBLM20006 11/21/2007 SA LTM 1	OB Grounds MW23-5 GW OBLM20013 02/26/08 SA LTM 2	OB Grounds MW23-5 GW OBLM20020 5/21/2008 SA LTM 3	OB Grounds MW23-5 GW OBLM20027 8/25/2008 SA LTM 4	MW23-5 GW	OB Grounds MW23-5 GW OBLM20033 8/2/2010 SA LTM 5
Parameter	Units	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (C) Value (Q)	Value (Q)
Copper	UG/L	0	0%	GA	200	0	0	35	20 U	20 Ù	20 (J 20 U	20 U	20 U
Lead Turbidity	UG/L NTU	5.4	11%	MCL	15	0	4	35	5 U 0	5 U 6.72	5 l 4.5	J 5 U 2.13	2.4 J 1	5 U 1

Notes:

1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Project: Location ID: Matrix: Sample ID: Date: QC Code: Study ID: Study Round									OB Grounds MW23-6 GW OBLM20007 11/28/2007 SA LTM 1	OB Grounds MW23-6 GW OBLM20014 2/26/2008 SA LTM 2	OB Grounds MW23-6 GW OBLM20021 5/20/2008 SA LTM 3	OB Grounds MW23-6 GW OBLM20028 8/26/2008 SA LTM 4	OB Grounds MW23-6 GW OBLM20035 8/3/2010 SA LTM 5
Parameter	Units	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q) Value (Q)
Copper	UG/L	0	0%	GA	200	0	0	35	20 U	20 U	20 U	20 U	20 U
Lead	UG/L	5.4	11%	MCL	15	0	4	35	5 U	5 U	5 U	5 U	3.6 J
Turbidity	NTU								8	2.84	8.2	48	10

Notes:

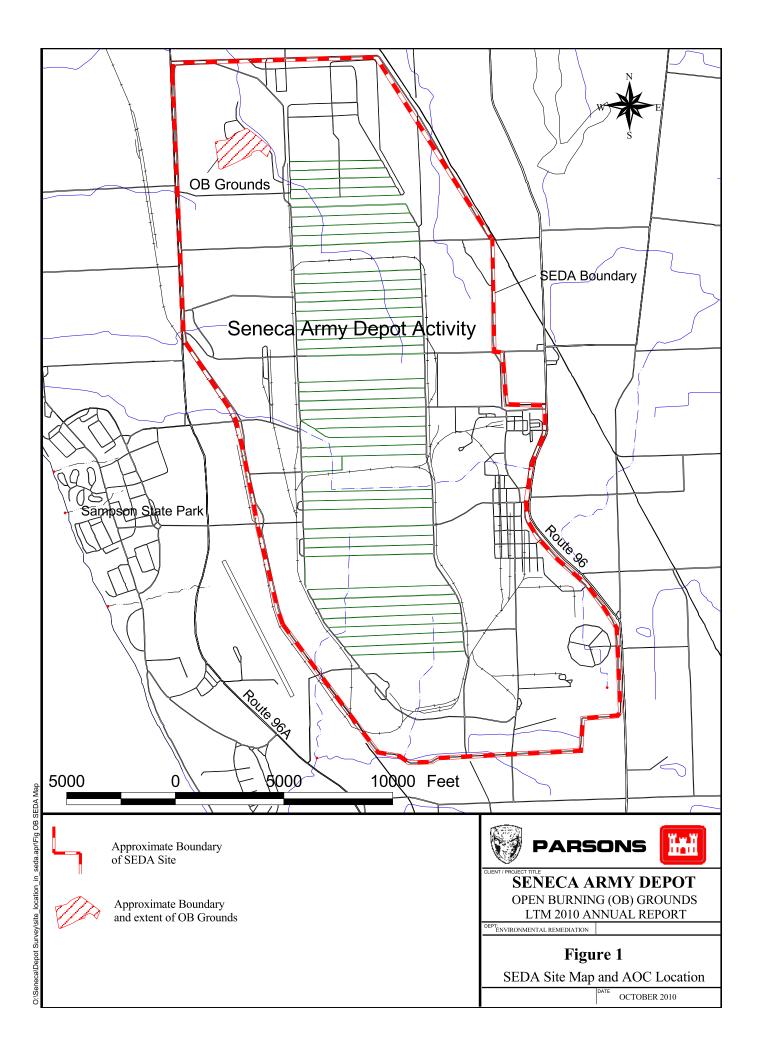
1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).

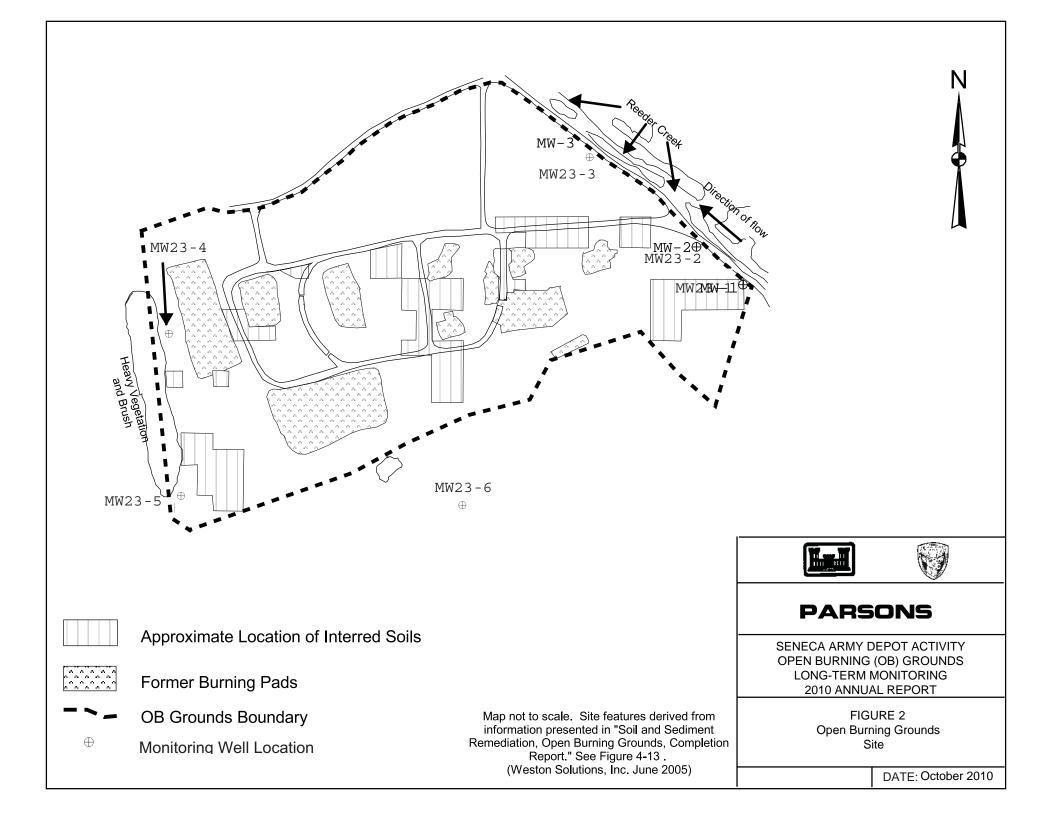
2. Lead action level is from US EPA Maximum Contaminant Limit (MCL),

Table 4 Soil Cap Inspection Log OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Observations										
Grid #	Round 1 - January 2008	Round 2 - February 2008	Round 3 - May 2008	Round 4 - August 2008						
S8	Several 1" to 2" size mice holes were observed	No change	No change	No change						
S8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	No change						
R8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	A mouse hole approximately 6" wide and approximately 6" deep was observed. Hole was repaired August 2008.						
Q8	2" mice hole was observed on the ground surface.	No change	No change	No change						
Q8	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change						
P10	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change						
L9	Two mice holes approximately 6" deep	No change	No change	No change						
L9	A mouse hole approximately 6"deep was observed	No change	No change	No change						
L9	A mouse hole approximately 6"deep and 6" diameter was observed	No change	No change	No change						
L8	Minor erosion along the edge of the soil cap from surface water flow.	Surface water runoff path forming. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change						
18	A mouse hole about 2" to 3" in size was observed	Vegetation spotty, large amounts of surface soil exposed. Reseeded May 2008.	Reseeded May 2008.	No change						
18	Minor erosion of the soil cap.	Surface water runoff path forming. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change						
16	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change						
J6	2" mice holes were observed on the ground surface.	Short surface water drainage path; native soil not visible. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change						
H9	Two mice 2" size holes was observed.	No change	No change	No change						
D7	Two mice 2" size holes was observed.	No change	No change	No change						
B3	A mouse hole approximately 6" wide and approximately 6" deep was observed	No change	No change	No change						

Grid #	Round 5 - August 2010
S8	No animal holes were observed.
S8	No animal holes were observed.
R8	No animal holes were observed.
Q8	No animal holes were observed.
Q8	No animal holes were observed.
P10	No animal holes were observed.
L9	No animal holes were observed.
L9	No animal holes were observed.
L9	No animal holes were observed.
L8	Erosion of road area due to surface water flow.
J8	Erosion along road edge due to surface water flow off of road surface.
	Erosion around a culvert outlet due to surface water flow off of road
J8	surface.
18	No animal holes were observed.
16	No animal holes were observed.
J6	No animal holes were observed.
H9	No animal holes were observed.
D7	No animal holes were observed.
B3	No animal holes were observed.


Notes:


1. All grids capped areas were inspected. Grids with no signs of erosion or other disturbances to the cover are not included in this log.

2. The Army repaired the washout areas noted above, and reseeded areas with sparse vegetation on or before May 22, 2008.

FIGURES

- Figure 1 SEDA Site Map and AOC Location
- Figure 2 Open Burning Grounds Site
- Figure 3 Historic Groundwater Contours with August 2010 Elevations
- Figure 4 Groundwater Elevation Profile
- Figure 5 Concentrations of Lead and Copper at MW23-1
- Figure 6 Concentrations of Lead and Copper at MW23-2
- Figure 7 Concentrations of Lead and Copper at MW23-3
- Figure 8 Concentrations of Lead and Copper at MW23-4
- Figure 9 Concentrations of Lead and Copper at MW23-5
- Figure 10 Concentrations of Lead and Copper at MW23-6
- Figure 11 Open Burning Grounds Soil Cover Areas and Well Locations
- Figure 12 OB Grounds Completion Report Map Overlain on Aerial Photo
- Figure 13 Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection Comments Identified
- Figure 14 Reeder Creek Inspection Photo Locations

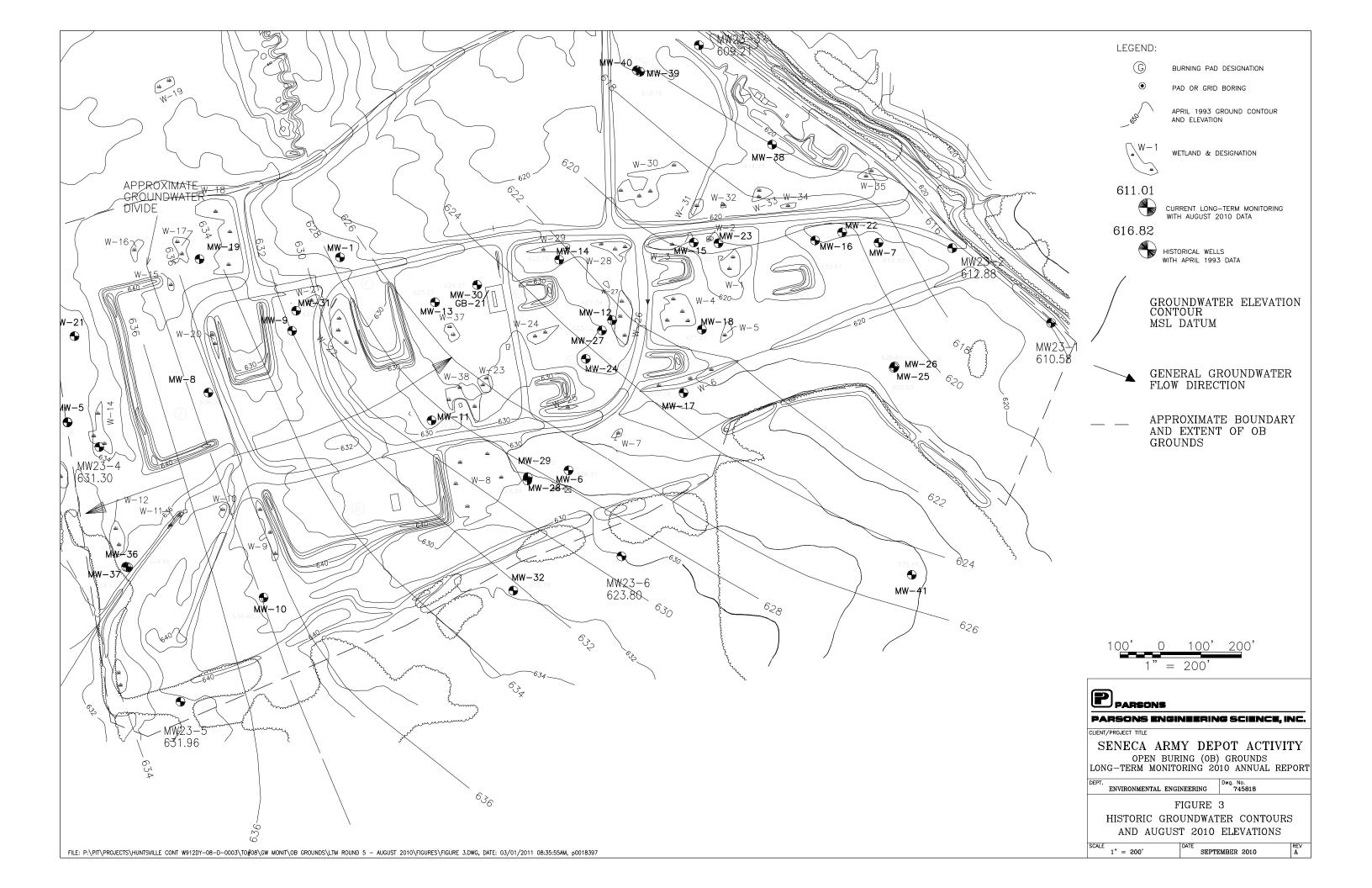
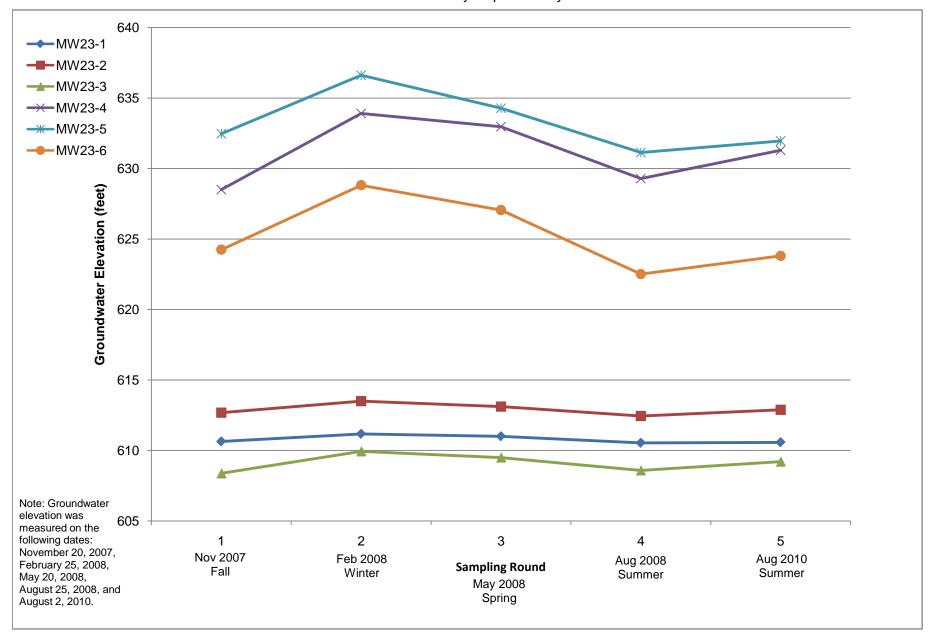



Figure 4 OB Grounds Groundwater Elevation OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

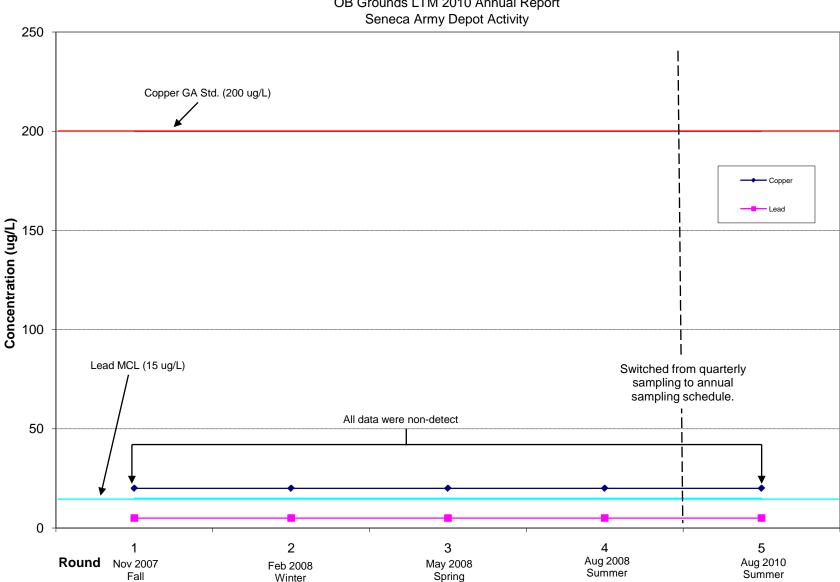


Figure 5 Concentrations of Lead and Copper at MW23-1 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

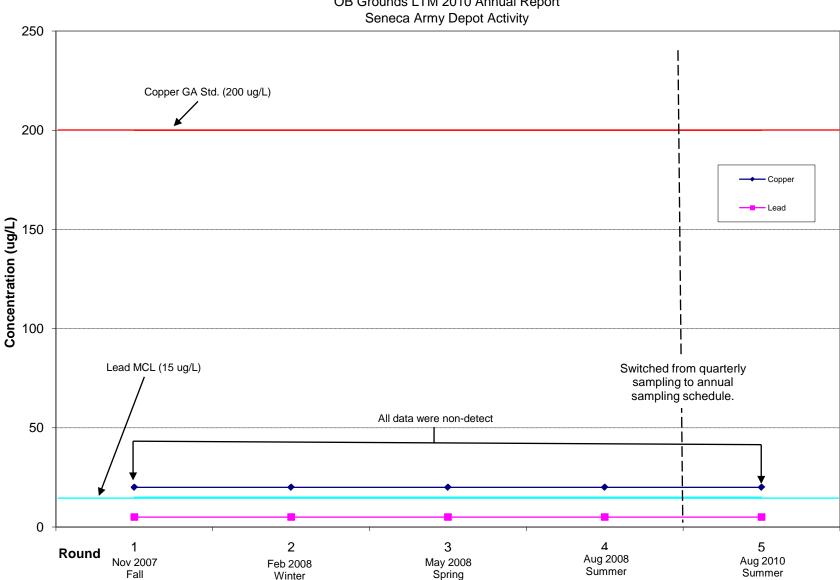


Figure 6 Concentrations of Lead and Copper at MW23-2 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

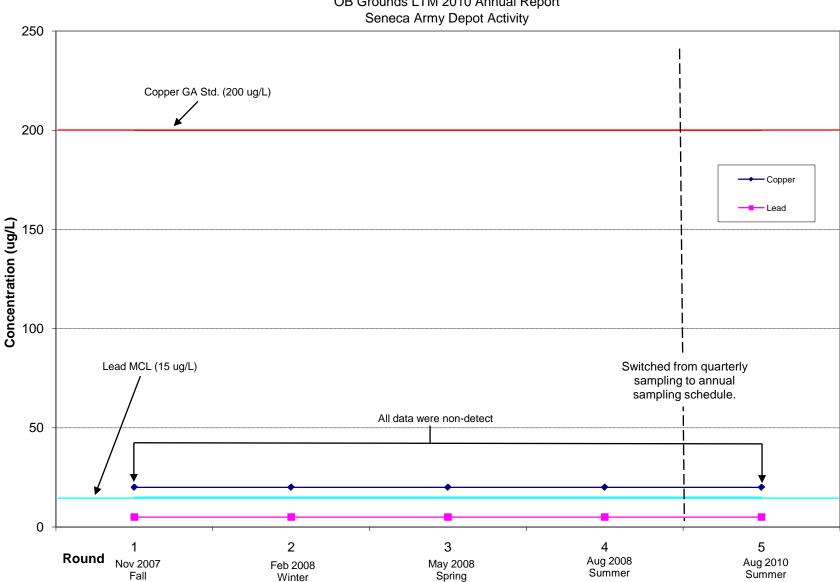


Figure 7 Concentrations of Lead and Copper at MW23-3 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits.

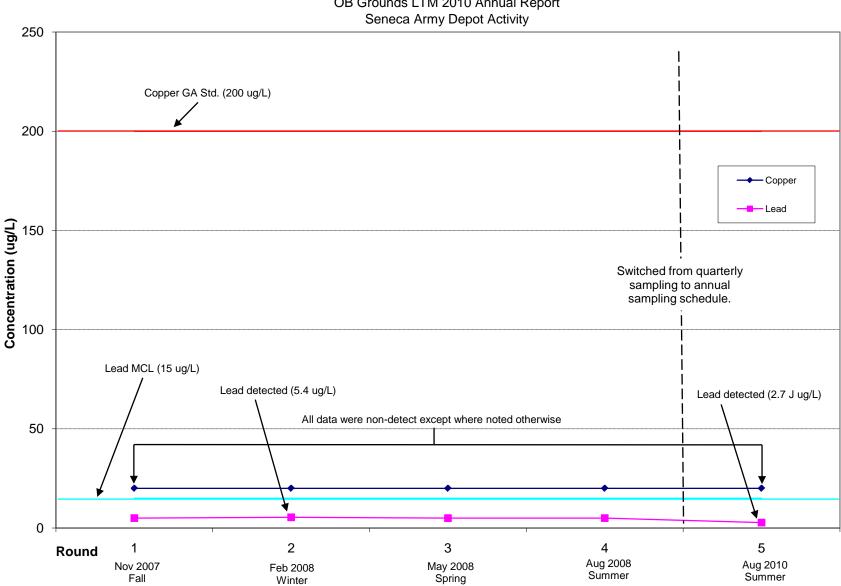


Figure 8 Concentrations of Lead and Copper at MW23-4 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

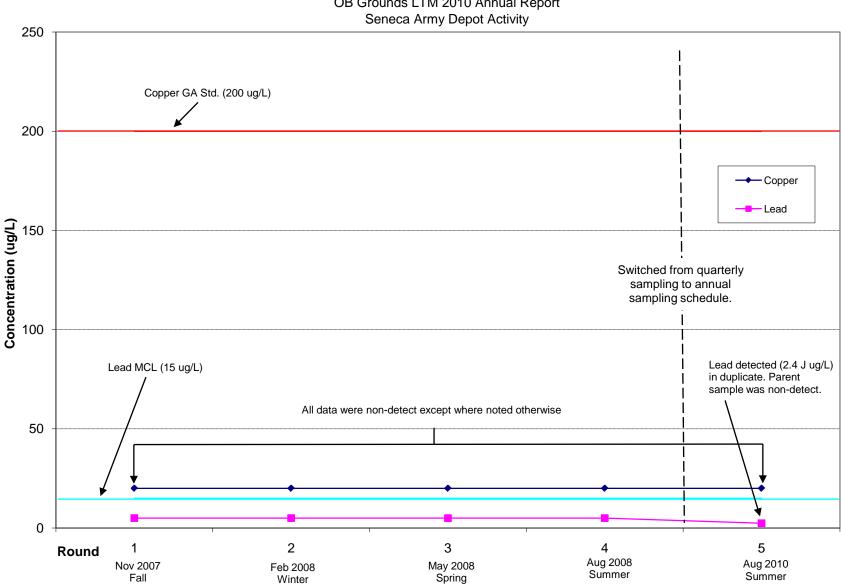


Figure 9 Concentrations of Lead and Copper at MW23-5 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

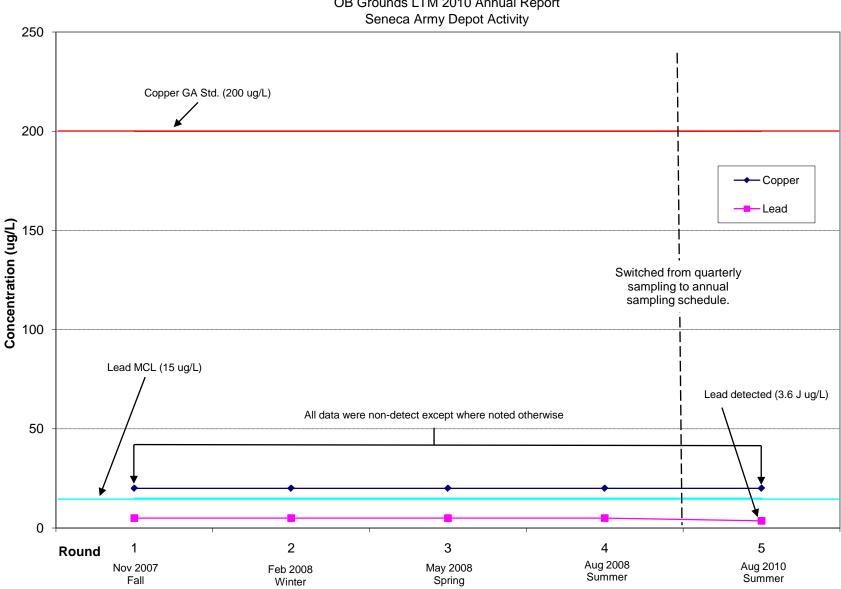


Figure 10 Concentrations of Lead and Copper at MW23-6 OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, and August 2, 2010. All groundwater concentrations were below detection limits unless noted otherwise.

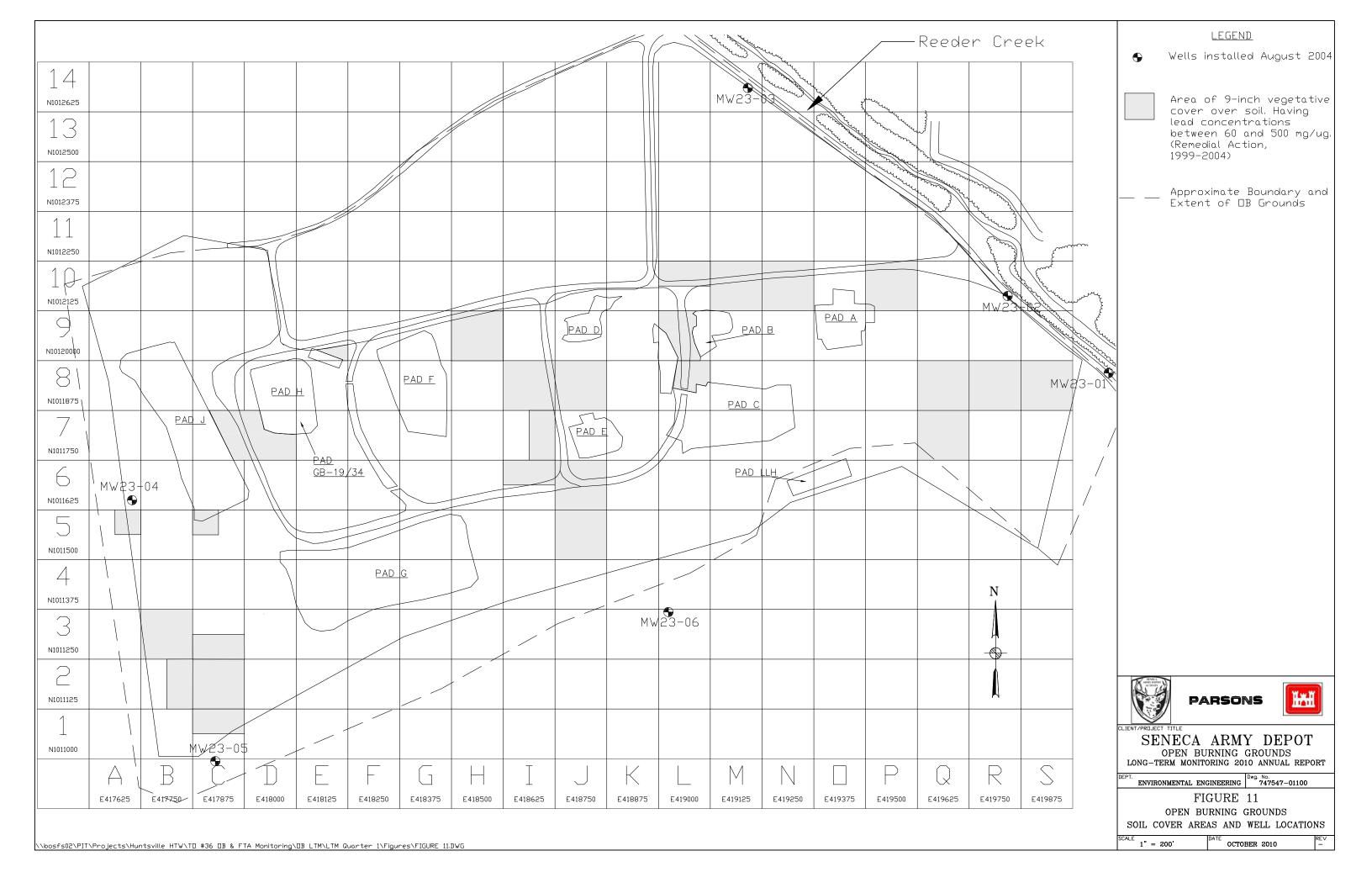
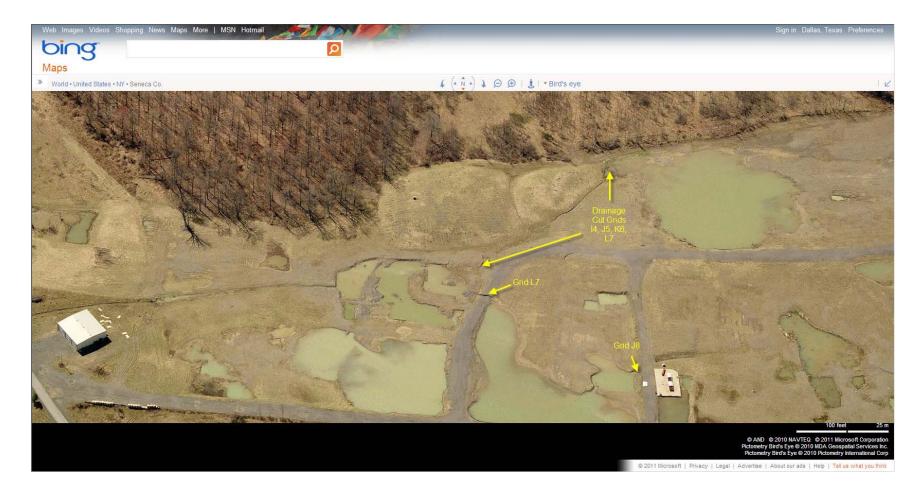
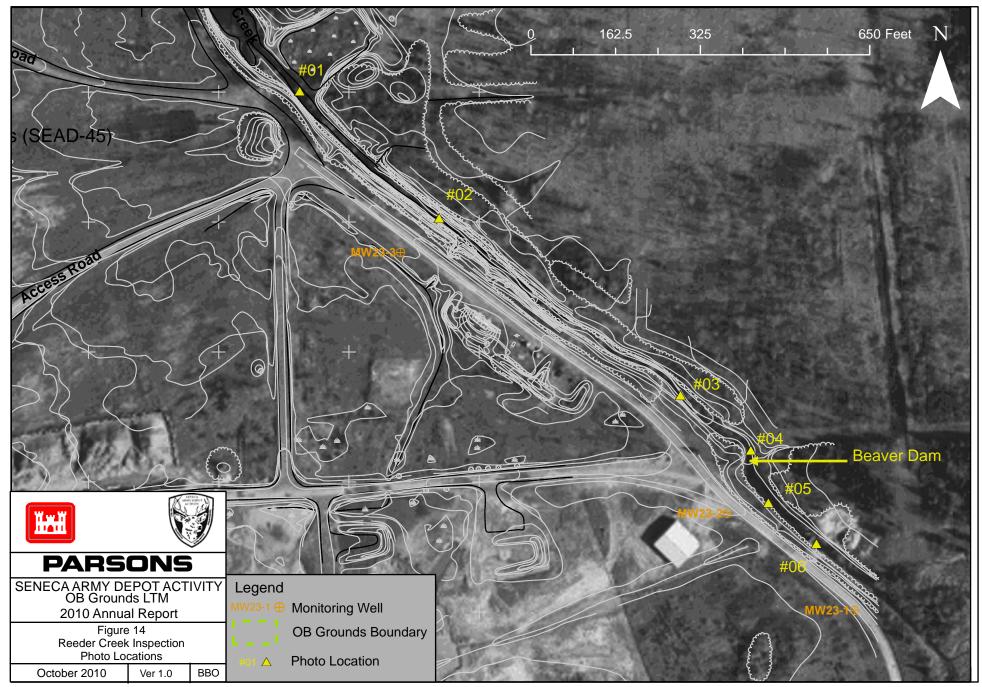



Figure 12 OB Grounds Completion Report Map Overlain on Aerial Photo



Location where lead contaminated soil interred **Map Source:** Weston Solution, Inc. Completion Report, Soil and Sediment Remediation, Open burning Grounds, Seneca Army Depot, June 2005. **Aerial Photo Source:** www.bing.com, March 2, 2011, Bird's eye view looking north.

Figure 13 Aerial View of OB Grounds with Approximate Locations of August 2010 Inspection Comments Identified

Aerial Photo Source: <u>www.bing.com</u>, March 2, 2011, Bird's eye view looking south .

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#08\GW Monit\OB Grounds\LTM Round 5 - August 2010\Photos\Reeder Creek Photos\Reader_Creek_map.mxd

APPENDICES

- A Open Burning Grounds Round 5 Field Forms
- B Log Book 08/05/2010 Notes and Transcript of Reeder Creek Inspection
- C Reeder Creek Inspection Photos
- D Laboratory Report
- E Data Validation

APPENDIX A

OPEN BURNING GROUNDS ROUND 5 FIELD FORMS

GW ELEVATION

									PAGE OF W
				GROUN	JDWA	TER E	LEVA	ΓΙΟΝ	REPORT
PARS				CLIENT:					DATE: 8/2/(0
	<u>CE Gr</u>	ounds L	TM R	and 5		·	_		DATE: 5/2/(0 PROJECT NO: 5/2/10 380 5/2 INSPECTOR: BDO/SD
LOCATION		-					<u> </u>		INSPECTOR: BDO (SD
INSTRUMENT	DECTECTOR	BGD	TIME	REMARKS	WATER LEV	VEL INDICATOR		ION FACTOR	COMMENTS:
┝───									
									-
WFLL	TING	DEP1 WATER	PRODUCT	CORRECTED WATER LEVEL	MEASURED	INSTALLED POW	PRODUCT SPEC GRAV		WELL STATUS / COMMENTS
23-1	927	12.06							(k) Well (P) Surface Distintunce? Riser marked? Conditioned mark concrete protective enough (C)
23-2	928	9.40							
23-2 23-3	931	9.97							
23-4	935	5.81							
23-4	939	7.51						00 C	ell cup
23-6	945	8.79							

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

SE	ENECA	ARMY I	ΟΕΡΟΤ ΑCTIVITY				PAF	ISON	NS		W	ELL #: MG		
PR	OJECT:		OB Grounds l	LTM C	Ground	water S	amplin	g - Rour	1d & 5			DATE: 7/		
LOC	CATION	:				US, NY			_		INS	SPECTORS: 7	30/5	
											PUMP #: Peristatte			
WI	EATHER	t / FIELD	CONDITIONS CHEC	1		1			CHAN			MPLE ID #:	70	
т	ME	ТЕМР	WEATHER		EL. UDITY	WIN VELOC	<u> </u>	ECTION	-	SD/SITE FACE		SLAZOO	TORING	
	HR)	(APPRX)	(APPRX)		EN)	(APPI) - 360)		ITIONS	INS	STRUMENT	DETEC	
91	/	75F	scattered clarks						- (+ \S			OVM-580	p	
										·				
DIAN	ETER (1)		LUME CALCULATION FAC 0.25 1 2	TORS	4	6	ONE	E WELL VO				BILIZED WATER LI FACTOR (GAL/FT)		
GA	LLONS / F	00T:	0 0026 0 041 0 163	0.367	0.654	1.47			X 1	USUS DIAM	1. I.G.M.	CAUTOR (OAGPT)	.1	
	JTERS/FC		0.010 0.151 0.617 DEPTH TO POINT	1 389	2 475	5 564 NI TO	SCREEN	<u> </u>	WELL	1		WELL	WEL	
н	ISTORIC D	ATA	OF WELL	-		P OF N (TOC)	LENGTH (FT)	Ľ	DEVELOPMI TURBIDIT		DI	EVELOPMENT pH	DEVELOP SPEC C	
			13.5 2 30	Tap			(* 1)	1		-			and t	
			LEivo	-	<u> </u>	DEPTH T	0	<u> </u>	DEPTHI		DF	PTH TO PUMP	PUMPING	
DATA	A COLLEC WELL SIT		PID READING (OPENING WELL)		WAT	STATIC ER LEVE		u e	STABILIZE TER LEVEI	ED	54	INTAKE (TOC)	TIME	
	WELLS 31		(OFENING WELL)			2.02	-		IGN LEVEL			((0,))		
RADI/	ATION SCI	REENING	FUMP PRIOR TO		12.00				PUMP AFT					
	DATA		SAMPLING (cps)					<u>.</u>	AMPLING					
TIME			ITORING DATA		LLEC		DUR	ING PURGING		NG OP	OPERATIONS OR		TURE	
		ATE (ml/min)	(GALLONS)		YGEN (n		(C)		mbos)	рH		(mV)	(N	
913	2.08	Punp	Started at	·										
9201	1 -	~110			0,90	2	17.2	Dus	703	6.30	Ĩ	210	4	
925	12.22			(0.8	5	16.9	Ö,	886	6.42	2	180	8.	
930	12.22	110			0.8	U)	16.7	0.4	179	6.47	,	144	6,	
	12.22	~165		1		12	16.7	0.7	573	6.5	3	81	5,	
940	2.28			L_	0.8		11.5	0.0	1-71	6.60		52	3	
		~150			~ <2	1	11 2	0,8	i-1-	6.64	2	.2.2	11	
	12.28	130			5.60	2	1/ 11	-		6.7		19	2.1	
				*			11 6	0.8	36					
955			1 7- 1		.80					6.7		14	1.9	
1000		aler	~1.75mls		.80					6.75		10	<u> </u>	
		~155			. 79					6.76		8	1.	
1010				0.	.77					6.77		6	1.1	
615	12.29		2,399(5	0.	76		16.7	0,8	540	6.7	8	5	- Li	
616		Sand	c Collected								T			
			Sample ID	0	BU	120	229							
			Sanple Time	10	120						1			
			saided with								+			
				1				1						

increased Ann ra

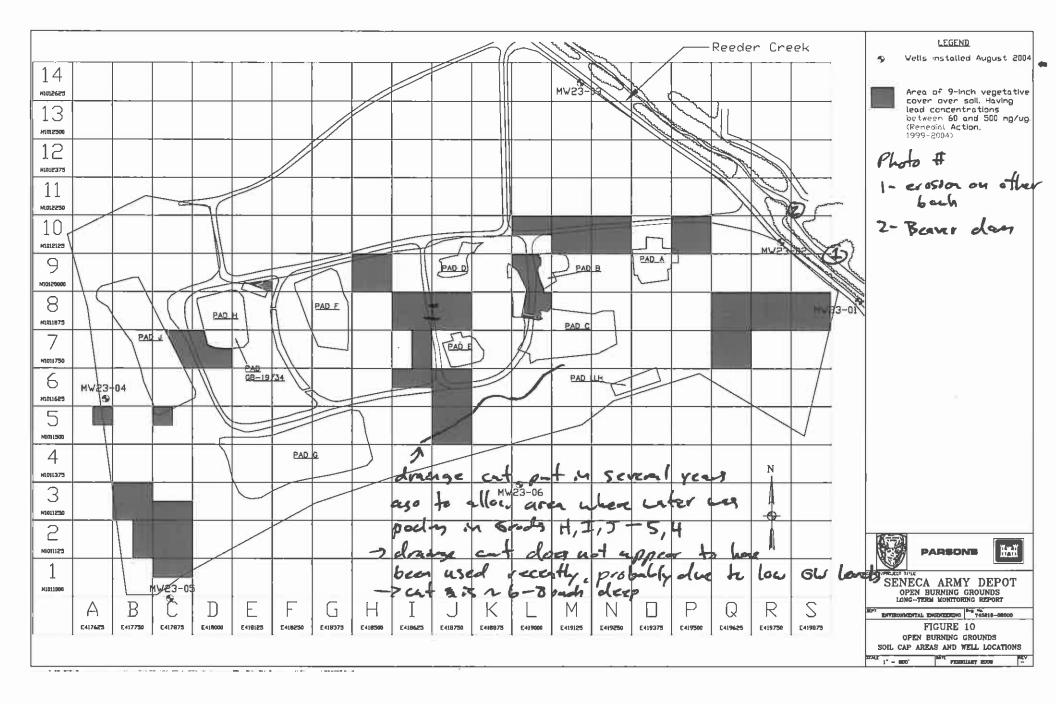
			SAM	PLING R	E	CO	RD) _	GR	OU	ND	W	ATER	
	S	ENECA	A ARMY D	DEPOT ACTIVITY				PAR	SON	IS		WE	LL #: /16	2]-7
		ROJECT CATIO		OB Grounds L			water S JUS, NY		- Roun	145		INSP	DATE: 8/	3/10
	W	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	r	 (RI	ECORD	MAJOR	CHAN	GES)	SAM	P #: /erx PLE ID #:	
	111		ТЕМР	WEATHER		EL.	WIN	<u> </u>	<i>,</i>		ID/SITE FACE	080	MONIT	
		IME HR)	(APPRX)	(APPRX)		idity EN)	VELOC (APPI		ECTION - 360)		FACE ITIONS	INSTRUMENT		DETECTOR
			75	reatly summy						200	54		OVM-580	PID
	G	METER (I Allons / Liters/F	INCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.465 0.010 0.151 0.617	TORS 3 0 367 1 389	4 0.654 2.475	6 47 5 564	ONE	WELL VÖ				LIZED WATER L ACTOR (GAL/FT)	
		USTORIC		DEPTH TO POINT OF WELL (TOC) 15.2+0.2		DEP	TH TO P OF N (TOC)	SCREEN LENGTH (FT)		WELL EVELOPME TURBIDIT		DEV	WFLL TELOPMENT pH	WELL DEVELOPMENT SPEC COND
	DAT	A COLLE WELL S		PID READING (OPENING WELL)	r	WAT	DEPTH I STATIC ER LEVE			DEPTH TO STABILIZE ER LEVEL	D		TH TO PUMP INTAKE (TOC)	PUMPING START TIME
						9.	,44				PA .			
	RADI	DATA		PUMP PRIOR TO SAMPLING (cps)					SA	UMP AFTI MPLING (cps)			
	MON TIME WATER PUMPING			ITORING DATA		DISSOLVED TEMP				URGII COND	NG OF	PERA	TIONS ORP	TURBIDITY
	(mia) 0 · (111)	LEVEL		(GALLONS)		VGEN (B	-	(C) Har.lu	(ua	ihos)	lfg	+	(mV)	(NTU)
	1043	1.85	~p 3+10 ~[50	+=1 et 1030		<u>234</u> 2.3(17.2	0.6	07	7.15		109	31
			~200			0.07		16.8	0.6		7.11	<u> </u>	108	12
Jour and	1053	10.18	220			.0		(7.0	0.6		7.10	>	107	8.3
Dealer .	1058	10.25	~160	0.75 galg		.04		17.1	0.6	30	7.1	-	164	4.4
	1103	10-30				.03		(7.4	0.6		7.17	_	102	2.7
		10.32	~150		0.	.02		17.4	0.6		7.14		101	2.4
	1113	10.50		-1.) ga(5	0	<u>.07</u>		17.3	0.6	\$0	7.14		101	3.4
	[[]7		Sad	(all as red	av j	120(+		
	1111		72-474	Sanale ID	0	el	120	203	0		<u> </u>	-		
				~1.5 gals ~1.75 sals Collected Sample ID Sample Time	l	120	$\mathbf{}$							
												-		_
				1								_		
												+		_

SI	ENECA	ARMY I	DEPOT ACTIVITY				PAR	SON	IS		WELL #: ML	123-3		
	OJECT CATIO		OB Grounds L			lwater S LUS, NY		: - <u>Roun</u>	d #5		DATE: 8/ INSPECTORS: 1 PUMP #: Pers	2/10 80/50		
W	EATHE	R/ FIELD	CONDITIONS CHEC	KLIST	n	(R)	ECORD	MAJOR	CHAN	GES)	SAMPLE ID #:			
					EL.	WIN				D/SITE	OBLAZOO			
	ME	TEMP	WEATHER		IDITY	VELOO		ECTION	-	FACE	MONIT			
<u>`</u>	HR)	(APPRX)	(APPRN) Rotty cloudy	(G)	EN)	(APP)	<u>RX) (0</u>	- 360)		TIONS	INSTRUMENT	DETECTOR		
162		TS	Kartly Claudy						300	7	OVM-580	PID		
GA	METER (I ALLONS / LITERS/F	NCHES): FOOT:	JUME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0 367 1 369	4 0 654 2 475	6 1 47 5 564		WELL VO	XX		- STÂBILIZED WATER I ETER FACTOR (GAL/FT			
H	IISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)	.z₹	TO	TH TO P. OF EN (TOC)	SCREEN LENGTH (FT)	וס	WFLL EVELOPME TURBIDIT		WELL DEVELOPMENT pH	WELL DEVELOPMENT SPEC COND		
DAT	A COLLE		PID READING (OPENING WELL)		DEPTH TO STATIC				DEPTH TO STABILIZE TER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIMF		
	11 E.L. J.	112	(OPLANG WELL)			1.96			L.D. 1.L. V L.L.	(10()	(10()			
RADI	ATION SC DATA		PUMP PRIOR TO SAMPLING (cps)						PUMP AFTI AMPLING (
			ITORING DATA	CO		TED	וסוות	<u> </u>	URGI	·	ERATIONS			
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	0 XO	ISSOLV YGEN (I	ED	TEMP (C)	SPEC.	COND nhos)	рл	0RP (mV)	TURBIDITY (NTU)		
9.96		Punp	Started at)	<u>(</u> 57		Herly					Lar 4		
		~154		C	0.0		47	0.6		7.0		18		
1640	10.08	2162			0		17.6	0,6	00	7.0		7.6		
645	10.00		~1,0	0.	07	-	17.3	0,5		6.98	-37	4.0		
650	10.01			0	12	-	17.Z		593	6.9		2.6		
1655	10.09	-160		Ð	.1	2-	17.2		592	6.9-	1 - 40	1.9		
100	10.09			Ó	.10		17.3	0.5	90	6.9	1 - 41	2.1		
1705	10.00			\$		<u> </u>	17.3	0.5	92	6.9	8 -42	1.6		
17/0	10.09	_	~2.039/5	D	40)	17.2	0.5	90	6.9	1 - 42	1.5		
1717		Sam	le Collecter Sample ID Sample Time	(
			Sample ID	08		1200	<u>p51</u>				_			
			Sanjak Time	_[]	-17									

1626

		S	AM	PLING R	E	CO	RD	-	GR	OU	ND	W	ATER	L
	SEN	ECA	ARMY D	DEPOT ACTIVITY				PAR	SON	IS		WE	ELL #: 14	123-4
	PROJ LOCA		:	OB Grounds I			water S JUS, NY		g - Roun	a <i>q</i> 5		INS	DATE: 8	sto (SD
	WEAT	THER	/ FIELD	CONDITIONS CHEC	KLIS	r	(R)	CORD	MAJOR	CHAN	GES)		MP #: Per X	LIFC.
					1	EL.	WIN		,				LAZOO	32
	TIME		ТЕМР	WEATHER		IDITY	VELOO		ECTION		FACE		MONIT	
	(24 11R	<i>.</i>	(APPRX)	(APPRX)	<u>(G</u>	EN)	EN) (APPRX 5-(O		- 360)		ITIONS	INS	STRUMENT	DETECTOR
	1454		73	sattral chal	<u> </u>		5-((2 26	-//4	Small	4		OVM-580	PID
	DIAMET GALLO		CHES): OOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.017	TORS 3 0 367 1 389	4 0.654 2.475	6 I 47 5 564	ONE	WELL VO				I BILIZED WATER L FACTOR (GAL/FT)	
		DRIČ D/		DEPTH TO POINT OF WELL (TOC)		DEP TO	П1 ТО Р ОF N (ТОС)	SCREEN LENGTH (FT)		WELL EVELOPMI TURBIDIT		DF	WELL EVELOPMENT pH	WFLL DIVELOPMENT SPEC COND
				17.9+0.24			DEPTH 1	ĩ		DEPTH TO)	DF	PTH TO PUMP	PUMPING START
	DATA CO WE	OLLECT LL SIT		PID READING (OPENING WELL)			STATIC ER LEVE	•		STABILIZE ER LEVEL	D		INTAKE (TOC)	TIME
	RADIATIO	DN SCR	EENING	PUMP PRIOR TO						UMP AFTI				
		DATA		SAMPLING (cps)					······	MPLING (/			
	TIME WA'	TER	MON PUMPING	CUMULATIVE VOL		LLEC DISSOLV		DURI		COND	NG OF	PERA	ATIONS ORP	TURBIDITY
	(mln) LEV		ATE (ml/min)	(GALLONS)			ng/L.)	(C)	(ил	ihos)	pll	\rightarrow	(mV)	(NTU)
330%2	1453 5	81	Kunp			ISI	_	Herila				-		Lort
1500	1300 6.	17	03').2	5	13.9	0.6		7.5		4	15
1505	1305 7.1	4				. 21		19.	0.6		7.59		18	9.3
1510	1310 72		04			. 22	A	18.7	0.6		7.5		-2	5.5
	15158.			-0.5 pals	<u> </u>			18.5	0.6		7.5		- 8	4.0
	15208:				6	2.17	Z	18.4	0.6		7.4		-5	3.1
	1525 9:				0			17.1	0.6		7.49		-2	2.4
and a	15309.	77 1	-112	21.0 gals	0	.17	•	17.3	0.6	50	7.4!	5	4	2.3
Derint.	153510.	Z			0	.61		18.4	0.6	5	74		9	1.9
				21.5 gals	0	,46			0.6		7.4	5	13	2.5
as bully	1550 11.	06	116	•		56		17.9	0.6	47	7.4	4	16	1.9
Awcell	1555 11.	31				<u>.51</u>			0.6		7.43	3	19	1.5
Abar cell cunter 1200	1600 11.	53		~2.0 gels	0.	55				46	7.4	3	20	1.7
line	1605 11	76			0.	52	-	17.8	0.6	45	7.4	2	22	1.6
	1612	5	anple											
			-	Single ID	0	BLA	120	032	-					
				Time 161	2									
												T		

SENECA	ARMY I	DEPOT ACTIVITY				PA	ISON	15		WELL #: #((
PROJECT:		OB Grounds I	TM (Ground	water !	Samplin	g - Roun	165		DATE: 8	12/10			
LOCATION	:				JUS, N					INSPECTORS: 380 (50				
						-	-			PUMP #: Per:	the the			
WEATHER	/ FIELD	CONDITIONS CHEC	KLIS	l.	(R	ECORE	MAJOR	CHAN	GES)	SAMPLE ID #:				
			R	EL.	WIN	D (FROM)	GROUP	ND / SITE	0BLA2003	3/000			
TIME	ТЕМР	WEATHER	HUM	IDITY	VELO	וס יינו:	RECTION	SUR	FACE	MONIT	ORING			
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APP	RX) (0 - 360)	COND	ITIONS	INSTRUMENT	DETECTOR			
1340	73	Sunny clerky						3045	54	OVM-580	PID			
									<u>'</u>					
DIAMETER (IN		UME CALCULATION FAC 0.25 1 2	TOR5 3	4	6	ON	E WELL VO			- STABILIZED WATER I ETER FACTOR (GAL/FT				
GALLONS / F	00T:	0.0026 0.041 0.163	0 367	0.654	1 47					ton (one) t	••			
LITERS/FO		0 010 0 151 0 617 DEPTH TO POINT	1 389	2 475 DEP	5 564 BH TO	SCREEN		WELL		WELL	WELL			
		OF WELL		TO	P OF	LENGT	i Di	EVELOPM		DEVELOPMENT	DEVELOPMENT			
HISTORIC D.	ATA	(TOC)	0.27	SCREE	N (TOC)	(FT)		TURBIDIT	Ŷ	pH	SPEC COND			
		17.43*	-											
DATA COLLECT	TED AT	PID READING			DEPTH			DEPTH T		DEPTH TO PUMP INTAKE	PUMPING START TIME			
WELL SIT		(OPENING WELL)		WAT	ER LEVE			ER LEVEI		(TOC)	10010			
					2.5'									
RADIATION SCR	EENING	PUMP PRIOR TO						UMP AFT						
DATA		SAMPLING (cps)						MPLING						
		ITORING DATA				_			NG OP					
	PU'MPING ATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV (YGEN (r		TEMP (C)		COND hos)	pH	ORP (mV)	TURBIDITY (NTU)			
340 15'	lup	SL LI		L2V	-	11-1-					Lorato			
	-140				•	10		11.	171	-17				
	140			0,00	<u> </u>	16.0		.60	7.36	6 -62	3.0			
350 8.83			0.	, 24		17.3	0.6	47	7.17	- 19	2.0			
355 8.97 1	-140		0	.05	•	16.6	0.6	54	7.1z	. -41	1.9			
00 1.05				04		16.4	0.6	45	711	-42	1.8			
4054.14		~10. L				. 7 .		7/	7.00		1.3			
		~1.0596		.07		17.C			7.05					
101,20				,20	-	17.0	0.6	34	7.04		1.4			
41596.24			0.	24		17.0	0.6	32	7,0]	3 - (9	1.1			
4209,19		~1.25 57 15	0.	77		17.7	0.6	31	7.03	-17	1.0			
		(/ +h	~7	21 4	1.6		,	14-	5	-				
		Sprijle ID	0	SLA	120	033		142						
			01	SLA	200	33	13	142	8					
			OR	im	70	533	ISD	142	18					
			OT	IL	70	534		143	u	Dep				
			~0			- 24		173	17	~~~~				
								_						
									1					
								_						
											_			


											Pag	e lof 2
	(SAM	PLING R	EC	ORI) -	GR	OU	ND	WATE	R	
SEI	NECA	A ARMY I	DEPOT ACTIVITY			PAF	1501	1S		WELL #: M	W23-6	
PRC	DJECT	·	OB Grounds L	TM Gro	oundwater	Samplin	g - Rour	165		DATE: 8		1
LOC.	ATIO	N:		RO	MULUS, N	Y				INSPECTORS: PUMP #:		
WE.	ATHE	R / FIELD	CONDITIONS CHEC	KLIST	(R	ECORD	MAJO	CHAN	GES)	SAMPLE ID #:		
				REL				GROUN		OBLM2		
TIN (24 H		TEMP (APPRX)	WEATHER (APPRX)	HUMID		CITY DI PRX) (RECTION 0 - 360)		FACE ITIONS	MONI INSTRUMENT	TORING DETECTOR	
95	3	~73	sunny scalad.	(0.6.	0-(5/ess		OVM-58		1
			فنعك									
GAL	ETER (LLONS / ITERS/F	INCHES); FOOT:	LUME CALCULATION FAC 0.25 1 0.0026 0.041 0.010 0.151 0.017	3 0.367 - 0	4 6 0654 147 1475 5 564			8.79	= \$,	STABILIZED WATER	1.405 k3 =	4.21
			DEPTH TO POINT OF WELL		DEPTH TO	SCREEN		WELL WELOPMI	INT	WELL DEVELOPMENT	WELL DEVELOPMENT	1
IIIS	STORIC	DATA	(TOC)	S	CREEN (TOC)	(FT)		TURBIDIT	Y	рН	SPEC COND	{
			17.41		DEPTH		<u> </u>	DEPTH TO		DEPTH TO PUMP	PUMPING START	
	COLLE	CTED AT	PID READING (OPENING WELL)		STAT	IC	WA	STABILIZE	D	INTAKE (TOC)	TIME	
	***		(and the other		8.79	LETION						1
RADIA	TION SC DATA	TREENING	PUMP PRIOR TO SAMPLING (cps)					PUMP AFT			· · · · · · · · · · · · · · · · · · ·	1
		MON	ITORING DATA	COLI	LECTED	DUR	ING F	URGI	NG OF	ERATIONS		
	LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	Y SLDIS	SOLVED GEN (mg/L)	TEMP (C)		nhos)	pH	ORP (mV)	TURBIDITY (NTU)	1
		Repla	ced water	ine	tabin	Here]
10207	8.6	3 Pa	up State	(1					LANTE]
10251	10.4	7-130	'	0	07	15,1	0.6	79	6.2	6 140	38	
1030 1	1.14	-130		0	16	15.8	0,6	12	64-	1 131	18	
10351	1.8	~130		0.	20	16.1	DI	670	6.72	2 95	6.6	
1040	12.3	8		0.	20	16.0	0.1	672	6.80	2 85	4.8	
1045	L		~1gal		20	16.1	0.0	17	6.9		4.0	
10:501		-			30	12 1	0.		7.04		2.9	
10:551			- 1.3 gel		43		0.4	-	7.0		3.2	
1110 1		108		0,1			0.6		7.03		3.9	
115		-			18	16.3	0.6		7.0		2.3	
1120 (5.14		~Z gals	0.0	26	16.1	0.0	59	7.01	6 71	2.7	
1132	- 4	ant	Click	~				h-fly	1	-		
11.20	\prec	ample		071	MZQ	256	• I	ne l	<u> </u>	COMPECTAL	Later .	
	BISO	8/2/10	Sarphe Fre	~	1130		1 .	ater	1	fill door		
						500	nuc		1° 1	w me u	ater he	
					tar			hole		en 40.		[
11361	4.55	~106	22.3920	0.		16.3		.70	7.10		90	1
11411				0.		16.5			7.13		19	
11461					15	16.4			7.1			

		PLING R	FCO						
SENECA	ARMY D	DEPOT ACTIVITY		P /	RSO	NS		WELL #: M	123-6
PROJECT: LOCATION	; <u> </u>	OB Grounds L	TM Ground ROMUI		oling - Rou	nd 6		DATE: 7 INSPECTORS: PUMP #: feve	
WEATHER	/ FIELD	CONDITIONS CHEC	KLIST	(RECO	RD MAJO	R CHAN	GES)	SAMPLE ID #:	
			REL.	WIND		GROUN		OBLAZA	335
TIME	ТЕМР	WEATHER	HUMIDITY	VELOCITY	DIRECTIO		FACE		ORING
(24 IIR)	(APPRX)	(APPRX)	(GEN)	(APPRX)	(0 - 360)	COND	ITIONS	INSTRUMENT	DETECTOR
			_					<u>OVM-580</u>	PID
DIAMETER (IN GALLONS/F LITERS/FO	(CHES): OOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 4 0.367 0.654	6 1 47 5 564	ONE WELL V			- STABILIZED WATER ETER FACTOR (GAL/FT	
		DEPTH TO POINT OF WELL			EEN GTII	WFLL DEVELOPMI	INT	WELL DEVELOPMENT	WELL DEVELOPMENT
HISTORIC D	АТА	(TOC)			Т)	TURBIDIT		pH	SPEC COND
DATA COLLE(" WELL, SIT		PID READING (OPENING WELL)	WAT	DEPTH TO STATIC TER LEVEL (TO	<u>c) W</u> A	DEPTH TO STABILIZE TER LEVEL	D	DEPTI TO PUMP INTAKE (TOC)	PUMPING START TIME
RADIATION SCR	EENING	PUMP PRIOR TO				PUMP AFT			1
DATA		SAMPLING (cps)				SAMPLING (
ME WATER	MON	CUMULATIVE VOL	DISSOLA			COND		PERATIONS	TURBIDITY
	ATE (ml/min)	(GALLONS)	OXYGEN (-	mhos)	pH	(mV)	(NTU)
53 5.25	90		140	0.14 16	30.6	68	7.14	66	14
59 5.44			0.	11 15	.9 0.0	71	7.2	1 64_	24
0615.67	110	23.0 346	Oil	Z 15	50.	667	7.20	0 61	20
14 15.97	110		0,10	2 15	70.	663	7.2	3 58	11
20 11.2 3	110		0.0		50.	661	7.Z	T (5	70
	<1	0				<u>L</u>	I.I	1.1.	
24	210/	a prap	Anc		rea	D 1	701	in lan	
	4-14-1	For colle ~ 1.5 4	they I	14202-	<u>1</u>	atrif	tue d'	Spage 61,	
	Have	~ 1.54	of in	ter le	<u>. 44 n</u>	· sell	-		
_						_			
17 (alled	Set Ada	is to	inte	and hi	An or	1 12	vordy issi	K.
	e A	lussed to	denot	> from	. Lel	l and	6 00	ye brek	thornoo
_	he also	e turbody			ettle	dera	I A.		
-+-+'	7.7	- Interes					· · · ·		
								-	
					_				

Ŷ

800 5/3

		S	AM	PLING R	E	C O	RD	- (GR	OU	IND	W/	ATER	2
	SEN	ECA /	ARMY D	DEPOT ACTIVITY				PAR	SON	15			L #: /14	
	1	JECT: ATION:		OB Grounds I			water S .US, NY		g - Roun	d #5	-	INSPI	DATE: 81 ECTORS: 7 P #: Pers	BO SP
	WEA	THER	/ FIELD	CONDITIONS CHEC		r El.	(RE WIN		MAJOR FROM)			SAMI	PLE ID #:	
	TIM	E	ТЕМР	WEATHER		IDITY	VELOC		ECTION		FACE		MONIT	
	(24 11)	<u>R)</u>	(APPRX)	(APPRX)	(G	EN)	(APPF	X) (0	- 360)	COND	ITIONS	INST	RUMENT	DETECTO
	1(37	3	75	Scattern (clark	<u> </u>	_	_	+		91	154		OVM-580	PID
	GALI	TER (INCLONS / FC	CHES); DOT;	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3	4 0 654 2 475	6 1 47 5 564	ONE	WELL VO				IZED WATER L CTOR (GAL/FT)	
	ніят	FORIC DA	ата	DEPTH TO POINT OF WELL (TOC)	7.	TO	ni to > OF N (TOC)	SCREEN LENGTH (FT)		WELL EVELOPMI TURBIDIT			WELL ELOPMENT pH	WELL DEVELOPMEN SPFC COND
		COLLECT		PID READING (OPENING WELL)	inhe the	WAT	DEPTH T STATIC ER LEVEI			DEPTH TO STABILIZE ER LEVEL	D	E	H TO PUMP NTAKE (TOC)	PUMPING STAI TIME
				PUMP PRIOR TO		9.28		1	PUMP AFTER					
	RADIATION SCREENING DATA			SAMPLING (cps)				<u>.</u>		MPLING (
			PUMPING	ITORING DATA	Г	DISSOLV		DUR TEMP (C)	SPEC.	URGI COND	NG OF	ERAT		TURBIDII (NTU)
	11770	ZB	TE (ml/min)	(GALLONS)	7	YGEN (n	12(1.)	(0)	(un	1003)	рл	+	(mv)	(810)
wrate 7	1142 10.66 ~ (40		-140			4.53		15.7	0.7	-18	7.27	3	195	22
	1147 10	. 88 ~	-100		2	.73		16.0	0.7	209	7.1		198	19
	115211.	.46			Ζ	.74	¢ (16.6	0.7	708	7.17	-	196	15
	115712	.07~	-102		2	33		(6.7	0.7	-07	7.22	2	192	11
	1202 12	54		~0.5906		84		17.1	0.7	-09	7.20	1	189	8.9
	1207 12	.78				. 87		17.2	0.7	02	7.25	-	186	7.1
	1212 12	.03	~102		2	.98	•	7.0	0.7	02	7.2	5	185	6.1
	[217 3	-16		21.09=(5	3	.10		16.8	0.7	04	7.2	5	185	7.0
	1222 13	.36			3.	.27		16.8	0.7	03	7.25	5	185	6.2
	122713	3.54			3.	28		16.7	0.7	OZ	7.2	5	185	5.0
	1232 13	3.79		~1.5 gals	3.	37		16.0	0.7	06	7.2	3	186	7.4
	123714			~l.75 gals		24		16.7	0.7	08	7.2		187	10
	1240	- 5	anple	Collected										
			·	Sample ID Sample Ton	00		20	235	1	_		_		
				Sample Ton	-	124	13							

OB Grounds Task Order #36 Date of Inspection: 5/5/2010 Weather Conditions: Sunny, nix of clouds, Trap low 805. which N-75 Scattered rain showers carlier their morning, new clar.

Observations should include assessment of integrity of 9-inch soil cap placed over residual lead contaminated soil in 25 125'x125' grids.

Assessment should be made with respect to caps ability to ensure that indegenous terrestrial wildlife are not exposed via direct dermal contact or incidental ingestion.

Note signs of erosion or animal burrowing to ensure underlying soils are not exposed to the environment.

	Grid No.	Observations/Location of Disturbed Soils
1	A5	No Animal heles were obrand
2	C5	4 11
3	B3	No Animal holes acre observed
4	B2	11 4
5	C3	4 4
6	C2	4 4
7	C1	4 4
8	C7	4 4
9	D7	11 41
10	E9	4 (1
11	H9	G U
12	16	No Annal helps observed
13	17	4 1,
14	- 18	No Annul holes closen
15	J5	No Animal holes observed. Drampe cat, see no
16	J6	No Animal ludes observed
17	J8	No Animals holes observed. Surface water coroso
		by surfue anter evosan opposite 03 ped.

P:\PIT\Projects\Huntsville HTW\TO #36 OB & FTA Monitoring\OB LTM\Cap Inspection\Round 2 Cap Inspection.xls Page 1 of 2, 2/19/2008

		Round 2 Inspection	
	Grid No.	Observations/Location of Disturbed Soils	
18	L8	Observations/Location of Disturbed Soils No turn holes observed, Erosion of road L8/LL No turn holes descend	Inspector
19	L9	No Annal holes doscord	Does not
20	_L10	No Animal heles observed	appear to have southin
21	M10	<i>u 4</i>	-antly
22	N10	4 11	change
23	P10	No Animal holes observed,	fron 08 Inspections
24	Q7	Atot No animal holes observed	prections
25	Q8	11 11	
26	R8	No animal hole, observed	
27	S8	11 11	

OB Grounds Task Order #36 Round 2 Inspection

ø

-

APPENDIX B

LOG BOOK NOTES AND TRANSCRIPTS OF REEDER CREEK INSPECTION

82° F Mostly cloudy \$/5/10 8/5/10 existing colvert pope, Exosion for GW recharge. appars to be due to surface Jeff A. may want us to stay extra night and check GW levels water run of, -> Grud Lo still here dramase Tonower, norney and sample if possoble, cut in road to allow water to drade from west sale of 1323 Arrived at OB Grounds to road to the east. Cat has been observed an past inspection. conduct soil cap inspection of Reeder Crach inspection, But does not appear to have grown in size or depth. 1450 Sorl Cap respection completel 1540 Camplete Reader Creek No turnal holes were observed in any of inspected Grads. - started at North Tree lie edge > The drainage cat m Grody H, I, J The uts 425 that has previously of the OD Grounds and walked upstream along the creek bed. been observed in sool cap inspections is stall present, -2 observed exposed bal rach shale Cut is ~6- Sinches in depth, at bottom of creek in numbrows -> light brown color slim / the Bat no sisas of recent run off wave observed. Selvement like materal observed -> Grid J8 his some saffice In area where the strem flow water runoff crossian from road has pooled dec to outcrops in surface into low spot where water collects. Also observed the exposed bedrock maternal was erosion educant to a is only a few militater thick and

815/10

surface beneath it appears to be competent bedroch /shale, -> locartsons where the balroch outerop are exposed bedroch with no brown sim material present, probably due to the constant flowing =>Exot Reeder Corely ~ 100 North of MW23+3. Berver dan is located at doont save docation as MWZJ-1 => Re-entered Reeder Creek new garage bailding ~ 150ff South of Beever dan, does appear to be Same dam, but 500 8/5 Expersed shale was voroble however the water appears to be deeper than a foot, Broan Shen I sedinat like rentered is also present. Probably due to the Beaver day prevaly the normal stream flow. -> Unille to sam access to creek aver between MW23-1 and 2 grase building due to steep drop of

and thisd vegetation along the over loday bank. > Las able to gat access to creek ~ 100 & South of rest. This area does not appear to have been part of the renovel action. Bedrock is not vosible and the creek bed has seduent/ muddy creek botton. 1614 Called Jeb Adas to report finding of Soil cap inspectors and Reader Creek Inspectors. Photo documentation of creek was

8/5/10

taken 1620 Depart OB Grounds for SEAD-25 to check GW recharge at wells,

1630 Annual et 5-25. MW25-9 5.34' depth to wet 1635 MW25-8 5.38' depth to metry 1636 1640 Returned to fueld office to peak Sarples for shipment.

Appendix B Transcript of Log Book notes from 8/5/2010 Reeder Creek inspection OB Grounds LTM 2010 Annual Report Seneca Army Depot Activity

Note: implied words or missing suffixes have been included in (###)

1540 - Completed Reader Creek inspection

- Started at north tree line edge of the OD Grounds and walked upstream along the creek bed.
- Observed exposed bedrock shale at bottom of creek in numerous locations.
- Light brown color slim/thin sediment like material observed in area(s) where the stream flow has pooled due to outcrops in the exposed bedrock. Material is only a few millimeter thick and surface beneath it appears to be competent bedrock/shale.
- Locations where the bedrock outcrop are exposed(,) bedrock with no brown slim material present, probably due to the constant flowing water
- Exit Reeder Creek ~100 (ft) north of MW23-3. Beaver dam is located at about same location as MW23-1 (correction MW23-2)
- Re-entered Reeder Creek near garage building ~150 ft south of beaver dam, does not appear to be same dam (statement is incorrect, only a single beaver dam was observed). Exposed shale was visible however the water appears to be deeper than a foot. Brown slim/sediment like material is also present. Probably due to the beaver dam preventing the normal stream flow.
- Unable to gain access to creek area between MW23-1 and garage building due to steep drop off and thick vegetation along the overlooking bank (OB Grounds side of bank).
- Was able to gain access to creek ~100 ft south of MW23-1. This area does not appear to have been part of the removal action. Bedrock is not visible and the creek bed has sediment/muddy creek bottom.

APPENDIX C

REEDER CREEK INSPECTION PHOTOS

Photo #01 - Downgradient of MW23-3, looking up stream

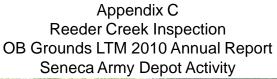


Photo #02 – Parallel to MW23-3, looking up stream. Water was greater than 2 feet deep.

Photo #03 – Upgradient of MW23-3, looking down stream

Photo #04 - Downgradient side of beaver dam and MW23-2, looking up stream

Photo #05 - Upgradient side of beaver dam (center of photo) and parallel to MW23-2, looking down stream

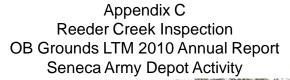


Photo #06 – Downgradient to MW23-1, looking up stream. Water was greater than 2 feet deep.

APPENDIX D

LABORATORY REPORT

1 Mustard Street, Suite 250 | Rochester, NY 14609 | 585-288-5380 | 585-288-8475 fax | www.caslab.com

August 27, 2010

Service Request No: R1004141

Mr. Brendan Baranek-Olmstead Parsons Engineering Science 100 High St. 4th Floor Boston, MA 02110

Laboratory Results for: SEAD OB Grounds/747547-01100

Dear Mr. Baranek-Olmstead:

Enclosed are the results of the sample(s) submitted to our laboratory on August 4, 2010. For your reference, these analyses have been assigned our service request number **R1004141**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 129. You may also contact me via email at MPerry@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

tulk !--Michael Perry

Laboratory Manager

Page 1 of 22

1

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Parsons Engineering Science Project: SEAD OB Grounds Sample Matrix: Water

Service Request No.: R1004141 Project No.: 747547-01100 Date Received: 8/04/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV, ASP-B deliverables. When appropriate to the method, method blank, and LCS results have been reported with each analytical test.

Sample Receipt

Water samples were collected on 8/03/10 and received at CAS on 8/04/10 in good condition at cooler temperature of 6 °C as noted on the cooler receipt and preservation check form. The samples were stored in a refrigerator at 1 - 6 °C upon receipt at the laboratory. See the CAS CLP Batching sheets for a crossreference between Client ID and CAS Job # and analyses requested.

Metals Analysis

Seven water samples were analyzed for Copper and Lead using SW-846 ICP method 6010B. The data between the MDL and the specified MRL has been flagged with a "J".

The initial and continuing calibration criteria were met for all analytes.

All blank spike (LCS) recoveries were within QC limits of 80 - 120 %.

The matrix spike and duplicate analysis was performed on sample OBLM20033, as requested. All Matrix Spike Recoveries were within QC limits of 75 - 125 %. The RPD were all within QC limits.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry

8/27/10

Laboratory Manager

CAS ASP/CLP Batching Form/Login Sheet

Client Rep: MP		Batch Complete: Diskette Reques Date: 8/6/10 Custody Seal: Pr Chain of Custod	sted: No					
CAS Job #	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks Sample Condition
R1004141-001		Water	6010B	8/3/10	8/4/10			
R1004141-002		Water	6010B	8/3/10	8/4/10	┟┈╍──┤		
R1004141-003		Water	6010B	8/2/10	8/4/10		<u> </u>	
R1004141-004		Water	6010B	8/2/10	8/4/10			
R1004141-005Q		Water	6010B	8/2/10	8/4/10	<u> </u>		
R1004141-006		Water	6010B	8/2/10	8/4/10			<u>. </u>
R1004141-007	7 OBLM20035	Water	6010B	8/3/10	8/4/10			

Folder Comments:

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

									_				Pa	age 1	of	l.						
		ANALYSI	IS REQUES	ST AND CH	AIN OF CUSTOD	Y RE(CORD			1 M Roc ph.:	hester, 585-28	St., NY 8-53	suite 250 14609 380)		Poss Haza	sible ards:	OC #:	<u>03-08-1(</u> Unkn			
PROJECT &	CLIENT IN	ORMATIC	DN		Project State	٦					585-28 ail: mor		475 @roches	tor on	املہ ہ	Sam	ple					
PROJECT REFEREN Open Burning (OB) G		Monitorina	PROJECT NO. 747547-011		NY		Sample Info			<u></u>	an. mpe					Disp	osai:	PAGE	Lab D			
LAB PROJECT MANA			P.O. NUMBER		CONTRACT/Quote NO.	-				<u> </u>		R	EQUIRED		5ES							
Mike Perry			747547-011	100	747547-01100					l B						11		Categor	port Type (Ci v B		least one):	ASP2000
CLIENT (SITE) PM			CLIENT PHONE	<u>.</u>	CLIENT FAX	4 9				ber									5 business o			
Jeff Adams/Bren	dan Baranek-	Olmstead	617-449-15	22	617-946-9777	SAMPLE				ဗီ								QAP/Qu				_Per
CLIENT NAME Parsons			CLIENT EMAIL Brendan Ba	ranok Olmata	ad@parsons.com	1₽				ġ								EXPEDI	TED REPOR EMAIL	T (circi POST	e one) Other	
CLIENT ADDRESS					ad@paisons.com				1	Method 6010B - Copper and Lead						ĺÌ			TE DUE			
100 High Street,	4th Floor, Bos	ton, MA 0211	10] ≿				l the first					1							
Samplers Signat		· · · · ·				18)	L Me									R OF COOLE			
						۱×			i		T T		<u> </u>	<u> </u>	1	i T		ISUBMIT	TED PER SH	IPMEN	NT:	
SAMPLE DATE	ED ON TIME		SAMPL	E IDENTIFICA	TION	LABORATORY		SAMPLE TYPE	MATRIX	 		ERC	F CONTA	NERS S	L ÚBM			<u> </u>		EMA	PKS	
8/3/2010	1020	OBLM2	0029				<u> </u>	 N	G₩	1					T		1	1. Ru	n straight			lvsis
8/3/2010	1120	OBLM2	0030			·			1		┼──┼		<u> </u>					(witho	ut dilutio	n) fo	r every s	sample.
8/2/2010	1					-		N	GW	1	+							2. RL:	s for cop s than 2	per a 5 un/	nd lead	should 5
		OBLM2			,	<u> </u>		<u> </u>	GW	1								for co	pper and	lead	l, respec	tively;
8/2/2010		OBLM2	0032	•				<u>N</u>	GW	1												
8/2/2010	1428	OBLM2	0033					N	GW	1												
8/2/2010	1428	OBLM2	0033MS					N	GW	1						-	1	1				-
8/2/2010	1428	OBLM2	0033MSD)				N	GW						1			Pros	ervativ			
8/2/2010	1434	OBLM20	0034			1		N	GW	1							+	1 103	Givativ	e		
8/3/2010	1243	OBLM20	0035		······			N	GW					+	┢──┤			i				
														-†			+		I HNO3			
										1												
RELINQUISHED	l-e	-	DATE B/S/10	TIME 1746	RELINQUISHED BY:	(SIGNA	TURE)		. I	L	DATE		TIME	RELI	NQUIS	SHED E	BY: (si	GNATURE	DATE	Ti	TIME	
REGEIVED BY: (Jamil 1			DATE 8/4/10	TIME 0940	RECEIVED BY: (SIGN	IATURE)	<u></u>		<u>, 199</u>		DATE		ТІМЕ	RECI	EIVED	BY: (s	GNATL	JRE)	DATE	ī	IME	
	· · · · · · · · · · · · · · · · · · ·						LABORATORY		NLÝ		<u>I</u>						• • •		1	.		
RECEIVED FOR (SIGNATURE)	LABORATOR	Y BY:	DATE	TIME	CUSTODY INTACT YES NO	CUST	ODY SEAL NO	,		LABO REMA	RATORY RKS:	,										

													Pa	ge 1	of 1						
		ANALYS	SIS REQUES	ST AND CH	IAIN OF CUSTOD	YRE	CORD			1 M Roc ph.:	S/Roches ustard S hester, I 585-288	t., sui NY 14 -5380	te 250 609				ible		-08-10_ Unknov		
PROJECT & C					Drain at Chata	-					585-288					Samp	ole				-
PROJECT REFERENCE	/NAME		PROJECT NO.		Project State	e-mail: mperry@rochester.casla					lab.c	Disposal: Lab Disposal									
Open Burning (OB) Groe		Monitoring	747547-011	00			Sample In	formation				REQL	IRED A	NALYS	E\$		PAG	GE	1	OF 1	
LAB PROJECT MANAG Mike Perry	ER		P.O. NUMBER 747547-011	00	CONTRACT/Quote NO. 747547-01100					and							Cat	ecory B		e at least one)	ASP2000
CLIENT (SITE) PM Jeff Adams/Brend	an Baranek-(Oimstead	CLIENT PHONE 617-449-152		CLIENT FAX 617-946-9777	9 9 9				Copper		ĺ					TAT		usiness day DUE 15 <u>bus</u>	s iness days	Per
CLIENT NAME Parsons			CLIENT EMAIL Brendan.Ba	ranek-Olmste	ad@parsons.com	SAMPLE				0108 - 1							EXF	PEDITED	REPORT (MAIL PO	circia one) DST Other	
CLIENT ADDRESS 100 High Street, 4 Samplers Signatu	th Floor, Bos re & Initials:	ton, MA 02	110		···· ··· ··· ··· ··· ··· ··· ···	LABORATORY S		YPE		Method 6010B - Copper and Lead							NU	MBER OF	F COOLERS PER SHIP		
SAMPLEE DATE T			SAMPLI	E IDENTIFICA	TION	ABO		SAMPLE TYPE	MATRIX	1	NUMBE						I				<u> </u>
8/3/2010			0000			┥╝		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u></u>		νεκο ο 	тт					MARKS	
		OBLM2				4		<u> </u>	GW	1							1.	RUN S	traight s	ample an for every	alysis
8/3/2010	1120	OBLM2	20030					N	GW	1							2,	RLs fo		r and lead	sample. I should
8/2/2010	1717	OBLM2	20031					N	GW	1							be	less t	han 25 i	Jg/L and a	20 ug/L
8/2/2010	1612	OBLM2	20032	· · · · · · · · · · · · · · · · · · ·				N	GW	1		+		-				coppe	er and le	ead; respe	ctively.
8/2/2010	1428	OBLM2	20033					N	GW	1										48.	n an tha An tha
8/2/2010	1428	OBLM2	20033MS			1			GW	. 1				+	1	_	$\left - \right $		•		,
8/2/2010			20033MSD						·					+	┝─┤		+				
8/2/2010				······		╢──		<u> </u>	GW	1				<u> </u>	┝╌┤		Pr	eser	vative		
8/3/2010		OBLM2						<u>N</u> N	GW GW	1				+							
								14	300						╞╌┼		┝╌┼─		INO3		
í í												+							11103		
RELINCHISHED B	1	E) Ze	DATE 8/3/10	TIME 1746	RELINQUISHED BY:	(SIGN/	ATURE)	.			DATE	TIN	ie I	RELIN	I I IQUIS	HED B	Y: (SIGNAT	TURE) D	ATE	TIME	<u> </u>
RECEIVED BY: (SI	GNATURE)		DATE 8/4/10	TIME 0940	RECEIVED BY: (SIGN	IATURE))	_			DATE	TIN	E	RECE	IVED	BY: (sid	SNATURE)		ATE	TIME	h
	www.							V UCE C													
RECEIVED FOR L (SIGNATURE)	ABORATOR	Y BY:	DATE	TIME	CUSTODY INTACT YES NO	CUS	LABORATOR TODY SEAL N			LABO REMA	RATORY RKS:										

							And Pre					
Pro	ject/Client	P _r fsc	<u>n3</u>	Senecormen	005 \$14/10 Dru		Submiss	ion Nur	nber_	RIU- YIU	11	 •
Coc	oler receive	ed on	814	///	by: <u>0fw</u>	co	URIER:	CAS	UPS	REDEX	VEL	DCITY CL
1. 2. 3. 4. 5. 6. 7.	Were o Did all Did an Were f Where	bottl bottl y VO ceor did th	dy pa es ar A vi Ice I 1e bo	pers pro rive in ge als have backs pro ttles orig	ood cond significa esent?	ed out (i ition (ur nt* air b	nk, signed ibroken)? ubbles?	, etc.)?		VES VES VES VES KES CASAR	NO NO NO NO PC, CI	N/A. LIENT
	Is the te	mper	ature	within ()° -	?:	Yes	Yes		Yes	Yes	Yes
	If No, E Date/Tir	~			Taken: <u>8</u>	14/10/2	No	No		No	No	No
PC 360	Thermor of Tempe condary R	neter ratu eview	D: re, n /:	IR GUN ote pack	1#3 / IR ing/ice (1	<u>GUN#</u>	I Read			emp Blank Run Samp		ple Bottle
Cooler	Thermon of Tempe condary R Breakdov Were all 1 Did all bo	neter ratur eview vn: I bottle	ID: re, n /: Date labe	IR GUN ote pack 	1#3 / IR $\frac{1}{2} \frac{1}{2} $	GUN# conditio	L Read n, Client <u>4/15</u> , preserva	Appro	val to		ples: NO	ple Boffle
Cooler	Thermon of Tempe condary R Breakdov Were all 1	neter eview vn: I bottle ttle la cect co les:	Date labels ontai	IR GUN ote pack 	1#3 / IR $\frac{1}{8}/\frac{9}{4}$ $\frac{1}{8}$ 	CONHIC Conditio	L Read n, Client <u>4/15</u> , preserva	Appro by: tion, etc s?	val to c.)?	Run Samp Muc (TES) (YES)	NO NO NO	
Cooler	Thermon of Tempe condary R Breakdow Were all V Did all bo Were com Air Samp	neter eview vn: I bottle ttle la cect co les: panc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack 	1#3 / IR $\frac{1}{8}/\frac{9}{4}$ $\frac{1}{8}$ 	CONHIC Conditio	L Read n, Client <u>4/15</u> , preserva ody paper licated?	Appro	val to .)? zed	Run Samp Munc VES VES	NO NO NO	flated N7
Cooler - - xplain	Thermon of Tempe condary R Breakdow Were all V Did all bo Were com Air Sampl any discre	neter eview vn: I bottle ttle la cect co les:	Date labels ontai	IR GUN ote pack 	I#3 / IR ing/ice of $A / B / 4 / 4lete (i.e. isa gree wd for theubes Inta$	Conditio	Read n, Client <u>4/15</u> , preserva ody paper licated? Canisters H	Appro	val to c.)? zed	Run Samp Muc TES YES Tedlar®	NO NO NO Bags In:	
Cooler	Thermon of Tempe condary R Breakdow Were all 1 Did all bo Were com Air Samp any discret Reagent	neter eview vn: I bottle ttle la cect co les: panc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack 	1#3 / IR ing/ice of $g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/$	Conditio	Read n, Client <u>4/15</u> , preserva ody paper licated? Canisters H	Appro	val to .)? zed	Run Samp Muc TES YES Tedlar®	NO NO NO Bags In: Final	flated NZ Yes = All samples OK
Cooler	Thermon of Tempe condary R Breakdow Were all U Did all bo Were com Air Samp any discre Reagent NaOH HNO ₃ H ₂ SO ₄	neter ratur eview vn: I bottle bottle la rect co les: epanc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack () () () () () () () () () () () () ()	I#3 / IRe ing/ice of $B/4/lete (i.e. asagree witha agree wi$	GUN#4 conditio 8/ analysis vith cust tests inc act C Exp 6/11	Read n, Client <u>4/15</u> , preserva ody paper licated? Canisters H	Appro	val to .)? zed	Run Samp Muc TES YES Tedlar®	NO NO NO Bags In: Final	flated N7. Yes = All samples OK No =
Cooler	Thermon of Tempe condary R Breakdow Were all I Did all bo Were com Air Samp any discre Reagent NaOH HNO ₃ H ₂ SO ₄ For TCN and Phenol	neter ratur eview vn: I bottle bottle la rect co les: epanc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack /// is compl and tags ners used ettes / T Lot R BOBX	1#3 / IR ing/ice of $g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/$	GUN#4 conditio 8/ analysis vith cust tests inc act C Exp 6/11	Read n, Client <u>4/15</u> , preserva ody paper licated? Canisters H	Appro	val to .)? zed	Run Samp Muc TES YES Tedlar®	NO NO NO Bags In: Final	flated NZ Yes = All samples OK No = Samples were preserved at
Cooler Co	Thermon of Tempe condary R. Breakdow Were all I Did all bo Were com Air Sampi any discre Reagent NaOH HNO ₃ H ₂ SO ₄ For TCN and Phenol Na ₂ S ₂ O ₃	neter ratur eview vn: I bottle bottle la rect co les: epanc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack /// is compl and tags ners used ettes / T Lot R BOBX	1#3 / IR ing/ice of $2/4/2ete (i.e. a)a agree with a for the base of the base$	GUN#4 conditio 8/ analysis vith cust tests inc act C Exp 6/11	K Read	Appro	val to c.)? zed	Run Samp	NO NO NO Bags In PH	flated NZ Yes = All samples OK No = Samples were preserved at lab as listed
Cooler 1. 2. 3. 4. Explain H 12 2 2 2 2 2 2 2 2 2 2 2 2 2	Thermon of Tempe condary R Breakdow Were all I Did all bo Were com Air Samp any discre Reagent NaOH HNO ₃ H ₂ SO ₄ For TCN and Phenol	neter ratur eview vn: I bottle bottle la rect co les: epanc	ID: re, n /: Date labels ontai Cass ies:	IR GUN ote pack /// is compl and tags ners used ettes / T Lot R BOBX	1#3 / IR ing/ice of $2/4/2ete (i.e. a)a agree with a for the base of the base$	GUN#4 conditio 8/ analysis vith cust tests inc act C Exp 6/11	K Read	Appro	val to	Run Samp Muc TES YES Tedlar®	NO NO NO Bags In PH	flated N7 Yes = All samples OK No = Samples were preserved at

ther Comments:

.

Secondary Review: MUB 27/10 MODOCS\Cooler Receipt 2.doc

*significant air bubbles are greater than 5-6 mm

00007

METALS COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract:	R1004141			SDG No.:	OBLM20029
Lab Code:		Case No.:		SAS No.:	
SOW No.:	SW846 CLP-M				
	Sample ID.		Lab Sample No.	<u></u>	
	OBLM20029		R1004141-001		
	OBLM20030		R1004141-002		
	OBLM20031		R1004141-003		
	OBLM20032	· · · · ·	R1004141-004	<u> </u>	
	OBLM20033		R1004141-005		
	OBLM20033D		R1004141-005D		
	OBLM20033S		R1004141-005S		
	OBLM20034				
	OBLM20035		R1004141-007		

Were ICP interelement corrections applied?	Yes/No	YES
Were ICP background corrections applied? If yes-were raw data generated before	Yes/No	YES
application of background corrections?	Yes/No	NO

Comments: See Attatched Case Narrative

. <u>.</u>			
Signature:	Muhal F.R	Name:	Michael Perry
Date:	8/20/10	Title:	Laboratory Director
			2772, 2773, 2773, 2773, 2773, 2773,

METALS -1-INORGANIC ANALYSIS DATA SUBBY

			MORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	R1004141			OBLM20029
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	.1/water):	WATER	Lab Sample ID:	R1004141-001
Level (low/	med): L(OW	Date Received:	8/4/2010
<u> </u>				•

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-50-8	Copper	2.5	J		P
7439-92-1	Lead	1.9	ן מן		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					_
_	· · · · · · · · · · · ·		· <u>·</u> ······		

INORGANIC ANALYSIS DATA SHEET

	HURGAINC AVALISIS DATA SHEET	SAMPLE NO.
Contract: R1004141		OBLM20030
Lab Code: Case No	.: SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water): WATER	Lab Sample ID:	R1004141-002
Level (low/med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	2.8	J	·	
7439-92-1	Lead	1.9	ט ו		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
·					

METALS -1-INORGANIC ANALYSIS DATA SHEET

Contract: R1004141 OBLM20031 Lab Code: Case No.: SAS No.: SDG NO.: OBLM20029 Matrix (soil/water): WATER Value Completion D1004141 000		MORGANIC ANALISIS DATA SHEET	SAMPLE NO.
Matrix (soil/water): WATER	Contract: R1004141		OBLM20031
Matrix (soil/water): WATER	Lab Code: Case No.:	SAS No.:	SDG NO.: OBLM20029
Lab Sample ID: R1004141-003	Matrix (soil/water): WATER	Lab Sample ID:	R1004141-003
Level (low/med): LOW Date Received: 8/4/2010	Level (low/med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	2.3	JJ		
7439-92-1	Lead	1.9	<u>די</u> ן		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	,	······································			

METALS -1-INORGANIC ANALYSIS DATA SHEET

			SAMPLE NO.
Contract:	R1004141		OBLM20032
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	l/water): WATER	Lab Sample ID:	R1004141-004
Level (low/	med): LOW	Date Received:	8/4/2010
			······································

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	2.7	J		
7439-92-1	Lead	2.7	ן בן		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		·			
<u> </u>			<u> </u>		
	······································	<u> </u>	<u> </u>		

INORGANIC A	ANALYSIS	DATA SHEET	
-------------	----------	------------	--

		MORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract: R1004141			OBLM20033
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-005
Level (low/med):	LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	1.6	σ		P
7439-92-1	Lead	1.9	<u>ז יין</u>		₽

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	<u> </u>				
		<u> </u>	······································		
<u> </u>					

INORGANIC ANALYSIS DATA SHEET

		HOROAME ANALISIS DATA SHEET	SAMPLE NO.
Contract: R1004141			OBLM20034
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-006
Level (low/med):	WCWC	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	M
7440-50-8	Copper	1.7			 P
7439-92-1	Lead	2.4	<u> </u>]		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	·
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
					······
	·	·	······································		

INORGANIC ANALYSIS DATA SHEET

		Itoroaltic Analisis DATA SHEET	SAMPLE NO.
Contract: R1004141			OBLM20035
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-007
Level (low/med):	LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-50-8	Copper	4.3	J		P
7439-92-1	Lead	3.6] J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	- <u></u> ,,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_				
		······································			

METALS

-3-

BLANKS

Contract: R1004141

Lab Code: _____ Case No.: _____ SAS No.: SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Initial Calib. Blank Analyte (ug/L)		1	Continuing Calibration Blank (ug/L)						Preparation Blank			
		C	1	С	2	С	3	c		с	м	[]
Copper	5.03	14 J	4.222	2]]]	3.68	1]J]	9.367	1 3 1	1.620	- 11		<u> </u>
Lead	1.87	70 ប	1.87	שו	1.87	ם ש	1.870	0	1.870	<u> </u>		┥

METALS

-3-

BLANKS

Contract: R1004141

Lab Code: _____ Case No.: _____ SAS No.: _____ SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Data Jack a	Initial Calib. Blank (ug/L)		Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte	(ug/L)	С	1	с	2	C	3	c		c	м
Copper	1		7.16	50 J	3.2	20 J J	3.394	JJ	<u> </u>	1	
Lead	1		1.87	70 0	1.8	70 0	1.870	υ		-! !	

METALS

-3-

BLANKS

Contract:	R1004141

Lab Code: _____ Case No.: _____ SAS No.: _____ SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)					Preparation Blank			
Analyte	(ug/L)	С	1	С	2	С	3	c		с	
Copper	1		3.67	70[J]		1		<u>_</u>	<u> </u>	1	
Lead				0 0		— <u> </u>					

METALS -5A-

SPIKE SAMPLE RECOVERY

				SAMPLE NO	
Contract: R1004141				OBLM20033S	
Lab Code:	Case No.:	SAS No.:	-	SDG NO.:	OBLM20029
Matrix (soil/water):	WATER		Level	(low/med):	LOW
<pre>% Solids for Sample:</pre>	0.0				

Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	*R	Q	м
Copper	75 - 125	250.00	1	1.62	U	250.0	100	<u> </u>	P
Lead	75 - 125	532.00	Ī	1.87	υ	500.00	106		P

Concentration Units (ug/L or mg/kg dry weight): UG/L

Comments:

METALS -5B-

POST DIGEST SPIKE SAMPLE RECOVERY

			SAMP	LE NO.
Contract: <u>R1004141</u>			OBLM20033A	
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBI	
Matrix (soil/water):	WATER	Level	(low/med): LOW	

Concentration	Units:	ug/L
---------------	--------	------

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Added (SA)	%R	Ωм
Copper	<u> </u>	247.00	1.62 U	250.0	99	
Lead		518.00	1.87 U	500.0	104	- (

Comments:

METALS -6-DUPLICATES

			SAMPLE NO).
Contract: R1004141			OBLM2003	3D
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029
Matrix (soil/water):	WATER	Level	(low/med):	LOW
% Solids for Sample:	0.0	% Solids for	Duplicate:	0.0

Analyte	Control Limit	Sample (S)	c	Duplicate (D)				
Copper	1	1.6	52 U		1.62 0	RPD	<u> 2</u> 	M P
Lead	1	1.8	37 U	<u> </u>	1.87 0] }	P

Concentration Units (ug/L or mg/kg dry weight): UG/L .

METALS

-7-

LABORATORY CONTROL SAMPLE

Contract:	R1004141			
Lab Code:		Case No.:	SAS No.:	SDG NO.: OBLM20029
Solid LCS	Source:			
Aqueous LC	S Source:	CPI		
i				

	Aqueous	(ug/L)			Soli	.d (mg/)	.g)	
Analyte	True	Found	%R	True	Found	c	Limits	%R
Copper	250	258	103					·
Lead	500	507	101	····			<u> </u>	······

1 Mustard Street, Suite 250 | Rochester, NY 14609 | 585-288-5380 | 585-288-8475 fax | www.caslab.com

August 27, 2010

Service Request No: R1004141

Mr. Brendan Baranek-Olmstead Parsons Engineering Science 100 High St. 4th Floor Boston, MA 02110

Laboratory Results for: SEAD OB Grounds/747547-01100

Dear Mr. Baranek-Olmstead:

Enclosed are the results of the sample(s) submitted to our laboratory on August 4, 2010. For your reference, these analyses have been assigned our service request number **R1004141**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 129. You may also contact me via email at MPerry@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

mhul KP____ Michael Perry

Laboratory Manager

Page 1 of 142

有了

SDG NARRATIVE

•

Client:Parsons Engineering ScienceProject:SEAD OB GroundsSample Matrix:Water

 Service Request No.:
 R1004141

 Project No.:
 747547-01100

 Date Received:
 8/04/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV, ASP-B deliverables. When appropriate to the method, method blank, and LCS results have been reported with each analytical test.

Sample Receipt

Water samples were collected on 8/03/10 and received at CAS on 8/04/10 in good condition at cooler temperature of 6 °C as noted on the cooler receipt and preservation check form. The samples were stored in a refrigerator at 1 - 6 °C upon receipt at the laboratory. See the CAS CLP Batching sheets for a cross-reference between Client ID and CAS Job # and analyses requested.

Metals Analysis

Seven water samples were analyzed for Copper and Lead using SW-846 ICP method 6010B. The data between the MDL and the specified MRL has been flagged with a "J".

The initial and continuing calibration criteria were met for all analytes.

All blank spike (LCS) recoveries were within QC limits of 80 - 120 %.

The matrix spike and duplicate analysis was performed on sample OBLM20033, as requested. All Matrix Spike Recoveries were within QC limits of 75 – 125 %. The RPD were all within QC limits.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry

<u>8/27//0</u> Date

Laboratory Manager

CAS ASP/CLP Batching Form/Login Sheet

Submission: R1 Client: Pa Client Rep: MF	nt Rep: MPERRY Custody Seal: Present/Absent:					Date Revised: Date Due: 8/25/10 Protocol: SW846 Shipping No.: SDG #:							
CAS Job #	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks Sample Condition					
R1004141-001		Water	6010B	8/3/10	8/4/10								
R1004141-002		Water	6010B	8/3/10	8/4/10			······					
R1004141-003		Water	6010B	8/2/10	8/4/10	·······							
R1004141-004		Water	6010B	8/2/10	8/4/10			•···					
R1004141-005Q		Water	6010B	8/2/10	8/4/10								
R1004141-006		Water	6010B	8/2/10	8/4/10			······································					
R1004141-007	OBLM20035	Water	6010B	8/3/10	8/4/10								

Folder Comments:

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

CHAINS OF CUSTODY

INTERNAL CHAINS

í.

.

.

00006

													P	age 1	of 1	Ĺ					
		ANALYSI	is reques	T AND CH	AIN OF CUSTOD	Y RE(CORD			1 M Ro ph.	/lusta chest :585-		er suite 25 (14609 380	-		Seria Poss Haza	ible ırds:	OC #:	03-08-10 Unkno		
PROJECT & CL	IENT INF	ORMATIC	ON		Project State	٦							@roches	ter ca	eloh c	Sam			Lab Di	oneed	
PROJECT REFERENCE/ Open Burning (OB) Groun		Jonitariaa	PROJECT NO. 747547-011	~~	NY		Sami	ple information		· •			EQUIRED			ызр	J5di.	PAGE		OF 1	
LAB PROJECT MANAGE	-		P.O. NUMBER		CONTRACT/Quote NO.		1	1	·	<u> </u>											
Mike Perry			747547-011	00	747547-01100	1				and								Category	B	le af least one):	ASP2000
CLIENT (SITE) PM			CLIENT PHONE		CLIENT FAX	- 🔒				pper									5 <u>business de</u> TE DUE 15 bi	isiness days	Per
Jeff Adams/Brenda	п Вагалек-С	Dimstead	617-449-152	22	617-946-9777	1 1				ပို								QAP/Qu	te ED REPORT		,
CLIENT NAME Parsons			CLIENT EMAIL Brendan, Ba	ranek-Olmstea	id@parsons.com	SAMPLE				1 0								FAX TAT/ DA	EMAIL F	OST Other	
CLIENT ADDRESS										Method 6010B - Copper and									CE DOE		
100 High Street, 4th		ton, MA 021	10			l K				tethc	eau										
Samplers Signature	& Initials:					٦Ĕ		쀭	GED	<u> ≥</u> .				<u> </u>	<u> </u>				OF COOLER		
					· · · · · · · · · · · · · · · · · · ·	ABORATORY		ב ש	빌	~	1		TT	<u> </u>	1		Т	1			
SAMPLED DATE			SAMPLE	E IDENTIFICA	TION	R		SAMPLE TYPE	FIELD FILTERED		NU	MBER	OF CONTA	INERS	SUBMI	TTED			RE	MARKS	
8/3/2010	1020	OBLM2	0029		27.4.1			N	I GV	/	1						Τ	1. Rur	n straight	sample ana) for every :	lysis
8/3/2010	1120	OBLM2	0030						I GV	/	1							2. RLs	s for copp	er and lead	should
8/2/2010	1717	OBLM2	0031								1						1	be les	s than 25	ug/L and 2 lead, respec	0 ug/L
8/2/2010	1612	OBLM2	0032			1		N			1						+			leau, lespec	alvely.
8/2/2010	1428	OBLM2	0033	•				N			1	-					+				
8/2/2010	1428	OBLM2	0033MS		· · · · ·				1 .		1							ĺ			
8/2/2010	1428	OBLM2	0033MSD		to far k			N			1	<u> </u>				<u> </u>	+	Pres	ervativo	<u> </u>	
8/2/2010	1434	OBLM2	0034					N	· ·		1			\neg			+	1		-	
8/3/2010	1243	OBLM2	0035					N		- · ·	1						<u> </u>	1			
																		1	HNO ₃		
RELINQUISHED BY		er	DATE B/S/10	TIME 1746	RELINQUISHED BY	: (SIGNA	TURE)			. 1	DAT	E	TIME	REL	INQUIS	SHED E	Y: (si	IGNATURE	DATE	TIME	<u></u>
RECEIVED BY: (SIG Jame M			DATE 8/4/10	TIME 09401	RECEIVED BY: (sign	ATURE))				DAT	E	TIME	REC	EIVED	BY: (s	GNATL	JRE)	DATE	TIME	
				1			LABORA	TORY USE	ONLY									-			
RECEIVED FOR LA (SIGNATURE)	BORATOR	Y BY:	DATE	TIME	CUSTODY INTACT YES NO	CUST					ORATO									- + 74-miler	

														P	age 1	of	1					
		ANALYSI	S REQUES	T AND CH	IAIN OF CUSTODY	' RE(CORD				1 Mu Roci ph.:5	hester 585-28	St., , NY 38-53	suite 256 14609 380	0		Seria Pos Haz	sible)	03-08-10 Unknov		
PROJECT & (NN .		Drain of State	1						585-2					Sam	ple				
PROJECT REFERENCE	E/NAME		PROJECT NO.		Project State				-		e-ma	ail: mp		@roches			Disp	osal	PAGE	Lab Dis	posal	
Open Burning (OB) Gro LAB PROJECT MANA		Vonitoring	747547-011	00	CONTRACT/Quote NO.		Sample	Information					R		ANALY	SES			FAGE	1	0 1	
Mike Perry	<u> </u>		747547-011		747547-01100						er and								Category			ASP2000
CLIENT (SITE) PM Jeff Adams/Brend	dan Baranek-(Olmstead	CLIENT PHONE 617-449-152		CLIENT FAX 617-946-9777	SLE ID					- Coppe								QAP/Quo	re due 15 <u>by</u> te Ed Report		Per
CLIENT NAME Parsons			CLIENT EMAIL Brendan.Bai	ranek-Olmste	ad@parsons.com	SAMPLE	1				60108 -								FAX TAT/ DAT	EMAIL P	circle one) DST Other	
CLIENT ADDRESS 100 High Street, Samplers Signati		ton, MA 0211	0			LABORATORY		¥.	RED		Method 6010B - Copper and Lead									OF COOLER		
						Р В		Σ	21 11 11	Ĵ	1					<u> </u>	İ T		-			
SAMPLE DATE	D ON TIME	-	SAMPLE	EIDENTIFICA	TION	3		SAMPLE TYPE	FIELD FILTERED	MATRIX		NUME	BER C	DF CONTA	INERS	SUBM	ITTED			RE	MARKS	
8/3/2010	1020	OBLM20	0029		· · · · · · · · · · · · · · · · · · ·			N		w	1										ample anal	
8/3/2010	1120	OBLM2	0030					N	I G	w	1								2. RLs	for coppe	er and lead	should
8/2/2010	1717	OBLM2	0031					N	IG	w	1								be les	s than 25 oper and k	ug/L and 20 ead, respec	i ug/L tively.
8/2/2010	1612	OBLM20	0032					N	I G	iw	1				ļ							•
8/2/2010	1428	OBLM20	0033					N	I G	w	1								7			
8/2/2010	1428	OBLM20	0033MS					N	I G	w	1											
8/2/2010	1428	OBLM20	033MSD					N	I G	W	1								Pres	ervative		
8/2/2010	1434	OBLM2	034					N	I G	w	1				1				1			
8/3/2010	1243	OBLM20	035	,				N	I G	w	1											
					·····														1	HNO3		
RELINGUISHED		=)	DATE	ТІМЕ	RELINQUISHED BY:																	
this	le-	2e	DATE 8/3/10	1746								DATE		TIMË	REL	INQUI	SHED	ВΥ: (ε	SIGNATURE	DATE	TIME	
RECEIVED BY: (1 Aun v			DATE 8/4/10	TIME 0940	RECEIVED BY: (SIGN	ATURE))					DATE		TIME	REC	EIVED) BY: (8	SIGNAT	IURE)	DATE	TIME	
							LABORATO		ONLY					L	. 1						1	<u></u>
RECEIVED FOR (SIGNATURE)	LABOKATOR	т бү:	DATE	TIME		CUST	TODY SEAL	NO.			laboi Rema	RATÒR RKS:	tΥ –	-								

					Cooler	Receipt	And Pre	servati	on Ch	eck Form		
Projec	ct/Client_	Parso	<u>n3-5</u>	eners Menter	05 \$14/10 Da		_Submiss	ion Nu	mber_	R10 - 41	41	·
Cooler	r received	d on	8141	<i>110</i> b	y: <u>Ofn</u> /	CO	URIER:	CAS	UPS	REDEX	C VELO	OCITY CI
	Were ca Did all I Did any Were <u>Ic</u> Where d	1stoc bottl VO Eor lid th	ly pa es an A via Ice p ie bo	als on out pers properive in good als have si packs pres ttles origin poler(s) up	erly fille od cond gnificar sent? nate?	ed out (ir lition (un nt* air bi	broken)?	, etc.)?		VES VES VES VES CASA	NO NO NO NO OC, CI	
	Is the ten	nper	ature	within 0°	° - 6° C7	?:	Yes	Yes		Yes	Yes	Yes
	If No, Ex	-		elow ratures Ta			No	No		No	No	No
I f out of	Temper	atu	re, n	IR GUN# ote packi Ma	ng/ice o	conditio				'emp Blank Run Sam		ple Bottle
[fout of PC Secon Cooler Bi	Temper ndary Re reakdow:	ratun view n: I	re, no /: Date	ote packi /M :	ng/ice c 8/4/	conditio	n, Client	Appro	oval to			ple Bottle
f out of C Secon Cooler Bi W D W Ai	Temper ndary Re reakdow: Vere all b vid all bot	ratur view n: I ottle tle la ect co	re, no ': Date labels bels ontai Cass	bte packing ls comple and tags mers used pettes / Tu	ng/ice c g/4 te (<i>i.e.</i> s agree w for the	conditio	n, Client <u>4110</u> preserva	Appro by: tion, et	oval to c.)?	Run Sam	no NO NO NO	
f out of C Secon Cooler Br W D W Ai xplain ar	Temper ndary Re reakdow Vere all b vid all bot Vere corre ir Sample ny discre Reagent	ratur view n: I ottle tle la ect co	re, no ': Date labels bels ontai Cass	ote packi	ng/ice c g/4 te (<i>i.e.</i> s agree w for the	conditio	n, Client <u>7//c</u> preserva ody paper licated?	Approby: tion, et rs? Pressur	oval to c.)?	Run Sam	NO NO NO Bags In Final	flated (N) Yes = All
$\begin{array}{c} f \text{ out of } \\ C \text{ Secon } \\ C \text{ ooler Balance } \\ W \\ D \\ W \\ A	Temper ndary Re reakdow Vere all b Vere all bot Vere corre ir Sample ny discre Reagent	ratur view n: I ottle itle la ect co es: panc	re, no ': Date labels bels bontai Cass ies:	bte packing for the packing fo	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta	eonditio	n, Client <u>4115</u> preserva Ody paper licated? anisters I	Approby: tion, et rs? Pressur	ized	Run Sam	NO NO NO Bags In	flated (N) Yes = All
f out of C Secon Cooler Ba W D W Ai xplain ar I I 2 I	Temper ndary Re reakdow Vere all b vid all bot Vere corre ir Sample ny discre Reagent NaOH INO3	ratur view ottle ttle la ect co es: panc	re, no ': Date labels bels bontai Cass ies:	ote packi	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta	conditio	n, Client <u>4115</u> preserva Ody paper licated? anisters I	Approby: tion, et rs? Pressur	ized	Run Sam	NO NO NO Bags In Final	flated (N) Yes = All
If out of C Secon Cooler Ba W D W Main and Image: A constraint of the second	Temper ndary Re reakdow Vere all b Vere all b Vere corre ir Sample ny discre Reagent NaOH TNO ₃ I ₂ SO ₄ or TCN nd	ratur view n: I ottle itle la ect co es: panc	re, no ': Date labels bels bontai Cass ies:	bte packing for the packing fo	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta ceived 0.3H	enditio 8/ analysis, vith custo tests ind act C Exp	n, Client <u>4115</u> preserva Ody paper licated? anisters I	Approby: tion, et rs? Pressur	ized	Run Sam	NO NO NO Bags In Final	flated (N) Yes = All samples OK No = Samples were
If out of C Secon Cooler Br W D W M </td <td>Temper ndary Re reakdow Vere all b vid all bot Vere corre ir Sample ny discre Reagent NaOH INO₃ I₂SO₄ For TCN nd henol</td> <td>ratur view n: I ottle itle la ect co es: panc</td> <td>re, no ': Date labels bels bontai Cass ies:</td> <td>bete packin ls comple and tags ners used rettes / Tu Lot Re BOB × //</td> <td>ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta ceived 0.3H</td> <td>enditio 8/ analysis, vith custo tests ind act C Exp</td> <td>n, Client <u>4115</u> preserva Ody paper licated? anisters I</td> <td>Approby: tion, et rs? Pressur</td> <td>ized</td> <td>Run Sam</td> <td>NO NO NO Bags In Final</td> <td>flated (N, Yes = All samples OK No = Samples were</td>	Temper ndary Re reakdow Vere all b vid all bot Vere corre ir Sample ny discre Reagent NaOH INO ₃ I ₂ SO ₄ For TCN nd henol	ratur view n: I ottle itle la ect co es: panc	re, no ': Date labels bels bontai Cass ies:	bete packin ls comple and tags ners used rettes / Tu Lot Re BOB × //	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta ceived 0.3H	enditio 8/ analysis, vith custo tests ind act C Exp	n, Client <u>4115</u> preserva Ody paper licated? anisters I	Approby: tion, et rs? Pressur	ized	Run Sam	NO NO NO Bags In Final	flated (N, Yes = All samples OK No = Samples were
If out of PC Secon Cooler Bi W Di W Ministry Air Xplain ar I	Temper ndary Re reakdow: Vere all b vid all bot Vere corre ir Sample ir Sample ny discre Reagent NaOH HNO_3 I_2SO_4 For TCN nd henol $a_2S_2O_3$	ratur view n: I ottle itle la ect co es: panc	re, no ': Date labels bels bontai Cass ies:	bete packin ls comple and tags ners used rettes / Tu Lot Re BOB × //	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta ceived 0.3H	enditio 8/ analysis, vith custo tests ind act C Exp	n, Client	Appro	val to	Run Sam	NO NO NO Bags In Final pH	flated N Yes = All samples OK No = Samples were preserved at lab as listed
If out of PC Secon Cooler Brit . W . D . D . D . D . D . D . D . D . D . D . D . D . D . D . D . D . D . D . D . M . D . H . H . H . H . H . H . H . H . H . H . H . H . H . H	Temper ndary Re reakdow: Vere all b vid all bot Vere corre ir Sample ny discre Reagent NaOH INO_3 I_2SO_4 For TCN nd henol $a_2S_2O_3$ a Aceta	ratur view n: I ottle itle la ect co es: panc	re, no ': Date labels ontai Cass ies: №	bete packin ls comple and tags ners used rettes / Tu Lot Re BOB × //	ng/ice o 8/4/ te (<i>i.e.</i> a agree w for the bes Inta ceived 0.3H	enditio 8/ analysis, vith custo tests ind act C Exp	n, Client	Appro	val to	Run Sam	NO NO NO Bags In Final pH	flated N Yes = All samples OK No = Samples were preserved at

Other Comments:

.

C Secondary Review: MUB 27/10 SMODOCS\Cooler Receipt 2.doc

*significant air bubbles are greater than 5-6 mm

00009

Columbia Analytical Services, Inc. Chain of Custody Report

Client:Parsons Engineering ScienceProject:SEAD OB Grounds/747547-01100

Service Request: R1004141

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
R1004141-001.01					
	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1 42 6	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
		8/16/10	1210	R-LTS-MET / BDOYLE	
R1004141-002.01					
	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
		8/16/10	1210	R-LTS-MET / BDOYLE	-
R1004141-003.01					
	6010B	01110	1000		
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
		8/16/10	1210	R-LTS-MET / BDOYLE	
R1004141-004.01					
	6010B	0///10	1200		
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
ì		8/11/10	1426	In Lab / DKRAFTSCHIK	
·		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-005.01		04410	1000		
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
R1004141-005.02	(0105				
	6010B	0///10	1000		
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-005.03					
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
R1004141-006.01	(0100				
	6010B	014/10	1000		
		8/4/10	1320	SMO / GLAFORCE	

Columbia Analytical Services, Inc. Chain of Custody Report

Client:Parsons Engineering ScienceProject:SEAD OB Grounds/747547-01100

.

Service Request: R1004141

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	
R1004141-007.01					
•	6010B				
		8/4/10	1320	SMO / GLAFORCE	
		8/4/10	1326	R-A01 / DWARD	
		8/11/10	1426	In Lab / DKRAFTSCHIK	
		8/11/10	1530	R-A01 / DKRAFTSCHIK	

METALS DATA

.

Columbia Analytical Services

METALS COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract: R10	04141			SDG No.:	OBLM20029
Lab Code:		Case No.:		SAS No.:	
SOW No.: <u>SW846</u>	CLP-M				
	Sample ID.		Lab Sample No.	-	,
	OBLM20029		R1004141-001		
	OBLM20030		R1004141-002	-,	
	OBLM20031		R1004141-003		
	OBLM20032		R1004141-004	,	
	OBLM20033		R1004141-005		
	OBLM20033D		R1004141-005D		
	OBLM20033S		R1004141-005S		
	OBLM20034		R1004141-006		
	OBLM20035		R1004141-007		

Were ICP interelement corrections applied?	Yes/No	YES
Were ICP background corrections applied? If yes-were raw data generated before	Yes/No	YES
application of background corrections?	Yes/No	NO

Comments: See Attatched Case Narrative

Signature:	Muhml F.R	Name:	Michael Perry
Date:	8/20/10	Title:	Laboratory Director
			66884 S

			RUNGINIC ANALISIS DATA SHEET	SAMPLE	NO.
Contract:	R1004141			OBLM200	29
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029
Matrix (soil	/water):	WATER	Lab Sample ID:	R1004141-001	•
Level (low/m	ned): LC	W	Date Received:	8/4/2010	
					*

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte		Concentration	С	Q	м
7440-50-8	Copper	2.5	J		P
7439-92-1	Lead	1.9	ד יו	·	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	·
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
<u> </u>		······			

.

	A CONCINCTO IN MELTING DATA SITEET	SAMPLE NO.
Contract: R1004141		OBLM20030
Lab Code: Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water): WATER	Lab Sample ID:	R1004141-002
Level (low/med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	2.8	J		P
7439-92-1	Lead	1.9		·	· P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	<u> </u>
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_	<u> </u>				·····
	-				

-

			SAMPLE NO.
Contract:	R1004141		OBLM20031
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soi	l/water): WATER	Lab Sample ID:	R1004141-003
Level (low/	med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte		Concentration	c	Q	м
7440-50-8	Copper	2.3	<u> </u>		
7439-92-1	Lead	1.9	<u>יי</u>		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
		·	·		
	· · · · · · · · · · · · · · · · · · ·				

•

		INCROMINE ANALISIS DATA SHEET	SAMPLE NO.
Contract: R1004141			OBLM20032
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-004
Level (low/med):	WO	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	с	Q	м
7440-50-8	Copper	2.7	J		P
7439-92-1	Lead	2.7] <u>J</u>]		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
					······································

.

		SAMPLE NO.
Contract: R1004141		OBLM20033
Lab Code: Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water): WATER	Lab Sample ID:	R1004141-005
Level (low/med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Analyte Concentration		Q	м
7440-50-8	Copper	1.6	<u></u>	····	 P
7439-92-1	Lead	1.9	ען א	-	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

•

		HOROMAIC ANALISIS DATA SHEET	SAMPLE NO.
Contract: R1004141			OBLM20034
Lab Code:	Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water):	WATER	Lab Sample ID:	R1004141-006
Level (low/med):		Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7440-50-8	Copper	1.7	J]		P
7439-92-1	Lead	2.4	<u> </u>] <u> </u>	_	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	·
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
		······································			
	······		···		

.

	MORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract: R1004141		OBLM20035
Lab Code: Case No.:	SAS No.:	SDG NO.: OBLM20029
Matrix (soil/water): WATER	Lab Sample ID:	R1004141-007
Level (low/med): LOW	Date Received:	8/4/2010

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	с	Q	1	м
7440-50-8	Copper	4.3	J			 P
7439-92-1	Lead	3.6	ן בן		1:	₽

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
	·		·····		

•

Lead

1

500

498

100

METALS -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	R1004141									
Lab Code:		Case	No.:		SAS No.:	SAS No.:			OBLM20029	
Initial Ca	libration Sour	ce:	PERKIN E	LMER						
Continuing	Calibration S	Source:	PERI	KIN ELMEN	R					
			Concentra	tion Unit	ts: ug/L	······································				
	II	nitial (Calibratio		Conti	.nuing Calibra	ation			\top
Anal	lyte Tru	e	Found	%R(1)	True	Found	%R(1)	Found	1 %R(1)	м
Cop	per	1250	12	20 98	1250	1250	1.00	1		

500

103

514

1210

496

97 P

99 | ₽

METALS -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: R1004141					
Lab Code: Case	No.:	SAS No.:		SDG NO.:	OBLM20029
Initial Calibration Source:	PERKIN ELMER				<u> </u>
Continuing Calibration Source:	PERKIN ELMER				
	Concentration Unit:	s: ug/L	······································		······································

	Initial	Calibration		Contin	uing Calibr	ation	· · · · · ·		1
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Copper	<u> </u>			1250	1240	99	1220	98	P
Lead	<u> </u>			500	508	102	506	· · · · · · · · · · · · · · · · · · ·	P

METALS -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	R1004141				
Lab Code:	Case	No.:	SAS No.:	 SDG NO.:	OBLM20029
Initial Cal:	ibration Source:	PERKIN ELMER			· · · · · · · · · · · · · · · · · · ·
Continuing (Calibration Source:	PERKIN ELMEN	ર	 	
		Concentration Unit	s: ug/L	 	

	Initial	Calibration		Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M	
Copper				1.250	1210	97	1.2.2	0 98	P	
Lead				500	504	101	51		<u>~</u> ₽	

METALS -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

	R1004141						
Lab Code:	Ca	se No.:		SAS No.:		SDG NO.:	OBLM20029
Initial Cal	libration Source:	PERKIN	ELMER		· · · · · · · · · · · · · · · · · · ·		
Continuing	Calibration Source	e: PE	RKIN ELME	R		<u>_</u>	
		Concent	ration Uni	.ts: ug/L			

Initial Calibration				Continu	ing Calibr	ation			T^{-}
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Copper				1250	1240	99		<u> </u>	
Lead	<u> </u>	ļ		500	522	104		-	

METALS -2B-CRDL STANDARD FOR AA AND ICP

Contract:	R1004141				
Lab Code:	·	Case No.:	SAS No.:	 SDG No.:	OBLM20029
AA CRDL Sta	ndard Source:	ENV. EXPRESS			
ICP CRDL St	andard Source:				

		Cond	centratio	on Units: ug/	′ь					
	CRDL St	andard for AA		CRDL Standard for ICP Initial Final						
Analyte	True	Found	%R	True	Found	%R	Final	%R		
Copper				25.0	25.43		24.67			
Lead		L		10.0	10.40	104	10.20	102		

Comments:

ŕ

METALS -2B-CRDL STANDARD FOR AA AND ICP

Lab Code: Case	e No.: §	SAS No.:	SDG No.:	OBLM20029
AA CRDL Standard Source:	ENV. EXPRESS			<u> </u>
ICP CRDL Standard Source:				

Concentration Units: ug/L CRDL Standard for ICP CRDL Standard for AA Initial Final Analyte True Found %R True Found Found %R %R Copper 25.0 24.60 98 Lead 10.0 10.99 110

Columbia Analytical Services

METALS

-3-

BLANKS

Contract: R1004141

Lab Code: _____ Case No.: _____ SAS No.: ____ SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Amo Jacka	Initial Calib. Blank (ug/L)		Continuing Calibration Blank (ug/L)							Preparation Blank			
Analyte	(19/1)	С	1	C	2	С	3	с			с		м
Copper	5.01	L4 J	4.22	22] J]	3.6	81 J	9.36		<u> </u>	1.620	σ	<u> </u> 	p
Lead	1.87	70 U	1.87	70 0	1.8	70 0	1.87	0 0	1	1.870	Ū		- P

Columbia Analytical Services

METALS

-3-

BLANKS

Contract: R1004141

Lab Code: _____ Case No.: _____ SAS No.: ____ SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calib. Blank (ug/L)			Cont	Preparation Blank							
Analyte	(ug/u)	С	1	C	2	С	3	c		с		м
Copper			7.16	0 3	3.2	20 J	3.39	4 J	1	1		P
Lead			1.87	0 0	1.8	70 0	1.87	0 0		<u> </u>	ĻĻ	<u>~</u> P

<u>Columbia Analytical Services</u>

METALS

-3-

BLANKS

Contract: R1004141

Lab Code: _____ Case No.: _____ SAS No.: SDG NO.: OBLM20029

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation Blank			
Analyte (ug/I	(ug/L)	с	1	С	2	С	3	с		с		м
Copper	1		3.67	0 J J			·		1			P
Lead			1.87	70 U			··		- ,	- <u> </u>	Ħ	P

-4-

ICP INTERFERENCE CHECK SAMPLE

Contract:	R1004141				
Lab Code:	Case No.:	SAS No.:		SDG NO.: OBLM200	29
ICP ID Numb	er: Optima ICP 4		ICS Source:	PERKIN ELMER	

	Conce	ntration Units	s): <u>ug</u> /	<u>′L</u>				
	Tru	10	Init	ial Found		Final	- Found	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R
Copper		500	-2.7	7 514	103	-3.0	511	10
Lead		50	0.2	2 51	102	1.8	52	10

-4-

ICP INTERFERENCE CHECK SAMPLE

Contract:	R1004141			
Lab Code:	Case No.:	SAS No.:		SDG NO.: OBLM20029
ICP ID Numb	per: Optima ICP 4	<u> </u>	ICS Source:	PERKIN ELMER

Concentration	Units):	<u>ug/L</u>
---------------	---------	-------------

True		Ini	tial Found	Final Found				
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R
Copper		500	<u>_</u>		1	-3.3	512	10
Lead		50			1	0.5	52	10

METALS -5A-

SPIKE SAMPLE RECOVERY

Contract: R1004141			OBLM200338	3	
Lab Code:	Case No.:	SAS No.:	-	SDG NO.:	OBLM20029
Matrix (soil/water):	WATER		Level	(low/med):	LOW
<pre>% Solids for Sample:</pre>	0.0				<u> </u>

Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	%R	Q	м
Copper	75 - 125	250.00		1.62	ט	250.0	100		P
Lead	75 - 125	532.00		1.87	U	500.00	106		P

Concentration Units (ug/L or mg/kg dry weight): UG/L

METALS -5B-

POST DIGEST SPIKE SAMPLE RECOVERY

					SAMPLE NO.	
Contract: <u>R1004141</u>				OBLM2003	3A	
Lab Code:	Case No.:	SAS No.:		SDG NO.:	OBLM20029)
Matrix (soil/water):	WATER	_	Level	(low/med):	LOW	

Concentration	Units:	ug/L
---------------	--------	------

Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	C	Spike Added (SA)	%R	Q	м
Copper		247.0	00	1.62	2 ד	250.0	99		Р
Lead	<u> </u>	518.0	00	1.87	ז ד	500.0	1.04	_	P

Comments:

-

METALS -6-DUPLICATES

			•			
Contract: R1004141		OBLM20033D				
Lab Code:	Case No.:	SAS No.:	SDG NO.:	OBLM20029		
Matrix (soil/water):	WATER	Level (lo	w/med):	LOW		
<pre>% Solids for Sample:</pre>	0.0	% Solids for Dupl	licate:	0.0		

Analyte	Control Limit	Sample (S) C	Duplicate	(D) C	RPD Q	м
Copper		1.62 U		1.62 U	<u> </u>	P
Lead	1	1.87 U		1.87 0	<u> </u>	P

Concentration Units (ug/L or mg/kg dry weight): UG/L

-7-

LABORATORY CONTROL SAMPLE

Contract:	R1004141				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	OBLM20029
Solid LCS S	Source:			_	
Aqueous LCS	Source:	CPI			
					<u> </u>

	Aqueous	(ug/L)			Soli	.d (mg/)	cg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Copper	250	258	103		<u> </u>			
Lead	500	507	101				·i	,

-9-

ICP SERIAL DILUTIONS

					SAMPLE NO).
Contract: R1004141					OBLM2003	3L
Lab Code:		Case No.:	SAS No.:		SDG NO.:	OBLM20029
Matrix (so:	il/water):	WATER		Level	(low/med):	LOW
		Concentration Un	its: u	g/L		· · · · · · · · · · · · · · · · · · ·
		Initial Sample	Serial D		9	

Analyte	Result (I) C	Result (S)	с	Differ- ence	Q
Copper	1.62 0		12.50 J	100.0	
Lead	1.87 0	••••••••••••••••••••••••••••••••••••••	9.35 U		

.

М

P

₽

-10-

DETECTION LIMITS

Contract: <u>R1004141</u>			
Lab Code: Cas	e No.:	SAS No.:	SDG NO.: OBLM20029
ICP ID Number: Optima ICP	4	Date: 4/8/2010	
Flame AA ID Number:			
Furnace AA ID Number:			
	Wave-	Back-	

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Copper	324.752		20.0	1.62	P
Lead	220.353		50.0	1.87	P

-11A-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: <u>R10</u>	04141					
Lab Code:		Case No.:	SAS No	o.:	SDG NO.:	OBLM20029
ICP ID Number:	Optima I	CP 4	Date:	8/10/2010	_	
	Wave- length		Interelement	Correction Fac	tors for:	
Analyte	(nm)	Al	Ca	Fe	Mg	
Aluminum	308.215	0.0000000	0.1139400	0.0180156	0.0746449	
Antimony	206.836	0.0075988	0.0009323	0.0083420	0.0023085	<u> </u>
Arsenic	188.979	0.0069260	-0.0039422	-0.4075890	-0.0038014	
Barium	233.527	0.0001586	0.0074942	0.0487265	0.0035068	
Beryllium	313.107	-0.0003080	-0.0005275	-0.0000827	-0.0001369	
Boron	249.772	0.1410650	0.0999030	2.8555701	0.0593830	
Cadmium	226.502	-0.0008028	-0.0004658	0.0838332	0.0003168	
Calcium	227.546	-0.9921060	0.0000000	-52.4505997	0.0335220	
Chromium	267.716	0.0004880	0.0009171	-0.0363622	-0.0079755	·
Cobalt	228.616	-0.0011300	0.0010784	0.0226828	-0.0003179	
Copper	324.752	0.0075819	0.0051749	-0.1825400	0.0172969	
Iron	238.863	0.1891440	0.0879009	0.0000000	0.1754410	
Lead	220.353	-0.1180180	-0.0081253	0.0703138	0.0025618	
Magnesium	279.077	-0.0087380	-0.0031261	0.6149970	0.0000000	
Manganese	257.610	-0.0030587	-0.0001808	0.0040839	0.0315104	
Molybdenum	202.031	-0.0107077	0.0006973	-0.0408572	0.0002125	
Nickel	231.604	-0.0002009	0.0024560	0.0015315	0.0021349	
Potassium	404.721	1.0406600	4.9624801	-30.8682995	1.7453200	
Selenium	196.026	0.0319897	0.0105760	-0.2887070	0.0046860	
Silver	328.068	0.0011998	0.0023358	-0.0646018	0.0012400	
Sodium	330.237	0.3158310	0.7843770	-2.6892400	0.0653133	
Strontium	460.733	-0.0046893	0.0219937	0.0065786	-0.0011589	
Thallium	190.801	-0.0296921	-0.0014104	-0.0439918	-0.0086815	
Tin	189.927	-0.0179655	-0.0687362	-0.1417700	-0.0654611	
Titanium	337.279	-0.0003164	0.0033811	0.0038453	0.0109301	
Vanadium	292.402	0.0004349	0.0004036	-0.0932130	-0.0001970	
Zinc	206.200	0.0011789	0.0061781	0.0157473	0.0364618	

METALS -12-ICP LINEAR RANGES (QUARTERLY)

Contract: R1004141

Lab Code: Case No.: SAS No.: SDG NO.: OBLM20029

ICP ID Number: Optima ICP 4

Date: 4/8/2010

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Copper	0.200	5000	P
Lead	0.200	10000	P

-13-

PREPARATION LOG

Contract: R1004141

Lab	Code:	Case	No.:	SAS No.:	SDG NO.:	OBLM20029

Method: P

Sample ID	Preparation Date	Initial Volume	Final Volume (mL)
LCSW	8/11/2010	50.0	50.0
PBW	8/11/2010	50.0	50.0
OBIM20029	8/11/2010	50.0	50.0
OBLM20030	8/11/2010	50.0	50.0
OBLM20031	8/11/2010	50.0	50.0
OBLM20032	8/11/2010	50.0	50.0
OBLM20033	8/11/2010	50.0	50.0
OBLM20033D	8/11/2010	50.0	50.0
OBLM20033S	8/11/2010	50.0	50.0
OBLM20034	8/11/2010	50.0	50.0
OBLM20035	8/11/2010	50.0	50.0

METALS -14-

ANALYSIS RUN LOG

Contract: R100414	L	_																									
Lab Code:		Case	No.:					Sz	s :	No.	.:	_		_		_	2	DG	Nc	 :	C	BL	м2	00:	29		
Instrument ID Number:	Optim	a ICP	4					Me	th	od:	•	1	P		-	-					-						-
Start Date: 8/13/2	010						_	En	d I	at	e:		8/	'13	/20	010)										
Gample	5/11									_			_	Ana	ıly	te	3						_		_		
Sample ID.	D/F	Time	% R	A L	S B	A S	B A	B E	C D	C A	C R			F E	P B	M G	M N		N I	ĸ	S E	A G	N A	T L	v		C N
Calib Blank 1	1.00	14:44											x		x					┝		_					
Calib Std 1	1.00	14:50					\square						х		х	_										Ē	
Calib Std 2	1.00	14:56				Ī																					
Calib Std 3	1.00	15:00											х		x											Ť	
Calib Std 4	1.00	15:05											х		х						Π				Ť	Ť	
ICV1	1.00	15:09								ĺ			x		x						Π					Ť	
ICB1	1.00	15:14								Ť			x		x							_		-	Ť	- †	
CRDL1	1.00	15:19		\square						j			x		x						Π	-	Ť	Ť	┪	-	_
ICS-A1	1.00	15:25							Ī	Ì			х		x	j					Ē			Ť		Ť	
ICS-AB1	1.00	15:29											х		x		Í				Γİ		-1	╡	Ť	╈	_
CCV1	1.00	15:34								j	_		x		x		Ť		Ē		ΠÌ	- 1		-†	Ť	÷	
CCB1	1.00	15:38							İ	Ì		Ţ	х		x		Ť		T		Ē			┪	┓	╅	—
ZZZZZZ	1.00	15:44								Ť					ĺ		j	Ţ	T		Ť		Ť	Ť	Ť	Ť	_
ZZZZZZ	5.00	15:49	_						Ì	Ì				Ì	İ	İ	Ť	Ť	T		Γİ		İ	-	Ť	Ť	-
ZZZZZZ	1.00	15:54							Ì	Ì				ĺ	j	Í	j	Ī	Ţ	T	T	j		Ť	Ť	1	-
ZZZZZZ	1.00	15:58							Ť	Ť			Ť	ĺ	Ī	Ì	İ	Ť	T	Ţ	Ť	Ť	Ť	Ť	Ť	Ť	
ZZZZZZ	1.00	16:02								Ĩ					Ť			Ť	Ť	Ť	İ	Ţ	1	Ť	Ť	ナ	
ZZZZZZ	1.00	16:06										Ì	Ì	Ì	Ť	İ	İ	Ť	Ť	Ī		Ì		_	Ť	Ť	-
ZZZZZZ	5.00	16:11								Ì		Ť	Í	Í	Í	Ť	Ì	Ť	Ť	Ť	Ť	j	Ť	Ť	Ť	Ť	
ZZZZZZ	1.00	16:17					ĺ			Ì		Ì	Ī		Ì	Ť	Ť	Ť	Ť	Ť	Ť	İ	Ť	Ť	Ť	╈	
ZZZZZZ	1.00	16:21						Ī	Ť			Ť	İ	Í	İ	Ť	Ì	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	╈	┥
ZZZZZZ	1.00	16:25			ĺ				Ì	Ť		Ī	Ì	Í	Ì	ļ	Ī	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	
ZZZZZZ	1.00	16:29						Ì	Ť	Ì		Í	İ	Ì	İ	Ì	Í	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	-
222222	1.00	16:34						Ì	Ì	Ť		Ì	Ì	Ī	Ť	Ì	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	
ZZZZZZ	1.00	16:39					Ť		Ì	Ì			Ì		Ť	İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	ㅓ
ZZZZZZ	1.00	16:44			ĺ		Ť	İ	Ť	Ť		İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	-
ZZZZZZ	1.00	16:48	_				Ť	Ť	Ì	İ		Ì	İ	Ì	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	÷	Ť	╈	
ZZZZZZ	1.00	16:52		Ì			\neg	Ì	Ť	Ì		Ť	Ť	Ī	Ť	Ť	Ť	Ť	Ť	Ť	Ť		1	Ť	Ť	╧┼╴	\neg
ZZZZZZ	1.00	16:56					Ť		Ť	Ť	1	Ť	Ţ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	╈	╈	Ť	╈	╈	<u>-</u> †-	-
222222	1.00	17:01		Ť			寸	İ	Ť	Ť	+	Ť	Ì		Ť	i		Ť	Ť	Ť	Ť	+	1	÷	Ť	+	┥
ZZZZZZ	1.00	17:05		Í	Ť		十		Ť	Ť		Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	-	Ť	╈	╈	-	-
ZZZZZZ	1.00	l7:10		Ť		\neg	+	İ	Ť	Ť	Ť	Ť	Ť	\neg	Ť	Ť	1	╈	╈	Ť	\uparrow	T	+	╈	+	╈	-
ZZZZZZ	1.00	17:14					Ť	Ť	İ	İ		Ť	j	T	Ţ.			Ť	Ť	Ť	Ť	Ť	Ť	╈	╈	╈	ㅓ

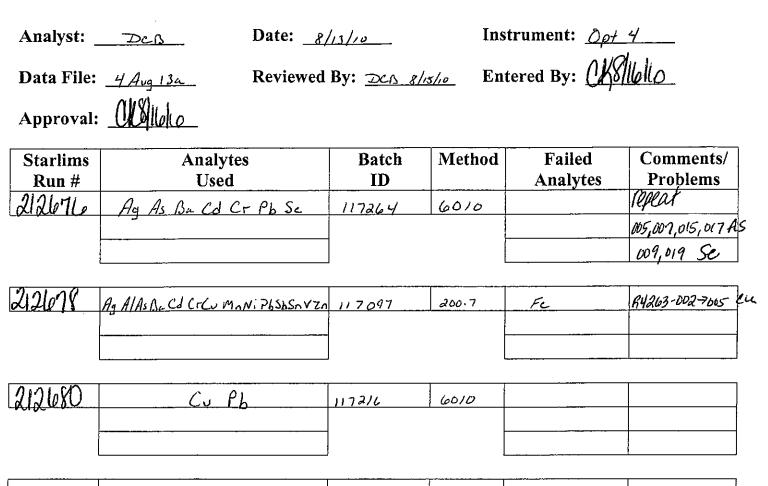
* - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

METALS -14-

ANALYSIS RUN LOG

Contract: R100414	1																										
Lab Code:		Case	No.:					Si	AS	No	.:						s	DG	No	».:	c	BL	M2	00	29		
Instrument ID Number	: Optin	na ICP	4					Me	ath	.oď	:	-	P		_	-					-						
Start Date: 8/13/2	010							En	ld I	Dat	e:		8/	13	/2	010)										
Sample	D (7						_							Ana	ily	tes	3	_		-							_
ID.	D/F	Time	% R	A L		A S	B A	B E	C D	C A	C R		C U		P B	M G	M N	H G	N I	к	S E	A G	N A	T L	v		С N
ZZZZZZ	1.00	17:18	† –				┢						İ –				_	_	-							┝┥	
ZZZZZZ	1.00	17:23		†-	İ	Ť		Ť.	İ													-				H	
ZZZZZZ	1.00	17:27			İ —							İ	İ									_		_			
ZZZZZZ	1.00	17:33							İ									-			_			_			
ZZZZZZ	1.00	17:37					-										╡	-						_		┢╴┽	
22222	1.00	17:41		1												_	t	_				-		-		┢╾┽	
ZZZZZ	1.00	17:46	-				-										-		<u> </u>		-+		[_			_
ZZZZZZ	1.00	17:50														1					┥	- 1	-	_		┍─┼	
ZZZZZZ	1.00	17:55														ij	1	_		Ť						+	
CCV2	1.00	18:00											x		x					Ť	1	Ť			—	┽	_
CCB2	1.00	18:04					_					_	x		x	Ť	Ť			╡	Ť	\neg	_	-	-†	┿	
CRDL2	1.00	18:10							Ì	Ť		_	x		x	Ť	- †	-	-	Ť	1	- +	┪		╈	╧	-
ICS-A2	1.00	18:15										_	x		x	1	Ť		Ť	-†	Ť	-†	1	-	┽	┽	-
ICS-AB2	1.00	18:20			_					Ť		_	x		x		1	-i	j	Ť	\neg	+	-+		-+	÷	-
HLCCV2	1.00	18:24			_							_	x	-	x	÷	1		-	╈	Ť			┽	Ť	┿	-
HLCCV1	1.00	18:29							Ì	Ť	Ť	-	x	-	x	- †	Ť	Ť	÷	Ť	╈	╈	╈	┪	Ť	┿	-
CCV3	1.00	18:33							Ť	Ē		-	x İ		x	Ť	Ť		\neg	╈	Ť	┪	Ť	-+	╈	╈	-
ССВЗ	1.00	18:38						j		İ		_	x	÷	x	Ť			Ť	╈	╈	-+	+	- †	┿		_
ZZZZZZ	1.00	18:44			-			Ţ	Ť	Ť		Ť	Ť		Ť	t	Ť	÷		÷	Ť	╈	+	╈	<u> </u>	÷	
ZZZZZZ	1.00	18:50							Ť	Ť			- †	╡	Ť	Ť		Ť	╈	╈	╈	╈	+		╈	╈	-
ZZZZZZ	1.00	18:55						1	Ť	Ť		1	Ť	Ť	Ť	Ť	Ť	Ť		╈	Ť		\uparrow	-+	╈	+	
ZZZZZZ	1.00	19:00						Ť	T	Ť			Ť	1	╈	÷		+	÷	Ť	Ť	+	+		╈	┿	
ZZZZZZ	1.00	19:04						Ţ	Ť	Ť		Ţ	Ť		Ť	Ť	Ť	Ť	╈	Ť		\neg	1	╈	Ť	┿	┥
ZZZZZZ	1.00	19:08						İ	İ	Ť	1	Ť	Ť		Ť	Ť	Ť	╈	╈	╈	Ť	÷	Ť	_	╈	╧┿╴	-
222222	1.00	19:12	i					Ť	Ť	Ť	1	Ţ	Ť	1	Ť	╈	╈	-†	+	÷	Ť	╈	╈	+	╈	╈	-
ZZZZZZ	1.00	19:17	·	-t		Ť		Ì	Ť	Ť		Ť	Ť	Ť	Ť	Ť	-	Ť	Ť	+	Ť	÷	+	+	╈	÷	-
ZZZZZZ	1.00	19:21						Ť	İ	Ť	+	Ť	Ť	Ť	Ť	Ť	Ť	Ť	1	÷	1	╈	╈	╈	╈	┿	┥
222222	1.00	19:25						Ť	Ť	Ť		Ť	İ	Ť	Ť	Ť	Ť	Ť	Ť	╈	\dagger	Ť	╈	1	╈	┿	┥
CCV4	1.00	19:29		1	T			Ī	İ	İ	╈	Ţ,	x İ	Ţ.	x	T		Ť	Ť	╈	T		Ť	\uparrow	╈	Ť	
CCB4	1.00	19:34		İ	Ť			Ţ	İ	Ť		12	κ İ		x	Ť	Ť	Ť		Ť	╈	╈	+	╈	╈	╈	-
ZZZZZZ	1.00	L9:39		Í		Í	Ì	İ	Ť	Ť	╈	Ť	Ť	Ť	Ť	Ť	Ţ	1	\uparrow	Ť	Ť	Ť		╈	╈	+	-
ZZZZZZ	1.00 1	L9:43		Ì	Ť		Ţ	İ	Ţ	Ť	╈	Ť	Ť	Ť	Ť	İ	Ť	╈	Ť	╈	+		╈	╈	╈	┿	┥
222222	1.00 1	L9:48							Ť	Ť		Ť	İ	Ť	Ť	Ť	Ť	Ť	-†-	Ť	Ť	+	-		╈	+-	-

* - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14


METALS -14-

ANALYSIS RUN LOG

Contract: R1004141	L	- <u> </u>						_																			
Lab Code:		Case	No.:				_	SZ	١S	No .	. :						S	DG	No		0	вL	M2	002	29		
Instrument ID Number:	Optim	a ICP	4					Me	th	od	:	F	>			•					-						-
Start Date: <u>8/13/2</u>	010							En	d I	Dat	e:	-	8/:	13,	- /20	10	1										
	ļ									_	-		P	na	.lyt	es				_	_						
Sample ID.	D/F	Time	% R	AL	S B	A S	B A	B E	C D	C A	C R	C O	c	F E	P	м		H G	N I	ĸ	S E	A G	N A	T L	v		C N
ZZZZZZ	5.00	19:52	<u> </u>	1										1			╉			_			_			$\left - \right $	
ZZZZZZ	1.00	19:58		1				-					-		÷		1	- 1					1				
ZZZZZ	1.00	20:02		-							_		Ť	╡	Ť	-+	╈	ij	\neg		-+						
PBW	1.00	20:06			_								x	÷	x		Ť		- +			-		╶┥			—
LCSW	1.00	20:12		<u> </u>				_				-	x		x	1	1		1	Ť	-	-		-		\neg	
OBLM20029	1.00	20:16										_	x	÷	x		┪	Í	-+		-	-		┥	\neg	+	
OBLM20030	1.00	20:20											x	-	x		÷		1		╈	<u>'</u>		ا		Ť	
CCV5	1.00	20:24				_						_	x		x		÷	┪		-	-			Ť		┽	
CCB5	1.00	20:29							-i	İ		_	x	-	x	1	t		\neg	Ť	+		-	\neg		╈	
OBLM20031	1.00	20:35						Ť	j	j			χŤ		x	Ť	Ť	Ť	÷		÷	t	h	┪		╺╌┽	
OBLM20032	1.00	20:39						j	i	İ		ر .	x	-	x	İ	╈	Ť	t	Ť		Ť	┪	╡		┽	
OBLM20033	1.00	20:43						Ţ	İ	Ť		12	ĸ İ	-	x	Ť	Ì	-†	Ť	1		Ť	- †	┪	-†	┯	_
OBLM20033D	1.00	20:47						j	İ	Ť		2	εļ	Ť	x	Ţ	Ť	Ť		Ť	1	-†	-	Ť	\neg	╡	
OBLM20033S	1.00	20:51						İ	Ť	Ť		3	z İ	Ť.	x	Ť		Ť	Ť	Ť	Ť	Ť	Ť	Ť	╈	-+	-
OBLM20033A	1.00	20:56						Ť	İ	Í		3	ςŤ	Ť	x	Ţ	Ť	Ť	Ť	Ť	Ť	T		╈	÷	\neg	_
OBLM20033L	5.00	21:00	-					İ	Ì			3	<u>(</u>		x	Ť	Ť	Ť	Ť	Ť	+	Ť	Ť	Ť	Ť	Ť	-
OBLM20034	1.00	21:06	_		Ì				Í	İ		Ż	۲,	Ţ:	x İ	Ť	Ť		Ť	T	Ť	Ť	Ť	╈	Ť	╈	-
OBLM20035	1.00	21:10					1	İ	İ	Ť		Ż	z İ	Ì	x	İ	Ť	Ť	Ť	Ť		Ť	Ť	Ť	÷	÷	┥
CCV6	1.00	21:14							Ť	İ		X	c İ	Ţ:	x İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	-+	Ť	┥
ССВ6	1.00	21:18				Í			Ť			X	z İ	Ť	x	İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	╈	Ť	╈	-
CRDL3	1.00	21:24							Ť	Ì		ĸ	c	İ	x İ	T	Ť	Ť	Ť	Ť	Ţ		Ť	╈	Ť	Ť	-
ICS-A3	1.00	21:30					Ť	Ì	Ť	ĺ		x			x	İ	Ť	Ţ	Ť	Ť	Ť	Ť	Ť	╈	÷	╈	-
ICS-AB3	1.00	21:34						İ	Ţ	Ť		X	_	-	x	Ť	Í	Ť	Ť		Ť		1	╈	+	Ť	┥
CCV7	1.00	21:38					Ť	İ	İ	Ť		X	<u> </u>		x	Ť	Ť	Ť	1		Ť		Ť	\neg	╈	╈	┥
CCB7	1.00	21:43		Ť				İ	İ	Ť		X		-	x	Ť	İ	Ť	Ť		1	╈	╈	+	+	╈	┥

* - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

Metals Cover Page

	}	
 1.8.9.18		
· · · · · · · · · · · · · · · · · · ·		
)

í			
i			
L		······································	
			1

Package Data:

Client Sub#	TIER	Analytes Used	Batch ID	Stds Attached?	Raw Data Copied?
R-4314	IV/ ILM	Ay As Ba Cd Cr Pb Se (14/euch Pb)	117264	Yes / No	Yes / No
R-4141	V ILM	C.S. Ph	1172/6	Yes / No	Yes / No
J.	IV / ILM			Yes / No	Yes / No
	IV / ILM	· · · · · · · · · · · · · · · · · · ·		Yes / No	Yes / No
-	IV / ILM			Yes / No	Yes / No
	IV / ILM			Yes / No	Yes / No
*	IV / ILM			Yes / No	Yes / No
	IV / ILM			Yes / NO2	LI Mes / No

Method: AXIAL200-	6010 L Opt4		Page	1		Date: 8/13/2010	2:48;22 PM
=======================================	=======================================			=======			=======
Analysis Begun							
Start Time: 8/13/ Logged In Analyst	: ROCACQMET01		Tec	hnique:	ICP Continu		
Spectrometer Mode	1: Optima 5300 DV,	, S/N 077N6	052202Au	tosample	er Model: AS	-93plus	
	n File: C:\pe\Opti	ima4\Sample	Informa	tion\ro	utine1.sif	3	
Batch ID: Results Data Set:	4 3 11 07 1 3 9					2/13/10	
	C:\pe\Optima4\Resu	lts\Aug10.	mdb			8/13/10 Des	
							========
Method Loaded Method Name: AXIA	T.200-6010 T. Opt4		Mat	hod Las	F Saved, 8/1	3/2010 6:27:18 AM	
IEC File: 081010.	-			File:	C Daved. 0/1	572010 0.27.10 AM	
Method Description	n: 5300DV TAL Meta	ls Method	200.7/60	10B-Opt:	ima 4		
Analyte	Calibration Eq	mation	Proc	essing	View	Internal Standa:	rd IEC
Ag 328.068	Lin Thru O	-		Area	Axial	Y 371.029	Yes
Al 308.215	Lin Thru O			Area	Axial	Y 371.029	Yes
As 188.979 B 249.772	Lin Thru O		_	Area	Axial	Y 371.029	Yes
Ba 233.527	Lin Thru O Lin Thru O			Area Area	Axial Axial	Y 371.029 Y 371.029	Yes Yes
Be 313.107	Lin Thru O			Area	Axial	Y 371.029	Yes
Cd 226.502	Lin Thru 0			Area	Axial	Y 371.029	Yes
Co 228.616	Lin Thru O			Area	Axial	Y 371.029	Yes
Cr 267.716	Lin Thru O		Peak	Area	Axial	Y 371.029	Yes
Cu 324.752	Lin Thru O		Peak	Area	Axial	Y 371.029	Yes
Fe 238.863	Lin Thru O			Area	Axial	Y 371.029	Yes
K 404.721	Lin Thru O			Area	Axial	Y 371.029	Yes
Mg 279.077 Mn 257.610	Lin Thru O Lin Thru O			Area Area	Axial Axial	Y 371.029 Y 371.029	Yes Yes
Mo 202.031	Lin Thru O		Peak		Axial	Y 371.029	Yes
Ni 231.604	Lin Thru O			Area	Axial	Y 371.029	Yes
Na 330.237	Lin Thru O		Peak	Area	Axial	Y 371.029	Yes
Pb 220.353	Lin Thru O		Peak		Axial	Y 371.029	Yes
Sb 206.836	Lin Thru O			Area	Axial	Y 371.029	Yes
Se 196.026	Lin Thru O			Area	Axial	Y 371.029	Yes
Sn 189.927 Ti 337.279	Lin Thru O Lin Thru O		Peak Peak		Axial Axial	Y 371.029 Y 371.029	Yes Yes
Tl 190.801	Lin Thru 0		Peak		Axial	Y 371.029	Yes
V 292.402	Lin Thru O		Peak		Axial	¥ 371.029	Yes
Y 371.029	Lin, Calc Int		Peak	Area	Axial	n/a	n/a
Zn 206.200	Lin Thru O		Peak	Area	Axial	¥ 371.029	Yes
Ca 227.546	Lin Thru O			Area	Axial	Y 371.029	Yes
Sr 460.733	Lin Thru O		Peak	Area	Axial	¥ 371.029	Yes
=======================================		==========					*======
Sequence No.: 1			Auto	sampler	Location: 3	L	
Sample ID: Calib H	3lank 1					010 2:44:56 PM	
Analyst: Initial Sample Wt:					Original		
Dilution:	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l			le Prep	ple Vol: Vol:		
			_	-			
Mean Data: Calib H							
_	Mean Corrected				Calib		
Analyte	Intensity	Std.Dev.			nc. Units		
Y 371.029	8731871.6	15101.02	0.17%	-	000 mg/L		
Ag 328.068† Al 308.215†	3783.0 7106.8	183.83 51.19	4.86% 0.72%	-	00] mg/L 00] mg/L		
As 188.979†	-46.7	14.83	31.74%		00] mg/L		
B 249.772†	16414.2	114.92	0.70%	-	00] mg/L		
Ba 233.527†	2177.7	25.80	1.18%	-	00] mg/L		
Be 313.107†	-11865.8	234.00	1.97%	_	00] mg/L		
Cd 226.502†	-59.1	29.07	49.17%	[0.	00] mg/L		
Co 228.616†	-62.0	17.09	27.55%	-	00] mg/L		
Cr 267.716†	-63.5	13.83	21.77%		00] mg/L		
Cu 324.752† Fe 238.863†	5219.7 31319.9	18.38	0.35%		00] mg/L		
220.003	2.212.2	65.39	0.21%	[υ.	00] mg/L		

Method: AXIAL200-	6010 L Opt4		Page	2 Date: 8/13/2010 3:00:22 PM
K 404.721†	373.4	45 (2)	10 008	
			12.22%	[0.00] mg/L
Mg 279.077†	-1674.1	17.19		[0.00] mg/L
Mn 257.610†	703.4	20.82		[0.00] mg/L
Mo 202.031†	-221.1	0.37	0.17%	[0.00] mg/L
Ni 231.604†	2.1	16.27	788.71%	[0.00] mg/L
Na 330.237†	4204.0	41.52	0.99%	[0.00] mg/L
Pb 220.353†	163.1	1.95		[0.00] mg/L
Sb 206.836†	19.6	1.60		[0.00] mg/L
Se 196.026†	148.5	4.85		[0.00] mg/L
Sn 189.927†	186.1	8.03	4.31%	[0.00] mg/L
Ti 337.279†	-3729.7	107.33	2.88%	[0.00] mg/L
Tl 190.801†	-46.9	2.31	4.93%	[0.00] mg/L
V 292.402†	881.8	50.99		[0.00] mg/L
Zn 206.200†	182.4	17.08		[0.00] mg/L
Ca 227.546†	-785.6		0.34%	[0.00] mg/L
Sr 460.733†	-1597.0	122.66	7.68%	[0.00] mg/L
			**========	
Sequence No.: 2				sampler Location: 9
Sample ID: Calib	Std 1		Date	Collected: 8/13/2010 2:50:39 PM
Analyst:				Type: Original
Initial Sample Wt	:			tial Sample Vol:
Dilution:				ble Prep Vol:
Mean Data: Calib	Std 1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	. RSD	Conc. Units
Y 371.029	8645995.4	279592.11		
				0.9902 mg/L
Al 308.215†	1079.2	23.56		[0.0200] mg/L
As 188.979†	41.4	0.19	0.46%	[0.0050] mg/L
Ba 233.527†	6892.4	297.81	4.32%	[0.0200] mg/L
Cd 226.502†	375.5	24.98	6.65%	[0.0010] mg/L
Co 228.616†	404.3		2.68%	[0.0030] mg/L
		10.84		
Cr 267.716†	239.5	18.83	7.86%	[0.0010] mg/L
Cu 324.752†	4845.1	225.33	4.65%	[0.0100] mg/L
Mn 257.610†	17252.2	671.23	3.89%	[0.0100] mg/L
Mo 202.031†	1333.0	24.61	1.85%	[0.0250] mg/L
Ni 231.604†	755.2	23.38	3.10%	[0.0050] mg/L
Pb 220.353†				
	172.2		20.40%	[0.0050] mg/L
Sb 206.836†	49.2	1.17	2.38%	[0.0100] mg/L
Se 196.026†	25.1	2.12	8.45%	[0.0050] mg/L
Tl 190.801†	60.0	1.45	2.42%	[0.0100] mg/L
V 292.402†	732.9	4.33	0.59%	[0.0030] mg/L
Zn 206.200†	3456.5	128.73	3.72%	[0.0100] mg/L
======================================	========================	===============		sampler Location: 10
Sample ID: Calib :	Std 2			Collected: 8/13/2010 2:56:19 PM
Analyst:				Type: Original
	_			
Initial Sample Wt:	i			ial Sample Vol:
Dilution:			Samp	le Prep Vol:
Mean Data: Calib &	Std 2 Mean Corrected			Calib
Analyte	Intensity		DOD	
Analyte	Incensity	Stu.Dev.	KSD	Conc. Units
Y 371.029	8652898.5	40063.27	0.46%	0.9910 mg/L [0.0100] mg/L [0.0500] mg/L [0.0050] mg/L
Ag 328.068†	3567.2	130.65	3.66%	[0.0100] mg/L
3 249.772†	9340.3 31584.0	334.01	3.58%	[0.0500] mg/L
Be 313.107†	31584.0	1.73	0.01%	[0.0050] mg/L
Ze 238.863†	6244.9	212 66	3.42%	[0.1000] mg/L
K 404.721†	6244.9 -60.9	177.00		
	-00.9	T71.2T	209.99%	[0.5000] mg/L
	curve because st	andard inte	ensity and	concentration values are not in the same order.
4g 279.077†		28.87	0.14%	[0.5000] mg/L
Na 330.237†	343.4	37.96	11.05%	[0.5000] mg/L
5n 189.927t	3043.0	1.52	0.05%	[0.5000] mg/L [0.1000] mg/L
ri 337.279†	25140 7	1107 74	4 742	[0, 0500] mg/L
1- 007 F/C+	2014 <i>7.1</i>	1192.74	4./48	[0.0500] mg/H
la 227.546†	25149.7 232.5 12167.3	60.19	25.89%	[0.5000] mg/L
Sr 460.733†	12167.3	92.88	0.76%	[0.0500] mg/L

Method: AXIAL200-	-6010 L Opt4		Page	3	Date: 8/13/2010 3:07:30 PM
Sequence No.: 4 Sample ID: Calib Analyst: Initial Sample Wt			Date Data Init	a Type: Origin ial Sample Vo	/13/2010 3:00:22 PM al
Dilution:			Samp	ole Prep Vol:	
Mean Data: Calib					
	Mean Corrected				lib
Analyte Y 371.029	Intensity 8614636.9	Std.Dev. 24822.17		Conc. Un	
Ag 328.068†	74031.8	411.51	0.29% 0.56%	0.9866 mg [0.2000] mg	· .
Al 308.215†	171369.6	948.24		[4.0000] mg	•
As 188.979†	3364.7	6.43	0.19%	[0.4000] mg	· .
B 249.772†	221460.0	1832.24	0.83%	[1.0000] mg	·
Ba 233.527† Be 313.107†	1477458.4	8804.56		[4.0000] mg	
Cd 226.502†	647463.5 76277.1	3853.95 4.48	0.60% 0.01%	[0.1000] mg [0.2000] mg	
Co 228.616†	135279.9	833.60		[1.0000] mg	
Cr 267.716†	43958.2	98.72		[0.2000] mg	•
Cu 324.752†	235473.7	1524.25		[0.5000] mg	· .
Fe 238.863†	121800.2	602.22	0.49%	[2.0000] mg	
K 404.721† No calibration	1566.7 Lourve because st	19.93 andard inte	1.27% nsity and	[10.000] mg	/L n values are not in the same order.
Mg 279.077†	401996.3	2223.19	0.55%	[10.000] mq	
Mn 257.610†	518034.7	2853.02	0.55%	[0.3000] mg	•
Mo 202.031†	52290.0	294.39		[1.0000] mg	
Ní 231.604†	122364.9	497.05		[0.8000] mg	
Na 330.237† Pb 220.353†	16196.3 5507.6	33.85 13.07		{10.000] mg [0.2000] mg	
Sb 206.836t	11403.0	227.06	1.99%	[2.0000] mg	
Se 196.026†	1130.9	21.42		[0.2000] mg	·
Sn 189.927†	59503.3	100.55	0.17%	[2.0000] mg	· .
Ti 337.279†	509479.8	4243.51	0.83%	[1.0000] mg	·
Tl 190.801†	3110.4	15.19		[0.4000] mg	·
V 292.402† Zn 206.200†	265243.0 122344.3	1164.05 709.34		[1.0000] mg [0.4000] mg	
Ca 227.546†	5611.8	15.65		[10.000] mg	
Sr 460.733†	250769.0	1981.52		[1.0000] mg	
******	******			**********	
Sequence No.: 5			Auto	sampler Locat	ion: 2
Sample ID: Calib	Std 4				/13/2010 3:05:27 PM
Analyst: Initial Sample Wt				Type: Origin ial Sample Vo	
Dilution:	•			le Prep Vol:	1
Mean Data: Calib ;	std 4				
	Mean Corrected				lib
Analyte	Intensity	Std.Dev.	RSD	Conc. Un	
Y 371.029 Ag 328.068†	8223756.5 373032.0	124537.32	1.51%	0.9418 mg	
AG 328.0687 Al 308.215†	373032.0 862485.6	4053.54 18268.37	1.09% 2.12%	[1.0000] mg [20.000] mg	
As 188.979†	17111.5	259.45	1.52%	[2.0000] mg	
B 249.772†	1156617.2	33034.79	2.86%	[5.0000] mg	
Ba 233.527†	7192869.6	145812.59	2.03%	[20.000] mg	
Be 313.107†	3286719.0	69914.40	2.13%	[0.5000] mg	
Cd 226.502† Co 228.616†	382375.5 668076.8	7673.08	2.018	[1.0000] mg	
Cr 267.716t	221330.8	14086.65 4698.91	2.11% 2.12%	[5.0000] mg, [1.0000] mg,	
Cu 324.752†	1181140.5	25702.76	2.18%	[2.5000] mg	
Fe 238.863†	605394.1	14708.13	2.43%	[10.000] mg	
K 404.721†	8916.6	7.90	0.09%	[50.000] mg	L'L
					1 values are not in the same order.
Mg 279.077† Mn 257.610†	1964046.0 2570392.3	41833.74	2.13%	[50.000] mg,	
Mn 257.8101 Mo 202.031†	267511.3	52430.18 9692.77	2.04% 3.62%	[1.5000] mg, [5.0000] mg,	
			1.66%		
Ni 231.604†	599597.3	9942.14	T.002	[4.0000] mg	′L
Ni 231.604† Na 330.237†	91604.6	1997.41	2.18%	[50.000] mg	
					'L /L

Min 257.610 3 Lin Thru 0 0.0 2714000 0.00000 0.999999 Ni 231.604 3 Lin Thru 0 0.0 150600 0.00000 0.999990 Ni 331.604 3 Lin Thru 0 0.0 150600 0.00000 0.999990 Ni 331.604 3 Lin Thru 0 0.0 27430 0.00000 0.999999 Sb 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Ti 337.279 J.in Thru 0 0.0 36410 0.00000 0.999996 Ti 337.279 J.in Thru 0 0.0 7560 0.00000 0.999996 Zn 266.200 J.in Thru 0 0.0 26800 0.00000 0.999996 Zn 266.200 J.in Thru 0 0.0 26800 0.00000 0.999991 St 460.733 Lin Thru 0 0.0 258400 0.00000 0.999991 St 460.733 Lin Thru 0 0.0 258400 0.00000 0.999981 St 460.733 Lin Thru 0 0.0 258400 0.00000 0.999982 Sample Th: tCV	Method: AXIAL200-0	5010 L Opt4	Pag	e 4		Date: 4	8/13/2010 3:	11:50 PM
Sn 189.9274 306322.7 922.57 3.05% [10.000] mg/L 71 397.2797 256.377 0.01% [5.0000] mg/L 71 397.2797 256.377 0.01% [5.0000] mg/L 71 397.2797 256.377 0.01% [5.0000] mg/L 71 307.2791 256.271 1352.4 306.47 2.003% 71 307.271 257.2661 28928.6 332.19 1.328 [50.0000] mg/L 71 307.271 2597.6 15721.13 1.218 [5.0000] mg/L	Se 196 026+	5804 8	61 77 1 06	& [1 0000]	ma /T.			
Ti 137.2791 255.274 357.76 0.018 [5.0000] mg/L Ti 190,601 15352.4 306.47 2.018 [5.0000] mg/L V 252.4021 1348406.2 37401.44 2.784 [5.0000] mg/L St 460.7331 1293719.0 15711.13 1.218 [5.0000] mg/L Calibration Summary Calibration Summary 0.00000 0.999999 Analyte Std. Equation Intercopt 91099 Al 180.215 3 Lin Thru 0 0.0 232000 0.00000 0.999999 Al 180.215 3 Lin Thru 0 0.0 232000 0.00000 0.999995 Al 280.637 Jin Thru 0 0.0 323000 0.00000 0.999995 Al 280.637 Jin Thru 0 0.0 32300 0.00000 0.999997 Ca 226.616 Jin Thru 0 0.0 133700 0.00000 0.999997 Ca 226.502 Jin Thru 0 0.0 133700 0.00000 0.999997 Ca 226.513 Lin Thru 0 0.0 133700 0.00000 0.999997 Ca 226.513 Lin T					<u> </u>			
T1 190.8011 1552.4 306.47 2.018 [2.000] mg/L 2A 204.2011 1345060.2 37401.44 2.784 [5.0000] mg/L 2A 204.2001 608323.9 13151.58 2.164 [5.0000] mg/L 2A 204.2014 209328.6 382.59 1.324 [5.0000] mg/L 2A 204.31 1293718.0 132.59 1.324 [5.0000] mg/L Calibration Summary 1293718.0 132.11.3 1.214 [5.0000] mg/L Analyte Stds. Equation Intercept Slope Curvature Corr. Cosf. Reslope A: 188.979 1.11 Thru 0 0.0 232900 0.00000 0.999995 B: 233.107 3 Lin Thru 0 0.0 332100 0.00000 0.999996 C: 267.116 3 <lin 0<="" td="" thru=""> 0.0 472400 0.00000 0.999999 C: 267.16 3<lin 0<="" td="" thru=""> 0.0 132100 0.00000 0.999999 C: 267.16 3<lin 0<="" td="" thru=""> 0.0 132400 0.00000 0.999999 C: 267.16<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lin></lin></lin>								
V 292.4021 i345806.2 37401.44 2.78% [S.0000] mg/L 20.205.0001 g0/L 20.205.00000 g0/L 20.205.00000 g0/L 20.205.00000								
Ca 227.5461 20928.6 382.59 1.324 [5.000] mg/L Calibration Summary Calibration Summary Analyte Stds. Equation Intercept Slope Curvature Corr. Cosf. Keslope Ag 328.068 3 Lin Thru 0 0.0 372900 0.00000 0.999999 Al 180.73 3 Lin Thru 0 0.0 43110 0.00000 0.999999 Al 180.73 3 Lin Thru 0 0.0 230500 0.00000 0.999999 Al 249.772 3 Lin Thru 0 0.0 3850 0.00000 0.999999 Be 313.107 3 Lin Thru 0 0.0 3850 0.00000 0.999999 Be 313.107 3 Lin Thru 0 0.0 38200 0.00000 0.999997 Ca 224.752 3 Lin Thru 0 0.0 133700 0.00000 0.999997 Ca 224.752 3 Lin Thru 0 0.0 133700 0.00000 0.999997 Ca 224.752 3 Lin Thru 0 0.0 133700 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 133700 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 472400 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 132300 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 132300 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 132200 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 132200 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 132200 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 13220 0.00000 0.999999 Ca 224.752 3 Lin Thru 0 0.0 13220 0.00000 0.999999 Ca 220.313 3 Lin Thru 0 0.0 13220 0.00000 0.999999 Ca 220.313 3 Lin Thru 0 0.0 15320 0.00000 0.999999 Ca 220.323 3 Lin Thru 0 0.0 15320 0.00000 0.999999 Ca 220.633 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.633 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.623 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.620 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.620 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.620 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 220.620 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 227.546 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 227.546 3 Lin Thru 0 0.0 5799 0.00000 0.999999 Ca 227.547 3 1.0027 0.0000 0.999999 Ca 227.548 3 1.01 Thru 0 0.0 5799 0.00000 0.999999 Ca 227.548 3 1.01 Thru 0 0.0 5799 0.00000 0.999999 Ca 227.548 3 1.01 Thru 0 0.0 5799 0.00000 0.999999 Ca 227.548 3 1.01 Thru 0 0.0 5799 0.00000 0.999999 Ca 227.548 3 1.00000 0.999999 Ca 227.548 3 1.00000 0.9999999 Ca 228.620 3 Lin Thr		1345806.2						
Sr. 46.7.33:1 1293719.0 15711.13 1.214 [5.0000] mg/L Analyte St. 46.7.33:1 Curvature Corr. Cosf. Reslope Analyte St. 68.5 Equation Intercept 91.0pc Curvature Corr. Cosf. Reslope A1 308.215 3 Lin Thru 0 0.0 3223000 0.00000 0.999995 A1 308.217 3 Lin Thru 0 0.0 23000 0.00000 0.999995 B 233.277 3 Lin Thru 0 0.0 250000 0.00000 0.999995 B 233.107 3 Lin Thru 0 0.0 6570000 0.00000 0.999995 C 228.613 J. Lin Thru 0 0.0 133770 0.00000 0.999995 C 224.716 3 Lin Thru 0 0.0 212100 0.00000 0.999995 C 224.716 3 Lin Thru 0 0.0 133770 0.00000 0.999999 M2 276.07 3 Lin Thru 0 0.0 1342400 0.00000 0.999999 M2 220.513 Lin Thru 0 0.0 27430 0.00000 0.999	Zn 206.200†	608323.9			mg/L			
Calibration Summary Calibration Summary Calibration Summary Correctors Correctors	Ca 227.546†	28928.6			mg/L			
Calibration Summary Andyte Stds. Equation Intercept Slope Curvature Corr. Cosf. ResLope A 308.0215 3 Lin Thru 0 0.0 337290 0.00000 0.999999 A 308.0215 3 Lin Thru 0 0.0 8850 0.00000 0.9999995 B 433.377 3 Lin Thru 0 0.0 25000 0.00000 0.999995 B 433.377 3 Lin Thru 0 0.0 25000 0.00000 0.999995 C 226.513 3 Lin Thru 0 0.0 32300 0.00000 0.999995 C 226.513 3 Lin Thru 0 0.0 32300 0.00000 0.999995 C 226.513 3 Lin Thru 0 0.0 32300 0.00000 0.999995 C 226.513 3 Lin Thru 0 0.0 32300 0.00000 0.999995 C 226.716 3 Lin Thru 0 0.0 472400 0.00000 0.999997 C 267.716 3 Lin Thru 0 0.0 472400 0.00000 0.999997 C 267.716 3 Lin Thru 0 0.0 133700 0.00000 0.999997 C 267.716 3 Lin Thru 0 0.0 133700 0.00000 0.999997 C 267.716 3 Lin Thru 0 0.0 133700 0.00000 0.999999 M 200.201 3 Lin Thru 0 0.0 15000 0.0000 0.999999 M 200.201 3 Lin Thru 0 0.0 15000 0.0000 0.999999 M 200.333 3 Lin Thru 0 0.0 15000 0.0000 0.999999 M 200.333 3 Lin Thru 0 0.0 15000 0.0000 0.999999 M 200.636 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 30.027 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 30.027 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.637 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 5719 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999991 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 25400 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 27430 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 1740 0.0000 0.00000 0.999995 M 200.636 3 Lin Thru 0 0.0 1740 0.0000 0.0000 0.999995 M 2	Sr 460.733†	1293719.0	15711.13 1.21	% [5.0000]	mg/L			
Ag 328.068 j Lin Thru 0 0.0 372900 0.00000 0.999999 Al 308.215 j Lin Thru 0 0.0 4550 0.00000 0.999995 Al 308.217 j Lin Thru 0 0.0 25500 0.00000 0.999995 Ba 43.07.21 Lin Thru 0 0.0 250000 0.00000 0.999965 Ba 249.772 j Lin Thru 0 0.0 350000 0.00000 0.999996 C1 226.502 j Lin Thru 0 0.0 322300 0.00000 0.999997 C2 267.716 j Lin Thru 0 0.0 123700 0.00000 0.999999 C1 226.717 j Lin Thru 0 0.0 123700 0.00000 0.999999 M2 276.077 j Lin Thru 0 0.0 12400 0.00000 0.999999 M2 250.610 j Lin Thru 0 0.0 1244 0.00000 0.999999 M2 250.613 Lin Thru 0 0.0 5740 0.00000 0.999999 M2 250.626 Lin Thru 0 0.0 57740 0.00000 0.999	Calibration Summar						- 	
Al 308.215 3 Lin Thru 0 0.0 43110 0.00000 0.999999 B 249.772 3 Lin Thru 0 0.0 8550 0.00000 0.999995 B 249.772 3 Lin Thru 0 0.0 330500 0.00000 0.999996 B 213.107 3 Lin Thru 0 0.0 330500 0.00000 0.999996 C 226.723 3 Lin Thru 0 0.0 33200 0.00000 1.000000 C 226.745 3 Lin Thru 0 0.0 33200 0.00000 1.000000 C 226.745 3 Lin Thru 0 0.0 33200 0.00000 1.000000 C 226.745 3 Lin Thru 0 0.0 472400 0.00000 1.000000 F 238.663 3 Lin Thru 0 0.0 472400 0.00000 0.999999 MD 257.610 3 Lin Thru 0 0.0 53520 0.00000 0.999999 MD 257.610 3 Lin Thru 0 0.0 53520 0.00000 0.999999 MD 257.610 3 Lin Thru 0 0.0 53460 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 53460 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 153600 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 150000 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 150000 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 150000 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 150000 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 57910 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 57910 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 57910 0.00000 0.999990 MD 257.613 3 Lin Thru 0 0.0 57910 0.00000 0.999990 MD 257.63 3 Lin Thru 0 0.0 57990 0.00000 0.999990 MD 257.63 3 Lin Thru 0 0.0 57090 0.00000 0.999990 MD 257.63 3 Lin Thru 0 0.0 57090 0.00000 0.999996 MD 260.636 3 Lin Thru 0 0.0 57090 0.00000 0.999996 MD 260.636 3 Lin Thru 0 0.0 57090 0.00000 0.999996 MD 260.630 3 Lin Thru 0 0.0 25000 0.00000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 57090 0.00000 0.999996 MD 260.630 3 Lin Thru 0 0.0 57600 0.00000 0.999996 MD 260.6000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.9999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 MD 260.227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.9999996 MD 260.228 468717.2 0.9721 mg/L 0.0016 0.00000 0.9999996 MD 260.228 468717.2 0.9721 mg/L 0.0016 0.00000 0.9999996 MD 260.22								Reslope
As 188.979 3 Lin Thru 0 0.0 8550 0.00000 0.999995 Bs 249.772 3 Lin Thru 0 0.0 360000 0.00000 0.999987 Bs 313.177 3 Lin Thru 0 0.0 360000 0.00000 0.999987 Cd 226.502 3 Lin Thru 0 0.0 3700 0.00000 0.999997 Cd 226.512 3 Lin Thru 0 0.0 13700 0.00000 0.999997 Cd 226.52 3 Lin Thru 0 0.0 13700 0.00000 0.999997 Cd 226.512 3 Lin Thru 0 0.0 13700 0.00000 0.999997 Cd 226.423 3 Lin Thru 0 0.0 15000 0.00000 0.999990 Ma 257.610 3 Lin Thru 0 0.0 152400 0.00000 0.999991 Ma 257.610 3 Lin Thru 0 0.0 152400 0.00000 0.999992 Na 330.237 3 Lin Thru 0 0.0 152400 0.00000 0.999997 Sh 260.63 Lin Thru 0 0.0 57490 <								
B 249.772 3 Lin Thru 0 0.0 230900 0.00000 0.999965 Be 333.57 3 Lin Thru 0 0.0 6570000 0.00000 0.999987 Cd 326.502 3 Lin Thru 0 0.0 6570000 0.00000 0.999997 Cd 226.616 3 Lin Thru 0 0.0 133700 0.00000 0.999997 Cd 224.752 3 Lin Thru 0 0.0 472400 0.00000 0.999997 Cd 224.752 3 Lin Thru 0 0.0 21300 0.00000 0.999997 Cd 224.752 3 Lin Thru 0 0.0 21300 0.00000 0.999999 Mg 279.077 3 Lin Thru 0 0.0 23920 0.00000 0.999999 Mg 279.077 3 Lin Thru 0 0.0 23400 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 27430 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 53460 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 544 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 5719 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 5799 0.00000 0.999990 Mg 279.077 3 Lin Thru 0 0.0 5799 0.00000 0.999990 Mg 279.27 3 Lin Thru 0 0.0 5799 0.00000 0.999990 Mg 279.3 Lin Thru 0 0.0 5799 0.00000 0.999999 Mg 279.3 Lin Thru 0 0.0 5799 0.00000 0.999999 Mg 279.3 Lin Thru 0 0.0 5799 0.00000 0.999991 Ti 397.3779 3 Lin Thru 0 0.0 5799 0.00000 0.999995 Ti 397.3779 3 Lin Thru 0 0.0 5709 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Cd 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Cd 228.617.2 0.9723 mg/L 0.00171 0.158 Mg 380.2151 M 280577.2 0.9725 mg/L 0.00171 0.188 Malyte Mtensity Conc. Units Std.Dev. Sample Mtensity Conc. Units Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Academic Std.Dev. Sample Ac								
Ba 233.527 3 Lin Thru 0 0.0 360000 0.00000 0.99997 Be 313.107 3 Lin Thru 0 0.0 657000 0.00000 1.000000 C 228.616 3 Lin Thru 0 0.0 13700 0.00000 0.99997 C7 267.716 3 Lin Thru 0 0.0 221300 0.00000 0.999997 C7 267.716 3 Lin Thru 0 0.0 472400 0.00000 1.900000 Pe 238.663 3 Lin Thru 0 0.0 472400 0.00000 0.999999 MM 257.610 3 Lin Thru 0 0.0 460550 0.00000 0.999999 MM 257.610 3 Lin Thru 0 0.0 135000 0.999990 MM 257.610 3 Lin Thru 0 0.0 150000 0.999999 MM 257.610 3 Lin Thru 0 0.0 150000 0.999999 MM 237.617 3 Lin Thru 0 0.0 150000 0.999999 MM 237.610 3 Lin Thru 0 0.0 150000 0.999999 MM 237.610 3 Lin Thru 0 0.0 150000 0.999999 MM 237.610 3 Lin Thru 0 0.0 150000 0.999990 MM 237.610 3 Lin Thru 0 0.0 150000 0.999990 MM 237.610 3 Lin Thru 0 0.0 150000 0.999991 MM 237.610 3 Lin Thru 0 0.0 150000 0.999992 MM 237.610 3 Lin Thru 0 0.0 57430 0.00000 0.999992 MM 237.73 3 Lin Thru 0 0.0 57430 0.00000 0.999992 MM 237.77 3 Lin Thru 0 0.0 5749 0.00000 1.99999 MM 257.610 3 Lin Thru 0 0.0 57490 0.00000 0.99999 MM 257.610 3 Lin Thru 0 0.0 7660 0.00000 0.99999 MM 257.610 3 Lin Thru 0 0.0 7660 0.00000 0.999995 MM 257.610 3 Lin Thru 0 0.0 7660 0.00000 0.999995 MM 257.610 3 Lin Thru 0 0.0 7660 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 257.9 0.00000 0.999995 MM 258.8 0.0944 mg/L 0.00171 0.00000 0.999996 MM 257.9 0.00000 0.999996 MM 257.7 0.0000 0.0999982 MM 258.8 0.0944 mg/L 0.00171 0.0184 MM MANAJyst: Thrtial Sample Vol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Callb Sample Nol: MALSAMPLE NOR Corrected Sample Nol: MALSAMPLE NO								
Be 13.107 3 Lin Thru 0 0.0 6570000 0.00000 1.00000 C0 228.616 3 Lin Thru 0 0.0 133700 0.00000 1.00000 C7 267.716 3 Lin Thru 0 0.0 133700 0.00000 0.999997 C2 267.716 3 Lin Thru 0 0.0 472400 0.00000 0.999997 P2 238.663 3 Lin Thru 0 0.0 6550 0.00000 0.999990 M2 279.077 3 Lin Thru 0 0.0 139320 0.00000 0.999990 M2 279.077 3 Lin Thru 0 0.0 23400 0.00000 0.999990 M2 279.077 3 Lin Thru 0 0.0 13400 0.00000 0.999990 M2 279.077 3 Lin Thru 0 0.0 21400 0.00000 0.999990 M2 220.31 3 Lin Thru 0 0.0 15440 0.00000 0.999990 M2 220.31 3 Lin Thru 0 0.0 57490 0.00000 0.999990 M3 230.667 3 Lin Thru 0 0.0 5779 0.00000 1.000000 S8 196.226 3 Lin Thru 0 0.0 5779 0.00000 1.000000 S8 196.226 3 Lin Thru 0 0.0 5799 0.00000 0.999991 T1 397.279 3 Lin Thru 0 0.0 510900 0.099999 M2 202.333 3 Lin Thru 0 0.0 5799 0.00000 0.999995 T1 397.279 3 Lin Thru 0 0.0 510900 0.00000 0.999995 T1 397.279 3 Lin Thru 0 0.0 510900 0.09000 0.999995 C2 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999995 C2 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999998 M2 280.6877.7 2 0.9723 mg/L 0.00171 0.0.30540 0.00000 0.999998 M2 280.6877.7 2 0.9725 mg/L 0.00171 0.0.188 Malyte Treessity Conc. Units Std.Dev. Smg/L 0.00360 0.734 QC value within limits for A 220.688 Recovery = 97.564 A 1308.2157 420827.6 9.756 mg/L 0.0034 0.4904 mg/L 0.0044 0.984 B 248.7721 5273.5 2.003 mg/L 0.0044 0.984 mg/L 0.0044 0.984 B 249.7721 5233.5 2.203 mg/L 0.0044 0.984 mg/L 0.0046 0.2045 C value within limits for A 235.67 Recovery = 97.584 B 248.7721 5233.5 2.203 mg/L 0.0036 0.2435 mg/L 0.00040 0.178 C 2410e wi								
Cd 226.502 3 Lin Thru 0 0.0 32300 0.00000 1.000000 Cr 227.716 3 Lin Thru 0 0.0 132700 0.00000 0.999997 Cr 257.716 3 Lin Thru 0 0.0 221300 0.00000 0.999997 Cr 257.716 3 Lin Thru 0 0.0 472400 0.00000 1.999999 Mr 257.610 3 Lin Thru 0 0.0 1714000 0.00000 0.999999 Mr 257.610 3 Lin Thru 0 0.0 1714000 0.00000 0.999999 Mr 257.610 3 Lin Thru 0 0.0 15000 0.00000 0.999999 Nr 231.604 3 Lin Thru 0 0.0 15000 0.00000 0.999999 Nr 233.637 3 Lin Thru 0 0.0 15460 0.00000 0.999999 Nr 233.637 3 Lin Thru 0 0.0 1624 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5719 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5719 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5719 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5799 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5799 0.00000 0.999991 So 206.816 3 Lin Thru 0 0.0 5799 0.00000 0.999991 T 190.801 3 Lin Thru 0 0.0 5799 0.00000 0.999991 T 190.801 3 Lin Thru 0 0.0 26000 0.00000 0.999991 So 206.200 3 Lin Thru 0 0.0 26000 0.00000 0.999995 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999995 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999992 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 S								
Co 228.616 3 Lin Thru 0 0.0 133700 0.00000 0.999997 Cr 257.716 3 Lin Thru 0 0.0 472400 0.00000 1.000000 Fe 338.663 3 Lin Thru 0 0.0 472400 0.00000 0.999999 Mg 279.077 3 Lin Thru 0 0.0 39320 0.00000 0.999999 Mm 257.610 3 Lin Thru 0 0.0 53466 0.00000 0.999999 Mn 257.610 3 Lin Thru 0 0.0 53466 0.00000 0.999999 Mn 230.201 3 Lin Thru 0 0.0 1244 0.00000 0.999990 Nn 330.237 3 Lin Thru 0 0.0 1244 0.00000 0.999990 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999990 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Thru 0 0.0 5799 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 5709 0.00000 0.999991 Sh 206.836 3 Lin Thru 0 0.0 56000 0.00000 0.999991 Sh 206.200 3 Lin Thru 0 0.0 269000 0.00000 0.9999996 Ch 220.733 3 Lin Thru 0 0.0 258000 0.00000 0.999996 Sh 266.200 3 Lin Thru 0 0.0 258000 0.00000 0.999996 Sh 266.200 3 Lin Thru 0 0.0 258000 0.00000 0.999996 Sh 266.200 3 Lin Thru 0 0.0 258000 0.00000 0.9999996 Sh 266.200 3 Lin Thru 0 0.0 258000 0.00000 0.9999996 Sh 266.733 3 Lin Thru 0 0.0 258000 0.00000 0.9999996 Sh 266.733 3 Lin Thru 0 0.0 258000 0.00000 0.9999996 Sh 266.733 3 Lin Thru 0 0.0 258000 0.00000 0.9999990 Sh 266.740 Not 16 Sample Thru 1 CV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Data: ICV Mean Corrected Calib Sample Frey Vol: Mean Corrected Calib Sample Frey Vol: Mean Corrected Calib Sample Frey Vol: Mean Corrected Calib Sample Frey Vol: Mean Correct								
Cr 267.716 3 Lin Thru 0 0.0 221300 0.00000 0.999999 Cr 267.716 3 Lin Thru 0 0.0 472400 0.00000 1.999990 Mr 275.670 3 Lin Thru 0 0.0 1714000 0.00000 0.999990 Mr 257.610 3 Lin Thru 0 0.0 1714000 0.00000 0.999990 Nr 231.604 3 Lin Thru 0 0.0 150000 0.099992 Nr 231.604 3 Lin Thru 0 0.0 150000 0.099992 Nr 231.604 3 Lin Thru 0 0.0 150000 0.0999990 Nr 233.637 3 Lin Thru 0 0.0 1824 0.00000 0.999992 Sr 206.626 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Tr 337.779 3 Lin Thru 0 0.0 5719 0.00000 0.999991 Tr 337.779 3 Lin Thru 0 0.0 5709 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 5709 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 5709 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 5709 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 570.900 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Tr 337.779 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Tr 337.773 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Tr 327.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999996 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Tr 347 Thru 0 0.0 258400 0.00000 0.999998 Tr 347 Thru 0 0.0 258400 0.00000 0.999998 Tr 347 7.7 9 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Tr 347 7.7 9 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999998 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999980 Tr 460.733 3 Lin Thru 0 0.0 278 400000 0.999980 Tr 460.733 3 Lin Thru 0 0.0000 0.0000 0.999980 Tr 460.733 3 Lin Thru 0 0.00000 0.0000 0.0000 0.999980 Tr 460.733 3 Lin Thru 0 0.0000 0.0000 0.00000 0.999980 Tr 480 40000 0.0000 0.0000 0.0000 0.0								
Fe 238.663 3 Lin Thru 0 0.0 60550 0.00000 0.999990 Mn 257.610 3 Lin Thru 0 0.0 13320 0.00000 0.999990 Mn 257.610 3 Lin Thru 0 0.0 150000 0.0999990 Ni 231.604 3 Lin Thru 0 0.0 150000 0.999990 Ni 330.237 Lin Thru 0 0.0 150000 0.999971 Stado 0.0000 .9999971 0.00000 .9999971 Stado 0.0000 1.000000 0.999991 Stado 0.0000 1.000000 0.999991 Stado 0.0000 1.000000 0.999991 Ti 39.779 J Lin Thru 0 0.0 510900 0.00000 1.999996 Z 206.200 J Lin Thru 0 0.0 26000 0.00000 0.999996 Z 206.200 J Lin Thru 0 0.0 25400 0.00000 0.999996 Z 206.200 J Lin Thru 0 0.0 25400 0.00000 0.999991 S 460.733 Lin Thru 0 0.0 25400 0.00000 0.999992								
Mg 279.077 3 Lin Thru 0 0.0 39320 0.00000 0.999990 Mm 257.610 3 Lin Thru 0 0.0 53460 0.00000 0.999990 N1 321.604 1 Lin Thru 0 0.0 150000 0.999992 Na 330.237 3 Lin Thru 0 0.0 1824 0.00000 0.999731 P5 220.353 Lin Thru 0 0.0 5719 0.00000 0.999997 Sch 266.363 Lin Thru 0 0.0 5719 0.00000 0.999997 Sch 266.3 Lin Thru 0 0.0 510900 0.00000 0.999996 T1 390.801 Lin Thru 0 0.0 7680 0.00000 0.999996 Zn 266.200 Lin Thru 0 0.0 258400 0.00000 0.999996 Sc 460.733 Lin Thru 0 0.0 258400 0.00000 0.999996 Sc 460.733 Lin Thru 0 0.0 258400 0.00000 0.999986 Sc 460.733 Lin Thru 0 0.0 258400 0.00000 0.999986 Sc 460.733 Lin Thru 0 0.0 2			0.0	472400		1.	. 000000	
Mn 257.610 3 Lin Thru 0 0.0 1714000 0.0000 0.999990 Mo 202.031 3 Lin Thru 0 0.0 53460 0.00000 0.999990 Mi 231.604 3 Lin Thru 0 0.0 150000 0.00000 0.999990 Bi 231.604 3 Lin Thru 0 0.0 1824 0.00000 0.999731 Eb 220.353 3 Lin Thru 0 0.0 27430 0.00000 0.999991 Eb 220.353 3 Lin Thru 0 0.0 5739 0.00000 0.999991 Sa 160.26 3 Lin Thru 0 0.0 5739 0.00000 0.999991 T1 37.279 3 Lin Thru 0 0.0 510900 0.00000 1.000000 T1 137.279 3 Lin Thru 0 0.0 510900 0.00000 1.900000 T1 137.279 3 Lin Thru 0 0.0 510900 0.00000 0.9999961 T1 337.279 3 Lin Thru 0 0.0 269000 0.00000 0.999996 T1 337.279 3 Lin Thru 0 0.0 30420 0.00000 0.999996 T1 32.620 3 Lin Thru 0 0.0 304200 0.00000 0.999996 T2 222.402 3 Lin Thru 0 0.0 304200 0.00000 0.999996 T2 225.463 3 Lin Thru 0 0.0 259000 0.00000 0.999996 T2 225.463 3 Lin Thru 0 0.0 258400 0.00000 0.999996 T2 225.566 3 Lin Thru 0 0.0 258400 0.00000 0.9999981 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.9999981 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T1 151.127 Date Collected: 8/13/2010 3:09:49 PM Analyst: Date Collected: 8/13/2010 3:09:49 PM Analyst: Date Collected: 8/13/2010 3:09:49 PM Analyst: Sample Prey Vol: T1 151.838.938.8 0.9844 mg/L 0.00147 0.184 Mal 308.215 4 20827.6 9.756 mg/L 0.0004 0.9906 0.734 QC value within limits for A 224.058 mg/L 0.00147 0.5844 mg/L 0.00147 0.184 B 243.28.0681 182859.8 0.4906 mg/L 0.00147 0.5844 mg/L 0.0024 0.094 QC value within limits for A 233.527 Recovery = 95.124 A1 308.215 4 20827.6 9.8144 mg/L 0.00147 0.154 B 243.771 158399.5 2.2.403 mg/L 0.0024 0.9944 mg/L 0.0024 0.094 QC value within limits for A 233.527 Recovery = 95.124 B 243.5271 3545246.5 9.847 mg/L 0.0024 0.094 QC value within limits for A 233.527 Recovery = 95.124 B 243.5271 354524.5 9.847 mg/L 0.0024 0.094 QC value within limits for A 235.77 Recovery = 95.124 B 243.5271 354524.5 9.847 mg/L 0.0024 0.0948 QC value within limits for C 228.616 Recovery = 97.884 C 228.6161 3.22791.0 0.2248 mg/L 0.0024 0.0535 QC value within limits for C 228.616 Recovery = 97.884 C			0.0	60550	0.00000	Ο.	.999999	
Mo 202.031 3 Lin Thru 0 0.0 53460 0.0000 0.999992 Na 330.237 3 Lin Thru 0 0.0 15000 0.00000 0.999992 Na 330.237 3 Lin Thru 0 0.0 1824 0.0000 0.999993 Sb 206.836 3 Lin Thru 0 0.0 27430 0.0000 1.00000 Sb 206.836 3 Lin Thru 0 0.0 5719 0.0000 1.00000 Sn 189.927 3 Lin Thru 0 0.0 5799 0.0000 0.999987 Sn 189.927 3 Lin Thru 0 0.0 510900 0.0000 0.999987 T1 37.277 3 Lin Thru 0 0.0 7680 0.0000 0.999986 T1 390.801 3 Lin Thru 0 0.0 7680 0.0000 0.999998 Sr 060 0.0000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 26900 0.0000 0.999998 Sr 460.733 3 Lin Thru 0 0.0 258400 0.0000 0.999981 Sr 460.733 3 Lin Thru 0 0.0 258400 0.0000 0.999981 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460 731 0.0004 0.0000 0.00000 0.734 Sample Tr ICV Manlyte Intensity Conc. Units Std.Dev. RD Analyte Std.Dev. RD Analyte Std.Dev. Conc. Units Std.Dev. RD Analyte Std.Dev. RD A 328.0581 1.2257 840577 Recovery 9 8.1% A 308.2157 4.354286.5 9.8477 82.0084 8.0048 0.403 mg/L 0.0044 0.09% QC value within limits for A 1308.215 Recovery 9 9.1% A 233.5277 354528 5.9847 9772 Recovery 9 98.1% B 313.1071 1.601492.0 0.2438 mg/L 0.0044 0.09% QC value within limits for B 249.772 Recovery 9 98.1% B 313.1071 1.601492.0 0.2438 mg/L 0.0048 0.20% QC value within limits for C 228.616 Recovery 9 7.8% C 228.6161 3.25791.8 2.437 mg/L 0.0036 0.15% QC value within			0.0	39320	0.00000	0.	.999990	
Ni 231.604 3 Lin Thru 0 0.0 150000 0.00000 0.999992 Na 330.237 3 Lin Thru 0 0.0 1824 0.00000 0.999999 Fb 220.353 3 Lin Thru 0 0.0 27430 0.00000 0.999999 Fb 220.353 3 Lin Thru 0 0.0 5719 0.00000 0.999997 Se 186.026 3 Lin Thru 0 0.0 5719 0.00000 0.999987 T1 337.279 3 Lin Thru 0 0.0 30410 0.00000 1.000000 V 292.402 3 Lin Thru 0 0.0 7650 0.00000 0.999996 T1 337.279 3 Lin Thru 0 0.0 7650 0.00000 0.999996 T2 232.402 3 Lin Thru 0 0.0 26900 0.00000 0.999996 T2 232.402 3 Lin Thru 0 0.0 26900 0.00000 0.999996 T3 26.200 3 Lin Thru 0 0.0 26900 0.00000 0.999996 T3 26.200 3 Lin Thru 0 0.0 258400 0.00000 0.999995 T3 26.200 3 Lin Thru 0 0.0 258400 0.00000 0.999995 T3 26.200 0.999995 T4 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.9999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.9999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 260.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 T3 21.029 849717.2 0.9723 mg/L 0.00171 3 Thru 0 0.18% T3 21.029 849717.2 0.9723 mg/L 0.00171 0.18% TA 308.2151 Mean Corrected Calib Std.Dev. Conc. Units Std.Dev. RSD TA 3108.2151 420827.6 9.756 mg/L 0.00171 0.18% TA 308.2151 420827.6 9.756 mg/L 0.00171 0.18% TA 308.2151 420827.6 9.756 mg/L 0.00147 0.18% TA 308.2151 420827.6 9.756 mg/L 0.00147 0.18% TA 308.2151 420827.6 9.756 mg/L 0.00147 0.18% TA 338.8.9791 8398.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% TA 249.7721 55995.3 2.403 mg/L 0.00147 0.15% TA 249.7721 55995.3 2.403 mg/L 0.0048 0.20% TA 248.9771 11mits for B 249.772 Recovery 98.44% TA 0.0048 0.20% TA 248.771 11mits for B 249.772 Recovery 97.55% TA 267.7161 1100896.23.627 Recovery 97.88% TA 248.7721 0.9728 mg/L 0.0023 0.4894 mg/L 0.0023 0.4894 mg/L 0.0023 0.4894 mg/L 0.0023 0.4954 mg/L 0.0023 0.4954 mg/L 0.0023 0.4954 mg/L 0.0023 0.4954 mg/L 0.0023 0.4954 mg/L 0.0023 0.4954 mg/L 0.0036 0.15% TA 247.756 1.102895.7 0.4289 mg/L 0						0.	.999999	
Na 330.237 3 Lin Thru 0 0.0 1824 0.00000 0.999731 Fb 220.353 3 Lin Thru 0 0.0 27430 0.00000 1.000000 Sb 206.836 3 Lin Thru 0 0.0 5719 0.00000 1.000000 T1 337.279 3 Lin Thru 0 0.0 30410 0.00000 0.999987 T1 337.279 3 Lin Thru 0 0.0 510900 0.00000 1.000000 T1 390.801 3 Lin Thru 0 0.0 7660 0.00000 0.999996 T2 206.200 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999982 Sequence No.: 6 Sample D: ICV Analyst: Thitial Sample W: Dilution: Mean Data: ICV Mean Corrected Calib Sample Vol: Mea								
Pb 220.353 3 Lin Thru 0 0.0 27430 0.00000 0.999999 Sb 206.836 3 Lin Thru 0 0.0 5719 0.00000 1.000000 Se 196.026 3 Lin Thru 0 0.0 5799 0.00000 0.999987 T1 337.279 3 Lin Thru 0 0.0 30410 0.00000 1.000000 T1 190.801 3 Lin Thru 0 0.0 7680 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 265000 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 								
Sb 266.836 3 Lin Thru 0 0.0 5719 0.00000 1.000000 Sc 196.026 3 Lin Thru 0 0.0 5799 0.00000 0.999981 Sn 189.927 3 Lin Thru 0 0.0 510900 0.00000 0.999981 T1 30.801 3 Lin Thru 0 0.0 7660 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 25400 0.00000 0.999981 Sc 460.733 J Lin Thru 0 0.0 25400 0.00000 0.999981 Sc 460.733 J Lin Thru 0 0.0 25400 0.00000 0.999981 Sc 460.733 J Lin Thru 0 0.0 25400 0.00000 0.999981 Sample TD: ICV Data Type: Original Initial Sample Vol: Initial Sample Vol: 0.184 Malyst: Intensity Conc. Units Std.Dev. RSD 0.0184 Y 371.029 48971.2 0.9723 mg/L 0.00171 0.0184 A2328.0601 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Se 196.026 3 Lin Thru 0 0.0 5799 0.00000 0.999987 Sh 189.927 3 Lin Thru 0 0.0 30410 0.00000 1.000000 T1 190.801 3 Lin Thru 0 0.0 510900 0.00000 1.000000 T1 190.801 3 Lin Thru 0 0.0 7680 0.00000 0.999996 Zn 206.202 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Zn 206.202 3 Lin Thru 0 0.0 577.9 0.00000 0.999996 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.9999982 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.9999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999882 Sr 460.733 0.100 0.0000 0.0000 0.999882 Sr 460.734 0.0000 0.0000 0.0000 0.999882 Sr 460.734 0.00171 0.158 Sr 450.684 122859.8 0.4906 mg/L 0.00171 0.158 QC value within limits for Ag 328.068 Recovery = 98.118 Al 308.2154 4.20827.6 9.756 mg/L 0.00147 0.158 QC value within limits for Ag 328.068 Recovery = 97.558 Sr 48 188.9791 S395.3 2.403 mg/L 0.00147 0.158 QC value within limits for Ag 128.77 Recovery = 96.128 S 249.7721 S5935.3 2.403 mg/L 0.00147 0.158 B 249.7721 S5935.3 2.403 mg/L 0.00147 0.158 QC value within limits for B 249.772 Recovery = 98.448 S 249.7721 S5935.3 2.437 mg/L 0.0004 0.2438 mg/L 0.0024 0.094 QC value within limits for Ch 228.57 Recovery = 97.584 C2 228.6161 137.77 9 0.4894 mg/L 0.0023 0.4894 mg/L 0.0023 0.4994 MC value within limits for Ch 228.57 Recovery = 97.488 C2 228.6161 132571.8 2.437 mg/L 0.0035 0.4394 mg/L 0.0036 0.158 QC value wi								
Sn 189.927 3 Lin Thru 0 0.0 30410 0.00000 0.999991 T1 37.279 3 Lin Thru 0 0.0 510900 0.00000 1.000000 T1 190.801 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Xn 206.200 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999991 Sample ID: Not on thru 0 0.0 258400 0.00000 0.999982 Sequence No.: 6 Autosampler Location: 3 Sample ID: Tott Date Collected: 8/13/2010 3:09:49 PM Analyst: Data Type: Original Initial Sample Wt: Thitial Sample Wt: Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Analyst: Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 0.184 Ag 328.068 1.82859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.0046 0.0734 QC value within limits for Ag 328.068 Recovery 98.14 0.0046 9.756 mg/L 0.00147								
Ti 337.279 3 Lin Thru 0 0.0 510900 0.00000 1.000000 Ti 190.001 3 Lin Thru 0 0.0 7680 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 304200 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 377.9 0.00000 0.999996 Sca 227.546 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Scate 20.1564 Jun Thru 0 0.0 258400 0.00000 0.999982 Sample TD: ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Date Type: Original Thitial Sample W: Initial Sample Vol: Dilution: Sample Prep Vol: Sample TO: ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Date Std.Dev. Conc. Units Sample TD: ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Initial Sample Vol: 0.184 Analyst: Initial Sample Collected: 8/13/2010 3:09:49 PM 0.0184 Analyst: Intersity Conc. Units Sample								
Tl 190.801 3 Lin Thru 0 0.0 7680 0.00000 0.999996 V 292.402 3 Lin Thru 0 0.0 259000 0.00000 0.999996 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999998 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999981 Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sequence No.: 6 Autosampler Location: 3 Sample Dr ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Data Type: Original Initial Sample W: Initial Sample Vol: Dilution: Sample Tropper Vol: Mean Corrected Calib Sample Prep Vol: Mean Corrected Calib Sample Prep Vol: Mean Corrected Calib Sample Prep Vol: Mean Corrected Calib Std.Dev. Conc. Units Std.Dev. RSD Al 328.0681 182859.8 0.4906 mg/L 0.00171 0.18% Ag 328.0681 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 0.73% QC value within limits for Ag 328.068 Recovery = 98.11% As 188.9791 8398.8 0.9944 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 96.12% B 249.7724 S53953.3 2.403 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for B 249.772 Recovery = 96.12% B 249.7724 S53953.3 2.403 mg/L 0.0024 9.847 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 98.47% B 243.107 1.601492.0 0.2438 mg/L 0.0026 0.4948 mg/L 0.0040 0.7% CC value within limits for B 249.772 Recovery = 98.47% B 243.107 1.601492.0 0.2438 mg/L 0.0026 0.4948 mg/L 0.0040 0.17% QC value within limits for B 249.772 Recovery = 98.478 B 243.107 1.601492.0 0.2438 mg/L 0.0026 0.4948 mg/L 0.00239 0.4944 mg/L 0.00239 0.4944 QC value within limits for B 249.772 Recovery = 97.58% Ca 226.5021 1.187277.9 0.4894 mg/L 0.0036 2.437 mg/L 0.00239 0.494 QC value within limits for Cd 226.50 Recovery = 97.88% Ca 226.5021 1.187277.9 0.4894 mg/L 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Cd 226.50 Recovery = 97.88% Ca 226.5021 1.187277.9 0.4894 mg/L 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Cd 226.50 Recovery = 97.88% Cd 226.5021 1.187277.9 0.4894 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cd 226.50 Recovery = 97.88%								
V 292.402 3 Lin Thru 0 0.0 269000 0.00000 0.999996 Zn 206.200 3 Lin Thru 0 0.0 304200 0.00000 0.9999961 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.9999981 Sr 460.733 3 Lin Thru 0 0.0 254400 0.00000 0.999981 Sr 460.733 3 Lin Thru 0 0.0 254400 0.00000 0.999982 Sequence No.: 6 Sample TD: ICV Analyst: Data Collected: 8/13/2010 3:09:49 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Tecation: 3 Sample Tree Vol: Sample Tree Vol: Sample Tree Vol: Sample Std.Dev. Conc. Units Std.Dev. Conc. Units Std.Dev. RSD (C value within limits for Ag 328.068 mg/L 0.00171 0.18% Al 308.2154 420827.6 9.756 mg/L 0.00147 0.9844 mg/L 0.00360 0.73% QC value within limits for Ag 328.0684 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% As 1388.9794 8398.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for Ag 328.057 Recovery = 98.14% As 1388.2774 55935.3 2.403 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for Ba 233.527 Recovery = 98.44% B 249.7724 55935.3 2.403 mg/L 0.00147 0.9844 mg/L 0.0048 0.20% QC value within limits for Ba 233.527 Recovery = 98.47% Be 313.1077 1.601492.0 0.2438 mg/L 0.00040 0.2438 mg/L 0.0040 0.17% QC value within limits for Ba 233.527 Recovery = 98.47% Be 313.1077 1.601492.0 0.2438 mg/L 0.0023 0.4894 mg/L 0.0023 0.4994 QC value within limits for Ba 233.527 Recovery = 97.52% Cd 226.5021 18727.9 0.4894 mg/L 0.0023 0.4894 mg/L 0.0023 0.49% QC value within limits for Be 313.107 Recovery = 97.52% Cd 226.5021 18727.9 0.4894 mg/L 0.0023 0.4994 mg/L 0.0023 0.49% QC value within limits for Cd 226.50 Recovery = 97.88% Cd 226.5021 18727.9 0.4894 mg/L 0.0023 0.49% CC value within limits for Cd 226.50 Recovery = 97.88% Cd 226.5021 18727.9 0.4894 mg/L 0.0036 2.437 mg/L 0.0036 0.15% CC value within limits for Cd 226.50 Recovery = 97.88% Cd 226.5021 18927.9 0.4894 mg/L 0.00170 0.35% CC value within limits for Cd 226.502 Recovery = 97.88% Cd 226.502 1 18727.9 0.4894 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% CC value within limits								
Zn 206.200 3 Lin Thru 0 0.0 304200 0.00000 0.999991 Ca 227.546 3 Lin Thru 0 0.0 577.9 0.00000 0.999981 Sr 460.733 3 Lin Thru 0 0.0 577.9 0.00000 0.999981 Sample TD: All Thru 0 0.0 258400 0.00000 0.999981 Sample TD: ICV Date Collected: 8/13/2010 3:09:49 PM Malyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample ProVol: Mean Corrected Calib Sample Analyte Intensity Conc. Units Std.Dev. Mean Corrected Calib Sample Analyte Intensity Conc. Units Std.Dev. Ag 328.068t 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 Ag 328.068t 182859.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% Ag 328.068t 182825.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for Ag 328	V 292.402 3	Lin Thru O	0.0					
Sr 460.733 3 Lin Thru 0 0.0 258400 0.00000 0.999982 Sequence No.: 6 Autosampler Location: 3 Sample TD: ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Initial Sample Vt. Initial Sample Wt: Initial Sample Vol: Dilution: Sample Tocation: 3 Mean Corrected Calib Sample Analyte Intensity Conc. Units Alusosample Vol: Std.Dev. Conc. Units Std.066t 12259.8 0.4906 mg/L 0.0084 0.738 QC value within limits for Ag 328.068 Recovery = 98.11% 0.00171 0.18% Al 308.215f 420827.6 9.756 mg/L 0.00171 0.0084 0.09% QC value within limits for Ag 328.08 0.9844 mg/L 0.00147 0.5844 mg/L 0.00147 0.18% As 188.979t 8398.8 0.9844 mg/L 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 97.56% 82 233.527 S545246.5 9.847 mg/L 0.0084 0.02% QC value within limits for B 249.772 Recovery = 98.41% <td< td=""><td>Zn 206.200 3</td><td>Lin Thru O</td><td>0.0</td><td>304200</td><td>0.00000</td><td>Ο.</td><td>999999</td><td></td></td<>	Zn 206.200 3	Lin Thru O	0.0	304200	0.00000	Ο.	999999	
Sequence No.: 6 Autosampler Location: 3 Sample ID: ICV Date Collected: 8/13/2010 3:09:49 PM Analyst: Date Collected: 8/13/2010 3:09:49 PM Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: ICV Sample Prep Vol: Mean Data: ICV Mean Corrected Calib Malyte Intensity Conc. Units Std.Dev. Y 371.029 Std89717.2 0.9723 mg/L 0.00171 0.18% Ag 328.068t 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 0.73% QC value within limits for Ag 328.068 Recovery = 98.11% 0.0084 9.756 mg/L 0.0084 0.09% As 188.979 8398.8 0.9844 mg/L 0.0017 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% 8243.7721 559395.3 2.403 mg/L 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 98.44% 833.527 8245.5 9.847 mg/L 0.0084 0.20% Ba 233.527 3545246.5 9.847 mg/L <td></td> <td></td> <td></td> <td>577.9</td> <td>0.00000</td> <td>0.</td> <td>999981</td> <td></td>				577.9	0.00000	0.	999981	
Sequence No.: 6 Autosampler Location: 3 Date Collected: 8/13/2010 3:09:49 PM Data Type: Original Initial Sample Wt: Dilution: Date Type: Original Initial Sample Vol: Sample Prep Vol: Mean Data: ICV Mean Corrected Calib Sample Malyst: Initial Sample Vol: One Mean Data: ICV Mean Corrected Calib Sample Malyte Intensity Conc. Units Std.Dev. Conc. Units Y 371.029 8489717.2 0.9723 mg/L 0.00171 0.18% Ag 328.068t 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 0.73% QC value within limits for Ag 328.068 Recovery = 98.11% 8.108.979t 0.0084 9.756 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 97.55% 8.188.979t 0.0044 0.9644 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 96.12% 9.844% 9.844% 0.0048 0.20% QC value within limits for Ba 233.527 Recovery = 97.52% 0.0044 0.4894 mg/L 0.00230 0.4894 mg/L 0.00239 0.4984 B 233.107t 1601492.0 0.2438 mg/L 0.00036 0.2438 mg/L <	Sr 460.733 3	Lin Thru O	0.0	258400	0.00000	0.	999982	
Mean Data: ICVMean CorrectedCalibSampleAnalyteIntensityConc. UnitsStd.Dev.Conc. UnitsStd.Dev.RSDAnalyteIntensityConc. UnitsStd.Dev.Conc. UnitsStd.Dev.RSDAg 328.0681182859.80.4906 mg/L0.003600.4906 mg/L0.003600.73%QC value within limits for Ag 328.068Recovery = 98.11%0.00849.756 mg/L0.00840.09%QC value within limits for Ag 328.068Recovery = 97.56%0.001470.9844 mg/L0.001470.15%As 188.97918398.80.9844 mg/L0.001470.9844 mg/L0.001470.15%QC value within limits for As 188.979Recovery = 98.44%0.00482.403 mg/L0.00480.20%QC value within limits for B 249.772Recovery = 96.12%8233.52713545246.59.847 mg/L0.00849.847 mg/L0.00480.9%QC value within limits for Ba 233.527Recovery = 97.52%0.002390.4894 mg/L0.002390.49%QC value within limits for Ba 313.107Recovery = 97.52%0.0228.50211.87277.90.4894 mg/L0.002390.4894 mg/L0.002390.49%QC value within limits for Cd 226.502Recovery = 97.88%0.00362.437 mg/L0.00360.15%Co 228.6161325791.82.437 mg/L0.00362.437 mg/L0.00360.15%Co 228.6161325791.82.437 mg/L0.001700.4929 mg/L0.001700.35%Cr 267.7164108996.20	Sequence No.: 6 Sample ID: ICV Analyst: Initial Sample Wt: Dilution:		An Di Di In	itosampler Locate Collected ata Type: Orig nitial Sample	cation: 3 : 8/13/20 ginal Vol:			~
Y 371.029 8489717.2 0.9723 mg/L 0.00171 0.18% Ag 328.068t 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 0.73% QC value within limits for Ag 328.068 Recovery = 98.11% 0.0084 9.756 mg/L 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.00177 0.18% Al 308.215t 420827.6 9.756 mg/L 0.0084 9.756 mg/L 0.0084 0.0084 0.009% QC value within limits for Al 308.215 Recovery = 97.56% 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% 0.00048 2.403 mg/L 0.00147 0.15% QC value within limits for Ba 233.527 Recovery = 96.12% 0.0084 9.847 mg/L 0.0084 0.09% QC value within limits for Ba 233.527 Recovery = 98.47% 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Ba 313.107 Recovery = 97.52% 0.2438 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.	Mean Data: ICV	Mean Corrected	Calib					
Ag 328.068t 182859.8 0.4906 mg/L 0.00360 0.4906 mg/L 0.00360 0.73% QC value within limits for Ag 328.068 Recovery = 98.11% 0.0084 9.756 mg/L 0.0084 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% 8 2.403 mg/L 0.0048 0.20% 0.20% 0.0048 0.20% 0.20% 0.0048 0.20% 0.20% 0.0048 0.20% 0.20% 0.20% 0.0048 0.20% <td< td=""><td>Analyte</td><td></td><td></td><td></td><td>Conc.</td><td>Units</td><td>Std.Dev.</td><td></td></td<>	Analyte				Conc.	Units	Std.Dev.	
QC value within limits for Ag 328.068 Recovery = 98.11% Al 308.215† 420827.6 9.756 mg/L 0.0084 9.756 mg/L 0.0084 0.09% QC value within limits for Al 308.215 Recovery = 97.56% 8398.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% 0.0048 2.403 mg/L 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 96.12% 0.0084 9.847 mg/L 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0048 0.20% QC value within limits for Ba 233.527 Recovery = 96.12% Ba 233.527t 3545246.5 9.847 mg/L 0.0084 9.847 mg/L 0.0084 0.09% QC value within limits for Ba 133.107 Recovery = 98.47% Be 313.107t 1601492.0 0.2438 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.52% 187277.9 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49%<					A 4555		0 000 00	
Al 308.215† 420827.6 9.756 mg/L 0.0084 9.756 mg/L 0.0084 0.09% QC value within limits for Al 308.215 Recovery = 97.56% As 188.979† 8398.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% B 249.772† 559395.3 2.403 mg/L 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 96.12% Ba 233.527† 3545246.5 9.847 mg/L 0.0084 9.847 mg/L 0.0084 0.09% QC value within limits for Ba 233.527 Recovery = 98.47% Be 313.107† 1601492.0 0.2438 mg/L 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Be 313.107 Recovery = 97.52% Cd 226.502† 187277.9 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% Co 228.616† 325791.8 2.437 mg/L 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% Cr 267.716† 108996.2 0.4929 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% Cu 324.752† 577260.0 1.222 mg/L 0.0009 1.222 mg/L 0.0009 0.07%					0.4906	mg/L	0.00360	0.73%
As 188.979† 8398.8 0.9844 mg/L 0.00147 0.9844 mg/L 0.00147 0.15% QC value within limits for As 188.979 Recovery = 98.44% 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 96.12% 0.0084 9.847 mg/L 0.0084 0.20% QC value within limits for B 233.527 Recovery = 96.12% 0.0084 9.847 mg/L 0.0084 0.09% QC value within limits for Ba 233.527 Recovery = 98.47% 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Ba 233.527 Recovery = 97.52% 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Be 313.107 Recovery = 97.52% 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits	Al 308.215†	420827.6	9.756 mg/L	0.0084	9.756	mg/L	0.0084	0.09%
B 249.772† 559395.3 2.403 mg/L 0.0048 2.403 mg/L 0.0048 0.20% QC value within limits for B 249.772 Recovery = 96.12% 0.0084 9.847 mg/L 0.0084 0.0078 0.00040 0.17% GC value within limits for Be 313.107 Recovery = 97.52% 0.4894 mg/L 0.000239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% 0.2437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% 0.00170 0.4929 mg/L 0.00170 0.35% QC value wit	As 188.979†	8398.8	0.9844 mg/L	0.00147	0.9844	mg/L	0.00147	0.15%
Ba 233.527t 3545246.5 9.847 mg/L 0.0084 9.847 mg/L 0.0084 0.09% QC value within limits for Ba 233.527 Recovery = 98.47% 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Ba 313.107 Recovery = 97.52% 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Be 313.107 Recovery = 97.52% 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Cr 267.716 Recovery = 98.59% 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% 0.0009 1.222 mg/L 0.0009 0.07%	B 249.772†	559395.3	2.403 mg/L	0.0048	2.403	mg/L	0.0048	0.20%
Be 313.107t 1601492.0 0.2438 mg/L 0.00040 0.2438 mg/L 0.00040 0.17% QC value within limits for Be 313.107 Recovery = 97.52% 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% 2.437 mg/L 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Cd 228.616 Recovery = 97.48% 0.0036 2.437 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% 0.0009 1.222 mg/L 0.0009 0.07%	Ba 233.527†	3545246.5	9.847 mg/L	0.0084	9.847	mg/L	0.0084	0.09%
Cd 226.502† 187277.9 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.4894 mg/L 0.00239 0.49% QC value within limits for Cd 226.502 Recovery = 97.88% 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Co 267.716 Recovery = 98.59% 0.0009 1.222 mg/L 0.0009 0.07%	Be 313.107†	1601492.0	0.2438 mg/L	0.00040	0.2438	mg/L	0.00040	0.17%
CO 228.616† 325791.8 2.437 mg/L 0.0036 2.437 mg/L 0.0036 0.15% QC value within limits for Co 228.616 Recovery = 97.48% 0.00170 0.4929 mg/L 0.00170 0.35% Cr 267.716t 108996.2 0.4929 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% 0.0009 1.222 mg/L 0.0009 0.07%	Cd 226.502†		0.4894 mg/L	0.00239	0.4894	mg/L	0.00239	0.49%
Cr 267.716† 108996.2 0.4929 mg/L 0.00170 0.4929 mg/L 0.00170 0.35% QC value within limits for Cr 267.716 Recovery = 98.59% Cu 324.752† 577260.0 1.222 mg/L 0.0009 1.222 mg/L 0.0009 0.07%	oc varue witnin		C CAA					
Cu 324.752† 577260.0 1.222 mg/L 0.0009 1.222 mg/L 0.0009 0.07%	Co 228.616†	limits for Cd 22 325791.8	2.437 mg/L	0.0036	2.437	mg/L	0.0036	0.15%
	Co 228.616† QC value within Cr 267.716†	limits for Cd 22 325791.8 limits for Co 22 108996.2	2.437 mg/L 8.616 Recovery = 0.4929 mg/L	0.0036 97.48% 0.00170		-		

Method: AXIAL200-	5010 L Opt4	Pa	age 5		Date:	: 8/13/2010 3	:17:41 P
e 238.863†	296846.7	4.894 mg/L 238.863 Recovery	0.0140	4.894	mg/L	0.0140	0.29%
Unable to evalu	3987.4	238.863 RECOVEL	/ = 9/.00%			60.78	1.52%
g 279.077†	973416.2	24.76 mg/L 279.077 Recovery	0.071	24.76	mg/L	0.071	0.29%
n 257.610†	1268246.0	0.7391 mg/L 257.610 Recovery	0.00069	0.7391	mg/L	0.00069	0.09%
0 202.031†	129638.4	2.425 mg/L 202.031 Recovery	0.0309	2.425	mg/L	0.0309	1.27%
i 231.604†	296735.9		0.0096	1.978	mg/L	0.0096	0.49%
a 330.237†	41573.8	22.78 mg/L 22.78 mg/L imit for Na 330.2	0.096	22.78	mg/L	0.096	0.42%
b 220.353†	13628.8	0.4978 mg/L 220.353 Recovery	0.00246	0.4978	mg/L	0.00246	0.49%
⊃ 206.836†	28187.8	4.929 mg/L 206.836 Recovery	0.0463	4.929	mg/L	0.0463	0.94%
≥ 196.026†	2837.6	0.4901 mg/L 196.026 Recovery	0.00385	0.4901	mg/L	0.00385	0.79%
189.927†	149116.8	4.908 mg/L 189.927 Recovery	0.0220	4.908	mg/L	0.0220	0.45%
. 337.279†	1245263.0		0.0377	2.437	mg/L	0.0377	1.55%
. 190.801†	7639.4	0.9952 mg/L 190.801 Recovery	0.00779	0.9952	mg/L	0.00779	0.78%
292.402†	653349.2	· · ·	0.0108	2.429	mg/L	0.0108	0.45%
1 206.200†	300166.5	0.9854 mg/L 206.200 Recovery	0.00195	0.9854	mg/L	0.00195	0.20%
227.546†	14076.9		0.118	24.62	mg/L	0.118	0.48%
<u></u>	COCEED 4			0 404			
C Failed. Contin	limits for Sr 4 ue with analysis	460.733 Recovery 5.	= 96.96% ====================================	cation: 1			
QC value within C Failed. Contin Equence No.: 7 Ample ID: ICB Malyst: Mitial Sample Wt:	limits for Sr 4 ue with analysis	460.733 Recovery	= 96.96% ====================================	ocation: 1 1: 8/13/201 iginal 2 Vol:			
QC value within C Failed. Contin equence No.: 7 Imple ID: ICB Halyst: Litial Sample Wt:	limits for Sr 4 ue with analysis	460.733 Recovery	= 96.96% Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 1 d: 8/13/201 iginal e Vol: ol:	LO 3:14		
QC value within C Failed. Contin equence No.: 7 umple ID: ICB alyst: itial Sample Wt: lution:	limits for Sr 4 ue with analysis	460.733 Recovery	= 96.96% Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	ocation: 1 1: 8/13/201 iginal 2 Vol:	LO 3:14		
QC value within C Failed. Contin equence No.: 7 mmple ID: ICB talyst: titial Sample Wt: lution: ean Data: ICB	limits for Sr 4 ue with analysis	60.733 Recovery	= 96.96% Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	pcation: 1 d: 8/13/201 iginal e Vol: pl:	53.14 Sample		
QC value within Failed. Contin quence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: 	limits for Sr 4 ue with analysis	60.733 Recovery	= 96.96% Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	pcation: 1 d: 8/13/201 iginal e Vol: pl:	LO 3:14		RSD
QC value within Failed. Contin quence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: 	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3	160.733 Recovery	<pre>std.Dev. 0.00050 0.00048 </pre>	conc. -0.0001	Sample Units		RSD 0.05%
QC value within Failed. Contin quence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: an Data: ICB alyte 371.029 328.068† QC value within 308.215†	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6	60.733 Recovery Calib Conc. Units 0.9928 mg/L	<pre>std.Dev. 0.00050 0.000165</pre>	Conc. -0.0001 -0.0026	Sample Units mg/L	 :09 PM Std.Dev.	RSD 0.05% 437.58%
QC value within Failed. Contin quence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: 	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Al 3 9.3 limits for As 1	60.733 Recovery Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 08.215 Recovery 0.0011 mg/L 88.979 Recovery	<pre>std.Dev. 0.00018 std.collected sample Prep Vo std.Dev. 0.00050 0.00048 source calcula 0.00165 source calcula 0.00018 source calcula 0.00018</pre>	Conc. -0.0001 ated 0.0011 0.0011	Sample Units mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165	RSD 0.05% 437.58% 63.26%
QC value within Failed. Contin equence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: an Data: ICB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772†	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Al 3 9.3 limits for As 1 2561.4	60.733 Recovery Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 08.215 Recovery 0.0011 mg/L	<pre>set = 96.96% set = 96.96% set = 96.96% set = 0000000000 set = 00000000 set = 00000000000000000000000000000000000</pre>	cation: 1 d: 8/13/201 iginal Vol: ol: -0.0001 ated -0.0026 ated 0.0011 ated 0.0111	Sample Units mg/L mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165	RSD 0.05% 437.58% 63.26% 16.05%
QC value within Failed. Contin quence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: an Data: ICB alyte 371.029 328.068† QC value within 188.979† QC value within 249.772† QC value within 233.527†	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 9.3 limits for Al 3 9.3 limits for As 1 2561.4 limits for B 24 1061.7 limits for Ba 2	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 08.215 Recovery 0.0011 mg/L 88.979 Recovery 0.0111 mg/L 9.772 Recovery 0.0029 mg/L 33.527 Recovery	<pre>std.Dev. O.00050 O.00048 Std.Dev. O.00050 O.00048 Not calcular O.00165 Not calcular O.00251 Not calcular O.00251 Not calcular O.00036</pre>	Conc. -0.0001 ated -0.0011 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0029	Sample Units mg/L mg/L mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165 0.00018	RSD 0.05% 437.58% 63.26% 16.05% 22.62%
QC value within Failed. Contin uple ID: ICB alyst: itial Sample Wt: lution: an Data: ICB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107†	<pre>limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for As 1 2561.4 limits for B 24 1061.7 limits for Ba 2 574.9 limits for Be 3</pre>	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 08.215 Recovery 0.0011 mg/L 88.979 Recovery 0.0111 mg/L 9.772 Recovery 0.0111 mg/L 33.527 Recovery 0.0001 mg/L 33.527 Recovery 0.0001 mg/L 13.107 Recovery	<pre>std.Dev. Date Collected Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00050 0.00048 = Not calcula 0.00018 = Not calcula 0.00018 = Not calcula 0.00036 = Not calcula 0.00036 = Not calcula 0.00004 = Not calcula</pre>	Conc. -0.0001 ated -0.0011 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0029 ated 0.0001 ated 0.0001 ated 0.0001 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev 0.00048 0.00165 0.00018 0.00251 0.00036 0.00004	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11%
QC value within Failed. Contin Upper Continer mple ID: ICB alyst: itial Sample Wt: lution: 	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for As 1 2561.4 limits for Ba 2 574.9 limits for Ba 2 574.9 limits for Be 3 572	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 08.215 Recovery 0.0011 mg/L 88.979 Recovery 0.0111 mg/L 9.772 Recovery 0.0029 mg/L 33.527 Recovery 0.0029 mg/L 33.527 Recovery 0.0001 mg/L 13.107 Recovery 0.0000 mg/L 26.502 Recovery	<pre>std.Dev. Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00050 0.00048 = Not calcula 0.00165 = Not calcula 0.00018 = Not calcula 0.00251 = Not calculat 0.00036 = Not calculat 0.00004 = Not calculat 0.00004 = Not calculat 0.00004</pre>	Conc. -0.0001 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0029 ated 0.0001 ated 0.00000 ated 0.0000 ated 0.0000 ated 0.000000 ated 0.00000 ated 0.000000 ated 0.000000 ated 0.000000 ated 0.000000 ated 0.00000000000000000000000000000000000	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165 0.00018 0.000251 0.00036 0.00004 0.00005	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11% 404.58%
QC value within Failed. Contin equence No.: 7 mple ID: ICB alyst: itial Sample Wt: lution: 	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for As 1 2561.4 limits for As 1 2561.4 limits for Be 24 1061.7 limits for Be 2 574.9 limits for Be 3 5.2 limits for Cd 2 65.4	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery 0.0026 mg/L 28.068 Recovery 0.0011 mg/L 88.979 Recovery 0.0011 mg/L 9.772 Recovery 0.0011 mg/L 33.527 Recovery 0.0029 mg/L 33.527 Recovery 0.0001 mg/L 13.107 Recovery 0.0001 mg/L 13.107 Recovery 0.0000 mg/L 26.502 Recovery 0.0005 mg/L 28.616 Recovery	<pre>std.Dev. Date Collected Data Type: Ori Initial Sample Sample Prep Vo Sample</pre>	Conc. -0.0001 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0001 ated 0.0001 ated 0.0001 ated 0.00000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.0000 ated 0.00005 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165 0.00018 0.00251 0.00036 0.00004 0.00005 0.00005	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11% 404.58% 4.72%
QC value within Failed. Contin equence No.: 7 mple ID: ICB alyst: ditial Sample Wt: lution: fan Data: ICB alyte 371.029 328.068; QC value within 308.215; QC value within 188.979; QC value within 249.772; QC value within 233.527; QC value within 313.107; QC value within 226.502; QC value within 228.616; QC value within 267.716;	limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for Ag 3 -12.6 limits for Bg 4 -5.2 limits for Cg 2 -5.4 limits for Cg 2 -5.4 limits for Cg 2	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 28.068 Recovery 0.0011 mg/L 28.068 Recovery 0.0011 mg/L 9.772 Recovery 0.0011 mg/L 33.527 Recovery 0.0001 mg/L 33.527 Recovery 0.0001 mg/L 13.107 Recovery 0.0000 mg/L 26.502 Recovery 0.0005 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery	<pre>std.Dev. Date Collected Data Type: Ori Initial Sample Sample Prep Vo Sample</pre>	Conc. -0.0001 ated -0.0001 ated 0.0011 ated 0.0011 ated 0.0001 ated 0.0000 ated 0.0000 ated 0.0005 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.0000000 ated 0.00000000000000000000000000000000000	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev 0.00048 0.00165 0.00018 0.000251 0.000036 0.00004 0.00005 0.00005 0.00002 0.00001	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11% 404.58% 4.72% 33.84%
QC value within Failed. Contin equence No.: 7 umple ID: ICB talyst: titial Sample Wt: lution: an Data: ICB san Data: ICB san Data: ICB salyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 233.527† QC value within 313.107† QC value within 226.502† QC value within 228.616† QC value within 267.716† QC value within 324.752† QC value within	<pre>limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for Ag 3 112.6 limits for Ag 3 112.6 limits for Ba 4 1061.7 limits for Ba 2 574.9 limits for Ba 2 574.9 limits for Cd 2 65.4 limits for Cd 2 5.4 limits for Cc 2 2368.5 limits for Cu 3</pre>	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 28.068 Recovery 0.0011 mg/L 28.979 Recovery 0.0011 mg/L 33.527 Recovery 0.0029 mg/L 33.527 Recovery 0.0000 mg/L 33.527 Recovery 0.0001 mg/L 33.527 Recovery 0.0000 mg/L 26.502 Recovery 0.0005 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L	<pre>std.Dev. Date Collected Date Collected Data Type: Ord Initial Sample Sample Prep Vo Sample</pre>	Conc. -0.0001 ated -0.0026 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0001 ated 0.0001 ated 0.0000 ated 0.0005 ated 0.0005 ated 0.0005 ated 0.0050	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev. 0.00048 0.00165 0.00018 0.00251 0.00036 0.00004 0.00005 0.00005	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11% 404.58% 4.72% 33.84%
QC value within Failed. Contin equence No.: 7 imple ID: ICB halyst: hitial Sample Wt: lution: an Data: ICB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 233.527† QC value within 313.107† QC value within 228.616† QC value within 24.752† QC value within 324.752† QC value within 324.752† QC value within 328.863†	<pre>limits for Sr 4 ue with analysis Mean Corrected Intensity 8668608.8 -40.9 limits for Ag 3 -112.6 limits for Ag 3 -112.6 limits for As 1 2561.4 limits for Ba 2 574.9 limits for Ba 2 574.9 limits for Ca 2 65.4 limits for Ca 2 2368.5 limits for Cu 3 163.4</pre>	Calib Conc. Units 0.9928 mg/L -0.0001 mg/L 28.068 Recovery -0.0026 mg/L 28.979 Recovery 0.0011 mg/L 88.979 Recovery 0.0011 mg/L 9.772 Recovery 0.0011 mg/L 33.527 Recovery 0.0029 mg/L 33.527 Recovery 0.0000 mg/L 13.107 Recovery 0.0000 mg/L 26.502 Recovery 0.0005 mg/L 28.616 Recovery 0.0000 mg/L 28.616 Recovery 0.0000 mg/L 67.716 Recovery 0.0050 mg/L	<pre>std.Dev. Date Collected Data Type: Ori Initial Sample Sample Prep Vo Sample</pre>	Conc. -0.0001 ated -0.0026 ated 0.0011 ated 0.0011 ated 0.0011 ated 0.0001 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.00000 ated 0.000000 ated 0.000000 ated 0.0000000 ated 0.00000000000000000000000000000000000	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	:09 PM Std.Dev 0.00048 0.00165 0.00018 0.000251 0.00004 0.00005 0.00002 0.00002 0.00001 0.000129	RSD 0.05% 437.58% 63.26% 16.05% 22.62% 12.14% 43.11% 404.58% 4.72% 33.84% 25.68%

Method: AXIAL200-6010 L Opt4 б Date: 8/13/2010 3:23:20 PM Page Mg 279.077† 8.7 0.0002 mg/L 0.00065 0.0002 mg/L 0.00065 295.39% QC value within limits for Mg 279.077 Recovery = Not calculated 0.0004 mg/L Mn 257.610† 686.2 0.00004 0.0004 mg/L 0.00004 9.63% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 85.8 0.0016 mg/L 0.00060 0.0016 mg/L 0.00060 37.23% QC value within limits for Mo 202.031 Recovery = Not calculated Ni 231.604† 63.8 0.0004 mg/L 0.00006 0.0004 mg/L 0.00006 14.41% QC value within limits for Ni 231.604 Recovery = Not calculated -0.1570 mg/L 0.05700 Na 330.237† -286.3 -0.1570 mg/L 0.05700 36.31% QC value within limits for Na 330.237 Recovery = Not calculated Pb 220.353† 0.00003 30.5 0.0011 mg/L 0.00003 0.0011 mg/L 2.51% QC value within limits for Pb 220.353 Recovery = Not calculated Sb 206.836† 0.00153 0.0012 mg/L 0.00153 133.01% 6.6 0.0012 mg/L QC value within limits for Sb 206.836 Recovery = Not calculated 0.00157 675.36% Se 196.026† -1.4 -0.0002 mg/L -0.0002 mg/L 0.00157 QC value within limits for Se 196.026 Recovery = Not calculated 0.0165 mg/L Sn 189.927† 503.1 0.00205 0.0165 mg/L 0.00205 12.41% QC value within limits for Sn 189.927 Recovery = Not calculated 0.0001 mg/L Ti 337.279† 59.5 0.00008 0.0001 mg/L 0.00008 65.39% QC value within limits for Ti 337.279 Recovery = Not calculated Tl 190.801† 10.8 0.0014 mg/L 0.00033 0.0014 mg/L 0.00033 23.17% QC value within limits for Tl 190.801 Recovery = Not calculated 0.0005 mg/L V 292.402† 0.0005 mg/L 126.7 0.00015 0.00015 31.32% QC value within limits for V 292.402 Recovery = Not calculated Zn 206.200† 55.2 0.0002 mg/L 0.00007 0.0002 mg/L 0.00007 41.34% QC value within limits for Zn 206.200 Recovery = Not calculated 0.0161 mg/L Ca 227.5461 9.3 0.03673 0.0161 mg/L 0.03673 227.42% QC value within limits for Ca 227.546 Recovery = Not calculated 0.0002 mg/L 0.00069 410.45% Sr 460.733† 43.4 0.0002 mg/L 0.00069 QC value within limits for Sr 460.733 Recovery = Not calculated All analyte(s) passed QC. One or more analytes were not evaluated. Sequence No.: 8 Autosampler Location: 6 Sample ID: MRL Date Collected: 8/13/2010 3:19:58 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: MRL Mean Corrected Calib Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 8801647.1 1.008 mg/L 0.0023 0.22% Ag 328.068† 0.0097 mg/L 1.79% 0.0097 mg/L 0.00017 0.00017 3626.8 QC value within limits for Ag 328.068 Recovery = 97.28% 0.1861 mg/L Al 308.215† 8029.2 0.00453 0.1861 mg/L 0.00453 2.43% QC value within limits for Al 308.215 Recovery = 93.03% As 188.979† 176.5 0.0207 mg/L 0.00022 0.0207 mg/L 0.00022 1.07% QC value within limits for As 188.979 Recovery = 103.42% B 249.772† 41854.8 0.1808 mg/L 0.1808 mg/L 0.00467 2.59% 0.00467 QC value within limits for B 249.772 Recovery = 90.40% 0.2023 mg/L Ba 233.527t 72838.4 0.2023 mg/L 0.00258 0.00258 1.28% QC value within limits for Ba 233.527 Recovery = 101.15% 0.0047 mg/L 30982.4 0.00006 0.0047 mg/L 0.00006 Be 313.107t 1.32% QC value within limits for Be 313.107 Recovery = 94.33% 0.0098 mg/L Cd 226.5021 3743.1 0.00001 0.0098 mg/L 0.00001 0.13% QC value within limits for Cd 226.502 Recovery = 97.82% 0.0497 mg/L 6647.8 0.00010 0.0497 mg/L 0.00010 0.21% Co 228.616† QC value within limits for Co 228.616 Recovery = 99.45% Cr 267.716† 2193.7 0.0099 mg/L 0.00006 0.0099 mg/L 0.00006 0.60% QC value within limits for Cr 267.716 Recovery = 99.25% 12015.3 0.0254 mg/L 0.00023 0.0254 mg/L 0.00023 0.90% Cu 324.752† QC value within limits for Cu 324.752 Recovery = 101.71% 0.0946 mg/L Fe 238.863† 5743.6 0.0946 mg/L 0.00121 1.28% 0.00121 QC value within limits for Fe 238.863 Recovery = 94.56% K 404.721† 28.3 142.05 502.47% Unable to evaluate QC. 39723.0 Mg 279.077† 1.010 mg/L 0.0146 1.010 mg/L 0.0146 1.44% QC value within limits for Mg 279.077 Recovery = 101.03% Mn 257.610† 25972.8 0.0151 mg/L 0.00018 0.0151 mg/L 0.00018 1.16% QC value within limits for Mn 257.610 Recovery = 100.81%

QC value within limits for Ti 337.279 Recovery = 100.31% 0.00037 0.0199 mg/L 0.00037 1 TI 190.801t 152.8 0.0199 mg/L 0.00037 0.0199 mg/L 0.00037 1 QC value within limits for TI 190.801 Recovery = 99.52% 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00078 0.0470 mg/L 0.00078 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00078 1 0.00071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		010 L Opt4	Page	a 7		Date:	8/13/2010 3	:27:32 PI	
Ni 231.6041 5972.1 0.0398 mg/L 0.0008 0.0398 mg/L 0.0008 0 CC value within limits for N 231.648 Recovery = 99.548 0 CV value within limits for N 230.237 Recovery = 71.624 mg/L 0.00022 2 0 CV value within limits for N 230.237 Recovery = 71.624 mg/L 0.00022 2 0 CV value within limits for N 230.237 Recovery = 71.624 mg/L 0.00022 1 0 CV value within limits for S 206.836 Recovery = 91.384 0 20 value within limits for S 206.836 Recovery = 91.384 0 20 value within limits for S 206.836 Recovery = 91.384 0 20 value less than the lower limit for Se 196.024 Recovery = 73.054 0 CV value within limits for S 206.836 Recovery = 91.384 0 CV value within limits for S 206.836 Recovery = 91.384 0 CV value vithin limits for T 130.7279 Recovery = 100.314 0 CV value within limits for T 130.7279 Recovery = 100.314 0 CV value within limits for T 130.7279 Recovery = 99.524 0 CV value within limits for T 100.601 Recovery = 99.524 0 CV value within limits for T 200.600 mg/L 0.00078 0.0195 mg/L 0.00078 1 1 260.8017 1 260.001 1 152.8 0.0199 mg/L 0.00078 0.0195 mg/L 0.00078 1 0 CV value within limits for T 200.200 Recovery = 99.534 0 CV value within limits for T 200.200 Recovery = 99.534 0 CV value within limits for T 200.200 Recovery = 98.384 0 CV value within limits for T 200.200 Recovery = 98.384 0 CV value within limits for T 460.733 Recovery = 89.764 0 CV value within limits for T 460.733 Recovery = 89.764 0 CV value within limits for T 460.733 Recovery = 89.764 0 CV value within limits for A 46.733 Recovery = 89.764 0 CV value within limits for A 46.733 Recovery = 89.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.733 Recovery = 80.764 0 CV value within limits for A 46.715 Recovery		limits for Mo	202.031 Recovery =	= 100.25%		-		0.21%	
NB 330.237? 1307.2 0.7327 mg/L 0.08277 0.7162 mg/L 0.08277 11 QC value less than the lower limit for Na 330.237 Recovery = 71.64% D2 20.5331 284.8 0.0104 mg/L 0.00022 0.0104 mg/L 0.00022 2 QC value within limits for Ph 20.331 Recovery = 104.031 D3 26.6361 313.6 0.0358 mg/L 0.00121 0.0073 mg/L 0.00021 2 QC value within limits for Ph 20.0017 0.0073 mg/L 0.00022 0.0073 mg/L 0.00022 30 QC value less than the lower limit for Se 195.025 Recovery = 73.65% D3 26.031 0.0073 mg/L 0.00138 0.5139 mg/L 0.00124 0.00024 0 QC value within limits for Th 20.0199 mg/L 0.00042 0.0502 mg/L 0.000047 1 100.0317 1100.0317 1100.0317 1 100.0317 1100.0317 1 100.0317 1100.0317 1 100.0317 1100.0317 1 100.0318 0 C value within limits for Th 20.2108 Recovery = 94.078 C value within limits for A 20.0103 3 Recovery = 95.768 C value within limits for A 20.0133 Recovery = 93.768 C value within limits for A 20.0133 Recovery = 93.768 Sequence No.: 9 Sample ED 1052 Sample ED 1052 Sample ED 1052 Sample ED 1052 Sample ED 1052 Sample ED 1052 Sample ED 1052 Sample Frey Vol: Sample Frey Vol: Sample Frey Vol: Sample Frey Vol: Sample Frey Vol: Sample Frey Vol: Sample Frey Vol: C value within limits for As 188.979 Recovery = Not calculated 100.0037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 mg/L 0.00037 0.0095 m	Ni 231.604†	5972.1	0.0398 mg/L	0.00008	0.0398	mg/L	0.00008	0.21%	
P5 220.3531 284.8 0.0104 mg/L 0.00022 0.0104 mg/L 0.00022 2 QC value within limits for P5 220.353 Recovery = 104.034 0.00121 0.0548 mg/L 0.00121 0.0548 mg/L 0.00121 0.0548 mg/L 0.00121 0.0548 mg/L 0.00121 0.00121 0.0521 mg/L 0.00121 0.00121 0.0548 mg/L 0.00121 0.00101 0.00101 0.00101 0.00101 0.00101 0.00101 0.00011	Na 330.237†	1307.2	0.7162 mg/L	0.08277	0.7162	mg/L	0.08277	11.56%	
250 266.8361 333.6 0.0648 mg/L 0.00121 0.00121 2 9C value within limits for Sb 206.836 Recovery = 91.3% 0.00221 0.0022 0.0022 0.0022 0.0022 0.0022 0.00195 0.01021 0.0022 0.00191 0.00021 <td>Pb 220.353†</td> <td>284.8</td> <td>0.0104 mg/L</td> <td>0.00022</td> <td>0.0104</td> <td>mg/L</td> <td>0.00022</td> <td>2.15%</td>	Pb 220.353†	284.8	0.0104 mg/L	0.00022	0.0104	mg/L	0.00022	2.15%	
Se 196.0261 42.3 0.0073 mg/L 0.0072 mg/L 0.00211 0.00211 0.00211 0.00211 0.00211 0.00211 0.00211 0.00211 0.00211 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00191 0.00021 0.0023 0.0023	Sb 206.836†	313.6	0.0548 mg/L	0.00121	0.0548	mg/L	0.00121	2.20%	
Sh 189.9277 15520.3 0.5139 mg/L 0.00196 0.5139 mg/L 0.00196 0 OC value within limits for Sn 189.927 Recovery = 10.0134 0.00042 0.0007 0.00042 0 T1 337.279 2553.0.3 0.0570 mg/L 0.00037 0.0199 mg/L 0.00037 0.0199 mg/L 0.00077 0.00078 0 T1 90.801 Recovery = 95.24 0.0195 mg/L 0.00078 0.0470 mg/L 0.00078 0.00008 0.0008 0.00	Se 196.026†	42.3	0.0073 mg/L	0.00221	0.0073	mg/L	0.00221	30.19%	
Ti 337.2797 25530.3 0.0502 mg/L 0.00022 0.0502 mg/L 0.00042 0 QC value within limits for Ti 337.279 Recovery = 0.0131 0.0137 0.0199 mg/L 0.00037 1 QC value within limits for Ti 190.801 Recovery = 9.53% 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 1 QC value within limits for Ti 200.801 Recovery = 9.407% 0.0010 0.0195 mg/L 0.00076 1 QC value within limits for Ti 200.200 Recovery = 9.107% 0.0010 0.0195 mg/L 0.001669 1 QC value within limits for Ti 200.200 Recovery = 8.9.76% 0.00087 0.0898 mg/L 0.00087 0.0898 mg/L 0.00087 0 <t< td=""><td>Sn 189.927†</td><td>15620.3</td><td>0.5139 mg/L</td><td>0.00198</td><td></td><td>mg/L</td><td>0.00198</td><td>0.39%</td></t<>	Sn 189.927†	15620.3	0.5139 mg/L	0.00198		mg/L	0.00198	0.39%	
Ti 190.8011 152.8 0.0199 mg/L 0.00037 0.0197 mg/L 0.00037 1 QC value within limits for T 190.801 Recovery 9.52% 0.0077 0 mg/L 0.00078 0.0470 mg/L 0.00078 1 QC value within limits for T 20.801 Recovery 9.807% 0.0010 0.0195 mg/L 0.00010 0 0.0010 0 QC value within limits for Z 0.200 Recovery 9.807.76% 0.00287 0.00897 0.0898 mg/L 0.00087 0.0098 mg/L 0.00087 0 0 0 0 0 0 0.00087 0 0.00087 0 0.00087 0 0.00087 0 0.00087	Ti 337.279†	25630.3	0.0502 mg/L	0.00042	0.0502	mg/L	0.00042	0.83%	
V 322.4021 12650.0 0.0470 mg/L 0.00078 0.0470 mg/L 0.00078 1 QC value within limits for X 202.402 Recovery = 94.07% 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0.00011 0.00011 <td< td=""><td>Fl 190.801†</td><td>152.8</td><td>0.0199 mg/L</td><td>0.00037</td><td>0.0199</td><td>mg/L</td><td>0.00037</td><td>1.84%</td></td<>	Fl 190.801†	152.8	0.0199 mg/L	0.00037	0.0199	mg/L	0.00037	1.84%	
26. 2061 5957.0 0.0195 mg/L 0.0010 0.0195 mg/L 0.00010 0.0195 mg/L 0.00010 0 20 C value within limits for Z 206.200 Recovery = 97.67% 0.01669 0.0087 0.0938 mg/L 0.01669 1 21 227.546 1 513.6 0.6938 mg/L 0.00670 0.0998 mg/L 0.00087 0.00087 0 QC value within limits for Sr 460.733 Recovery = 89.76% 0.00087 0.00987 mg/L 0.00087 0 QC value within limits for Sr 460.733 Recovery = 89.76% Date Collected: 8/13/2010 3:25:37 FM Sequence No.: 9 Autosampler Location: 7 Jample TD: TGSA Date Collected: 8/13/2010 3:25:37 FM Inalyst: Date Collected: 8/13/2010 3:25:37 FM Sequence No.: 9 Maan Corrected Calib Sample Mt: Sample TD: TGSA Date Collected: 8/13/2010 3:25:37 FM Inalyst: Date Collected: 8/13/2010 3:25:37 FM Sample TD: TGSA Date Collected: 8/13/2010 3:25:37 FM Inalyst: Date Collected: 8/13/2010 3:25:37 FM Sample TD: TGSA Date Collected: 8/13/2010 3:25:37 FM Sample TD: TGSA Date Collected: 8/13/2010 3:25:37 FM Sample Mt: Intensity Conc. Units Std.De	V 292.402†	12650.0	0.0470 mg/L	0.00078	0.0470	mg/L	0.00078	1.66%	
Ca 227.546† 513.6 0.8938 mg/L 0.01669 0.8938 mg/L 0.01669 1 QC value within limits for X 227.546 Recovery = 89.388 ST 460.733† 22202.8 0.0898 mg/L 0.00087 0.0898 mg/L 0.00087 0 QC value within limits for X 460.733 Recovery = 89.768 Description of the state of t	Zn 206.200†	5957.0	0.0195 mg/L	0.00010	0.0195	mg/L	0.00010	0.50%	
Sr 460.7331 2320.8 0.0998 mg/L 0.00087 0.0098 mg/L 0.00087 0 QC value within limits for Sr 460.733 Recovery = B9.76% Date Collected: 8/13/2010 3:25:37 PM Sequence No.: 9 Autosampler Location: 7 Sample ID: ICSA Date Collected: 8/13/2010 3:25:37 PM Initial Sample Wt: Initial Sample Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Date Collected: 8/13/2010 3:25:37 PM Initial Sample Wt: Initial Sample Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Malyst: Sample Prep Vol: State Collected: 8/13/2010 3:25:37 PM Malyst: Sample Malyst: Sample Malyst:	Ca 227.546†	513.6	0.8938 mg/L	0.01669	0.8938	mg/L	0.01669	1.87%	
2C Failed. Continue with analysis. Sequence No.: 9 Sample ID: ICSA Date Collected: 8/13/2010 3:25:37 PM halyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Sample ID: ICSA Sample Vol: Sample ID: ICSA Data Type: Original Initial Sample Wt: Initial Sample Vol: Sample ID: ICSA Sample Prep Vol: Sample ID: ICSA Mean Corrected Gal Data: ICSA Mean Corrected Sample Sample ID: ICSA Mean Corrected Calis Sample Prep Vol: Sample ID: ICSA Sample Prep Vol: Mean Corrected Calib Sample ID: 0.0007 mg/L Oc Value within limits for Ag 328.068 Recovery = Not calculated 0.00031 40 OC value within limits for Al 300.215 Recovery = Not calculated 0.0023 mg/L 0.0023 mg/L Sata 233.527t 3406.9 0.0023 mg/L 0.00038 0.0023 mg/L 0.00002 45 Co value within limits for Ca 226.502 Recovery = Not calculated 0.00003 fg/L 0.00035 -0.0003 mg/L 0.00002 45 Co value within limits for Ca 226.502 Recovery = Not calculated 0.00045 -0.0003 mg/L 0.00005 -0.0003 mg/L 0.00005 -0.0	Sr 460.733†	23202.8	0.0898 mg/L	0.00087	0.0898	mg/L	0.00087	0.97%	
Sequence No.: 9 Autosampler Location: 7 sample ID: ICSA Date Collected: %/13/2010 3:25:37 PM malyst: Data Type: Original initial Sample W: Initial Sample Vol: Sumple The Note of the Note				= 89.76¥					
Jample ID: ICSA Date Collected: s/l3/2010 3:25:37 PM malyst: Initial Sample VC: initial Sample Wt: Initial Sample Vol: sample Torrected Calib sample Torrected Calib sample Torrected Calib sample Torrected Calib sample Torrected Calib sample Torrected Calib sample Wit: Sample sample Torrected Calib sample Wit: Sample sample Wit: 0.0007 mg/L 0.0007 mg/L g 328.0561 -2064.8 -0.0007 mg/L 0.00031 QC value within limits for Ag 328.068 Recovery = Not calculated 1.92 0.000849 QC value within limits for Al 308.215 Recovery = Not calculated 0.00038 g/L 0.00038 g/L 249.7721 79522.2 0.0009 mg/L 0.00038 0.0023 mg/L 0.00002 45 226.6161 233.1 0.0000 mg/L 0.00005 0.00005 0.00005 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00006 0.00005 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Sample Prep Vol: Sample Prep Vol: Sample Prep Vol: Sample Prep Vol: Sample Prep Vol: Sample Total Sample Total Sample Total Sample Total Sample Total Sample Total Sample Sample Vol: Sample Total Sample Total Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: Sample Vol: <td< td=""><td>-</td><td></td><td>Au Da</td><td>tosampler L</td><td>ocation: 7 4 8/13/20</td><td>10 3-25</td><td>37 1214</td><td></td></td<>	-		Au Da	tosampler L	ocation: 7 4 8/13/20	10 3-25	37 1214		
Milution: Sample Prep Vol: Agean Data: ICSA Mean Corrected Calib Sample Nnalyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. I (371.029 7943674.0 0.9097 mg/L 0.01517 1 0.00031 40.00031 0.00031 40.00031 0.00031 40.00031 0.00031 40.00031 0.00031 40.00031 0.00031 40.00031 0.00031 40.00033 40.00033 40.00031<	analyst:		Da	ita Type: Or	iginal	, ,,,,,,,			
Dilution:Sample Prep Vol:Wean Data: ICSAMean CorrectedCalibSampleMalyteIntensityConc. UnitsStd.Dev.Conc. UnitsX371.0297943674.0 0.997 mg/L 0.01517 1Mag 28.0681 -2064.8 -0.0007 mg/L 0.00031 0.00031 0.00031 QC value within limits for Ag 328.068Recovery = Not calculated 1.92 241.7 mg/L 1.92 Mag 28.0681 -2064.8 -0.0007 mg/L 0.00031 0.00031 0.00031 QC value within limits for Ag 328.068Recovery = Not calculated 0.0023 mg/L 0.00849 Mag 285.71 10420754.6 241.7 mg/L 1.92 0.0038 0.0023 mg/L 0.00397 QC value within limits for As 188.979Recovery = Not calculated 0.00031 0.00038 0.0023 mg/L 0.00038 M2 233.52713406.9 0.0023 mg/L 0.00038 0.0023 mg/L 0.00002 $45.$ QC value within limits for Be 313.107Recovery = Not calculated 0.00002 $45.$ QC value within limits for Cd 226.502Recovery = Not calculated 0.00045 $175.$ QC value within limits for C2 267.716Recovery = Not calculated 0.00030 $11.$ QC value within limits for C2 267.716Recovery = Not calculated 0.00030 $11.$ QC value within limits for C2 267.716Recovery = Not calculated 0.00030 $11.$ QC value within limits for C2 235.2 mg/L 1.047 1.047 1.047 1.047 M2 24.7527	Initial Sample Wt:		In	itial Sampl	e Vol:				
Mean Corrected Calib Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. <td c<="" th=""><th>)ilution:</th><th></th><th>Sa</th><th>mple Prep V</th><th>ol:</th><th></th><th></th><th></th></td>	<th>)ilution:</th> <th></th> <th>Sa</th> <th>mple Prep V</th> <th>ol:</th> <th></th> <th></th> <th></th>)ilution:		Sa	mple Prep V	ol:			
Mean Corrected Calib Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. <td c<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. Conc. Units Std.Dev. I 2371.029 7943674.0 0.9097 mg/L 0.01517 0.00031 -0.0007 mg/L 0.00031 -0.0007 mg/L 0.00031 -0.0007 mg/L 0.00031 40.0007 10 Ag 328.068t -2064.8 -0.0007 mg/L 1.92 241.7 mg/L 1.92 0.00033 0.0023 mg/L 0.000849 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 0.0023 mg/L 0.000849 0.0023 mg/L 0.000849 0.0023 mg/L 0.00037 41.03 0.00038 0.0023 mg/L 0.00037 41.03 0.00038 0.0023 mg/L 0.00038 0.0023 mg/L 0.00038 0.0023 mg/L 0.00037 41.04									
X 371.029 7943674.0 0.9097 mg/L 0.01517 1 Ag 328.066t -2064.8 -0.0007 mg/L 0.00031 -0.0007 mg/L 0.00031 QC value within limits for Ag 328.068 Recovery = Not calculated 1.92 241.7 mg/L 1.92 0.00031 0.000031 0.000031 0.000031	Mean Data: ICSA								
QC value within limits for Ag 328.068 Recovery = Not calculated1.92241.7 mg/L1.920.013 308.215 t10420754.6241.7 mg/L1.92241.7 mg/L1.920.0QC value within limits for Al 308.215 Recovery = 96.66%0.0023 mg/L0.008490.0023 mg/L0.00849St 188.979 t-301.80.0023 mg/L0.003970.0096 mg/L0.003970.00849QC value within limits for As 188.979 Recovery = Not calculated0.003970.0008 mg/L0.0003816.249.772t79522.20.0096 mg/L0.000370.0096 mg/L0.0003816.123.107t-1343.80.0000 mg/L0.000020.0000 mg/L0.0000245.QC value within limits for Be 313.107 Recovery = Not calculated0.00035-0.0005 mg/L0.0003569.QC value within limits for Cd 226.502 Recovery = Not calculated0.00045-0.0003 mg/L0.00045175.QC value within limits for Cd 226.502 Recovery = Not calculated0.00006-0.0016 mg/L0.000063.QC value within limits for Cd 226.502 Recovery = Not calculated0.000060.000063.QC value within limits for Cd 267.716 Recovery = Not calculated0.000060.000001.U2 value within limits for Fe 238.863 Recovery = Not calculated0.000011.0.00003QC value within limits for Mg 279.077 Recovery = 94.09%1.69235.2 mg/L1.69235.2 mg/L1.69QC value within limits for Mg 279.077 Recovery = Not calculated0.000020.000070.000020.00023 <td>Mean Data: ICSA</td> <td>Mean Corrected</td> <td>d Calib</td> <td>Std Dow</td> <td>Conc</td> <td>Sample</td> <td></td> <td></td>	Mean Data: ICSA	Mean Corrected	d Calib	Std Dow	Conc	Sample			
QC value within limits for Ag 328.068 Recovery = Not calculated1.92241.7 mg/L1.920.0l 308.215 t10420754.6241.7 mg/L1.92241.7 mg/L1.920.0083QC value within limits for Al 308.215 Recovery = 96.66%0.0023 mg/L0.008490.0023 mg/L0.00849QC value within limits for As 188.979 Recovery = Not calculated0.003970.0096 mg/L0.003970.0096 mg/L249.772t79522.20.0096 mg/L0.000370.0096 mg/L0.0003816.a 233.527t3406.90.0023 mg/L0.000020.0000 mg/L0.0000316.e 313.107t-1343.80.0000 mg/L0.000020.0000 mg/L0.0000245.QC value within limits for Be 313.107 Recovery = Not calculated0.00035-0.0005 mg/L0.0003569.QC value within limits for Cd 226.502 Recovery = Not calculated0.00045-0.0003 mg/L0.00045175.QC value within limits for Cd 226.512 Recovery = Not calculated0.000310.000063.QC value within limits for Cr 267.716 Recovery = Not calculated0.000063.U 224.752t-5838.5-0.0027 mg/L0.00030-0.0027 mg/L0.00030QC value within limits for Fe 238.863 Recovery = 91.78%91.6530.QC value within limits for Mg 279.077 Recovery = 94.09%1.69235.2 mg/L1.69QC value within limits for Mg 279.077 Recovery = Not calculated0.000230.00023QC value within limits for Mg 279.077 Recovery = Not calculated0.000230.00023 <td< td=""><td>Mean Data: ICSA</td><td>Mean Corrected</td><td>d Calib</td><td>Std Dow</td><td>Conc</td><td>Sample</td><td></td><td></td></td<>	Mean Data: ICSA	Mean Corrected	d Calib	Std Dow	Conc	Sample			
QC value within limits for Al 308.215 Recovery = 96.66% 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 363. QC value within limits for As 188.979 Recovery = Not calculated 0.0096 mg/L 0.00397 0.0096 mg/L 0.00397 0.0096 mg/L 0.00397 41. 249.772t 79522.2 0.0096 mg/L 0.00038 0.0023 mg/L 0.00038 0.0023 mg/L 0.00038 16. a 233.527t 3406.9 0.0023 mg/L 0.00002 0.0000 mg/L 0.00038 0.0000 mg/L 0.00038 16. GC value within limits for B 313.107 Recovery = Not calculated 0.00005 -0.0005 mg/L 0.00005 mg/L 0.00005 fm/L 0.00005 mg/L 0.00005 fm/L 0.00005	Mean Data: ICSA nalyte 371.029 g 328.068†	Mean Corrected Intensity 7943674.0 -2064.8	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L	Std.Dev. 0.01517 0.00031	Conc.	Sample Units	Std.Dev.	. RSD 1.67%	
s 188.9791 -301.8 0.0023 mg/L 0.00849 0.0023 mg/L 0.00849 363. QC value within limits for As 188.979 Recovery = Not calculated 0.0096 mg/L 0.00397 0.0096 mg/L 0.00397 41. a 233.527t 3406.9 0.0023 mg/L 0.00038 0.0023 mg/L 0.00038 0.0023 mg/L 0.00008 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.00038 1.0000038 1.000038 1.0000038	Tean Data: ICSA nalyte 371.029 g 328.068† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Aq	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul	Conc. -0.0007 ated	Sample Units mg/L	Std.Dev. 0.00031	. RSD 1.67%	
QC value within limits for As 188.979 Recovery = Not calculated 0.00397 0.0096 mg/L 0.00397 0.0096 mg/L 0.00397 0.00397 41. 249.772t 79522.2 0.0096 mg/L 0.00397 0.0038 0.0023 mg/L 0.00038 0.0023 mg/L 0.00038 16. 233.527t .140.69 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 45. QC value within limits for Be 313.107 Recovery = Not calculated 0.00035 -0.0005 mg/L 0.00035 69. QC value within limits for Cd 226.502 Recovery = Not calculated 0.00045 -0.0003 mg/L 0.00045 175. QC value within limits for Co 228.616 Recovery = Not calculated 0.00006 -0.0016 mg/L 0.00006 0.00006 0.00006 3. QC value within limits for Cr 267.716 Recovery = Not calculated 0.000030 -0.0027 mg/L 0.00030 11. QC value within limits for Fe 238.863 Recovery = Not calculated 91.65 30. g279.077t 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 0.00004 0.00004 0.00004 0.00004 <td>ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215†</td> <td>Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6</td> <td>d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L</td> <td>Std.Dev. 0.01517 0.00031 Not calcul 1.92</td> <td>Conc. -0.0007 ated</td> <td>Sample Units mg/L</td> <td>Std.Dev. 0.00031</td> <td>. RSD 1.67% 40.82%</td>	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92	Conc. -0.0007 ated	Sample Units mg/L	Std.Dev. 0.00031	. RSD 1.67% 40.82%	
249.772† 79522.2 0.0096 mg/L 0.00397 0.0096 mg/L 0.00397 0.0096 mg/L 0.00038 11. a 233.527† 3406.9 0.0023 mg/L 0.00038 0.0023 mg/L 0.00038 16. e 313.107† -1343.8 0.0000 mg/L 0.00002 0.0000 mg/L 0.00002 45. QC value within limits for Be 313.107 Recovery = Not calculated 0.00035 -0.0005 mg/L 0.00035 69. QC value within limits for Cd 226.502 Recovery = Not calculated 0.00045 -0.0003 mg/L 0.00045 175. QC value within limits for Co 228.616 Recovery = Not calculated 0.00006 -0.0016 mg/L 0.00006 3. QC value within limits for Co 267.716 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cu 324.752 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Fe 238.863 Recovery = 91.78 mg/L 1.047 1.047 1. QC value within limits for Mg 279.077 Recovery = 94.09% 1.69 0.00004 0.00004 0.00002 0.00004 0.00002 <td>ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within</td> <td>Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al</td> <td>d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery =</td> <td>Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66%</td> <td>Conc. -0.0007 ated 241.7</td> <td>Sample Units mg/L mg/L</td> <td>Std.Dev. 0.00031 1.92</td> <td> RSD 1.67% 40.82% 0.79% </td>	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66%	Conc. -0.0007 ated 241.7	Sample Units mg/L mg/L	Std.Dev . 0.00031 1.92	 RSD 1.67% 40.82% 0.79% 	
e $313.107i$ -1343.8 0.0000 mg/L 0.0002 0.0000 mg/L 0.0002 45. QC value within limits for Be 313.107 Recovery = Not calculated 0.00035 -0.0005 mg/L 0.00035 69. QC value within limits for Cd 226.502 Recovery = Not calculated 0.00045 175. QC value within limits for C2 28.616 Recovery = Not calculated 0.00065 -0.0016 mg/L 0.00045 175. QC value within limits for C2 28.616 Recovery = Not calculated 0.00006 -0.0016 mg/L 0.00006 3. QC value within limits for C2 28.616 Recovery = Not calculated 0.00006 3. QC value within limits for C2 27.716 Recovery = Not calculated 0.00006 3. QC value within limits for C2 27.716 Recovery = Not calculated 0.00006 3. QC value within limits for C2 324.752 Recovery = Not calculated 0.00006 3. QC value within limits for C2 324.752 Recovery = Not calculated 0.00030 11. QC value within limits for F2 38.863 Recovery = 91.78% 0.00030 -0.0027 mg/L 0.00030 11. G 279.077t 9250702.0 235.2 mg/L 1.047 91.78 mg/L 1.047 1. G 279.077t 9250702.0 235.2 mg/L 0.00004 -0.0069 mg/L 0.00004 0. QC value within limits for M2 279.077 Recovery = 94.09% 0.00001 mg/L 0.00023 0.0001 mg/L 0.00023 255. 1 231.604t 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.000067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.00001 mg/L 0.00023 255. 1 231.604t 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.0001 mg/L 0.005476 117. 0 200.353t -212.2 -0.0468 mg/L 0.005476 -0.0468 mg/L 0.05476 117. 0 200.353t -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00663 0.0002 mg/L 0.00663 0.0002 mg/L 0.00063 0.00002 mg/L 0.00	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849	Conc. -0.0007 ated 241.7 0.0023	Sample Units mg/L mg/L	Std.Dev . 0.00031 1.92	 RSD 1.67% 40.82% 0.79% 	
e $313.107i$ -1343.8 0.0000 mg/L 0.0002 0.0000 mg/L 0.00002 45. QC value within limits for Be 313.107 Recovery = Not calculated 0.00035 -0.0005 mg/L 0.00035 69. QC value within limits for Cd 226.502 Recovery = Not calculated 0.00045 175. QC value within limits for Co 228.616 Recovery = Not calculated 0.0006 -0.0016 mg/L 0.00006 3. QC value within limits for Cr 267.716 Recovery = Not calculated 0.00006 -0.0016 mg/L 0.00006 3. QC value within limits for Cr 267.716 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cr 267.716 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cu 324.752 Recovery = Not calculated 0.00030 11. QC value within limits for Fe 238.863 Recovery = 91.78% 0.00030 -0.0027 mg/L 0.00030 11. GC value within limits for Fe 238.863 Recovery = 91.78% 0.0004 -0.0069 mg/L 0.00040 0. QC value within limits for Mg 279.077 Recovery = 94.09% 0.00004 -0.0069 mg/L 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 0.00001 mg/L 0.00023 255. 1 231.604t 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.00001 mg/L 0.00023 255. 1 330.237t -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. 0 220.353t -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.05476 117.	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849	RSD 1.67% 40.82% 0.79% 363.21%	
QC value within limits for Be 313.107Recovery = Not calculated 0.00035 -0.0005 mg/L 0.00035 -0.0005 mg/L 0.00035 69.QC value within limits for Cd 226.502Recovery = Not calculated 0.00035 -0.0003 mg/L 0.00035 69.QC value within limits for Cd 226.502Recovery = Not calculated 0.00035 -0.0003 mg/L 0.00045 175.QC value within limits for Co 228.616Recovery = Not calculated 0.00045 -0.0016 mg/L 0.00006 -0.0016 mg/L 0.00006 3.QC value within limits for Cr 267.716Recovery = Not calculated 0.00030 -0.0027 mg/L 0.000006 3.QC value within limits for Cr 267.716Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11.QC value within limits for Cu 324.752Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11.QC value within limits for Fe 238.863Recovery = 91.78% 91.65 30.QC value within limits for Mg 279.077Recovery = 94.09% 91.65 30.QC value within limits for Mg 279.077Recovery = Not calculated 0.00023 0.0001 mg/LQC value within limits for Mg 279.077Recovery = Not calculated 0.00023 0.0001 mg/LQC value within limits for Mg 25.610Recovery = Not calculated 0.00023 255.QC value within limits for Ni 231.604Recovery = Not calculated 0.00067 -0.0005 mg/LQC value within limits for Ni 231.604Recovery = Not calculated 0.00067 130.QC value within limits for Ni 231.604Recovery = Not calculated 0.00067 130.QC value within limits for Ni 231.604Recovery = Not calculated <t< td=""><td>ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within</td><td>Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As</td><td>d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery =</td><td>Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul</td><td>Conc. -0.0007 ated 241.7 0.0023 ated</td><td>Sample Units mg/L mg/L mg/L</td><td>Std.Dev. 0.00031 1.92 0.00849</td><td>RSD 1.67% 40.82% 0.79% 363.21%</td></t<>	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849	RSD 1.67% 40.82% 0.79% 363.21%	
d 226.5021 2664.0 -0.0005 mg/L 0.00035 -0.0005 mg/L 0.00035 69. QC value within limits for Cd 226.502 Recovery = Not calculated 0 228.6161 233.1 -0.0003 mg/L 0.00045 -0.0003 mg/L 0.00045 175. QC value within limits for Co 228.616 Recovery = Not calculated 1 267.7161 -1429.6 -0.0016 mg/L 0.00006 -0.0016 mg/L 0.00006 3. QC value within limits for Cr 267.716 Recovery = Not calculated 1 224.7521 -5838.5 -0.0027 mg/L 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cu 324.752 Recovery = Not calculated 2 238.8631 5564362.5 91.78 mg/L 1.047 91.78 mg/L 1.047 1. QC value within limits for Fe 238.863 Recovery = 91.78 mg/L 1.047 1. QC value within limits for Fe 238.863 Recovery = 91.78 mg/L 1.047 1. QC value within limits for Mg 279.077 Recovery = 94.09% 1 257.6107 131.6 -0.0069 mg/L 0.00004 -0.0069 mg/L 0.00004 0. QC value within limits for Mg 279.077 Recovery = Not calculated 2 202.0317 -322.5 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 255. 1 231.6041 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 3 330.2371 -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. 0 220.3531 -637.2 0.0002 mg/L 0.00023 0.0002 mg/L 0.00063 3.0500 mg/L 0.00063 3	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57%	
QC value within limits for Cd 226.502Recovery = Not calculated $0.00045 - 0.0003 \text{ mg/L}$ $0.00045 175.$ QC value within limits for Co 228.616Recovery = Not calculated $0.00045 - 0.0016 \text{ mg/L}$ $0.00045 175.$ QC value within limits for Co 228.616Recovery = Not calculated $0.0006 - 0.0016 \text{ mg/L}$ $0.00006 3.$ QC value within limits for Cr 267.716Recovery = Not calculated $0.00006 - 0.0027 \text{ mg/L}$ $0.00006 3.$ QC value within limits for Cr 267.716Recovery = Not calculated 0.00027 mg/L $0.00030 11.$ QC value within limits for Cu 324.752Recovery = Not calculated 0.00027 mg/L $0.00030 11.$ QC value within limits for Fe 238.863Recovery = 91.78% $1.047 1.$ $0.00030 11.$ QC value within limits for Mg 279.077Recovery = 91.78% $91.65 30.$ $0.22.031t$ -322.5 0.0001 mg/L $0.00004 - 0.0069 \text{ mg/L}$ $0.00004 0.$ $0.202.031t$ -322.5 0.0001 mg/L $0.00023 0.0001 \text{ mg/L}$ $0.00023 255.$ $0.202.031t$ -322.5 0.0001 mg/L $0.00067 - 0.0005 \text{ mg/L}$ $0.00067 130.$ $0.202.031t$ -322.5 0.0001 mg/L $0.00067 - 0.0005 \text{ mg/L}$ $0.00067 130.$ $0.202.031t$ -322.5 0.0001 mg/L $0.00067 - 0.0005 \text{ mg/L}$ $0.00067 130.$ $0.202.031t$ -322.5 0.0001 mg/L $0.00067 - 0.0005 \text{ mg/L}$ $0.05476 117.$ $0.202.0353t$ -637.2 0.0002 mg/L $0.00063 0.0002 \text{ mg/L}$ $0.00063 305.$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% Not calcul 0.00397 0.00038 0.00002 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92%	
QC value within limits for Co 228.616Recovery = Not calculated $0.0006 - 0.0016 \text{ mg/L}$ $0.00006 3.$ QC value within limits for Cr 267.716 -0.0016 mg/L $0.00006 - 0.0016 \text{ mg/L}$ $0.00006 3.$ QC value within limits for Cr 267.716Recovery = Not calculated $0.00030 - 0.0027 \text{ mg/L}$ $0.00030 11.$ QC value within limits for Cu 324.752Recovery = Not calculated $0.00030 - 0.0027 \text{ mg/L}$ $0.00030 11.$ QC value within limits for Cu 324.752Recovery = Not calculated $1.047 91.78 \text{ mg/L}$ $1.047 1.$ QC value within limits for Fe 238.863Recovery = 91.78% $91.65 30.$ 404.721f -300.1 $91.65 30.$ g 279.077f9250702.0 235.2 mg/L $1.69 235.2 \text{ mg/L}$ QC value within limits for Mg 279.077Recovery = 94.09% $1.257.610f$ $131.6 - 0.0069 \text{ mg/L}$ $0.00023 0.0001 \text{ mg/L}$ $0.00023 255.$ $202.031f$ $-322.5 0.0001 \text{ mg/L}$ $0.00023 0.0001 \text{ mg/L}$ $0.00023 255.$ $231.604f$ $101.5 - 0.0005 \text{ mg/L}$ $0.00067 - 0.0005 \text{ mg/L}$ $0.00067 130.$ $202 value within limits for Ni 231.604 Recovery = Not calculated0.05476 - 0.0468 \text{ mg/L}0.05476 117.220.353f-637.20.0002 \text{ mg/L}0.00023 0.0002 \text{ mg/L}0.05476 117.$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.0002 Not calcul 0.0002	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92%	
r 267.716† -1429.6 -0.0016 mg/L 0.00006 -0.0016 mg/L 0.00006 3. QC value within limits for Cr 267.716 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cu 324.752 Recovery = Not calculated 0.00030 -0.0027 mg/L 0.00030 11. QC value within limits for Cu 324.752 Recovery = Not calculated 1.047 91.78 mg/L 1.047 1. QC value within limits for Fe 238.863 Recovery = 91.78% 1.047 91.78 mg/L 1.047 1. QC value within limits for Fe 238.863 Recovery = 91.78% 91.65 30. 91.65 30. g 279.077t 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 0.00004 0.00004 0. QC value within limits for Mg 279.077 Recovery = 94.09% 131.6 -0.0069 mg/L 0.00004 0.00004 0. 0.00004 0. QC value within limits for Mn 257.610 Recovery = Not calculated 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.00067 0.00067 130. 0.00067 </td <td><pre>dean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within</pre></td> <td>Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd</td> <td>d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery =</td> <td>Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul</td> <td>Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated</td> <td>Sample Units mg/L mg/L mg/L mg/L mg/L mg/L</td> <td>Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035</td> <td>RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62%</td>	<pre>dean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within</pre>	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62%	
QC value within limits for Cr 267.716 Recovery = Not calculated $0.00030 - 0.0027 \text{ mg/L}$ $0.00030 11.$ $2324.752t$ -5838.5 -0.0027 mg/L $0.00030 - 0.0027 \text{ mg/L}$ $0.00030 11.$ QC value within limits for Cu 324.752 Recovery = Not calculated $1.047 91.78 \text{ mg/L}$ $1.047 1.$ $228.863t$ 5564362.5 91.78 mg/L $1.047 91.78 \text{ mg/L}$ $1.047 1.$ QC value within limits for Fe 238.863 Recovery = 91.78 % $91.65 30.$ $404.721t$ -300.1 $91.65 30.$ $g 279.077t$ 9250702.0 235.2 mg/L $1.69 235.2 \text{ mg/L}$ $g 279.077t$ 9250702.0 235.2 mg/L $0.00004 - 0.0069 \text{ mg/L}$ QC value within limits for Mg 279.077 Recovery = 94.09 % $0.00004 - 0.0069 \text{ mg/L}$ $0.00004 0.$ QC value within limits for Mn 257.610 Recovery = Not calculated $0.00023 0.0001 \text{ mg/L}$ $0.00023 255.$ QC value within limits for Mn 257.610 Recovery = Not calculated $0.00023 255.$ 0.0001 mg/L $0.00023 255.$ $220.331t$ -322.5 0.0001 mg/L $0.00067 - 0.0005 \text{ mg/L}$ $0.00067 130.$ QC value within limits for Ni 231.604 Recovery = Not calculated $0.00067 130.$ $0.00067 130.$ $220.353t$ -637.2 0.0002 mg/L $0.00063 0.0002 \text{ mg/L}$ $0.00063 305.$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within o 228.616†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00035	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within 5 228.616† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Co	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50%	
QC value within limits for Cu 324.752 Recovery = Not calculated $e 238.863t$ 5564362.5 91.78 mg/L 1.047 91.78 mg/L 1.047 1.047 QC value within limits for Fe 238.863 Recovery = 91.78 % 91.65 $30.$ $404.721t$ -300.1 91.65 $30.$ $g 279.077t$ 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 $g 279.077t$ 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 QC value within limits for Mg 279.077 Recovery = 94.09 % 0.00004 -0.0069 mg/L 0.00004 QC value within limits for Mn 257.610 Recovery = Not calculated 0.0001 mg/L 0.00023 0.0001 mg/L QC value within limits for Mn 257.610 Recovery = Not calculated $0.00023 255.$ 0.0001 mg/L $0.00023 255.$ $231.604t$ 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L $0.00067 130.$ QC value within limits for Ni 231.604 Recovery = Not calculated $0.00067 130.$ $0.05476 17.$ $a 330.237t$ -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L $0.00023 0.0002 \text{ mg/L}$ $a 220.353t$ -637.2 0.0002 mg/L $0.00063 0.0002 \text{ mg/L}$ $0.00063 305.$	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within o 228.616† QC value within r 267.716†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Co -1429.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50%	
QC value within limits for Cu 324.752 Recovery = Not calculated $e 238.863t$ 5564362.5 91.78 mg/L 1.047 91.78 mg/L 1.047	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within 5 228.616† QC value within c 267.716† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for C 233.1 limits for Co -1429.6 limits for Cr	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.0006 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.00035 0.00045 0.00006	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72%	
QC value within limits for Fe 238.863 Recovery = 91.78% 91.65 30. 404.721t -300.1 91.65 30. 279.077t 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 0. QC value within limits for Mg 279.077 Recovery = 94.09% 1.69 0.00004 -0.0069 mg/L 0.00004 0. QC value within limits for Mn 257.610 Recovery = Not calculated 0.00001 mg/L 0.00023 0.0001 mg/L 0.00023 255. QC value within limits for Mn 257.610 Recovery = Not calculated 0.00067 -0.0005 mg/L 0.00067 130. 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.00067 -0.0005 mg/L 0.00067 130. 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.05476 -0.0468 mg/L 0.05476 117. 0.05476 117. 220.353t -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within o 228.616† QC value within c 267.716† QC value within a 324.752†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for C 233.1 limits for Co -1429.6 limits for Cr -5838.5	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.0006 Not calcul 0.00030	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.00035 0.00045 0.00006	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72%	
404.721t -300.1 91.65 30. g 279.077t9250702.0235.2 mg/L 1.69 235.2 mg/L 1.69 0.QC value within limits for Mg 279.077 Recovery = 94.09% 1.69 0. 0.00004 -0.0069 mg/L 0.00004 0.QC value within limits for Mn 257.610 Recovery = Not calculated 0.00023 0.0001 mg/L 0.00023 255.QC value within limits for Mn 257.610 Recovery = Not calculated 0.00023 0.0001 mg/L 0.00023 255.202.031t -322.5 0.0001 mg/L 0.00067 -0.0005 mg/L 0.00067 130.QC value within limits for Ni 231.604 Recovery = Not calculated 0.00067 -0.0005 mg/L 0.00067 130. $330.237t$ -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. $220.353t$ -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within 5 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within 1 226.502† QC value within 5 28.616† QC value within 5 267.716† QC value within 1 324.752† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Co -1429.6 limits for Cr -5838.5 limits for Cu	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.0006 Not calcul 0.00030 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00006	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01%	
g 279.077† 9250702.0 235.2 mg/L 1.69 235.2 mg/L 1.69 0.00 QC value within limits for Mg 279.077 Recovery = 94.09% 0.00004 -0.0069 mg/L 0.00004 0.00002 0.00004 0.00004 0.00002 0.00004 0.00002 0.00001 0.00023 0.0001 0.00023 0.00002 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00067 10.00063 0.00067 117. 0.00063 0.00025 0.0002 mg/L 0.00063 0.00063 0.00063 0.00063 0.00063 0.00063 0.00063 0.00063 0.00063 0.00063 0	an Data: ICSA alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† 233.527† 313.107† QC value within 226.502† QC value within 228.616† QC value within 228.616† QC value within 228.716† QC value within 238.863†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00006 Not calcul 0.00030 Not calcul 0.00030 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00006	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01%	
QC value within limits for Mg 279.077 Recovery = 94.09% 0.00004 -0.0069 mg/L 0.00004 0.00002 0.00004 0.00002 0.0001 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00002 0.000067 130.00005 0.000067 130.000067 130.000067 130.000067 130.00067	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within c 228.616† QC value within c 267.716† QC value within a 324.752† QC value within a 238.863† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5 limits for Fe	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated 91.78	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00030 1.047	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01%	
QC value within limits for Mg 279.077 Recovery = 94.09% 0.00004 -0.0069 mg/L 0.00004 0.00002 0.00004 0.00002 0.00023 0.0001 mg/L 0.00023 0.00023 0.00023 0.00023 255. 2 202.031t -322.5 0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130.00067 140.000067 140.00067 <t< td=""><td>ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within c 228.616† QC value within c 267.716† QC value within a 324.752† QC value within c 238.863† QC value within</td><td>Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5 limits for Fe</td><td>d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery =</td><td>Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030</td><td>Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated 91.78</td><td>Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</td><td>Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00030 1.047</td><td>RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14%</td></t<>	ean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within c 228.616† QC value within c 267.716† QC value within a 324.752† QC value within c 238.863† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5 limits for Fe	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated 91.78	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00030 1.047	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14%	
QC value within limits for Mn 257.610Recovery = Not calculated 202.031 -322.5 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 231.604 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 QC value within limits for Ni 231.604 Recovery = Not calculated 0.05476 0.05476 0.05476 330.237 -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 220.353 -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063	ean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within i 226.502† QC value within c 228.616† QC value within c 267.716† QC value within a 324.752† QC value within a 238.863† QC value within 404.721† g 279.077†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Co -1429.6 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 267.716 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 1.047 91.78%	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated -0.0027 ated 91.78	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00006 0.00030 1.047	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54%	
o 202.031† -322.5 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 255. i 231.604† 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 0.0002	<pre>Mean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within c 228.616† QC value within r 267.716† QC value within u 324.752† QC value within e 238.863† QC value within 404.721† g 279.077† QC value within</pre>	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Co -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 224.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09%	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated 91.78 235.2	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00045 0.00006 0.00030 1.047 91.65 1.69	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72%	
o 202.031† -322.5 0.0001 mg/L 0.00023 0.0001 mg/L 0.00023 255. i 231.604† 101.5 -0.0005 mg/L 0.00067 -0.0005 mg/L 0.00067 130. QC value within limits for Ni 231.604 Recovery = Not calculated 0.05476 -0.0468 mg/L 0.05476 117. a 330.237† -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.0002 305. b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within r 267.716† QC value within r 267.716† QC value within u 324.752† QC value within e 238.863† QC value within 404.721† g 279.077† QC value within n 257.610†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for A 1.301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Co -1429.6 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0000 ated -0.0005 ated -0.0003 ated -0.0016 ated 91.78 235.2 -0.0069	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00045 0.00006 0.00030 1.047 91.65 1.69	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72%	
QC value within limits for Ni 231.604 Recovery = Not calculated a 330.237† -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within o 228.616† QC value within r 267.716† QC value within u 324.752† QC value within e 238.863† QC value within 404.721† g 279.077† QC value within n 257.610† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 5564362.5 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated -0.0027 ated 91.78 235.2 -0.0069 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.00045 0.00045 0.00006 0.00030 1.047 91.65 1.69	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72%	
QC value within limits for Ni 231.604 Recovery = Not calculated a 330.237† -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within o 228.616† QC value within r 267.716† QC value within r 267.716† QC value within a 324.752† QC value within a 238.863† QC value within 404.721† g 279.077† QC value within n 257.610† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 5564362.5 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated -0.0027 ated 91.78 235.2 -0.0069 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.000045 0.000045 0.00006 0.00006 0.000030 1.047 91.65 1.69 0.00004	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52%	
a 330.237† -21.2 -0.0468 mg/L 0.05476 -0.0468 mg/L 0.05476 117. b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within o 228.616† QC value within r 267.716† QC value within r 267.716† QC value within a 324.752† QC value within a 238.863† QC value within 404.721† g 279.077† QC value within n 257.610† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 5564362.5 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated -0.0027 ated 91.78 235.2 -0.0069 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.000045 0.000045 0.00006 0.00006 0.000030 1.047 91.65 1.69 0.00004	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52%	
b 220.353† -637.2 0.0002 mg/L 0.00063 0.0002 mg/L 0.00063 305.	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within d 226.502† QC value within c 228.616† QC value within r 267.716† QC value within u 324.752† QC value within e 238.863† QC value within 404.721† g 279.077† QC value within 1 257.610† QC value within 0 202.031† i 231.604†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 3564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6 limits for Mn -322.5 101.5	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L 257.610 Recovery = 0.0001 mg/L -0.0005 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.0004 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated 91.78 235.2 -0.0069 ated 0.0001 -0.0005	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.000045 0.000045 0.00006 0.00006 0.000030 1.047 91.65 1.69 0.00004	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52%	
0.220.3331 -0.0002 mg/L 0.00063 $305.OC value within limits for Pb 220.353 Recovery = Not calculated$	<pre>iean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within d 226.502† QC value within c 228.616† QC value within c 238.863† QC value within e 238.863† QC value within a 324.752† QC value within a 324.752† QC value within a 324.752† QC value within a 257.610† QC value within a 257.610† QC value within a 251.604† QC value within a 202.031† a 231.604† QC value within a 202.0314 a</pre>	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Ag 10420754.6 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 1429.6 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6 limits for Mn -322.5 101.5 limits for Ni	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L 257.610 Recovery = 0.0001 mg/L 231.604 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 0.00023 Not calcul 0.00027 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated 91.78 235.2 -0.0069 ated 0.0001 -0.0005 ated	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.000045 0.00006 0.00006 1.047 91.65 1.69 0.00004 0.00004	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52% 255.97% 130.85%	
OU VAIHE WILHIH IIMIUS IOF PD ZZU.353 RECOVETV = NOT CBICHIBTEC	Mean Data: ICSA nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within d 226.502† QC value within c 228.616† QC value within r 267.716† QC value within a 324.752† QC value within 404.721† g 279.077† QC value within 1 257.610† QC value within a 230.237†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd -1429.6 limits for Cr -5838.5 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6 limits for Mn -322.5 101.5 limits for Ni -21.2	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0016 mg/L 227.716 Recovery = -0.0016 mg/L 238.863 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L 257.610 Recovery = 0.0001 mg/L -0.0005 mg/L 231.604 Recovery = -0.0468 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00045 Not calcul 0.00045 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 0.00037 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 0.00037 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated -0.0027 ated 91.78 235.2 -0.0069 ated 0.0001 -0.0005 ated -0.0005	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.000045 0.00006 0.00006 1.047 91.65 1.69 0.00004 0.00023 0.00067 0.05476	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52% 255.97% 130.85% 117.10%	
\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	Mean Data: ICSA malyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within t 228.616† QC value within r 267.716† QC value within r 267.716† QC value within t 324.752† QC value within a 324.751† QC value within 404.721† g 279.077† QC value within n 257.610† QC value within o 202.031† i 231.604† QC value within a 330.237† b 220.353†	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Cd 233.1 limits for Co -1429.6 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6 limits for Mn -322.5 101.5 limits for Ni -21.2 -637.2	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0027 mg/L 324.752 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L 257.610 Recovery = 0.0001 mg/L -0.0005 mg/L 231.604 Recovery = -0.0468 mg/L 0.0002 mg/L	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 0.00023 0.00027 Not calcul 0.00027 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00030 Not calcul 0.00045 Not calcul 0.00023 0.00067 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0027 ated 91.78 235.2 -0.0069 ated 0.0001 -0.0005 ated 0.0001 -0.0005 ated 0.0001	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00038 0.00002 0.00035 0.000045 0.00006 0.00006 1.047 91.65 1.69 0.00004 0.00023 0.00067 0.05476	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52% 255.97% 130.85% 117.10%	
b 206.836† -16.1 -0.0062 mg/L 0.00183 -0.0062 mg/L 0.00183 29.	Mean Data: ICSA malyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† a 233.527† e 313.107† QC value within d 226.502† QC value within o 228.616† QC value within r 267.716† QC value within r 267.716† QC value within r 267.716† QC value within a 324.752† QC value within 404.721† g 279.077† QC value within n 257.610† QC value within o 202.031† i 231.604† QC value within a 330.237† b 220.353† QC value within	Mean Corrected Intensity 7943674.0 -2064.8 limits for Ag 10420754.6 limits for Al -301.8 limits for As 79522.2 3406.9 -1343.8 limits for Be 2664.0 limits for Cd 233.1 limits for Cd 233.1 limits for Co -1429.6 limits for Cu 5564362.5 limits for Fe -300.1 9250702.0 limits for Mg 131.6 limits for Mn -322.5 101.5 limits for Ni -21.2 -637.2 limits for Pb	d Calib Conc. Units 0.9097 mg/L -0.0007 mg/L 328.068 Recovery = 241.7 mg/L 308.215 Recovery = 0.0023 mg/L 188.979 Recovery = 0.0096 mg/L 0.0023 mg/L 0.0023 mg/L 0.0005 mg/L 226.502 Recovery = -0.0003 mg/L 228.616 Recovery = -0.0016 mg/L 228.616 Recovery = -0.0016 mg/L 238.863 Recovery = 91.78 mg/L 238.863 Recovery = 235.2 mg/L 279.077 Recovery = -0.0069 mg/L 257.610 Recovery = 0.0001 mg/L 231.604 Recovery = -0.0468 mg/L 0.0002 mg/L 220.353 Recovery =	Std.Dev. 0.01517 0.00031 Not calcul 1.92 96.66% 0.00849 Not calcul 0.00397 0.00038 0.00002 Not calcul 0.00035 Not calcul 0.00045 Not calcul 0.00030 Not calcul 0.00030 Not calcul 1.047 91.78% 1.69 94.09% 0.00004 Not calcul 0.00023 0.00023 0.00067 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul 0.0003 Not calcul	Conc. -0.0007 ated 241.7 0.0023 ated 0.0096 0.0023 0.0000 ated -0.0005 ated -0.0016 ated 91.78 235.2 -0.0069 ated 0.0001 -0.0005 ated 0.0001 -0.0005 ated 0.0005 ated 0.0005 ated 0.0001 -0.0005 ated 0.0005 ated 0.0005 ated 0.0001 -0.0005 ated 0.005 ated 0.0	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00031 1.92 0.00849 0.00397 0.00035 0.00002 0.00035 0.00045 0.00006 0.000030 1.047 91.65 1.69 0.00004 0.000023 0.00067 0.05476 0.00063	RSD 1.67% 40.82% 0.79% 363.21% 41.35% 16.57% 45.92% 69.62% 175.50% 3.72% 11.01% 1.14% 30.54% 0.72% 0.52% 255.97% 130.85% 117.10% 305.65%	

Method: AXIAL200-6010 L Opt4 Page 8 Date: 8/13/2010 3:31:50 PM QC value within limits for Sb 206.836 Recovery = Not calculated Se 196.026† -121.2 -0.0058 mg/L 0.00168 0.00168 29.04% -0.0058 mg/L QC value within limits for Se 196.026 Recovery = Not calculated Sn 189.927† 149.8 0.0544 mg/L 0.00055 0.0544 mg/L 0.00055 1.02% -0.0023 mg/L Ti 337.279† 687.0 0.00004 -0.0023 mg/L 0.00004 1.61% Tl 190.801† -39.2 0.0020 mg/L 0.0020 mg/L 0.00315 0.00315 154.59% QC value within limits for Tl 190.801 Recovery = Not calculated -2608.7 -0.0013 mg/L 0.00024 V 292.402t -0.0013 mg/L 0.00024 18.76% QC value within limits for V 292.402 Recovery = Not calculated Zn 206.200† 980.2 -0.0112 mg/L 0.00053 -0.0112 mg/L 0.00053 4.74% QC value within limits for Zn 206.200 Recovery = Not calculated 140387.6 248.0 mg/L 2.22 Ca 227.546† 248.0 mg/L 2.22 0.90% QC value within limits for Ca 227.546 Recovery = 99.19% Sr 460.733† 1774.6 0.0021 mg/L 0.00011 0.0021 mg/L 0.00011 5.38% All analyte(s) passed QC. Sequence No.: 10 Autosampler Location: 8 Sample ID: ICSAB Date Collected: 8/13/2010 3:29:50 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: ICSAB Mean Corrected Calib Sample Intensity Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.8896 mg/L 7768245.6 0.00005 0.01% Ag 328.068† 0.2135 mg/L 0.2135 mg/L 77782.7 0.00077 0.00077 0.36% QC value within limits for Ag 328.068 Recovery = 106.75% Al 308.215† 10686730.6 247.8 mg/L 1.25 247.8 mg/L 0.51% 1.25 QC value within limits for Al 308.215 Recovery = 99.13% As 188.979† 596.0 0.1085 mg/L 0.00011 0.1085 mg/L 0.00011 0.10% QC value within limits for As 188.979 Recovery = 108.45% B 249.772† 0.0154 mg/L 0.00490 83108.7 0.0154 mg/L 0.00490 31.77% Ba 233.527† 189459.2 0.5189 mg/L 0.00300 0.5189 mg/L 0.00300 0.58% QC value within limits for Ba 233.527 Recovery = 103.78% 3357862.1 0.5114 mg/L 0.00094 Be 313.107† 0.5114 mg/L 0.00094 0.18% QC value within limits for Be 313.107 Recovery = 102.27% 380223.5 0.9868 mg/L 0.00333 Cd 226.502† 0.9868 mg/L 0.00333 0.34% QC value within limits for Cd 226.502 Recovery = 98.68% 66111.6 0.4925 mg/L 0.00155 Co 228.616† 0.4925 mg/L 0.00155 0.31% QC value within limits for Co 228.616 Recovery = 98.50% 0.5049 mg/L 0.00186 Cr 267.716† 110598.5 0.5049 mg/L 0.00186 0.37% QC value within limits for Cr 267.716 Recovery = 100.97% Cu 324.752† 238092.1 0.5139 mg/L 0.00419 0.5139 mg/L 0.00419 0.82% QC value within limits for Cu 324.752 Recovery = 102.78% 0,213 Fe 238.863† 5729126.0 94.50 mg/L 94.50 mg/L 0.2130.23% QC value within limits for Fe 238.863 Recovery = 94.50% K 404.721† -247.14.92 1.99% Mg 279.0771 9517449.4 242.0 mg/L 1.15 242.0 mg/L 1.15 0.48% QC value within limits for Mg 279.077 Recovery = 96.81% Mn 257.610† .882904.3 0.5079 mg/L 0.00241 0.5079 mg/L 0.00241 0.47% QC value within limits for Mn 257.610 Recovery = 101.57% Mo 202.031† -343.3 -0.0001 mg/L 0.00022 -0.0001 mg/L 0.00022 169.99% Ni 231.604† 146551,9 0.9757 mg/L 0.9757 mg/L 0.00362 0.00362 0.37% QC value within limits for Ni 231.604 Recovery = 97.57% 0.00968 Na 330.237† -818.3 -0.4840 mg/L -0.4840 mg/L 0.00968 2.00% Pb 220.353† 750.5 0.0514 mg/L 0.00113 0.0514 mg/L 0.00113 2.21% QC value within limits for Pb 220.353 Recovery = 102.73% Sb 206.836† 3665.3 0.6375 mg/L 0.00671 0.6375 mg/L 0.00671 1.05% QC value within limits for Sb 206.836 Recovery = 106.25% 0.0435 mg/L 0.00322 Se 196.026† 161.9 0.0435 mg/L 0.00322 7.39% QC value within limits for Se 196.026 Recovery = 87.05% 0.0558 mg/L 0.00034 -0.0026 mg/L 0.00004 Sn 189.927† 149.7 0.0558 mg/L 0.00034 0.61% Ti 337.279† 618.0 -0.0026 mg/L -0.0026 mg/L 0.00004 1.73% Tl 190.801† 725.2 0.1018 mg/L 0.1018 mg/L 0.00462 0.00462 4.53% QC value within limits for Tl 190.801 Recovery = 101.78% V 292.402† 131349.3 0.4969 mg/L 0.00046 0.4969 mg/L 0.00046 0.09% QC value within limits for V 292.402 Recovery = 99.39% Zn 206.200† 304615.8 0.9865 mg/L 0.00395 0.9865 mg/L 0.00395 0.40% QC value within limits for Zn 206.200 Recovery = 98.65%

Method: AXIAL200-6						8/13/2010 3::	
Ca 227.546† QC value within	limits for Ca 2	227.546 Recovery	1.39 = 101.88%				
Sr 460.733† All analyte(s) pas:	1754.7 sed QC.	0.0019 mg/L	0.00018	0.0019	mg/L	0.00018	9.46%
=======================================						************	
Sequence No.: 11 Sample ID: CCV Analyst: nitial Sample Wt:			Autosampler Lo	cation: 3			
Sampie ID: CCV			Date Collected	: 8/13/20	10 3:34:	09 PM	
naiyst: Ditial Sample Wr.			Data Type: Off Thitial Sample	yinai Vol.			
Dilution:			Sample Prep Vo.	1:			
lean Data: CCV							
nalyte	Mean Corrected	Calib Conc. Units	Std Dov	Cons	Sample		nan
371.029	8336875.3	0.9548 mg/L	0.00053	cone.	UNICS	std.Dev.	RSD 0.06%
371.029 Ag 328.068t	188760.2	0.5064 mg/L	0,00046	0.5064	mg/L	0,00046	0.00%
QC value within	limits for Ag 3	28.068 Recovery	= 101.28%				01020
l 308.215†	431604.7	10.01 mg/L	0.020	10.01	mg/L	0.020	0.20%
		08.215 Recovery					
		1.001 mg/L .88.979 Recovery		1.001	mg/L	0.0003	0.03%
249.772†	565454 1	2 429 mg/T		2,429	ma/T.	0.0187	0.77%
QC value within	limits for B 24	9.772 Recovery	= 97.15%	21122	ш9/ Ц	0.0107	V.//0
a 233.527†	3625217.3	10.07 mg/L -	0.023	10.07	mg/L	0.023	0.23%
QC value within	limits for Ba 2	33.527 Recovery	≈ 100.69¥				
e 313.107†	1636333.7	0.2491 mg/L	0.00028	0.2491	mg/L	0.00028	0.11%
d 226.502†	191350 1	13.107 Recovery 0.5001 mg/L	= 99.64%	0 5001	mer / T	0.00278	0 5 6 %
		26.502 Recovery		0.5001	шg/ л	0.00278	0.56%
0 228.616†	332997.3	2.491 mg/L	0.0062	2.491	mg/L	0.0062	0.25%
QC value within	limits for Co 2	28.616 Recovery	= 99.64%		2.		
r 267.716†	111274.2	0.5032 mg/L	0.00285	0.5032	mg/L	0.00285	0.57%
u 324.752†	Limits for Cr 2	67.716 Recovery		1 0 4 7		0 0054	
		24.752 Recovery		1.247	mg/ь	0.0054	0.44%
e 238.863†		5.029 mg/L		5.029	mg/L	0.0166	0.33%
QC value within	limits for Fe 2	38.863 Recovery	= 100.59%				
404.721†						94.83	2.26%
Unable to evalua g 279.077†	te QC.	05 00 /7			1		
OC value within	Jypp41.3 limits for Ma 2	79.077 Recovery	0.072 - 101 278	25.32	mg/L	0.072	0.29%
n 257.610†	1296531.8	0.7556 mg/L	0.00142	0.7556	mcy/T	0.00142	0.19%
QC value within	limits for Mn 2	57.610 Recovery	= 100.75%				0.100
0 202.031†	130561.3	2.443 mg/L	0.0282	2.443	mg/ъ	0.0282	1.15%
QC value within	limits for Mo 2	02.031 Recovery					
i 231.604†	305497.8	2.036 mg/L 31.604 Recovery	0.0025	2.036	mg/L	0.0025	0.12%
a 330.237†	42719.7	23.41 mg/L	0.045	23 41	mg/L	0.045	0.19%
		30.237 Recovery	= 93.65%	23.41	шдул	0.045	0.196
b 220.353†	14083.6	0.5144 mg/L	0.00735	0.5144	mg/L	0.00735	1.43%
		20.353 Recovery					
b 206.836†	28812.3	5.038 mg/L	0.0589	5.038	mg/L	0.0589	1.17%
QC value within e 196.026†		06.836 Recovery		0 5040			
	limits for Se 1	0.5043 mg/L 96.026 Recovery	0.00362	0.5043	mg/L	0.00362	0.72%
n 189.927†	150599.3	4.957 mg/L	0.0375	4.957	mg/L	0.0375	0.76%
QC value within	limits for Sn 1	89.927 Recovery	= 99.14%				
i 337 .27 9†	1301545.6	2.547 mg/L	0.0299	2.547	mg/L	0.0299	1.18%
		37.279 Recovery					
L 190.801† OC value within	7804.1 limits for Tl 1	1.017 mg/L	0.0105	1.017	mg/L	0.0105	1.03%
292.402†	666092.7	90.801 Recovery 2.477 mg/L	= 101.67% 0.0183	2 477	mq/L	0.0183	0.74%
		2.402 Recovery =		2,4//		0.0103	0./415
n 206.200†	306500.3	1.006 mg/L	0.0034	1.006	mg/L	0.0034	0.34%
QC value within	limits for Zn 2	06.200 Recovery					
a 227.546†	14375.3		0.145	25.15	mg/L	0.145	0.57%
		27.546 Recovery			1-		
c 460.733† OC value within	641885.5 limits for Sr 4	2.483 mg/L 60.733 Recovery	0.0052	2.483	mg/L	0.0052	0.21%
	4411-UD LUL DL 4	JULIUSS RECOVERY	= 99.33* not evaluated				

Page 10

Sequence No.: 12 Autosampler Location: 1 Sample ID: CCB Date Collected: 8/13/2010 3:38:30 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: _____ Mean Data: CCB Mean Corrected Calib Sample Conc. Units Conc. Units Analyte Intensity Std.Dev. Std.Dev. RSD 0.9773 mg/L Y 371.029 8533282.3 0.03735 3.82% -0.0004 mg/L -0.0004 mg/L Ag 328.068† -134.8 0.00059 0.00059 163.65% QC value within limits for Ag 328.068 Recovery = Not calculated Al 308,215† 223.1 0.0052 mg/L 0.00598 0.0052 mg/L 0.00598 115.50% QC value within limits for Al 308.215 Recovery = Not calculated As 188.979† 14.5 0.0017 mg/L 0.00003 0.0017 mg/L 0.00003 1.86% QC value within limits for As 188.979 Recovery = Not calculated B 249.772† 1550.0 0.0066 mg/L 0.00423 0.0066 mg/L 0.00423 63.69% QC value within limits for B 249.772 Recovery = Not calculated Ba 233.527† 1931.7 0.0054 mg/L 0.00087 0.0054 mg/L 0.00087 16.23% QC value within limits for Ba 233.527 Recovery = Not calculated Be 313.107† 249.0 0.0000 mg/L 0.00007 0.0000 mg/L 0.00007 191.12% QC value within limits for Be 313.107 Recovery = Not calculated Cd 226.502† 46.8 0.0001 mg/L 0.0001 mg/L 0.00003 0.00003 25.72% QC value within limits for Cd 226.502 Recovery = Not calculated Co 228,616t 72.2 0.0005 mg/L 0.00018 0.0005 mg/L 0.00018 33.31% QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† 18.5 0.0001 mg/L 0.00015 0.0001 mg/L 0.00015 174,19% QC value within limits for Cr 267.716 Recovery = Not calculated Cu 324.752† 1992.4 0.0042 mg/L 0.00139 0.0042 mg/L 0.00139 32.97% QC value within limits for Cu 324.752 Recovery = Not calculated Fe 238.8631 1385.6 0.0229 mg/L 0.02093 0.0229 mg/L 0.02093 91.46% QC value within limits for Fe 238.863 Recovery = Not calculated K 404.721† -150.1 7.43 4.95% Unable to evaluate QC. Mg 279.077† 164.7 0.0042 mg/L 0.00067 0.0042 mg/L 0.00067 16.00% QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610† 517.6 0.0003 mg/L 0.0003 mg/L 0.00008 0.00008 26.53% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 56.9 0.0011 mg/L 0.00021 0.0011 mg/L 0.00021 20.06% QC value within limits for Mo 202.031 Recovery = Not calculated Ni 231.604† 66.9 0.0004 mg/L 0.00008 0.0004 mg/L 0.00008 17.51% QC value within limits for Ni 231.604 Recovery = Not calculated Na 330.237† -91.1 -0.0499 mg/L 0.09172 -0.0499 mg/L 0.09172 183.88% QC value within limits for Na 330.237 Recovery = Not calculated 0.0002 mg/L Pb 220.353† 0.0002 mg/L 6.1 0.00082 0.00082 372.07% QC value within limits for Pb 220.353 Recovery = Not calculated Sb 206.836† 0.0011 mg/L 6.1 0.00120 0.0011 mg/L 0.00120 111.81% QC value within limits for Sb 206.836 Recovery = Not calculated -0.0010 mg/L Se 196.026† -5.9 -0.0010 mg/L 0.00130 0.00130 128.01% QC value within limits for Se 196.026 Recovery = Not calculated 0.0143 mg/L Sn 189.927† 435.6 0.0143 mg/L 0.00231 0.00231 16.13% QC value within limits for Sn 189.927 Recovery = Not calculated Ti 337.279† 0.0002 mg/L 86.3 0.0002 mg/L 0.00012 0.00012 72.99% QC value within limits for Ti 337.279 Recovery = Not calculated Tl 190.801† 12.8 0.0017 mg/L 0.00007 0.0017 mg/L 0.00007 4.04% QC value within limits for Tl 190.801 Recovery = Not calculated 0.0003 mg/L V 292.402† 85.8 0.0003 mg/L 0.00013 0.00013 39.30% QC value within limits for V 292.402 Recovery = Not calculated 68.0 0.0002 mg/L Zn 206.200† 0.0002 mg/L 0.00012 0.00012 51.56% QC value within limits for Zn 206.200 Recovery = Not calculated Ca 227.546† -20.6 -0.0344 mg/L 0.03206 -0.0344 mg/L 0.03206 93.08% QC value within limits for Ca 227.546 Recovery = Not calculated 0.0006 mg/L Sr 460.733† 157.8 0.00034 0.0006 mg/L 0.00034 55.87% QC value within limits for Sr 460.733 Recovery = Not calculated All analyte(s) passed QC. One or more analytes were not evaluated.

```
Sequence No.: 13
Sample ID: PBS-117264
```

Autosampler Location: 38 Date Collected: 8/13/2010 3:44:11 PM

88854

Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Analyst: Initial Sample Wt: 1 g Dilution:

Mean Data: PBS-1	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Ũnits	Std.Dev.	Conc.	Units	Std.Dev.	RSD
¥ 371.029	8808871.9	1.009	mg/L	0.0137				1.36
Ag 328.068†	57.3	0.0002	mg/L	0.00058				375.38
Al 308.215†	-167.4	-0.0039	mg/L	0.00231				59.54
As 188.979†	-16.8	-0.0020	mg/L	0.00221				112.83
B 249.772†	-209.2	-0.0010	mq/L	0.00018				19.17
Ba 233.527†	1101.6	0.0031	mg/L	0.00043				14.04
Be 313.107†	649.5	0.0001		0.00006				61.18
Cd 226.502†	-25.1	-0.0001	mg/L	0.00002				28.34
Co 228.616†	96.1	0.0007	mg/L	0.00012				16.05
Cr 267.716†	190.7	0.0009	mg/L	0.00003				3.31
Cu 324.752†	811.6	0.0017	mg/L	0.00023				13.44
Fe 238.863†	1100.2	0.0182	mg/L	0.00898				49.42
K 404.721†	-122.0		-				68.94	56.52
Mg 279.077†	86.1	0.0022	mg/L	0.00737				338.06
Mn 257.610†	724.8	0.0004	mg/L	0.00002				4.56
Mo 202.031t	56.1	0.0011	mg/L	0.00003				3.07
Ni 231.604†	113.8	0.0008	mg/L	0.00001				1.03
Na 330.237†	394.9	0.2166	mg/L	0.03897				17.99°
Pb 220.353†	29.0	0.0011	mg/L	0.00035				33.14
Sb 206.836†	-3.8	-0.0007	mg/L	0.00072				109.19
Se 196.026†	2.6	0.0005	mg/L	0,00115				255.57
3n 189.927†	991.2	0.0326	mg/L	0.00538				16.50%
Ti 337.279†	224.9	0.0004	mg/L	0.00024				53.60%
rl 190.801†	-5.3	-0.0007	mg/L	0.00008				12.389
/ 292.402†	69.4	0.0003	mg/L	0.00002				5.79
Zn 206.200†	499.3	0.0016	mg/L	0.00008				4.64
Ca 227.546†	-19.4	-0.0326		0.00843				25.889
Sr 460.733†	-43.4	-0.0002	mg/L	0.00028				169.529
Sample conc. not	calculated. Nomin	al Wt. Al	ND Init	ial Wt. required	OR samp]	e units	incorrect.	
		========		==================			=============	======
equence No.: 14 ample ID: LCSS 1	/5			Autosampler Loc Date Collected:			אם ל	
Analyst:	., .			Data Type: Orig		.0 3:49:3.	4 F.M	
nitial Sample Wt	. 1 01 ~			Initial Sample				
Dilution: 5X	<u></u> v. y			Sample Prep Vol				

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 3 7 1.029	8613318.5	0.9864	mg/L	0.00134				0.149
Ag 328.068†	61570.9	0.1675	mg/L	0.00077				0.46
Al 308.215†	982179.1	22.78	mg/L	0.076				0.34
As 188.979†	1425.8	0.1825	mg/L	0.00404				2.21
3 249.772†	81688.3	0.2377	mg/L	0.00107				0.45%
Ba 233.527†	338072.0	0.9370	mg/L	0.00188				0.20%
Be 313.107†	794204.7	0.1209	mg/L	0.00003				0.03
Cd 226.502†	72645.8	0.1868	mg/L	0.00232				1.24
Co 228.616†	57034.4	0.4258	mg/L	0.00493				1.168
Cr 267.716†	68526.0	0.3111	mg/L	0.00010				0.03%
Cu 324.752†	233813.6	0.5016	mg/L	0.00231				0.469
Fe 238.863†	2343152.1	38.69	mg/L	0.088				0.23
K 404.721†	1702.2						1.36	0.08
4g 279.077†	355940.5	9.030	mg/L	0.0247				0.279
An 257.610†	1941323.7	1.132	mg/L	0.0025				0.229
10 202.031†	7094.4	0.1345	mg/L	0.00380				2.82%
Ni 231.604†	66379.4	0.4424	mg/L	0.00032				0.078
Na 330.237†	1659.5	0.9926	mg/L	0.06956				7.01%
Pb 220.353†	6482.0	0.2364	mg/L	0.00229				0.97%
Sb 206.836†	1797.3	0.3138	mg/L	0.00624				1.99%
Se 196.026†	2259.7	0.3999	mg/L	0.00423				1.06%
Sn 189.927†	10149.6	0.3415	mg/L	0.00486				1.42%
Ci 337.279†	467472.8	0.9147	ma/L	0.00192				0.21%

Method: AXIAL20	00-6010 L Opt4	1	Page 12	Date: 8	/13/2010 4:00:17 PM
Tl 190.801†	4050.7	0.5293 mg/L	0.00890		1 (0%
V 292.4021	98978.1	0.3715 mg/L	0.00079		1.68% 0.21%
Zn 206.200†	186713.6	0.3713 mg/L	0.00106		0.17%
Ca 227.546†	9994.3	0.6124 mg/L 19.35 mg/L	0.085		0.44%
Sr 460.733†		0.2703 mg/L	0.00084		0.31%
	t calculated. Nomin			d OR sample units	
	-	======================================			
Sequence No.: 1 Sample ID: R100			Autosampler Lo	cation: 40 l: 8/13/2010 3:54:0	0 774
Analyst:	4314-001		Data Type: Ori		5 PM
Initial Sample	WF: 1 σ		Initial Sample		•
Dilution:			Sample Prep Vo		
Mean Data: R100					
Mean Data: Mito	Mean Corrected	Calib		Sample	
Analyte	· · · ·		Std.Dev.	Conc. Units	Std.Dev. RSD
Y 371.029	8531657.7	0.9771 mg/L	0.00542		0.55%
Ag 328.068†	Intensity 8531657.7 -3348.0 4073516.0	-0.0031 mg/L	0.00089		28.35%
Al 308.215†	4073516.0	94.48 mg/L	0.378		0.40%
As 188.979†	-194 1	0.0143 mg/L 0.0761 mg/L	0.00050		3.47%
B 249.772†	81678.2	0.0761 mg/L	0.00629		8.26%
Ba 233.527†	103691.7	0.2835 mg/L 0.0018 mg/L	0.00120		0.42%
Be 313.107†	11889.1	0.0018 mg/L	0.00003		1.87%
Cd 226.502†	3095.0	0.0004 mg/L 0.0116 mg/L	0.00010		22.73%
Co 228.616†	1819.2	0.0116 mg/L	0.00040		3.46%
Cr 267.716†	21658.6	0.1012 mg/L	0.00099		0.98%
Cu 324.752† Fe 238.863†	22550.1 5597983.5	0.0638 mg/L 92.43 mg/L	0.00016 0.569		0.24% 0.62%
K 404.721t	1271.6	22.42 mg/m	0.009		111.17 8.74%
Mg 279.077†		3.332 mg/L	0.0189		0.57%
Mn 257.610†		0.5499 mg/L	0.00196		0.36%
Mo 202.031†	-65.6	0.0036 mg/L	0.00070		19.76%
Ni 231.604†	3461.0	0.0229 mg/T	0.00007		0.30%
Na 330.237†	-280.3	0.0646 mg/L	0.02550		39.45%
Pb 220.353†	5731.1	0.2136 mg/L 0.0004 mg/L	0.00062		0.29%
Sb 206.836†	10.7	0.0004 mg/L	0.00136		356.28%
Se 196.026†	-105.0	0.0055 mg/L	0.00127		22.91%
Sn 189.927†	701.2	0.0381 mg/r	0.00013		0.33%
Ti 337.279†	686941.1 -36.9	1.344 mg/L -0.0004 mg/L	0.0107		0.79%
Tl 190.801† V 292.402†		-0.0004 mg/L	0.00493 0.00274		>999.9% 1.05%
Zn 206.200†	67523.8 34616.7	0.2596 mg/L 0.1111 mg/L	0.00101		0.91%
Ca 227.546†	160.1	5.219 mg/L	0.0645		1.23%
Sr 460.733†	2602.2	0.0099 mg/L	0.00041		4.118
	t calculated. Nomina	al Wt. AND Init		d OR sample units :	
					*899432222222222
Sequence No.: 1 Sample ID: R1004			Autosampler Lo	cation: 41 : 8/13/2010 3:58:22	DM DM
Analyst:	4344-004 <i>D</i>		Data Type: Orig		
Initial Sample 1	Wt: 1.01 a		Initial Sample	-	
Dilution:	.		Sample Prep Vo		
	4214-0015				
Mean Data: R1004	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev. RSD
Y 371.029	8528022.9	0.9767 mg/L	0.00415	Jone, United	0.42%
Ag 328.068†	-3441.6	-0.0032 mg/L	0.00098		30.60%
Al 308.215†	4362218.7	101.2 mg/L	0.10		0.10%
As 188.979†	-186.5	0.0164 mg/L	0.00090		5.51%
B 249.772†	83185.0	0.0732 mg/L	0.01477		20.19%
Ba 233.527†	110575.8	0.3025 mg/L	0.00015		0.05%
Be 313.107†	12584.9	0.0020 mg/L	0.00001		0.32%
Cd 226.502†	3186.3	0.0004 mg/L	0.00030		72.54%
Co 228.616†	1989.1	0.0128 mg/L	0.00002		0.13%
Cr 267.716† Cu 324.752†	23122.6 23338.0	0.1079 mg/L	0.00104 0.00027		0.97% 0.41%
Fe 238.863†	5779107.5	0.0660 mg/L 95.42 mg/L	0.590		0.418
K 404.721†	1641.3	22,72 mg/u	0.000		109.56 6.68%

Method: AXIAL2	00-6010 L Opt4			Page 13		Date:	8/13/2010 4:	08:56 1
Mg 279.077†	149662.3	3.74	9 mœ/ĭ,	0.0086				0.239
Mn 257.610†	957563.7	0.5584	4 ma/L	0.00017				0.039
Mo 202.031†	-93.5	0.003:	2 ma/L	0.00036				11.27
Ni 231.604†	3789.1	0.025	L mq/L	0,00027				1.079
Na 330.237†	957563.7 -93.5 3789.1 -258.7	0.0826	5 mg/L	0.05283				63.949
Pb 220.353†	7212.9	0.2682	2 mg/L	0.05283 0.00515 0.00240 0.00436 0.00096 0.0507 0.00024				1.92%
Sb 206.836†	7212.9 26.7	0.0037	L mg/L	0.00240				77.598
Se 196.026†	-118.5	0.0035) mq/L	0.00436				112.99%
Sn 189.927†	-118.5 732.9	0.0391	/ mg/L	0.00096				2.428
Ti 337.279†	820788.9	1.606	5 mg/L	0.0507				3.15%
Tl 190.801†	820788.9 -47.1	-0.0016	s mq/L	0.0507 0.00024				15.20%
V 292.402†	70575.4 36984.4 -30.1	0.2712	2 mq/L	0.00271 0.00123				1.00%
Zn 206.200†	36984.4	0.1187	/ mg/L	0.00123				1.048
Ca 227.546†	-30.1	5.054	mg/L	0.0008				0.02%
Sr 460.733† Sample conc. no	2397.1 t calculated. Nomin	0.0091	L mg/L	0.00040		le unite	incorroct	4.378
	*================							=======
	.7 94314-001S			Autosampler Loc	ation: 4	4	16 736	
Analyst:				Date COllected:	0/±3/20 daal	10 410413	50 FM	
Initial Sample	Wt: 1 g			Initial Samala	Vol·			
Dilution:				Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 100 mL			
Mean Data: R100	4314-001S Mean Corrected		Calib			Camp1 -		
Analyte	Intensity	Conc.	Units	Std.Dev.	Cong	Sample Units	Std.Dev.	RSD
Y 371.029	8387442 R	0.9606		0.00012	cone.	4117 FS	aca.pev.	0.01%
Ag 328.068†	8387442.8 16635.8	0 0500		0.00012				
Al 308.215†	4578592 3	106 2		0.40				0.32% 0.38%
As 188.979†	4578592.3 163.6	0 0549		0.00227				0.38% 4.15%
B 249.772†	292968.1	0.0540		0.01438				
Ba 233.527†	874869 9	2 126		0.0056				1.44%
Be 313.107†	350766.5	0.0534	ш <u></u> ул та/т.	0.00009				0.23%
Cd 226.5021	22509.8	0.0515						0.17%
Co 228.616t	72742.3	0.5422	шу/ Ц mc:/т	0.00065 0.00707				1.25%
Cr 267.716†	69496.5	0.2422	шу/л mœ/т					1.30%
Cu 324.752†	147600.3	0.3173 0.3278	шу/ц ma/т	0.00132				0.42%
Fe 238.863†		89.23		0.00123				0.37%
K 404.721†	4772.8	07.23	mA\n	0.240			11	0.27%
Mg 279.077†		5 603	ma / 1	0 0144			11.76	
Mg 279.077 Mn 257.610†	225890.1 1692310.7	5.691	աց/հ mզ/т	0.0144				0.25%
Mn 257.6101 Mo 202.031†	1074310./	0.9871	шg/ь тс/т	0.00232				0.24%
	25721.1 73603.1	0.4859 0.4905	mg/L me/T	0.00545				1.12%
Ni 231.604†				0.00373				0.76%
Na 330.237†	36412.4	20.17		0.102				0.51%
Pb 220.353†	20568.5	0.7561		0.01018				1.35%
Sb 206.836†	2029.9	0.3534		0.01276				3.61%
Se 196.026†	5410.8	0.9554		0.00364				0.38%
Sn 189.927†		5.562		0.0302				0.54%
Ci 337.279†	1000664.2	1.958		0.0284				1.45%
Cl 190.801†		2.010		0.0315				1.57%
7 292.402†	205005.4	0.7703	mg/L	0.00054				0.07%
Zn 206.200†	195843.2			0.00149				0.23%
Ca 227.546†	1357.3	7.135	mg/L	0.0121				0.17%
Sr 460.733†	2948.2	0.0113	mg∕L	0.00044				3.88%
	t calculated. Nomina	al Wt. Al	ND Init	ial Wt. required	-			
Sequence No.: 18	8			Autosampler Loca				
Sample ID: R1004				Date Collected:			5 PM	
Analyst:				Data Type: Origi				
Initial Sample W	Nt:			Initial Sample V				
Dilution:				Sample Prep Vol:				
		• ·						
	4314-001A Mean Corrected		Calib			Camol o		
						Sample		
fean Data: R1004		0	TT and the second	CL J B ·	A	TT	a. a	
Mean Data: R1004 Analyte	Intensity			Std.Dev.	Conc.	Units	Std.Dev.	RSD
Mean Data: R1004 Analyte 7 371.029	Intensity 8357262.1	0.9571	mg/L	0.00411	Conc.	Units	Std.Dev.	0.43%
fean Data: R1004 Malyte	Intensity 8357262.1 15172.1		mg∕L mg/L		Conc.	Units	Std.Dev.	

	0-6010 L Opt4	Ра	ge 14	Date: 8/13/2010 4:17	:00 PM
As 188.979†	167.7	0.0566 mg/L	0.00042		0.74%
B 249.772†	293944.9	0.9956 mg/L	0.00870		0.87%
Ba 233.527†	820522.7	2.275 mg/L	0.0013		0.06%
Be 313.107†	327640.0	0.0499 mg/L	0.00003		0.06%
Cd 226.502†	21280.8	0.0480 mg/L	0.00051		1.06%
Co 228.616†	68465.8	0.5102 mg/L	0.00083		0.16%
Cr 267.716†	65265.5	0.2983 mg/L	0.00047		0.16%
Cu 324.752†	139284.9	0.3109 mg/L	0.00063		0.20%
Fe 238.863†	5583482.3	92.19 mg/L	0.324		0.35%
K 404.721†	4545.4	/-			2.36%
Mg 279.077†	209379.9	5.270 mg/L	0.0127		0.24%
Mn 257.610† Mo 202.031†	1787000.4	1.042 mg/L	0.0001		0.01%
Ni 231.604†	26110.1 69583.2	0.4932 mg/L 0.4637 mg/L	0.00871 0.00150		1.77% 0.32%
Na 330.237†	33869.7	18.79 mg/L	0.00150		0.32% 0.09%
Pb 220.353†	18906.8	0.6940 mg/L	0.01126		1.62%
Sb 206.836†	2766.4	0.4822 mg/L	0.00781		1.62%
Se 196.026†	5701.7	1.007 mg/L	0.0041		0.41%
Sn 189.927†	670.8	0.0373 mg/L	0.00282		7.54%
Ti 337.279†	943007.6	1.845 mg/L	0.0322		1.74%
Tl 190.801†	14500.0	1.892 mg/L	0.0155	(0.82%
V 292.402†	195492.0	0.7353 mg/L	0.00465	(0.63%
Zn 206.200†	184551.8	0.6038 mg/L	0.00002		0.00%
Ca 227.546†	1218.3	7.039 mg/L	0.1793		2.55%
Sr 460.733†	2823.2	0.0107 mg/L	0.00042		3.94%
Sample conc. no	t calculated. Sampl	e Prep. Vol. AND	Initial Vol.	required OR sample units incorre	ect.
					=====
Sequence No.: 1 Sample ID: R100			Autosampler Lo Data Collector		
Analyst:	4214-0010		Data Type: Or:	1: 8/13/2010 4:11:14 PM	
Initial Sample	W+•		Initial Sample	-	
Dilution:			Sample Prep Vo		
			bankro rrob t		
Mean Data: R100	4314-001L				
	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units Std.Dev.	RSD
-		CONC. ONLOS			
Y 371.029	8821456.0	1.010 mg/L	0.0067	(0.66%
Y 371.029 Ag 328.068†	8821456.0 -843.0	1.010 mg/L -0.0010 mg/L	0.0067 0.00007	(0.66% 5.97%
Y 371.029 Ag 328.068† Al 308.215†	8821456.0 -843.0 852468.6	1.010 mg/L -0.0010 mg/L 19.77 mg/L	0.0067 0.00007 0.443		0.66% 5.97% 2.24%
Y 371.029 Ag 328.068† Al 308.215† As 188.979†	8821456.0 -843.0 852468.6 -44.5	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L	0.0067 0.00007 0.443 0.00009		0.66% 5.97% 2.24% 3.45%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	8821456.0 -843.0 852468.6 -44.5 14010.5	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L	0.0067 0.00007 0.443 0.00009 0.00295	124	0.66% 5.97% 2.24% 3.45% 4.63%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184	124	0.66% 5.97% 2.24% 3.45% 4.63% 3.17%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001	124).66% 5.97% 2.24% 3.45% 4.63% 3.17% L.21%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001 0.00004	124 2 2 2 2 2 2 2 2 2	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% L.21% 2.83%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.00027 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001 0.00004 0.00031	124 124 262 11	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% L.21% 2.83% L.24%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L	$\begin{array}{c} 0.0067\\ 0.00007\\ 0.443\\ 0.00009\\ 0.00295\\ 0.00184\\ 0.00001\\ 0.00001\\ 0.000031\\ 0.00060\\ \end{array}$	262 11 12 12 11 262 11	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% L.21% 2.83% L.21% 2.83% L.48%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8 \end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L	0.0067 0.443 0.0009 0.00295 0.00184 0.00001 0.00001 0.00031 0.00060 0.00082	262 124 262 11 262 11 262	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% L.21% 2.83% L.21% 2.83% L.48% 2.87% 5.93%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L	$\begin{array}{c} 0.0067\\ 0.00007\\ 0.443\\ 0.00009\\ 0.00295\\ 0.00184\\ 0.00001\\ 0.00001\\ 0.000031\\ 0.00060\\ \end{array}$	262 124 262 11 262 11 262	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 4.21% 2.83% 4.21% 2.83% 2.87% 5.93% 2.40%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L	0.0067 0.443 0.0009 0.00295 0.00184 0.00001 0.00001 0.00031 0.00060 0.00082	265 124 265 11 265 11 265 11 265 11 265 11 265 11 265 11 27 38	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 4.21% 2.83% 4.21% 2.83% 2.87% 5.93% 2.40%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L 19.42 mg/L	$\begin{array}{c} 0.0067\\ 0.00007\\ 0.443\\ 0.00009\\ 0.00295\\ 0.00184\\ 0.00001\\ 0.00004\\ 0.00031\\ 0.00060\\ 0.00082\\ 0.466\end{array}$	124 124 267 11 267 11 267 11 249.27 38	0.66% 5.97% 2.24% 3.45% 4.63% 4.63% 4.63% 4.21% 2.83% 2.83% 2.83% 2.83% 2.87% 5.93% 2.40% 3.74%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665	124 124 267 11 149.27 38	0.66% 5.97% 2.24% 3.45% 4.63% 4.63% 4.63% 4.21% 2.83% 2.83% 2.83% 2.83% 2.83% 2.87% 2.40% 3.74% 2.40%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.1146 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.00277	124 124 262 11 149.27 38 2 30	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 1.21% 2.83% 1.48% 2.83% 2.83% 2.87% 2.87% 2.87% 2.87% 2.87% 2.93% 2.40% 2.40%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.1146 mg/L 0.0009 mg/L 0.0050 mg/L -0.0824 mg/L	0.0067 0.00007 0.443 0.00009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00031 0.00031	124 124 262 11 149.27 38 20 149.27 38 20 20 20 20 20 20 20 20 20 20 20 20 20	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 2.83% 2.83% 2.83% 2.83% 2.87% 2.83% 2.40% 2.40% 2.40% 2.40% 2.40% 3.74% 2.40% 3.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353†	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ &610.9\\ &417.8\\ &4436.8\\ &4933.8\\ 1176024.6\\ &385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ &753.5\\ &-233.9\\ &1182.7\end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.1146 mg/L 0.009 mg/L 0.0090 mg/L 0.0090 mg/L 0.0090 mg/L 0.0090 mg/L 0.0090 mg/L 0.0091 mg/L 0.0091 mg/L	0.0067 0.443 0.0009 0.00295 0.00184 0.00001 0.00001 0.000031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00031 0.00031 0.00495 0.00100	124 124 262 11 262 11 149.27 38 2 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 2.83% 2.83% 2.83% 2.83% 2.83% 2.87% 2.40% 2.40% 2.40% 2.42% 2.42% 5.20% 5.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 212995\\ 2870.4\\ &610.9\\ &417.8\\ &4436.8\\ &4933.8\\ 1176024.6\\ &385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ &753.5\\ &-233.9\\ &1182.7\\ &3.5\end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.1146 mg/L 0.009 mg/L 0.0090 mg/L 0.00824 mg/L 0.0441 mg/L 0.0003 mg/L	0.0067 0.443 0.0009 0.0295 0.00184 0.00001 0.00001 0.00001 0.00031 0.00060 0.00082 0.466 0.01665 0.01665 0.00277 0.000277 0.00027 0.00031 0.00495 0.00100 0.00009	124 124 262 11 149.27 38 2 30 6 6 2 30 30 30 30	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 4.21% 2.83% 2.83% 2.87% 2.83% 2.87% 2.87% 2.40% 2.40% 2.40% 2.40% 2.42% 5.20% 2.42% 5.20% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.45% 2.45% 2.24%2.24% 2.24% 2.24% 2.24% 2.24%2.24% 2.24% 2.24% 2.24%2.24% 2.24% 2.24%2.24% 2.24% 2.24%2.24% 2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24% 2.24%2.24%2.24% 2.24%2.24%2.24% 2.24%2.24%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ 753.5\\ -233.9\\ 1182.7\\ 3.5\\ -25.6\end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.1146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0044 mg/L 0.0044 mg/L 0.0003 mg/L 0.0006 mg/L	0.0067 0.00007 0.443 0.0009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.01665 0.00277 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00073	149.27 149.27 30 30 130 149.23 149.23 149.23 30 130	0.66% 5.97% 2.24% 3.45% 3.17% 2.23% 2.21% 2.83% 2.87% 2.83% 2.87% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.20% 2.20% 2.20% 2.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ 753.5\\ -233.9\\ 1182.7\\ &3.5\\ -25.6\\ 208.2\\ \end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.6949 mg/L 0.1146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0824 mg/L 0.0441 mg/L 0.0003 mg/L 0.0006 mg/L 0.0100 mg/L	0.0067 0.00007 0.443 0.0009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00073 0.00043	149.27 30 30 30 30 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	0.66% 5.97% 2.24% 3.45% 3.45% 3.17% 2.48% 2.87% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.20% 2.20% 2.20% 2.20% 2.20% 2.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ -5.1\\ 753.5\\ -233.9\\ 1182.7\\ 3.5\\ -25.6\\ 208.2\\ 141466.7\\ \end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0041 mg/L 0.0003 mg/L 0.0006 mg/L 0.0100 mg/L 0.0100 mg/L 0.0100 mg/L 0.0100 mg/L	0.0067 0.00007 0.443 0.00295 0.00184 0.00001 0.00001 0.00001 0.00000 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00073 0.00043 0.00574	149.27 38 30 30 30 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 30 42 42 42 42 42 42 42 42 42 42 42 42 42	0.66% 5.97% 2.24% 3.45% 4.63% 4.63% 1.21% 2.83% 2.87% 2.83% 2.87% 2.40% 2.40% 2.40% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20% 5.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ -5.1\\ 753.5\\ -233.9\\ 1182.7\\ 3.5\\ -25.6\\ 208.2\\ 141466.7\\ 15.1\\ \end{array}$	1.010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0041 mg/L 0.0041 mg/L 0.0006 mg/L 0.0100 mg/L 0.2768 mg/L 0.0029 mg/L	0.0067 0.443 0.0009 0.0295 0.00184 0.00001 0.00001 0.00001 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00073 0.00073 0.00074 0.00206	149.27 30 30 149.27 30 30 4 2 30 4 2 30 130 130 130	0.66% 5.97% 2.24% 3.45% 4.63% 4.63% 1.21% 2.83% 2.83% 2.83% 2.40% 2.40% 2.40% 5.00% 5.00% 5.00% 5.00% 5.00% 5.20% 5.00% 5.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† T1 190.801† V 292.402†	$\begin{array}{r} 8821456.0\\ -843.0\\ 852468.6\\ -44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ -5.1\\ 753.5\\ -233.9\\ 1182.7\\ 3.5\\ -25.6\\ 208.2\\ 141466.7\\ 15.1\\ 13789.7\\ \end{array}$	1.010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0024 mg/L 0.0082 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.6949 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0009 mg/L 0.0009 mg/L 0.0000 mg/L 0.0003 mg/L 0.0006 mg/L 0.0100 mg/L 0.2768 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L	0.0067 0.443 0.0009 0.0295 0.00184 0.00001 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00027 0.00027 0.00031 0.00495 0.00100 0.00073 0.00043 0.000574 0.00206 0.00163	149.27 30 30 149.27 30 30 4 2 30 4 2 30 130 30 30 30 30 30 30 30 30 30 30 30 30 3	0.66% 5.97% 2.24% 3.45% 4.63% 3.17% 2.83% 2.83% 2.83% 2.83% 2.40% 2.40% 2.40% 5.00% 5.00% 5.20%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200†	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9 1182.7 3.5 -25.6 208.2 141466.7 15.1 13789.7 8180.1	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0146 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0008 mg/L 0.0008 mg/L 0.0006 mg/L 0.0006 mg/L 0.0100 mg/L 0.0009 mg/L 0.0009 mg/L 0.0008 mg/L 0.0008 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.0000000000000000000000000000	0.0067 0.443 0.0009 0.0295 0.00184 0.00001 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00027 0.00027 0.00027 0.00031 0.00495 0.00100 0.00073 0.00073 0.00266 0.00163 0.00073	124 124 262 11 149.27 36 2 30 4 30 130 4 2 30 130 4 2 30 130 130 4 2 30 130 130 130 130 130 130 130 130 130	0.66% 5.97% 2.24% 3.45% 3.45% 3.17% 2.83% 2.83% 2.83% 2.83% 2.83% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.20% 2.21% 2.40% 2.20% 2.21% 2.42% 2.42% 2.42% 2.42% 2.24% 2.42% 2.42% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.40% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.24% 2.45% 2.40% 2.42% 2.40%
Y 371.029 Ag 328.0681 Al 308.2151 As 188.9791 B 249.7721 Ba 233.5271 Be 313.1071 Cd 226.5021 Co 228.6161 Cr 267.7161 Cu 324.7521 Fe 238.8631 K 404.7211 Mg 279.0771 Mn 257.6101 Mo 202.0311 Ni 231.6041 Ni 231.6041 Na 330.2371 Pb 220.3531 Sb 206.8361 Se 196.0261 Sn 189.9271 Ti 337.2791 Ti 190.8011 V 292.4021 Zn 206.2001 Ca 227.5461	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ &610.9\\ &417.8\\ &4436.8\\ &4933.8\\ 1176024.6\\ &385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ &753.5\\ &-233.9\\ &1182.7\\ &3.5\\ &-25.6\\ &208.2\\ 141466.7\\ &15.1\\ 13789.7\\ &8180.1\\ &42.4\\ \end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0208 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0050 mg/L 0.0003 mg/L 0.0003 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0009 mg/L 0.0006 mg/L 0.0009 mg/L 0.0009 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000000 mg/L 0.000000000000000000000000	0.0067 0.443 0.0009 0.0295 0.00184 0.00001 0.00001 0.00001 0.000031 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00031 0.00031 0.00495 0.00100 0.000495 0.00100 0.00073 0.00574 0.00206 0.00163 0.0091	124 124 262 149.27 38 2 149.27 38 2 30 130 130 130 130 130 130 130 130 130	0.66% 5.97% 2.24% 3.45% 3.17% 2.83% 2.21% 2.83% 2.83% 2.83% 2.87% 2.83% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.29% 2.29% 2.29% 2.29% 2.29% 2.29% 2.29% 2.29% 2.29% 2.29% 2.20% 2.21% 2.20% 2.24% 2.29%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	$\begin{array}{r} 8821456.0\\ &-843.0\\ 852468.6\\ &-44.5\\ 14010.5\\ 21299.5\\ 2870.4\\ 610.9\\ 417.8\\ 4436.8\\ 4933.8\\ 1176024.6\\ 385.3\\ 27782.1\\ 196533.2\\ &-5.1\\ 753.5\\ &-233.9\\ 1182.7\\ &3.5\\ &-25.6\\ 208.2\\ 141466.7\\ &15.1\\ 13789.7\\ 8180.1\\ &42.4\\ 589.7\\ \end{array}$	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0027 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.00824 mg/L 0.00441 mg/L 0.0003 mg/L 0.0006 mg/L 0.0100 mg/L 0.0100 mg/L 0.0278 mg/L 0.029 mg/L 0.0531 mg/L 0.0263 mg/L 1.112 mg/L 0.0022 mg/L	0.0067 0.00007 0.443 0.0009 0.00295 0.00184 0.00001 0.00004 0.00031 0.00060 0.00082 0.466 0.01665 0.01665 0.00277 0.00027 0.00027 0.00027 0.00031 0.00495 0.00100 0.00049 0.00073 0.00043 0.00574 0.00206 0.00163 0.00273 0.00391 0.0006	124 124 262 149.27 38 2 149.27 38 2 30 130 130 130 130 130 130 130 130 130	0.66% 5.245% 3.45% 3.21% 3.21% 2.45% 2.23% 2.23% 2.23% 2.23% 2.23% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.21% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.21% 2.45% 2.21% 2.25% 2.5% 2.
Y 371.029 Ag 328.0681 Al 308.2151 As 188.9791 B 249.7721 Ba 233.5271 Be 313.1071 Cd 226.5021 Co 228.6161 Cr 267.7161 Cu 324.7521 Fe 238.8631 K 404.7211 Mg 279.0771 Mn 257.6101 Mo 202.0311 Ni 231.6041 Na 330.2371 Pb 220.3531 Sb 206.8361 Se 196.0261 Sn 189.9271 Ti 337.2791 Ti 190.8011 V 292.4021 Zn 206.2001 Ca 227.5461 Sr 460.7331 Sample conc. not	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9 1182.7 3.5 -25.6 208.2 141466.7 15.1 13789.7 8180.1 42.4 589.7 calculated. Sampl	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 19.42 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0050 mg/L 0.0003 mg/L 0.0006 mg/L 0.0100 mg/L 0.0100 mg/L 0.0268 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L 0.0020 mg/L 0.00020 mg/L 0.0020	0.0067 0.00007 0.443 0.00295 0.00184 0.00001 0.00001 0.00001 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00031 0.00495 0.00100 0.00043 0.00574 0.00266 0.0026 0.00163 0.00273 0.0026 0.00163 0.00273 0.0026 0.00163 0.00273 0.0026 0.00163 0.00073 0.00291 0.00006 Initial Vol.	124 124 124 126 11 149.27 38 149.27 38 30 6 6 2 30 130 4 2 30 130 130 130 130 130 130 130 130 130	0.66% 5.224% 3.45% 3.121% 4.63% 3.121% 2.45% 3.121% 2.45% 3.121% 2.43% 2.43% 2.45% 2.43% 2.43% 2.43% 2.42% 2.29% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.51% 2.51%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9 1182.7 3.5 -25.6 208.2 141466.7 15.1 13789.7 8180.1 42.4 589.7 calculated. Sampl	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.0027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0146 mg/L 0.0050 mg/L 0.0050 mg/L 0.0050 mg/L 0.0050 mg/L 0.0003 mg/L 0.0006 mg/L 0.0006 mg/L 0.0100 mg/L 0.2768 mg/L 0.0263 mg/L 0.0263 mg/L 1.112 mg/L 0.0022 mg/L e Prep. Vol. AND	0.0067 0.00007 0.443 0.00099 0.00295 0.00184 0.00001 0.00001 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00043 0.00495 0.00100 0.00043 0.00574 0.00266 0.00163 0.0073 0.00266 1.00273 0.00266 1.00273 0.00266 1.00273 0.00266 1.00273 0.00266 1.00273 0.00273 0.00266 0.00163 0.00273 0.00273 0.00266 0.00163 0.00073 0.00266 0.00273 0.00275 0.00000000000 0.00000000000000000000	124 124 124 126 149.27 38 149.27 38 30 6 6 7 130 4 2 30 130 4 2 30 130 130 130 130 130 130 130 130 130	0.66% 5.224% 3.45% 3.121% 4.63% 3.121% 2.45% 3.121% 2.45% 3.121% 2.43% 2.43% 2.45% 2.43% 2.43% 2.43% 2.42% 2.29% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.51% 2.51%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9 1182.7 3.5 -25.6 208.2 141466.7 15.1 13789.7 8180.1 42.4 589.7 calculated. Sampl	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.027 mg/L 0.027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0146 mg/L 0.0009 mg/L 0.0050 mg/L 0.0050 mg/L 0.0003 mg/L 0.0006 mg/L 0.0006 mg/L 0.0100 mg/L 0.02768 mg/L 0.0263 mg/L 1.112 mg/L 0.0022 mg/L e Prep. Vol. AND	0.0067 0.00007 0.443 0.0009 0.00295 0.00184 0.00001 0.00001 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00100 0.00073 0.00043 0.00073 0.00073 0.00073 0.0026 0.00163 0.00073 0.0026 0.00163 0.00073 0.0006 Initial Vol.	124 124 124 126 149.27 38 149.27 38 149.27 38 30 4 2 30 130 4 2 30 130 4 2 30 130 4 2 30 130 130 130 130 130 130 130	0.66% 5.224% 3.45% 3.121% 4.63% 3.121% 2.45% 3.121% 2.45% 3.121% 2.43% 2.43% 2.45% 2.43% 2.43% 2.43% 2.42% 2.29% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.51% 2.51%
Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	8821456.0 -843.0 852468.6 -44.5 14010.5 21299.5 2870.4 610.9 417.8 4436.8 4933.8 1176024.6 385.3 27782.1 196533.2 -5.1 753.5 -233.9 1182.7 3.5 -25.6 208.2 141466.7 15.1 13789.7 8180.1 42.4 589.7 calculated. Sampl	1.010 mg/L -0.0010 mg/L 19.77 mg/L 0.0026 mg/L 0.0024 mg/L 0.0582 mg/L 0.0004 mg/L 0.0000 mg/L 0.0007 mg/L 0.027 mg/L 0.027 mg/L 0.0138 mg/L 19.42 mg/L 0.0138 mg/L 0.0138 mg/L 0.0138 mg/L 0.0009 mg/L 0.0009 mg/L 0.0050 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0006 mg/L 0.0006 mg/L 0.0100 mg/L 0.02768 mg/L 0.02768 mg/L 0.0263 mg/L 1.112 mg/L 0.0022 mg/L e Prep. Vol. AND	0.0067 0.00007 0.443 0.0009 0.00295 0.00184 0.00001 0.00001 0.00060 0.00082 0.466 0.01665 0.00277 0.00027 0.00027 0.00031 0.00495 0.00100 0.00009 0.00100 0.00073 0.00043 0.00073 0.00073 0.00073 0.0026 0.00163 0.00073 0.0026 0.00163 0.00073 0.0006 Initial Vol.	124 124 124 126 149.27 38 149.27 38 149.27 38 2 149.27 38 2 149.27 38 2 30 130 4 2 30 130 130 130 130 130 130 130	0.66% 5.224% 3.45% 3.121% 4.63% 3.121% 2.45% 3.121% 2.45% 3.121% 2.43% 2.43% 2.45% 2.43% 2.43% 2.43% 2.42% 2.29% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.42% 2.51% 2.51%

.

.

Initial Sample Wt: 1.05 g Dilution:

Initial Sample Vol: Sample Prep Vol: 100 mL

		•				_		
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	
371.029	8717272.5	0.9983	mg/L	0.00283				0.28%
\g 328.068†	-2504.6	-0.0019	mg/L	0.00060				32.139
Al 308.215†	2348390.8	54.47	mg/L	0.160				0.298
\s 188.979†	-250.1	0.0013	mg/L	0.00160				122.448
3 249.772†	61960.9	0.0441	mg/L	0.00096				2.18
3a 233.527†	29447.4	0.0781	mq/L	0.00115				1.47%
Be 313.107†	10984.0	0.0017		0.00002				0.978
Cd 226.502†	2292.1	-0.0003		0.00036				109.198
Co 228.616†	1384.7	0.0087		0.00028				3.198
Cr 267.716†	1 7 0 0 1 7	0 0000		0.00082				1.02%
Cu 324.752†	24214.9	0.0800	mg/11	0.00036				0.56%
Pe 238.8631	4596782.0	75.90	mg/II	0.456				0.50%
		75.90	шgлц	0.456			50 CA	
(404.721†	627.8	1 207		0 0000			58.64	
1g 279.077†	49262.7	1.207	mg/ц	0.0009				0.07%
(n 257.610†	127561.8	0.0742		0.00021				0.28%
10 202.031†		0.0037		0.00066				17.62%
li 231.604†	2258.3	0.0150		0.00015				0.99%
Ia 330.237†	-463.1	-0.0643		0.04726				73.52%
vb 220.353†	1406.2	0.0523	mg/L	0.00177				3.39%
3b 206.836†	17.4	0.0020		0.00539				269.95%
e 196.026†	-114.6	0.0004	mg/L	0.00293				668.09%
Sn 189.927†	407.7	0.0250	mg/L	0.00005				0.21%
'i 337.279†	593155.6	1.161	mg/L	0.0039				0.33%
1 190.801	9.0	1.161 0.0047	ma/T	0.00359				76.58%
292.4021	68781.7	0 2627	mα/L	0.00111				0.42%
n 206.200†	16573.2	0.2627 0.0526	m_{α}/L	0.00083				1.58%
la 227.546†	-2057.6	0.4752	m_{α}/L	0.05975				12.57%
Sr 460.733†	-152.3	-0.0008	mg/D	0.00047				61.87%
-								
equence No.: 21				-				
equence No.: 21 ample ID: R1004 nalyst:	2314-003			Autosampler Loc Date Collected: Data Type: Orig	ation: 46 8/13/203			
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W	2314-003			Autosampler Loc Date Collected:	ation: 46 8/13/201 ginal Vol:			=====
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution:	4314-003 Rt: 1.02 g			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 46 8/13/20J final Vol: .: 100 mL	.0 4:21:1		
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution:	314-003 Rt: 1.02 g 1314-003			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 46 8/13/20J ginal Vol: .: 100 mL	.0 4:21:1		
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004	1314-003 7t: 1.02 g 1314-003 Mean Corrected		Calib	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte	314-003 7t: 1.02 g 314-003 Mean Corrected Intensity	 Conc.	Calib Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 46 8/13/20J ginal Vol: .: 100 mL	.0 4:21:1 Sample		RSD
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029	1314-003 7t: 1.02 g 1314-003 Mean Corrected Intensity 8580006.8	Conc. 0.9826	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068†	1314-003 Nt: 1.02 g 1314-003 Mean Corrected Intensity 8580006.8 -3800.2	Conc. 0.9826 -0.0024	Calib Units mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215†	314-003 It: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1	Conc. 0.9826 -0.0024 110.9	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979†	<pre>314-003 314-003 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2</pre>	Conc. 0.9826 -0.0024 110.9 0.0142	Calib Units mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	A314-003 A14-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00043 0.00432	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527†	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.00043 O.00043 O.00004	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107†	<pre>314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6</pre>	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	<pre>314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3</pre>	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00043 0.00043 0.00004 0.00002 0.00014	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.02% 11.28%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	Alter and a second state of the second state o	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0022 0.0012 0.0150	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	<pre>314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3</pre>	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00043 0.00043 0.00004 0.00002 0.00014	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.03%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068t l 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t	Alter and a second state of the second state o	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0022 0.0012 0.0150	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00043 0.00043 0.00002 0.00014 0.00001	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.03% 0.03% 0.73%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068t 1 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0022 0.0012 0.0150 0.1232	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00043 0.000432 0.00004 0.00002 0.00014 0.00001 0.00090	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.03%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863†	Alt-003 Alt: 1.02 g Alt: 1.02 g Alt-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00432 0.000432 0.00004 0.00002 0.00014 0.00001 0.00090 0.00061	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.01% 0.80% 11.28% 0.73% 0.73% 0.73% 0.70% 0.28%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: Lean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721†	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00090 0.00064 0.20 0.00043 0.00432 0.00043 0.000432 0.00044 0.00002 0.00014 0.00001 0.00090 0.00061 0.34	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	======= 3 PM	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.80% 0.80% 0.80% 0.38% 0.73% 0.73% 0.70% 0.28% 13.66%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077†	A A A A A A A A A A A A A A	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.73% 0.73% 0.73% 0.28% 13.66% 0.16%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: Cean Data: R1004 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610†	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8 141417.6 1093742.9	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.03% 0.73% 0.73% 0.73% 0.70% 0.28% 13.66% 0.16% 0.11%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031†	All	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 4.80% 0.18% 0.01% 0.80% 11.28% 0.03% 0.73% 0.73% 0.70% 0.70% 0.70% 0.28% 13.66% 0.16% 0.11% 7.88%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604†	A A A A A A A A A A A A A A	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0032 0.0276	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.00043 O.00043 O.0004 O.00001 O.00090 O.00061 O.34 O.0056 O.00069 O.00025 O.00013	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.80% 11.28% 0.01% 0.80% 11.28% 0.3% 0.73% 0.73% 0.70% 0.28% 0.16% 0.11% 7.88% 0.47%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237†	A A A A A A A A A A A A A A	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0276 0.0023	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.00043 O.00043 O.0004 O.00002 O.00014 O.00001 O.00061 O.34 O.0056 O.00069 O.00025 O.00013 O.00070	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM Std.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.80% 11.28% 0.73% 0.73% 0.73% 0.73% 0.728% 13.66% 0.16% 0.11% 7.88% 0.47% 31.04%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: Rean Data: R1004 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353†	A A A A A A A A A A A A A A	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0276 0.0023 0.023 0.1804	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.00043 O.00043 O.00043 O.00002 O.00014 O.00001 O.00090 O.00061 O.34 O.0056 O.00069 O.00025 O.00013 O.00070 O.00132	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM 3 Ed.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.80% 1.28% 0.80% 1.28% 0.73% 0.73% 0.70% 0.28% 1.3.66% 0.16% 7.88% 0.16% 7.88% 0.47% 31.04% 0.73%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068t 1 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t a 330.237t b 220.353t b 206.836t	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8 141417.6 1093742.9 -160.3 4168.1 -537.2 4827.0 7.1	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0022 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.6378 0.0032 0.0276 0.0023 0.1804 -0.0006	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.000432 O.000432 O.00044 O.00002 O.00014 O.00002 O.00014 O.00001 O.00061 O.34 O.0056 O.00069 O.00025 O.00013 O.00070 O.00132 O.00268	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM 3 Ed.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.80% 11.28% 0.80% 11.28% 0.73% 0.73% 0.73% 0.70% 0.16% 7.88% 0.16% 7.88% 0.11% 7.88% 0.16% 31.04% 31.04%
equence No.: 21 ample ID: R1004 nalyst: nitial Sample W ilution: ean Data: R1004 nalyte 371.029 g 328.068t 1 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t a 330.237t b 220.353t b 206.836t e 196.026t	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8 141417.6 1093742.9 -160.3 4168.1 -537.2 4827.0 7.1 -150.2	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0023 0.00276 0.0023 0.1804 -0.0006 0.0060	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.000432 O.000432 O.000432 O.00044 O.00002 O.00014 O.00002 O.00014 O.00001 O.00061 O.34 O.0056 O.00069 O.00069 O.00069 O.00025 O.00013 O.00070 O.00132 O.00268 O.00381	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM 3 Ed.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.28% 0.28% 0.28% 0.73% 0.70% 0.73% 0.70% 0.28% 0.73% 0.70% 0.16% 0.11% 7.88% 0.16% 0.11% 7.88% 0.42% 31.04% 31.04% 0.73% 427.31% 63.48%
Gequence No.: 21 Sample ID: R1004 malyst: mitial Sample W Selection: Mean Data: R1004 malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353† b 206.836† e 196.026† n 189.927†	A A A A A A A A A A A A A A	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0012 0.0150 0.1232 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0276 0.0023 0.1804 -0.0006 0.0060 0.0406	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.00043 O.00043 O.00043 O.00043 O.00043 O.00043 O.00044 O.00002 O.00014 O.00001 O.00090 O.00061 O.34 O.0056 O.00069 O.00025 O.00013 O.00025 O.00013 O.00025 O.00013 O.000268 O.00381 O.00060	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM 3 Ed.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.28% 0.01% 0.80% 0.38% 0.73% 0.73% 0.73% 0.73% 0.73% 0.16% 0.11% 7.88% 0.11% 7.88% 0.11% 7.88% 0.73% 1.04% 31.04% 1.48%
Sequence No.: 21 Sample ID: R1004 Inalyst: Chitial Sample W Dilution: Mean Data: R1004 Inalyte 371.029	314-003 At: 1.02 g 314-003 Mean Corrected Intensity 8580006.8 -3800.2 4779779.1 -300.2 105323.3 120677.5 14371.6 4370.3 2361.4 26271.8 30727.7 7433833.2 1098.8 141417.6 1093742.9 -160.3 4168.1 -537.2 4827.0 7.1 -150.2	Conc. 0.9826 -0.0024 110.9 0.0142 0.0899 0.3292 0.0012 0.0150 0.1232 0.0866 122.7 3.522 0.6378 0.0032 0.0023 0.00276 0.0023 0.1804 -0.0006 0.0060	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00090 O.00064 O.20 O.00043 O.000432 O.000432 O.000432 O.00044 O.00002 O.00014 O.00002 O.00014 O.00001 O.00061 O.34 O.0056 O.00069 O.00069 O.00069 O.00025 O.00013 O.00070 O.00132 O.00268 O.00381	ation: 46 8/13/20J vinal Vol: : 100 mL	.0 4:21:1 Sample	3 PM 3 Ed.Dev.	RSD 0.09% 26.83% 0.18% 3.07% 4.80% 0.01% 0.80% 11.28% 0.38% 0.73% 0.70% 0.28% 0.73% 0.70% 0.11% 7.88% 0.11% 7.88% 0.47% 31.04% 0.73%

Method: AXIAL200-0	5010 L Opt4	Pag	ge 16	Date: 8	/13/2010 4:	31:44 PM
V 292.402†	00102 0	0 2005 mg/T	0.00070			0.26%
	80192.0	0.3095 mg/L	0.00079			
Zn 206.200†	56867.3	0.1836 mg/L	0.00128			0.70%
Ca 227.546†	-1411.5	4.106 mg/L	0.1992			4.85%
Sr 460.733†	3937.3	0.0150 mg/L	0.00036	1.02		2.41%
Sample conc. not o	calculated. Nomina	I WE. AND INITIA	al Wt. require	d OR sample units	incorrect.	
sequence No.: 22			======================================	======================================	**********	
Sample ID: R100433 Analyst:	4-004	I	-	: 8/13/2010 4:25:2	7 PM	
Initial Sample Wt:	1.03 g		Initial Sample			
Dilution:			Sample Prep Vo			
Mean Data: R100433	4_004					
Mean Diele, Mitorij	Mean Corrected	Calib		Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
Y 371.029	8550938.4	0.9793 mg/L	0.00624			0.64%
Ag 328.068†	-3580.4	-0.0041 mg/L	0.00011			2.64%
Al 308.215†		104.5 mg/L	0.27			0.26%
As 188.979†	-256.6	0.0051 mg/L	0.00231			45.60%
B 249.772†	71626.3	0.0445 mg/L	0.00292			6.57%
Ba 233.527†	122467.0	0.3359 mg/L	0.00080			0.24%
Be 313.107†	13150.5	0.0020 mg/L	0.00001			0.26%
Cd 226.5021	2786.4	0.0000 mg/L	0.00011			>999.9%
Co 228.616†	2116.5	0.0140 mg/L	0.00044			3.19%
Cr 267.716†	25948.0	0.1205 mg/L	0.00004			0.04%
Cu 324.752†	33289.6	0.0856 mg/L	0.00039			0.46%
Fe 238.863†		87.77 mg/L	0.060			0.07%
K 404.721†	1765.5	••••• · •• · ••			11.38	0.64%
Mg 279.077†		5.270 mg/L	0.0054			0.10%
Mn 257.610†	677310.3	0.3949 mg/L	0.00053			0.13%
Mo 202.031†	25.1	0.0052 mg/L	0.00056			10.79%
Ni 231.604†	4094.2	0.0272 mg/L	0.00003			0.10%
Na 330.237†	-1.84.5	0.1021 mg/L	0.06464			63.31%
Pb 220.3531	3886.1	0.1478 mg/L	0.00309			2.09%
Sb 206.836†	23.3	0.0025 mg/L	0.00055			21.80%
Se 196.026†	-96.5	0.0053 mg/L	0.00220			41.14%
Sn 189.927†	634.6	0.0355 mg/L	0.00053			1.50%
Ti 337.279t		2.013 mg/L	0.0023			0.11%
Tl 190.801†	1.3	0.0044 mg/L	0.00229			52.20%
V 292.402†		0.2768 mg/L	0.00043			0.15%
Zn 206.200†	41803.8	0.1346 mg/L				0.15%
Ca 227.546†		4.088 mg/L	0.00047 0.1297			3.17%
Sr 460.7331		4.088 mg/L 0.0075 mg/L	0.00010			1.35%
				d OR sample units	incorrect	7.322
-				-		
Sequence No.: 23	***************		Autosampler Lo	======================================		=====
Sample ID: CCV		I	Date Collected	: 8/13/2010 4:29:4	2 PM	
Analyst:		Ι	Data Type: Orig	ginal		
Initial Sample Wt:		I	Initial Sample	Vol:		
Dilution:		S	Sample Prep Vo	1:		
						
Mean Data: CCV	•• ·· ·	·-				
·	Mean Corrected		_ . • _	Sample		
Analyte	Intensity	Conc. Units 0.9792 mg/L	Std.Dev.	Conc. Units	Std.Dev.	
Y 371.029			0.00181			0.19%
Ag 328.068t		0.5008 mg/L		0.5008 mg/L	0.00288	0.58%
	limits for Ag 32					
Al 308.215†	428019.7	9.923 mg/L	0.0052	9.923 mg/L	0.0052	0.05%
	limits for Al 30					_
As 188.979†	8432.3	0.9884 mg/L	0.00098	0.9884 mg/L	0.00098	0.10%
QC value within	limits for As 18	8.979 Recovery	⊨ 98.84 %			
B 249.772†	551279.4	2.368 mg/L	0.0096	2.368 mg/L	0.0096	0.41%
QC value within	limits for B 249	.772 Recovery =	94.70%			
Ba 233.527†	3577203.7	9.936 mg/L	0.0132	9.936 mg/L	0.0132	0.13%
	limits for Ba 23			2.		
Be 313.107†		0.2455 mg/L	0.00032	0.2455 mg/L	0.00032	0.13%
QC value within			= 98 18%	-		
	TIUTED TOT DE DT.	D.IO. RECOVELY	- 20.400			
Cd 226.502†	188523.7	0.4927 mg/L	0.00193	0.4927 mg/L	0.00193	0.39%

_

·

	010 L Opt4	P	age 17		Date:	8/13/2010 4:	37:29 I
	limits for Cd 2						
0 228.616† OC value within	328888.6 1 limits for Co 2	2.460 mg/L 28 515 Recover	0.0057	2.460	mg/L	0.0057	0.23%
c 267.716†		0.4977 mg/L		0.4977	mq/L	0.00046	0.098
	limits for Cr 2	67.716 Recover			2,		
1 324.752†		1.227 mg/L	0.0044	1.227	mg∕L	0.0044	0.36%
	l limits for Cu 3 302638.0			4.989	ma/T	0.0105	0.21%
	limits for Fe 2			4.505		0.0105	0.210
404.721†	4268.4		-			144.86	3.398
Unable to evalu		24 05 mg/T	0.000	04.05	/ *	0.000	0 0 0
	980894.8 limits for Mg 2			24.95	mg∕L	0.006	0.039
257.610†			0.00098	0.7459	mg∕L	0.00098	0.138
	limits for Mn 2				-		
		2.415 mg/L	0.0203	2.415	mg∕L	0.0203	0.848
231.604†	limits for Mo 2 301495.2	2.010 mg/L	y = 96.58% 0.0069	2 010	mg/L	0.0069	0.34%
	limits for Ni 2				-	0.0009	0.540
330.237†	42264.0	23.16 mg/L	0.034	23.16	mg/L	0.034	0.15%
	limits for Na 3				/-		
220.353t	13670.0 limits for Pb 2	0.4993 mg/L	0.00740	0.4993	шд\Г	0.00740	1.48%
206.836†		4.968 mg/L	0.0474	4,968	mg/L	0.0474	0.95%
QC value within	limits for Sb 2	06.836 Recovery					
196.026†	2881.5	0.4976 mg/L	0.00026	0.4976	mg/L	0.00026	0.05%
QC value within 189.927†	limits for Se 1 149384.4	96.026 Recovery 4.917 mg/L		4 017	mg/L	0.0019	0.048
	limits for Sn 1		0.0019 v = 98.34%	4.91/	шgть	0.0019	0.04%
337.279†	1294288.6	2.533 mg/L	0.0382	2.533	mg/L	0.0382	1.51%
	limits for Ti 3	37.279 Recovery					
190.801†	7695.5	1.003 mg/L	0.0021	1.003	mg/L	0.0021	0.20%
QC value within 292.402†	limits for Tl 1 656413 1	2.441 mg/L		2 441	mg/L	0.0094	0.39%
	limits for V 29			2.111		0.0004	0.556
206.2001	301848.1	0.9909 mg/L	0.00129	0.9909	mg/L	0.00129	0.13%
	limits for Zn 2				/-		
227.546†	14163.4	24.78 mg/L	0.063	24.78	mg/L	0.063	0.26%
227.546† QC value within		24.78 mg/L 27.546 Recovery	0.063 / ≈ 99.12%		-		
227.546† QC value within 460.733† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery	0.063 7 = 99.12% 0.0012 7 = 97.82%	2.445	-	0.063	0.26% 0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas	14163.4 limits for Ca 2 632115.9	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 7 = 99.12% 0.0012 7 = 97.82% ce not evaluat	2.445 ed.	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 7 = 99.12% 0.0012 7 = 97.82% re not evaluat Autosampler L	2.445 ed. ocation: 1	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte	2.445 ed. ocation: 1 d: 8/13/203	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas guence No.: 24 mple ID: CCB alyst:	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or	2.445 ed. ocation: 1 d: 8/13/203 iginal	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within h analyte(s) pas guence No.: 24 mple ID: CCB alyst: itial Sample Wt:	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol:	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within h analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: Lution:	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes wer	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol:	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas puence No.: 24 mple ID: CCB alyst: tial Sample Wt: ution: m Data: CCB	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes wer	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol:	mg/L	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol:	mg/L 	0.0012	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas puence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol:	mg/L 	0.0012	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas puence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol:	mg/L 	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we 	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol: Conc. -0.0003 ated	mg/L 	0.0012 03 PM Std.Dev. 0.00025	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas puence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 328.068† QC value within 308.215†	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00127	2.445 ed. ocation: 1 d: 8/13/203 iginal e Vol: ol: Conc. -0.0003 ated -0.0066	mg/L 	0.0012	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas puence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00127	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol: 	mg/L .0 4:34: Sample Units mg/L mg/L	0.0012 03 PM Std.Dev. 0.00025	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas quence No.: 24 mple ID: CCB alyst: tial Sample Wt: tution: Data: CCB alyte 971.029 328.068† QC value within 188.979† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes wer ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00127 y = Not calcul 0.0046	2.445 ed. cocation: 1 d: 8/13/203 iginal e Vol: ol: Conc. -0.0003 ated -0.0066 ated -0.0001 ated	mg/L 	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046	0.05%
227.546† QC value within 460.733† QC value within analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772†	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ====================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00046 y = Not calcul 0.00252	2.445 ed. cocation: 1 d: 8/13/203 iginal e Vol: ol: Conc. -0.0003 ated -0.0066 ated -0.0001 ated -0.0190	mg/L 	0.0012 03 PM Std.Dev. 0.00025 0.00127	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we 	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00026 y = Not calcul 0.00252 = Not calcula	2.445 ed. cocation: 1 d: 8/13/201 iginal e Vol: ol: Conc. -0.0003 ated -0.0066 ated -0.0001 ated -0.0190 ted	mg/L .0 4:34: Sample Units mg/L mg/L mg/L mg/L	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046 0.00252	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas guence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 328.068† QC value within 308.215† QC value within 188.979† QC value within 188.979† QC value within 249.772† QC value within 233.527†	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we 	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.0025 y = Not calcul 0.00252 = Not calcula 0.00022	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol: 	mg/L .0 4:34: Sample Units mg/L mg/L mg/L mg/L	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046 0.00252	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas guence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: 	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we 	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.0025 y = Not calcul 0.00252 = Not calcula 0.00022	2.445 ed. ocation: 1 d: 8/13/201 iginal e Vol: ol: -0.0003 ated -0.0001 ated -0.0001 ated -0.0190 ted -0.0009 ated	mg/L 	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046 0.00252	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 313.107† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00046 y = Not calcul 0.00046 y = Not calcul 0.00046 y = Not calcul 0.00252 = Not calcul 0.00022 y = Not calcul 0.00021 y = Not calcul 0.00021 y = Not calcul	2.445 ed. ocation: 1 d: 8/13/203 iginal e Vol: ol: 	mg/L .0 4:34: .0 4:34: 	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046 0.00252 0.00022 0.00022 0.00001	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 233.527† QC value within 313.107† QC value within 226.502†	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we ===================================	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00046 y = Not calcul 0.0025 y = Not calcul 0.0025 y = Not calcul 0.0022 y = Not calcul 0.00021 y = Not calcul 0.00021 y = Not calcul 0.00001 y = Not calcul 0.00001	2.445 ed. coation: 1 d: 8/13/203 iginal e Vol: ol: 	mg/L .0 4:34: .0 4:34: 	0.0012 03 PM Std.Dev. 0.00025 0.00127 0.00046 0.00252 0.00022 0.00022 0.00001	0.05%
227.546† QC value within 460.733† QC value within 1 analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 233.527† QC value within 233.527† QC value within 233.527† QC value within 240.724± QC value within 233.527† QC value within 240.725± QC value within 250.502† QC value within 26.502† QC value within	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.0025 y = Not calcul 0.0025 y = Not calcul 0.0025 y = Not calcul 0.00021 y = Not calcul 0.00021 y = Not calcul 0.00021 y = Not calcul 0.00021 y = Not calcul 0.00001 y = Not calcul 0.00001 y = Not calcul	2.445 ed. coation: 1 d: 8/13/203 iginal e Vol: ol: 	mg/L .0 4:34: .0 4:34: 	0.0012 03 PM Std.Dev. 0.00025 0.00025 0.00025 0.00022 0.00022 0.00001 0.00000	0.05%
227.546† QC value within 460.733† QC value within l analyte(s) pas quence No.: 24 mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 233.527† QC value within 313.107† QC value within 313.107† QC value within 228.616†	14163.4 limits for Ca 2 632115.9 limits for Sr 4 sed QC. One or m 	24.78 mg/L 27.546 Recovery 2.445 mg/L 60.733 Recovery ore analytes we	0.063 y = 99.12% 0.0012 y = 97.82% re not evaluat Autosampler L Date Collecte Data Type: Or Initial Sampl Sample Prep V Std.Dev. 0.0046 0.00025 y = Not calcul 0.00025 y = Not calcul 0.00025 = Not calcul 0.00025 = Not calcul 0.00025 = Not calcul 0.00025 = Not calcul 0.00025 = Not calcul 0.00025 = Not calcul 0.00001 y = Not calcul 0.00000 y = Not calcul 0.00000 y = Not calcul 0.00000 y = Not calcul	2.445 ed. cocation: 1 d: 8/13/201 iginal e Vol: ol: -0.0003 ated -0.0006 ated -0.0001 ated -0.0009 ated 0.0001 ated 0.0000 ated 0.0000	mg/L .0 4:34: .0 4:34: 	0.0012 03 PM Std.Dev. 0.00025 0.00025 0.00025 0.00022 0.00022 0.00001 0.00000	0.05%

Method: AXIAL200-6010 L Opt4	Page 18	Date:	8/13/2010 4	:41:42 PM
QC value within limits for Cr	267.716 Recovery = Not calculated		0 00050	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0033 mg/L 0.00072 0.0033 324.752 Recovery = Not calculated	mg/ц	0.00072	21.89%
$V_{\rm re}$ Value within finity for Cu Fe 238.863† -102.6	-0.0017 mg/L 0.00257 -0.0017	ma /1	0 00057	151 00%
	238.863 Recovery = Not calculated	шgлл	0.00257	121.234
K 404.721† -96.2	238.865 Recovery = Not Carculated		111.70	ግግድ ግለዬ
Unable to evaluate OC				
$M_{CC} = 279.077^{+}$	-0.0023 mg/L 0.00237 -0.0023	ma/I.	0 00237	104 11%
OC value within limits for Mo	279.077 Recovery = Not calculated	mg/ D	0.00257	101.110
Mn 257.610† 282.7	0.0002 mg/L 0.00002 0.0002	ma/L	0 00002	12 53%
OC value within limits for Mn	257.610 Recovery = Not calculated	<u>9</u> , 1	0.00002	20.000
Mo 202.031† 58.6	0.0011 mg/L 0.00021 0.0011	mar/T	0.00021	19.33%
	202.031 Recovery = Not calculated		0.00041	29.000
	0.0001 mg/L 0.00000 0.0001	ma/L	0.00000	2.93%
OC value within limits for Ni	231.604 Recovery = Not calculated			2.200
Na 330.237† -475.7	-0.2609 mg/L 0.01357 -0.2609	mg/L	0.01357	5.20%
QC value within limits for Na	330.237 Recovery = Not calculated			
Pb 220.353† 16.0	0.0006 mg/L 0.00001 0.0006	mq/L	0.00001	1.10%
QC value within limits for Pb	220.353 Recovery = Not calculated			
Sb 206.836† 6.5	0.0011 mg/L 0.00018 0.0011 206.836 Recovery = Not calculated	mq/L	0.00018	15.45%
QC value within limits for Sb	206.836 Recovery = Not calculated	2.		
Se 196.026† -7.2	-0.0013 mg/L 0.00092 -0.0013	mq/L	0.00092	73.21%
QC value within limits for Se	196.026 Recovery = Not calculated	-		
Sn 189.927† 284.8	0.0094 mg/L 0.00142 0.0094	mg/L	0.00142	15.20%
QC value within limits for Sn	189.927 Recovery = Not calculated	-		
Ti 337.279† 158.2	0.0003 mg/L 0.00002 0.0003	mg/L	0.00002	6.11%
QC value within limits for Ti	337.279 Recovery = Not calculated			
Tl 190.801† 19.0	0.0025 mg/L 0.00013 0.0025	mg/L	0.00013	5.19%
	190.801 Recovery = Not calculated			
V 292.402† 36.6	0.0001 mg/L 0.00007 0.0001	mg/L	0.00007	50.95%
QC value within limits for V 2	92.402 Recovery = Not calculated			
Zn 206.200† 55.9	0.0002 mg/L 0.00001 0.0002 206.200 Recovery = Not calculated	mg/L	0.00001	7.18%
QC value within limits for Zn	206.200 Recovery = Not calculated			
Ca 227.546† 23.2	0.0400 mg/L 0.00757 0.0400	mg/L	0.00757	18.93%
QC value within limits for Ca	227.546 Recovery = Not calculated			
	0.0006 mg/L 0.00007 0.0006	mg/L	0.00007	11.83%
	460.733 Recovery = Not calculated			
All analyte(s) passed QC. One or	more analytes were not evaluated.			

Sequence No.: 25Autosampler Location: 48Sample ID: R1004314-005Date Collected: 8/13/2010 4:39:46 PMAnalyst:Data Type: OriginalInitial Sample Wt: 1 gInitial Sample Vol:Dilution:Sample Prep Vol: 100 mL

Mean Data: R1004314-005 Mean Corrected Calib Sample Std.Dev. 0.00068 Intensity Analyte Conc. Units Conc. Units Std.Dev. RSD 8569270.4 Y 371.029 0.9814 mg/L 0.07% -0.0017 mg/L Ag 328.068† -3101.4 0.00037 21.55% 114.8 mg/L Al 308.215† 4948643.4 0.17 0.15% -240.6 88070.8 As 188.979† 0.0136 mg/L 0.00827 60.89% B 249.772† 0.0671 mg/L 0.00392 5.83% 0.2957 mg/L Ba 233.527† 108293.8 0.00012 0.04% 14027.3 0.0022 mg/L Be 313.107† 0.00002 0.75% 3507.4 0.0005 mg/L Cd 226.502† 0.00025 46.88% 0.0150 mg/L Co 228.616† 2306.9 0.00042 2.79% 23677.8 0.1108 mg/L Cr 267.716† 0.00195 1.76% 0.0673 mg/L Cu 324.752† 23223.9 0.00009 0.13% 6312018.8 Fe 238.863† 104.2 mg/L 0.10 0.10% K 404.721† 1229.6 161.23 13.11% 137843.8 Mg 279.077† 3.443 mg/L 0.0030 0.09% Mn 257.610† 1198037.4 0.6987 mg/L 0.00015 0.02% Mo 202.031† -168.8 0.0023 mg/L 0.00028 12.11% Ni 231.604† 4571.5 0.0303 mg/L 0.00054 1.78% -0.1148 mg/L Na 330.237† -651.9 0.02087 18.18% Pb 220.353† 5797.4 0.2176 mg/L 0.00400 1.84% Sb 206.836† 4.9 -0.0009 mg/L 0.00273 305.78% -144.1 0.0015 mg/L Se 196.026† 0.00213 138.73% Sn 189.927† 737.4 0.0414 mg/L 0.00087 2.10%

Method: AXIAL200	-6010 L Opt4		Page 19	Date:	8/13/2010 4:50:23 P
Ti 337.279†	858233.0	1.679 mg/	L 0.0096		0.57%
Tl 190.801†	-10.6	0.0036 mg/	L 0.00117		32.68%
V 292.402†		0.2662 mg/	L 0.00034		0.13%
Zn 206.200†	38249.6	0.2662 mg/ 0.1226 mg/	L 0.00239		1.95%
Ca 227.546†	888.2	7.118 mg/	L 0.0583		0.82%
Sr 460.733†	4052 7	0.0155 mg/	L 0.00036		2.30%
	calculated. Nomin	al Wt. AND I	nitial Wt. requir	ed OR sample units	incorrect.
***************			=========================		
Sequence No.: 26			Autosampler I	ocation: 49	
Sample ID: R10043	314-006			d: 8/13/2010 4:44:0	02 PM
Analyst:			Data Type: Or		
Initial Sample Wi	t: 1.04 g		Initial Sampl		
Dilution:			Sample Prep V	ol: 100 mL	
fean Data: R10043					
lean Data: K10043	Mean Corrected	Cal	ib	Sample	
nalyte	Intensity	Conc. Uni	ts Std.Dev.	Conc. Units	Std.Dev. RSD
7 371.029	8713033.0		L 0.00293		0.29%
g 328.068†	-3664.7	-0.0050 mg/	ь 0.00029		5.89%
1 308.215†		118.5 mg/	L 0.11		0.09%
as 188.979†	-213.8	0.0057 mg/	L 0.00152		26.54%
3 249.772†	62354.6 185409.3	0.0321 mg/	L 0.00060		1.86%
a 233.527†	185409.3	0.5112 mg/	ь 0.00039		0.08%
e 313.107†	16504.5	0.0026 mg/			0.83%
d 226.502†	2317.5	-0.0003 mg/	r 0.00005		13.93%
Co 228.616† '	2418.3	0.0165 mg/	L 0.00042		2.58%
r 267.716†	21/00 0	0 1450 ma/			1.28%
Cu 324.752†	27690.0	0.0717 mg/	Ĺ 0.00023		0.32%
'e 238.863†	4685828.1	77.36 mg/	L 0.198		0.26%
404.721†	3002.5	5.			42.72 1.42%
ig 279.077†	200242 0	8.111 mg/	L 0.0018		0.02%
in 257.610†	600691.9	0.3502 mg/	L 0.00008		0.02%
lo 202.031†	-75.4	0.0030 mg/	ն 0.00051		16.82%
i 231.604†	4805.0	0.0319 mg/			0.89%
la 330.237†	-201.4	0.0617 mg/	L 0.00781		12.66%
b 220.353†	2356.8	0.0944 mg/			2.378
b 206.836†	19.2	0.0018 mg/			328.32%
e 196.026t	-77.3	0.0052 mg/			29.84%
n 189.927†	663.8		հ 0.00020		0.56%
i 337.279†	1564882.5	3.063 mg/			0.33%
1 190.801†	-30.3	-0.0001 mg/			>999.9%
292.4021	68434.2	0.2616 mg/			0.62%
n 206.200†	38403.7	0.1233 mg/			1.13%
a 227.546†	-1446.4	1.673 mg/			1.72%
r 460.733†		0.0013 mg/	L 0.00025		19.83%
				ed OR sample units	
equence No.: 27			Autosampler L		
ample ID: R10043	314-007			d: 8/13/2010 4:48:1	.7 PM
nalyst:			Data Type: Or		
nitial Sample Wt	: 1.05 g		Initial Sampl		
ilution:			Sample Prep V	ol: 100 mL	
			· • • • • • • • • • • • • • • • • • • •		
ean Data: R10043	Mean Corrected	Cal	ib	Sample	
nalyte	Intensity	Conc. Uni		Conc. Units	Std.Dev. RSD
	8264694.1	0.9465 mg/1			0.44%
371.029	-5971.8	-0.0018 mg/1			10.62%
		160.7 mg/1			0.49%
g 328.068†	6928721 9		- 0.70		
g 328.068† 1 308.215†	6928721.9 -631.3		. 0.00560		24 032
g 328.068† 1 308.215† s 188.979†	-631.3	0.0161 mg/1			34.82%
371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527†	-631.3 192378.4	0.0161 mg/1 0.1730 mg/1	0.01641		9.48%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527†	-631.3 192378.4 95037.5	0.0161 mg/1 0.1730 mg/1 0.2531 mg/1	0.01641 0.00171		9.48% 0.68%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107†	-631.3 192378.4 95037.5 19998.7	0.0161 mg/1 0.1730 mg/1 0.2531 mg/1 0.0031 mg/1	0.01641 0.00171 0.00004		9.48% 0.68% 1.27%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	-631.3 192378.4 95037.5 19998.7 6763.5	0.0161 mg/1 0.1730 mg/1 0.2531 mg/1 0.0031 mg/1 -0.0009 mg/1	0.01641 0.00171 0.00004 0.00007		9.48% 0.68% 1.27% 8.14%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	-631.3 192378.4 95037.5 19998.7 6763.5 3631.6	0.0161 mg/1 0.1730 mg/1 0.2531 mg/3 0.0031 mg/3 -0.0009 mg/1 0.0223 mg/1	. 0.01641 0.00171 0.00004 0.00007 0.00007		9.48% 0.68% 1.27% 8.14% 0.69%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716†	-631.3 192378.4 95037.5 19998.7 6763.5 3631.6 44360.1	0.0161 mg/J 0.1730 mg/J 0.2531 mg/J 0.0031 mg/J -0.0009 mg/J 0.0223 mg/J 0.2086 mg/J	0.01641 0.00171 0.00004 0.00007 0.00015 0.00084		9.48% 0.68% 1.27% 8.14% 0.69% 0.40%
g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	-631.3 192378.4 95037.5 19998.7 6763.5 3631.6	0.0161 mg/1 0.1730 mg/1 0.2531 mg/3 0.0031 mg/3 -0.0009 mg/1 0.0223 mg/1	0.01641 0.00171 0.00004 0.00007 0.00015 0.00084 0.00078		9.48% 0.68% 1.27% 8.14% 0.69%

Method: AXIAL200	-6010 L Opt4		Pa	ige 20		Date:	8/13/2010 4:	59:03 PM
K 404.721†	172.6						10.04	17 669.
Mg 279.077†	152116.0	3.733 m	~ /1	0.0131			19.94	11.55%
Mn 257.610†	893638.7	0.5208 m	9/10 g/1	0.00275				0.35% 0.53%
Mo 202.031†	-301.3	0.0052 m	9/5 a/ĭ.	0.00016				
Ni 231.604†	6380.1	0.0422 m						3.07%
Na 330.237†				0.00034				0.81%
Pb 220.353†	-347.9	0.3642 m 0.1033 m	9/L ~/T	0.03676				10.09%
	2745.2	0.1033 m	9/1 ~/7	0.00360				3.49%
Sb 206.836†	71.0	0.0000	9/0	0.00284				>999.9%
Se 196.026†	-293.1	0.0089 m		0.00219				24.74%
Sn 189.927†	741.4	0.0587 m		0.00069				1.18%
Ti 337.279†	1445294.6	2.828 m	g/L	0.0129				0.46%
Tl 190.801†	-74.1	0.0007 m	g/L	0.00416				607.81%
V 292.402†		0.4769 m		0.00021				0.04%
Zn 206.200†	43988.1	0.1391 m	- · .	0.00033				0.24%
Ca 227.546†	-3903.3	5.1.20 m	g/L	0.0490				0.96%
Sr 460.733†	9382.6	0.0357 m	g/L	0.00056				1.57%
Sample conc. not	calculated. Nomin	al Wt. AND	Initi	al Wt. required	OR samp	le units	incorrect.	
Sequence No.: 28	=======================================							
Sample ID: R1004				Autosampler Loca			11 D16	
	374-000			Date Collected:	• •	10 4:52:4	t⊤ KW	
Analyst:	b. 1 02 m			Data Type: Orig:				
Initial Sample W	t: 1.03 g			Initial Sample				
Dilution:				Sample Prep Vol	: 100 mL			
Mean Data: R1004	314-008							
	Mean Corrected	Ci	alib			Sample		
Analyte	Intensity			Std.Dev.	Conc	Units	Std.Dev.	RSD
Y 371.029	8471903 9	0 9702 m	γ/T.	0.02067	001101	0112.00	DCu.DCV.	2.13%
Ag 328.068t	8471903.9 -4473.0	-0 0054 mg	- / I.	0.00003				0.60%
Al 308.215†	4321044.6	100.2 mg						
	-308.5	100.2 m	년/년 - /7	2.05				2.04%
As 188.979†				0.00085				15.40%
B 249.772†	88457.3	0.0725 mg		0.00135				1.86%
Ba 233.527†	128653.1	0.3523 mg		0.00698				1.98%
Be 313.107†	21048.2	0.0032 mg		0.00002				0.67%
Cd 226.502†	3135.3	-0.0004 mg	g/L	0.00008				17.76%
Co 228.616†	3219.9	0.0219 mg	g/L	0.00086				3.92%
Cr 26 7 .716†	26513.6	0.1236 mg	- - - -	0.00197				1.59%
Cu 324.752†	28022.2	0.0774 mg		0.00159				2.05%
Fe 238.863†	6284681.7	103.8 mg		2.43				2.34%
K 404.721†	3486.8	•	<i>,</i> , .=	_ ·			46.38	1.33%
Mg 279.077t	358696.9	9.060 mg	3/T.	0.1797			10130	1.98%
Mn 257.610†	502452.6	0.2927 mc		0.00596				2.04%
Mo 202.031†	-161.1	0.0023 mg		0.00069				
Ni 231.604†	4532.9	0.0301 mg		0.00064				30.01%
Na 330.237†	-557.7							2.13%
		-0.0549 mg		0.02335				42.50%
Pb 220.353†	2690.3	0.1025 mg		0.00313				3.05%
Sb 206.836†	-6.5	-0.0028 mg		0.00411				147.56%
Se 196.026†	-134.1	0.0036 mg		0.00303				83.39%
Sn 189.927†	435.6	0.0311 mg		0.00011				0.37%
Ti 337.279†	1930485.6	3.778 mg		0.0734				1.94%
Tl 190.801†	-9.1	0.0037 mg		0.00127				33.82%
V 292.402†	80714.8	0.3097 mg	ј/L	0.00730				2.36%
Zn 206.200†	41614.4	0.1337 mg	g/L	0.00142				1.06%
Ca 227.546†	-2953.8	0.4316 mg		0.02369				5.49%
Sr 460.733†	-2479.5			0.00029				3.01%
Sample conc. not	calculated. Nomina	al Wt. AND	Initia		OR samp	le units	incorrect.	
					-			
	******************						****	
Sequence No.: 29				Autosampler Loca				
Sample ID: R10043	314-009]	Date Collected:	8/13/203	LO 4:56:5	5 PM	
Analyst:			3	Data Type: Origi	nal			
Initial Sample Wt	:: 1.03 g			Initial Sample V				
Dilution:			1	Sample Prep Vol:	100 mL			
Mean Data, B10043								
Mean Data: R10043	314-009	-	142			Come l o		
Mean Data: R10043	Mean Corrected		lib	242 Doc-	6	Sample		D.C.D.
Mean Data: R10043 Analyte	Mean Corrected Intensity	Conc. Un	its	Std.Dev.	Conc.	-	Std.Dev.	RSD
Mean Data: R10043 Analyte Y 371.029	Mean Corrected Intensity 8622595.4	Conc. Un 0.9875 mg	its /L	0.00527	Conc.	-	Std.Dev.	0.53%
Mean Data: R10043 Analyte	Mean Corrected Intensity	Conc. Un	its /L		Conc.	-	Std.Dev.	

Al 308.215†	-6010 L Opt4	Pag	re 21	Date:	8/13/2010 5:0	
AT 200.7721	5721978.8	132.7 mg/L	0.22			0.17%
As 188.979†	-556.8	0.0134 mg/L	0.00010			0.71%
B 249.772†	170524.7	0.1630 mg/L	0.00112			0.69%
Ba 233.527†	100318.5	0.2691 mg/L	0.00027			0.10%
Be 313.107†	18888.5	0.0029 mg/L	0.00002			
						0.81%
Cd 226.502†	5958.0	-0.0007 mg/L	0.00024			36.50%
Co 228.616†	3516.0	0.0220 mg/L	0.00006			0.25%
Cr 267.716†	43298.6	0.2027 mg/L	0.00018			0.09%
Cu 324.752†	18419.4	0.0735 mg/L	0.00020			0.27%
Fe 238.863†	11809450.2	195.0 mg/L	0.64			0.33%
K 404.721†	542.6				84.74	
Mg 279.077†	145338.0	3.578 mg/L	0.0039			0.11%
Mn 257.610†	1017188.6	0.5929 mg/L				
			0.00036			0.06%
Mo 202.031†	-267.5	0.0044 mg/L	0.00050			11.49%
Ni 231.604†	5335.7	0.0353 mg/L	0.00007			0.20%
Na 330.237†	49.0	0.5131 mg/L	0.07305			14.24%
Pb 220.353†	3184.4	0.1180 mg/L	0.00068			0.57%
Sb 206.836†	31.2	0.0028 mg/L	0.00015			5.37%
Se 196.026†	-243.5	0.0101 mg/L				
			0.00338		-	33.41%
Sn 189.927†	577.3	0.0489 mg/L	0.00121			2.48%
Ti 337.279†	1347686.8	2.637 mg/L	0.0068			0.26%
Fl 190.801†	-57.5	0.0015 mg/L	0.00260		17	71.03%
V 292.402†	106822.2	0.4152 mg/L	0.00054			0.13%
Zn 206.200†	38154.2	0.1207 mg/L	0.00018			0.15%
Ca 227.546†	-2861.6	5.409 mg/L	0.0951			
Sr 460.733†						1.76%
	8799.7	0.0335 mg/L nal Wt. AND Initia	0.00032			0.96%
Sample ID: R10043 Analyst: Initial Sample Wt		Di In	ate Collected: ata Type: Orig nitial Sample ample Prep Vol	Vol:	22 PM	
		5/	ашпіе етеп усі			
Dilution:				. 100 AM		
Dilution: Mean Data: R10043	14-010					
Mean Data: R10043	Mean Corrected	Calib		Sample		
Mean Data: R10043 Analyte	Mean Corrected Intensity	Calib Conc. Units	Std.Dev.		Std.Dev.	RSD
Mean Data: R10043 Analyte & 371.029	Mean Corrected Intensity 8466147.8	Calib Conc. Units 0.9696 mg/L	Std.Dev. 0.00387	Sample		0.40%
Mean Data: R10043 Analyte (371.029 Ag 328.068†	Mean Corrected Intensity 8466147.8 -4374.7	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L	Std.Dev.	Sample		
Mean Data: R10043 Analyte 7 371.029	Mean Corrected Intensity 8466147.8	Calib Conc. Units 0.9696 mg/L	Std.Dev. 0.00387	Sample		0.40%
Mean Data: R10043 Analyte 7 371.029 Ag 328.068† Al 308.215†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L	Std.Dev. 0.00387 0.00048 0.41	Sample		0.40% 24.03% 0.32%
Mean Data: R10043 Analyte 371.029 Ag 328.068† Al 308.215† As 188.979†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107	Sample		0.40% 24.03% 0.32% 6.64%
fean Data: R10043 malyte 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259	Sample		0.40% 24.03% 0.32% 6.64% 2.11%
fean Data: R10043 malyte 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† 3 233.527†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078	Sample		0.40% 24.03% 0.32% 6.64% 2.11% 0.34%
fean Data: R10043 malyte 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† 3a 233.527† 3e 313.107†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259	Sample		0.40% 24.03% 0.32% 6.64% 2.11%
Mean Data: R10043 malyte 371.029 Ag 328.068† 1 308.215† As 188.979† 3 249.772† 4 233.527† 4 313.107†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34%
fean Data: R10043 malyte 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† 3a 233.527† 3e 313.107† 2d 226.502†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.69% 0.62%
Mean Data: R10043 malyte '371.029 g 328.068† l 308.215† s 188.979† s 249.772† a 233.527† e 313.107† d 226.502† c 228.616†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00001 0.00022	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.69% 0.62% 2.58%
Tean Data: R10043 malyte 371.029 Ag 328.068† 1 308.215† As 188.979† 5 249.772† 4a 233.527† 4a 233.527† 4a 233.527† 4a 233.107† 2d 226.502† 20 228.616† 27 267.716†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00001 0.00022 0.00117	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.69% 0.62% 2.58% 0.60%
Tean Data: R10043 malyte 2 371.029 ag 328.068† 1 308.215† as 188.979† a 233.527† ba 233.527† ba 313.107† cd 226.502† co 228.616† cr 267.716† cu 324.752†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00001 0.00022 0.00117 0.00014	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.69% 0.62% 2.58% 0.60% 0.25%
Tean Data: R10043 malyte 371.029 ag 328.068† 1 308.215† as 188.979† 5 249.772† a 233.527† be 313.107† cd 226.502† co 228.616† cr 267.716† cu 324.752† be 238.863†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00001 0.00022 0.00117	Sample	2	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.62% 2.58% 0.60% 0.25% 0.00%
Mean Data: R10043 (1) 371.029 (2) 371.029 (3) 328.068† (1) 308.215† (3) 88.979† (3) 249.772† (4) 233.527† (4) 313.107† (5) 228.616† (5) 228.616† (5) 228.616† (5) 228.752† (4) 324.752† (4) 238.863† (4) 4.721†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00002 0.00117 0.00014 0.01	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.60% 0.25% 0.00% 5.23%
Mean Data: R10043 (371.029 (338.068† (308.215† (308.215† (313.107† (313.107† (326.502† (328.616†)) (328.616† (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†)) (328.616†))	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 2.942 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.01 0.0106	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.69% 0.62% 0.60% 0.60% 0.25% 0.00% 5.23% 0.36%
Mean Data: R10043 (371.029 kg 328.068† l 308.215† s 188.979† 249.772† a 233.527† a 233.527† b 313.107† c 228.616† cr 267.716† cu 324.752† b 238.863† c 404.721† g 279.077† in 257.610†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00002 0.00117 0.00014 0.01	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.60% 0.25% 0.00% 5.23%
Mean Data: R10043 (371.029 kg 328.068† l 308.215† s 188.979† 249.772† a 233.527† a 233.527† b 313.107† c 228.616† cr 267.716† cu 324.752† b 238.863† c 404.721† g 279.077† in 257.610†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 2.942 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.01 0.0106	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.69% 0.62% 0.60% 0.60% 0.25% 0.00% 5.23% 0.36%
Mean Data: R10043 (371.029 (371.029 (328.068† (38.215† (38.215† (3249.772† (323.527† (323.527† (323.527† (3249.772† (326.502† (328.616† (324.752† (324.	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00002 0.00117 0.00014 0.01 0.0106 0.00029	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.62% 0.62% 0.60% 0.23% 0.23% 0.23% 4.97%
fean Data: R10043 malyte 371.029 Ag 328.068† 1 308.215† 38 249.772† 38 233.527† 39 313.107† 30 228.616† 32 26.502† 30 228.616† 32 28.616† 32 28.616† 32 28.616† 32 28.616† 32 28.616† 32 28.616† 32 27.716† 32 32.752† 32 32.8863† 32 404.721† 32 32.610† 30 202.031† 1 231.604†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0087 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0030 mg/L 0.00270 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00002 0.00117 0.00014 0.01 0.0106 0.00029 0.00015 0.00092	Sample	2 123.28 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.62% 0.62% 0.25% 0.25% 0.23% 4.97% 3.41%
Mean Data: R10043 malyte 371.029 ag 328.068† 1 308.215† as 188.979† 249.772† a 233.527† a 233.527† a 233.527† a 233.502† a 228.616† r 267.716† a 24.752† e 238.863† 2404.721† g 279.077† n 257.610† b 202.031† i 231.604† a 330.237†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0087 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0030 mg/L 0.0270 mg/L 0.0398 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.01 0.0106 0.00029 0.00015 0.00092 0.11512	Sample	2 123.28 1 28	0.40% 24.03% 0.32% 6.64% 2.11% 0.39% 0.62% 0.62% 0.60% 0.25% 0.25% 0.25% 0.25% 0.36% 0.25% 0.36% 0.25% 0.36% 0.32% 3.41% 3.41% 3.41%
Mean Data: R10043 malyte 371.029 ag 328.068† 1 308.215† as 188.979† a 249.772† a 233.527† a 233.527† a 233.502† a 226.502† a 228.616† 2 267.716† a 324.752† a 238.863† 404.721† g 279.077† in 257.610† b 202.031† i 231.604† a 330.237† b 220.353†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.02283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0030 mg/L 0.0270 mg/L 0.0398 mg/L 0.1115 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.01 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102	Sample	2 123.28 1 28	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.34% 0.62% 0.62% 0.60% 0.25% 0.25% 0.36% 0.36% 0.36% 0.36% 0.25% 0.36% 0.36% 0.36% 0.36% 0.36% 0.25% 0.36% 0.36% 0.36% 0.25% 0.36% 0.32% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.36% 0.32%
Mean Data: R10043 malyte '371.029 g 328.068† l 308.215† s 188.979† c 249.772† a 233.527† e 313.107† d 226.502† c 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353† b 206.836†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0270 mg/L 0.0398 mg/L 0.1115 mg/L 0.0005 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102	Sample	2 123.28 1 28 44	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.62% 2.58% 0.62% 0.60% 0.25% 0.25% 0.23% 0.23% 4.97% 3.41% 3.41% 3.41% 3.41%
Mean Data: R10043 malyte 371.029 ag 328.068t 1 308.215t as 188.979t a 233.527t a 233.527t a 233.527t a 233.527t a 233.527t a 233.527t a 233.527t a 238.616t a 24.752t b 228.616t a 24.752t b 238.863t c 404.721t g 279.077t in 257.610t io 202.031t i 231.604t a 330.237t b 220.353t b 206.836t e 196.026t	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0270 mg/L 0.0398 mg/L 0.1115 mg/L 0.0005 mg/L 0.0005 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102 0.00228 0.00108	Sample	2 123.28 1 28 44 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.62% 2.58% 0.60% 0.25% 0.25% 0.23% 0.23% 0.23% 3.41% 0.23% 0.22% 0.36% 0.23% 0.25%
Mean Data: R10043 (371.029 (371.029 (328.068† (1308.215† (38.215† (38.215† (313.107† (326.502† (313.107† (326.502† (328.616† (327.716† (328.616† (327.716† (328.863† (404.721† (327.610† (320.353† (330.237† (330.235† (330.2	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.1115 mg/L 0.0005 mg/L 0.0066 mg/L 0.0428 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102	Sample	2 123.28 1 28 44 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.62% 2.58% 0.62% 0.60% 0.25% 0.25% 0.23% 0.23% 4.97% 3.41% 3.41% 3.41% 3.41%
Mean Data: R10043 (371.029 (371.029 (328.068† (1308.215† (38.215† (38.215† (313.107† (326.502† (313.107† (326.502† (328.616† (327.716† (328.616† (327.716† (328.863† (404.721† (327.610† (320.353† (330.237† (330.235† (330.2	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0270 mg/L 0.0398 mg/L 0.1115 mg/L 0.0005 mg/L 0.0005 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102 0.00228 0.00108	Sample	2 123.28 1 28 44 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.34% 0.62% 2.58% 0.60% 0.25% 0.25% 0.20% 5.23% 0.23% 0.36% 0.23% 0.36% 0.23% 0.36% 0.23% 0.32% 0.36% 0.23% 0.32% 0.32% 0.62% 0.60% 0.25% 0.36% 0.23% 0.32% 0.62% 0.60% 0.25% 0.36% 0.22% 0.32% 0.62% 0.60% 0.25% 0.32% 0.32% 0.62% 0.60% 0.25% 0.23% 0.23% 0.25% 0.23% 0.25% 0.23% 0.22% 0.36% 0.22% 0.32% 0.22% 0.62% 0.22% 0.22% 0.22% 0.22% 0.22% 0.32% 0.22% 0.62% 0.22% 0.22% 0.22% 0.22% 0.22% 0.22% 0.22% 0.36% 0.22% 0.22% 0.22% 0.36% 0.22% 0.22% 0.36% 0.22% 0.32% 0.32% 0.36% 0.22% 0.33% 0.32% 0.33% 0
Mean Data: R10043 (371.029 Ag 328.068† 1 308.215† 1 308.215† 1 308.215† 2 49.772† 2 49.772† 2 49.772† 2 233.527† 2 313.107† 2 226.502† 2 28.616† 2 267.716† 2 324.752† 2 238.863† 2 404.721† 4 231.604† 3 30.237† 5 220.353† 5 206.836† e 196.026† n 189.927† i 337.279†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.0115 mg/L 0.0056 mg/L 0.0428 mg/L 1.545 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102 0.00102 0.00108 0.00030 0.0001	Sample	2 123.28 1 28 44 1	0.40% 24.03% 0.32% 6.64% 2.11% 0.69% 0.62% 0.60% 0.25% 0.25% 0.23% 0.23% 4.97% 3.41% 0.23% 4.97% 3.41% 0.92% 0.23% 0.22% 0.23% 0.25% 0.25% 0.23% 0.25%
Mean Data: R10043 Analyte 371.029 Ag 328.0681 Al 308.2151 As 188.9791 3 249.7721 Sa 233.5271 Sa 249.7721 Sa 233.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 23.5271 Sa 249.771 Sa 249.7521 Sa 30.2371 Sa 20.3531 Sa 20.3531 Sa 20.261 189.9271 190.8011	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 13368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.1115 mg/L 0.0055 mg/L 0.0056 mg/L 0.0428 mg/L 1.545 mg/L 0.0033 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.0014 0.01 0.0106 0.00029 0.00015 0.00029 0.11512 0.00102 0.01022 0.0102 0.00120	Sample	2 123.28 1 28 44 1 3	0.40 24.03 0.32 6.64 2.11 0.32 2.11 0.69 0.62 2.52 0.60 0.25 0.23 0.23 4.97 3.41 9.272 3.41 9.272 8.78 0.69 0.23 4.97 3.41 9.272 3.41 0.69 3.41 3.41 0.23 4.97 3.41 3.41 0.23 3.41 3.41 3.41 0.23 3.41 3.57 3.57 3.57 3.57 3.53 3.53
Mean Data: R10043 (371.029 (371.029 (328.068† 1 308.215† (38.215† (3249.772† (323.527† (3249.772† (323.527† (324.752† (324.752† (324.752† (324.752† (324.752† (324.752† (324.721† (327.610† (320.351† (330.237† (330.237† (330.237† (330.237† (337.279† (33	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 2.942 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.1115 mg/L 0.0055 mg/L 0.0056 mg/L 0.0428 mg/L 1.545 mg/L 0.033 mg/L 0.2961 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00002 0.00117 0.00014 0.01 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00122 0.00108 0.00108 0.0001 0.0001 0.00120 0.00133	Sample	2 123.28 1 28 44 1 3	0.40 24.03 0.32 6.64 2.11 0.32 2.52 0.69 0.62 0.62 0.62 0.62 0.23 0.23 4.97 3.41 9.272 3.41 9.272 8.712 0.69 8.712 0.69 0.23 4.972 3.412 0.69 3.412 0.23 4.972 3.412 0.692 3.412 0.238 0.23
fean Data: R10043 malyte 371.029 Ag 328.068t 1 308.215t 38.979t 3249.772t 38.233.527t 39.249.772t 39.233.527t 39.249.772t 39.233.527t 39.249.772t 39.235.527t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.525t 39.257.555t 39.257.555t 39.25555t 39.2555t 39.2555t 39.2555t 39.25555t 39.2	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9 26036.6	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0273 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.01115 mg/L 0.0005 mg/L 0.0066 mg/L 0.0428 mg/L 1.545 mg/L 0.0033 mg/L 0.2961 mg/L 0.0816 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.01 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00152 0.000108 0.00030 0.0001 0.00120 0.00133 0.00152	Sample	2 123.28 1 28 44 1 3	0.40 24.03 6.64 2.11 0.32 0.32 0.32 2.11 0.62 2.58 0.62 2.58 0.62 2.58 0.25 0.25 0.22 0.22 0.23 0.25 0.23 0.25 0.25 0.23 0.25 0.2
Mean Data: R10043 Analyte (371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† 3a 233.527† 3a 13.107† 2d 226.502† 2o 228.616† Cr 267.716† Cu 324.752† Ce 238.863† C 404.721† Ig 279.077† In 257.610† Io 202.031† Ii 231.604† Ia 330.237† 2b 20.353† 2b 20.353† 2b 20.353† 2b 20.353† 2b 20.353† 2b 206.836† Ca 196.026† In 189.927† Ia 37.279† I 190.801† 292.402† In 206.200† a 227.546†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9 26036.6 -4577.4	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0217 mg/L -0.0017 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.0005 mg/L 0.0005 mg/L 0.0066 mg/L 1.545 mg/L 0.0033 mg/L 0.2961 mg/L 0.0297 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00022 0.00117 0.00014 0.01 0.0106 0.00029 0.0015 0.00092 0.11512 0.00102 0.00120 0.00120 0.00133 0.00152 0.16134	Sample	2 123.28 1 28 44 1 3 7	0.40 24.03 0.32 6.64 2.11 0.34 0.34 2.58 0.62 2.58 0.62 0.62 0.62 0.25 0.25 0.36 0.25 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.23 0.2
Mean Data: R10043 malyte 371.029 ag 328.068† 1 308.215† as 188.979† 249.772† a 233.527† a 233.527† a 233.527† a 233.502† a 228.616† r 267.716† a 228.616† r 267.716† a 324.752† e 238.863† 2404.721† g 279.077† n 257.610† b 202.031† i 231.604† a 330.237† b 206.836† e 196.026† n 189.927† i 337.279† 1 190.801† 292.402† n 206.200† a 227.546† r 460.733†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9 26036.6 -4577.4 -890.3	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0283 mg/L 0.0017 mg/L -0.0011 mg/L 0.0087 mg/L 0.0087 mg/L 0.0557 mg/L 152.9 mg/L 0.0557 mg/L 152.9 mg/L 0.1290 mg/L 0.0270 mg/L 0.0270 mg/L 0.0398 mg/L 0.01115 mg/L 0.0005 mg/L 0.0428 mg/L 1.545 mg/L 0.0033 mg/L 0.0816 mg/L 0.2297 mg/L -0.0037 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.0015 0.00028 0.00108 0.00018 0.00120 0.00120 0.00133 0.00152 0.16134 0.00015	Sample Conc. Units	2 123.28 1 28 44 1 3 7	0.40 24.03 0.32 6.64 2.11 0.39 0.62 2.58 0.62 2.58 0.62 0.25 0.25 0.25 0.25 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.25 0.23 0.25 0.25 0.23 0.25 0.25 0.25 0.23 0.25 0.2
Mean Data: R10043 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353† b 206.836† e 196.026† n 189.927† i 337.279† l 190.801† 292.402† n 206.200† a 227.546† r 460.733†	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9 26036.6 -4577.4 -890.3	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0217 mg/L -0.0017 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.1938 mg/L 0.557 mg/L 152.9 mg/L 0.1290 mg/L 0.0270 mg/L 0.0398 mg/L 0.0398 mg/L 0.0005 mg/L 0.0005 mg/L 0.0066 mg/L 1.545 mg/L 0.0033 mg/L 0.2961 mg/L 0.0297 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.0015 0.00028 0.00108 0.00018 0.00120 0.00120 0.00133 0.00152 0.16134 0.00015	Sample Conc. Units	2 123.28 1 28 44 1 3 7	0.40 24.03 0.32 6.64 2.11 0.34 0.34 2.58 0.62 2.58 0.62 0.62 0.62 0.25 0.25 0.36 0.25 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.23 0.2
Mean Data: R10043 malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353† b 206.836† e 196.026† n 189.927† i 337.279† 1 190.801† 292.402† n 206.200† a 227.546† r 460.733† ample conc. not o	Mean Corrected Intensity 8466147.8 -4374.7 5655805.6 -387.8 133368.1 84877.6 10869.0 4424.8 1606.8 41648.3 13621.5 9259562.6 809.6 119338.0 221635.8 -248.0 4075.9 -612.8 2931.6 15.9 -193.6 581.3 789703.1 -29.6 75834.9 26036.6 -4577.4 -890.3 calculated. Nomin	Calib Conc. Units 0.9696 mg/L -0.0020 mg/L 131.2 mg/L 0.0160 mg/L 0.1229 mg/L 0.2283 mg/L 0.0017 mg/L 0.0017 mg/L 0.0087 mg/L 0.0087 mg/L 0.1938 mg/L 0.1938 mg/L 0.0557 mg/L 152.9 mg/L 0.2942 mg/L 0.0270 mg/L 0.0270 mg/L 0.0398 mg/L 0.0115 mg/L 0.0005 mg/L 0.0066 mg/L 0.0428 mg/L 1.545 mg/L 0.0816 mg/L 0.2297 mg/L 0.2297 mg/L 0.0037 mg/L 0.2297 mg/L 0.0037 mg/L 0.0037 mg/L	Std.Dev. 0.00387 0.00048 0.41 0.00107 0.00259 0.00078 0.00001 0.00022 0.00117 0.00014 0.0106 0.00029 0.00015 0.00092 0.11512 0.00102 0.00102 0.00102 0.00102 0.00108 0.00010 0.00120 0.00133 0.00152 0.16134 0.00015 1 Wt. required	Sample Conc. Units	2 123.28 1 28 44 1 3 7 incorrect.	0.40% 24.03% 0.32% 6.64% 2.11% 0.62% 2.58% 0.60% 0.25% 0.25% 0.25% 0.23% 0.25% 0.25% 0.23% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.23% 0.25% 0.23% 0.25% 0.23%

Data Type: Original Initial Sample Vol: Sample Frep Vol: 100 mL

Analyst: Initial Sample Wt: 1.02 g Dilution:

	Mean Corrected		Calib			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Y 371.029	8397856.7	0.9617	mg/L	0.00263			0.27
Ag 328.068†	-4857.7	-0.0004		0.00123			327.67
Al 308.215†	5632480.4	130.6	mg/L	0.13			0.10
As 188.979†	-516.0	0.0195	mg/L	0.00244			12.48
B 249.772†	177740.0	0.1854	mg/L	0.03033			16.36
Ba 233.527†	113990.7	0.3070	mg/L	0.00228			0.74
Be 313.107†	15981.1	0.0025	mg/L	0.00002			0.77
Cđ 226.502†	5977.1	-0.0009	mg/L	0.00010			11.37
Co 228.616†	2727.2	0.0161	mg/L	0.00007			0.45
Cr 267.716†	39191.7	0.1843	mg/L	0.00107			0.58
Cu 324.752†	18400.7	0.0741	mg/L	0.00051			0.69
Fe 238.863†	12001551.3	198.2	mg/L	0.53			0.27
K 404.721†	113.9						130.00 114.10
Mg 279.077†	143350.3	3.525	mg/L	0.0318			0.90
Mn 257.610†	553679.1	0.3225	mg/L	0.00201			0.62
Mo 202.031†	-243.1	0.0050	mg/L	0.00033			6.73
Ni 231.604†	4417.5	0.0292	mg/L	0.00065			2.24
Na 330.237†	-482.7	0.2300	mg/L	0.01348			5.86
Pb 220.353†	2064.2	0.0767	mg/L	0.00088			1.15
Sb 206.836†	25.7	0.0018	mg/L	0.00087			47.26
Se 196.026†	-276.4	0.0054	mg/L	0.00453			83.91
Sn 189.927†	566.9	0.0491	mg/L	0.00096			1.95
Ti 337.279†	840763.7	1.645	mg/L	0.0395			2.40
Tl 190.801†	-44.5	0.0033	mg/L	0.00281			84.30
V 292.402†	104383.2	0.4064	mg/L	0.00560			1.389
Zn 206.200†	57894.3	0.1855		0.00094			0.50
Ca 227.546†		6.524		0.1688			2.59
Sr 460.733†	11030.9	0.0421	mg/L	0.00044			1.049

Sequence No.: 32 Sample ID: R1004314-012 Analyst: Initial Sample Wt: 1 g Dilution:

Autosampler Location: 55 Date Collected: 8/13/2010 5:10:08 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 100 mL

Mean Data: R1004	4314-012							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8679630.8	0.9940	mg/L	0.00293				0.30%
Ag 328.068†	-5581.1	-0.0019	mg/L	0.00029				15.34%
Al 308.215†	5204823.4	120.7	mg/L	0.63				0.52%
As 188.979†	-623.2	0.0095	mg/L	0.00377				39.69%
B 249.772†	175010.3	0.1584	mg/L	0.00097				0.61%
Ba 233.527†	89811.9	0.2396	mg/L	0.00211				0.88%
Be 313.107†	18832.4	0.0029	mg/L	0.00002				0.65%
Cd 226.502†	6288.1	-0,0006	mg/L	0.00036				62.45%
Co 228.616†	2810.2	0.0165	mg/L	0.00031				1.86%
Cr 267.716†	36151.2	0.1708	mg∕L	0.00054				0.32%
Cu 324.752†	36888.5	0.1144	mg∕L	0.00062				0.54%
Fe 238.863†	12365896.4	204.2	mg/L	0.73				0.36%
K 404.721†	671.0						16.65	2.48%
Mg 279.077†	226174.1	5.628		0.0422				0.75%
Mn 257.610†	301555.2	0.1753		0.00152				0.87%
Mo 202.031†	-359.0	0.0029		0.00019				6.55%
Ni 231.604†	4363.7	0.0288		0.00080				2.79%
Na 330.237†	-933.8	0.0070	mg/L	0.03634				519.21%
Pb 220.353†	3113.8	0.1133		0.00033				0.29%
Sb 206.836†	7.4	-0.0013		0.00151				113.94%
Se 196.026†	-279.5	0.0070		0.00494				70.78%
Sn 189.927†	457.0	0.0458		0.00043				0.95%
Ti 337.279†	1508046.5	2.951	mg/L	0.0349				1.18%

Method: AXIAL200-6	010 L Opt4		Page 23		Date: 8	/13/2010 5:	20:58
Tl 190.801†	-72.1	0.0000 mg/L	0.00025				>999.9
V 292.402†	102604.2	0.4004 mg/L	0.00282				0.71
Zn 206.200†		0.1233 mg/L					1.12
Ca 227.546†	-6151.3	0.1233 mg/L 0.1864 mg/L	0.10055				53.93
Sr 460.733†	-67.7	-0.0008 mg/L	0.00012				15.51
Sample conc. not c	alculated. Nomin	al Wt. AND Ini	tial Wt. required	OR samp	le units	incorrect.	
======================================		=======================================	Autosampler Loc			**********	*****
Sample ID: R100431	4-013		Date Collected:			6 PM	
Analvet			Data Type: Orig			• • • •	
Initial Sample Wt:	1.04 a		Initial Sample				
Dilution:			Sample Prep Vol				
							
Mean Data: R100431	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 371.029	8405678.5	0.9626 mg/L	0.00630				0.65
Ag 328.068†	Intensity 8405678.5 -5047.1 6098658.2	-0.0009 mg/L	0.00039				45.02
Ag 328.0681 Al 308.2151 As 188 9791	6098658.2	141.5 mg/L	0.57				0.40
AS 188.9791	-514.1	0.0199 mg/L 0.1682 mg/L	0.00154				7.76
B 249.772†	174482.0	0.1682 mg/L					8.03
Ba 233.527†	104584.0	0.2808 mg/L	0.00074				0.26
Be 313.107†	104584.0 19290.4 6008.2	0.0030 mg/L	0.00001				0.41
Cd 226.502†	6008.2	-0.0008 mg/L	0.00019				22.20
Co 228.616†	/042.4	0.0483 mq/L	0.00001				0.03
Cr 267.716†	37820.8	0.1781 mg/L	0.00068				0.38
Cu 324.752†	21589.0	0.0809 mg/L	0.00077				0.95
Fe 238.863†	12033945.8	198.7 mg/L	0.71				0.36
(404.721†	314.9	2 2 4 1 1 1 2				121.73	
1g 279.077†	132301.2	3.244 mg/L	0.0060				0.19
An 257.610† 40 202.031†	1145478.8	0.6678 mg/L 0.0052 mg/L 0.0372 mg/L 0.3995 mg/L 0.0931 mg/L 0.0046 mg/L	0.00186				0.28
Ni 231.604†	-435.5	0.0052 mg/L	0.00027				5.13
Va 330.237†	2019,4	0.0372 mg/L	0.00083 0.05454				2.23
220.353	-100.5	0.3995 mg/L					13.65
Sb 206.836†	24/9.0	0.0931 mg/L	0.00133 0.00033				1.43 7.16
Se 196.026†	-243.2	0.0046 mg/L 0.0109 mg/L 0.0494 mg/L 2.577 mg/L	0.00216				19.74
Sn 189.927†	566.8	0.0109 mg/L	0.00058				1.18
	1316926.6	2 577 mg/L	0.0194				0.75
Cl 190.801†	1316926.6 -74.8	-0.0005 mg/L	0.00358				653.51
/ 292.402†	111964.1	0.4347 mg/L	0.00295				0.68
In 206.2001	39250.6	0.4347 mg/L 0.1241 mg/L	0.00047				0.38
Ca 227.546†	-1658.9	7.693 mg/L	0.1207				1.57
Sr 460.733†	8141.8	0.0309 mg/L	0.00026				0.84
Sample conc. not ca				OR samp]	le units	incorrect.	
Sequence No.: 34 Sample ID: R1004314	4-014		Autosampler Loca Date Collected:			9 PM	
malyst:			Data Type: Origi				
Initial Sample Wt:	1 g		Initial Sample N				
Dilution:			Sample Prep Vol:	: 100 mL			
	Mean Corrected	Calib			Sample		
nalyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
371.029	8574798.6		0.00493				0.50
g 328.068†	-4989.3	-0.0046 mg/L					1.58
1 308.215†	6186177.9	143.5 mg/L	0.51				0.36
s 188.979†	-279.9	0.0224 mg/L	0.00036				1.59
249.772†	115494.5	0.0867 mg/L	0.00039				0.45
a 233.527†	99226.8	0.2689 mg/L	0.00037				0.14
e 313.107†	15146.0	0.0024 mg/L	0.00000				0.18
d 226.502t	4025.9	-0.0009 mg/L	0.00016				17.95
0 228.616†		0.0137 mg/L	0.00061				4.44
r 267.716†	44645.6	0.2068 mg/L	0.00002				4.44
u 324.752†	42810.9	0.1146 mg/L	0.00060				0.52
e 238.863†	8343992.1	137.8 mg/L	0.35				0.32
404.721†	1878.0	20110 mg/2	0.30			149.30	
	2070.0					243,30	1.207

Method: AXIAL200-6	010 L Opt4		Page	24		Date:	8/13/2010 5:	25:20 PM
Mg 279.077†	215052.2 5	.386 mg/L		0.0042				0.08%
Mn 257.610†		1995 mg/L		0.00025				0.13%
Mo 202.031†		0044 mg/L		0.00005				1.07%
Ni 231.604†)314 mg/L		0.00022				0.70%
Na 330.237†		049 mg/L		0.04986		•		>999.9%
Pb 220.353†	2220 0 0 0	200 mm /T		0.00258				2.00%
Sb 206.836†	27.4 0.0	1289 mg/L 1025 mg/L		0.00265				104.20%
Se 196.026†	-158.6 0.0	079 mg/L		0.00220				27.90%
a				0.00044				1.08%
Ti 337.279†	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	473 mg/L		0.0007				0.05%
Tl 190.801†	-14 0 0 0	$1/3 m_{\sigma}/1$		0.00483				102.82%
V 292.402t	142426 7 0 0	422 mg/L		0.00247				0.46%
Zn 206.200†	35652 8 0 1	132 mg/L		0.000249				0.40%
Ca 227.546†	-4011.4 0.4	282 mg/L		0.23778				55.53%
Sr 460.733†	-460.6 -0.0			0.00024				12.76%
	alculated. Nominal Wt	י אופיד היד הוא	tial 1	Wt remuir	ed OP same		incorrect	12.70%
Sequence No.: 35	*********************	=========			ocation: 3		**********	=======
Sample ID: CCV				-	d: 8/13/20		16 DW	
Analyst:				a Type: Or		10 3.43.	TO LU	
Initial Sample Wt:				tial Sampl	-			
Dilution:				ple Prep V				
			•	-				
Mean Data: CCV								
Mean Data: CCV	Mean Corrected	Calib				Sample		
Analyte	Intensity Co 8576396.8 0.9 184773.4 0.4	nc Inite		Std Dorr	Cong	Units	Std.Dev.	RSD
Y 371.029	8576396 8 0 9	822 mg/L		0 00139	cone.	UNICS	acu.bev.	0.14%
Ag 328.068t	184773 4 0.4	957 mg/L		0.00139	0 4957	mg/L	0.00067	
	limits for Ag 328.06	8 Pecove	×	99.000007 99.14%	0.4007	mg/ n	0.00007	0.130
Al 308.215†	426215.8 9.				0 9 9 1	mg/L	0.0529	0.54%
	limits for Al 308.21	5 Recover	rv - (0.0525 08 819	2.001	шgуш	0.0529	0.54%
As 188.979†	8421.0 0.9	871 mg/L	-y	0.00545	0 9971	mg/L	0.00545	0.55%
	limits for As 188.97		~~ (0.00545	0.9071	шgлы	0.00345	0.53%
B 249.772†		335 mg/L	- y = :	0.0071	0 00	m~ /T	0 0071	0.20%
	limits for B 249.772	JJJ IIII/J	- 07		2.335	mg/L	0.0071	0.30%
Ba 233.527†		ere mali	y = 93	0.446	0.075		0.0670	0 648
	limits for Ba 233.52	6/э шу/ш 7 Додожо:		0.0630	9.075	mg/L	0.0630	0.64%
Be 313.107t		/ Recove: 432 mg/L			0 0400	/1	0 00720	0 584
	limits for Be 313.10				0.2432	шgт	0.00138	0.57%
Cd 226.502†	188276.6 0.4	7 Recover	cy = 3	0 00004	0 4000	/7	0.00004	0 410
	limits for Cd 226.50	920 mg/1	(0.00204	0.4920	mg/L	0.00204	0.41%
Co 228.616†					2 445		0 0105	0 7 6 0
		445 mg/L		0.0185	2.445	шgүг	0.0185	0.76%
Cr 267.716†	limits for Co 228.61 110030.9 0.4		-		0 4086		0 000.00	
-				0.00166	0.4976	шд\г	0.00166	0.33%
	limits for Cr 267.71		-			1-		
Cu 324.752†		213 mg/L			1.213	mg/L	0.0046	0.38%
	limits for Cu 324.75		cy = 5			<i>i</i> -		
Fe 238.863†		005 mg/L		0.0186	5.005	mg/L	0.0186	0.37%
	limits for Fe 238.86	3 Recover	cy = 1	100.11*				
K 404.721†	4184.9						268.92	6.43%
Unable to evalua								
Mg 279.077†	977450.6 24	.86_mg/L	_	0.139	24.86	mg/L	0.139	0.56%
	limits for Mg 279.07	7 Recover	cy = 3					,
Mn 257.610†	1270222.3 0.7	403 mg/L		0.00446	0.7403	mg∕L	0.00446	0.60%
	limits for Mn 257.61							
Mo 202.031†	128553.8 2.	405 mg/L		0.0157	2.405	mg/L	0.0157	0.65%
	limits for Mo 202.03		Cy = 9	06.21%				
Ni 231.604†		996 mg/L		0.0031	1.996	mg/L	0.0031	0.16%
	limits for Ni 231.60							
Na 330.237†	42547.9 23				23.32	mg/L	0.054	0.23%
QC value within	limits for Na 330.23							
Pb 220.353†		089 mg/L			0.5089	mg/L	0.00216	0.42%
QC value within	limits for Pb 220.35							
Sb 206.836†	28083.4 4.	911 mg/L		0.0175	4.911	mg/L	0.0175	0.36%
QC value within	limits for Sb 206.83	6 Recover	:y = 9	8.21%				
Se 196.026†	2853.5 0.4	928 mg/L	-	0.00801	0.4928	mg/L	0.00801	1.62%
QC value within	limits for Se 196.02							
Sn 189.927†		903 mg/L		0.0352	4.903	mq/L	0.0352	0.72%
QC value within	limits for Sn 189.92	7 Recover	y = 9	8.07%		<u> </u>		= .
Ti 337.279†	1270064.1 2.4	486 mg/L		0.0062	2.486	mg/L	0.0062	0.25%
		<u> </u>				<u> </u>		

Method: AXIAL200-6010 L Opt4 Page 25 Date: 8/13/2010 5:31:05 PM QC value within limits for Ti 337.279 Recovery = 99.42% Tl 190.801† 7643.3 0.9957 mg/L 0.00188 0.9957 mg/L 0.00188 0.19% QC value within limits for Tl 190.801 Recovery = 99.57% V 292.402† 654173.5 2.432 mg/L 0.0108 2.432 mg/L 0.0108 0.44% QC value within limits for V 292.402 Recovery = 97.29% Zn 206.200† 0.9873 mg/L 0.00614 300738.8 0.9873 mg/L 0.00614 0.62% QC value within limits for Zn 206.200 Recovery = 98.73% Ca 227.546† 14121.1 24.71 mg/L 0.087 24.71 mg/L 0.087 0.35% QC value within limits for Ca 227.546 Recovery = 98.83% Sr 460.733† 635967.2 2.460 mg/L 0.0138 2.460 mg/L 0.0138 0.56% QC value within limits for Sr 460.733 Recovery = 98.41% All analyte(s) passed QC. One or more analytes were not evaluated. Sequence No.: 36 Autosampler Location: 1 Sample ID: CCB Date Collected: 8/13/2010 5:27:39 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: CCB Mean Corrected Calib Sample Intensity Analyte Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 8827033.5 0.0070 Y 371.029 1.011 mg/L 0.69% 0.00023 Ag 328.0681 -41.1 -0.0001 mg/L -0.0001 mg/L 0.00023 210.18% QC value within limits for Ag 328.068 Recovery = Not calculated Al 308.215† -160.1 -0.0037 mg/L 0.00008 '-0.0037 mg/L 0.00008 2.21% QC value within limits for Al 308.215 Recovery = Not calculated -0.0004 mg/L As 188.979† -3.1 -0.0004 mg/L 0.00140 0.00140 396.42% QC value within limits for As 188.979 Recovery = Not calculated -0.0295 mg/L -0.0295 mg/L B 249.772† -6789.1 0.00209 0.00209 7.10% QC value within limits for B 249.772 Recovery = Not calculated -903.0 -0.0025 mg/L Ba 233.527† 0.00019 -0.0025 mg/L 0.00019 7.62% QC value within limits for Ba 233.527 Recovery = Not calculated Be 313.107† 451.2 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 41.81% QC value within limits for Be 313.107 Recovery = Not calculated Cd 226.502† 0.0000 mg/L б.О 0.0000 mg/L 0.00002 0.00002 136.57% QC value within limits for Cd 226.502 Recovery = Not calculated Co 228.6161 18.7 0.0001 mg/L 0.0001 mg/L 0.00013 0.00013 95.53% QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† 17.2 0.0001 mg/L 0.00001 0.0001 mg/L 0.00001 8.69% QC value within limits for Cr 267.716 Recovery = Not calculated 0.0038 mg/L Cu 324.752† 1783.5 0.0038 mg/L 0.00084 0.00084 22.15% QC value within limits for Cu 324.752 Recovery = Not calculated 1272.8 0.0210 mg/L 0.00253 Fe 238.863† 0.0210 mg/L 0.00253 12.05% QC value within limits for Fe 238.863 Recovery = Not calculated K 404.721† -52.5 75.52 143.82% Unable to evaluate QC. -0.0060 mg/L Mg 279.077† -235.1 0.00107 -0.0060 mg/L 0.00107 17.79% QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610† -214.2 -0.0001 mg/L 0.00002 -0.0001 mg/L 0.00002 13.51% QC value within limits for Mn 257.610 Recovery = Not calculated 0.0009 mg/L 0.0009 mg/L 47.7 Mo 202.031† 0.00050 0.00050 55.60% QC value within limits for Mo 202.031 Recovery = Not calculated 0.0001 mg/L 0.0001 mg/L Ni 231.604† 8.1 0.00003 0.00003 63.66% QC value within limits for Ni 231.604 Recovery = Not calculated -0.2038 mg/L Na 330.237† -371.7 0.01571 -0.2038 mg/L 0.01571 7.71% QC value within limits for Na 330.237 Recovery = Not calculated 0.0005 mg/L Pb 220.353† 13.3 0.0005 mg/L 0.00004 0.00004 8.07% QC value within limits for Pb 220.353 Recovery = Not calculated Sb 206.836† 9.1 0.0016 mg/L 0.00023 0.0016 mg/L 0.00023 14.41% QC value within limits for Sb 206.836 Recovery = Not calculated Se 196.026† -4.4 -0.0008 mg/L 0.00214 -0.0008 mg/L 0.00214 283.12% QC value within limits for Se 196.026 Recovery = Not calculated 0.0077 mg/L Sn 189.927† 232.8 0.0077 mg/L 0.00111 0.00111 14.54% QC value within limits for Sn 189.927 Recovery = Not calculated Ti 337.279† 112.0 0.0002 mg/L 0.00009 0.0002 mg/L 0.00009 40.94% QC value within limits for Ti 337.279 Recovery = Not calculated 3.9 0.0005 mg/L 0.00122 0.0005 mg/L Tl 190.801† 0.00122 236.35% QC value within limits for Tl 190.801 Recovery = Not calculated 0.0003 mg/L V 292.402† 91.6 0.0003 mg/L 0.00010 0.00010 27.73%

Method: AXIAL200-	6010 L Opt4	P	age 26		Date:	8/13/2010 5	39:39 PM
Zn 206.200†	n limits for V 2: 61.6 n limits for Zn 2	0.0002 mg/L 206.200 Recover	0.00016 y = Not calculat	0.0002	mg/L	0.00016	80.43%
Ca 227.546†	0.9 n limits for Ca 2		0.01022	0.0026	mg/L	0.01022	387.70%
Sr 460.733† QC value within	94.7 n limits for Sr 4	0.0004 mg/L 60.733 Recover	0.00016 y = Not calculat	0.0004 ed	mg∕L	0.00016	42.92%
All analyte(s) pas	ssed QC. One or T	nore analytes we	re not evaluated	1.			
Sequence No.: 37 Sample ID: R10043 Analyst: Initial Sample Wt: Dilution:	14-015		Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 5 8/13/20 ginal Vol:	8		
Mean Data: R100433							
Mean Data: KIVV451	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units		RSD
Y 371.029	8838469.2	1.012 mg/L	0.0050				0.49%
Ag 328.068†	-4466.4	-0.0017 mg/L	0.00013				7.42%
	4641525.2		0.17				0.16%
As 188.979†	-438.6 136928.8	0.0134 mg/L	0.00417 0.00116				31.14%
	136928.8	0.1196 mg/L	0.00116				0.97%
Ba 233.527†	83644.4 15675.1	0.2245 mg/L	0.00204 0.00003				0.91%
Be 313.107†	15675.1	0.0024 mg/L					1.14%
Cd 226.502†	4800.6 2708.4	-0.0008 mg/L	0.00003 0.00024				3.81%
Co 228.616†	2708.4	-0.0008 mg/L 0.0167 mg/L 0.2185 mg/L	0.00024				1.45%
Cr 267.716† Cu 324.752†	47069.2 16410.4	0.2185 mg/L 0.0632 mg/L	0.00172 0.00041				0.79% 0.64%
Fe 238.863†	9723345.9	160.6 mg/L	0.0041				0.01%
K 404.721t	391.4	100.0 mg/b	0.02			77 32	19.76%
Mg 279.0771		2.991 mg/L	0.0317			//.52	1.06%
Mn 257.610†	866290.6	0.5050 mg/L	0.00428				0.85%
Mo 202.031t	-193.1	0.0041 mg/L	0.00034				8.23%
Ni 231.604†	3788.3	0.0250 mg/L	0.00047				1.88%
Na 330.237†	-467.9 2053.4 33.7	0.1457 mg/L	0.15379				105.53%
Pb 220.353†	2053.4	0.0762 mg/L	0.00020				0.26%
Sb 206.836†	33.7	0.0037 mg/L	0.00520				139.07%
Se 196.026†	-206.0	0.0074 mg/L	0.00460				61.92%
Sn 189.927†	675.5	0.0467 mg/L	0.00031				0.66%
Ti 337.279†	963030.5	1.884 mg/L	0.0212				1.13%
Tl 190.801†	675.5 963030.5 -46.4 95944.0 28051.8 -3457.1	0.0014 mg/L	0.00124				90.67%
V 292.402†	95944.0	0.3716 mg/L	0.00128				0.34%
Zn 206.200†	28051.8	0.0883 mg/L	0.00024				0.28%
		2.547 mg/L	0.0573				2.25%
Sr 460.733†	3740.6	0.0141 mg/L	0.00060		•	•	4.27%
Sample conc. not c	alculated. Nomin	al Wt. AND Init:	ial Wt. required	. OR samp.	e units.	incorrect.	
Sequence No.: 38			Autosampler Loc				====#####
Sample ID: R100431	4-016		Date Collected:			43 PM	
Analyst:	1 010		Data Type: Orig	• •		10 114	
Initial Sample Wt:	1.05 g		Initial Sample				
Dilution:			Sample Prep Vol				
Mean Data: R100431					a		
7 ⁷ 4 -	Mean Corrected	Calib		A	Sample	a. 1 -	
Analyte	Intensity	Conc. Units	Std.Dev.	conc.	Units	Std.Dev.	RSD
Y 371.029 Ag 328.068t	8404138.5 -4518.9	0.9625 mg/L -0.0048 mg/L	0.00274				0.28%
Ag 328.0881 Al 308.215†	5681060.0	-0.0048 mg/L 131.8 mg/L	0.00045 0.02				9.54% 0.02%
As 188.979†	-335.3	0.0073 mg/L	0.00019				2.68%
B 249.772†	95709.3	0.0641 mg/L	0.01178				18.37%
Ba 233.527†	245807.9	0.6771 mg/L	0.00005				0.01%
Be 313.107†	17429.1	0.0027 mg/L	0.00000				0.08%
Cd 226.502†	3325.1	-0.0009 mg/L	0.00011				11.73%
Co 228.616†	2270.7	0.0145 mg/L	0.00042				2.88%
Cr 267.716†	32497.8	0.1511 mg/L	0.00001				0.01%
Cu 324.752†	26843.0	0.0770 mg/L	0.00042				0.54%
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

Method: AXIAL200-6	010 L Opt4			Page 27	Date:	8/13/2010 5:	48:23 PM
Fe 238.863†	7040172.6	116.2	2 mg/L	0.42			0.36%
K 404.721†	2378.4		-			192.25	8.08%
Mg 279.077†	217322.0	5.457	7 mg/L	0.0115			0.21%
Mn 257.610†	333740.8	0.1945		0.00020			0.10%
Mo 202.031†	-239.4	0.0017		0.00003			1.48%
Ni 231.604†	4295.1	0.0285		0.00012			0.41%
Na 330.237†	-481.1	0.0115		0.01523			
Pb 220.3531							132.54%
	3489.1	0.1345		0.00445			3.31%
Sb 206.836†	8.7	-0.0004		0.00319			712.26%
Se 196.026†		0.0050		0.00563			111.61%
Sn 189.927†	714.2	0.0423		0.00014			0.33%
Ti 337.279†	1195046.9	2.339		0.0382			1.63%
Tl 190.801t	-23.4	0.0025	, mg/L	0.00296			118.91%
V 292.402†	67885.6	0.2631	. mg/L	0.00067			0.25%
Zn 206.200†	41920.6	0.1342		0.00023			0.17%
Ca 227.546†	-3398.3	0.3482		0.09296			26.70%
Sr 460.733†	-1213.8	-0.0047	$m_{\rm m}/T_{\rm h}$	0.00023			4.87%
Sample conc. not c					OP cample units	incorrect	1.070
				_	-		
======================================	*****	=======		Autosampler Loca		***********	======
Sample ID: R100431	4-017			Date Collected:		50 034	
-	3-011				• •	37 EW	
Analyst:	1 05 -			Data Type: Origi			
Initial Sample Wt:	1.05 g			Initial Sample V			
Dilution:				Sample Prep Vol:	100 mL		
Mean Data: R100431	4-017 Mean Corrected		Calib		Sample		
Analyte	Intensity	Conc	Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
Y 371.029	8362997.3	0.9578			cone. onres	stu.Dev.	
				0.00353			0.37%
Ag 328.068t	-5189.6		D , 1	0.00067			24.84%
1 308.215†	5429074.3	125.9		0.19			0.15%
As 188.979†	-481.8	0.0145		0.00395			27.18%
3 249.772†	145464.1	0.1094	mg/L	0.01442			13.18%
3a 233.527†	80878.3	0.2161	mg/L	0.00111			0.51%
3e 313.107†	14953.3	0.0023		0.00002			0.86%
d 226.5021	5217.2	-0.0010		0.00008			7.738
Co 228.616†	3201.4	0.0201		0.00031			1.53%
Cr 267.716†	30991.1	0.1464					
Cu 324.752†				0.00099			0.68%
	18428.5	0.0702		0.00023			0.33%
e 238.863†	10661665.4	176.0	mg/L	0.12			0.07%
C 404.721†	601.1					92.90	15.46%
lg 279.077†	129914.0	3.197	mg/L	0.0151			0.47%
In 257.610†	751543.8	0.4380	mg/L	0.00248			0.57%
10 202.031†	-219.0	0.0044	mg/L	0.00029			6.48%
li 231.604†	4406.8	0.0291		0.00039			1.33%
la 330.237†	-536.0	0.1419		0.05041			35.54%
b 220.353†	2406.6						
		0.0902	_ ·	0.00254			2.82%
b 206.836†	25.1	0.0020		0.00186			94.77%
e 196.026†	-241.9	0.0051	<u> </u>	0.00353			69.08%
n 189.927†	611.9	0.0474	- · .	0.00126			2.66%
i 337.279†	1210038.2	2.368	mg/L	0.0658			2.78%
1 190.801†	-79.9	-0.0023	mg/L	0.00218			96.57%
292.402†	97573.9	0.3791		0.00155			0.41%
n 206.200†	34352,1	0.1086	- · ·	0.00055			0.51%
a 227.546†	-1656.8	6.493	<u> </u>	0.0674			
r 460.733†							1.04%
ample conc. not ca	6823.3 alculated. Nomina			0.00026 ial Wt. required (OR sample units	incorrect	1.01%
	=======================================					=================	
				Autosampler Loca	tion: 61		
Sequence No.: 40				Date Collected:	8/13/2010 5:46:	26 PM	
Sequence No.: 40	1-018			Data Type: Origin			
Sequence No.: 40 Sample ID: R1004314	4-018						
Sequence No.: 40 Sample ID: R1004314 Analyst:				Initial Sample Ve			
Sequence No.: 40 Sample ID: R1004314 Analyst: Initial Sample Wt:				Initial Sample Vol: Sample Prep Vol:			
Sequence No.: 40 Sample ID: R1004314 Analyst: Enitial Sample Wt: Dilution:	1.05 g				100 mL		
Sequence No.: 40 Sample ID: R1004314 Analyst: Initial Sample Wt: Dilution: Mean Data: R1004314	1.05 g 			Sample Prep Vol:	100 mL		
Sequence No.: 40 Sample ID: R1004314 Analyst: Initial Sample Wt: Dilution: Mean Data: R1004314	1.05 g 		Calib	Sample Prep Vol:	100 mL Sample		
Mean Data: R1004314	1.05 g 	Conc.	Calib	Sample Prep Vol:	100 mL	Std.Dev.	RSD

Method: AXIAL	200-6010 L Opt4	1	Page 28	Date: 8/13/2010 5:55:47 PM
Ag 328.068†	-1447.1	-0.0025 mg/L	0.00009	
Al 308.215†	1945117.1	45.12 mg/L	0.0009	3.65% 0.18%
As 188.979†	-55.0	0.0026 mg/L	0.00308	120.30%
B 249.772†	11206.3	-0.0231 mg/L	0.00454	19.65%
Ba 233.527†	94016.9	0.2600 mg/L	0.00072	0.28%
Be 313.107†	5873.7	0.0009 mg/L	0.00003	2.84%
Cd 226.502†	673.6	-0.0001 mg/L	0.00001	6.21%
Co 228.616†	1027.1	0.0072 mg/L	0.00011	1.59%
Cr 267.716†	11450.1	0.0526 mg/L	0.00022	0.43%
Cu 324.752†	22737.5	0.0519 mg/L	0.00008	0.16%
Fe 238.863†	1381645.1	22.81 mg/L	0.039	0.17%
K 404.721†	1379.9	.		131.55 9.53%
Mg 279.077†	111410.5	2.820 mg/L	0.0030	0.10%
Mn 257.610†	137463.2	0.0802 mg/L	0.00011	0.14%
Mo 202.031† Ni 231.604†	45.7	0.0023 mg/L	0.00060	26.46%
Na 330.237†	2453.4	0.0163 mg/L	0.00025	1.53%
Pb 220.353†	89.4 1456.6	0.0966 mg/L 0.0568 mg/L	0.08211	85.02%
Sb 206.836†	-2.7	-0.0010 mg/L	0.00237 0.00571	4.17% 569.17%
Se 196.026†	-36.1	-0.0011 mg/L	0.00016	14.87%
Sn 189.927†	547.7	0.0222 mg/L	0.00097	4.39%
Ti 337.279†	693992.8	1.358 mg/L	0.0013	0.10%
Tl 190.801†	-23.7	-0.0019 mg/L	0.00448	232.66%
V 292.402†	35995.0	0.1359 mg/L	0.00030	0.22%
Zn 206.200†		0.0630 mg/L	0.00041	0.66%
Ca 227.546†	-465.4	0.4361 mg/L	0.08004	18.35%
Sr 460.733†	-488.7	-0.0018 mg/L	0.00034	18.93%
Sample conc. :	not calculated. Nomin	al Wt. AND Init	ial Wt. required	OR sample units incorrect.
Sequence No.:			Autosampler Loc	
Sample ID: R10	004314-019			8/13/2010 5:50:42 PM
Analyst: Initial Sample	o 10/4 - 1 0 4 -		Data Type: Orig	
Dilution:	e wt: 1.04 g		Initial Sample Sample Prep Vol	
DIII(CLOIL,			permitre treh AOT	: TOA THP
Mean Data: R1(004314-019			
Mean Data: R1(Calib		Sample
Mean Data: R1(Analyte	004314-019 Mean Corrected Intensity	Calib Conc. Units	Std.Dev.	Conc. Units Std.Dev. RSD
Mean Data: R1(Analyte Y 371.029	004314-019 Mean Corrected Intensity 8294785.8	Calib Conc. Units 0.9499 mg/L	Std.Dev. 0.00048	Conc. Units Std.Dev. RSD 0.05%
Mean Data: R1(Analyte Y 371.029 Ag 328.068;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L	Std.Dev. 0.00048 0.00035	Conc. Units Std.Dev. RSD 0.05% 26.43%
Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L	Std.Dev. 0.00048 0.00035 0.87	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L 0.0224 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49%
Mean Data: R10 Analyte Y 371.029 Ag 328.068t Al 308.215t As 188.979t B 249.772t Ba 233.527t Be 313.107t Cd 226.502t Co 228.616t Cr 267.716t	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L 0.0224 mg/L 0.2433 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 0.00004 0.00119	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.2433 mg/L 0.0920 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 0.00004 0.00119 0.00022	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.49% 0.24%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.2433 mg/L 232.3 mg/L 3.785 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 0.00004 0.00119 0.00022	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.49% 0.24% 0.58%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.5975 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 0.00004 0.00119 0.00022 1.35	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.5975 mg/L 0.0048 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 0.00002 1.35 0.0087 0.00080 0.00139	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.5975 mg/L 0.0048 mg/L 0.0341 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00139 0.00022	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.5975 mg/L 0.0048 mg/L 0.0341 mg/L 0.7519 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.000560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00080 0.00139 0.00022 0.000139 0.00022 0.00119	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0948 mg/L 0.0341 mg/L 0.0935 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00139 0.00022 0.00119 0.00023	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.5975 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0048 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00080 0.00139 0.00022 0.00139 0.00022 0.00119 0.00023 0.00121	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.009 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.0948 mg/L 0.0935 mg/L 0.0948 mg/L 0.0048 mg/L 0.0140 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00080 0.00139 0.00022 0.00139 0.00022 0.00121 0.00715	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.0048 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0048 mg/L 0.0140 mg/L 0.0556 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00087 0.00089 0.00119 0.00022 0.00139 0.00022 0.00119 0.00023 0.00121 0.00715 0.00043	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77%
Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.0948 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0048 mg/L 0.0140 mg/L 0.0556 mg/L 2.161 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00004 0.00119 0.00022 1.35 0.0087 0.00080 0.00139 0.00022 0.00139 0.00022 0.00119 0.00023 0.00121 0.00715 0.00043 0.0178	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.0948 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0140 mg/L 0.0556 mg/L 2.161 mg/L 0.0034 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.0002 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00139 0.00022 0.00139 0.00022 0.00119 0.00023 0.00121 0.00715 0.00043 0.0178 0.0005	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36%
Mean Data: R10 Analyte Y 371.029 Ag 328.068t Al 308.215t As 188.979t B 249.772t Ba 233.527t Be 313.107t Cd 226.502t Co 228.616t Cr 267.716t Cu 324.752t Fe 238.863t K 404.721t Mg 279.077t Mn 257.610t Mo 202.031t Ni 231.604t Na 330.237t Pb 220.353t Sb 206.836t Se 196.026t Sn 189.927t Ti 337.279t Tl 190.801t	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2025 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0948 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0048 mg/L 0.0140 mg/L 0.0556 mg/L 2.161 mg/L 0.0034 mg/L 0.0034 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.000560 0.00054 0.00002 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.000121 0.00715 0.00043 0.0178 0.0005 0.00051	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mn 257.610; Mn 257.610; Mn 231.604; Na 330.237; Pb 220.353; Sb 206.836; se 196.026; Sn 189.927; T1 337.279; T1 190.801; V 292.402;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L 0.0029 mg/L 0.0024 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0935 mg/L 0.0048 mg/L 0.0935 mg/L 0.0048 mg/L 0.0140 mg/L 0.0556 mg/L 2.161 mg/L 0.034 mg/L 0.034 mg/L 0.034 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.000560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.00715 0.00043 0.0178 0.00051 0.00046	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mn 257.610; Mn 257.610; Mn 257.610; Mn 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927; T1 337.279; T1 190.801; V 292.402; Zn 206.200;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7 40156.8	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2025 mg/L 0.0029 mg/L 0.0029 mg/L 0.0029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0948 mg/L 0.0341 mg/L 0.0935 mg/L 0.0935 mg/L 0.0048 mg/L 0.0140 mg/L 0.0556 mg/L 2.161 mg/L 0.0034 mg/L 0.0034 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.000560 0.00054 0.00002 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.000121 0.00715 0.00043 0.0178 0.0005 0.00051	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37% 3.58%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927; Ti 337.279; Tl 190.801; V 292.402; Zn 206.200; Ca 227.546; Sr 460.733;	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7 40156.8 -3711.4 8865.5	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.0029 mg/L -0.0009 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 0.048 mg/L 0.0341 mg/L 0.0341 mg/L 0.0140 mg/L 0.0556 mg/L 0.0048 mg/L 0.0556 mg/L 0.0034 mg/L 0.0034 mg/L 0.4876 mg/L 0.1264 mg/L 0.0336 mg/L	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00002 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 1.35 0.0087 0.00080 0.00139 0.00022 0.00119 0.00023 0.00121 0.00023 0.00121 0.00023 0.00121 0.00043 0.0178 0.0005 0.00046 0.2116 0.00028	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.24% 0.58% 59.72 11.82% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37%
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927; T1 337.279; T1 190.801; V 292.402; Zn 206.200; Ca 227.546; Sr 460.733; Sample conc. n	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7 40156.8 -3711.4 8865.5 not calculated. Nomina	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 232.3 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0048 mg/L 0.0341 mg/L 0.0140 mg/L 0.0140 mg/L 0.0140 mg/L 0.0556 mg/L 0.0034 mg/L 0.0034 mg/L 0.0034 mg/L 0.1264 mg/L 0.0336 mg/L 1 Wt. AND Init	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00004 0.00119 0.00022 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.00023 0.00121 0.00043 0.0178 0.00043 0.0178 0.00051 0.00046 0.2116 0.00028 ial Wt. required	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37% 3.58% 0.83% OR sample units incorrect.
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Ba 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927; Ti 337.279; Ti 337.279; Ti 190.801; V 292.402; Zn 206.200; Ca 227.546; Sr 460.733; Sample conc. n	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7 40156.8 -3711.4 8865.5 not calculated. Nomina	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 232.3 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0048 mg/L 0.0341 mg/L 0.0140 mg/L 0.0140 mg/L 0.0140 mg/L 0.0556 mg/L 0.0034 mg/L 0.0034 mg/L 0.0034 mg/L 0.1264 mg/L 0.0336 mg/L 1 Wt. AND Init	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00004 0.00119 0.00022 1.35 0.0087 0.00087 0.00087 0.00087 0.00082 0.00119 0.00022 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.00023 0.00121 0.00043 0.0178 0.00043 0.0178 0.00051 0.00046 0.2116 0.00028 ial Wt. required	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37% 3.58% 0.83% OR sample units incorrect.
Mean Data: R10 Analyte Y 371.029 Ag 328.068; Al 308.215; As 188.979; B 249.772; Ba 233.527; Be 313.107; Cd 226.502; Co 228.616; Cr 267.716; Cu 324.752; Fe 238.863; K 404.721; Mg 279.077; Mn 257.610; Mo 202.031; Ni 231.604; Na 330.237; Pb 220.353; Sb 206.836; Se 196.026; Sn 189.927; T1 337.279; T1 190.801; V 292.402; Zn 206.200; Ca 227.546; Sr 460.733; Sample conc. n	004314-019 Mean Corrected Intensity 8294785.8 -6026.5 6630425.3 -650.1 204624.2 106854.9 18390.7 7038.5 3671.7 51973.2 24002.3 14065745.3 505.4 154371.6 1025127.3 -340.3 5159.1 311.9 2517.6 45.2 -279.2 609.8 1104276.9 -56.4 125351.7 40156.8 -3711.4 8865.5 not calculated. Nomina	Calib Conc. Units 0.9499 mg/L -0.0013 mg/L 153.8 mg/L 0.0176 mg/L 0.2015 mg/L 0.2855 mg/L 0.029 mg/L 0.0224 mg/L 0.0224 mg/L 0.0224 mg/L 0.0920 mg/L 232.3 mg/L 3.785 mg/L 0.0920 mg/L 232.3 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0920 mg/L 0.0048 mg/L 0.0341 mg/L 0.0140 mg/L 0.0140 mg/L 0.0140 mg/L 0.0556 mg/L 0.0034 mg/L 0.0034 mg/L 0.0034 mg/L 0.1264 mg/L 0.0336 mg/L 1 Wt. AND Init	Std.Dev. 0.00048 0.00035 0.87 0.00184 0.00560 0.00054 0.00002 0.00002 0.00004 0.00119 0.00022 1.35 0.0087 0.00087 0.00080 0.00119 0.00022 0.00119 0.00022 0.00119 0.00022 0.00119 0.00023 0.00121 0.00023 0.00121 0.00043 0.0178 0.00043 0.0178 0.00051 0.00046 0.2116 0.00028 ial Wt. required	Conc. Units Std.Dev. RSD 0.05% 26.43% 0.57% 10.44% 2.78% 0.19% 0.65% 1.67% 0.19% 0.49% 0.24% 0.24% 0.23% 0.13% 29.13% 0.66% 0.16% 0.24% 25.20% 50.90% 0.77% 0.82% 1.36% 0.10% 0.37% 3.58% 0.83% OR sample units incorrect.

·····	5010 L Opt4		Page 29			3/13/2010 6:	
Sample ID: R10043:	L4-020		Date Collected	l: 8/13/20	10 5:55:4	17 PM	
malyst:			Data Type: Ori	ginal			
Initial Sample Wt:	:1g		Initial Sample				
Dilution:			Sample Prep Vo	ol: 100 mL			
ean Data: R100431		6-14			a		
nalyte	Mean Corrected Intensity	Calib Conc. Units	Std.Dev.	Conc	Sample Units	Std.Dev.	RSD
371.029	8957186.5	1.026 mg/L	0.0051	cone.	UNICS	stu.Dev.	0.50
g 328.068†	-5879.6	-0.0039 mg/L	0.00010				2.66
1 308.215†	4854768.9	112.6 mg/L	0.14				0.12
s 188.979†	-543.6	0.0112 mg/L	0.00089				7.96
249.772†	154473.3	0.1241 mg/L	0.00748				6.03
a 233.527†	103334.8	0.2780 mg/L	0.00162				0.58
e 313.107†	22120.6	0.0034 mg/L	0.00003				0.82
d 226.502†	5517.0	-0.0010 mg/L	0.00031				30.28
0 228.616†	2242.8	0.0127 mg/L 0.1570 mg/L	0.00020				1.57
r 267.716†	33240.7	0.1570 mg/L	0.00140				0.89
ג 324.752t		0.0670 mg/L	0.00021				0.31
≥ 238.863†		185.4 mg/L	0.10				0.05
404.721†	1182.2	3 350 /T	A AA4A			11.02	
g 279.077†		3.358 mg/L	0.0249				0.74
n 257.610† o 202.031†	251353.5	0.1461 mg/L	0.00104				0.72
i 231.604†		0.0024 mg/L 0.0259 mg/L	0.00089 0.00015				36.53
a 330.237†	-1166.7	-0.1691 mg/L	0.05021				29.69
b 220.3531		0.1127 mg/L	0.00293				2.60
b 206.836†		0.0020 mg/L	0.00106				53.89
e 196.026†		0.0038 mg/L	0.00235				62.109
n 189.927†	460.5	0.0430 mg/L	0.00132				3.074
i 337.279†		1.693 mg/L	0.0275				1.639
1 190.801†	-45.4	0.0026 mg/L 0.2642 mg/L	0.00393			-	151.59
292.4021	66432.4	0 2642 mg/T	0 00050				0.229
292.4021	00102.11	0.2042 119/11	0.00058				0.44
	33591.6	0.1061 mg/L	0.00058				
n 205.200†	33591.6 -5630.4	0.1061 mg/L 0.0966 mg/L					0.769
n 206.200† a 227.546† r 460.733†	33591.6 -5630.4 -1705.0	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L	0.00080 0.03285 0.00065	d OR samp	le units	incorrect.	0.76 34.00
n 206.200† a 227.546† r 460.733† ample conc. not c	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require				0.769 34.009 9.149
n 206.200† a 227.546† r 460.733† ample conc. not c	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require	=========			0.76 34.00 9.14
292.4021 in 206.200† ia 227.546† ir 460.733† ample conc. not c ====================================	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require	======================================			0.76 34.00 9.14
n 206.200† a 227.546† r 460.733† ample conc. not c ======================== equence No.: 43 ample ID: CCV nalyst:	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori	cation: 3 : 8/13/202 ginal			0.76 34.00 9.14
n 206.200† a 227.546† r 460.733† ample conc. not c equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt:	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample	cation: 3 : 8/13/20: ginal Vol:			0.76 34.00 9.14
a 205.200† a 227.546† c 460.733† ample conc. not c equence No.: 43 ample ID: CCV aalyst: attial Sample Wt:	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori	cation: 3 : 8/13/20: ginal Vol:			0.76 34.00 9.14
1 205.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution:	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample	cation: 3 : 8/13/20: ginal Vol:			0.769 34.009 9.149
n 206.200† a 227.546† r 460.733† ample conc. not c equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV	33591.6 -5630.4 -1705.0 alculated. Nomina	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 3 : 8/13/20: ginal Vol: 1:	LO 6:00:0 Sample		0.76 ⁵ 34.00 ⁵ 9.14 ⁴
n 205.200† a 227.546† c 460.733† ample conc. not c equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV nalyte	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init Calib Conc. Units	0.00080 0.03285 0.00065 Mail Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev.	cation: 3 : 8/13/20: ginal Vol: 1:	LO 6:00:0 Sample		0.76 ⁵ 34.00 ⁵ 9.14 ⁴
n 205.200† a 227.546† c 460.733† ample conc. not c equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV nalyte	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init Calib Conc. Units 0.9818 mg/L	0.00080 0.03285 0.00065 Mial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555	cation: 3 : 8/13/20: ginal Vol: 1: 	LO 6:00:0 Sample Units	7 PM Std.Dev.	0.769 34.009 9.149
n 206.200† a 227.546† c 460.733† ample conc. not c equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 Main Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914	cation: 3 : 8/13/20: ginal Vol: 1: 	LO 6:00:0 Sample Units		0.769 34.009 9.149 ======= RSD 1.589
n 206.200† a 227.546† r 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: 1: 	LO 6:00:0 Sample Units mg/L	7 PM Std.Dev. 0.00914	0.769 34.009 9.149
h 205.200† a 227.546† r 460.733† ample conc. not concurrent ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068† QC value within a 308.215†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init Calib Conc. Units 0.9818 mg/L 0.4959 mg/L 28.068 Recover 9.888 mg/L	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: 1: 	LO 6:00:0 Sample Units mg/L	7 PM Std.Dev.	0.765 34.005 9.145
n 206.200† a 227.546† r 460.733† ample conc. not concurrent equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: can Data: CCV nalyte 371.029 g 328.068† QC value within t 308.215† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init Calib Conc. Units 0.9818 mg/L 0.4959 mg/L 28.068 Recover 9.888 mg/L 08.215 Recover	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888	LO 6:00:0 Sample Units mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648	0.769 34.009 9.149
n 205.200† a 227.546† r 460.733† ample conc. not concurrent equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: can Data: CCV nalyte 371.029 g 328.068† QC value within i 308.215† QC value within s 188.979†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888	LO 6:00:0 Sample Units mg/L mg/L	7 PM Std.Dev. 0.00914	0.769 34.009 9.149
h 206.200† a 227.546† r 460.733† ample conc. not conclusion equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068† QC value within 1 308.215† QC value within 1 88.979† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888 0.9902	LO 6:00:0 Sample Units mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513	0.769 34.009 9.149
1 205.200† 2 227.546† 4 460.733† ample conc. not conclusion ample ID: CCV alyst: 1 1 1 1 Sample Wt: 1 1 1 2 Sample Wt: 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888 0.9902	LO 6:00:0 Sample Units mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648	0.769 34.009 9.149
a 205.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV alyst: hitial Sample Wt: Lution: can Data: CCV alyte 371.029 g 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10%	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328	Sample Units mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388	0.769 34.009 9.149
a 205.200† a 227.546† c 460.733† imple conc. not c equence No.: 43 imple ID: CCV alyst: atial Sample Wt: lution: can Data: CCV alyte 371.029 f 328.068† QC value within 188.979† QC value within 249.772† QC value within 233.527†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328	Sample Units mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513	0.769 34.009 9.149
1 205.200† 2 227.546† 4 60.733† ample conc. not concent equence No.: 43 imple ID: CCV halyst: hitial Sample Wt: lution: 2 an Data: CCV halyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77%	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877	Sample Units mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453	0.769 34.009 9.149
1 206.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 233.527† QC value within 233.527† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77% 0.00326	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877	Sample Units mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453	0.769 34.009 9.149
h 206.200† a 227.546† c 460.733† ample conc. not co equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 308.215† QC value within 249.772† QC value within 249.772† QC value within 233.527† QC value within 233.527† QC value within 233.107† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77% 0.00326 Y = 97.20%	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326	0.769 34.009 9.149 9.149 1.589 1.589 1.849 1.679 1.539 1.679 1.479 1.348
n 206.200† a 227.546† r 460.733† ample conc. not co equence No.: 43 ample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV nalyte 371.029 g 328.068† QC value within t 308.215† QC value within 188.979† QC value within 249.772† QC value within a 233.527† QC value within a 313.107† QC value within b 313.107† QC value within con 200 c	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453	0.769 34.009 9.149 9.149 1.589 1.589 1.849 1.679 1.539 1.679 1.479 1.348
h 206.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107† QC value within 1226.502† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina ====================================	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326 0.00684	0.763 34.009 9.14 9.14 1.583 1.583 1.678 1.678 1.678 1.678 1.478 1.348 1.398
h 206.200† a 227.546† r 460.733† ample conc. not cont equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107† QC value within 226.502† QC value within 228.616†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: l: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326	0.769 34.009 9.149 9.149 1.589 1.589 1.679 1.539 1.678 1.479 1.34% 1.39%
h 206.200† a 227.546† r 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: ilution: can Data: CCV halyte 371.029 g 328.068† QC value within 1308.215† QC value within 249.772† QC value within 233.527† QC value within 233.527† QC value within 233.527† QC value within 228.616† QC value within 228.616† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934 2.449	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326 0.00684 0.0348	0.769 34.009 9.149 9.149 1.589 1.589 1.679 1.539 1.678 1.478 1.34% 1.39% 1.42%
h 206.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107† QC value within 228.616† QC value within 26.502† QC value within 267.716†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Sample Prep Vo 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77% 0.00326 Y = 97.20% 0.00684 Y = 98.67% 0.0348 Y = 97.97% 0.01057	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934 2.449	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326 0.00684 0.0348	0.769 34.009 9.149 9.149 1.589 1.589 1.679 1.539 1.678 1.478 1.348 1.398 1.428
h 206.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 ample ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527† QC value within 313.107† QC value within 228.616† QC value within 267.716† QC value within	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Data Collected Data Type: Ori Initial Sample Sample Prep Vo Sample Prep Vo 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77% 0.00326 Y = 97.20% 0.00684 Y = 98.67% 0.00348 Y = 99.45%	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934 2.449 0.4973	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326 0.00684 0.0348 0.0348 0.01057	0.769 34.009 9.149 9.149 1.589 1.589 1.589 1.67% 1.53% 1.67% 1.47% 1.34% 1.39% 1.42% 2.13%
1 206.200† a 227.546† c 460.733† ample conc. not concent equence No.: 43 imple ID: CCV halyst: hitial Sample Wt: lution: can Data: CCV halyte 371.029 g 328.068† QC value within 308.215† QC value within 24.772† QC value within 228.616† QC value within 228.616† QC value within 224.752†	33591.6 -5630.4 -1705.0 alculated. Nomina 	0.1061 mg/L 0.0966 mg/L -0.0071 mg/L al Wt. AND Init 	0.00080 0.03285 0.00065 ial Wt. require Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Sample Prep Vo 0.01555 0.00914 Y = 99.17% 0.1648 Y = 98.88% 0.01513 Y = 99.02% 0.0388 = 93.10% 0.1453 Y = 98.77% 0.00326 Y = 97.20% 0.00348 Y = 97.97% 0.01057 Y = 99.45% 0.0214	cation: 3 : 8/13/20: ginal Vol: 1: Conc. 0.4959 9.888 0.9902 2.328 9.877 0.2430 0.4934 2.449 0.4973	LO 6:00:0 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7 PM Std.Dev. 0.00914 0.1648 0.01513 0.0388 0.1453 0.00326 0.00684 0.0348	0.769 34.009 9.149 9.149 1.589 1.589 1.589 1.67% 1.53% 1.67% 1.47% 1.34% 1.39% 1.42% 2.13%

Unable to evaluate QC. Wa 279.0771 979727.1 24.92 mg/L 0.353 24.92 mg/L 0.353 1.4 QC value within limits for Mg 279.077 Recovery = 98.70% 0.01111 0.7402 mg/L 0.01111 1.5 QC value within limits for Mg 279.077 Recovery = 98.70% 0.02111 0.7402 mg/L 0.01111 1.5 QC value within limits for Mg 227.610 Recovery = 98.70% 0.0311 2.410 mg/L 0.0181 0.71 QC value within limits for Ng 202.031 Recovery = 96.40% 2.001 mg/L 0.0331 1.61 QC value within limits for Ng 302.237 Recovery = 91.00.04% 2.001 mg/L 0.0380 1.63 QC value within limits for Ng 302.237 Recovery = 91.00.04% 0.0380 1.63 QC value within limits for SD 206.335 Recovery = 99.58 0.04944 0.4965 mg/L 0.00494 1.00 QC value within limits for SD 126.636 Recovery = 99.39% 0.04959 mg/L 0.01971 3.9 2.72 QC value within limits for Ti 327.279 Recovery = 99.39% 0.04969 mg/L 0.01971 3.9 QC value within limits for Ti 327.279 Recovery = 9.9.6% 1.19 0.04969 mg/L 0.026	Method: AXIAL200-6	010 L Opt4	Page	a30		Date:	8/13/2010 6	:07:52 PI
Unable to evalue to CC. 24.92 mg/L 0.353 24.92 mg/L 0.353 24.92 mg/L 0.353 24.92 mg/L 0.0353 24.92 mg/L 0.0111 1.5 0C value within limits for Mg 279.077 Recovery = 90.664 0.0111 0.7402 mg/L 0.0111 1.5 0C value within limits for M 202.031 Recovery = 96.404 0.0181 2.410 mg/L 0.0181 0.01971 0.0496 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971 0.01971			238.863 Recovery =	= 100.91%				
QC value vichin limits for Mg 279.077 Recovery = 98.664 0.0111 0.7402 mg/L 0.0111 1.55 QC value wichin limits for M 257.510 Recovery = 98.704 2.410 mg/L 0.0181 0.71 QC value wichin limits for M 257.510 Recovery = 96.404 2.010 mg/L 0.0331 2.010 mg/L 0.0331 1.61 QC value wichin limits for M 230.237 Recovery = 93.544 0.0494 0.0496 0.0304 2.031 0.00494 0.0310 2.031 0.00494 0.0180.1.61 QC value within limits for S 20.327 Recovery = 93.544 0.04965 0.04965 0.04964 0.01971 0.380 2.72 QC value within limits for S 20.538 Recovery = 90.384 0.0494 0.01971 0.4965 mg/L 0.01971 3.92 QC value within limits for S 195.026 Recovery = 90.384 0.0495 2.492 mg/L 0.0493 2.01 QC value within limits for S 195.026 Recovery = 90.384 0.0499 2.01 0.0499 2.01 QC value within limits for T 130.0101 Recovery = 97.284 0.0267 1.02 0.0267 1.02 QC value within limits for X 22.021 Recovery = 97.384 0.0396		ate QC.						
M1 257.610; 1270185.0 0.7402 mg/L 0.01111 0.7402 mg/L 0.01111 1.5. QC Value within limits for Mn 257.510 Recovery = 98.764 0.0181 0.0181 0.71 QC Value within limits for Mn 257.510 Recovery = 96.464 0.0181 0.0331 1.6. QC Value within limits for Mn 237.604 Recovery = 96.464 0.0341 0.0331 1.6. X 300.2371 4.3668.9 2.2.3.39 mg/L 0.034 0.3656 mg/L 0.0444 0.4565 mg/L 0.0644 1.00 QC value within limits for Mn 257.65 0.0368 mg/L 0.01871 0.4565 mg/L 0.01971 3.97 Z C value within limits for So 180.8207.836 Recovery = 90.368 1.001 0.01971 3.97 S 266.3861 Recovery = 90.684 0.01971 0.01971 3.97 S 266.3861 Recovery = 90.684 0.01971 0.01971 3.97 S 266.3861 Recovery = 90.684 0.01971 0.01971 3.97 S 266.3861 Recovery = 90.684 0.01971 0.0267 1.01 S 266.301 Recovery = 90.684 0.0267 1.005 0.0277 1.01 </td <td></td> <td>979727.1 Limits for Ma</td> <td>24.92 mg/L 279 077 Recovery -</td> <td>0.353</td> <td>24.92</td> <td>mg/L</td> <td>0.353</td> <td>1.41%</td>		979727.1 Limits for Ma	24.92 mg/L 279 077 Recovery -	0.353	24.92	mg/L	0.353	1.41%
Mo 202.031; 128816.8 2.410 mg/L 0.0181 0.71 QC value within limits for N 202.031 Recovery = 96.04 0.0331 2.001 mg/L 0.0331 1.61 QC value within limits for N 202.031 Recovery = 100.044 0.330 23.39 mg/L 0.330 1.63 QC value within limits for N 202.353 Recovery = 100.044 0.4965 mg/L 0.0084 0.4965 mg/L 0.0187 QC value within limits for N 202.353 Recovery = 100.644 0.4965 mg/L 0.01971 0.1333 2.77 QC value within limits for Sp 206.836 Recovery = 100.645 1.01971 0.4955 mg/L 0.01971 0.4955 mg/L 0.01971 0.4955 mg/L 0.01971 3.77 QC value within limits for Sp 156.026 Recovery = 90.336 1.919 mg/L 0.0533 1.111 10.04971 716.3 1.005 mg/L 0.01971 3.77 QC value within limits for T 10.050 mg/L 0.0267 1.005 mg/L 0.0267 1.011 11 50.8011 7716.3 1.005 mg/L 0.0267 1.011 0.0267 1.12 QC value within limits for T 10.020 8001 800000 mg/L 0.0234 1	Mn 257.610†	1270185.0	0.7402 mg/L	0.01111	0.7402	mg/L	0.01111	1.50%
ii 231.6041 300182.3 2.001 mg/L 0.0331 1.61 QC value within limits for Ni 23.604 Recovery = 100.04% 33.0 23.39 mg/L 0.380 23.39 mg/L 0.380 1.61 QC value within limits for Ni 23.02.37 Recovery = 93.54% 0.00494 0.04965 mg/L 0.00494 1.01 QC value within limits for Ni 23.02.53 Recovery = 99.39% 0.01971 0.4965 mg/L 0.01971 0.4965 mg/L 0.01971 0.4965 mg/L 0.01971 0.4965 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.01971 0.4969 mg/L 0.02671 1.005 mg/L 0.0267 1.005 mg/L 0.0267 1.01 (G value within limits for T 137.279 Recovery = 98.384 0.9993 mg/L 0.01961 1.41 (G value within limits for T 22.402 Rockery = 99.634 0.02671 1.005 mg/L 0.02671 1.01 (G value within limits for T 137.279 Recovery = 98.384 0.0399 mg/L 0.01361 0.02771 1.14 <td>1o 202.031†</td> <td>128816.8</td> <td>2.410 mg/L "</td> <td>0.0181</td> <td>2.410</td> <td>mg/L</td> <td>0.0181</td> <td>0.75%</td>	1o 202.031†	128816.8	2.410 mg/L "	0.0181	2.410	mg/L	0.0181	0.75%
Na 330.2371 42668.9 23.39 mg/L 0.380 23.39 mg/L 0.380 1.6 QC value within limits for Na 30.237 Recovery = 93.544 0.00494 0.04965 mg/L 0.00494 1.0 QC value within limits for Pb 220.537 Recovery = 100.654 0.04965 mg/L 0.00494 1.01 QC value within limits for Pb 220.636 Recovery = 100.654 0.4969 mg/L 0.01971 3.97 QC value within limits for So 196.036 Recovery = 93.38 0.4969 mg/L 0.0583 4.919 mg/L 0.0583 4.919 mg/L 0.0583 1.919.9271 1.04943.4 4.919 mg/L 0.0267 1.0409 2.492 mg/L 0.0499 2.01 QC value within limits for T1 100.601 Recovery = 90.634 0.0227 2.431 mg/L 0.0227 1.43 1190.8011 1716.3 1.056 mg/L 0.0227 2.431 mg/L 0.0227 1.43 QC value within limits for T1 100.601 Recovery = 98.394 0.9893 mg/L 0.01396 1.43 QC value within limits for C1 207.546 Recovery = 98.794 0.433 2.467 mg/L 0.433 1.75 QC value within limits for C3 32 Recovery = 99.754 0.0394 1.43	Ni 231.604†	300182.3	2.001 mg/L	0.0331	2.001	mg/L	0.0331	1.65%
2b 22.351 1.3592.6 0.4965 mg/L 0.0494 0.4965 mg/L 0.00494 1.01 QC value within limits for pb 20.353 Recovery = 9.294 0.1383 5.033 mg/L 0.1383 5.037 9b 206.8364 28782.5 5.033 mg/L 0.01971 0.4969 mg/L 0.01971 3.97 QC value within limits for ps 106.036 Recovery = 9.016.664 0.0492 mg/L 0.0496 mg/L 0.01971 3.97 QC value within limits for ps 109.927 Recovery = 9.034 0.0492 mg/L 0.0499 2.00 13 0.021 127366.6 12.723 mg/L 0.0267 1.005 mg/L 0.0267 1.005 mg/L 0.0267 1.005 mg/L 0.0267 1.015 mg/L 0.0277 1.11 QC value within limits for pl 20.402 Recovery = 98.934 0.0396 0.0396 1.43 227.545 1.4100.4 2.431 mg/L 0.0394 1.65 QC value within limits for Sr 460.733 Recovery = 92.354 0.433 2.461 mg/L 0.0394 1.65 QC value within limits for Sr 460.733 Recovery = 92.554 0.431 2.481 mg/L 0.0394 1.65 QC value within limits for As 186.979 Recovery = Not calculated					23.39	mg/L	0.380	1.62%
CC value within limits for Pb 220.353 Recovery = 99.29% 0.1383 5.033 mg/L 0.1383 2.77 QC value within limits for Sb 206.836 Recovery = 100.66% 0.4969 mg/L 0.01971 3.97 QC value within limits for Se 156.036 Recovery = 99.39% 0.4969 mg/L 0.01971 3.97 QC value within limits for Sn 189.927 Recovery = 99.39% 0.4969 mg/L 0.0583 4.919 mg/L 0.0583 1.11 QC value within limits for Sn 189.927 Recovery = 93.68% 0.0499 2.00 0.0499 2.00 QC value within limits for Sn 189.927 Recovery = 93.69% 0.0267 1.005 mg/L 0.0267 2.66 QC value within limits for J1 337.278 Recovery = 93.63% 0.0267 2.66 0.0267 1.12 QC value within limits for C 20.24.02 Recovery = 93.63% 0.0267 1.005 mg/L 0.0267 1.14 QC value within limits for C 20.24.02 Recovery = 93.72% 0.431 mg/L 0.0277 1.14 QC value within limits for C 2.00 Recovery = 99.36% 0.433 1.77 0.431 1.77 QC value within limits for C 2.566 Recovery = 9.254 0.433 1.77 0.431 1.75 QC value within limits for C 27.566 Recovery = 9.254 0.433 1.77 0.433 1.77 QC value within limits for C 27.566 Recovery = 9.254 0.1386 1.13 0.0394 1.55 QC value within limits for C 2.566 Recovery = Not calculated. 0.1326 1.13 0.1326					0.4965	mq/L	0.00494	1.00%
QC value within limits for Sb 206.836 Recovery = 100.664 0.01971 0.4969 mg/L 0.01971 0.97 QC value within limits for Se 196.026 Recovery = 99.394 0.0583 1.91 0.0583 1.91 QC value within limits for Sn 189.927 Recovery = 99.394 0.0583 1.91 0.0597 0.0499 2.00 QC value within limits for Sn 189.927 Recovery = 99.694 0.0499 2.00 0.0267 2.61 QC value within limits for T1 337.279 Recovery = 99.694 0.0267 2.431 mg/L 0.0267 2.61 QC value within limits for T1 190.801 Recovery = 99.694 0.0267 1.01 0.0277 1.43 QC value within limits for 202.02 Recovery = 97.254 0.0893 mg/L 0.01396 1.43 QC value within limits for CA 27.546 Recovery = 97.254 0.433 24.67 mg/L 0.433 1.75 QC value within limits for CA 27.546 Recovery = 9.254 0.0394 1.55 0.027 1.94 1.95 QC value within limits for CA 25.54 Leochlectdi 8/13/2010 6104:27 PM 1.94 1.95 0.137 1.97 Amplet Dr. CCB Mean Corrected Calib Sample Toctaion: 1		limits for Pb	220.353 Recovery =	99.29%				
OC value within limits for Sc 196.026 Rečovery = 99.39%	QC value within	limits for Sb	206.836 Recovery =	: 100.66%				
QC value within limits for Sn 189.927 Recovery = 98.38%	QC value within	limits for Se	196.026 Recovery =	99.39%		-		
OC value within limits for Ti 337.275 Recovery = 99.694 100.000 mg/L 0.0267 2.64 190.801 7716.3 1.005 mg/L 0.0267 2.64 QC value within limits for TI 190.801 Recovery = 100.524 0.0217 2.431 mg/L 0.0277 1.16 QC value within limits for Y 222.402 Recovery = 97.254 0.01396 0.9893 mg/L 0.01396 0.9893 mg/L 0.01396 1.43 QC value within limits for X 202.402 Recovery = 98.734 0.433 24.67 mg/L 0.433 1.75 QC value within limits for Ca 227.546 Recovery = 99.254 0.0394 1.437 QC value within limits for Sr 460.733 Recovery = 99.254 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.254 0.01366 0.0432 1.55 QC value within limits for A 20.000 more analytes were not evaluated. 11 analyte(s) passed QC. One or more analytes were not evaluated. 11 analyte(s) passed QC. One or more analytes were not evaluated. 1.55 QC value within limits for A 328.008 Recovery = Not calcuetds. 0.0133 0.0003 mg/L 0.00033 0.12 11 ution: Sample Prep Vol: 1.007 mg/L 0.00013 0.012 0.12 </td <td></td> <td></td> <td></td> <td></td> <td>4.919</td> <td>mg/L</td> <td>0.0583</td> <td>1.18%</td>					4.919	mg/L	0.0583	1.18%
1 190.8011 7716.3 1.005 mg/L 0.0267 1.005 mg/L 0.0267 2.64 QC value within limits for T1 190.801 Recovery = 97.25% 0.0277 2.431 mg/L 0.0277 1.10 QC value within limits for T202.402 Recovery = 97.25% 0.01396 0.9893 mg/L 0.01396 1.43 QC value within limits for T206.200 Recovery = 97.25% 0.433 24.67 mg/L 0.433 1.75 QC value within limits for C227.546 14100.4 24.67 mg/L 0.433 24.67 mg/L 0.0394 1.55 QC value within limits for S 460.733 Recovery = 99.25% 0.0394 2.481 mg/L 0.0394 1.55 QC value within limits for T2 Data Type: Original nitial Sample V 1.11 1.11 1.12 angle DC CB Date Collected: 8/13/2010 6:04:27 FM Data Type: Original 0.12 1.12 malyst: Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. Ref 0.12 371.029 8789795.8 1.007 mg/L 0.0003 -0.003 mg/L 0.0003 s278.63 372.029 8789795.8 1.007 mg/L 0.0003 0.0006 mg/L 0.0007 92.42	··· - · · · · ·				2.492	mg/L	0.0499	2.00%
2.92.4021 653928.4 2.431 mg/L 0.0277 2.431 mg/L 0.0277 1.12 QC value within limits for 2.92.402 Recovery = 97.25% 0.01396 0.9893 mg/L 0.01396 0.9893 mg/L 0.01396 1.41 QC value within limits for 2.06.200 Recovery = 98.93% 0.433 24.67 mg/L 0.433 1.75 QC value within limits for 2.27.546 Recovery = 99.75% 0.433 2.461 mg/L 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.25% 0.0394 1.481 mg/L 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.25% 0.0394 1.481 mg/L 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.25% 0.0394 1.481 mg/L 0.0394 1.55 I analytet(s) passed QC one or more analytes were not evaluated. 1.111 1.111 1.111 1.111 Sample TCCB Data Type: Original 1.111 1.111 1.111 1.111 Sample Tree Vol: Thitial Sample Vol: 0.1013 0.1023 0.1033 371.029 8789795.6 1.007 mg/L 0.0003 m/L <	N 190.801†	7716.3	1.005 mg/L	0.0267	1.005	mg/L	0.0267	2.66%
n: 206.2001 301362.9 0.9893 mg/L 0.01396 0.9893 mg/L 0.01396 1.41 QC value within limits for 206.200 Recovery = 98.93% 0.433 24.67 mg/L 0.433 1.41 QC value within limits for Ca 227.546 Recovery = 98.70% 0.433 24.67 mg/L 0.433 1.75 QC value within limits for Ca 227.546 Recovery = 99.25% 0.0394 1.55 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.25% 0.0394 1.55 0.0394 1.55 QC value within limits for Sr 460.733 Recovery = 99.25% 0.0394 1.55 0.0394 1.55 Iamalyte(s) passed QC one or more analytes were not evaluated. 0.01396 6.427 PM 1.56 imalyte: Data Type: Original 1.11 <td>292.4021</td> <td>653928.4</td> <td>2.431 mg/L</td> <td>0.0277</td> <td>2.431</td> <td>mg/L</td> <td>0.0277</td> <td>1.14%</td>	292.4021	653928.4	2.431 mg/L	0.0277	2.431	mg/L	0.0277	1.14%
hai 227.5461 14100.4 24.67 mg/L 0.433 24.67 mg/L 0.433 1.75 QC value within limits for C 227.546 Recovery = 98.70% 0.0394 2.481 mg/L 0.0394 2.481 mg/L 0.0394 1.55 QC value within limits for S 460.733 Recovery = 99.25% 0.0394 2.481 mg/L 0.0394 1.55 equence No.: 44 Autosampler Location: 1 1 1.55 ample D: CCB Date Collected: 8/13/2010 6:04:27 PM malyst: Date Collected: 8/13/2010 6:04:27 PM initial Sample Wt: Initial Sample Vol: ilution: Sample Prep Vol: silution: Sample Prep Vol: octal within limits for Ag 328.068 Recovery = Not calculated 0.00083 -0.0003 mg/L 0.00083 278.63 1 308.2151 26.7 0.0006 mg/L 0.00070 0.0005 mg/L 0.00097 156.13 2C value within limits for Ag 328.068 Recovery = Not calculated 0.00007 92.42 0.00070 0.0006 mg/L 0.00070 92.42 QC value within limits for A 188.979 Recovery = Not calculated 0.00021 -0.0314 mg/L 0.00021 1.33 0.00021 1.33 QC value within limits for B 249.772 Recovery = Not calculated 23.5271 -000.1 -0.0028 mg/L 0.00021 -0.0031 mg	In 206.200†	301362.9	0.9893 mg/L	0.01396	0.9893	mg/L	0.01396	1.41%
ir 460.733t 641383.4 2.481 mg/L 0.0394 2.481 mg/L 0.0394 1.55 QC value within limits for 5r 460.733 Recovery = 99.25% 0.0394 1.55 ill analyte(s) passed QC. One or more analytes were not evaluated. 0.0394 1.55 imaple TL: CCB Date Collected: 8/13/2010 6:04:27 PM manyet: Initial Sample Vol: ilution: Sample Prep Vol: ilution: Sample Prep Vol: ilution: Sample Prep Vol: construction: 1.007 mg/L 0.0013 0.023 g 328.0681 -112.4 -0.0003 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.00070 92.42 QC value within limits for As 138.8797 6.4 0.0008 g/L 0.0008 g/L 0.00070 92.42 QC value within limits for B 249.772 r0224.5 -0.034 mg/L 0.00021 -0.0028 mg/L 0.00021 0.00021 1.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00021 1.33 QC value within limits for B 249.772 Recovery = Not calculated 0.000032 1.00004 0.00004 0.00001 mg/L 0.00004 0.00021 <td>a 227.546†</td> <td>14100.4</td> <td>24.67 mg/L</td> <td>0.433</td> <td>24.67</td> <td>mg/L</td> <td>0.433</td> <td>1.75%</td>	a 227.546†	14100.4	24.67 mg/L	0.433	24.67	mg/L	0.433	1.75%
QC value within limits for Sr 460.733 Recovery = 99.25% All analyte(s) passed QC. One or more analytes were not evaluated. Hequence No.: 44 Autosampler Location: 1 ample TD: CCB Date Collected: 8/13/2010 6:04:27 PM nalyst: Data Type: Original initial Sample Wt: Initial Sample Vol: ilution: Sample Prep Vol: istantial Sample Wt: Initial Sample Vol: istantial Sample Vol: 0.0003 mg/L 0.0003 mg/L istantial Sample Vol: 0.0003 mg/L 0.0003 mg/L 0.0008 mg/L istantial Sample Vol: 0.0003 mg/L 0.0003 mg/L 0.0008 mg/L 0.0008 mg/L istantial Sample Vol: 0.0003 mg/L 0.0003 mg/L 0.0008 mg/L 0.0008 mg/L 0.0008 mg/L istantial Sample Vol: 0.0003 mg/L 0.0006 mg/L 0.0007 0.0006 mg/L 0.0008 mg/L 0.0007 istantial Sample Vol: 0.0005 mg/L 0.0007 0.0006 mg/L 0.0007 0.0006 mg/L 0.0007 0.0008 mg/L 0.0007 0.0007 2.42 QC value within limits for As 188.979 Recovery = Not calculated 0.00022 ll.33 8.33 0.00000 mg/L 0.00002 ll.33 0.00002 ll.33 </td <td></td> <td></td> <td></td> <td></td> <td>2.481</td> <td>mg/L</td> <td>0.0394</td> <td>1.59%</td>					2.481	mg/L	0.0394	1.59%
Bequence No.: 44 Autosampler Location: 1 Sequence No.: 44 Date Collected: 8/33/2010 6:04:27 PM Inalyst: Data Type: Original initial Sample Wt: Initial Sample Vol: Simularities Sample Prep Vol: Sequence No.: 44 Mean Corrected Construction Sample Prep Vol: Sequence No.: 44 Mean Corrected Mean Corrected Calib Sample Prep Vol: Sample Sequence Within limits for Ag 328.068 Recovery = Not calculated 1 308.2151 26.7 0.0006 mg/L 0.0008 mg/L 0.0008 g/L QC value within limits for Ag 328.058 Recovery = Not calculated 0.00070 9.0006 mg/L 0.00070 92.42 QC value within limits for B 249.772 Recovery = Not calculated 0.00070 92.42 249.772 -0.0028 mg/L 0.00026 0.0008 g/L 0.00007 92.42 QC value within limits for B 249.772 Recovery = Not calculated 0.00021 0.00004 0.00008 g/L 0.00004 0.00004 99.86 QC value within limits for B 233.527 0.0000 mg/L 0.00004 0.00004 0.00004 10.55 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
Mean Data: CCB Mean Corrected Calib Sample Malyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. Rsf (371.029 8789795.8 1.007 mg/L 0.0013 0.003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0008 mg/L 0.0008 mg/L 0.00097 0.0006 mg/L 0.00097 1.0007 mg/L 0.00097 0.0006 mg/L 0.00097 9.0006 mg/L 0.00097 9.242 QC value within limits for Al 308.215 Recovery = Not calculated 0.00070 92.42 0.00070 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.00021 0.00021 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00032 11.33 QC value within limits for Ba 23.557 Recovery = Not calculated 0.00004 0.00001 9.86 G2 223.527t -1001.1 -0.028 mg/L 0.00004 0.0000 mg/L 0.00004 9.86 G2 228.616t 10.5 0.0000 mg/L 0.000004 0.0000 mg/L 0.00013	All analyte(s) pas Sequence No.: 44 Sample ID; CCB	sed QC. One or	more analytes were : Au Da	not evaluated	ation: 1 8/13/201			
Mean CorrectedCalibSampleAnalyteIntensityConc. UnitsStd.Dev.Conc. UnitsStd.Dev.Nalyte(371.029)8789795.81.007 mg/L0.00130.123Ag 328.068t -112.4 -0.0003 mg/L0.00083 -0.0003 mg/L0.000830.0008Ag 328.068t -112.4 -0.0003 mg/L0.000970.0006 mg/L0.000970.0008Ag 328.068t -112.4 -0.0006 mg/L0.000970.0006 mg/L0.00097156.13QC value withinlimits for Ag 308.215Recovery = Not calculated0.0007092.42Ag 188.979t6.40.0008 mg/L0.000700.0008 mg/L0.00070QC value withinlimits for As 188.979Recovery = Not calculated0.002618.332 249.772t -7224.5 -0.0314 mg/L0.00021 -0.0028 mg/L0.000211.33QC value withinlimits for B 249.772Recovery = Not calculated0.000021.1.33QC value withinlimits for Be 313.107Recovery = Not calculated0.000040.0000 mg/L0.0000426 226.502t10.50.0000 mg/L0.000010.0000 mg/L0.00004161.25QC value withinlimits for Co 228.616 -4.2 0.0001 mg/L0.0001 mg/L0.0001QC value withinlimits for Cr 267.716Recovery = Not calculated0.00071.0.00771.0426 224.502t173.10.0001 mg/L0.00001 mg/L0.000770.00071.0.00771.0426 2	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Enitial Sample Wt:	sed QC. One or	more analytes were : Au Da Da In	not evaluated tosampler Loc. te Collected: ta Type: Orig. itial Sample	ation: 1 8/13/201 inal Vol:			
Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSI (371.029 8789795.8 1.007 mg/L 0.0013 0.0013 0.12 Ag 328.068t -112.4 -0.0003 mg/L 0.0008 g/L 0.0003 mg/L 0.0008 QC value within limits for Ag 328.068 Recovery = Not calculated 0.0006 mg/L 0.00097 0.0006 mg/L 0.00097 156.13 QC value within limits for Al 308.215 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00070 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.000261 -0.0314 mg/L 0.00021 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00032 1.33 0.00021 0.00032 1.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00004 0.00000 mg/L 0.00003 0.00032 1.33 QC value within limits for Ba 313.107 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 0.00004 0.00004 0.00004 1.61.25 QC va	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Enitial Sample Wt:	sed QC. One or	more analytes were : Au Da Da In	not evaluated tosampler Loc. te Collected: ta Type: Orig. itial Sample	ation: 1 8/13/201 inal Vol:			
3/1.029 0/03/05/05.8 1.007 mg/L 0.00013 0.00013 0.0003 mg/L 0.00083 0.00083 0.00083 278.63 Ag 328.068t -112.4 -0.0003 mg/L 0.00097 0.0006 mg/L 0.00097 156.13 QC value within limits for Ag 328.068 Recovery = Not calculated 0.00097 0.0006 mg/L 0.00097 156.13 QC value within limits for Ag 308.215 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00097 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.000261 0.000261 8.33 QC value within limits for Ba 249.772 rc224.5 -0.0124 mg/L 0.00032 -0.0028 mg/L 0.000021 1.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 226.502t 10.5 0.0000 mg/L 0.00004 0.0000 mg/L 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: (nitial Sample Wt: Dilution:	sed QC. One or	more analytes were Au Da Da In Sau	not evaluated tosampler Loc. te Collected: ta Type: Orig. itial Sample ` mple Prep Vol	ation: 1 8/13/201 inal Vol: :	.0 6:04:	27 PM	
QC value within limits for Ag 328.068 Recovery = Not calculated 0.00097 0.0006 mg/L 0.00097 0.0006 mg/L 0.00097 156.13 Al 308.215t 26.7 0.0008 mg/L 0.00097 0.0008 mg/L 0.00097 0.0008 mg/L 0.00097 156.13 QC value within limits for Al 308.215 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00070 0.0008 mg/L 0.00070 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.00261 -0.0314 mg/L 0.00261 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00000 mg/L 0.000032 -0.0028 mg/L 0.00032 11.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00000 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00000 mg/L 0.00001 mg/L 0.00000 mg/L 0.00000 mg/L 0.00000 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.000001 mg/L 0.00001 mg/L 0.00000 mg/L </td <td>All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Gean Data: CCB</td> <td>sed QC. One or</td> <td>more analytes were Au Da Da In Sau Calib Conc. Units</td> <td>not evaluated tosampler Loc. te Collected: ta Type: Orig itial Sample ` mple Prep Vol </td> <td>ation: 1 8/13/201 inal Vol: :</td> <td>.0 6:04:</td> <td>27 PM</td> <td></td>	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Gean Data: CCB	sed QC. One or	more analytes were Au Da Da In Sau Calib Conc. Units	not evaluated tosampler Loc. te Collected: ta Type: Orig itial Sample ` mple Prep Vol 	ation: 1 8/13/201 inal Vol: :	.0 6:04:	27 PM	
Al 308.215f 26.7 0.0006 mg/L 0.00097 0.0006 mg/L 0.00097 156.13 QC value within limits for Al 308.215 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00070 92.42 Al 88.979t 6.4 0.0008 mg/L 0.000261 -0.0314 mg/L 0.000261 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00032 11.33 QC value within limits for B 233.527t -1001.1 -0.0028 mg/L 0.00004 0.0000 mg/L 0.00002 QC value within limits for B 233.527 Recovery = Not calculated 0.00004 0.0000 mg/L 0.000021 1.33 QC value within limits for Be 313.107 Recovery = Not calculated 0.00004 0.00000 mg/L 0.00004 99.86 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00014 0.00014 161.25 QC value within limits for Co 228.616 Recovery = Not calculated 0.00014 0.00014 0.00014 161.25 QC value within limits for Co 228.616 Recovery = Not calculated 0.00004 0.00017 0.00004 0.00004 0.00014 161.25 QC value within limits for Cu 32	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Gean Data: CCB	sed QC. One or	more analytes were Au Da Da In Sau Calib Conc. Units	not evaluated tosampler Loc. te Collected: ta Type: Orig itial Sample ` mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc.	.0 6:04: Sample Units	27 PM Std.Dev	. RSD 0.12%
QC value within limits for Al 308.215 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00070 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.00070 0.0008 mg/L 0.00070 92.42 QC value within limits for As 188.979 Recovery = Not calculated 0.00261 -0.0314 mg/L 0.00261 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00032 -0.0028 mg/L 0.00032 0.00032 11.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 92 value within limits for Be 313.107 Recovery = Not calculated 0.00004 0.00000 mg/L 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00013 0.0001 mg/L 0.00001 d161.25 QC value within limits for Co 228.616 Recovery = Not calculated 0.0001 d161.25 0.0001 d26.36 0.0001 d26.36 Y2 267.716t 18.7 0.0001 mg/L 0.00004 0.0000 mg/L 0.00004 d6.36 Y2 267.716t 18.7 0.0001 mg/L 0.00007 0.0037 mg/L 0.00077 21.04 Y2 27 1736.1 0.0007 mg/L 0.00037 mg/L 0.00077	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Gean Data: CCB Analyte (371.029 Ag 328.068†	<pre>sed QC. One or sector of the sector of</pre>	more analytes were Au Da Da i Conc. Units 1.007 mg/L -0.0003 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig. itial Sample Y mple Prep Vol Std.Dev. 0.0013 0.00083	ation: 1 8/13/201 inal Vol: : Conc.	.0 6:04: Sample Units	27 PM Std.Dev	. RSD 0.12%
QC value within limits for As 188.979 Recovery = Not calculated 0.00261 -0.0314 mg/L 0.00261 8.33 QC value within limits for B 249.772 Recovery = Not calculated 0.00032 -0.0028 mg/L 0.00032 11.33 QC value within limits for Ba 233.5277 -1001.1 -0.0028 mg/L 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 Ye 313.1071 271.3 0.0000 mg/L 0.00004 0.0000 mg/L 0.00004 99.86 Ye value within limits for Be 313.107 Recovery = Not calculated 0.00004 161.25 Ye value within limits for Cd 226.502 Recovery = Not calculated 0.00001 mg/L 0.00013 0.0000 mg/L Ye value within limits for Cd 226.502 Recovery = Not calculated 0.00013 415.16 Ye value within limits for Cc 228.616 Recovery = Not calculated 0.00004 46.36 Ye value within limits for Cr 267.716 Recovery = Not calculated 0.00004 46.36 Ye value within limits for Cu 324.752 Recovery = Not calculated 0.00077 21.04 Ye value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 Ye value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 Ye value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2	All analyte(s) pas Sequence No.: 44 Sample ID: CCB analyst: Chitial Sample Wt: Dilution: Sean Data: CCB Analyte 2 371.029 Ag 328.068† QC value within	<pre>sed QC. One or sector of the sector of</pre>	more analytes were analytes were analytes were analytes were analytes were analytes and analytes analy	not evaluated tosampler Loc te Collected: ta Type: Orig itial Sample ~ mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed	.0 6:04: Sample Units mg/L	27 PM Std.Dev 0.00083	• RSD 0.12% 278.63%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Sean Data: CCB Malyte (371.029 Mg 328.068; QC value within Al 308.215;	<pre>sed QC. One or sector of the sector of</pre>	More analytes were Au Da Da In Sau d Calib Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery =	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample ` mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006	.0 6:04: Sample Units mg/L	27 PM Std.Dev 0.00083	• RSD 0.12% 278.63%
QC value within limits for B 249.772 Recovery = Not calculated 0.00032 -0.0028 mg/L 0.00032 11.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Ba 313.107 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Be 313.107 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00013 0.0000 mg/L 0.00013 415.16 QC value within limits for Co 228.616 Recovery = Not calculated 0.00004 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00001 mg/L 0.00007 0.0037 mg/L QC value within limits for Cu 324.752 Recovery = Not calculated 0.00007 0.0037 mg/L 0.00007 21.04 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 120.15 204.85 Ye value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 Ye value within limits for Fe 238.863 Recovery = Not ca	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Sean Data: CCB Analyte (2 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979;	sed QC. One or Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4	more analytes were Au Da Da In Sau d Calib Conc. Units 1.007 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample T mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008	.0 6:04: Sample Units mg/L mg/L	27 PM Std.Dev 0.00083 0.00097	RSD 0.12% 278.63% 156.13%
Ja 233.527t -1001.1 -0.0028 mg/L 0.00032 -0.0028 mg/L 0.00032 11.33 QC value within limits for Ba 233.527 Recovery = Not calculated 0.0000 mg/L 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Be 313.107 Recovery = Not calculated 0.00000 mg/L 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Be 313.107 Recovery = Not calculated 0.00000 mg/L 0.00000 mg/L 0.00004 0.0000 mg/L 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00001 mg/L 0.00013 0.00001 mg/L 0.00004 161.25 QC value within limits for Co 228.616 Recovery = Not calculated 0.00004 0.0001 mg/L 0.00004 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00077 0.0037 mg/L 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value w	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Sean Data: CCB Analyte (2 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within	<pre>sed QC. One or sector of the sector of</pre>	more analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes were analytes	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample T mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed	.0 6:04: Sample Units mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070	RSD 0.12% 278.63% 156.13% 92.42%
Me 313.107t 271.3 0.0000 mg/L 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Be 313.107 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 99.86 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00004 0.0000 mg/L 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00013 0.00001 mg/L 0.00013 151.16 QC value within limits for Co 228.616 Recovery = Not calculated 0.00004 0.00014 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00004 0.00077 0.00077 0.00077 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.8	All analyte(s) pas Sequence No.: 44 Sample ID: CCB analyst: Conitial Sample Wt: Dilution: Sean Data: CCB analyte C 371.029 Ag 328.0684 QC value within Al 308.2154 QC value within S 188.9794 QC value within S 249.7724	<pre>sed QC. One or sector of the sector of</pre>	more analytes were : Au Da Da In Sau d Calib Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L	not evaluated tosampler Loc te Collected: ta Type: Orig itial Sample T mple Prep Vol Std.Dev. 0.0013 0.00083 Not calculate 0.00097 Not calculate 0.0070 Not calculate 0.00261	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314	.0 6:04: Sample Units mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070	RSD 0.12% 278.63% 156.13% 92.42%
d 226.502; 10.5 0.0000 mg/L 0.00004 0.0000 mg/L 0.00004 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00013 0.0000 mg/L 0.00013 161.25 QC value within limits for Cd 226.502 Recovery = Not calculated 0.00013 0.0000 mg/L 0.00013 415.16 QC value within limits for Co 228.616 Recovery = Not calculated 0.00014 0.00014 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00077 0.00077 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.271 404.721t 58.7 120.15 204.85 Unable to evaluate QC. 120.15 204.85	All analyte(s) pas dequence No.: 44 ample ID: CCB nalyst: nitial Sample Wt: dilution: dean Data: CCB nalyte 371.029 g 328.068t QC value within 1 308.215t QC value within s 188.979t QC value within 249.772t QC value within a 233.527t	<pre>sed QC. One or Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for B 2 -1001.1</pre>	more analytes were : Au Da Da Da In Sau d Calib Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L 249.772 Recovery = 1 -0.0028 mg/L	not evaluated tosampler Loc te Collected: ta Type: Orig itial Sample T mple Prep Vol Std.Dev. 0.0013 0.00083 Not calculate 0.00097 Not calculate 0.00261 Not calculate 0.00032	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028	.0 6:04: Sample Units mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.00261	RSD 0.12% 278.63% 156.13% 92.42% 8.33%
b 228.616f -4.2 0.0000 mg/L 0.00013 0.0000 mg/L 0.00013 415.16 QC value within limits for Co 228.616 Recovery = Not calculated 0.0001 mg/L 0.00004 0.0001 mg/L 0.00004 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00077 0.00077 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 0.0308 mg/L 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 Unable to evaluate QC. Value QC Value Within limits for Fe 238.863 Recovery = Not calculated 120.15	All analyte(s) pas dequence No.: 44 cample ID: CCB malyst: mitial Sample Wt: dilution: Mean Data: CCB malyte 371.029 g 328.068; QC value within 1 308.215; QC value within 1 308.215; QC value within 249.772; QC value within a 233.527; QC value within a 233.527; QC value within a 313.107;	<pre>Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for B 2 -1001.1 limits for Ba 271.3</pre>	More analytes were Au Da Da In Sat Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L 249.772 Recovery = 1 -0.0028 mg/L 233.527 Recovery = 0.0000 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample ' mple Prep Vol 	ation: 1 8/13/201 inal Vol: Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028 ed 0.0008	Sample Units mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.00261 0.00032	RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33%
r 267.716† 18.7 0.0001 mg/L 0.00004 0.0001 mg/L 0.00004 46.36 QC value within limits for Cr 267.716 Recovery = Not calculated 0.00077 0.0037 mg/L 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.00084 0.00084 2.00084 2.00084 2.00084 2.00084 2.00084 2.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 2.71 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 Unable to evaluate QC. 120.15 204.85	All analyte(s) pas dequence No.: 44 dequence No.: 44 dequence ID: CCB analyst: initial Sample Wt: detail Sample Wt: dution: Mean Data: CCB analyte '371.029 og 328.068† QC value within 1 308.215† QC value within 1 308.215† QC value within 249.772† QC value within a 233.527† QC value within a 313.107† QC value within d 226.502†	<pre>sed QC. One or second provide a corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Ag 26.7 limits for AI 6.4 limits for As -7224.5 limits for B2 -1001.1 limits for Ba 271.3 limits for Be 10.5</pre>	More analytes were Au Da Da Da In Sau Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L 249.772 Recovery = 1 -0.0028 mg/L 233.527 Recovery = 0.0000 mg/L 313.107 Recovery = 0.0000 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample ` mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028 ed 0.0000 ed 0.0000	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00032 0.00004	 RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86%
QC value within limits for Cr 267.716 Recovery = Not calculated u 324.752† 1736.1 0.0037 mg/L 0.00077 0.0037 mg/L 0.00077 21.04 QC value within limits for Cu 324.752 Recovery = Not calculated 0.00084 0.00084 0.00084 2.00084 2.00084 2.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 0.00084 2.71 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 Unable to evaluate QC. 120.15 204.85	All analyte(s) pas Sequence No.: 44 Sample ID: CCB analyst: Conitial Sample Wt: Dilution: Mean Data: CCB analyte 2 371.029 Mg 328.068t QC value within Al 308.215t QC value within S 188.979t QC value within S 249.772t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 233.527t QC value within Mg 226.502t QC value within Mg 228.616t	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for Ba 271.3 limits for Ba 271.3 limits for Cd -4.2	more analytes were Au Da Da In Sau d Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L 249.772 Recovery = -0.0028 mg/L 23.527 Recovery = 0.0000 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0000 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig; itial Sample T mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028 ed 0.0000 ed 0.0000 ed 0.0000	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00032 0.00004 0.00004	RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86% 161.25%
QC value within limits for Cu 324.752 Recovery = Not calculated 'e 238.863† 1865.5 0.0308 mg/L 0.00084 0.0308 mg/L 0.00084 2.71 QC value within limits for Fe 238.863 Recovery = Not calculated 120.15 204.85 Unable to evaluate QC. Unable to evaluate QC. 120.15 204.85	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Sean Data: CCB Analyte 2 371.029 Mg 328.068t QC value within M 308.215t QC value within M 308.215t QC value within M 308.215t QC value within M 3249.772t QC value within M 223.527t QC value within M 226.502t QC value within M 228.616t QC value within	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for Ba 271.3 limits for Ba 271.3 limits for Co limits for Cd -4.2 limits for Co	more analytes were Au Da Da In Sau d Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = -0.0314 mg/L 249.772 Recovery = -0.0028 mg/L 233.527 Recovery = 0.0000 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0000 mg/L 228.616 Recovery =	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample Tep mple Prep Vol 	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028 ed 0.0000 ed 0.0000 ed 0.0000 ed 0.0000 ed	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.00261 0.00032 0.00004 0.00004 0.00004 0.00013	RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86% 161.25% 415.16%
QC value within limits for Fe 238.863 Recovery = Not calculated 404.721† 58.7 120.15 204.85 Unable to evaluate QC.	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Sean Data: CCB Analyte 2 371.029 Ag 328.068t QC value within Al 308.215t QC value within Al 308.215t QC value within Al 308.215t QC value within Al 323.527t QC value within Al 223.527t QC value within Al 226.502t QC value within Cl 228.616t QC value within Cl 228.616t QC value within Al 226.7716t QC value within Al 226.716t QC value within Al 226.716t QC value within Al 226.716t QC value within Al 226.716t Al 226.01000 Al	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for Ba 271.3 limits for Ba 271.3 limits for Ba 10.5 limits for Cd -4.2 limits for Co 18.7 limits for Cr	more analytes were Au Da Da Da Da In Sa Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 38.979 Recovery = -0.0314 mg/L 249.772 Recovery = -0.0028 mg/L 233.527 Recovery = 0.0000 mg/L 313.107 Recovery = 0.0000 mg/L 213.107 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0001 mg/L 267.716 Recovery =	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample Tep Vol Std.Dev. 0.0013 0.00083 Not calculate 0.00097 Not calculate 0.00070 Not calculate 0.00032 Not calculate 0.00004 Not calculate 0.00004 Not calculate 0.00013 Not calculate 0.00013 Not calculate 0.00013 Not calculate 0.00014 Not calculate 0.00013 Not calculate 0.00014 Not calculate 0.00014 Not calculate 0.00014 Not calculate	ation: 1 8/13/201 inal Vol: Conc. -0.0003 ed 0.0006 ed 0.0008 ed 0.0008 ed 0.0008 ed 0.0008 ed 0.00000 ed 0.0000 ed 0.0000 ed 0.00000 ed	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00004 0.00004 0.00004 0.00013 0.00004	RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86% 161.25% 415.16% 46.36%
Unable to evaluate QC.	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Malyst: Initial Sample Wt: Dilution: Sean Data: CCB Malyte (371.029 Mg 328.068; QC value within M 308.215; QC value within M 308.215; QC value within M 249.772; QC value within M 249.772; QC value within M 226.502; QC value within M 228.616; QC value within M 228.616; QC value within M 228.616; QC value within M 228.616; QC value within M 228.616; QC value within M 228.616; QC value within M 228.616; QC value within M 244.752; QC value within	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Ag 26.7 limits for Al 6.4 limits for As -7224.5 limits for B2 -1001.1 limits for B2 101.1 limits for Ba 271.3 limits for Ba 10.5 limits for Cd -4.2 limits for Cd 18.7 limits for Cd 1736.1 limits for Cu	More analytes were Au Da Da Da In Sau Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0001 mg/L 267.716 Recovery = 0.0037 mg/L 324.752 Recovery =	not evaluated tosampler Loc. te Collected: ta Type: Orig; itial Sample Yol Std.Dev. 0.0013 0.00083 Not calculate 0.00097 Not calculate 0.00261 Not calculate 0.0004 Not calculate 0.0004 Not calculate 0.0004 Not calculate 0.00013 Not calculate 0.00014 Not calculate 0.00013 Not calculate 0.00013 Not calculate 0.00014 Not calculate 0.00017 Not calculate	ation: 1 8/13/201 inal Vol: : Conc. -0.0003 ed 0.0006 ed 0.0008 ed -0.0314 d -0.0028 ed 0.0000 ed 0.0000 ed 0.0000 ed 0.0000 ed 0.0000 ed 0.0001 ed 0.0037 ed	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004	RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86% 161.25% 415.16% 46.36% 21.04%
	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: (nitial Sample Wt: Dilution: Gean Data: CCB Analyte (371.029 Ag 328.068t QC value within Al 308.215t QC value within Al 308.215t QC value within As 188.979t QC value within As 249.772t QC value within Ba 233.527t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.863t QC value within	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Ag 26.7 limits for A 6.4 limits for A -7224.5 limits for B 271.3 limits for B 271.3 limits for B 271.3 limits for B 271.3 limits for B 271.3 limits for Cd -4.2 limits for Cd -4.2 limits for Cd 1736.1 limits for Cu 1865.5 limits for Fe	more analytes were : Au Da Da Da In Sau Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0001 mg/L 267.716 Recovery = 0.0037 mg/L 324.752 Recovery = 0.0308 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample Tep mple Prep Vol 	ation: 1 8/13/201 inal Vol:	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004	 RSD 0.12% 278.63% 156.13% 92.42% 8.33% 11.33% 99.86% 161.25% 415.16% 46.36% 21.04% 2.71%
	All analyte(s) pas Sequence No.: 44 Sample ID: CCB Analyst: Cnitial Sample Wt: Dilution: Sean Data: CCB Analyte (371.029 Ag 328.068t QC value within Al 308.215t QC value within Al 308.215t QC value within As 188.979t QC value within As 188.979t QC value within As 133.527t QC value within Co 249.772t QC value within Co 249.772t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.616t QC value within Co 228.63t QC value within Co 238.863t QC value within Co 240.721t	Mean Corrected Intensity 8789795.8 -112.4 limits for Ag 26.7 limits for Ag 26.7 limits for A 6.4 limits for A -7224.5 limits for Ba 271.3 limits for Ba 271.3 limits for Ba 271.3 limits for Ba 10.5 limits for Cd -4.2 limits for Cd 1736.1 limits for Cu 1865.5 limits for Fe 58.7	more analytes were : Au Da Da Da In Sau Conc. Units 1.007 mg/L -0.0003 mg/L 328.068 Recovery = 0.0006 mg/L 308.215 Recovery = 0.0008 mg/L 188.979 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0008 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 233.527 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0001 mg/L 267.716 Recovery = 0.0037 mg/L 324.752 Recovery = 0.0308 mg/L	not evaluated tosampler Loc. te Collected: ta Type: Orig: itial Sample Tep mple Prep Vol 	ation: 1 8/13/201 inal Vol:	.0 6:04: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	27 PM Std.Dev 0.00083 0.00097 0.00070 0.000261 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004	RSD 0.12* 278.63* 156.13* 92.42* 8.33* 11.33* 99.86* 161.25* 415.16* 46.36* 21.04* 2.71*

Page 31

Date: 8/13/2010 6:13:35 PM

QC value within limits for Pb 220.353 Recovery = Not calculated 0.0004 0.0009 mg/L 0.0004 Sb 206.8361 5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836 Recovery = Not calculated 0.00096 -0.0013 mg/L 0.00096 QC value within limits for Se 196.026 Recovery = Not calculated 0.00096 -0.0013 mg/L 0.00096 QC value within limits for Se 196.026 Recovery = Not calculated 0.00096 0.0072 mg/L 0.00096 QC value within limits for Sn 189.927 Recovery = Not calculated 0.00090 0.0072 mg/L 0.00096 QC value within limits for Sn 189.927 Recovery = Not calculated 0.00003 mg/L 0.00007 QC value within limits for Ti 337.279 Recovery = Not calculated 0.00007 0.0011 mg/L 0.00077 QC value within limits for Tl 190.801 Recovery = Not calculated 0.00007 0.0004 mg/L 0.00007 V 292.402t 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.00007 QC value within limits for V 292.402 Recovery = Not calculated 0.00007 mg/L 0.00007 mg/L 0.00007 mg/L V 292.402t 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.00007 mg/L QC value within limits for V 292.402 Recovery = Not calculated 0.00007 mg/L 0.00007 mg/L 0.00007 mg/L QC value within limits for Zn 206.200 Recovery = Not calculated 0.00007 mg/L 0.00007 mg/L 0.00007 mg/L	 49.214 10.405 76.874 60.954 44.304 73.054 12.554 5.748 69.178 8.908
QC value within limits for Mn 257.610Recovery = Not calculated0.000480.0010 mg/L0.00048MO 202.031t51.80.0010 mg/L0.000480.0010 mg/L0.0004QC value within limits for MO 202.031Recovery = Not calculated0.00010.0001QC value within limits for Ni 231.604Recovery = Not calculated0.00010.0001QC value within limits for Na 330.237 -243.9 -0.1337 mg/L 0.10275 -0.1337 mg/L 0.1027 QC value within limits for Na 330.237Recovery = Not calculated0.0009mg/L 0.00055 0.0009 mg/L 0.0009 QC value within limits for Pb 220.353Recovery = Not calculated0.0004 0.0009 mg/L 0.0009 0.0009 QC value within limits for Sb 206.836Recovery = Not calculated 0.0009 0.0009 0.0009 0.0009 QC value within limits for Se 196.026Recovery = Not calculated 0.0009 0.0009 0.0009 0.0009 QC value within limits for Sn 189.927Recovery = Not calculated 0.0009 0.0002 0.0009 QC value within limits for Ti 337.279Recovery = Not calculated 0.00002 0.0003 0.0002 TI 190.801t8.6 0.0001 mg/L 0.0003 0.0004 mg/L 0.00002 QC value within limits for T1 190.801Recovery = Not calculated 0.0002 0.0004 mg/LQC value within limits for Z1 206.200Recovery = Not calculated 0.0002 0.0002 mg/LQC value within limits for Z2 20.000 Recovery = Not calculated 0.0002	 49.214 10.405 76.874 60.954 44.304 73.054 12.554 5.748 69.178 8.908
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 10.409 5 76.879 5 60.959 0 44.309 6 73.059 0 12.559 1 5.748 7 69.178 3 8.908
QC value within limits for Mo 202.031 Recovery = Not calculated0.000020.0001 mg/L0.00002QC value within limits for Ni 231.604 Recovery = Not calculated0.00010.00010.0001Na 330.237t -243.9 -0.1337 mg/L 0.10275 -0.1337 mg/L 0.1027 QC value within limits for Na 330.237 Recovery = Not calculated0.0009 mg/L 0.00055 0.0009 mg/L 0.0009 QC value within limits for Pb 220.353Recovery = Not calculated 0.0009 mg/L 0.0009 0.0009 mg/L 0.0009 QC value within limits for Sb 206.836 Recovery = Not calculated 0.0009 mg/L 0.0009 0.0009 mg/L 0.0009 QC value within limits for Sb 206.836 Recovery = Not calculated 0.00096 -0.0013 mg/L 0.00096 QC value within limits for Sh 196.026 Recovery = Not calculated 0.00096 0.0072 mg/L 0.00096 QC value within limits for Sn 189.927 Recovery = Not calculated 0.00096 0.0072 mg/L 0.00096 CV alue within limits for Ti 337.279 Recovery = Not calculated 0.00072 mg/L 0.00072 CV alue within limits for Ti 190.801 Recovery = Not calculated 0.00074 0.00076 CV alue within limits for V 292.402 Recovery = Not calculated 0.00004 0.0004 CV alue within limits for V 292.402 Recovery = Not calculated 0.00004 0.00004 CV alue within limits for X 202.402 Recovery = Not calculated 0.00064 0.00064 CV alue within limits for X 202.402 Recovery = Not calculated 0.00064 0.00064 CV alue within limits for Ca 227.546	2 10.409 5 76.879 5 60.959 0 44.309 6 73.059 0 12.559 1 5.748 7 69.178 3 8.908
Ni 231.604† 22.0 0.0001 mg/L 0.0002 0.0001 mg/L 0.00002 QC value within limits for Ni 231.604 Recovery = Not calculated Na 330.237† -243.9 -0.1337 mg/L 0.10275 -0.1337 mg/L 0.1027 QC value within limits for Na 330.237 Recovery = Not calculated Pb 220.353† 25.0 0.0009 mg/L 0.00055 0.0009 mg/L 0.0005 QC value within limits for Pb 220.353 Recovery = Not calculated Pb 206.836† 5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836 Recovery = Not calculated Pb 206.836† -7.7 -0.0013 mg/L 0.00096 -0.0013 mg/L 0.0009 QC value within limits for Se 196.026 Recovery = Not calculated Pb 227.8 0.0072 mg/L 0.00090 0.0072 mg/L 0.0009 QC value within limits for Sn 189.927 Recovery = Not calculated Pi 337.279† 130.3 0.0003 mg/L 0.00001 0.0003 mg/L 0.0009 QC value within limits for Ti 337.279 Recovery = Not calculated Pi 337.279† 102.6 0.0011 mg/L 0.00077 0.0011 mg/L 0.0007 QC value within limits for Ti 190.801 Recovery = Not calculated Pi 22.402† 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.0007 QC value within limits for Ti 20.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.0007 QC value within limits for X 292.402 Recovery = Not calculated Pi 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0007 QC value within limits for Z 200. Recovery = Not calculated Pi 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0007 QC value within limits for Z 200. Recovery = Not calculated Pi 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0007 QC value within limits for Z 200. Recovery = Not calculated Pi 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0007 QC value within limits for Z 206.200 Recovery = Not calculated Pi 206.200† 75.7 0.0002 mg/L 0.00002 0.0007 mg/L 0.0007 QC value within limits for Z 206.200 Recovery = Not calculated Pi 206.200† 75.7 0.0007 mg/L 0.00079 mg/L 0.0007 QC value within limits for Z 206.200 Recovery = Not calculated Pi 206.200† 75.7 0.00079 mg/L 0.00079 mg/L 0.0007 Pi value within limits for Z 206.200 Recovery = Not calculated Pi 200.0007 mg/L 0.00079 mg/L 0.0007	 76.879 60.959 44.309 73.059 12.559 5.749 69.179 8.909
QC value within limits for Ni231.604Recovery = Not calculated0.10275-0.1337 mg/L0.1027QC value within limits for Na330.237Recovery = Not calculated0.10275-0.1337 mg/L0.1027QC value within limits for Na330.237Recovery = Not calculated0.0009 mg/L0.00090.0009QC value within limits for Pb220.353Recovery = Not calculated0.00090.00090.0009QC value within limits for Sb206.836Recovery = Not calculated0.00090.00090.0009QC value within limits for Sb206.836Recovery = Not calculated0.00090.00090.0009QC value within limits for Sc196.026Recovery = Not calculated0.00090.00090.0009QC value within limits for Sn189.927Recovery = Not calculated0.00090.00090.0009QC value within limits for Ti337.279Recovery = Not calculated0.00000.00010.00030.0007QC value within limits for Ti337.279Recovery = Not calculated0.00070.00010.00010.0007QC value within limits for Ti190.801Recovery = Not calculated0.00070.00040.0007QC value within limits for V292.402Recovery = Not calculated0.000020.00020.0007QC value within limits for V292.402Recovery = Not calculated0.000020.00020.0007QC value within limits for Xn206.200Recovery = Not calculated0.000020.000020.0007 <td> 76.879 60.959 44.309 73.059 12.559 5.749 69.179 8.909 </td>	 76.879 60.959 44.309 73.059 12.559 5.749 69.179 8.909
a 330.237 t -243.9 -0.1337 mg/L 0.10275 -0.1337 mg/L 0.1027 QC value within limits for Na 330.237 Recovery = Not calculated b 220.353 t 25.0 0.0009 mg/L 0.00055 0.0009 mg/L 0.0005 QC value within limits for Pb 220.353 Recovery = Not calculated b 206.836 t 5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836 Recovery = Not calculated e 196.026 t -7.7 -0.0013 mg/L 0.00096 -0.0013 mg/L 0.0009 QC value within limits for Se 196.026 Recovery = Not calculated n 189.927 t 217.8 0.0072 mg/L 0.00090 0.0072 mg/L 0.0009 QC value within limits for Sn 189.927 Recovery = Not calculated i 337.279 t 130.3 0.0003 mg/L 0.00001 0.0003 mg/L 0.00001 QC value within limits for Ti 337.279 Recovery = Not calculated 1 90.801t 8.6 0.0011 mg/L 0.00077 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 292.402t 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.00007 QC value within limits for V 292.402 Recovery = Not calculated n $206.200t$ 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.00002 QC value within limits for Zn 206.200 Recovery = Not calculated a $227.546t$ -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.07194	 5 60.95% 0 44.30% 6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
QC value within limits for Na 330.237Recovery = Not calculatedNot calculatedb 220.353t25.0 0.0009 mg/L 0.00055 0.0009 mg/L 0.0009 mg/L QC value within limits for Pb 220.353Recovery = Not calculated 0.0009 mg/L 0.0009 mg/L 0.0009 mg/L 206.836t5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836Recovery = Not calculated 0.0009 mg/L 0.0009 mg/L QC value within limits for Sb 196.026Recovery = Not calculated 0.0009 mg/L 0.0009 mg/L QC value within limits for Se 196.026Recovery = Not calculated 0.0009 mg/L 0.0009 mg/L QC value within limits for Sn 189.927Recovery = Not calculated 0.0003 mg/L 0.0000 mg/L QC value within limits for Ti 337.279Recovery = Not calculated 0.0001 mg/L 0.0007 mg/L QC value within limits for Tl 190.801Recovery = Not calculated 0.0001 mg/L 0.0007 mg/L QC value within limits for V 292.402Recovery = Not calculated 0.0002 mg/L 0.0000 mg/L QC value within limits for Zn 206.200Recovery = Not calculated 0.0002 mg/L 0.0000 mg/L QC value within limits for Zn 206.200 Recovery = Not calculated 0.0002 mg/L 0.0000 mg/L QC value within limits for Zn 206.200 Recovery = Not calculated 0.0010 mg/L 0.0010 mg/L QC value within limits for Ca 227.546 Recovery = Not calculated $0.07194 -0.0079 mg/$	 5 60.95% 0 44.30% 6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
b 220.353† 25.0 0.0009 mg/L 0.00055 0.0009 mg/L 0.0005 QC value within limits for Pb 220.353 Recovery = Not calculated 5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836 Recovery = Not calculated 0.00096 -0.0013 mg/L 0.0004 QC value within limits for Sb 196.026 Recovery = Not calculated -7.7 -0.0013 mg/L 0.00096 -0.0013 mg/L 0.0009 QC value within limits for Se 196.026 Recovery = Not calculated 0.00090 0.0072 mg/L 0.0009 QC value within limits for Sn 189.927 Recovery = Not calculated 0.0001 0.0003 mg/L 0.0000 QC value within limits for Ti 337.279 Recovery = Not calculated 0.0007 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 0.0004 mg/L 0.00002 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.0002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.0002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.0002 0.0002 mg/L 0.00002 QC val	 0 44.30% 6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
QC value within limits for Pb 220.353 Recovery = Not calculated0.0004b 206.836t5.20.0009 mg/L0.000400.0009 mg/L0.0004QC value within limits for Sb 206.836 Recovery = Not calculated-7.7 $-0.0013 mg/L$ 0.00096 $-0.0013 mg/L$ 0.0009QC value within limits for Se 196.026 Recovery = Not calculatedn 189.927t217.80.0072 mg/L0.000900.0072 mg/L0.0009QC value within limits for Sn 189.927 Recovery = Not calculated130.30.0003 mg/L0.000010.0003 mg/L0.0000QC value within limits for Ti 337.279 Recovery = Not calculated190.801t8.60.0011 mg/L0.000770.0011 mg/L0.0007QC value within limits for Tl 190.801 Recovery = Not calculated0.0004 mg/L0.00020.0004 mg/L0.0007QC value within limits for V 292.402 Recovery = Not calculated0.0002 mg/L0.00070.00020.0007QC value within limits for Zn 206.200 rg.70.0002 mg/L0.0002 mg/L0.0007QC value within limits for Zn 206.200 Recovery = Not calculated0.0002 mg/L0.00070.0007QC value within limits for Zn 206.200 Recovery = Not calculated0.0002 mg/L0.00070.0007QC value within limits for Zn 206.200 Recovery = Not calculated0.00070.00070.0007QC value within limits for Zn 206.200 Recovery = Not calculated0.00070.00070.0007QC value within limits for Ca 227.546 Recovery = Not calculated0.07194-0.0079 mg/L0.0719QC value within limits for Ca 227.546 Recovery = Not calculat	 0 44.30% 6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
b 206.836t 5.2 0.0009 mg/L 0.00040 0.0009 mg/L 0.0004 QC value within limits for Sb 206.836 Recovery = Not calculated 0.0009 0.0009 0.0009 QC value within limits for Sb 196.026 Recovery = Not calculated 0.00096 -0.0013 mg/L 0.0009 QC value within limits for Se 196.026 Recovery = Not calculated 0.00090 0.0072 mg/L 0.0009 QC value within limits for Sn 189.927 Recovery = Not calculated 0.0009 0.0003 mg/L 0.0009 QC value within limits for Ti 337.279 Recovery = Not calculated 0.0007 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 0.00004 0.0004 0.0007 QC value within limits for V 292.402 Recovery = Not calculated 0.00004 0.00002 0.00004 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 0.00002 0.00002 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 0.00002 0.00002 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 0.00002 0.00002 QC value within limits for	6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
QC value within limits for Sb 206.836 Recovery = Not calculated0.00096-0.0013 mg/L0.00096e 196.026†-7.7-0.0013 mg/L0.00096-0.0013 mg/L0.00096QC value within limits for Se 196.026 Recovery = Not calculated189.9271217.80.0072 mg/L0.000900.0072 mg/L0.00096QC value within limits for Sn 189.927 Recovery = Not calculated130.30.0003 mg/L0.000010.0003 mg/L0.0006QC value within limits for Ti 337.279 Recovery = Not calculated10.00010.00010.00010.0007QC value within limits for Ti 137.279 Recovery = Not calculated0.00070.0011 mg/L0.0007QC value within limits for Tl 190.801 Recovery = Not calculated0.0004 mg/L0.0007QC value within limits for Tl 190.801 Recovery = Not calculated0.0004 mg/L0.0006292.402t102.60.0004 mg/L0.000030.0004 mg/LQC value within limits for V 292.402 Recovery = Not calculated0.00020.0002 mg/L0.000275.70.0002 mg/L0.00020.0006QC value within limits for Zn 206.200 Recovery = Not calculated0.00060.0006a 227.546t-5.5-0.0079 mg/L0.07194-0.0079 mg/L0.0719QC value within limits for Ca 227.546Recovery = Not calculated0.07190.0719	6 73.05% 0 12.55% 1 5.74% 7 69.17% 3 8.90%
QC value within limits for Se 196.026 Recovery = Not calculated0.0072 mg/L0.0009n 189.927t217.80.0072 mg/L0.000900.0072 mg/L0.0009QC value within limits for Sn 189.927 Recovery = Not calculated0.0003 mg/L0.00000.0003 mg/L0.0000QC value within limits for Ti 337.279 Recovery = Not calculated0.00010.0003 mg/L0.00070.0001QC value within limits for Ti 337.279 Recovery = Not calculated0.00070.0011 mg/L0.0007QC value within limits for Tl 190.801 Recovery = Not calculated0.00070.0001 mg/L0.0007QC value within limits for V 292.402 Recovery = Not calculated0.0002 mg/L0.0000QC value within limits for V 292.402 Recovery = Not calculated0.0002 mg/L0.0000n 206.200t75.70.0002 mg/L0.0002 mg/L0.0000QC value within limits for Zn 206.200 Recovery = Not calculated0.0002 mg/L0.0000a 227.546t-5.5-0.0079 mg/L0.07194-0.0079 mg/L0.0719QC value within limits for Ca 227.546 Recovery = Not calculated0.07194-0.0079 mg/L0.0719	0 12.55% 1 5.74% 7 69.17% 3 8.90%
QC value within limits for Se 196.026 Recovery = Not calculated0.0072 mg/L0.0009n 189.927t217.80.0072 mg/L0.000900.0072 mg/L0.0009QC value within limits for Sn 189.927 Recovery = Not calculated0.0003 mg/L0.00000.0003 mg/L0.0000i 337.279t130.30.0003 mg/L0.000010.0003 mg/L0.0000QC value within limits for Ti 337.279 Recovery = Not calculated0.00070.0011 mg/L0.0007QC value within limits for Ti 190.801 Recovery = Not calculated0.00010.0004 mg/L0.0007QC value within limits for Tl 190.801 Recovery = Not calculated0.00004 mg/L0.00004292.402t102.60.0004 mg/L0.000030.0004 mg/L0.00004QC value within limits for V 292.402 Recovery = Not calculated0.0002 mg/L0.000040.00004n 206.200t75.70.0002 mg/L0.0002 mg/L0.000040.00004a 227.546t-5.5-0.0079 mg/L0.07194-0.0079 mg/L0.07194QC value within limits for Ca 227.546 Recovery = Not calculated0.07194-0.0079 mg/L0.07194	1 5.748 7 69.178 3 8.908
QC value within limits for Sn 189.927 Recovery = Not calculated 0.0003 mg/L 0.00001 0.0003 mg/L 0.00001 QC value within limits for Ti 337.279 Recovery = Not calculated 1.0.0001 0.0001 mg/L 0.0007 QC value within limits for Ti 337.279 Recovery = Not calculated 0.0001 mg/L 0.0007 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 0.0004 mg/L 0.00003 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.0000 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.00002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 mg/L 0.00002 a 227.546t -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.07195 QC value within limits for Ca 227.546 Recovery = Not calculated -0.0719 mg/L 0.07195 0.07195	1 5.748 7 69.178 3 8.908
i 337.279t 130.3 0.0003 mg/L 0.00001 0.0003 mg/L 0.0000 QC value within limits for Ti 337.279 Recovery = Not calculated 0.0001 0.0001 mg/L 0.0007 1 190.801t 8.6 0.0011 mg/L 0.00077 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 0.0004 mg/L 0.00003 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 0.0002 mg/L 0.0000 a 227.546t -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.0719	7 69.17% 3 8.90%
QC value within limits for Ti 337.279 Recovery = Not calculated 0.0001 mg/L 0.0007 0.0011 mg/L 0.0007 1 190.801t 8.6 0.0011 mg/L 0.00077 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 0.0004 mg/L 0.0003 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.0000 0.0000 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 mg/L 0.0000 0.0000 a 227.546t -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.0719	7 69.17% 3 8.90%
1 190.801† 8.6 0.0011 mg/L 0.00077 0.0011 mg/L 0.0007 QC value within limits for Tl 190.801 Recovery = Not calculated 292.402t 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.00002 mg/L 0.0000 n 206.200t 75.7 0.0002 mg/L 0.00002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.00002 0.0017 mg/L 0.00002 a 227.546t -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.07195 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07195	3 8.90%
QC value within limits for Tl 190.801 Recovery = Not calculated 0.0004 mg/L 0.0000 292.402t 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.0002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.0002 mg/L 0.0000 0.0002 QC value within limits for Zn 206.200 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.0719	3 8.90%
292.402† 102.6 0.0004 mg/L 0.00003 0.0004 mg/L 0.0000 QC value within limits for V 292.402 Recovery = Not calculated 0.0002 mg/L 0.00002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.0002 mg/L 0.00002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07194 0.07194	
QC value within limits for V 292.402 Recovery = Not calculated 1 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.007194 -0.0079 mg/L 0.07194 A 227.546† -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.07195 QC value within limits for Ca 227.546 Recovery = Not calculated 0.07194 -0.0079 mg/L 0.07195	
1 206.200† 75.7 0.0002 mg/L 0.00002 0.0002 mg/L 0.0000 QC value within limits for Zn 206.200 Recovery = Not calculated 0.007194 0.0079 mg/L 0.07194 QC value within limits for Ca 227.546 -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.07195 QC value within limits for Ca 227.546 Recovery = Not calculated Not calculated 0.07195	2 9.46%
QC value within limits for Zn 206.200 Recovery = Not calculated 227.546† -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated	2 9.403
227.546t -5.5 -0.0079 mg/L 0.07194 -0.0079 mg/L 0.0719 QC value within limits for Ca 227.546 Recovery = Not calculated	
QC value within limits for Ca 227.546 Recovery = Not calculated	4 907.03%
-460.733t -8.6 0.0000 mg/T 0.00051 0.0000 mg/T 0.0005	
	1 >999.9%
QC value within limits for Sr 460.733 Recovery = Not calculated	
ll analyte(s) passed QC. One or more analytes were not evaluated.	
ilution: Sample Prep Vol:	
lean Data: MRL	
Mean Corrected Calib Sample	
nalyte Intensity Conc. Units Std.Dev. Conc. Units Std.De	
371.029 8882237.7 1.017 mg/L 0.00064 0.0100 mg/L 0.00054 0.0100 mg/L 0.00054	0.63%
	4 5.37%
QC value within limits for Ag 328.068 Recovery = 100.19% . 308.215† 8109.6 0.1879 mg/L 0.00018 0.1879 mg/L 0.0001	8 0.10%
QC value within limits for Al 308.215 Recovery = 93.96%	5 U.IU-8
188.979† 169.8 0.0199 mg/L 0.00048 0.0199 mg/L 0.0004	8 2.43%
QC value within limits for As 188.979 Recovery = 99.59%	J 2.438
249.772† 33557.9 0.1448 mg/L 0.00034 0.1448 mg/L 0.0003	4 0.24%
QC value less than the lower limit for B 249.772 Recovery = 72.40%	- 0.010
233.52/f 71624.8 0.1989 mg/L 0.00135 0.1989 mg/L 0.0013	5 0.68%
	5 0.68%
QC value within limits for Ba 233.527 Recovery = 99.47%	
QC value within limits for Ba 233.527 Recovery = 99.47% 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34%	
QC value within limits for Ba 233.527 Recovery = 99.47% 313.107t 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 226.502t 0.0097 mg/L 0.00001 0.0097 mg/L 0.00001	5 1.05%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 226.502† 3714.0 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 97.04% 0.0097 mg/L 0.00001	5 1.05% 1 0.12%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00001 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000	5 1.05% 1 0.12%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 228.616 Recovery = 99.09% 0.0495 mg/L 0.00006 0.0495 mg/L 0.0000	5 1.05% 1 0.12% 5 0.12%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Co 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.0000	5 1.05% 1 0.12% 5 0.12%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.00006 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.00006 QC value within limits for Co 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.00003 QC value within limits for Cr 267.716 Recovery = 98.50% 0.0099 mg/L 0.00003	5 1.05% 1 0.12% 5 0.12% 3 0.31%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 226.502† 3714.0 0.0097 mg/L 0.00001 0.0097 mg/L 0.00001 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Co 228.616 Recovery = 99.09% 6623.8 0.0495 mg/L 0.00000 QC value within limits for Co 228.616 Recovery = 99.09% 2177.0 0.0099 mg/L 0.00003 0.0099 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 324.752† 11656.0 0.0247 mg/L 0.00040 0.0247 mg/L 0.0004	5 1.05% 1 0.12% 5 0.12% 3 0.31%
QC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 226.502† 3714.0 0.0097 mg/L 0.00001 0.0097 mg/L 0.00001 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Co 228.616 Recovery = 99.09% 0.00005 0.0099 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.0099 mg/L 0.00001 0.0247 mg/L 0.0004 QC value within limits for Cr 267.716 Recovery = 98.69% 98.69% 0.0247 mg/L 0.00040 0.0247 mg/L 0.0004	5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64%
OC value within limits for Ba 233.527 Recovery = 99.47% 2 313.107† 31314.2 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 3714.0 0.0097 mg/L 0.00001 0.0097 mg/L 0.00001 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.00000 QC value within limits for Cd 228.616 Recovery = 99.09% 0.00000 0.0099 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00040 0.0247 mg/L 0.00040 QC value within limits for Cu 324.752 Recovery = 98.69% 0.0247 mg/L 0.00370 0.1209 mg/L 0.00370	5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64%
OC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 228.616 Recovery = 99.09% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00009 mg/L 0.00040 0.0247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.0247 mg/L 0.00370 0.1209 mg/L 0.0037 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 0.0037 0.1209 mg/L 0.0037	5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06%
QC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 228.616 Recovery = 99.09% 0.00006 0.0495 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00009 mg/L 0.00004 0.00247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.00040 0.0247 mg/L 0.0004 0.0247 mg/L 0.0007 QC value within limits for Cu 324.752 Recovery = 98.69% 238.8631 7337.6 0.1209 mg/L 0.00370 0.1209 mg/L 0.0037 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 36.9 36.9	5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06%
QC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.00006 0.0495 mg/L 0.00000 QC value within limits for Co 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.00000 0.0009 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00004 0.0247 mg/L 0.0004 0.0247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.00070 0.1209 mg/L 0.000370 0.1209 mg/L 0.00370 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 36.9 36.9 Unable to evaluate QC. 0.0 0.0 0.0 0.0 0.0	 5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06% 5 44.09%
QC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 99.09% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cr 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.00000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00004 0.0247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.00070 0.1209 mg/L 0.00370 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 36.9 Unable to evaluate QC. 33.8 36.9 36.9 Unable to evaluate QC. 0.021 mg/L 0.0080 1.021 mg/L 0.008	 5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06% 5 44.09%
QC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 0.00001 0.0097 mg/L 0.00001 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 QC value within limits for Cd 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.0000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00040 0.0247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.00370 0.1209 mg/L 0.00370 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 36.9 Unable to evaluate QC. 0.0247 mg/L 0.0080 1.021 mg/L 0.008 QC value within limits for Mg 279.077 Recovery = 102.10% 0.021 mg/L 0.008	 5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06% 5 44.09% 0 0.78%
QC value within limits for Ba 233.527 Recovery = 99.47% 0.00005 0.0048 mg/L 0.00005 0.0048 mg/L 0.0000 QC value within limits for Be 313.107 Recovery = 95.34% 3714.0 0.0097 mg/L 0.00001 0.0097 mg/L 0.00001 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00001 0.0097 mg/L 0.0000 0.0097 mg/L 0.0000 QC value within limits for Cd 226.502 Recovery = 97.04% 0.00006 0.0495 mg/L 0.0000 0.0000 QC value within limits for Cd 226.502 Recovery = 99.09% 0.00003 0.0099 mg/L 0.0000 QC value within limits for Cc 228.616 Recovery = 99.09% 0.00003 0.0099 mg/L 0.0000 QC value within limits for Cr 267.716 Recovery = 98.50% 0.00247 mg/L 0.00040 0.0247 mg/L 0.0004 QC value within limits for Cu 324.752 Recovery = 98.69% 0.00370 0.1209 mg/L 0.0037 0.0037 QC value greater than the upper limit for Fe 238.863 Recovery = 120.88% 36.9 36.9 36.9 Unable to evaluate QC. 9279.077 40144.5 1.021 mg/L 0.0080 1.021 mg/L 0.008	 5 1.05% 1 0.12% 5 0.12% 3 0.31% 0 1.64% 0 3.06% 5 44.09% 0 0.78%

Method: AXIAL200-6	010 L Opt4	Page	32		Date:	8/13/2010 6	:17:48 PM
OC value within	limits for Mo	202.031 Recovery =	. 00 772				
Ni 231.604†	5971 .7	0.0398 mg/L	0.00005	0.0398	mg/L	0.00005	0.12%
		231.604 Recovery =	99.51%				
Na 330.237;	1293.7		0.03403		mg/L	0.03403	4.80%
Pb 220.353†	279.2	limit for Na 330.237 0.0102 mg/L	0.00055	0.0102	mcr/T.	0.00055	5.38%
		220.353 Recovery =	: 101.98%		2.		5.500
Sb 206.836†	323.3	0.0565 mg/L	0.00042	0.0565	mg/L	0.00042	0.75%
QC value within Se 196.026†	limits for Sb 44.0	206.836 Recovery =		0 0000			
		0.0076 mg/L limit for Se 196.026	0.00179 Recovery =	0.0076	шдүг	0.00179	23.58%
Sn 189.927†	15633.8	0.5143 mg/L	0.00082	0.5143	mq/L	0.00082	0.16%
	limits for Sn	189.927 Recovery =	102.86%				
Ti 337.279†	25289.4 limita for Mi	0.0495 mg/L 337.279 Recovery =	0.00025	0.0495	mg/L	0.00025	0.50%
Tl 190.801†	155.6	0.0203 mg/L	0.00079	0.0203	ma/t	0.00079	3.90%
	limits for Tl	190.801 Recovery =	101.38%	0.0200		0.000.0	0.000
V 292.402†			0.00036	0.0477	mg/L	0.00036	0.75%
Zn 206.200†	Limits for V :	292.402 Recovery = 0.0196 mg/L	95.32%	0.0100	ma /7	0.00004	0 00%
		206.200 Recovery =		0.0196	шдул	0.00004	0.20%
Ca 227.546†		0.8766 mg/L		0.8766	mg/L	0.00962	1.10%
QC value within	limits for Ca	227.546 Recovery =	87.66%		1	.	
		0.0921 mg/L 460.733 Recovery =		0.0921	mg/L	0.00014	0.15%
QC Failed. Continu			92.00%				
	*						
Sequence No.: 46	=======================================	======================================	tosampler Loc				***====
Sample ID: ICSA			te Collected:		LO 6:15:	53 PM	
Analyst:		Da	ta Type: Orig	inal			
Initial Sample Wt:			itial Sample				
Dilution:		Sa	mple Prep Vol	:			
Mean Data: ICSA	Mean Corrected	a calib			Cample		
	Mean Corrected Intensity	l Calib Conc. Units	Std.Dev.	Conc.	Sample Units	Std.Dev.	RSD
	Mean Corrected Intensity 7814193.2	Conc. Units 0.8949 mg/L	Std.Dev. 0.00088		Units	Std.Dev.	0.10%
Analyte Y 371.029 Ag 328.068†	Intensity 7814193.2 -2360.9	Conc. Units 0.8949 mg/L -0.0014 mg/L	Std.Dev. 0.00088 0.00001	-0.0014	Units		0.10%
Analyte Y 371.029 Ag 328.068†	Intensity 7814193.2 -2360.9 limits for Ag	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery =	Not calculate	-0.0014 ed	Units mg/L	0.00001	0.10% 0.81%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215†	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7	Conc. Units 0.8949 mg/L -0.0014 mg/L	Not calculate	-0.0014 ed	Units	0.00001	0.10% 0.81%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L	Not calculate 0.21 98.91% 0.00629	-0.0014 ed 247.3 -0.0053	Units mg/L mg/L	0.00001	0.10% 0.81% 0.09%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate	-0.0014 ed 247.3 -0.0053 ed	Units mg/L mg/L mg/L	0.00001 0.21 0.00629	0.10% 0.81% 0.09% 119.23%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772†	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371	-0.0014 ed 247.3 -0.0053 ed -0.0327	Units mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371	0.10% 0.81% 0.09% 119.23% 11.34%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000	Units mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629	0.10% 0.81% 0.09% 119.23% 11.34% 7.42%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 313.107 Recovery = -0.0005 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate 0.00000	-0.0014 ed 247.3 ed -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005	Units mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Co 228.616t	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 313.107 Recovery = -0.0005 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.000371 0.00007 Not calculate 0.00000 Not calculate 0.00000 Not calculate 0.00065	-0.0014 ed 247.3 -0.0053 ed -0.0050 0.0000 ed -0.0005 ed -0.0001	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Co 228.616t QC value within Cr 267.716t	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Co -1393.3	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.000371 0.00000 Not calculate 0.00000 Not calculate 0.00065 Not calculate 0.00000	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00005	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56%
<pre>Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Co 228.616t QC value within Cr 267.716t QC value within</pre>	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Co -1393.3 limits for Cr	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00037 0.00000 Not calculate 0.00000 Not calculate 0.00065 Not calculate 0.00000 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0013	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00065 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd -1393.3 limits for Cr -6120.2	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00065 Not calculate 0.00000 Not calculate 0.00007	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0013 ed -0.0030	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00065 0.00000	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Tntensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cc -1393.3 limits for Cr -6120.2 limits for Cu 5736153.1	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0050 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L 324.752 Recovery = 94.62 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00065 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.00037 Not calculate 0.00037	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0013 ed -0.0030	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00065 0.00000 0.000037	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Tntensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Co -1393.3 limits for Cr -6120.2 limits for Cu 5736153.1 limits for Fe	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L 324.752 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00065 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.00037 Not calculate 0.00037	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00000 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Tntensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Co -1393.3 limits for Cr -6120.2 limits for Cu 5736153.1 limits for Fe -291.2	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0050 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L 324.752 Recovery = 94.62 mg/L 238.863 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate 0.00000 Not calculate 0.00000 Not calculate 0.00000 Not calculate 0.00007 Not calculate 0.00037 Not calculate 0.196 94.62%	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00000 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Tntensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd -1393.3 limits for Cr -6120.2 limits for Cu 5736153.1 limits for Fe -291.2 9530860.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L 324.752 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate 0.00005 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00000 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75%
<pre>Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 228.616t QC value within Cr 267.716t QC value within Cu 324.752t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t</pre>	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Co -1393.3 limits for Cr -6120.2 limits for Cu 5736153.1 limits for Fe -291.2 9530860.0 limits for Mg -630.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 267.716 Recovery = -0.0030 mg/L 324.752 Recovery = 94.62 mg/L 238.863 Recovery = -242.4 mg/L 279.077 Recovery = -0.0076 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00000 Not calculate 0.00007 Not calculate 0.00037 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.00002	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62 242.4 -0.0076	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00000 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 2736153.1 limits for Fe -291.2 9530860.0 limits for Mg -630.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 224.752 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0076 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate 0.00000 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.0002 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed 94.62 242.4 -0.0076	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00007 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21%
<pre>Analyte Y 371.029 Ag 328.068t</pre>	<pre>Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 2736153.1 limits for Fe -291.2 9530860.0 limits for Mg -630.0</pre>	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 224.752 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0076 mg/L 257.610 Recovery = -0.0005 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00005 Not calculate 0.00007 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.00002 Not calculate 0.00003	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed 94.62 242.4 -0.0076 ed -0.0076	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00007 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00002	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 226.502t QC value within Cd 226.502t QC value within Cf 228.616t QC value within Cf 238.863t QC value within Fe 238.863t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t QC value within Mn 202.031t Ni 231.604t	Tntensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 263.3 limits for Cu 5736153.1 limits for Fe -291.2 9530860.0 limits for Mg -630.0 limits for Mn -360.7 12.5	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 324.752 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0076 mg/L 257.610 Recovery = -0.0005 mg/L -0.0005 mg/L 257.610 Recovery = -0.0005 mg/L -0.0005 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00005 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.0002 Not calculate 0.0003 0.00003 0.00003 0.00003	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed 94.62 242.4 -0.0076 ed -0.0076 ed -0.0005 -0.0011	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00007 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00002	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 226.502t QC value within Cr 267.716t QC value within Cr 267.716t QC value within Fe 238.863t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t QC value within Mo 202.031t Ni 231.604t QC value within	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for Al -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 273.1 limits for Cd 263.0 limits for Mi	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 224.752 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0076 mg/L 257.610 Recovery = -0.0015 mg/L 231.604 Recovery = -0.0003 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00037 0.00000 Not calculate 0.00065 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.00002 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00002 Not calculate 0.0003 Not calculate 0.00003 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62 242.4 -0.0076 ed -0.0076 ed -0.0011 ed -0.0011	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00003	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70% 6.94%
<pre>Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 226.616t QC value within Cr 267.716t QC value within Cr 238.863t QC value within Fe 238.863t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t QC value within Mn 257.610t QC value within Mn 231.604t QC value within Na 330.237t Pb 220.353t</pre>	Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd -1393.3 limits for Cd -1393.3 limits for Fe -291.2 9530860.0 limits for Mg -630.0 limits for Ni 60.3 -608.0	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 238.863 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0005 mg/L 257.610 Recovery = -0.0005 mg/L 231.604 Recovery = -0.0003 mg/L 0.0018 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00005 Not calculate 0.00000 Not calculate 0.00037 Not calculate 0.196 94.62% 0.15 96.94% 0.00002 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.0003	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62 242.4 -0.0076 ed -0.0005 -0.0001 ed -0.0011 ed -0.0018	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00003	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70% 6.94%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 226.502t QC value within Cr 267.716t QC value within Cr 238.863t QC value within Fe 238.863t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t QC value within Mn 231.604t QC value within Na 330.237t Pb 220.353t QC value within	<pre>Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Cd 262.7 limits for Mg -630.0 limits for Ni 60.3 -608.0 limits for Pb</pre>	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0001 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 238.863 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0076 mg/L 257.610 Recovery = -0.0005 mg/L -0.0011 mg/L 231.604 Recovery = -0.0038 mg/L 230.604 Recovery = -0.0038 mg/L 220.353 Recovery =	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00005 Not calculate 0.00000 Not calculate 0.196 94.62% 0.15 96.94% 0.15 96.94% 0.00002 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00008 Not calculate 0.07382 0.00206 Not calculate	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62 242.4 -0.0076 ed -0.0005 -0.0001 ed -0.0018 ed -0.0018	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00003 0.00003 0.00008 0.07382 0.00206	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70% 6.94% >999.9%
Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t QC value within As 188.979t QC value within B 249.772t Ba 233.527t Be 313.107t QC value within Cd 226.502t QC value within Cd 226.502t QC value within Co 228.616t QC value within Cr 267.716t QC value within Cr 267.716t QC value within Fe 238.863t QC value within Fe 238.863t QC value within K 404.721t Mg 279.077t QC value within Mn 257.610t QC value within Mn 257.610t QC value within Mo 202.031t Ni 231.604t QC value within Na 330.237t Pb 220.353t QC value within Sb 206.836t	<pre>Intensity 7814193.2 -2360.9 limits for Ag 10662724.7 limits for As -376.8 limits for As 72015.2 852.0 -1875.7 limits for Be 2742.0 limits for Cd 262.7 limits for Cd 262.7 limits for Co -1393.3 limits for Cc -1393.3 limits for Cu 5736153.1 limits for Fe -291.2 9530860.0 limits for Mg -630.0 limits for Mn -360.7 12.5 limits for Ni 60.3 -608.0 limits for Pb 24.0</pre>	Conc. Units 0.8949 mg/L -0.0014 mg/L 328.068 Recovery = 247.3 mg/L 308.215 Recovery = -0.0053 mg/L 188.979 Recovery = -0.0327 mg/L -0.0050 mg/L 0.0000 mg/L 313.107 Recovery = -0.0005 mg/L 226.502 Recovery = -0.0001 mg/L 228.616 Recovery = -0.0013 mg/L 238.863 Recovery = 94.62 mg/L 238.863 Recovery = 242.4 mg/L 279.077 Recovery = -0.0005 mg/L 257.610 Recovery = -0.0005 mg/L 231.604 Recovery = -0.0003 mg/L 0.0018 mg/L	Not calculate 0.21 98.91% 0.00629 Not calculate 0.00371 0.00000 Not calculate 0.00000 Not calculate 0.00005 Not calculate 0.00007 Not calculate 0.196 94.62% 0.15 96.94% 0.00002 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00003 Not calculate 0.00008 Not calculate 0.07382 0.00206 Not calculate 0.00206	-0.0014 ed 247.3 -0.0053 ed -0.0327 -0.0050 0.0000 ed -0.0005 ed -0.0001 ed -0.0013 ed -0.0030 ed 94.62 242.4 -0.00076 ed -0.0005 -0.0001 ed -0.0005 -0.0001 ed -0.0005 -0.0011 ed -0.0005 ed -0.0005 -0.0011 ed -0.0003 0.0003 0.0007	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00001 0.21 0.00629 0.00371 0.00037 0.00000 0.00005 0.00000 0.00005 0.00000 0.00037 0.196 37.13 0.15 0.00002 0.00003 0.00003 0.00008 0.07382 0.00206	0.10% 0.81% 0.09% 119.23% 11.34% 7.42% 2.52% 0.92% 686.56% 0.07% 12.24% 0.21% 12.75% 0.06% 0.21% 7.70% 6.94% >999.9%

Method: AXIAL200-6010 L Opt4 Page 33 Date: 8/13/2010 6:22:08 PM 0.00364 0.0010 mg/L Se 196.026† -85.2 0.0010 mg/L 0.00364 367.97% QC value within limits for Se 196.026 Recovery = Not calculated Sn 189.927† -98.0 0.0475 mg/L 0.00128 0.0475 mg/L 664.4 -0.0025 mg/L 0.00001 -0.0025 mg/L 0.00128 2.70% -0.0025 mg/L Ti 337,279† 0.00001 0.36% 0.0000 mg/L 0.00022 Tl 190.801† -56.9 0.0000 mg/L 0.00022 456.71% QC value within limits for Tl 190.801 Recovery = Not calculated -0.0009 mg/L V 292.402† -2583.2 -0.0009 mg/L 0.00028 0.00028 30.50% QC value within limits for V 292.402 Recovery = Not calculated Zn 206.200† 978.9 -0.0116 mg/L 0.00005 -0.0116 mg/L 0.00005 0.44% QC value within limits for Zn 206.200 Recovery = Not calculated Ca 227.546† 143053.5 252.7 mg/L 0.25 252.7 mg/L 0.25 0.10% QC value within limits for Ca 227.546 Recovery = 101.10% Sr 460.733† 1721.4 0.0018 mg/L 0.00043 0.0018 mg/L 0.00043 24.38% All analyte(s) passed QC. Sequence No.: 47 Autosampler Location: 8 Sample ID: ICSAB Date Collected: 8/13/2010 6:20:07 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: ICSAB Mean Corrected Calib Sample Conc. Units Analyte
 Intensity
 Conc. Units
 Std.Dev.

 7740072.1
 0.8864 mg/L
 0.00288

 77840.5
 0.2137 mg/L
 0.00124
 Conc. Units Std.Dev. Std.Dev. RSD Y 371.029 0.33% Aq 328.068† 0.2137 mg/L 0.00124 0.58% QC value within limits for Ag 328.068 Recovery = 106.86% Al 308.215† 10715380.5 248.5 mg/L 1.31 248.5 mg/L 1.31 0.53% QC value within limits for Al 308.215 Recovery = 99.40% As 188.979† 607.4 0.1102 mg/L 0.00202 0.1102 mg/L 0.00202 1.83% QC value within limits for As 188.979 Recovery = 110.18% B 249.772†
 76211.7
 -0.0174 mg/L
 0.00285

 187772.1
 0.5141 mg/L
 0.00245
 -0.0174 mg/L 0.00285 16.39% Ba 233.527† 0.00245 0.5141 mg/L 0.48% QC value within limits for Ba 233.527 Recovery = 102.83% Be 313.107† 3359871.4 0.5117 mg/L 0.00238 0.5117 mg/L 0.00238 0.47% QC value within limits for Be 313.107 Recovery = 102.34% Cd 226.502† 383818.5 0.9961 mg/L 0.00467 0.9961 mg/L 0.00467 0.47% QC value within limits for Cd 226.502 Recovery = 99.61% Co 228,616† 66642.8 0.4964 mg/L 0.00306 0.4964 mg/L 0.00306 0.62% QC value within limits for Co 228.616 Recovery = 99.29% Cr 267.716† 111312.7 0.5081 mg/L 0.00252 0.5081 mg/L 0.00252 0.50% QC value within limits for Cr 267.716 Recovery = 101.63% Cu 324.752† 236890.5 0.5115 mg/L 0.00493 0.5115 mg/L 0.00493 0.96% QC value within limits for Cu 324.752 Recovery = 102.30% Fe 238.863† 5786282.2 95.44 mg/L 0.298 95.44 mg/L 0.298 0.31% QC value within limits for Fe 238.863 Recovery = 95.44% K 404.721† -318.7 190.09 59.65% 9613706.3 Mg 279.077† 244.5 mg/L 1.01 244.5 mg/L 1.01 0.41% QC value within limits for Mg 279.077 Recovery = 97.79% Mn 257.610† 885671.0 0.5094 mg/L 0.00247 0.5094 mg/L 0.00247 0.48% QC value within limits for Mn 257.610 Recovery = 101.88% Mo 202.031† -348.8 -0.0002 mg/L 0.00107 47372.3 0.9811 mg/L 0.00650 -0.0002 mg/L 0.00107 580.55% 0.9811 mg/L Ni 231.604† 147372.3 0.00650 0.66% QC value within limits for Ni 231.604 Recovery = 98.11%
 Na 330.237t
 -809.7
 -0.4776 mg/L
 0.00207

 Pb 220.353t
 780.9
 0.0525 mg/L
 0.00203
 -0.4776 mg/L 0.00207 0.43% 0.0525 mg/L 0.00203 3.87% QC value within limits for Pb 220.353 Recovery = 104.97% 3714.9 0.6461 mg/L 0.01031 Sb 206.836† 0.6461 mg/L 0.01031 1.60% QC value within limits for Sb 206.836 Recovery = 107.69% Se 196.026† 218.0 0.0534 mg/L 0.00298 0.0534 mg/L 0.00298 5.59% QC value within limits for Se 196.026 Recovery = 106.86% Sn 189.927† -95.2 0.0481 mg/L 0.00244 -0.0029 mg/L 0.00014 0.0481 mg/L 0.00244 5.08% Ti 337.279† -0.0029 mg/L 465.4 0.00014 4.748 Tl 190.801† 0.1033 mg/L 736.5 0.00358 0.1033 mg/L 0.00358 3.47% QC value within limits for Tl 190.801 Recovery = 103.32% V 292.402† 132196.6 0.5002 mg/L 0.00164 0.5002 mg/L 0.00164 0.33% QC value within limits for V 292.402 Recovery = 100.03% 307923.6 0.9973 mg/L 0.00543 Zn 206.200† 0.9973 mg/L 0.00543 0.54% QC value within limits for Zn 206.200 Recovery = 99.73% Ca 227.546† 144485.1 255.3 mg/L 1.09 255.3 mg/L 1.09 0.43%

Method: AXIAL200-6010 L Opt4 Page 34 Date: 8/13/2010 6:29:13 PM QC value within limits for Ca 227.546 Recovery = 102.11% Sr 460.733† 1786.7 0.0020 mg/L 0.00020 0.0020 mg/L 0.00020 9.90% All analyte(s) passed QC. Autosampler Location: 12 Sequence No.: 48 Sample ID: HLCCV2 Date Collected: 8/13/2010 6:24:26 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: -----Mean Data: HLCCV2 Mean Corrected Calib Sample Conc. Units Analvte Intensity Std.Dev. Conc. Units Std.Dev. RSD
 7324643.3
 0.8388 mg/L
 0.00644

 798845.9
 2.147 mg/L
 0.0542
 Y 371.029 0.77% Ag 328.068† 2.147 mg/L 2.53% 0.0542 QC value within limits for Ag 328.068 Recovery = 107.33% Al 308.215† 21076920.5 488.8 mg/L 7.17 488.8 mg/L 7.17 1.47% QC value within limits for Al 308.215 Recovery = 97.76% 35718.6 4.217 mg/L 0.0458 As 188.979† 4.217 mg/L 0.0458 1.09% QC value within limits for As 188.979 Recovery = 105.43% 10.42 mg/L B 249.772† 2499383.0 10.42 mg/L 0.156 0.156 1.50% QC value within limits for B 249.772 Recovery = 104.19% Ba 233.527† 14500407.4 40.27 mg/L 0.058 40.27 mg/L 0.058 0.14% QC value within limits for Ba 233.527 Recovery = 100.67% Be 313.107† 6639019.5 1.011 mg/L 0.0007 1.011 mg/L 0.0007 0.07% QC value within limits for Be 313.107 Recovery = 101.09% Cd 226.502† 770080.6 2.006 mg/L 0.0349 2.006 mg/L 0.0349 1.74% QC value within limits for Cd 226.502 Recovery = 100.31% Co 228.616† 1294806.3 9.684 mg/L 0.1821 9.684 mg/L 0.1821 1.88% QC value within limits for Co 228.616 Recovery = 96.84% Cr 267.716† 2178842.1 9.854 mg/L 0.1641 9.854 mg/L 0.1641 1.67% QC value within limits for Cr 267.716 Recovery = 98.54% Cu 324.752† 2446168.6 5.183 mg/L 0.0731 5.183 mg/L 0.0731 1.41% QC value within limits for Cu 324.752 Recovery = 103.65% Fe 238.863† 5950408.0 98.07 mg/L 0.294 98.07 mg/L 0.294 0.30% QC value within limits for Fe 238.863 Recovery = 98.07% K 404.721† 20.3 43.34 213.57% Mg 279.077† 19210970.5 488.6 mg/L 1.00 488.6 mg/L 1.00 0.20% QC value within limits for Mg 279.077 Recovery = 97.71% 17004665.6 9.906 mg/L 0.0172 Mn 257.610† 9.906 mg/L 0.0172 0.17% QC value within limits for Mn 257.610 Recovery = 99.06% Mo 202.031† 547864.1 10.26 mg/L 0.040 10.26 mg/L 0.040 0.39% QC value within limits for Mo 202.031 Recovery = 102.58% Ni 231.604† 1170679.8 7.802 mg/L 0.1968 7.802 mg/L 0.1968 2.52% QC value within limits for Ni 231.604 Recovery = 97.52%
 212259.4
 116.3 mg/L
 0.74

 269433.7
 9.874 mg/L
 0.0015
 Na 330.237† 116.3 mg/L 0.74 0.63% Pb 220.353t 9.874 mg/L 0.0015 0.02% QC value within limits for Pb 220.353 Recovery = 98.74%
 Sb 206.836†
 685.2
 0.1139 mg/L
 0.00177

 Se 196.026†
 11806.9
 2.044 mg/L
 0.0195
 0.1139 mg/L 0.00177 1.55% 2.044 mg/L 0.0195 0.96% QC value within limits for Se 196.026 Recovery = 102.19% Sn 189.927† -253.4 0.0639 mg/L 0.00067 296472.3 10.36 mg/L 0.013 0.0639 mg/L 0.00067 1.05% 10.36 mg/L Ti 337.279† 5296472.3 10.36 mg/L 0.013 0.13% QC value within limits for Ti 337.279 Recovery = 103.61% Tl 190.801† 29314.6 3.827 mg/L 0.0521 3.827 mg/L 0.0521 1.36% QC value within limits for Tl 190.801 Recovery = 95.68% 2690515.3 10.01 mg/L 0.198 V 292.402† 10.01 mg/L 0.198 1.98% QC value within limits for V 292.402 Recovery = 100.10% Zn 206.200† 1214156.1 3.964 mg/L 0.0691 3.964 mg/L 0.0697 1.74% QC value within limits for Zn 206.200 Recovery = 99.11% 227.546† 147338.7 260.6 mg/L 1.85 QC value within limits for Ca 227.546 Recovery = 104.23% Ca 227.546† 260.6 mg/L 1.85 0.71% Sr 460.733† 1318.4 0.0012 mg/L 0.00031 0.0012 mg/L 0.00031 26.01% All analyte(s) passed QC. Sequence No.: 49 Autosampler Location: 2 Sample ID: HLCCV1 Date Collected: 8/13/2010 6:29:13 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol:

 Method:
 AXIAL200-6010 L Opt4
 Page 35
 Date:
 8/13/2010 6:36:25 PM

 Mean Corrected
 Calib

 Intensity
 Conc. Units
 Std.Dev.

 8316953.5
 0.9525 mg/L
 0.00835

 371974.7
 0.9979 mg/L
 0.00277

 QC value within limits for Ag 328.068
 Recovery = 99.79%

 Al 308.215†
 863223.7
 20.01 mg/L
 0.148

Sample Prep Vol:

Std.Dev.

0.148

0.00277 0.28%

RSD

0.88%

0.74%

0.88%

1.78%

0.32%

0.11%

1.14%

1.03%

1.12%

1.04%

1.31%

0.23%

1.12%

0.96%

2.35%

0.58%

1.41%

1.28%

0.55%

0.13%

1.72%

0.63%

0.79%

1.31%

1.08%

0.29%

0.78%

Sample

Conc. Units

0.9979 mg/L

20.01 mg/L

Dilution:

Analyte

Y 371.029

Ag 328.068†

Mean Data: HLCCV1

QC value within limits for Al 308.215 Recovery = 100.06% As 188.979† 17200.9 2.016 mg/L 0.0178 2.016 mg/L 0.0178 QC value within limits for As 188.979 Recovery = 100.80% 4.915 mg/L B 249.772† 1144120.2 4.915 mg/L 0.0874 0.0874 QC value within limits for B 249.772 Recovery = 98.29% Ba 233.527† 7158676.7 19.88 mg/L 0.063 19.88 mg/L 0.063 QC value within limits for Ba 233.527 Recovery = 99.42% 3246877.7 0.4943 mg/L 0.00056 Be 313.107† 0.4943 mg/L 0.00056 QC value within limits for Be 313.107 Recovery = 98.85% Cd 226.502† 383179.8 1.001 mg/L 0.0114 1.001 mg/L 0.0114 QC value within limits for Cd 226.502 Recovery = 100.14% Co 228.616† 664027.7 4.967 mg/L 0.0513 4.967 mg/L 0.0513 QC value within limits for Co 228.616 Recovery = 99.34% Cr 267.716† 221510.5 1.002 mg/L 0.0112 1.002 mg/L 0.0112 QC value within limits for Cr 267.716 Recovery = 100.18% 1176081.4 2.490 mg/L 0.0259 Cu 324.752† 2.490 mg/L 0.0259 QC value within limits for Cu 324.752 Recovery = 99.61% Fe 238.863† 609295.9 10.05 mg/L 0.132 10.05 mg/L 0.132 QC value within limits for Fe 238.863 Recovery = 100.45% K 404.721† 9528.9 21.52 Unable to evaluate QC. Mg 279.077† 1972232.1 50.16 mg/L 0.561 50.16 mg/L 0.561 QC value within limits for Mg 279.077 Recovery = 100.31% Mn 257.610† 2542970.0 1.482 mg/L 0.0142 1.482 mg/L 0.0142 QC value within limits for Mn 257.610 Recovery = 98.80% Mo 202.031† 263448.0 4.929 mg/L 0.1158 4.929 mg/L 0.1158 QC value within limits for Mo 202.031 Recovery = 98.58% Ni 231.604† 601909.2 4.012 mg/L 0.0234 4.012 mg/L 0.0234 QC value within limits for Ni 231.604 Recovery = 100.30% Na 330.237† 92392.8 50.64 mg/L 0.713 50.64 mg/L 0.713 QC value within limits for Na 330.237 Recovery = 101.28% Pb 220.353† 28586.4 1.044 mg/L 0.0134 1.044 mg/L 0.0134 QC value within limits for Pb 220.353 Recovery = 104.41% 56616.7 9.900 mg/L 0.0541 Sb 206.836† 9.900 mg/L 0.0541 QC value within limits for Sb 206.836 Recovery = 99.00% Se 196.026† 5896.5 1.018 mg/L 0.0013 1.018 mg/L 0.0013 QC value within limits for Se 196.026 Recovery = 101.83% Sn 189.927† 303436.9 9.988 mg/L 0.1720 9.988 mg/L 0.1720 QC value within limits for Sn 189.927 Recovery = 99.88% Ti 337.279† 2525206.7 4.942 mg/L 0.0313 4.942 mg/L 0.0313 QC value within limits for Ti 337.279 Recovery = 98.84% Tl 190.801† 15375.4 2.003 mg/L 0.0158 2.003 mg/L 0.0158 QC value within limits for Tl 190.801 Recovery = 100.15% 1332179.4 4.953 mg/L 0.0649 V 292.402† 4.953 mg/L 0.0649 QC value within limits for V 292.402 Recovery = 99.06% 609846.2 2.002 mg/L 0.0216 Zn 206.200† 2.002 mg/L 0.0216 QC value within limits for Zn 206.200 Recovery = 100.10% 28782.8 50.35 mg/L 0.145 Ca 227.546† 50.35 mg/L 0.145 QC value within limits for Ca 227.546 Recovery = 100.71% Sr 460.733† 1311715.2 5.075 mg/L 0.0397 5.075 mg/L 0.0397 All analyte(s) passed QC. One or more analytes were not evaluated. Sequence No.: 50 Autosampler Location: 3 Sample ID: CCV Date Collected: 8/13/2010 6:33:40 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: CCV Mean Corrected Calib Sample 00079

Y 37.1.029 B401528.2 0.9622 mg/L 0.0003 Ag 328.0681 186831.8 0.5012 mg/L 0.00380 C QC value within limits for Ag 328.068 Recovery = 100.24% Al 308.2151 427727.4 9.916 mg/L 0.00280 QC value within limits for Al 308.215 Recovery = 99.16% As 188.9791 8499.7 0.9963 mg/L 0.00052 C QC value within limits for As 188.979 Recovery = 99.63% B 249.7721 566005.9 2.431 mg/L 0.00062 QC value within limits for B 249.772 Recovery = 99.63% B 249.7721 556371.3 9.981 mg/L 0.0316 QC value within limits for B 233.527 Recovery = 99.81% B 233.5271 1614353.2 0.2458 mg/L 0.00038 0 QC value within limits for B 313.107 Recovery = 99.81% B 313.1071 1614353.2 0.2458 mg/L 0.00048 0 QC value within limits for Cd 226.502 Recovery = 100.00% C2 228.6161 330531.9 2.472 mg/L 0.00048 0 QC value within limits for Cd 226.512 Recovery = 88.90% C2 228.6161 330531.9 2.472 mg/L 0.00058 0 QC value within limits for Cd 226.516 Recovery = 99.44% C2 value within limits for Cd 236.512 Recovery = 100.28% C2 value within limits for Cd 344.752 Recovery = 100.28% C2 value within limits for Cd 344.752 Recovery = 99.44% C2 238.6631 304656.1 5.022 mg/L 0.00158 0 QC value within limits for Mg 279.077 Recovery = 100.45% C4 04.721 4116.3 Unable to evaluate QC. fg 279.077f 994972.4 25.30 mg/L 0.003 QC value within limits for Mg 279.077 Recovery = 101.22% fh 257.6101 1284073.1 0.7483 mg/L 0.0012 QC value within limits for Mg 279.077 Recovery = 97.56% fi 231.6041 303489.7 2.023 Recovery = 97.56% fi 231.6041 303489.7 2.023 mg/L 0.0012 QC value within limits for Nh 330.237 Recovery = 97.56% fi 231.6041 303489.7 2.023 mg/L 0.0034 QC value within limits for Nh 231.604 Recovery = 101.15% fa 330.2371 43229.6 23.69 mg/L 0.0034 QC value within limits for Sh 206.836 Recovery = 99.66% fi 231.6041 28437.5 2.512 mg/L 0.0034 QC value within limits for Sh 206.836 Recovery = 99.96% fi 230.6271 125251.4 5.020 mg/L 0.0034 Q QC value within limits for Sh 206.836 Recovery = 101.76% fi 337.2791 125251.4 5.020 mg/L 0.0034 Q QC value within limits for Th 206.036 Recovery = 100.47% fi 337.279	0.5012 9.916 0.9963 2.431 9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.472 0.5014 1.243 5.023 2.472 0.5014 1.243 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00380 0.0280 0.00052 0.0062 0.0316 0.00038 0.00048 0.00048 0.00048 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012	0.109 0.769 0.289 0.059 0.259 0.329 0.159 0.109 0.268 0.319 0.268 0.319 0.268 0.319 0.258 0.258 0.258 0.338 0.558 0.558 0.148 2.488
$\begin{array}{llllllllllllllllllllllllllllllllllll$	9.916 0.9963 2.431 9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0280 0.00052 0.0062 0.0316 0.00038 0.00048 0.00048 0.00158 0.00155 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.769 0.289 0.059 0.259 0.329 0.159 0.109 0.269 0.319 0.269 0.319 0.259 0.258 0.258 0.338 0.058 0.558 0.148 2.488 0.478
1 308.2151 427727.4 9.916 mg/L 0.0280 QC value within limits for Al 308.215 Recovery = 99.16% 188.9791 0.9963 mg/L 0.00052 C QC value within limits for As 188.979 Recovery = 99.63% 249.7721 566005.9 2.431 mg/L 0.0062 QC value within limits for Ba 233.527 Recovery = 99.81% 0.0062 QC value within limits for Ba 233.527 Recovery = 99.81% 0.00038 0 QC value within limits for Ba 233.527 Recovery = 98.30% 0.00048 0 QC value within limits for Ca 226.502 Recovery = 98.30% 0.00048 0 0.00048 0 QC value within limits for Co 228.616 Recovery = 100.00% 0.288.616t 300531.9 2.472 mg/L 0.0064 QC value within limits for Cr 267.716 Recovery = 99.44% 0.0055 0 0.0047 QC value within limits for Mg 279.077 Recovery = 99.44% 0.0047 0.0047 QC value within limits for Mg 279.077 Recovery = 90.44% 0.0047 0.0047 QC value within limits for Mg 279.077 Recovery = 90.78% 0.0012 QC value within limits for Ng 279.077 Recovery = 97.56% 220.0314 130367.5 2.439 mg/L <td>0.9963 2.431 9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439</td> <td>mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</td> <td>0.00052 0.0316 0.00038 0.00048 0.00048 0.00158 0.00158 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233</td> <td>0.05% 0.25% 0.15% 0.10% 0.26% 0.31% 0.44% 0.09% 3.19% 0.25% 0.33% 0.05% 0.55% 0.14% 2.48% 0.47%</td>	0.9963 2.431 9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439 2.023 2.439	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00052 0.0316 0.00038 0.00048 0.00048 0.00158 0.00158 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.05% 0.25% 0.15% 0.10% 0.26% 0.31% 0.44% 0.09% 3.19% 0.25% 0.33% 0.05% 0.55% 0.14% 2.48% 0.47%
188.9791	2.431 9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0062 0.0316 0.00038 0.00048 0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.25% 0.32% 0.15% 0.26% 0.31% 0.44% 0.09% 3.19% 0.25% 0.33% 0.05% 0.55% 0.14% 2.48% 0.47%
249.772 <i>i</i> 566005.9 2.431 mg/L 0.062 QC value within limits for B 249.772 Recovery = 97.25% a 233.527 <i>i</i> 359371.3 9.981 mg/L 0.0316 QC value within limits for Ba 233.527 Recovery = 99.81% a 313.107 <i>i</i> 1614353.2 0.2458 mg/L 0.00038 0 QC value within limits for Ba 233.527 Recovery = 98.30% a 226.502 <i>i</i> 191328.6 0.5000 mg/L 0.00048 0 QC value within limits for Cd 226.502 Recovery = 100.00% D 228.616 <i>i</i> 330531.9 2.472 mg/L 0.00158 0 QC value within limits for Cc 228.616 Recovery = 98.90% c 267.716 <i>i</i> 110864.9 0.5014 mg/L 0.00158 0 QC value within limits for Cc 227.716 Recovery = 100.28% c 267.716 <i>i</i> 110865.1 5.023 mg/L 0.0055 QC value within limits for Cc 247.722 Recovery = 99.44% c 238.863 <i>i</i> 304656.1 5.023 mg/L 0.0055 QC value within limits for Fe 238.863 Recovery = 100.45% 404.72 <i>i</i> 4116.3 Unable to evaluate QC. 279.077 <i>i</i> 994972.4 25.30 mg/L 0.0063 QC value within limits for Mg 279.077 Recovery = 101.22% 257.610 <i>i</i> 1284073.1 0.7483 mg/L 0.0012 QC value within limits for Mg 279.077 Recovery = 99.78% 202.031 <i>i</i> 130367.5 2.439 mg/L 0.0012 QC value within limits for Ni 231.604 Recovery = 101.15% 330.237 <i>i</i> 43229.6 23.69 mg/L 0.0111 QC value within limits for Ni 330.237 Recovery = 94.77% 220.353 <i>i</i> 13922.0 0.5085 mg/L 0.0123 QC value within limits for Na 330.237 Recovery = 99.68% 196.026 <i>i</i> 2948.9 0.5093 mg/L 0.0123 QC value within limits for Sb 196.026 Recovery = 101.70% 206.836 <i>i</i> 2948.9 0.5093 mg/L 0.0233 QC value within limits for Sb 196.026 Recovery = 101.48% 337.279 <i>i</i> 1283437.5 2.512 mg/L 0.0034 QC value within limits for Ti 190.801 Recovery = 100.40% 337.279 <i>i</i> 1283437.5 2.512 mg/L 0.0034 QC value within limits for Ti 190.801 Recovery = 100.47% 190.801 <i>i</i> 7804.6 1.017 mg/L 0.0039 QC value within limits for Ti 190.801 Recovery = 100.47% 190.801 <i>i</i> 7804.6 1.007 mg/L 0.0039 QC value within limits for Ti 190.801 Recovery = 101.67% 292.402 <i>i</i> 65985.6 2.454 mg/L 0.0033 QC value within limits for Ti 190.801 Recovery = 101.67% 292.402 <i>i</i> 0.0034 <i>i</i> QC value within limits f	9.981 0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 2.439 2.023 23.69 0.5085 4.998	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0316 0.00038 0.00048 0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.32% 0.15% 0.26% 0.31% 0.44% 0.09% 3.19% 0.25% 0.33% 0.55% 0.55% 0.14% 2.48% 0.47%
a 233.527f 3593371.3 9.981 mg/L 0.0316 QC value within limits for Ba 233.527 Recovery = 99.81% 313.107f 1614353.2 0.2458 mg/L 0.00038 0 QC value within limits for Be 313.107 Recovery = 98.30% 226.502f 191328.6 0.5000 mg/L 0.00048 0 QC value within limits for Cd 226.502 Recovery = 100.00% 0 228.616f 330531.9 2.472 mg/L 0.0064 QC value within limits for Cd 228.616 Recovery = 98.90% 228.616f 330531.9 0.5014 mg/L 0.00158 0 QC value within limits for Cr 267.716 Recovery = 100.28% 324.752f 587061.5 1.243 mg/L 0.00158 0 QC value within limits for Cr 324.752 Recovery = 99.44% 238.8631 304656.1 5.023 mg/L 0.0047 QC value within limits for Fe 238.863 Recovery = 100.45% 404.721f 4116.3 Unable to evaluate QC. 279.077f 994972.4 25.30 mg/L 0.0047 QC value within limits for Mg 279.077 Recovery = 101.22% 257.610f 1284073.1 0.7483 mg/L 0.00249 0 QC value within limits for Mn 257.610 Recovery = 97.56% 231.604f 303489.7 2.023 mg/L 0.0012 QC value within limits for Nn 231.604 Recovery = 101.15% 330.237f 43229.6 23.69 mg/L 0.0034 QC value within limits for Nn 231.604 Recovery = 101.15% 330.237f 43229.6 23.69 mg/L 0.0111 QC value within limits for Nb 202.031 Recovery = 99.96% 220.315 1.3922.0 0.5085 mg/L 0.01263 0 QC value within limits for Nb 202.635 Recovery = 101.70% 206.836f 2858.7 4.998 mg/L 0.00249 QC value within limits for Sb 206.836 Recovery = 101.70% 206.836f 2858.7 4.998 mg/L 0.00233 QC value within limits for Sb 206.836 Recovery = 101.70% 206.836f 2858.7 4.998 mg/L 0.00233 QC value within limits for Sh 189.927 Recovery = 100.40% 337.279f 1283437.5 2.512 mg/L 0.00342 QC value within limits for Sh 189.927 Recovery = 100.40% 337.279f 1283437.5 2.512 mg/L 0.00342 QC value within limits for Th 1307.279 Recovery = 100.47% 190.801t 7804.6 1.017 mg/L 0.0034 QC value within limits for Th 190.801 Recovery = 101.67% 292.4024 to 59985.6 2.454 mg/L 0.0003 to QC value within limits for Zn 206.200 Recovery = 101.67% 292.4024 to 59985.6 2.454 mg/L 0.0008 to QC value within limits for Zn 206.20	0.2458 0.5000 2.472 0.5014 1.243 5.023 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00038 0.00048 0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.15% 0.26% 0.31% 0.44% 0.09% 3.19% 0.25% 0.33% 0.55% 0.55% 0.14% 2.48% 0.47%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.472 2.472 0.5014 1.243 5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00048 0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.108 0.268 0.318 0.448 0.098 3.198 0.258 0.338 0.058 0.558 0.148 2.488 0.478
1 226.5021 191328.6 0.5000 mg/L 0.00048 0 QC value within limits for Cd 226.502 Recovery = 100.00% 0.286.6161 330531.9 2.472 mg/L 0.0064 QC value within limits for Co 228.616 Recovery = 98.90% 0.5014 mg/L 0.00158 0 QC value within limits for Cr 267.716 Recovery = 100.28% 124.7521 587061.5 1.243 mg/L 0.0055 QC value within limits for Cu 324.752 Recovery = 99.44% 324.7521 0.0047 0 QC value within limits for Fe 238.863 Recovery = 100.45% 0.0047 0.0047 QC value within limits for Mg 279.077 Recovery = 101.22% 275.610 1.284073.1 0.7483 mg/L 0.00249 0 QC value within limits for Mg 279.077 Recovery = 97.76% 202.031t 130367.5 2.439 mg/L 0.0012 QC value within limits for Mo 202.031 Recovery = 97.56% 231.6041 303489.7 2.023 mg/L 0.0111 QC value within limits for Ni 231.604 Recovery = 101.15% 330.2371 43229.6 23.69 mg/L 0.0123 QC value within limits for Sb 206.836 Recovery = 101.70% 206.836 Recovery = 99.96% 0.5083 mg/L 0.00249 0 QC value within limits for Ni 231.604 Recovery = 910.78% 13922.0 <td< td=""><td>2.472).5014 1.243 5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093</td><td>mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</td><td>0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233</td><td>0.269 0.319 0.449 0.099 3.199 0.259 0.339 0.059 0.558 0.148 2.488 0.478</td></td<>	2.472).5014 1.243 5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0064 0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.269 0.319 0.449 0.099 3.199 0.259 0.339 0.059 0.558 0.148 2.488 0.478
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.5014 1.243 5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00158 0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.319 0.449 0.099 3.199 0.259 0.339 0.558 0.558 0.148 2.488 0.478
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.243 5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0055 0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.449 0.099 3.199 0.259 0.339 0.059 0.558 0.148 2.488 0.478
1 324.7521587061.51.243 mg/L0.0055QC value within limits for Cu 324.752 Recovery = 99.44%238.863t304656.15.023 mg/L0.0047QC value within limits for Fe 238.863 Recovery = 100.45%404.721t4116.3Unable to evaluate QC.279.077t994972.425.30 mg/L0.063QC value within limits for Mg 279.077 Recovery = 101.22%257.610t1284073.10.7483 mg/L0.002490QC value within limits for Mn 257.610 Recovery = 99.76%202.031t130367.52.439 mg/L0.0012QC value within limits for No 202.031 Recovery = 97.56%231.604t303489.72.023 mg/L0.0111QC value within limits for Ni 231.604 Recovery = 101.15%330.237t43229.623.69 mg/L0.01263QC value within limits for Na 330.237 Recovery = 94.77%220.353t13922.00.5085 mg/L0.01263QC value within limits for Sb 206.836 Recovery = 99.96%205.836t28582.74.998 mg/L0.0233QC value within limits for Sb 206.836 Recovery = 100.40%237.279t1283437.52.512 mg/L0.0342QC value within limits for Sn 189.927 Recovery = 100.47%139.801t7804.61.017 mg/L0.0034QC value within limits for Ti 337.279 Recovery = 100.47%139.801t7804.61.017 mg/L0.0039QC value within limits for T1 190.801 Recovery = 98.15%206.201306822.21.007 mg/L0.0033QC value within limits for T1 190.801 Recovery = 98.15% <td>5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093</td> <td>mg/L mg/L mg/L mg/L mg/L mg/L</td> <td>0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233</td> <td>0.099 3.199 0.259 0.339 0.059 0.559 0.148 2.488 0.478</td>	5.023 25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L	0.0047 131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.099 3.199 0.259 0.339 0.059 0.559 0.148 2.488 0.478
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.30 0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L mg/L	131.14 0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	3.198 0.258 0.338 0.058 0.558 0.148 2.488 0.478
404.721 4116.3 Unable to evaluate QC. 279.077 994972.4 $25.30 mg/L$ 0.063 QC value within limits for Mg 279.077 Recovery = 101.22% 257.6101 1284073.1 $0.7483 mg/L$ 0.00249 QC value within limits for Mn 257.610 Recovery = 99.78% $0.202.0311$ 130367.5 $2.439 mg/L$ 0.0012 QC value within limits for Mo 202.031 Recovery = 97.56% 231.6041 303489.7 $2.023 mg/L$ 0.0111 QC value within limits for Ni 231.604 Recovery = 101.15% 330.2371 43229.6 $23.69 mg/L$ 0.01263 QC value within limits for Na 330.237 Recovery = 94.77% $0.220.3531$ 13922.0 $0.5085 mg/L$ 0.01263 QC value within limits for Pb 220.353 Recovery = 101.70% 206.8361 28582.7 $4.998 mg/L$ 0.0233 QC value within limits for Sb 206.836 Recovery = 99.96% $0.5093 mg/L$ 0.00834 0 QC value within limits for Sn 189.927 Recovery = 101.85% 189.9271 152511.4 $5.020 mg/L$ 0.0342 QC value within limits for Sn 189.927 Recovery = 100.40% 337.2791 1283437.5 $2.512 mg/L$ 0.0034 QC value within limits for Ti 337.279 Recovery = 101.67% 292.4021 659985.6 $2.454 mg/L$ 0.0038 QC value within limits for T1 190.801 Recovery = 98.15% 206.2001 306822.2 $1.007 mg/L$ 0.0033 QC value within limits for V 292.402 Recovery = 98.15% 206.2001 306822.2 $1.007 mg/L$ 0.0033 QC value within limits for Zn 206.200 Reco	0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L	0.063 0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.25% 0.33% 0.05% 0.55% 0.14% 2.48% 0.47%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7483 2.439 2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L mg/L	0.00249 0.0012 0.0111 0.034 0.01263 0.0233	0.33% 0.05% 0.55% 0.14% 2.48% 0.47%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.439 2.023 23.69 0.5085 4.998	mg/L mg/L mg/L mg/L mg/L	0.0012 0.0111 0.034 0.01263 0.0233	0.05% 0.55% 0.14% 2.48% 0.47%
202.031t130367.5 2.439 mg/L 0.0012 QC value within limits for Mo $202.031 \text{ Recovery} = 97.56\%$ 231.604t 303489.7 2.023 mg/L 0.0111 QC value within limits for Ni $231.604 \text{ Recovery} = 101.15\%$ $330.237t$ 43229.6 23.69 mg/L 0.034 QC value within limits for Na $330.237 \text{ Recovery} = 94.77\%$ $220.353t$ 13922.0 0.5085 mg/L 0.01263 QC value within limits for Pb $220.353 \text{ Recovery} = 101.70\%$ $206.836t$ 28582.7 4.998 mg/L 0.0233 QC value within limits for Sb $206.836 \text{ Recovery} = 99.96\%$ $196.026t$ 2948.9 0.5093 mg/L 0.00834 QC value within limits for Se $196.026 \text{ Recovery} = 101.45\%$ $189.927t$ 152511.4 5.020 mg/L 0.0129 QC value within limits for Sn $189.927 \text{ Recovery} = 100.40\%$ $337.279t$ 1283437.5 2.512 mg/L 0.00342 QC value within limits for Ti $37.279 \text{ Recovery} = 100.47\%$ $190.801t$ 7804.6 1.017 mg/L 0.0039 $22.402t$ QC value within limits for Tl $190.801 \text{ Recovery} = 101.67\%$ $292.402t$ 659985.6 2.454 mg/L 0.0008 20.0013 QC value within limits for V $292.402 \text{ Recovery} = 98.15\%$ $206.200t$ 306822.2 1.007 mg/L 0.0033 QC value within limits for Zn $206.200 \text{ Recovery} = 100.73\%$ 306822.2 1.007 mg/L 0.0033	2.023 23.69 0.5085 4.998 0.5093	mg/L mg/L mg/L mg/L	0.0111 0.034 0.01263 0.0233	0.55% 0.14% 2.48% 0.47%
231.604t303489.72.023 mg/L0.0111QC value within limits for Ni231.604 Recovery = 101.15%330.237t43229.623.69 mg/L0.034QC value within limits for Na330.237 Recovery = 94.77%0.01263020.353t13922.00.5085 mg/L0.012630QC value within limits for Pb220.353 Recovery = 101.70%0.02330QC value within limits for Sb206.836 Recovery = 99.96%0.02330QC value within limits for Sc196.026 Recovery = 99.96%0.008340QC value within limits for Sc196.026 Recovery = 101.85%0.01290QC value within limits for Sn189.927 Recovery = 100.40%0.03420QC value within limits for Sn189.927 Recovery = 100.40%0.03420QC value within limits for Ti337.279 Recovery = 100.47%0.00390QC value within limits for Ti190.801 Recovery = 101.67%0.00080QC value within limits for Tl190.801 Recovery = 101.67%0.00080QC value within limits for V292.402 Recovery = 98.15%0.00330QC value within limits for V292.402 Recovery = 100.73%0.00330	23.69 .5085 4.998 .5093	mg/L mg/L mg/L	0.034 0.01263 0.0233	0.14% 2.48% 0.47%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.998 .5093	mg/L mg/L	0.01263	2.48% 0.47%
220.3531 13922.0 $0.5085 mg/L$ 0.01263 0 QC value within limits for Pb 220.353 Recovery = $101.70%$ 206.8361 28582.7 $4.998 mg/L$ 0.0233 QC value within limits for Sb 206.8361 28582.7 $4.998 mg/L$ 0.0233 QC value within limits for Sb 206.8361 20.0033 0.00834 0 QC value within limits for Se 196.0261 2948.9 $0.5093 mg/L$ 0.00834 0 QC value within limits for Se 196.0261 2048.9 $0.5020 mg/L$ 0.00834 0 QC value within limits for Se 196.0261 0.0129 0.0129 0.0129 QC value within limits for Sn 189.9271 0.0129 0.0129 QC value within limits for Sn 189.927 Recovery = $100.40%$ 337.2791 1283437.5 $2.512 mg/L$ 0.0342 QC value within limits for Ti 337.279 Recovery = $100.47%$ 190.8011 0.0039 0.0039 0.0039 QC value within limits for Tl 190.801 Recovery = $101.67%$ 292.4021 659985.6 $2.454 mg/L$ 0.0008 QC value within limits for V 292.402 Recovery = $98.15%$ 206.2001 306822.2 $1.007 mg/L$ 0.0033 QC value within limits for Zn 206.200 Recovery = $100.73%$ $100.73%$ $100.73%$	4.998 .5093	mg/L	0.0233	0.47%
206.8361 28582.7 $4.998 mg/L$ 0.0233 QC value within limits for Sb 206.836Recovery = 99.96 % 196.0261 2948.9 $0.5093 mg/L$ 0.00834 QC value within limits for Se 196.026Recovery = 101.85 % $189.927t$ 152511.4 $5.020 mg/L$ 0.0129 QC value within limits for Sn 189.927Recovery = 100.40 % $337.279t$ 1283437.5 $2.512 mg/L$ 0.0342 QC value within limits for Ti 337.279 Recovery = 100.47 % $190.801t$ 7804.6 $1.017 mg/L$ 0.0039 QC value within limits for T1 190.801Recovery = 101.67 % $292.402t$ 659985.6 $2.454 mg/L$ 0.0008 QC value within limits for V 292.402Recovery = 98.15 % $206.200t$ 306822.2 $1.007 mg/L$ 0.0033 QC value within limits for Zn 206.200Recovery = 100.73 %	.5093	_		
196.026t2948.9 0.5093 mg/L 0.00834 0 QC value within limits for Se 196.026Recovery = 101.85% $189.927t$ 152511.4 5.020 mg/L 0.0129 QC value within limits for Sn 189.927Recovery = 100.40% $337.279t$ 1283437.5 2.512 mg/L 0.0342 QC value within limits for Ti 337.279Recovery = 100.47% $190.801t$ 0.0039 0.0039 QC value within limits for Ti 190.801Recovery = 101.67%292.402t659985.6 2.454 mg/L 0.0008 QC value within limits for V 292.402Recovery = 98.15%206.200t 306822.2 1.007 mg/L 0.0033 QC value within limits for Zn 206.200Recovery = 100.73%		mg/L	0.00834	1.64%
189.927t 152511.4 $5.020 mg/L$ 0.0129 QC value within limits for Sn 189.927 Recovery = 100.40 % 337.279 t 1283437.5 $2.512 mg/L$ 0.0342 QC value within limits for Ti 337.279 Recovery = 100.47 % 190.801 t 7804.6 $1.017 mg/L$ 0.0039 QC value within limits for Tl 190.801 Recovery = 101.67 % 292.402 t 659985.6 $2.454 mg/L$ 0.0008 QC value within limits for V 292.402 Recovery = 98.15 % 206.200 t 306822.2 $1.007 mg/L$ 0.0033 QC value within limits for Zn 206.200 Recovery = 100.73 %	F 000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.020	mg/L	0.0129	0.26%
190.801t7804.61.017 mg/L0.0039QC value within limits for Tl 190.801Recovery = 101.67%292.402t659985.62.454 mg/L0.0008QC value within limits for V 292.402Recovery = 98.15%206.200t306822.21.007 mg/L0.0033QC value within limits for Zn 206.200Recovery = 100.73%	2.512	mg/L	0.0342	1.36%
292.402t 659985.6 2.454 mg/L 0.0008 2 QC value within limits for V 292.402 Recovery = 98.15% 206.200t 306822.2 1.007 mg/L 0.0033 2 QC value within limits for Zn 206.200 Recovery = 100.73% 206.200 Recovery = 100.73%	1.017	mg/L	0.0039	0.38%
206.200† 306822.2 1.007 mg/L 0.0033 2 QC value within limits for Zn 206.200 Recovery = 100.73%	2.454	mg/L	0.0008	0.03%
	1.007	mg/L	0.0033	0.33%
227.546† 14150.5 24.76 mg/L 0.081 2 QC value within limits for Ca 227.546 Recovery = 99.04%	24.76	mg/L	0.081	0.33%
	2.518	mg∕L	0.0129	0.51%
l analyte(s) passed QC. One or more analytes were not evaluated.				
			*****	======
quence No.: 51 Autosampler Location mple ID: CCB Date Collected: 8/3		.0 6:38:4	13 PM	
alyst: Data Type: Original	1			
itial Sample Wt: Initial Sample Vol: Lution: Sample Prep Vol:	:			
an Data: CCB				
Mean Corrected Calib		Sample	a, 1 =	- -
alyte Intensity Conc. Units Std.Dev. Conc. 371.029 8573385.1 0.9818 mg/L 0.01502	conc.	Units	Std.Dev.	RSD 1.53%
328.0681 136.9 0.0004 mg/L 0.00037 0.	• •		0.00037 1	

Method: AXIAL200-6010 L Opt4 Page 37 Date: 8/13/2010 6:47:45 PM Al 308,215† 0.0033 mg/L 141.5 0.00027 0.0033 mg/L 0.00027 8.34% QC value within limits for Al 308.215 Recovery = Not calculated 27.5 0.0032 mg/L 0.00046 0.0032 mg/L As 188.979† 0.00046 14.15% QC value within limits for As 188.979 Recovery = Not calculated B 249.772† 3628.2 0.0156 mg/L 0.00164 0.0156 mg/L 0.00164 10.55% QC value within limits for B 249.772 Recovery = Not calculated Ba 233.527† 763.2 0.0021 mg/L 0.00032 0.0021 mg/L 0.00032 15.26% QC value within limits for Ba 233.527 Recovery = Not calculated Be 313.107† 635.4 0.0001 mg/L 0.00005 0.0001 mg/L 0.00005 46.74% QC value within limits for Be 313.107 Recovery = Not calculated Cd 226.502† 22.5 0.0001 mg/L 0.00003 0.0001 mg/L 0.00003 54.14% QC value within limits for Cd 226.502 Recovery = Not calculated 114.1 0.0009 mg/L 0.00006 0.0009 mg/L Co 228.616† 0.00006 7.38% QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† 121.1 0.0005 mg/L 0.00015 0.0005 mg/L 0.00015 27.54% QC value within limits for Cr 267.716 Recovery = Not calculated 0.0094 mg/L Cu 324.752† 4420.3 0.0094 mg/L 0.00145 0.00145 15.45% QC value within limits for Cu 324.752 Recovery = Not calculated 3306.9 0.0546 mg/L 0.00788 0.0546 mg/L Fe 238.863† 0.00788 14.44% QC value within limits for Fe 238.863 Recovery = Not calculated K 404.721† -20.1 12.00 59.74% Unable to evaluate QC. Mg 279.077† 38.8 0.0010 mg/L 0.00469 0.0010 mg/L 0.00469 491.43% QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610† 1645.6 0.0010 mg/L 0.00002 0.0010 mg/L 0.00002 2.37% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 115.7 0.0022 mg/L 0.00058 0.0022 mg/L 0.00058 26.96% QC value within limits for Mo 202.031 Recovery = Not calculated Ni 231.604† 139.7 0.0009 mg/L 0.00007 0.0009 mg/L 0.00007 7.69% QC value within limits for Ni 231.604 Recovery = Not calculated Na 330.237† -210.9 -0.1155 mg/L 0.07769 -0.1155 mg/L 0.07769 67.29% QC value within limits for Na 330.237 Recovery = Not calculated Pb 220.353† 22.8 0.0008 mg/L 0.00028 0.0008 mg/L 0.00028 34.08% QC value within limits for Pb 220.353 Recovery = Not calculated Sb 206.836† 10.9 0.0019 mg/L 0.00014 0.0019 mg/L 0.00014 7.07% QC value within limits for Sb 206.836 Recovery = Not calculated -1.4 -0.0002 mg/L 0.00075 Se 196.026† -0.0002 mg/L 0.00075 322.86% QC value within limits for Se 196.026 Recovery = Not calculated Sn 189,927† 563.1 0.0185 mg/L 0.00213 0.0185 mg/L 0.00213 11.50% QC value within limits for Sn 189.927 Recovery = Not calculated Ti 337.279† 16.1 0.0000 mg/L 0.00034 0.0000 mg/L 0.00034 >999.9% QC value within limits for Ti 337.279 Recovery = Not calculated Tl 190.801† 17.1 0.0022 mg/L 0.00081 0.0022 mg/L 0.00081 36.38% QC value within limits for Tl 190.801 Recovery = Not calculated 89.5 0.0003 mg/L 0.00004 V 292.402t 0.0003 mg/L 0.00004 10.60% QC value within limits for V 292.402 Recovery = Not calculated Zn 206.200† 181.0 0.0006 mg/L 0.00002 0.0006 mg/L 0.00002 2.55% QC value within limits for Zn 206.200 Recovery = Not calculated -41.5 -0.0690 mg/L 0.06145 -0.0690 mg/L Ca 227.546† 0.06145 89.09% QC value within limits for Ca 227.546 Recovery = Not calculated 56.2 0.0002 mg/L 0.00032 0.0002 mg/L Sr 460.733t 0.00032 148.02% QC value within limits for Sr 460.733 Recovery = Not calculated All analyte(s) passed QC. One or more analytes were not evaluated. Sequence No.: 52 Autosampler Location: 64 Date Collected: 8/13/2010 6:44:22 PM Sample ID: PBW-117097 Analvst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL Mean Data: PBW-117097 Mean Corrected Calib Sample Analyte Conc. Units Intensity Std.Dev. Conc. Units Std.Dev. RSD 0.9813 mg/L Y 371.029 8568780.1 0.01316 1.34% Ag 328.068† 212.1 0.0006 mg/L 0.00005 9.55% 153.1 0.0036 mg/L Al 308.215† 0.00290 81.61% As 188.979† 2.6 0.0003 mg/L 0.00094 289.49% 0.0080 mg/L B 249.772† 1880.4 0.00097 12.11% Ba 233.527† 254.4 0.0007 mg/L 0.00001 0.95% Be 313.107† 388.6 0.0001 mg/L 0.00004 67.23%

Method: AXIAL200-6				e 38				
Cd 226.502†	-6.0	0.0000 1	mg/L	0.00003				124.03
Co 228.616†	89.9	0.0007 1	- · .	0.00017				25.46
Cr 267.716†	195.2	0.0009 1						
				0.00004				4.46
Cu 324.752†	1983.5	0.0042 1		0.00047				11.16
Fe 238.863†	3592.0	0.0593 ı	mg/L	0.00770				12.98
K 404.721†	35.6						117.49	329,90
Mg 279.077†		-0.0033 m	mor / T.	0.00603				183.92
—	1757 0	-0.0033 1	mg/D					
Mn 257.610†	1357.9	0.0008 I 0.0009 I	шд\г	0.00002				2.83
Mo 202.031†	48.4	0.0009 1	mg/L	0.00002				1.90
Ni 231.604†	109.7 14.7	0.0007 τ	ma/L	0.00004				4.88
Na 330.237†	14.7	0.0083 r	ma /T	0.07627				922.90
	24.7	0.00001	ану/ 11 н. н. / Т					
Pb 220.353†	29.8	0.0011 1	mg∕in	0.00008				7.21
Sb 206.836†	5.8	0.0011 T 0.0010 T -0.0001 T	mg/L	0.00072				70.40
Se 196.026†	-0.8	-0.0001 T	mg/L	0.00249				>999.94
Sn 189.927†	341.0	0.0112 r	ma/T	0.00146				12.989
Ti 337.279†	-37.4	-0.0001 r						
				0.00010				134.39
Tl 190.801†	6.7	0.0009 r	ud\r	0.00029				33.30%
V 292.402†	76.5	0.0009 r 0.0003 r	ng/L	0.00014				49.82%
Zn 206.200†	824.3	0.0027 *	ng/L	0.00000				0.049
Ca 227.546†	824.3 -31.1	-0.0507 r	ng/T					
				0.01240				24.478
Sr 460.733† Sample conc. not ca	-123.2	-0.0005 r	ng/L	0.00007				14.248
sequence No.: 53	=======================================			tosampler L			===##=======	======
Sample ID: LCSW-11	7097		Da	te Collecte	1: 8/13/20	10 6:50:	04 PM	
Analyst:				ta Type: Or:	• •			
Initial Sample Wt:					-			
-				itial Sample				
Dilution:			Sa	umple Prep Vo	эт: 20 mГ			
Mean Data: DCSW-11								
Analyte .	Mean Corrected Intensity	Conc. U	Calib Jnits	Std.Dev.	Conc.	Sample Units	Std.Dev.	
Analyte .	Mean Corrected Intensity	Conc. U	Jnits	Std.Dev. 0.0072	Conc.		Std.Dev.	
Analyte Y 371.029	Mean Corrected Intensity	Conc. U	Jnits	0.0072	Conc.		Std.Dev.	0.71%
Analyte Y 371.029 Ag 328.068†	Mean Corrected Intensity	Conc. U	Jnits	0.0072 0.00056	Conc.		Std.Dev.	0.71% 1.17%
Analyte Y 371.029 Ag 328.068† Al 308.215†	Mean Corrected Intensity	Conc. U	Jnits	0.0072 0.00056 0.0195	Conc.		Std.Dev.	0.71% 1.17% 1.02%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m	Jnits ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m	Jnits ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195	Conc.		Std.Dev.	0.71% 1.17% 1.02%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m	Jnits ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m	Jnits ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m 1.883 m 0.0455 m	Jnits ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.78%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m 1.883 m 0.0455 m	Jnits ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.78% 0.20%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.0475 m	Jnits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.78%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.0397 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.0475 m	Jnits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.78% 0.20% 0.62%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.70% 0.20% 0.62% 0.72%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m 0.2491 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199	Conc.		Std.Dev.	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.70% 0.20% 0.62% 0.62% 0.72%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.80% 1.53%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m 0.2491 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199	Conc.		Std.Dev. 41.11	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.70% 0.20% 0.62% 0.62% 0.72%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.1908 m 0.2491 m 0.9975 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 313.107† Cd 226.502† Cd 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.4874 m 0.4874 m 0.1908 m 0.2491 m 0.2491 m 1.952 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00030 0.00010 0.00302 0.00138 0.00199 0.01523	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 1.53% 1.36% 0.90%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m 0.2491 m 0.9975 m 1.952 m 0.4795 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.80% 1.53% 1.36% 0.90% 0.73%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.1908 m 0.2491 m 0.9975 m 1.952 m 0.4795 m 0.4756 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00030 0.00010 0.00302 0.00138 0.00199 0.01523	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 1.53% 1.36% 0.90%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.1908 m 0.2491 m 0.2491 m 0.9975 m 1.952 m 0.4795 m 0.4795 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 1.53% 1.36% 0.90% 0.73% 1.63%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.1908 m 0.2491 m 0.2491 m 0.9975 m 1.952 m 0.4795 m 0.4795 m	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.70% 0.62% 0.62% 1.53% 1.36% 0.90% 0.73% 1.63% 0.59%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Nn 231.604† Na 330.237†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.1908 m 0.2491 m 0.2491 m 0.9975 m 1.952 m 0.4795 m 0.4795 m 0.4795 m	Jnits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 0.30% 1.53% 0.90% 0.73% 1.63% 0.59% 1.24%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Ni 231.604† Na 330.237† Pb 220.353†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.4874 m 0.4874 m 0.1908 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4756 m 0.4319 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 0.73% 1.36% 0.73% 1.36% 0.59% 1.24% 0.22%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Ni 231.604† Na 330.237† Pb 220.353†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 17.84 m 0.4890 m 0.4415 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L L ng/L L L L L L L L L L L L L L L L L L L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 0.30% 1.53% 0.90% 0.73% 1.63% 0.59% 1.24%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 17.84 m 0.4890 m 0.4415 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L L ng/L L L L L L L L L L L L L L L L L L L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.00010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106	Conc.			0.71% 1.02% 2.31% 1.95% 0.70% 0.78% 0.62% 0.62% 0.62% 0.72% 1.36% 1.36% 1.36% 1.63% 1.24% 0.22% 0.22%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4890 m 0.4890 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.70% 0.62% 0.62% 0.72% 1.36% 0.73% 1.36% 0.59% 1.53% 1.63% 0.59% 1.24% 0.22% 0.22% 0.22% 0.24% 0.22% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.24% 0.59% 1.53%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Ni 231.604† Ni 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.4755 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4319 m 0.4890 m 0.4415 m 0.9407 m 5.163 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 0.62% 0.72% 0.36% 1.53% 1.53% 1.63% 1.24% 0.22% 0.22% 0.22% 0.25% 1.36% 1.38%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Ni 231.604† Ni 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Fi 337.279†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.4755 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4319 m 0.4890 m 0.4415 m 0.9407 m 5.163 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 0.62% 0.72% 0.36% 1.53% 1.36% 0.59% 1.24% 0.22% 0.22% 0.59% 1.24% 0.57% 1.36% 0.20% 0.59% 1.24% 0.57% 0.51% 0.57% 0.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Fi 337.279† Fi 190.801†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4890 m 0.4890 m 0.4826 m 1.863 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 0.62% 0.72% 0.36% 1.53% 1.36% 0.59% 1.24% 0.22% 0.22% 0.59% 1.24% 0.57% 1.36% 0.20% 0.59% 1.24% 0.57% 0.51% 0.57% 0.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Fi 337.279† Fi 190.801†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4890 m 0.4890 m 0.4826 m 1.863 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.00092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103	Conc.			0.71% 1.17% 1.02% 2.31% 0.70% 0.70% 0.20% 0.20% 0.20% 0.72% 0.20% 0.72% 0.36% 0.73% 1.36% 0.59% 1.24% 0.59% 1.36% 0.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 39.801†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0475 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 0.4319 m 0.4890 m 0.4890 m 0.4826 m 1.863 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.0010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00576 0.0715 0.00074 0.0103 0.00507	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.20% 0.20% 0.72% 0.36% 0.59% 1.53% 0.59% 0.59% 0.61% 0.15% 1.55% 1.10%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Fl 190.801† V 292.402† Zn 206.200†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4475 m 0.4874 m 0.49975 m 0.4756 m 0.4795 m 0.4756 m 0.4319 m 17.84 m 0.4890 m 0.4415 m 0.4415 m 0.4426 m 1.863 m 0.4826 m 1.863 m 0.4604 m 0.5006 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.0036 0.0010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00576 0.0715 0.0057 0.00571	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 0.90% 1.53% 0.90% 1.63% 0.59% 1.24% 0.22% 0.61% 1.38% 0.155% 1.10%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4475 m 0.4874 m 0.49975 m 0.4756 m 0.4795 m 0.4756 m 0.4319 m 17.84 m 0.4890 m 0.4415 m 0.4415 m 0.4426 m 1.863 m 0.4826 m 1.863 m 0.4604 m 0.5006 m	nits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00576 0.0715 0.00507 0.00511 0.0295	Conc.			0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.62% 0.62% 0.62% 0.73% 1.36% 0.59% 1.24% 0.59% 1.24% 0.59% 1.36% 1.55% 1.35% 1.55% 1.55% 1.55% 1.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ci 337.279† Ci 337.279† Ci 337.279† Ci 190.801† 7 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4426 m 0.4826 m 1.863 m 0.4826 m 1.863 m 0.4873 m 1.863 m	nits ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL LL LL LL ng/LL LL LL LL LL LL LL LL LL LL LL LL LL	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.0010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00177 0.00255 0.221 0.00106 0.00576 0.0715 0.00074 0.0103 0.00507 0.00501 0.0295 0.0266		Units	41.11	0.71% 1.02% 2.31% 1.95% 0.70% 0.70% 0.62% 0.62% 0.62% 0.72% 1.36% 1.36% 1.36% 1.36% 1.36% 1.36% 1.55% 1.22% 0.63% 1.36% 1.22% 0.55% 1.38% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4426 m 0.4826 m 1.863 m 0.4826 m 1.863 m 0.4873 m 1.863 m	nits ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL ng/LL LL LL LL LL ng/LL LL LL LL LL LL LL LL LL LL LL LL LL	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.0010 0.00302 0.0138 0.0199 0.01523 0.0176 0.00350 0.00177 0.00255 0.221 0.00106 0.00576 0.0715 0.00074 0.0103 0.00507 0.00501 0.0295 0.0266		Units	41.11	0.71% 1.02% 2.31% 1.95% 0.70% 0.70% 0.62% 0.62% 0.62% 0.72% 1.36% 1.36% 1.36% 1.36% 1.36% 1.36% 1.55% 1.22% 0.63% 1.36% 1.22% 0.55% 1.38% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.36% 1.36% 1.55% 1.36% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55% 1.55%
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Inits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.00777 0.0255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103 0.00507 0.02551 0.0295 0.0266 nitial Vol.	required C	Units DR sample	41.11 e units inco:	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Ca 227.546† Sr 460.733† Sample conc. not ca	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Mits mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.00777 0.0255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103 0.00576 0.0715 0.00074 0.0103 0.00507 0.02511 0.0295 0.0266 nitial Vol.	required C	Units DR sample	41.11 e units inco:	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† T1 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Inits mg/L	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.0077 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103 0.00507 0.02551 0.00511 0.0295 0.0266 nitial Vol.	required C	Units DR sample	41.11 e units inco	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca Sequence No.: 54 Sample ID: R1004262	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Inits ng/L <	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00576 0.0715 0.00577 0.00507 0.00511 0.0295 0.0266 nitial Vol.	required 0 ====================================	Units DR sample	41.11 e units inco	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† T1 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Inits ng/L <	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.0077 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00074 0.0103 0.00507 0.02551 0.00511 0.0295 0.0266 nitial Vol.	required 0 ====================================	Units DR sample	41.11 e units inco	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca Sequence No.: 54 Sample ID: R1004262 Analyst:	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Jnits ng/L <	0.0072 0.00056 0.0195 0.01745 0.0131 0.00036 0.0010 0.00302 0.00138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00775 0.00255 0.221 0.00106 0.00576 0.0715 0.00576 0.0715 0.00577 0.00571 0.0295 0.0266 nitial Vol.	required C cation: 66 : 8/13/201 ginal	Units DR sample	41.11 e units inco	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.
Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca Sequence No.: 54 Sample ID: R1004262	Mean Corrected Intensity 8819316.4 18036.7 82219.9 336.1 206928.0 678073.4 299074.1 18197.4 65152.6 42202.6 117617.6 60455.8 3015.1 76759.2 821946.5 25418.6 64801.0 32532.2 13409.4 2524.9 5453.9 156972.8 246556.6 14309.4 123817.4 152338.6 1051.2 492200.2 alculated. Sample	Conc. U 1.010 m 0.0484 m 1.907 m 0.8926 m 1.883 m 0.0455 m 0.0455 m 0.4874 m 0.4874 m 0.2491 m 0.2491 m 0.2491 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4795 m 0.4319 m 1.952 m 0.4319 m 0.4415 m 0.4415 m 0.4890 m 0.4826 m 1.863 m 0.4604 m 1.873 m 1.904 m Prep. Vo	Jnits ng/L <	0.0072 0.00056 0.0195 0.0092 0.01745 0.0131 0.00036 0.00010 0.00302 0.0138 0.00199 0.01523 0.0176 0.00350 0.00777 0.00255 0.221 0.00106 0.00429 0.00576 0.0715 0.00576 0.0715 0.00577 0.00507 0.00511 0.0295 0.0266 nitial Vol.	required C cation: 66 : 8/13/201 ginal : Vol:	Units DR sample	41.11 e units inco	0.71% 1.17% 1.02% 2.31% 1.95% 0.70% 0.20% 0.20% 0.62% 0.72% 0.80% 1.53% 1.36% 0.72% 1.63% 1.63% 1.24% 0.59% 1.36% 0.55% 1.36% 1.36% 1.53% 1.55% 1.35% 1.10% 1.57% 1.40% rrect.

							8/13/2010 7:02:	
Mean Data: R	1004262-001							
Analyte	Mean Corrected Intensity	Cond	Calib Units	Std.Dev.	Cond	Sample Units	Std.Dev.	RSD
Y 371.029	7374436.1	0.8445		0.00280		011103).33%
Ag 328.068†		0.0006		0,00021				.70%
Al 308.215†		0.5258	<u>.</u> .	0.00521).99%
As 188.979†	360.3	0.0476		0.00078				65%
B 249.772†	966340.0	4.138		0.0303).73%
Ba 233.527†	133698.0	0.3699		0.00192				1.52%
Be 313.107†	-1469.8	-0.0002		0.00005				1.938
Cd 226.502†		-0.0002		0.00010				.548
Co 228.616†	31988.7	0.2390	mg/L	0.00139				1.589
Cr 267.716†	9933.6	0.0458		0.00011				.239
Cu 324.752†	99605.9	0.2113		0.00059				.28
Fe 238.8631	718951.0	11.85		0.102				
K 404.721†	97968.0	11.00	ш <u>д</u> / д	0.102				.86
Mg 279.077†		71.47	ma /T	0 440				.48
Mn 257.610†	2058209.4	1.198		0.449				.639
Mo 202.031†	7622,4			0.0046				.39
		0.1430		0.00139				.97
Ni 231.604†	7116.8	0.0471	~ ~	0.00109				.32
Na 330.237†	1619729.2	888.1	mg/L	1.26				.149
220.353†	72.6	0.0024 0.0011	mg/⊥	0.00236				.41
3b 206.836†		0.0011	mg/L	0.00347				.13
Se 196.026†	19.7	0.0056		0.00058				.44
Sn 189.927†	414.2	0.0259		0.00143			5	.52
ri 337.279†	19569.3	0.0372		0.00096			2	.58
Cl 190.801†		-0.0050		0.00626			126	.51
7 292.402†	3138.3	0.0128 0.6638	mg/L	0.00017			1	.334
In 206.200†	202959.6	0.6638	mg∕L	0.00357			0	.549
a 227.546†	49849.1	86.88	mg/L	0.069			0	.089
Sr 460.733†	218415.2 not calculated. Sample	0.8432	mq/L	0.00062			0	.078
Sample ID: R: Analyst:	1004262-003			Autosampler Lo Date Collected Data Type: Ori	l: 8/13/20: ginal		9 PM	
Sequence No. Sample ID: R Analyst: Enitial Samp Dilution:	1004262-003			Date Collected	: 8/13/203 ginal Vol:		99 PM	
Sample ID: R Analyst: Initial Samp	1004262-003 Le Wt:			Date Collected Data Type: Ori Initial Sample Sample Prep Vo	l: 8/13/20: ginal Vol: l: 50 mL	10 7:00:0)9 PM	
Sample ID: R Analyst: Initial Samp	1004262-003 le Wt: 1004262-003			Date Collected Data Type: Ori Initial Sample Sample Prep Vo	l: 8/13/20: ginal Vol: l: 50 mL	10 7:00:(
Sample ID: R Analyst: Initial Samp Dilution: Mean Data: R	1004262-003 Le Wt: 1004262-003 Mean Corrected		Calib	Date Collected Data Type: Ori Initial Sample Sample Prep Vo	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample		- -
Sample ID: R malyst: mitial Samp Dilution: Mean Data: R malyte	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity	Conc.	Calib Units	Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev.	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Std.Dev. 1	RSD
Sample ID: R nalyst: nitial Samp ilution: ean Data: R nalyte 371.029	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity 7398639.4	Conc. 0.8473	Calib Units mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00356	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1	.429
ample ID: R nalyst: nitial Samp ilution: ean Data: R nalyte 371.029 g 328.068;	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4	Conc. 0.8473 0.0006	Calib Units mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00356 0.00038	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67	.429 .669
ample ID: R nalyst: nitial Samp ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9	Conc. 0.8473 0.0006 0.0716	Calib Units mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00356 0.00038 0.00281	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3	.42१ .66१ .92१
ample ID: R nalyst: nitial Samp ilution: ean Data: R nalyte 371.029 g 328.068 l 308.215 s 188.979†	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7	Conc. 0.8473 0.0006 0.0716 0.0501	Calib Units mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00356 0.00038 0.00281 0.00064	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3	.429 .669 .929 .299
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8	Conc. 0.8473 0.0006 0.0716 0.0501 4.371	Calib Units mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0	.429 .669 .929 .299
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661	Calib Units mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0	.429 .669 .929 .299 .959
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0	.429 .669 .929 .299 .959 .189
ample ID: R: nalyst: nitial Samp: ilution: Gean Data: R: 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 1 0 0 0	.429 .669 .929 .299 .959 .189 .809
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 Le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 1 0 0 0	.429 .669 .929 .299 .959 .189 .809
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 1 0 0 13 6 0	.429 .669 .929 .299 .959 .189 .809 .809
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.0003 0.0001 0.1294 0.0292 0.0943	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0	.429 .669 .929 .299 .189 .809 .029 .039
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863†	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0	.42 ⁴ .92 ⁴ .29 ⁴ .95 ⁴ .80 ⁴ .02 ⁴ .30 ⁴
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .299 .189 .809 .029 .039 .309 .249 .419
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077†	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .299 .189 .809 .029 .309 .249 .419
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077†	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.42 ⁴ .92 ⁴ .29 ⁴ .18 ⁴ .02 ⁴ .24 ⁸ .24 ⁸ .40 ⁸
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; r 267.716; u 324.752; e 238.863; 404.721; g 279.077; n 257.610;	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .299 .189 .029 .039 .039 .309 .419 .419 .419
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; r 267.716; u 324.752; e 238.863; 404.721; g 279.077; n 257.610; o 202.031;	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 13 6 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0	.42 ⁴ .92 ⁴ .29 ⁴ .18 ⁴ .02 ⁴ .24 ⁹ .40 ⁸ .40 ⁸ .40 ⁸ .39 ⁵
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.42 ⁴ .66 ⁵ .92 ⁵ .29 ⁵ .95 ⁵ .80 ⁵ .02 ⁵ .02 ⁴ .30 ²⁴ .30 ²⁴ .41 ⁸ .40 ⁸ .40 ⁸ .40 ⁸ .95 ⁸ .95 ⁸ .77 ⁸
ample ID: R: nalyst: nitial Samp: ilution: ean Data: R: nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237†	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 13 6 0 13 6 0 0 0 0 0 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 13 10 0 0 0	.42 ⁴ .66 ⁵ .92 ⁹ .95 ⁴ .80 ⁹ .03 ⁹ .03 ⁹ .41 ⁹ .00 ⁷ .40 ⁹ .95 ⁹ .95 ⁹ .24 ⁹ .03 ⁹ .41 ⁹ .95 ⁹ .13 ⁹ .1
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	.42 ⁴ .66 ⁵ .92 ⁸ .29 ⁹ .80 ⁹ .03 ⁹ .03 ⁹ .41 ⁹ .03 ⁹ .41 ⁹ .03 ⁹ .1
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0201 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .955 .809 .039 .039 .039 .039 .039 .039 .039 .0
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020 0.0026	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 13 6 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .955 .955 .039 .039 .039 .039 .039 .039 .039 .039
Ample ID: R: nalyst: initial Samp: ilution: analyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; r 267.716; u 324.752; e 238.863; 404.721; g 279.077; n 257.610; o 202.031; i 231.604; a 330.237; b 220.353; b 220.353; b 206.836; e 196.026; n 189.927;	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0 799.9	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020 0.0026 0.0340	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 13 6 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.429 .669 .929 .959 .959 .039 .039 .039 .039 .039 .039 .039 .03
ample ID: R: nalyst: nitial Samp: ilution: 	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0 799.9 4417.9	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020 0.0026 0.0340 0.0078	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.42999999999999999999999999999999999999
<pre>sample ID: R: malyst: initial Samp: vilution: sample ID: R: malyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; e 238.616; r 267.716; u 324.752; e 238.863; 404.721; g 279.077; n 257.610; o 202.031; i 231.604; a 330.237; b 206.836; e 196.026; n 189.927; i 337.279; l 190.801;</pre>	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0 799.9 4417.9 -17.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020 0.0026 0.0340 0.0078 -0.0015	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 13 6 0 0 13 0 0 0 0 13 0 0 0 0 13 0 0 0 0 13 0 0 0 0	.428 .668 .929 .258 .808 .003 .208 .408 .408 .408 .408 .408 .408 .408 .4
<pre>ample ID: R: malyst: mitial Samp: pilution: analyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; b 228.616; r 267.716; u 324.752; e 238.863; 404.721; g 279.077; n 257.610; o 202.031; i 231.604; a 330.237; b 220.353; b 206.836; e 196.026; n 189.927; i 337.279; l 190.801; 292.402;</pre>	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0 799.9 4417.9 -17.0 2920.3	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 -0.0003 0.0001 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0026 0.0026 0.0340 0.0078 -0.0015 0.0111	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 13 6 0 0 13 0 0 0 13 0 0 0 0 13 0 0 0 0 0 0	.42% .66% .92% .92% .92% .88% .02% .02% .030% .41% .00% .41% .95% .95% .30% .17% .95% .34% .34% .34% .34% .34% .34% .34% .34
Sample ID: R Analyst: Initial Samp Dilution:	1004262-003 le Wt: 1004262-003 Mean Corrected Intensity 7398639.4 224.4 3522.9 416.7 1012914.8 24050.4 -1869.9 110.4 17311.3 6336.0 44994.5 137297.0 110675.4 2568447.6 263550.1 7310.5 7269.3 2881090.7 24.7 12.8 16.0 799.9 4417.9 -17.0	Conc. 0.8473 0.0006 0.0716 0.0501 4.371 0.0661 0.1294 0.0292 0.0943 2.252 65.33 0.1517 0.1368 0.0482 1580 0.0010 0.0020 0.0026 0.0340 0.0078 -0.0015	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	: 8/13/20 ginal Vol: l: 50 mL	10 7:00:(Sample	Std.Dev. 1 0 67 3 1 0 0 13 6 0 13 6 0 0 13 0 0 0 13 0 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 0	.428 .668 .929 .258 .808 .003 .208 .408 .408 .408 .408 .408 .408 .408 .4

Page 40

Date: 8/13/2010 7:10:32 PM

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

• Sequence No.: 56 Autosampler Location: 68 Sample ID: R1004263-001 Date Collected: 8/13/2010 7:04:24 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL

Mean Data: R1004263-001

Mean Data: R10042	63-001							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	8239469.1	0.9436	mq/L	0.00128				0.14
Ag 328.068†	-459.8	0.0005	mq/L	0.00040				75.71
Al 308.215†	1062566.0	24.64	mg/L	0.051				0.21
As 188.979†	-126.4			0.00169				63.94
B 249.772†	35330.5	-0.0026 0.0592	mg/L	0.00089				1.51
	2349.5	0.0047	ma/T	0.00026				5.55
Ba 233.527† Be 313.107†	-429.7	0.0047 0.0000	mg/I	0.00002				87.42
Cd 226.502†	710.5	-0.0006	mg/I	0.00004				6.19
Co 228.616†	812.2	-0.0006 0.0054	mg/L	0.00039				7.34
Cr 267.716†	2262.9	0.0113		0.00025				2.19
Cu 324.7521	1997932.1	4.234		0.0069				0.16
Fe 238.863†	1795724.5	29.65		0.076				0.16
K 404.721†				0.070			4 7 7	
		1.265 0.0047	ma / T	0 0020			4.11	
Mg 279.077†	50436.5	1.265	mg/ш	0.0039				0.31
Mn 257.610†	8165.0	0.0047	mg/L	0.00004				0.82
Mo 202.031†	366.0	0.0083	mg/L	0,00035				4.19
Ni 231.604†	889.7	0.0058	mg/L	0.00004				0.75
Na 330.237†	53195.3	29.20	mg/L	0.050				0.17
Pb 220.353†	203.2	0.0087 -0.0029	mg/L	0.00164				18.92
Sb 206.836†	-14.0	-0.0029	mg/L	0.00152				51.85
Ge 196.026†	-35.6	0.0010	mg/L	0.00432			4	416.65
3n 189.927†	6.5	0.0087	mg/L	0.00045				5.19
Fi 337.279†	11823.3	0.0228	mg/L	0.00057				2.49
rl 190.801†	-0.3	0.0014	mg/L	0.00501			-	350.37
	- 561 /	0.0006	mg/L	0.00041				64.05
7 292.402†	. JOT • -							0.40
/ 292.402† Zn 206.200†	21064.8	0.0681	mg/L	0.00027				0.10
V 292.402† Zn 206.200† Ca 227.546†	-35.6 6.5 11823.3 -0.3 -561.4 21064.8 31847.9	0.0681 56.69	mg/L mg/L	0.00027 0.443				
292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c Sequence No.: 57	31847.9 14663.9 calculated. Sampl	0.0554 e Prep. V	mg/L mg/L /ol. ANE	0.443 0.00033) Initial Vol. 1		***=====		0.78 0.60 crect.
Sa 227.5467 Sr 460.7337 Sample conc. not c Sequence No.: 57 Sample ID: R100426 Analyst:	31847.9 14663.9 calculated. Sampl	0.0554 e Prep. V	mg/L mg/L /ol. AND	0.443 0.00033) Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig	ation: 6 8/13/20 ginal		d42=======	0.78 0.60 crect.
Sa 227.545 Sample conc. not c Sequence No.: 57 Sample ID: R100426 Malyst: Initial Sample Wt: Dilution:	31847.9 14663.9 calculated. Sampl	56.69 0.0554 e Prep. \	mg/L mg/L /ol. ANT	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Oric Initial Sample Sample Prep Vol	ation: 6 8/13/20 yinal Vol: .: 50 mL	9 10 7:08:3	7 PM	0.78 0.60 crect.
Ca 227.546 Sr 460.733† Sample conc. not c Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution:	31847.9 14663.9 calculated. Sampl	56.69 0.0554 e Prep. \ =======	mg/L mg/L /ol. ANT	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Oric Initial Sample Sample Prep Vol	ation: 6 8/13/20 yinal Vol: .: 50 mL	9 10 7:08:3	d42=======	0.78 0.60 crect.
Ca 227.546 Sr 460.733† Sample conc. not c Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution: Mean Data: R100426	31847.9 14663.9 calculated. Sampl 53-002 3-002 Mean Corrected	56.69 0.0554 e Prep. \ =======	mg/L mg/L /ol. ANI Calib	0.443 0.00033 Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM	0.78 0.60 crect.
a 227.5467 Sr 460.7337 Sample conc. not c sequence No.: 57 Sample ID: R100426 malyst: nitial Sample Wt: Silution: Gean Data: R100426 nalyte	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity	56.69 0.0554 e Prep. \ =======	mg/L mg/L /ol. ANI Calib Units	0.443 0.00033 D Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM	0.78 0.60 crect.
a 227.5467 ar 460.7337 ample conc. not c sequence No.: 57 ample ID: R100426 nalyst: nitial Sample Wt: ilution: 	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity	56.69 0.0554 e Prep. \ =======	mg/L mg/L /ol. ANI Calib Units	0.443 0.00033 D Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM	0.78 0.60 crect. RSD 0.44
a 227.545 ar 460.733† sample conc. not c sequence No.: 57 sample ID: R100426 nalyst: chitial Sample Wt: bilution: Lean Data: R100426 nalyte 371.029 g 328.068†	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5	Conc. 0.9432 0.0554 0.9554	mg/L mg/L /ol. ANI ======= Calib Units mg/L mg/L	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM	0.78 0.60 crect.
A 227.545 Sr 460.733† Sample conc. not c sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Hean Data: R100426 malyte 5371.029 G 328.068†	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5	Conc. 0.9432 0.0554 0.9554	mg/L mg/L /ol. ANI ======= Calib Units mg/L mg/L	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.5457 Sr 460.7337 Sample conc. not c Sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Mean Data: R100426 malyte (371.029 Sg 328.0687 1 308.2157 Ss 188.9797	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6	Conc. 0.9432 0.0035 4 0.035 41.30 -0.0005	mg/L mg/L /ol. ANI Calib Units mg/L mg/L mg/L mg/L	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.5467 Sr 460.7337 Sample conc. not c Sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Sean Data: R100426 malyte 371.029 g 328.0687 l 308.2157 s 188.9797 249.7727	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6	Conc. 0.9432 0.00554 0.0554 0.0254	mg/L mg/L /ol. AND 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.5467 Sr 460.7337 Sample conc. not c sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Cean Data: R100426 malyte 371.029 G 328.0687 1 308.2157 I 308.2157 A 233.5277	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4	Conc. 0.9432 0.00554 e Prep. V 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058	mg/L mg/L /ol. ANI ======= Calib Units mg/L mg/L mg/L mg/L mg/L	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.5457 Sr 460.7337 Sample conc. not c Sequence No.: 57 Sample ID: R100426 malyst: Solution: Cean Data: R100426 malyte 371.029 g 328.0687 l 308.2157 s 188.9797 249.7727 a 233.5277 e 313.1077	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6	Conc. 0.9432 0.0055 e Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716 0.00298	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.5457 Sr 460.7337 Sample conc. not c Sequence No.: 57 Sample ID: R100426 malyst: Solution: Cean Data: R100426 malyte 371.029 g 328.0687 l 308.2157 s 188.9797 249.7727 a 233.5277 e 313.1077	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4	Conc. 0.9432 0.00554 e Prep. V 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716 0.00298 0.00012	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
a 227.5467 ir 460.7337 sample conc. not c sequence No.: 57 sample ID: R100426 nalyst: nitial Sample Wt: bilution: Gean Data: R100426 nalyte 371.029 g 328.0687 l 308.2157 s 188.9797 249.7727 a 233.5277 e 313.1077 d 226.5027	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8	Conc. 0.9432 0.0055 e Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001	mg/L mg/L /ol. ANI Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.004 0.00716 0.00298 0.00012 0.00003	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
a 227.5467 ir 460.7337 iample conc. not c sequence No.: 57 iample ID: R100426 nalyst: nitial Sample Wt: bilution: iean Data: R100426 nalyte 371.029 g 328.0687 l 308.2157 s 188.9797 249.7727 a 233.5277 e 313.1077 d 226.5027 o 228.6167	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3	Conc. 0.9432 0.0055 e Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001 -0.0007 0.0009	mg/L mg/L /ol. ANI Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.443 0.00033 0 Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00298 0.00012 0.00003 0.00014	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect. RSD 0.44 7.97 0.16 999.9 5.70 2.11 41.59 19.28 63.88
A 227.545 Sr 460.733; Sample conc. not concentrations Sequence No.: 57 Sample ID: R100426 malyst: mitial Sample Wt: Dilution: Tean Data: R100426 malyte (371.029 kg 328.068; 1 308.215; 1 308.215; 1 308.215; 1 308.215; 2 49.772; 2 49.772; 2 33.527; 2 49.772; 3 13.107; 3 226.502; 2 228.616; 2 26.716;	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5	Conc. 0.9432 0.0554 Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001 -0.0007 0.0009 0.0141	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716 0.00298 0.00012 0.00003 0.00014 0.00059 0.00014	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.545 Fr 460.733 Sample conc. not concentration Sequence No.: 57 Sample ID: R100426 malyst: mitial Sample Wt: Dilution: Tean Data: R100426 malyte (371.029 kg 328.068 1 308.215 1 308.215 1 308.215 2 49.772 1 42 23.527 1 42 23 23.527 1 42 23.527 1 42 23 23.527	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9	Conc. 0.9432 0.0554 Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001 -0.0007 0.0009 0.0141 7.828	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00298 0.00012 0.00003 0.00014 0.00059 0.00014 0.00043	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect. RSD 0.44 7.97 0.16 999.9 5.70 2.11 41.59 19.28 63.88 63.88 0.98 0.06
A 227.545 Fr 460.733; Sample conc. not concentrations Sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Mean Data: R100426 malyte (371.029 kg 328.068; 1 308.215; 1 308.215; 1 308.215; 2 49.772; 2 49.772; 4 233.527; 4 313.107; 4 226.502; 5 228.616; 5 267.716; 4 324.752; 6 238.863; 1 308.215; 1 308.225; 1 308.255; 1 308.255; 1 308.255; 1 308.255; 1 308.255; 1	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1	Conc. 0.9432 0.0554 Prep. V Conc. 0.9432 0.0035 41.30 -0.0005 0.0524 0.0058 -0.0001 -0.0007 0.0009 0.0141	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.064 0.00716 0.00298 0.00012 0.00003 0.00014 0.00059 0.00014	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.545 Fr 460.733; Sample conc. not concentrations Sequence No.: 57 Sample ID: R100426 malyst: Chitial Sample Wt: Dilution: Mean Data: R100426 malyte (371.029 g 328.068; l 308.215; s 188.979; 2249.772; a 233.527; d 226.502; b 228.616; r 267.716; r 324.752; e 238.863; 404.721;	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1 72.1	Conc. 0.9432 0.0554 e Prep. V 	mg/L mg/L /ol. ANI 	0.443 0.00033) Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00298 0.00012 0.00003 0.00014 0.00059 0.00014 0.00043 0.094	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.545 Sample 207.5457 Sample conc. not concentration Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution: Gean Data: R100426 Malyte 371.029 Mg 328.0687 M 308.2157 M 233.52777 M 233.5277 M 233.52777 M 233.52777 M 233.	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1 72.1 46449.0	56.69 0.0554 e Prep. V 	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00012 0.00014 0.00014 0.00014 0.0004 0.004	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
A 227.545 Sr 460.733; Sample conc. not concentrations Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution: Gean Data: R100426 Analyte 7 371.029 Ag 328.068; Al 308.215; As 188.979; Ba 233.527;	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1 72.1 46449.0 10808.8	56.69 0.0554 e Prep. V 	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00012 0.00012 0.00014 0.00043 0.0094 0.0004 0.0004 0.0004	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
Ca 227.5467 Sr 460.7337 Sample conc. not co Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution: Mean Data: R100426 Analyte (371.029 Ag 328.0687 Al 308.2157 As 188.9797 As 249.7727 As 313.1077 Cd 226.5027 Co 228.6167 Cr 267.7167 Cr 267.7167 Cr 267.7167 Cr 238.8637 (404.7217 Mg 279.0777 Mg 279.0777 Mg 279.0777 Mg 202.0317	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1 72.1 46449.0 10808.8 383.8	Conc. Conc. 0.9432 0.0055 41.30 -0.0005 0.0524 0.0058 -0.0001 -0.0007 0.0009 0.0141 7.828 39.04 1.158 0.0062 0.0092	mg/L mg/L /ol. ANI 	0.443 0.00033 0 Initial Vol. 1 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00028 0.00012 0.00012 0.00014 0.00059 0.00014 0.0004 0.0094 0.0004 0.0004 0.0004 0.00047	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.
Ca 227.545 Sr 460.733† Sample conc. not c Sequence No.: 57 Sample ID: R100426 Analyst: Initial Sample Wt: Dilution: Mean Data: R100426 Analyte X 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† 3a 233.527† 3a 249.772† 3a 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cy 324.752†	31847.9 14663.9 calculated. Sampl 53-002 Mean Corrected Intensity 8236051.3 418.5 1780747.1 -139.6 40191.6 2874.4 -672.8 952.3 240.9 2817.5 3694643.9 2364741.1 72.1 46449.0 10808.8	56.69 0.0554 e Prep. V 	mg/L mg/L /ol. ANI 	0.443 0.00033 D Initial Vol. n Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00418 0.00028 0.00418 0.00012 0.00012 0.00014 0.00043 0.0094 0.0004 0.0004 0.0004	ation: 6 8/13/20 ginal Vol: .: 50 mL	9 10 7:08:3 Sample	7 PM Std.Dev.	0.78 0.60 crect.

Method: AXIAL200-0	6010 L Opt4		Page 41	Date: 8/13/2010 7:18:54	4 PM
Pb 220.353†	337.8	0.0148 mg/L	0.00066	4	45%
Sb 206.836†	-0.9	~0.0008 mg/L	0.00147	173.2	
Se 196.026†		0.0073 mg/L	0.00597	±,3., 81.,	
Sn 189.927†	-30 2	0.0083 ma/T	0.00129	15.5	
Ti 337.279†	10792.5	0.0208 mg/L	0.00025		20%
Tl 190.801†	-9.9	0.0006 mg/L	0.00401	640.6	
V 292.402†	-685.2	0.0006 mg/L 0.0011 mg/L	0.00021	20.0)5%
Zn 206.200†	33071.0	0.1073 mg/L	0.00096	0.8	39%
Ca 227.546†	24594.1	44.65 mg/L	0.558	1.2	25%
Sr 460.733†	12159.2	0.0461 mg/L	0.00027		588
Sample conc. not o	calculated. Sample	e Prep. Vol. A	ND Initial Vol.	required OR sample units incorrect	5.
					:==
Sequence No.: 58			Autosampler Lo		
Sample ID: R100426	53-003		Date Collected	d: 8/13/2010 7:12:50 PM iginal	
Analyst: Initial Sample Wt:			Initial Sample		
Dilution:			Sample Prep Vo		
			bumpic ricp (
Mean Data: R100426	3-003				
	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units Std. Dev. RS	5D
Y 371.029	8363057.5	0.9578 mg/L	0.00107	0.1	.1%
Ag 328.068†	85.4	0.0016 mg/L	0.00060	36.4	:7%
Al 308.215†		26.99 mg/L	0.051	0.1	
As 188.979†	-93.1	-0.0008 mg/L	0.00712	845.2	
B 249.772†		0.0323 mg/L	0.00095	2.9	
Ba 233.527†		0.0039 mg/L	0.00015	3.8	
Be 313.107†		0.0000 mg/L	0.00001	155.6	
Cd 226.502† Co 228.616†	600.0 163.4	-0.0004 mg/L 0.0006 mg/L	0.00003 0.00068	6.2 108.1	
Cr 267.716†	1954.0			1.5	
Cy 324.752†	2380894.9	5.044 mg/L	ℓ 0.0095	0.1	
Fe 238.863†	1484562.1	24.51 mg/L	0.092	0.3	
K 404.721†	2424.4	5.		138.72 5.7	
Mg 279.077†	32028.8	0.8000 mg/L	0.00299	0.3	
Mn 257.610†	7622.0	0.0044 mg/L	0.00003	0.5	98
Mo 202.031†	295.2	0.0068 mg/L	0.00063	9.2	98
Ni 231.604†	610.6	0.0039 mg/L	0.00033	8.4	5%
Na 330.237†	35988.1	19.74 mg/L	0.029	0.1	
Pb 220.353†	238.3	0.0106 mg/L	0.00123	11.6	
Sb 206.836†		-0.0003 mg/L	0.00007	22.2	
Se 196.026†	-9.5 -83.2	0.0039 mg/L	0.00042	10.6	
Sn 189.927† Ti 337.279†	-83.2 9593.0	0.0054 mg/L 0.0185 mg/L	0.00007 0.00025	1.3	
Tl 190.801†		0.0008 mg/L	0.00065	1.3 85.3	
V 292.402†	-472.6	0.0005 mg/L	0.00004	8.3	
Zn 206.200†	21447.7	0.0694 mg/L	0.00030	0.4	
Ca 227.546†	34344.2	60.74 mg/L	0.189	0.3	
Sr 460.733†	15531.2	0.0588 mg/L	0.00001	0.0	38
Sample conc. not c	alculated. Sample	e Prep. Vol. AN	ND Initial Vol.	required OR sample units incorrect	
				***************************************	n =
Sequence No.: 59			Autosampler Lo		
Sample ID: R100426	3-004			L: 8/13/2010 7:17:01 PM	
Analyst:			Data Type: Ori	-	
Initial Sample Wt:			Initial Sample		
Dilution:			Sample Prep Vo	1: 50 mL	
Mean Data: R100426					
	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units Std.Dev. RS	D
Y 371.029	8435994.9	0.9661 mg/L	0.00524	0.5	
Ag 328.068†	-307.6	0.0006 mg/L	0.00151	240.8	
Al 308.215†	946563.5	21.95 mg/L	0.065	0.3	
As 188.979†		-0.0033 mg/L	0.00464	140.7	
B 249.772†		0.0321 mg/L	0.00541	16.8	
Ba 233.527†		0.0042 mg/L	0.00007	1.5	
Be 313.107†		0.0000 mg/L	0.00003	>999.3	
Cd 226.502†	565.5	-0.0005 mg/L	0.00024	45.9	/35

Method: AXIAL200-6	5010 L Opt4	F	age 42	Date: 8/13/2010 7:27:20 P
Co 228.616†	215.5	0.0010 mg/L	0.00003	2.72%
Cr 267.716†	1809.6	· · · · · · · · · · · · · · · · · · ·		4.99%
Qu 324.752†		0.0090 mg/L 5.028 mg/L		
	2373173.3	5.028 mg/L 4	0.0064	0.13%
Fe 238.863†	1473889.5	24.33 mg/L	0.148	0.61%
K 404.721†	2442.4			50.86 2.08%
Mg 279.077†	31671.8	0.7909 mg/L	0.00237	0.30%
Mn 257.610†	9108.2	0.0053 mg/L		
			0.00001	0.17%
Mo 202.031†	230.0	0.0055 mg/L	0.00041	7.46%
Ni 231.604†	570.1	0.0037 mg/L	0.00028	7.71%
Na 330.237†	35870.7	19.70 mg/L	0.012	0.06%
Pb 220.353†	253.2			
		0.0104 mg/L	0.00103	9.87%
Sb 206.836†	-7.9	-0.0018 mg/L	0.00160	89.68%
Se 196.026†	-13.3	0.0036 mg/L	0.00001	0.35%
Sn 189.927†	-1.2	0.0066 mg/L	0.00134	20.44%
Ti 337.279†		0.0193 mg/L		
_	9967.3	0.0193 mg/L	0.00109	5.66%
Tl 190.801†	-22.3	-0.0017 mg/L	0.00186	109.22%
V 292.402†	-488.0	0.0004 mg/L	0.00021	48.74%
Zn 206.200†	21882.2	0.0710 mg/L	0.00013	0.18%
Ca 227.546†				
		40.84 mg/L	0.174	0.43%
Sr 460.733†	13201.3	0.0502 mg/L	0.00009	0.18%
Sample conc. not c	alculated. Sample	Prep. Vol. AN	D Initial Vol	. required OR sample units incorrect.
	-	-		
Sequence No.: 60			Autosampler 1	
Sample ID: R100426	3-005		Date Collecte	ed: 8/13/2010 7:21:14 PM
Analyst:			Data Type: O	riginal
Initial Sample Wt:			Initial Samp	-
Dilution:			Sample Prep	
oziucion.			Sambre Lieb	VOI: 50 mil
				
Mean Data: R100426	3-005			
	Mean Corrected	Calib		Sample
Analyte	Intensity	Conc. Units	6+4 D	
-	-		Std.Dev.	Conc. Units Std.Dev. RSD
2 371.029	8322662.4	0.9531 mg/L	0.00496	0.52%
Ag 328.068†	136.3	0.0018 mg/L	0.00052	28.30%
AĪ 308.215†	1106906.1	25.67 mg/L	0.080	0.31%
As 188.979†	-87.0	0.0000 mg/L	0.00301	>999.9%
3 249.772†	25515.1	0.0311 mg/L	0.00170	5.46%
3a 233.527†	2001.8	0.0040 mg/L	0.00003	0.70%
Be 313.107†	-545.2	0.0000 mg/L	0.00001	
				19.13%
Cd 226.502†		-0.0005 mg/L	0.00018	37.27%
Co 228.616†	257.6	0.0013 mg/L	0.00014	10.54%
Cr /267.716†	1804.4	0.0090 mg/L	0.00019	2.15%
Cy 324.752†	2402057.5	5.089 mg/L 🖊	0.0216	0.42%
e 238.863†	1504375.6	24.83 mg/L	0.117	0.47%
C 404.721t	2546.0	0		263.22 10.34%
Iq 279.077†		0 7700 /1	0 00100	
	31248.0	0.7799 mg/L	0.00123	0.16%
in 257.610†	8733.4	0.0051 mg/L	0.00000	0.10%
lo 202.031†	239.6	0.0057 mg/L	0.00020	3.47%
Ji 231.604†	633.2			
		0.0041 mg/L	0.00005	1.35%
a 330.237†	36739.0	20.17 mg/L	0.108	0.54%
b 220.353†	250.5	0.0108 mg/L	0.00191	17.69%
b 206.836†	7.1	0.0008 mg/L	0.00223	282.64%
e 196.026†	-18.7	0.0026 mg/L	0.00494	189.42%
n 189.927†	-28.8	0.0064 mg/L	0.00097	15.26%
i 337.279†	9774.5	0.0189 mg/L	0.00035	1.86%
1 190.801†	-6.1			
		0.0005 mg/L	0.00114	251.03%
292.402†	-463.0	0.0006 mg/L	0.00026	46.58%
in 206.200†	23591.1	0.0765 mg/L	0.00018	0.23%
a 227.546†	27635.0	49,15 mg/L	0.110	
				0.22%
r 460.733†	14329.7	0.0544 mg/L	0.00042	0.78%
ample conc. not ca	alculated. Sample	Prep. Vol. ANI	D Initial Vol.	required OR sample units incorrect.
***************************************		=======================================		***************************************
Sequence No.: 61			Autosampler L	ocation: 73
ample ID: R1004264	4-001		-	d: 8/13/2010 7:25:26 PM
-				
nalyst:			Data Type: Or	-
nitial Sample Wt:			Initial Sampl	e Vol:
ilution:			Sample Prep V	

Mean Data: R1004264-001

00086

_

	6010 L Opt4			ge 43		Date.	8/13/2010 7:	
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
¥ 371.029	8278283.4	0.9481	mg/L	0.01903				2.01%
vg 328.068†	13743.4	0.0367	mg/L	0.00096				2.61%
l 308.215†	6915.0	0.1525	mg/L	0.00309.				2.02%
s 188.979†	78.9	0.0096	mg/L	0.00073				7.58%
249.772†	32432.1	0.1329	mg/L	0.00131				0.98%
a 233.527†	28035.6	0.0774		0.00207				2.68%
e 313.107†	-746.6	-0.0001	<u> </u>	0.00005				57.09%
d 226.502†	-63.0	-0.0002		0.00004				27.13%
0 228.616†	22.5	0.0001	-	0.00051				507.06%
r 267.716†	2015.7	0.0092	- .	0.00028				3.01%
u 324.752†	13979.5	0.0291	- · .	0.00001				0.02%
e 238.863†	15824.9	0.2539	- · ·	0.01937				7.63%
404.721†	1940.9			0101507			174.54	
g 279.077†	465938.8	l1.85	mcr/L	0.133			1/1.51	1.12%
n 257.610†	35748.8	0.0205		0.00056				2.71%
0 202.031†	535.8	0.0100		0.00076				7.62%
i 231.604†	1102.8	0.0072		0.00003				
a 330.237†		244.3						0.44%
	445726.9			4.86				1.99%
Pb 220.353†	281.0	0.0107		0.00052				4.84%
Sb 206.836†	90.3	0.0157		0.00262				16.69%
e 196.026†	14.3	0.0018		0.00451				246.08%
Sn 189.927†	-63.1	0.0029		0.00012				4.00%
'i 337.279†	682.9	0.0010		0.00006				6.25%
1 190.801†	12.1	0.0018		0.00282				159.24%
292.402†		0.0012		0.00019				15.77%
In 206.200†	13722.4	0.0443		0.00157				3.55%
Ca 227.546†		61.19		1.367				2.23%
r 460.733†	70307.5 alculated. Sample	0.2707		0.00544				2.01%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt:			A D D I	utosampler Lo Date Collected Data Type: Ori Cnitial Sample	ocation: 3 d: 8/13/203 iginal e Vol:			
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution:			A D I S	Autosampler Lo Date Collected Data Type: Ori Cnitial Sample Cample Prep Vo	ocation: 3 d: 8/13/203 iginal e Vol:			
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution:			A D I S	Autosampler Lo Date Collected Data Type: Ori Cnitial Sample Cample Prep Vo	ocation: 3 d: 8/13/20 iginal a Vol: ol:	10 7:29		
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution:			A D I S	Autosampler Lo Date Collected Data Type: Ori Cnitial Sample Cample Prep Vo	ocation: 3 d: 8/13/20 iginal a Vol: ol:	10 7:29	39 PM	
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV		Conc.	A D J S Calib Units	Autosampler Lo Date Collected Data Type: Ori Cnitial Sample Cample Prep Vo	ocation: 3 d: 8/13/20 iginal a Vol: ol:	10 7:29: Sample	39 PM	
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected	Conc. 0.9740	A D J S S Calib Units mg/L	Autosampler Lo Date Collected Data Type: Ori Cnitial Sample Cample Prep Vo	ocation: 3 1: 8/13/20 iginal = Vol: ol:	10 7:29: Sample	:39 PM	
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0	Conc. 0.9740 0.4991	A D D I S Calib Units mg/L mg/L	Std.Dev. 0.00455 0.00780	ocation: 3 1: 8/13/20 iginal = Vol: ol:	10 7:29 Sample Units	:39 PM	RSD
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32	Conc. 0.9740 0.4991 28.068 R	A D D I S Calib Units mg/L mg/L ecovery	Std.Dev. 0.00455 0.00780 0.0043%	contion: 3 d: 8/13/20 iginal a Vol: bl: Conc.	10 7:29 Sample Units	39 PM Std.Dev.	RSD 0.47%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32	Conc. 0.9740 0.4991 28.068 R	A D D I S Calib Units mg/L mg/L ecovery	Std.Dev. 0.00455 0.00780 0.0043%	Conc. 0.4991	10 7:29 Sample Units mg/L	39 PM Std.Dev. 0.00780	RSD 0.47% 1.56%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8	Conc. 0.9740 0.4991 28.068 R 9.881	A D D I S Calib Units mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 0.00727	Conc. 0.4991	10 7:29 Sample Units mg/L	39 PM Std.Dev.	RSD 0.47% 1.56%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980	A D D I S S Calib Units mg/L ecovery mg/L ecovery mg/L	Std.Dev. 0.00455 0.00727 0.00474	Conc. 0.4991 9.881	Sample Units mg/L mg/L	Std.Dev. 0.00780 0.0727	RSD 0.47% 1.56%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980	A D D I S S Calib Units mg/L ecovery mg/L ecovery mg/L	Std.Dev. 0.00455 0.00727 0.00474	Conc. 0.4991 9.881	Sample Units mg/L mg/L	39 PM Std.Dev. 0.00780	RSD 0.47% 1.56% 0.74%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery	Std.Dev. 0.00455 0.00780 99.83% 0.00727 99.81% 0.00474 99.80%	Conc. 0.4991 9.881 0.9980	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474	RSD 0.47% 1.56% 0.74% 0.48%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: dilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377	A D D I S S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L	std.Dev. 0.00455 0.00780 99.83% 0.00727 99.80% 0.0012	Conc. 0.4991 9.881 0.9980	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00780 0.0727	RSD 0.47% 1.56% 0.74%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery	sutosampler Lo pate Collected ata Type: Ori initial Sample ample Prep Vo 	conc. 0.4991 9.881 0.9980 2.377	Sample Units mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00474 0.0012	RSD 0.47% 1.56% 0.74% 0.48% 0.05%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L covery = mg/L	Std.Dev. 0.00455 0.00727 99.83% 0.00727 99.81% 0.00474 99.80% 0.0012 95.07% 0.0337	conc. 0.4991 9.881 0.9980 2.377	Sample Units mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474	RSD 0.47% 1.56% 0.74% 0.48%
<pre>sequence No.: 62 sample ID: CCV nalyst: nitial Sample Wt: ilution: ean Data: CCV nalyte 371.029 g 328.068† QC value withir 1 308.215† QC value withir s 188.979† QC value withir 249.772† QC value withir a 233.527† QC value withir</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 3.772 Re 9.948 33.527 R	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L covery mg/L covery = mg/L covery	Std.Dev. 0.00455 0.00727 99.83% 0.00727 99.81% 0.00474 99.80% 0.0012 95.07% 0.0337 99.48%	coation: 3 d: 8/13/20 iginal a Vol: ol: Conc. 0.4991 9.881 0.9980 2.377 9.948	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34%
<pre>dean Data: CCV nalyte 371.029 g 328.068† QC value within l 308.215† QC value within s 188.979† QC value within 249.772† QC value within a 233.527† QC value within e 313.107†</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for Ba 249 3581752.0 1 limits for Ba 23 1594634.5	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 = 99.83% 0.00474 = 99.80% 0.0012 99.48% 0.00170	coation: 3 d: 8/13/20 iginal a Vol: ol: Conc. 0.4991 9.881 0.9980 2.377 9.948	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00474 0.0012	RSD 0.47% 1.56% 0.74% 0.48% 0.05%
<pre>sequence No.: 62 sample ID: CCV malyst: initial Sample Wt: ilution: can Data: CCV malyte 371.029 g 328.068† QC value within 1 308.215† QC value within s 188.979† QC value within 249.772† QC value within a 233.527† QC value within e 313.107† QC value within</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery	Std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.0012 95.07% 0.0337 99.48% 0.00170 97.10%	Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70%
<pre>sequence No.: 62 sample ID: CCV malyst: initial Sample Wt: ilution:</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 = 99.83% 0.00474 = 99.80% 0.0012 95.07% 0.00377 = 99.48% 0.0012 95.07% 0.0337 = 99.48% 0.00170 = 97.10% 0.00144	Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 33.527 R 0.2427 13.107 R 0.4975 26.502 R	A D D I S Calib Units mg/L mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery	Std.Dev. 0.00455 0.00780 = 99.83% 0.00474 = 99.80% 0.0012 95.07% 0.00337 = 99.48% 0.00170 = 97.10% 0.00144 = 99.51%	Deation: 3 d: 8/13/20 iginal e Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170 0.00144	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: dilution: dean Data: CCV nalyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† QC value within 249.772† QC value within a 233.527† QC value within d 226.502† QC value within d 228.616†	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 16 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 33.527 R 0.2427 13.107 R 0.2427 26.502 R 2.459	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L	sutosampler Lo pate Collected ata Type: Ori initial Sample ample Prep Vo 	Deation: 3 d: 8/13/20 iginal e Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 16 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Co 22	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 33.527 R 0.2427 13.107 R 0.2427 13.107 R 0.2427 26.502 R 2.459 28.616 R	A D D I S Calib Units mg/L ecovery	sutosampler Lo pate Collected pata Type: Ori initial Sample ample Prep Vo 0.00455 0.00780 = 99.83% 0.0727 = 98.81% 0.00474 = 99.80% 0.0012 95.07% 0.00337 = 99.48% 0.00170 = 97.10% 0.00144 = 99.51% 0.0149 = 98.35%	Deation: 3 d: 8/13/20 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170 0.00144 0.0149	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 16 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Co 22 109745.2	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 33.527 R 0.2427 13.107 R 0.2427 13.107 R 0.4973 26.502 R 2.459 28.616 R 0.4963	A D D I S Calib Units mg/L ecovery mg/L	std.Dev. 0.00455 0.00780 99.83% 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.0012 95.07% 0.0012 95.07% 0.00337 99.48% 0.00170 97.10% 0.00144 99.51% 0.0149 98.35% 0.00086	Deation: 3 d: 8/13/20 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170 0.00144	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: dilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 16 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cr 26	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R 0.2427 13.107 R 0.4975 26.502 R 2.459 28.616 R 0.4963 57.716 R	A D D I S Calib Units mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery mg/L ecovery	std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.0012 95.07% 0.0012 95.07% 0.00170 97.10% 0.00144 99.51% 0.00149 98.35% 0.00086 99.27%	Deation: 3 d: 8/13/20 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170 0.00144 0.0149 0.00086	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cr 26 573995.0	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.3777 2.37777 2.37777 2.37777 2.377777 2.377777 2.37777777777	A D D I S Calib Units mg/L ecovery emg/L ecovery ecovery ecovery ecovery	Std.Dev. 0.00455 0.00780 999.83% 0.00727 98.81% 0.00474 999.80% 0.0012 95.07% 0.0012 95.07% 0.00170 97.10% 0.00144 99.51% 0.00149 98.35% 0.00086 99.27% 0.0065	Deation: 3 d: 8/13/20 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.0337 0.00170 0.00144 0.0149	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60%
<pre>sequence No.: 62 sample ID: CCV malyst: nitial Sample Wt: oilution: sample TD: CCV malyte 371.029 g 328.068; QC value within 308.215; QC value within 1308.215; QC value within 249.772; QC value within a 233.527; QC value within a 233.527; QC value within a 233.527; QC value within a 226.502; QC value within a 228.616; QC value within a 224.752; QC value within a 324.752; QC value within a 224.752; QC value within a 224.752; </pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cr 26 573995.0 1 limits for Cu 32	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 2.3772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 26.502 R 2.459 28.616 R 0.4963 57.716 R 1.215 R	A D D I S Calib Units mg/L mg/L ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery ecovery	Std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00170 99.80% 0.0012 95.07% 0.0012 95.07% 0.00170 97.10% 0.00144 99.51% 0.00144 99.51% 0.00149 98.35% 0.00086 99.27% 0.0065 97.23%	Deation: 3 d: 8/13/20 iginal a Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00337 0.00170 0.00144 0.0149 0.00086 0.0065	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53%
<pre>sequence No.: 62 sample ID: CCV malyst: initial Sample Wt: ilution:</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 30 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for C 26 573995.0 1 limits for Cu 32 302396.6	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 26.502 R 2.459 28.616 R 0.4963 57.716 R 1.215 R 24.752 R	A D D I S Calib Units mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 = 99.83% 0.00727 = 98.81% 0.00474 = 99.80% 0.00170 = 99.48% 0.00170 = 97.10% 0.00144 = 99.51% 0.00144 = 99.51% 0.00149 = 98.35% 0.00149 = 97.23% 0.0287	Deation: 3 d: 8/13/20 iginal a Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00337 0.00170 0.00144 0.0149 0.00086 0.0065	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cr 26 573995.0 1 limits for Cu 32	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 26.502 R 2.459 28.616 R 0.4963 57.716 R 1.215 R 24.752 R	A D D I S Calib Units mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 = 99.83% 0.00727 = 98.81% 0.00474 = 99.80% 0.00170 = 99.48% 0.00170 = 97.10% 0.00144 = 99.51% 0.00144 = 99.51% 0.00149 = 98.35% 0.00149 = 97.23% 0.0287	Deation: 3 d: 8/13/20 iginal a Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00337 0.00170 0.00144 0.0149 0.00086 0.0065	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53%
<pre>sequence No.: 62 sample ID: CCV malyst: initial Sample Wt: oilution: dean Data: CCV malyte 371.029 g 328.068† QC value within l 308.215† QC value within 249.772† QC value within 249.772† QC value within a 233.527† QC value within d 226.502† QC value within d 226.502† QC value within c 228.616† QC value within z 267.716† QC value within a 234.752† QC value within d 226.716† QC value within a 238.863† QC value within d 200 value within d 228.616†</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for Al 30 8514.3 1 limits for Ba 23 1594634.5 1 limits for Ba 33 1594634.5 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cr 26 573995.0 1 limits for Cu 32 302396.6 1 limits for Fe 23 4884.4	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 9.772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 26.502 R 2.459 28.616 R 0.4963 57.716 R 1.215 R 24.752 R	A D D I S Calib Units mg/L ecovery mg/L	Std.Dev. 0.00455 0.00780 = 99.83% 0.00727 = 98.81% 0.00474 = 99.80% 0.00170 = 99.48% 0.00170 = 97.10% 0.00144 = 99.51% 0.00144 = 99.51% 0.00149 = 98.35% 0.00149 = 97.23% 0.0287	Deation: 3 d: 8/13/20 iginal a Vol: Dl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00337 0.00170 0.00144 0.0149 0.00086 0.0065	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53%
<pre>sequence No.: 62 sample ID: CCV malyst: initial Sample Wt: oilution: sample TD: CCV malyst: initial Sample Wt: oilution: sample CCV malyte 371.029 g 328.068† QC value within 1 308.215† QC value within 249.772† QC value within a 233.527† QC value within a 233.527† QC value within d 226.502† QC value within c 228.616† QC value within r 267.716† QC value within u 324.752† QC value within e 238.863† QC value within e 238.863† QC value within</pre>	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for Be 249 3581752.0 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cc 22 109745.2 1 limits for Cc 22 302396.6 1 limits for Fe 23 4884.4 ate QC.	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.3772 2.3777 2.3777 2.3772 2.37	A D D I S Calib Units mg/L ecovery mg/L	std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.0012 95.07% 0.0012 95.07% 0.00170 99.48% 0.00170 99.51% 0.00144 99.51% 0.0149 98.35% 0.0149 98.35% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0287 99.71%	Deation: 3 d: 8/13/203 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215 4.985	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00377 0.00170 0.00144 0.0149 0.00086 0.00085 0.0287 159.37	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53% 0.58%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for Be 249 3581752.0 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cc 22 109745.2 1 limits for Cc 22 302396.6 1 limits for Fe 23 4884.4 ate QC.	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.3772 2.3777 2.3777 2.3772 2.37	A D D I S Calib Units mg/L ecovery mg/L	std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.0012 95.07% 0.0012 95.07% 0.00170 99.48% 0.00170 99.51% 0.00144 99.51% 0.0149 98.35% 0.0149 98.35% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0149 99.51% 0.0287 99.71%	Deation: 3 d: 8/13/203 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215 4.985	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00377 0.00170 0.00144 0.0149 0.00086 0.00085 0.0287 159.37	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53% 0.58%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for B 249 3581752.0 1 limits for Ba 23 1594634.5 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cd 22 302396.6 1 limits for Fe 23 4884.4 ate QC. 991473.3 1 limits for Mg 27	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 2.377 2.3772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 28.616 R 0.4963 57.716 R 1.215 24.752 R 4.985 38.863 R 25.21 R 29.077 R	A D D I S Calib Units mg/L ecovery	std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.00170 95.07% 0.0337 99.48% 0.00170 97.10% 0.00144 99.51% 0.00144 99.51% 0.00149 98.35% 0.00149 99.27% 0.0045 99.27% 0.0086 99.27% 0.00287 99.71% 0.135 = 100.86%	Deation: 3 d: 8/13/203 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215 4.985	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00377 0.00170 0.00144 0.0149 0.00086 0.00085 0.0287 159.37	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.29% 0.60% 0.17% 0.53% 0.58% 3.26%
equence No.: 62 ample ID: CCV nalyst: nitial Sample Wt: ilution: 	Mean Corrected Intensity 8504770.5 186055.0 1 limits for Ag 32 426223.8 1 limits for Al 30 8514.3 1 limits for As 18 553429.4 1 limits for Be 249 3581752.0 1 limits for Be 31 190381.6 1 limits for Cd 22 328701.9 1 limits for Cd 22 328701.9 1 limits for Cd 22 109745.2 1 limits for Cd 22 302396.6 1 limits for Fe 23 4884.4 ate QC. 991473.3	Conc. 0.9740 0.4991 28.068 R 9.881 08.215 R 0.9980 38.979 R 2.377 2.377 2.3772 Re 9.948 3.527 R 0.2427 13.107 R 0.4975 28.616 R 0.4963 57.716 R 1.215 24.752 R 4.985 38.863 R 25.21 R 29.077 R	A D D I S Calib Units mg/L ecovery	std.Dev. 0.00455 0.00780 99.83% 0.00727 98.81% 0.00474 99.80% 0.00170 95.07% 0.0337 99.48% 0.00170 97.10% 0.00144 99.51% 0.00144 99.51% 0.00149 98.35% 0.00149 99.27% 0.0045 99.27% 0.0086 99.27% 0.00287 99.71% 0.135 = 100.86%	Deation: 3 d: 8/13/203 iginal a Vol: bl: Conc. 0.4991 9.881 0.9980 2.377 9.948 0.2427 0.4975 2.459 0.4963 1.215 4.985 25.21	10 7:29 Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00780 0.00727 0.00474 0.0012 0.00377 0.00170 0.00144 0.0149 0.00086 0.00085 0.0287 159.37	RSD 0.47% 1.56% 0.74% 0.48% 0.05% 0.34% 0.70% 0.29% 0.60% 0.17% 0.53% 0.58% 3.26% 0.54%

Method: AXIAL200-6	010 L Opt4	Page	a 44		Date:	8/13/2010 7:	37:26 PM
Mo 202.031†			0.0139	2.404	mg/L	0.0139	0.58%
Ni 231.604†	303443.2	202.031 Recovery = 2.023 mg/L 231.604 Recovery =	0.0258	2.023	mg/L	0.0258	1.27%
Na 330.237†	43785.5	24.00 mg/L	0.069	24.00	mg/Ъ	0.069	0.29%
Pb 220.353†	13867.6	330.237 Recovery = 0.5065 mg/L	0.00627	0.5065	mg/L	0.00627	1.24%
Sb 206.836†	28454.8	220.353 Recovery = 4.976 mg/L 206.836 Recovery =	0.0723	4.976	mg/L	0.0723	1.45%
Se 196.026†	2928.8	0.5058 mg/L 196.026 Recovery =	0.00160	0.5058	mg/L	0.00160	0.32%
Sn 189.927†	153374.6		0.0029	5.048	mg/L	0.0029	0.06%
Ti 337.279†	1283713.5	2.512 mg/L 337.279 Recovery =	0.0510	2.512	mg/L	0.0510	2.03%
Tl 190.801†	7689.1	1.002 mg/L	0.0046	1.002	mg/L	0.0046	0.46%
V 292.402†	654343.9	190.801 Recovery = 2.433 mg/L	0.0140	2.433	mg/L	0.0140	0.58%
Zn 206.200†	305617.8	92.402 Recovery = 1.003 mg/L	0.0053	1.003	mg/L	0.0053	0.53%
Ca 227.546†	14111.7	206.200 Recovery = 24.69 mg/L	0.076	24.69	mg/L	0.076	0.31%
Sr 460.733†	659670.9	227.546 Recovery = 2.552 mg/L	0.0276	2.552	mg/L	0.0276	1.08%
		460.733 Recovery = more analytes were		d.			
Sequence No.: 63 Sample ID: CCB			tosampler Loc te Collected:		.0 7:34:	02 PM	
Analyst:		Da	ta Type: Orig	ginal			
Initial Sample Wt: Dilution:			itial Sample mple Prep Vol				
Mean Data: CCB							
Mean Data: CCB	Mean Corrected	Calib			Sample		
Mean Data: CCB Analyte	Mean Corrected Intensity	Calib Conc. Units	Std.Dev.	Conc.	Sample Units	Std.Dev.	RSD
Mean Data: CCB Analyte	Mean Corrected Intensity	Calib Conc. Units	Std.Dev.	Conc.	Sample Units	Std.Dev.	RSD
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat	Conc. 0.0004 ted	Sample Units mg/L	Std.Dev. 0.00019	RSD 0.32% 48.46%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 3	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat	Conc. 0.0004 ted -0.0079 ced	Sample Units mg/L mg/L	Std.Dev. 0.00019 0.00092	RSD 0.32% 48.46% 11.74%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 1 11.2 limits for As 3	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat	Conc. 0.0004 ted -0.0079 ced 0.0013 ced	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081	RSD 0.32% 48.46% 11.74% 61.13%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for B 24	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0123 ed	Sample Units mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171	RSD 0.32% 48.46% 11.74% 61.13% 13.86%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for B 24 110.4 limits for Ba :	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculate 0.00019 Not calculate	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0123 ed 0.0003 ted	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for B 24 110.4 limits for Ba : 753.7	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculate 0.00019 Not calculat 0.00019	Conc. 0.0004 ted -0.0079 ted 0.0013 ted 0.0123 ted 0.0003 ted 0.0003	Sample Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 3 11.2 limits for As 3 2871.0 limits for B 24 10.4 limits for Ba 3 753.7 limits for Be 3 18.4	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculate 0.00019 Not calculat 0.00002 Not calculat 0.00002	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0123 ed 0.0003 ted 0.0001 ced 0.0001	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 1 11.2 limits for As 3 2871.0 limits for B 24 110.4 limits for Ba 3 753.7 limits for Be 3 18.4 limits for Cd 3 45.7	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0003 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00171 Not calculate 0.00019 Not calculate 0.00002 Not calculat 0.00000 Not calculat 0.00000 Not calculat 0.00000	Conc. 0.0004 ted -0.0079 ced 0.0013 ted 0.0003 ted 0.0001 ted 0.0000 ted 0.0000	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14%
Mean Data: CCB Analyte Y 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within B 249.772; QC value within Ba 233.527; QC value within Be 313.107; QC value within Cd 226.502; QC value within Co 228.616; QC value within Cr 267.716;	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for B 24 10.4 limits for Ba : 753.7 limits for Be : 18.4 limits for Cd : 45.7 limits for Co : 14.6	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0003 mg/L 228.616 Recovery = 0.0001 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.000171 Not calculate 0.00019 Not calculate 0.00002 Not calculat 0.00000 Not calculat 0.00000 Not calculat 0.00011 Not calculat 0.00011	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0003 ced 0.0001 ced 0.0000 ced 0.0003 ced 0.0003	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752†	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for Ba : 753.7 limits for Ba : 753.7 limits for Ba : 18.4 limits for Cd : 45.7 limits for Cd : 14.6 limits for Cr : 3378.5	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0003 mg/L 228.616 Recovery = 0.0001 mg/L 227.716 Recovery = 0.0072 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculat 0.00019 Not calculat 0.00002 Not calculat 0.00000 Not calculat 0.00011 Not calculat 0.00014 Not calculat 0.00004	Conc. 0.0004 ted 0.0013 ted 0.0013 ted 0.0003 ted 0.0001 ted 0.0000 ted 0.0001 ted 0.0001	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Cu 325.752 Cu 325.7525 Cu 325.7525 Cu 325.7525 Cu 325.752	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for Al : 2871.0 limits for B 24 110.4 limits for Ba : 753.7 limits for Ba : 753.7 limits for Ca : 45.7 limits for Ca : 14.6 limits for Ca : 3378.5 limits for Cu : 2646.2	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 267.716 Recovery = 0.0072 mg/L 324.752 Recovery = 0.0437 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculat 0.00019 Not calculat 0.00000 Not calculat 0.00001 Not calculat 0.00011 Not calculat 0.00004 Not calculat 0.00004 Not calculat 0.00103 Not calculat 0.00103	Conc. 0.0004 ted 0.0013 ted 0.0123 ted 0.0003 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0003	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011 0.00004	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36%
Mean Data: CCB Analyte Y 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within B 249.772; QC value within Ba 233.527; QC value within Ba 313.107; QC value within Cd 226.502; QC value within Co 228.616; QC value within Cr 267.716; QC value within Cu 324.752; QC value within Fe 238.863; QC value within Fe 238.863; QC value within K 404.721;	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 3 11.2 limits for As 3 2871.0 limits for B 24 10.4 limits for B 24 10.4 limits for B 24 10.4 limits for B 24 10.4 limits for Cd 3 45.7 limits for Cd 3 45.7 limits for Cd 3 14.6 limits for Cd 3 14.6 limits for Cd 3 2646.2 limits for Fe 2 -78.3	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 227.716 Recovery = 0.0072 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculat 0.00019 Not calculat 0.00000 Not calculat 0.00001 Not calculat 0.00011 Not calculat 0.00004 Not calculat 0.00004 Not calculat 0.00103 Not calculat 0.00103	Conc. 0.0004 ted 0.0013 ted 0.0123 ted 0.0003 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0001 ted 0.0003	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011 0.00004 0.00103	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36% 2.15%
Mean Data: CCB Analyte Y 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within B 249.772; QC value within Ba 233.527; QC value within Ba 313.107; QC value within Cd 226.502; QC value within Cd 226.502; QC value within Cn 267.716; QC value within Cn 324.752; QC value within Fe 238.863; QC value within K 404.721; Unable to evalua Mg 279.077;	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for Be 24 10.4 limits for Be 24 10.4 limits for Be 25 753.7 limits for Be 26 18.4 limits for Cd 26 45.7 limits for Cd 27 3378.5 limits for Cu 27 2646.2 limits for Fe 27 -78.3 ate QC. -170.2	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0003 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 227.716 Recovery = 0.0072 mg/L 324.752 Recovery = 0.0437 mg/L 238.863 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00019 Not calculat 0.00171 Not calculat 0.00002 Not calculat 0.00000 Not calculat 0.00001 Not calculat 0.00004 Not calculat 0.00103 Not calculat 0.00094 Not calculat 0.00094 Not calculat	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0003 ced 0.0000 ced 0.0000 ced 0.0001 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0004 ced 0.0004 ced 0.0004 ced 0.0003 ced 0.00004 ced 0.00003 ced 0.0004	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011 0.00004 0.00103 0.00094 44.77	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36% 2.15%
Mean Data: CCB Analyte Y 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within B 249.772; QC value within Ba 233.527; QC value within Be 313.107; QC value within Cd 226.502; QC value within Cd 228.616; QC value within Cr 267.716; QC value within Cu 324.752; QC value within Fe 238.863; QC value within Fe 238.863; QC value within K 404.721; Unable to evalua Mg 279.077; QC value within Mn 257.610;	Mean Corrected Intensity 8769955.4 144.5 limits for Ag : -339.9 limits for Al : 11.2 limits for As : 2871.0 limits for Ba : 2871.0 limits for Ba : 753.7 limits for Ba : 753.7 limits for Ba : 753.7 limits for Cd : 45.7 limits for Cd : 45.7 limits for Cd : 45.7 limits for Cd : 3378.5 limits for Cd : 2646.2 limits for Fe : -78.3 ate QC: -170.2 limits for Mg : 638.1	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0003 mg/L 228.616 Recovery = 0.0001 mg/L 224.752 Recovery = 0.0437 mg/L 238.863 Recovery = -0.0044 mg/L 279.077 Recovery = 0.0004 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculat 0.00019 Not calculat 0.00000 Not calculat 0.00001 Not calculat 0.00014 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.000146 Not calculat	Conc. 0.0004 ted 0.0013 ted 0.0123 ted 0.0003 ted 0.0000 ted 0.0000 ted 0.0000 ted 0.0001 ted 0.0001 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0004 ted 0.0000 ted 0.0004	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011 0.00004 0.00103 0.00094 44.77	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36% 2.15% 57.15% 33.40%
Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Mn 257.610† QC value within	Mean Corrected Intensity 8769955.4 144.5 limits for Ag -339.9 limits for Al 11.2 limits for Al 2871.0 limits for Ba 2871.0 limits for Ba 2871.0 limits for Ba 110.4 limits for Ba 753.7 limits for Ba 18.4 limits for Ca 45.7 limits for Ca 14.6 limits for Ca 2646.2 limits for Fe -78.3 ate QC. -170.2 limits for Mg 638.1 limits for Mn 45.0	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.0013 mg/L 188.979 Recovery = 0.0123 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 224.752 Recovery = 0.0437 mg/L 238.863 Recovery = 0.0004 mg/L 279.077 Recovery = 0.0004 mg/L 257.610 Recovery = 0.0008 mg/L	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00081 Not calculat 0.00171 Not calculat 0.00019 Not calculat 0.00002 Not calculat 0.00001 Not calculat 0.00011 Not calculat 0.00004 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.0002 Not calculat 0.0002	Conc. 0.0004 ted 0.0013 ted 0.0013 ted 0.0003 ted 0.0000 ted 0.0000 ted 0.0000 ted 0.0001 ted 0.0001 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0003 ted 0.0000 ted	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<pre>Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00000 0.00000 0.000011 0.00004 0.00103 0.00094 44.77 0.00146</pre>	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36% 2.15% 57.15% 33.40% 5.56%
Mean Data: CCB Analyte Y 371.029 Ag 328.068; QC value within Al 308.215; QC value within As 188.979; QC value within B 249.772; QC value within Ba 233.527; QC value within Ba 313.107; QC value within Cd 226.502; QC value within Co 228.616; QC value within Cr 267.716; QC value within Cr 267.716; QC value within Fe 238.863; QC value within Fe 238.863; QC value within K 404.721; Unable to evalua Mg 279.077; QC value within Mn 257.610; QC value within Mo 202.031; QC value within Ni 231.604;	Mean Corrected Intensity 8769955.4 144.5 limits for Ag 3 -339.9 limits for Al 3 11.2 limits for Al 3 2871.0 limits for Be 3 753.7 limits for Be 3 753.7 limits for Cd 3 45.7 limits for Cd 3 45.7 limits for Cd 3 45.7 limits for Cd 3 45.7 limits for Cd 3 2646.2 limits for Fe 2 -78.3 ate QC. -170.2 limits for Mg 2 638.1 limits for Mg 2 45.0 limits for Mg 2 45.0	Calib Conc. Units 1.004 mg/L 0.0004 mg/L 328.068 Recovery = -0.0079 mg/L 308.215 Recovery = 0.013 mg/L 188.979 Recovery = 0.0123 mg/L 49.772 Recovery = 0.0003 mg/L 233.527 Recovery = 0.0001 mg/L 313.107 Recovery = 0.0000 mg/L 226.502 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0001 mg/L 228.616 Recovery = 0.0072 mg/L 324.752 Recovery = 0.0437 mg/L 238.863 Recovery = -0.0044 mg/L 279.077 Recovery = 0.0004 mg/L 257.610 Recovery = 0.0008 mg/L 202.031 Recovery =	Std.Dev. 0.0032 0.00019 Not calculat 0.00092 Not calculat 0.00019 Not calculat 0.00171 Not calculat 0.00002 Not calculat 0.00000 Not calculat 0.00004 Not calculat 0.00103 Not calculat 0.00146 Not calculat 0.00094 Not calculat 0.00094 Not calculat 0.00146 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002 Not calculat 0.0002	Conc. 0.0004 ted -0.0079 ced 0.0013 ced 0.0003 ced 0.0000 ced 0.0000 ced 0.0001 ced 0.0001 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.0004 ced 0.0004 ced 0.0003 ced 0.0003 ced 0.0003 ced 0.00000 ced 0.000000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.000000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.000000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.00000 ced 0.000000 ced 0.000000 ced 0.00000000 ced 0.00000000000000000000000000000000000	Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00019 0.00092 0.00081 0.00171 0.00019 0.00002 0.00000 0.00011 0.00004 0.00103 0.00094 44.77 0.00146 0.00002	RSD 0.32% 48.46% 11.74% 61.13% 13.86% 60.97% 17.26% 2.14% 31.16% 55.92% 14.36% 2.15% 57.15% 33.40% 5.56% 32.63%

 RSI 0.80 0.20 0.46 0.26 13.27 0.46 0.26 204.36 0.44 0.15 1.94 0.73 0.44 0.30 7.54 3.60 0.00 14.42 26.25 904.38 8.53 16.10 273.89 3.03 0.30 0.21 0.05 50rrect.
0.80 0.20 0.12 13.27 0.46 0.28 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 0.40 1.94 0.30 0.44 0.30 14.42 26.25 904.38 8.53 16.100 273.89 3.03 0.30 0.21 0.05
0.80 0.20 0.19 13.27 0.46 0.28 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 0.44 0.30 0.44 0.30 0.44 0.30 0.44 0.30 0.44 0.30 0.44 0.30 0.21
0.80 0.20 0.19 13.27 0.46 0.28 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 3.60 0.00 14.42 26.25 904.36 8.53 16.100 273.89 3.03 0.30
0.80 0.20 0.19 13.27 0.46 0.26 204.30 53.41 4.46 0.19 1.94 0.73 0.44 0.30 7.54 3.60 0.44 0.30 14.425 904.38 8.53 16.100 273.89 3.03
0.80 0.20 0.19 13.27 0.46 0.26 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 3.600 14.42 26.25 904.38 8.53 16.100 273.89
0.80 0.20 0.19 13.27 0.46 10.65 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 3.60 0.00 14.42 26.25 904.38 8.53
$\begin{array}{c} 0.80\\ 0.20\\ 0.19\\ 13.27\\ 0.46\\ 0.26\\ 204.30\\ 53.41\\ 4.46\\ 0.15\\ 1.94\\ 0.73\\ 0.44\\ 0.30\\ 7.54\\ 3.60\\ 0.00\\ 14.42\\ 26.25\\ 904.38\end{array}$
$\begin{array}{c} 0.80\\ 0.20\\ 0.19\\ 13.27\\ 0.46\\ 0.26\\ 204.30\\ 53.41\\ 4.46\\ 0.15\\ 1.94\\ 0.73\\ 0.44\\ 0.30\\ 7.54\\ 4.3.60\\ 0.00\\ 14.42\\ 26.25\end{array}$
0.80 0.20 0.19 13.27 0.46 0.28 10.65 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 3.60 0.00 14.42
$\begin{array}{c} 0.80\\ 0.20\\ 0.19\\ 13.27\\ 0.46\\ 0.26\\ 204.30\\ 53.41\\ 4.46\\ 0.15\\ 1.94\\ 0.73\\ 0.44\\ 0.30\\ 7.54\\ 3.60\\ 0.00\end{array}$
0.80 0.20 13.27 0.46 0.28 10.65 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30 7.54 3.60
0.80 0.20 0.19 13.27 0.46 0.26 204.30 53.41 4.46 0.15 1.94 0.73 0.44 0.30
0.80 0.20 0.19 13.27 0.46 0.26 204.30 53.41 4.46 0.15 1.94 0.73 0.44
0.80 0.20 0.19 13.27 0.46 0.28 204.30 53.41 4.46 0.15 1.94 0.73
0.80 0.20 0.19 13.27 0.46 0.28 10.65 204.30 53.41 4.46 0.15 1.94
0.80 0.20 0.19 13.27 0.46 0.28 10.65 204.30 53.41 4.46 0.15
0.80 0.20 0.19 13.22 0.46 10.65 204.30 53.41 4.46
0.80 0.20 0.19 13.27 0.46 0.28 10.65 204.30 53.41
0.80 0.20 0.19 13.27 0.46 0.28
0.80 0.20 0.19 13.27 0.46 0.28
0.80 0.20 0.19 13.27 0.46
0.80 0.20 0.19 13.27
0.80 0.20 0.19
0.80 0.20
0.80
. RSI
>999.9
3.38
53.50
29.7
54.9
186.9
13.2
89.8
22.6
13.4:
1)

Page 45 Date: 8/13/2010 7:45:51 PM

Method: AXIAL200-6010 L Opt4

Method: AXIAL200-6010 L Opt4 Page 46 Date: 8/13/2010 7:50:08 PM

.

Mean Data: R10042	64-0015							
Mean Dill. Riverz	Mean Corrected		Calib			Sample		
Analyte	Intensity 7807162.3	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	7807162.3	0.8941	mg/L	0.00547				0.61%
Ag 328.068† Al 308.215†	34257.5 96404.5	0.0918		0.00013				0.14%
	96404.5	2.228	mg/L	0.0055				0.25%
As 188.979†	409.4	0.0487 1.167 2.129	mg/L	0.00683				14.01%
B 249.772†	272157.1	1.167	mg/L	0.0022				0.198
Ba 233.527†	766853.5	2.129 0.0508	mg/L	0.0030				0.14%
Be 313.107†	333636.8			0.00004				0.08%
Cd 226.502†	19909.6	0.0520		0.00082				1.58%
Co 228.616†	72065.4	0.5390	- · ·	0.00746				1.38%
Cr 267.716†	47579.4	0.2151		0.00197				0.91%
Cu 324.752†	137502.2	0.2907	mg/L	0.00032				0.119
Fe 238.863†		1.374	mg/L	0.0032				0.23%
K 404.721†	5940.8 562047.9	14 00		0 010			93.29	1.57%
Mg 279.077†		14.29		0.013				0.098
Mn 257.610†	951841.7	0.5549		0.00099				0.18%
Mo 202.031†	28767.0	0.5382		0.00483				0.90%
Ni 231.604†	74269.7 510648.5	0.4949		0.00163				0.338
Na 330.237† Pb 220.353†		279.9 0.5323		0.28				0.10% 1.10%
Sb 206.836†	14584.3 3077.8	0.5325		0.00588				0.498
Se 196.026†	6036.9	1 041	mg/L	0.00263				0.49
Sn 189.927†	173476.7	1.041 5.711	mg/L	0.0059 0.0130				0.23%
Ti 337.279†	279141.2	0 5460	mg/L	0.00663				1.21%
Tl 190.801†	15498.0	0.5460	mg/L mg/L	0.0197				0.98%
V 292.402†	139968.5	0 5204	mg/L	0.00140				0.27%
Zn 206.200†	139968.5 180956.7	0.5204	mg/L	0.00028				0.05%
Ca 227.546†	37297.0	64.61	mg/L	0.704				1.09%
Sr 460.733†	660139.8	2.553	mg/T	0.0078				0.31%
Sample conc. not					equired	OR sample	units incom	
Sequence No.: 66 Sample ID: R10042 Analyst:	64-001A			Autosampler Loc Date Collected: Data Type: Orig	ation: 7 8/13/20 inal	6		
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt	64-001A :			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 7 8/13/20 inal Vol:	6		
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042	64-001A :			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 7 8/13/20 inal Vol:	6		
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042	64-001A : 64-001A			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042 Analyte	64-001A : 64-001A Mean Corrected Intensity	Conc.	Calib Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD
Sequence No.: 66 Sample ID: R10042 Analyst: Chitial Sample Wt Dilution: Mean Data: R10042 Analyte C 371.029	64-001A : 64-001A Mean Corrected Intensity 7978178.6	Conc. 0.9137	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40%
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Gean Data: R10042 Analyte (371.029 Ag 328.0681	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6	Conc. 0.9137 0.0884	Calib Units mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: ean Data: R10042 malyte 371.029 g 328.0681 l 308.2151	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5	Conc. 0.9137 0.0884 2.166	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87%
Sequence No.: 66 Sample ID: R10042 analyst: Chitial Sample Wt Dilution: Gean Data: R10042 analyte 371.029 Ag 328.068† Al 308.215† As 188.979†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6	Conc. 0.9137 0.0884 2.166 0.0493	Calib Units mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 3.34%
Sequence No.: 66 Sample ID: R10042 analyst: Chitial Sample Wt Dilution: Gean Data: R10042 analyte (371.029 Ag 328.068† Al 308.215† As 188.979† A 249.772;	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1	Conc. 0.9137 0.0884 2.166 0.0493 1.150	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 3.34% 0.99%
Sequence No.: 66 Sample ID: R10042 Analyst: Chitial Sample Wt Dilution: Gean Data: R10042 Analyte 7 371.029 Ag 328.068† Al 308.215† As 188.979† 3 249.772† Ba 233.527†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.0102	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.49%
Sequence No.: 66 Sample ID: R10042 analyst: Chitial Sample Wt Dilution: Mean Data: R10042 analyte (371.029 ag 328.068† 11 308.215† as 188.979† (249.772† a 233.527† (249.107†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.0102 0.00016	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.49% 0.33%
Sequence No.: 66 Sample ID: R10042 analyst: Chitial Sample Wt Dilution: Mean Data: R10042 analyte (371.029 ag 328.068† 11 308.215† as 188.979† (249.772† (323.527† (333.527† (333.107† (3226.502†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00066 0.0189 0.00165 0.0114 0.0102 0.00016 0.00034	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.87% 3.34% 0.99% 0.49% 0.33% 0.67%
Sequence No.: 66 Sample ID: R10042 analyst: Initial Sample Wt bilution: Mean Data: R10042 analyte 371.029 Ag 328.068t Al 308.215t As 188.979t A 249.772t As 233.527t A 249.772t As 313.107t A 226.502t A 228.616t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 0.33% 0.99% 0.33% 0.33% 0.67% 0.49%
Sequence No.: 66 Sample ID: R10042 analyst: Initial Sample Wt Dilution: Mean Data: R10042 analyte 371.029 Ag 328.068† A 308.215† A 308.215† A 249.772 A 249.775A 25	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 0.37% 0.49% 0.33% 0.67% 0.49% 0.49% 0.49%
equence No.: 66 ample ID: R10042 nalyst: initial Sample Wt bilution: ean Data: R10042 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.33% 0.67% 0.49% 0.19% 0.19%
Sequence No.: 66 Sample ID: R10042 analyst: Initial Sample Wt Dilution: Mean Data: R10042 analyte 371.029 ag 328.0681 al 308.2151 as 188.9791 a 233.5271 be 313.1071 d 226.5021 bo 228.6161 fr 267.7161 d 324.7521 be 238.8631	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.39% 0.49% 0.43% 0.49% 0.49% 0.19% 0.19% 0.270%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: can Data: R10042 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† c 404.721†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.41% 0.41% 0.70% 1.82%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: ean Data: R10042 malyte 371.029 g 328.068t d 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t tr 267.716t u 324.752t e 238.863t 404.721t g 279.077t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.0002 0.00016 0.00034 0.00254 0.00041 0.00117 0.0093 0.087	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.41% 0.41% 0.70% 1.82% 0.63%
Sequence No.: 66 Sample ID: R10042 analyst: Initial Sample Wt Dilution: Gene Data: R10042 analyte 371.029 ag 328.068† al 308.215† as 188.979† a 249.772† a 233.527† a 24.752† a 238.863† a 404.721† a 257.610†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.48%
equence No.: 66 ample ID: R10042 nalyst: initial Sample Wt dilution: iean Data: R10042 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol 0.00362 0.00006 0.0189 0.00165 0.0114 0.0002 0.00016 0.00034 0.00254 0.00041 0.0093 0.087 0.00257 0.00053	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.49% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.48% 0.63% 0.48% 0.48% 0.10%
equence No.: 66 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068t l 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 547203.6 928420.4 27892.0 72278.1	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.49% 0.33% 0.67% 0.49% 0.41% 0.70% 1.82% 0.63% 0.48% 0.10% 0.37%
equence No.: 66 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068t l 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t a 330.237t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.33% 0.67% 0.49% 0.41% 0.70% 1.82% 0.41% 0.63% 0.48% 0.37% 0.61%
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Gean Data: R10042 Analyte 371.029 Ag 328.0681 Al 308.2151 As 188.9791 As 249.7721 As 233.5271 As 233.5271 As 249.7721 As 233.5271 As 249.7721 As 233.5271 As 249.7721 As 233.6161 Ar 267.7161 At 324.7521 As 238.8631 A 04.7211 Ag 279.0771 An 257.6101 As 230.2371 As 330.2371 As 330.2371 As 220.3531	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5412 0.5218 0.4816 271.7 0.5152	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.63% 0.49% 0.63% 0.48% 0.37% 0.61% 0.23%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: ean Data: R10042 malyte 371.029 g 328.068t l 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t a 330.237t b 220.353t b 206.836t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7 0.5152 0.5364	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.0012 0.00016 0.00034 0.00254 0.00041 0.00117 0.0093 0.087 0.00257 0.00257 0.00257 0.00257 0.0053 0.00177 1.66 0.00120 0.00170	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 3.34% 0.99% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.49% 0.63% 0.40% 0.63% 0.63% 0.63% 0.61% 0.23% 0.32%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: analyte 371.029 g 328.0681 l 308.2151 s 188.9791 249.7721 a 233.5271 e 313.1071 d 226.5021 o 228.6161 r 267.7161 u 324.7521 e 238.8631 404.7211 g 279.0771 n 257.6101 o 202.0311 i 231.6041 a 330.2371 b 220.3531 b 206.8361 e 196.0261	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1 77.7	Conc. 0.9137 0.0884 2.166 0.0493 1.150 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218 0.5218	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.00165 0.0016 0.00034 0.00254 0.00041 0.00117 0.0093 0.087 0.00257 0.00257 0.00257 0.00053 0.00177 1.66 0.00120 0.00170 0.00441	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.49% 0.49% 0.49% 0.49% 0.41% 0.70% 0.49% 0.41% 0.63% 0.48% 0.63% 0.63% 0.61% 0.23% 0.32% 33.96%
equence No.: 66 ample ID: R10042 malyst: initial Sample Wt bilution: ean Data: R10042 malyte 371.029 g 328.068t l 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 202.031t i 231.604t a 330.237t b 206.836t e 196.026t n 189.927t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1 77.7 282.0	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7 0.5152 0.5364 0.0130 0.0147	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.00165 0.0016 0.00034 0.00254 0.00041 0.00117 0.0093 0.087 0.00257 0.00053 0.00177 1.66 0.00120 0.00170 0.00441 0.00120	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.49% 0.49% 0.49% 0.41% 0.41% 0.41% 0.41% 0.63% 0.41% 0.63% 0.48% 0.63% 0.61% 0.32% 33.96% 8.19%
Sequence No.: 66 Sample ID: R10042 analyst: Initial Sample Wt Dilution: Gean Data: R10042 analyte 371.029 ag 328.068t al 308.215t as 188.979t a 249.772t a 233.527t a 233.527t a 233.527t a 233.527t a 233.527t a 233.527t b 226.502t b 228.616t fr 267.716t a 324.752t b 228.863t a 404.721t g 279.077t n 257.610t b 220.353t b 206.836t e 196.026t n 189.927t i 337.279t	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1 77.7 282.0 271902.6	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7 0.5152 0.5364 0.0130 0.0147 0.5318	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.00165 0.00165 0.0016 0.00034 0.00254 0.00041 0.00254 0.00041 0.00257 0.00053 0.00177 1.66 0.00120 0.00170 0.00441 0.00120 0.01175	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 3.34% 0.99% 0.49% 0.43% 0.49% 0.49% 0.41% 0.41% 0.41% 0.63% 0.49% 0.41% 0.63% 0.41% 0.63% 0.41% 0.37% 0.63% 0.37% 0.23% 0.32% 0.33% 0.49% 0.49% 0.49% 0.33% 0.49% 0.23% 0.49% 0.23% 0.49% 0.23%
Sequence No.: 66 Sample ID: R10042 Analyst: Chitial Sample Wt Dilution: Gean Data: R10042 Analyte Sample Sample Wt Dilution: Gean Data: R10042 Analyte Sample Sample Wt Sample Sample Wt Sample Sample Wt Sample Sam	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1 77.7 282.0 271902.6 14995.0	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7 0.5152 0.5364 0.0130 0.0147 0.5318 1.953	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol O.00362 O.00006 O.0189 O.00165 O.0114 O.0102 O.00016 O.00034 O.00254 O.00041 O.00254 O.00041 O.00117 O.0093 O.087 O.00257 O.00053 O.00177 I.66 O.00120 O.00170 O.00441 O.00120 O.00175 O.0081	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	$\begin{array}{c} \textbf{RSD} \\ 0.40\% \\ 0.07\% \\ 0.87\% \\ 0.87\% \\ 0.33\% \\ 0.49\% \\ 0.33\% \\ 0.49\% \\ 0.49\% \\ 0.49\% \\ 0.41\% \\ 0.41\% \\ 0.41\% \\ 0.63\% \\ 0.41\% \\ 0.37\% \\ 0.63\% \\ 0.37\% \\ 0.37\% \\ 0.32\% \\ 0.32\% \\ 0.32\% \\ 0.41\% \\ 0.32\% \\ 0.41\% \\ 0.32\% \\ 0.41\% $
Sequence No.: 66 Sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042 Analyte (371.029 Ag 328.068†	64-001A : 64-001A Mean Corrected Intensity 7978178.6 32977.6 93720.5 414.6 268101.1 748190.9 325594.9 19259.4 69732.5 45992.1 133459.5 80980.9 5869.9 547203.6 928420.4 27892.0 72278.1 495529.1 14114.2 3068.1 77.7 282.0 271902.6	Conc. 0.9137 0.0884 2.166 0.0493 1.150 2.078 0.0496 0.0503 0.5215 0.2080 0.2822 1.329 13.92 0.5412 0.5218 0.4816 271.7 0.5152 0.5364 0.0130 0.0147 0.5318	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00362 0.00006 0.0189 0.00165 0.0114 0.00165 0.00165 0.0016 0.00034 0.00254 0.00041 0.00254 0.00041 0.00257 0.00053 0.00177 1.66 0.00120 0.00170 0.00441 0.00120 0.01175	ation: 7 8/13/20 inal Vol: : 50 mL	6 10 7:48:1 Sample	0 PM Std.Dev.	RSD 0.40% 0.07% 0.87% 0.33% 0.49% 0.33% 0.49% 0.49% 0.49% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.40% 0.40% 0.40% 0.49% 0.23% 0.23% 0.23% 0.23% 0.23% 0.23% 0.23%0.23%

	······································	·····		age 47		Date:	-,,	
Sr 460.733†	70993.6		mg/L					0.64
Sample conc. not	calculated. Sample	Prep.	Vol. AN	D Initial Vol.	required	OR sampl	e units inco	rrect.
===============	====================							
Sequence No.: 67				Autosampler L				
Sample ID: R1004	264-001L			Date Collecte			27 PM	
Analyst:				Data Type: Or				
Initial Sample W	t:			Initial Sampl	e Vol:			
Dilution:				Sample Prep V	ol: 50 mL			
lean Data: R1004								
··· · ·	Mean Corrected	_	Calib		_	Sample		
malyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
371.029	8685278.9	0.9947	<u>.</u>	0.00917				0.92
g 328.068†	2705.7	0.0072		0.00002				0.29
1 308.215†	1047.3	0.0228		0.00086				3.76
s 188.979†	7.0	0.0009		0.00086				94.89
249.7721	8122.7	0.0336		0.00093				2.78
a 233.527†		0.0162		0.00016				0.98
e 313.107†	220.8	0.0000	mg/L	0.00000				8.07
d 226.502†		0.0001		0.00003				30.54
0 228.616†		0.0002		0.00002				9.99
r 267.716†		0.0016		0.00006				3.43
u 324.752†		0.0037		0.00016				4.24
e 238.863†	5518.8	0.0897	mg/ь	0.00468				5.22
404.721†	205.3						114.33	
g 279.077†		2.372		0.0319				1.349
n 257.610†	7638.6	0.0044		0.00005				1.125
0 202.031†	119.2	0.0022		0.00011				4.74
i 231.604†	231.2	0.0015		0.00001				0.479
a 330.237†		42.44		0.407				0.96%
b 220.353†		0.0033		0.00065				19.751
b 206.836†		0.0029		0.00099				33.728
e 196.026†		0.0000		0.00034				>999.9%
n 189.927†	123.1	0.0050		0.00048				9.499
i 337.279†		-0.0001		0.00023				311.629
l 190.801†	20.1	0.0027	mg/L	0.00088				33.168
292.402†	113.1	0.0004	mg/L	0.00002				5.38%
	3611.5	0.0117	mġ/L	0.00002				0.18%
n 206.200†		11.72		0.039				0.338
	6770.0							1.448
a 227.546† r 460.733†	13770.0	0.0530	mg/L	0.00077				
a 227.546† r 460.733†		0.0530 Prep. '	Mg/L Vol. AN		required (OR sample	e units inco	
a 227.546† r 460.733† ample conc. not	13770.0 calculated. Sample	Prep. V	Vol. AN	D Initial Vol.	-	-		rrect.
a 227.546† r 460.733† ample conc. not	13770.0	Prep. V	Vol. AN	D Initial Vol.	-			rrect.
equence No.: 68 ample ID: R10042	13770.0 calculated. Sample	Prep. V	Vol. AN	D Initial Vol. 	cation: 7	======= 8		rrect.
a 227.546† ar 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst:	13770.0 calculated. Sample	Prep. V	Vol. AN	D Initial Vol. Autosampler La Date Collected Data Type: Or:	ocation: 7 1: 8/13/20 iginal	======= 8		rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt	13770.0 calculated. Sample	Prep. V	Vol. AN	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample	ocation: 7 1: 8/13/20 1 1 Ginal 2 Vol:	======= 8		rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt	13770.0 calculated. Sample	Prep. V	Vol. AN	D Initial Vol. Autosampler La Date Collected Data Type: Or:	ocation: 7 1: 8/13/20 1 1 Ginal 2 Vol:	======= 8		rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution:	13770.0 calculated. Sample	Prep. '	VOl. AN	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Vo	ocation: 7 d: 8/13/20 diginal e Vol: bl: 50 mL	 8 10 7:58:0		rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution:	13770.0 calculated. Sample 264-002 264-002	Prep. '	Vol. AN	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Vo	ocation: 7 d: 8/13/20 diginal e Vol: bl: 50 mL	B 10 7:58:0)9 PM	rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042	13770.0 calculated. Sample 264-002 264-002 264-002 Mean Corrected	Prep. `	Vol. AN Calib	D Initial Vol. Autosampler Lo Date Collecter Data Type: Or: Initial Sample Sample Prep Vo	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte	13770.0 calculated. Sample 264-002 264-002 264-002 Mean Corrected Intensity	Prep. Y	Vol. AN Calib Units	D Initial Vol. Autosampler Lo Date Collected Data Type: Or: Initial Sample Sample Prep Vo Std.Dev.	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	B 10 7:58:0)9 PM	rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029	13770.0 calculated. Sample 264-002 264-002 Mean Corrected Intensity 7897140.9	Prep. 7	Calib Units mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va Std.Dev. 0.00529	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	rrect. RSD 0.59%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2	Conc. 0.9044 0.2627	Calib Units mg/L mg/L	D Initial Vol. Autosampler Lo Date Collected Data Type: Or: Initial Sample Sample Prep Vo Std.Dev. 0.00529 0.00153	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: ean Data: R10042 nalyte 371.029 g 328.068† l 308.215†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0	Prep. 7	Calib Units mg/L mg/L mg/L	D Initial Vol. Autosampler Lo Date Collected Data Type: Or: Initial Sample Sample Prep Vo Std.Dev. 0.00529 0.00153 0.00442	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.78%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 halyst: hitial Sample We ilution: ean Data: R10042 halyte 371.029 g 328.068† L 308.215† s 188.979†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2	Conc. 0.9044 0.2627 0.5699 0.0045	Calib Units mg/L mg/L mg/L mg/L	Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va Std.Dev. 0.00529 0.00153 0.00442 0.00175	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: ean Data: R10042 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72% 0.92%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 halyst: hitial Sample We ilution: ean Data: R10042 halyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72% 0.92% 0.49%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: ean Data: R10042 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107†	13770.0 calculated. Sample 	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00000	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.59% 0.78% 38.72% 0.92% 0.49% 2.80%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068† 1 308.215† 5 188.979† 249.772† a 233.527† e 313.107† d 226.502†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collecter Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00422 0.00153 0.00124 0.00056 0.00000 0.00009	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.59% 0.78% 38.72% 0.92% 0.49% 2.80%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5	Conc. 0.9044 0.2627 0.5699 0.0045 0.1126 0.0001 0.0001 0.0001 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00000	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 0.92% 0.49% 2.80% 81.27%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 halyst: hitial Sample We ilution: ean Data: R10042 halyte 371.029 g 328.068† L 308.215† s 188.979† 249.772† a 233.527† a 313.107† d 226.502† o 228.616†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collecter Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00422 0.00153 0.00124 0.00056 0.00000 0.00009	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.78% 0.78% 0.92% 0.49% 2.80% 81.27% 19.92%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† l 324.752†	13770.0 calculated. Sample 264-002 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8 12684.6	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0003 0.0182 0.0265	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00422 0.00175 0.00124 0.00056 0.00000 0.00009 0.00006	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72% 0.92% 0.49% 2.80% 81.27% 19.92% 2.79%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample Wt ilution: ean Data: R10042 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752†	13770.0 calculated. Sample 264-002 :: 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0001 0.0003 0.0182	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72% 0.92% 0.49% 2.80% 81.27% 19.92% 2.79% 0.31%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: ean Data: R10042 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† 1 324.752† e 238.863†	13770.0 calculated. Sample 264-002 264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8 12684.6	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0003 0.0182 0.0265	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00000 0.00005 0.00005 0.00005 0.00008	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample)9 PM	RSD 0.59% 0.58% 0.78% 38.72% 0.92% 0.49% 2.80% 81.27% 19.92% 2.79% 0.31% 0.45%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: ean Data: R10042 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† a 233.527† a 133.107† d 226.502† o 228.616† c 267.716† 1 324.752† e 238.863† 404.721†	13770.0 calculated. Sample 264-002 364-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8 12684.6 43898.7 1932.6	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0003 0.0182 0.0265	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00000 0.00005 0.00005 0.00005 0.00008	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample	9 PM Std.Dev.	RSD 0.59% 0.59% 0.58% 0.78% 38.72% 0.49% 81.27% 19.92% 2.79% 0.31% 0.45% 6.60%
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution: 	13770.0 calculated. Sample 264-002 364-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8 12684.6 43898.7 1932.6	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0003 0.0182 0.0265 0.7184 12.81 0.0263	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00000 0.00006 0.000051 0.00008 0.00008 0.00025	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample	9 PM Std.Dev.	rrect.
a 227.546† r 460.733† ample conc. not equence No.: 68 ample ID: R10042 nalyst: nitial Sample We ilution:	13770.0 calculated. Sample 264-002 3264-002 Mean Corrected Intensity 7897140.9 97996.2 24843.0 34.2 33130.4 40705.3 -815.9 60.1 46.5 4005.8 12684.6 43898.7 1932.6 503727.3	Conc. 0.9044 0.2627 0.5699 0.0045 0.1358 0.1126 0.0001 0.0001 0.0003 0.0182 0.0265 0.7184 12.81	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D Initial Vol. Autosampler La Date Collected Data Type: Or: Initial Sample Sample Prep Va 0.00529 0.00153 0.00442 0.00175 0.00124 0.00056 0.00009 0.00006 0.00009 0.00006 0.000051 0.00008 0.00325 0.011	ocation: 7 1: 8/13/20 1 1 1 1 2 1 2 0 1: 50 mL	3 10 7:58:0 Sample	9 PM Std.Dev.	RSD 0.59% 0.59% 0.78% 38.72% 0.92% 0.49% 2.80% 81.27% 2.79% 0.31% 0.31% 0.45% 0.09%

	10 L Opt4	1	Page 48	Date:	8/13/2010 8:09:56 PM
Na 330.237†	480049.6	263.2 mg/L	0.39		0.15%
Pb 220.353†	443.6	0.0165 mg/L	0.00059		3.56%
Sb 206.836†	147.8	0.0258 mg/L	0.00235		9.13%
Se 196.026†	27.9	0.0044 mg/L	0.00466		105.15%
Sn 189.927†	39.0	0.0055 mg/L	0.00002		0.29%
Ti 337.279†	8860.9	0.0170 mg/L	0.00012		0.70%
Tl 190.801†	26.4	0.0036 mg/L	0.00393		107.82%
V 292.402†	489.4	0.0019 mg/L	0.00011		6.08%
Zn 206.200†	18037.1	0.0585 mg/L	0.00009		0.16%
Ca 227.546†	27408.2	47.47 mg/L	0.197		0.41%
Sr 460.733†	75562.8	0.2913 mg/L	0.00012		0.04%
Sample conc. not ca	lculated. Sampl	e Prep. Vol. Al	ND Initial Vol. r	required OR samp	le units incorrect.
224855555555555555555555555555555555555					===================================
Sequence No.: 69			Autosampler Loc	ation: 79	
Sample ID: R1004271	-001		Date Collected:	: 8/13/2010 8:02	:21 PM
Analyst:			Data Type: Orig		
Initial Sample Wt:			Initial Sample		
Dilution:			Sample Prep Vol	L: 50 mL	
Noon Dates 01004071					
Mean Data: R1004271	Mean Corrected	Calib		Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev. RSD
¥ 371.029	7993321.6	0.9154 mg/L	0.00242	001101 011100	0.26%
Ag 328.068†	-59.0	0.0003 mg/L	0.00084		250.06%
Al 308.215†	2924712.9	67.83 mg/L	0.128		0.19%
As 188.979†	-13.6	0.0025 mg/L	0.00170		67.18%
B 249.772†	21291.2	0.0468 mg/L	0.00050		1.07%
Ba 233.527†	15091.6	0.0410 mg/L	0.00015		0.36%
Be 313.107†	-713.2	-0.0001 mg/L	0.00001		19.44%
Cd 226.502†	196.4	-0.0003 mg/L	0.00005		14.65%
Co 228.616†	193.7	0.0012 mg/L	0.00001		0.99%
Cr 267.716†	5275.8	0.0242 mg/L	0.00008		0.35%
Cu 324.752†	107568.9	0.2287 mg/L	0.00072		0.31%
Fe 238.863†	649929.6	10.71 mg/L	· 0.058		0.54%
K 404.721†	817.1	10171	01030		69.70 8.53%
Mg 279.077†	392843.5	9.986 mg/L	0.0330		0.33%
Mn 257.610†	146244.3	0.0852 mg/L	0.00014		0.16%
	412.0				
Mo 202.031†		0.0088 mg/L	0.00008		V.20%
MO 202.031† Ni 231.604†	82188.8	0.0088 mg/L 0.5477 mg/L	0.00008 0.00271		0.96% 0.50%
	82188.8	0.5477 mg/L	0.00271		0.50% 0.50% 0.40%
Ni 231.604†		0.5477 mg/L 37.91 mg/L	0.00271 0.150		0.50% 0.40%
Ni 231.604† Na 330.237†	82188.8 69188.7	0.5477 mg/L	0.00271		0.50%
Ni 231.604† Na 330.237† Pb 220.353†	82188.8 69188.7 -112.2	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L	0.00271 0.150 0.00120 0.00412		0.50% 0.40% 34.32% 628.16%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	82188.8 69188.7 -112.2 7.6	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L	0.00271 0.150 0.00120		0.50% 0.40% 34.32%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	82188.8 69188.7 -112.2 7.6 24.9 54.7	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L	0.00271 0.150 0.00120 0.00412 0.00237		0.50% 0.40% 34.32% 628.16% 50.55% 22.25%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	82188.8 69188.7 -112.2 7.6 24.9	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186		0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007		0.50% 0.40% 34.32% 628.16% 50.55% 22.25%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.0016 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301		0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.0016 mg/L 0.0196 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014		0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.0016 mg/L 0.0196 mg/L 0.0954 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123		$\begin{array}{c} 0.50 \\ 0.40 \\ 34.32 \\ 628.16 \\ 50.55 \\ 22.25 \\ 0.63 \\ 186.61 \\ 0.69 \\ 1.29 \\ \end{array}$
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146	equired OR sampl	$\begin{array}{c} 0.50 \\ 0.40 \\ 34.32 \\ 628.16 \\ 50.55 \\ 22.25 \\ 0.63 \\ 186.61 \\ 0.69 \\ 1.29 \\ 0.13 \\ 0.38 \\ \end{array}$
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r		0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r		$\begin{array}{c} 0.50 \\ 0.40 \\ 34.32 \\ 628.16 \\ 50.55 \\ 22.25 \\ 0.63 \\ 186.61 \\ 0.69 \\ 1.29 \\ 0.13 \\ 0.38 \\ \end{array}$
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc	ation: 80	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal Sequence No.: 70 Sample ID: PBW-11722	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected:	ation: 80 8/13/2010 8:06:	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r 	ation: 80 8/13/2010 8:06: rinal	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal Sequence No.: 70 Sample ID: PBW-11722	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected:	ation: 80 8/13/2010 8:06: rinal Vol:	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ration: 80 8/13/2010 8:06: rinal Vol: : 50 mL	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ration: 80 8/13/2010 8:06: rinal Vol: : 50 mL	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 80 8/13/2010 8:06: final Vol: : 50 mL	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca sequence No.: 70 Sample ID: PBW-11722 Analyst: Initial Sample Wt: Dilution: Mean Data: PBW-11722	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl. 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN 	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r 	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not ca ====================================	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl. 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN 	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r 	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect.
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal sequence No.: 70 Sample ID: PBW-1172; Analyst: Initial Sample Wt: Dilution: Mean Data: PBW-1172; Malyte Y 371.029 Ag 328.068†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN Calib Conc. Units 1.001 mg/L 0.0002 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.0087 0.00016	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect. 34 PM Std.Dev. RSD 0.87% 103.07%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal sequence No.: 70 Sample ID: PBW-1172: Analyst: Initial Sample Wt: Dilution: Mean Data: PBW-1172: Maalyte Y 371.029 Ag 328.068† Al 308.215†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sample 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0047 mg/L 0.014 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN Calib Conc. Units 1.001 mg/L 0.0002 mg/L -0.0048 mg/L -0.0052 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.0087 0.00016 0.00658	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect. 34 PM Std.Dev. RSD 0.87% 103.07% 136.25%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal sequence No.: 70 Sample ID: PBW-1172: Analyst: Initial Sample Wt: Dilution: Mean Data: PBW-1172: Maalyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0084 mg/L 0.0114 mg/L -0.016 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN 	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Locc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.0087 0.00016 0.00658 0.00066	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% Le units incorrect. 34 PM Std.Dev. RSD 0.87% 103.07% 136.25% 203.94%
Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not cal sequence No.: 70 Sample ID: PBW-11722 Analyst: Initial Sample Wt: Dilution: Mean Data: PBW-11722 Malyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	82188.8 69188.7 -112.2 7.6 24.9 54.7 5974.6 -18.7 5009.8 29530.1 26591.9 97923.0 Iculated. Sampl 	0.5477 mg/L 37.91 mg/L 0.0035 mg/L 0.0007 mg/L 0.0047 mg/L 0.0047 mg/L 0.014 mg/L 0.0196 mg/L 0.0954 mg/L 46.65 mg/L 0.3781 mg/L e Prep. Vol. AN Calib Conc. Units 1.001 mg/L 0.0002 mg/L -0.0048 mg/L -0.0052 mg/L	0.00271 0.150 0.00120 0.00412 0.00237 0.00186 0.00007 0.00301 0.00014 0.00123 0.059 0.00146 ID Initial Vol. r Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.0087 0.00016 0.00058 0.00066 0.00144	ation: 80 8/13/2010 8:06: final Vol: : 50 mL Sample	0.50% 0.40% 34.32% 628.16% 50.55% 22.25% 0.63% 186.61% 0.69% 1.29% 0.13% 0.38% le units incorrect. 34 PM Std.Dev. RSD 0.87% 103.07% 136.25% 203.94% 27.71%

•

Method: AXIAL200-6	5010 L Opt4		Page 49	Date: 8/13/2010 8:18:29 PM
Cd 226.502†	-27.6	~0.0001 mg/L	0.00002	32.44%
Co 228.616†	-6.6	-0.0001 mg/L	0.00002	75.26%
Cr 267.716†	-8.8 16.4	0.0001 mg/L		
			0.00008	101.44%
Cu 324.752†	473.5	0.0010 mg/L	0.00048	47.05%
Fe 238.863†	3280.7	0.0542 mg/L	0.00725	13.37%
K 404.721†	-128.1			82.27 64.24%
Mg 279.077†	-361.3	-0.0092 mg/L	0.00232	25.17%
Mn 257.610†	237.8	0.0001 mg/L	0.00003	19.69%
Mo 202.031†	-7.3	-0.0001 mg/L	0.00001	6.17%
Ni 231.604†	5.9	0.0000 mg/L	0.00004	107.81%
Na 330.237†	269.4	0.1479 mg/Ľ	0.04676	31.61%
Pb 220.353†	47.6	0.0017 mg/L	0.00043	24.75%
Sb 206.836†	-2.1	-0.0004 mg/L	0.00138	368.60%
Se 196.026†	4.6	0.0008 mg/L	0.00075	93.09%
Sn 189.927†	46.2	0.0015 mg/L	0.00004	2.45%
Ti 337.279†	-27.5	-0.0001 mg/L	0.00008	142.84%
Tl 190.801†	0.1	0.0000 mg/L	0.00093	>999.9%
V 292.402†	103.4	0.0004 mg/L	0.00008	20.76%
Zn 206.200†	653.0	0.0021 mg/L		
Ca 227.546†		- · ·	0.00002	1.05%
	-40.7	-0.0676 mg/L	0.02744	40.57%
Sr 460.733t	-31.1	-0.0001 mg/L	0.00064	534.19%
Sample conc. not c	alculated. Sample	e Prep. Vol. A	ND Initial Vol.	required OR sample units incorrect.
	=========================			
Sequence No.: 71			Autosampler L	
Sample ID: LCSW-11	7216			d: 8/13/2010 8:12:16 PM
Analyst:			Data Type: Or	
Initial Sample Wt:			Initial Sampl	
Dilution:			Sample Prep V	ol: 50 mL
Mean Data: LCSW-11		Col 4 h		1 1 -
	Mean Corrected	Calib		Sample
Analyte	Intensity	Conc. Units		Conc. Units Std. Dev. RSD
Y 371.029	8561508.6	0.9805 mg/L	0.00726	0.74%
Ag 328.068†	18538.0	0.0498 mg/L	0.00012	0.24%
Al 308.215†	85721.4	1.988 mg/L	0.0099	0.50%
As 188.979†	367.9	0.0435 mg/L	0.00266	6.11%
B 249.772†	208846.5	0.9007 mg/L	0.00412	0.46%
Ba 233.527†	700722.1	1.946 mg/L	0.0056	0.29%
Be 313.107†	309139.6	0.0471 mg/L	0.00019	0.40%
Cd 226.502†	19155.9	0.0500 mg/L	0.00024	0.48%
Co 228.616†	67919.8	0.5081 mg/L	0.00090	0.18%
Cr 267.716†	43589.5	0.1970 mg/L	0.00128	0.65%
Cu 324.752†	122026.9	0.2584 mg/L	0.00033	0.13%
Fe 238.863†	64216.3	1.060 mg/L	0.0103	0.98%
K 404.721†	3400.4	11000	0.0100	8.37 0.25%
Mg 279.077†	79790.6	2.029 mg/L	0.0069	
Mg 279.0771 Mn 257.610†	843811.3	0.4922 mg/L	0.00132	0.34%
Mo 202.031†		.		0.27%
	25956.8	0.4856 mg/L	0.00190	0.39%
Ni 231.604†	67390.7	0.4492 mg/L	0.00163	0.36%
Na 330.237†	34902.7	19.14 mg/L	0.138	0.72%
Pb 220.353†	13892.6	0.5066 mg/L	0.00037	0.07%
Sb 206.836†	2687.8	0.4700 mg/L	0.01195	2.54%
Se 196.026†	5895.5	1.017 mg/L	0.0021	0.20%
Sn 189.927†	164329.4	5.405 mg/L	0.0456	0.84%
Ti 337.279†	257254.4	0.5035 mg/L	0.00684	1.36%
Tl 190.801†	15047.3	1.959 mg/L	0.0151	0.77%
V 292.402†	128733.8	0.4786 mg/L	0.00326	0.68%
Zn 206.200†	157211.3	0.5166 mg/L	0.00225	0.44%
Ca 227.546†	1037.8	1.853 mg/L	0.0785	4.23%
Sr 460.733†	208.2	0.0008 mg/L	0.00037	47.89%
Sample conc. not c	alculated. Sample	e Prep. Vol. A	ND Initial Vol.	required OR sample units incorrect.
				=======================================
Sequence No.: 72			Autosampler Lo	
Sample ID: R100414	1-001		-	d: 8/13/2010 8:16:34 PM
Analyst:			Data Type: Or:	
Initial Sample Wt:				
Dilution:			Initial Sample	
			Sample Prep Vo	

Method: AXII							
Mean Data: I	1004141-001 Mean Corrected		Calib			demo] e	
Analyte	Intensity			Std.Dev.	Gene	Sample Units	
Y 371.029	0343037 E	0.9556			cone.	onics	
	8343837.5	0.9556	шд/ц	0.00816			9.0
Ag 328.068†		-0.0007	mg/ь	0.00008			11.0
Al 308.215†	-359.3	-0.0276	mg/L	0.00136			4.9
As 188.979†	-60.9	-0.0063	mg/L	0.00606			95.8
B 249.772†	8023.7	0.0172	mg/L	0.00138			8.0
Ba 233.527†	23114 5	0 0630	mg/L	0.00005			0.0
Be 313.107†	20114.0	0.0000					
		0.0000	ш <u>д</u> /Б	0.00002			148.3
Cd 226.502†	-65.0	-0.0001	mg/ь	0.00020 0.00042			157.6
Co 228.616†	122.0	0.0007	mg/L	0.00042			56.4
Cr 267.716†	72.7 1715.4	0.0004	mg/L	0.00040 0.00025			104.2
Cu 324.752†	1715.4	0.0025	mq/L	0.00025			9.9
Fe 238.863†		0.2531		0.00436			1.7
K 404.721†				0.00120			8.02 1.7
M~ 030 077+		00.07		0 075			
Mg 279.077†		22.97	mg/ц	0.015			0.0
Mn 257.610†	117928.7	0.0681	mg/L	0.00012			0.1
Mo 202.031†	99.7	0.0018	mg/L	0.00030			17.0
Ni 231.604†	A 7 7 7	0.0025	mg/L	0.00011			4.3
	10890.8	5 850	mci/T	0.0447			0.7
220.3531		5.850 0.0011	mg/T				
	-2.0	0.0011	······································	0.00085			78.9
3b 206.836†	3.2	0.0004	mg/L	0.00070			197.4
Se 196.026†	15.6	0.0004 0.0010 0.0126	mg∕L	0.00592			575.6
Sn 189.927†	14.1	0.0126	mg/L	0.00135			10.7
ri 337.279†	-162.5	-0.0011	ma/T	0.00011			9.7
Cl 190.801†	-162.5 12.1	0 0020	mg/L	0.00128			64.2
	102 6	0 0004	m~ /T	0 00010			
7 292.4021	103.6 1465.6	0.0004	mg/L mg/L	0.00013			38.1
In 206.200†	1465.6	0.0030	mg/L	0.00009			3.0
Ca 227.546†	89111.5 126021.1	154.2	mg/L	0.28			0.1
Sr 460.733†	126021.1	0.4842	mg/L mg/L	0.00143			0.3
sampie conc.	not calculated. Samp	te Lten' /	VOL AND	INTELAT VOL. D	equirea (nk samp.	te units incorrect
Sequence No. Sample ID: R Analyst:	1004141-002	-		Autosampler Loc Date Collected: Data Type: Orig	ation: 83 8/13/201 inal	1	
	: 73 1004141-002	-		Autosampler Loc Date Collected: Data Type: Orig Initial Sample	ation: 83 8/13/201 inal Vol:	1	
Sequence No. Sample ID: R Analyst: Enitial Samp Dilution:	: 73 1004141-002 le Wt:			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 83 8/13/201 inal Vol: : 50 mL	.0 8:20:	.49 PM
Sequence No. Sample ID: R Analyst: Enitial Samp Dilution:	: 73 1004141-002 le Wt:			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 83 8/13/201 inal Vol: : 50 mL	.0 8:20:	
Sequence No. Sample ID: R Analyst: Initial Samp Dilution: Mean Data: R	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected		Calib	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20: Sample	.49 PM
Gequence No. Sample ID: R Analyst: Initial Samp Dilution: Mean Data: R	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity	 Conc.	Calib Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20:	:49 PM Std.Dev. RS
Sequence No. Sample ID: R Inalyst: Chitial Samp Dilution: Mean Data: R Inalyte Sanlyte Sanlyte	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8	Conc. 0.9476	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00480	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	.49 PM
Sequence No. Sample ID: R Inalyst: Chitial Samp Dilution: Mean Data: R Inalyte San1929	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity	 Conc.	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS
Sequence No. Sample ID: R Initial Samp Dilution: Mean Data: R Inalyte 371.029 g 328.068†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6	Conc. 0.9476 0.0000	Calib Units mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00480 0.00004	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2
Sequence No. Sample ID: R Initial Samp Dilution: Mean Data: R Inalyte 371.029 g 328.068† l 308.215†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9	Conc. 0.9476 0.0000 -0.0121	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00480 0.00004 0.00222	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2
Sequence No. Sample ID: R Initial Samp Dilution: Mean Data: R Inalyte 371.029 G 328.068† 1 308.215† Is 188.979†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9	Conc. 0.9476 0.0000 -0.0121 -0.0045	Calib Units mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00480 0.00004 0.00222 0.00217	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6
equence No. ample ID: R nalyst: initial Samp ilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7
Sequence No. Sample ID: R malyst: cnitial Samp bilution: Mean Data: R malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0
equence No. sample ID: R nalyst: initial Samp ilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7
equence No. sample ID: R nalyst: initial Samp ilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0
equence No. sample ID: R nalyst: initial Samp bilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8
equence No. ample ID: R nalyst: nitial Samp bilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 0 243.9 62.8 281.9
Sequence No. Sample ID: R malyst: mitial Samp Sample ID: R malyte 371.029 g 328.068† 1 308.215† s 188.979† a 233.527† a 233.527† a 233.527† c 313.107† d 226.502† o 228.616† r 267.716†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0000	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9
Sequence No. Sample ID: R Initial Samp Sequence No. Sample ID: R Initial Samp Sequence No. Sample ID: R Initial Samp Sequence No. Rean Data: R Initial Samp Sequence No. Se	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3
equence No. ample ID: R nalyst: initial Samp bilution: Gean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0000	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9
Sequence No. Sample ID: R malyst: cnitial Samp bilution: Mean Data: R malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† c 228.616† r 267.716† u 324.752† e 238.863† c 404.721†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0004 0.0028 0.1837	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3
Sequence No. Sample ID: R malyst: cnitial Samp bilution: Mean Data: R malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† c 228.616† r 267.716† u 324.752† e 238.863† c 404.721†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0004 0.0028 0.1837	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6
Sequence No. Sample ID: R malyst: initial Samp bilution: Mean Data: R malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† c 228.616† tr 267.716† u 324.752† e 238.863† 404.721† g 279.077†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0004 0.0028 0.1837 18.82	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1
Sequence No. Sample ID: R malyst: cnitial Samp bilution: Mean Data: R malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† 0 228.616† cr 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6
equence No. sample ID: R malyst: initial Samp bilution: ean Data: R nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.0
Gequence No. Gample ID: R malyst: cnitial Samp Selution: Gample ID: R malyte 371.029 g 328.068† 1 308.215† 1 308.215† 249.772† 233.527† e 313.107† d 226.502† 0 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† 0 202.031† i 231.604†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8
Sequence No. Sample ID: R malyst: cnitial Samp Dilution: Gen Data: R malyte 371.029 g 328.068† d 308.215† d 226.502† d 227.5010† d 226.502†d 226.502† d 226.502†d 226.502† d 2	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.0
Sequence No. Sample ID: R malyst: cnitial Samp Dilution: Gen Data: R malyte 371.029 g 328.068† d 308.215† d 226.502† d 227.5010† d 226.502†d 226.502† d 226.502†d 226.502† d 2	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8
Sequence No. Sample ID: R malyst: cnitial Samp Dilution: Gean Data: R malyte 371.029 G 328.068† 1 308.215† 3 289.068† 1 308.215† 3 289.772† 3 233.527† 3 249.772† 3 233.527† 3 249.772† 3 233.527† 3 249.772† 3 233.527† 5 249.772† 5 228.616† 5 267.716† 5 267.716† 5 249.772† 5 238.863† 5 404.721† 6 279.077† 5 20.331† 5 220.353†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3
Sequence No. Sample ID: R malyst: cnitial Samp Dilution: Gean Data: R malyte 371.029 G 328.068† 1 308.215† 3 249.772† 3 249.772† 3 249.772† 3 249.772† 3 249.772† 3 249.772† 3 249.772† 3 249.772† 4 238.863† 4 04.721† G 279.077† in 257.610† 5 202.031† 1 231.604† 3 330.237† 5 206.836†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.0 23.0 23.0 27.8 0.4 141.3 57.4
Sequence No. Sample ID: R Analyst: Cnitial Samp Dilution: Gean Data: R Samalyte C 371.029 Sg 328.068† Al 308.215† As 188.979† C 233.527† Sa 233.527† Sa 233.527† Sa 233.527† Sa 233.527† Sa 233.527† Sa 233.527† Sa 233.527† Sa 234.752† C 238.863† C 404.721† Sg 279.077† In 257.610† Sa 231.604† Sa 230.237† Sb 220.353† Sb 206.836† e 196.026†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.0 27.8 0.4 141.3 57.4 7.02
Sequence No. Sample ID: R malyst: cnitial Samp ollution: Mean Data: R malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† c 228.616† c 267.716† m 257.610† c 238.863† 404.721† g 279.077† m 257.610† c 202.031† i 231.604† a 330.237† b 220.353† b 206.836† e 196.026† m 189.927†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0028 0.0028 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol 0.00480 0.00004 0.00222 0.00217 0.00017 0.00017 0.00011 0.00004 0.00003 0.00007 0.00011 0.00026 0.00057	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 7.0 28.8
Sequence No. Sample ID: R Analyst: Cnitial Samp Dilution: Gean Data: R Analyte C 371.029 Ag 328.068† Al 308.215† As 188.979† C 371.029 Ag 328.068† Al 308.215† As 249.772† C 33.527† C	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9 -232.2	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060 -0.0010	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol Occupant Occupan	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.0 27.8 0.4 141.3 57.4 7.02
Sequence No. Sample ID: R malyst: cnitial Samp Sequence No. Sample ID: R malyst: cnitial Samp Sequence No. Sample ID: R malyte Contained Sequence Sequence No. Sample ID: R	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0028 0.0028 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol 0.00480 0.00004 0.00222 0.00217 0.00017 0.00017 0.00011 0.00004 0.00003 0.00007 0.00011 0.00026 0.00057	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 7.0 28.8
Sequence No. Sample ID: R malyst: cnitial Samp Solution: Mean Data: R malyte 328.068† 1308.215† 1308.215† 1308.215† 1308.215† 1308.215† 1308.215† 1308.215† 1308.215† 1324.721† 249.772† 123.527† 249.772† 123.604† 1231.604† 1231.604† 1231.604† 1231.604† 1231.604† 1231.604† 1231.604† 130.237† 120.353† 190.801†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9 -232.2	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060 -0.0010 -0.0007	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol Occupant Occupan	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 141.3 57.4 141.3 57.4 17.7 28.8 18.7 171
Sequence No. Sample ID: R malyst: cnitial Samp Dilution: Gen Data: R malyte 328.068† 1308.215† 249.772† 233.527† 249.772† 233.527† 249.772† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 249.772† 233.527† 233.527† 249.772† 233.527† 233.604† 233.7279† 1337.279† 1390.801† 292.402†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9 -232.2 -8.1 137.3	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060 -0.0010 -0.0007 0.0005	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 7.05 28.8 18.7 171.7 53.7
Sequence No. Sample ID: R Analyst: Cnitial Samp Dilution: Gean Data: R analyte 2371.029 2328.068† 1 308.215† 249.772† 3 279.077† 1 290.353† 5 206.836† e 196.026† n 189.927† 1 3 37.279† 1 3 90.801† 2 292.402† n 206.200†	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9 -232.2 -8.1 137.3 1446.5	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060 -0.0010 -0.0010 -0.0010 -0.0034	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 7.0 28.8 18.7 7.0 23.0 27.8 0.4 141.3 57.4 7.0 28.8 18.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
Sequence No. Sample ID: R Analyst: Initial Samp Dilution: Mean Data: R	: 73 1004141-002 le Wt: 1004141-002 Mean Corrected Intensity 8274441.8 98.6 51.9 -42.9 8134.3 19019.5 -282.3 -30.2 11.6 80.0 1699.6 11879.5 323.7 739933.2 17804.8 135.9 106.7 13414.2 -3.2 7.9 21.3 -73.9 -232.2 -8.1 137.3	Conc. 0.9476 0.0000 -0.0121 -0.0045 0.0231 0.0520 0.0000 -0.0001 0.0000 0.0004 0.0028 0.1837 18.82 0.0098 0.0025 0.0004 7.272 0.0007 0.0012 0.0025 0.0060 -0.0010 -0.0007 0.0005	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 83 8/13/201 Minal Vol: : 50 mL	.0 8:20 Sample	:49 PM Std.Dev. RS 0.5 505.2 18.2 48.6 0.7 0.0 243.9 62.8 281.9 24.9 9.3 1.9 79.65 24.6 0.1 0.6 23.00 27.8 0.4 141.3 57.4 7.05 28.8 18.7 171.7 53.7

Method: AXIAL200-6010 L Opt4 Page 51

Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect.

Sequence No.: 74 Autosampler Location: 4 Sample ID: CCV Date Collected: 8/13/2010 8:24:58 PM Analyst: Data Type: Original

.

Initial Sample Wt: Dilution:

Initial Sample Vol: Sample Prep Vol: _____

-								
М	ean Data: CCV							
		Mean Corrected				Sample		
A	nalyte	Intensity	Conc. Units		Conc.	Units	Std.Dev.	RSD
Y	371.029 g 328.068†	8413184.5	0.9635 mg/L	0.01459				1.51%
A	g 328.068†	193054.0	0.5179 mg/L	0.00777	0.5179	mg/L	0.00777	1.50%
	OC value within	limits for Ag	328.068 Recovery	= 103.58%		2.		
А	1 308.215†	432605.1	10.03 mg/L	0.212	10.03	mg/L	0.212	2.11%
			308.215 Recovery		20100		01222	2.120
מ		8507.0		0.00669	0 0071	mg/L	0.00669	0.67%
~					0.99/1	шgлш	0.00669	0.675
			188.979 Recovery			1-		
Б	249.7721	554982.0	2.383 mg/L	0.0724	2.383	mg/L	0.0724	3.04%
_			249.772 Recovery					
в			9.695 mg/L	0.1970	9.695	mg/L	0.1970	2.03%
		limits for Ba	233.527 Recovery	= 96.95%				
в	e 313.107†	1610164.9	0.2451 mg/L	0.00570	0.2451	mg/L	0.00570	2.32%
	QC value within	limits for Be	313.107 Recovery	≍ 98.05%				
C	d 226.502†	190316.1	0.4974 mg/L	0.00657	0.4974	mg/L	0.00657	1.32%
	QC value within	limits for Cd	226.502 Recovery	= 99.47%		•		
C	D 228.616†	321817.3	2.407 mg/L	0.0493	2.407	mg/L	0.0493	2.05%
	OC value within	limits for Co	228.616 Recovery	= 96.29%				
· C:	r 267.716†		0.5032 mg/L	0.00756	0 5032	mg/L	0.00756	1.50%
			267.716 Recovery					2.000
C	1 324.752t	573467.5	1.214 mg/L	0.0276	1 214	malt.	0.0276	2.27%
			324.752 Recovery		1.217	мg/ш	0.0270	6.270
5	e 238.863†		5.071 mg/L	0.1353	F 071	mc / T	0.1353	2.67%
£ (5.0/1	mg/L	0.1353	2.6/5
7.5			238.863 Recovery	= 101.428			~~ ~~	
ĸ	404.721†	4451.6					23.38	0.53%
	Unable to evalua	ate QC.						
Mg	3 279.0771	1006867.9	25.61 mg/L	0.572	25.61	mg/L	0.572	2.24%
			279.077 Recovery					
Mı	1 257.610†	1297817.3	0.7563 mg/L	0.01538	0.7563	mg/L	0.01538	2.03%
	QC value within	limits for Mn	257.610 Recovery	≃ 100.85%				
Mo	o 202.031†	129706.2	2.427 mg/L	0.0759	2.427	mg/L	0.0759	3.13%
	QC value within	limits for Mo	202.031 Recovery	= 97.07%				
N:	L 231.604†	308096.1		0.0377	2.054	mg/L	0.0377	1.83%
	QC value within	limits for Ni	231.604 Recovery	= 102.68%		<u>.</u>		
Na	a 330.237†	44924.0	24.62 mg/L	0.368	24.62	mg/L	0.368	1.49%
			330.237 Recovery					4
۲q	220.3531		0.5038 mg/L		0 5038	mg/L	0.01158	2.30%
	-		220.353 Recovery		0.5050		0.01100	2.30%
C ł	206.836†	28292.3	4.947 mg/L	0.0375	1 917	ma /T	0.0375	0.76%
.51	-		206.836 Recovery		4.94/	mg/L	0.0375	0./68
	-				0 5047	/7	0 00001	0 000
56		2922.4			0.5047	mg/L	0.00371	0.73%
0.			196.026 Recovery			1-		
51	1 189.927†	155722.4	5.126 mg/L	0.1359	5.126	mg/L	0.1359	2.65%
			189.927 Recovery			•		
.T.3	337.279†		2.524 mg/L	0.0044	2.524	mg/L	0.0044	0.17%
_	QC value within	limits for Ti	337.279 Recovery					
T1			1.002 mg/L "		1.002	mg/L	0.0159	1.58%
	QC value within	limits for Tl	190.801 Recovery	= 100.19%				
v	292.402†	657960.6	2.446 mg/L	0.0736	2.446	mg/L	0.0736	3.01%
	QC value within	limits for V 2	92.402 Recovery =	= 97.85%				
Zr	206.2001	314999.6	1.034 mg/L	0.0216	1.034	mg/L	0.0216	2.09%
			206.200 Recovery			<u>.</u>	+	
Ca	227.546†	14289.6	25.00 mg/L	0.262	25.00	mg/L	0.262	1.05%
			227.546 Recovery					1.020
Sr	460.733†	678565.5	2.625 mg/L	0.0302	2.625	ma/L	0.0302	1.15%
~			460.733 Recovery		2.020		0.0002	
م ا			more analytes were					
~1	r anaryce(a/ pass	Ca yo. One OI	more anarytes were	. not evaluated.				

Sequence No.: 75

Autosampler Location: 5

Date: 8/13/2010 8:35:01 PM

Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Date Collected: 8/13/2010 8:29:17 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Analyte Y 371.029 Ag 328.068†	Mean Corrected	d Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSI
Y 371.029	8879204.6	1.017 mg/L	0.0024				0.24
Ag 328.068†	105.3	0.0003 mg/L	0.00084	0.0003	mg/L	0.00084	293.37
QC value within	limits for Ag	328.068 Recover	<i>i</i> = Not calculate	ea			
Al 308.215†		-0.0150 mg/L	0.00031	-0.0150	mg/L	0.00031	2.04
QC value within	limits for Al	308.215 Recovery 0.0031 mg/L	r = Not calculate	ed			~ ~ ~ ~
As 188.979t	26.4	0.0031 mg/L	0.00083	0.0031	mg/L	0.00083	26.78
	limits for As	188.979 Recovery -0.0057 mg/L	/ = NOT CAICULATE			0 00167	20.40
3 249.772t	-1281.5	-0.0057 mg/L	U.UUI6/	-0.0057	шgль	0.0010/	29.45
QC Value within	LIMITS FOR B.	249.772 Recovery 0.0027 mg/L	= NOE Calculated	1 0 0007	ma /T	0 00022	11 05
Ba 233.527†	Jimita for Do	233.527 Recovery	0.00032	0.0027	шg/ш	0.00032	11.03
Be 313.107†		0.0001 mg/L	n nonno	a 0001	$m\alpha/r$	0.00002	19 03
		313.107 Recovery	v - Not calculate	20000T	шg/ш	0.00002	19.01
2d 226.5021	16 3	0.0000 mg/L	0 00000		ma /T.	0.00000	2 03
OC value within	limite for Cd	226.502 Recovery	v - Not calculate	0.0000 M	шg/ц	0.00000	2.00
Co 228.616†	35 6	0.0003 mg/L	0 00006	0 0003	ma/L	0.00006	22 22
	limits for Co	228.616 Recovery	v = Not calculate	-d		0.00000	23.22
267.716†	-17.3	-0.0001 mg/L	0.00027	-0.0001	ma/T	0.00027	345.39
OC value within	limits for Cr	267.716 Recovery	r = Not calculate	ed be			0 10 100
Cu 324.7521	1517.2	0.0032 mg/L	0.00053	0.0032	mg/L	0.00053	16.31
	limits for Cu	324.752 Recovery	r = Not calculate	ad			
e 238.863†	2541.7	0.0420 mg/L	0.00058	0.0420	mg/L	0.00058	1.39
OC value within	limits for Fe	238.863 Recovery	v = Not calculate	ad	5.		
	-29.1	-				21.14	72.63
Unable to evalua	ate QC.						
1g 279.077†	-215.9	-0.0055 mg/L	0.00108	-0.0055	mg/L	0.00108	19.49
OC value within	limits for Mg	279.077 Recovery	r ≈ Not calculate	ed			
ín 257.610†	452.2	0.0003 mg/L	0.00002	0.0003	mg/L	0.00002	7.67
QC value within	limits for Mn	257.610 Recovery	' = Not calculate	ed			
10 202.031†	30.5	0.0006 mg/L	0.00006	0.0006	mg/L	0.00006	11.15
QC value within	limits for Mo	202.031 Recovery	<pre>r = Not calculate</pre>	ed			
Ii 231.604†	26.8	0.0002 mg/L	0.00005	0.0002	mg/L	0.00005	28.79
OC value within	limits for Ni	231.604 Recovery	' = Not calculate	ed .			
la 330.237†	-265.3	-0.1453 mg/L	0.02883	-0.1453	mg/L	0.02883	19.84
QC value within	limits for Na	330.237 Recovery	r = Not calculate	ed	-		
		0.0006 mg/L			mg/L	0.00027	41.29
		220.353 Recovery	' = Not calculate	ed	<i>i</i> -		
b 206.8361		0.0009 mg/L			mg/L	0.00012	12.31
QC value within	limits for Sb	206.836 Recovery	r = Not calculate	a	1-		
		0.0000 mg/L			mg/L	0.00131	>999.9
		196.026 Recovery	- NOT CALCULATE	.u	/ T	0 00104	10 10
in 189.927†	233.0 limita fam Ca	0.0077 mg/L 189.927 Recovery	U.UUIZ4 - Not colculate	0.0077	шgль	0.00124	10.10
QC value within		-0.0002 mg/L	a onoid	.0 0000	mer /T	0 00014	70.00
		337.279 Recovery			шg/ь	0.00014	79.06
1 190.801†			0.00090	0.0014	malt	0 00000	61 21
		0.0014 mg/L 190.801 Recovery			шgль	0.00090	04.21
292.402†	52.5	0.0002 mg/L	0.00006	0.0002	ma /T	0.00006	50 0 7
		92.402 Recovery			alg/ L	0.00000	20.05
in 206.200†	43.2	0.0001 mg/L	0.00002	0.0001	mar/T.	0.00002	13 20
· · ·		206.200 Recovery			llig/ E	0.00002	19.20
a 227.546†	-37.0	-0.0618 mg/L	0.00522	-0.0618	ma/ĭ,	0.00522	8.45
		227.546 Recovery				0.00522	0.40
r 460.733†	21.7	0.0001 mg/L	0.00030	0.0001	ma/T	0.00030	348 00
		460.733 Recovery				0.000000	240.00
ll analyte(s) pass							
DO(D) P000	x one or						

Sample ID: R1004141-003 Analyst: Initial Sample Wt: Dilution: Autosampler Location: 84 Date Collected: 8/13/2010 8:35:01 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: 50 mL

Mean Data: R1			· · ·			
3	Mean Corrected Intensity	G a a a	Calib	6+-1 D	Sample	
Analyte Y 371.029	LICENSICY	Conc.	Units	Std.Dev. 0.00283	Conc. Units	Std.Dev. RSD 0.31%
Aq 328.0681	8105621.9 -44.9	-0 0004	mg/L	0.00038		99.95%
Al 308.215†		0.0019		0.00017		9.06%
As 188.979†		-0.0031		0.00178		57.95%
B 249.772†		0.0752		0.00022		0.30%
Ba 233.527†	23299.0	0.0638		0.00026		0.41%
Be 313.107†	-652.4	0.0000	mg/L	0.00000		5.87%
Cd 226.502†	-85.6	-0.0002		0.00015		70.62%
Co 228.616†	103.6	0.0006	mg/L	0.00002		3.61%
Cr 267.716†	141.9	0.0007 0.0023	mg/L	0.00015		22.21%
Cu 324.752†				0.00000		0.16%
Fe 238.863†	24913.4	0.3986		0.00168		0.42%
K 404.721†	312.6	15.14 0.1049				25.50 8.16%
Mg 279.077†	595076.5 180538.0	15.14	mg/L	0.023		0.15%
Mn 257.610†	180538.0			0.00000		0.00%
Mo 202.031†	264.7 207.3	0.0049		0.00027		5.43%
Ni 231.604†	207.3	0.0011		0.00003		3.21%
Na 330.237†		9.297		0.1208		1.30%
Pb 220.353†	14.8	0.0014		0.00165		116.36%
Sb 206.836†	-16.7	-0.0031		0.00441		144.24%
Se 196.026†		0.0035		0.00203		57.36%
Sn 189.927†	61.0 -282.5	0.0110		0.00079		7.16%
Ti 337.279† Tl 190.801†		-0.0011	mg/L mg/T	0.00011 0.00074		9.68%
V 292.402†	161.6	0.0016 0.0006	шу/Б та/Т			46.73% 17.22%
Zn 206.200†	1211.7	0.0008	mg/L	0.00010 0.00009		3.36%
Ca 227.546†		115.6		0.02		0.02%
	125478.3	0.4830	$m\alpha/T$	0.00148		0.31%
	not calculated. Sample	Pren 1	Ing/20	D Initial Vol 1	required OR sampl	
		F.			-odeof outb-	
================						
Sequence No.:	77			Autosampler Loc	cation: 85	
				-	cation: 85 : 8/13/2010 8:39:	
	77 00 4141-004			-	: 8/13/2010 8:39:	
Sample ID: R1(04141-004			Date Collected	: 8/13/2010 8:39: yinal	
Sample ID: R1(Analyst:	04141-004			Date Collected: Data Type: Orig	: 8/13/2010 8:39: ginal Vol:	
Sample ID: R1(Analyst: Initial Sample Dilution:	004141-004 a Wt:			Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol: L: 50 mL	14 PM
Sample ID: R1(Analyst: Initial Sample Dilution:)04141-004 a Wt:			Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol:	14 PM
Sample ID: R1(Analyst: Initial Sample Dilution:	004141-004 Wt: 004141-004			Date Collected: Data Type: Oric Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol: L: 50 mL	14 PM
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(004141-004 9 Wt: 004141-004 Mean Corrected		Calib	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8	Conc.	Calib Units	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol: L: 50 mL	14 PM Std.Dev. RSD
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8	Conc.	Calib Units	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte	004141-004 Wt: 004141-004 Mean Corrected Intensity	Conc. 0.9020 0.0003	Calib Units mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9	Conc. 0.9020 0.0003 0.0225	Calib Units mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9	Conc. 0.9020 0.0003	Calib Units mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00%
Sample ID: R1(Analyst: Initial Sample Dilution: Mean Data: R1(Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0000	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0000 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 0.0001 0.0001 0.0003 0.0027	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00031	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 0.6 40.4 1466.9 9852.1 676.0 651897.2	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0000 0.0003 0.0027 0.1567 16.58	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0000 0.0003 0.0027 0.1567 16.58 0.0047	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4	Conc. 0.9020 0.0003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00005 0.00003 0.00017 0.00051 0.00051 0.00051 0.000229 0.111 0.00008 0.00011 0.00062	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00052 0.00051 0.00051 0.00052 0.00051 0.00052 0.00051 0.00052 0.000552 0.000552 0.0005552 0.0005555555555	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	004141-004 Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 0.0001 -0.0001 0.0000 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00003 0.00017 0.00051 0.00031 0.00229 0.111 0.00008 0.00011 0.00062 0.93 0.00143 0.00135	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 0.0001 0.0000 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021 0.0021 0.0037	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00055 0.00052 0.0011 0.00062 0.93 0.00143 0.00135 0.00589	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6 54.4	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021 0.0027 0.0021 0.0037 0.0053	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00051 0.00031 0.000229 0.111 0.00008 0.00011 0.00062 0.93 0.00143 0.00135 0.00589 0.00134	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66% 25.00%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6 54.4 -401.9	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021 0.0021 0.0053 -0.0011	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00031 0.00029 0.111 0.00008 0.00011 0.00008 0.00011 0.00062 0.93 0.00143 0.00135 0.00589 0.00134 0.00005	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66% 25.00% 4.88%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6 54.4 -401.9 1.6	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021 0.0037 0.0053 -0.0011 0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00031 0.000229 0.111 0.00008 0.00011 0.00062 0.93 0.00143 0.00135 0.00589 0.00134 0.0005 0.00131	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66% 25.00% 4.88% 318.77%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† T1 190.801† V 292.402†	004141-004 wwt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6 54.4 -401.9 1.6 424.4	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0023 0.0001 124.6 0.0027 0.0021 0.0037 0.0053 -0.0011 0.0004 0.0016	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00051 0.00051 0.00031 0.000229 0.111 0.00008 0.00011 0.00062 0.93 0.00143 0.00135 0.00589 0.00134 0.0005 0.00131 0.00013	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66% 25.00% 4.88% 318.77% 8.45%
Sample ID: R10 Analyst: Initial Sample Dilution: Mean Data: R10 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 233.527† Ba 233.527† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	004141-004 a Wt: 004141-004 Mean Corrected Intensity 7876511.8 140.4 1196.9 -24.9 264199.0 15471.5 -807.8 -24.9 264199.0 15471.5 -807.8 -24.9 -0.6 40.4 1466.9 9852.1 676.0 651897.2 8900.0 498.4 34.5 227389.2 66.7 12.2 23.6 54.4 -401.9 1.6	Conc. 0.9020 0.003 0.0225 -0.0026 1.139 0.0426 -0.0001 -0.0001 0.0003 0.0027 0.1567 16.58 0.0047 0.0093 0.0001 124.6 0.0027 0.0021 0.0037 0.0053 -0.0011 0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00107 0.00040 0.00278 0.00462 0.0104 0.00061 0.00005 0.00003 0.00017 0.00051 0.00031 0.000229 0.111 0.00008 0.00011 0.00062 0.93 0.00143 0.00135 0.00589 0.00134 0.0005 0.00131	: 8/13/2010 8:39: ginal Vol: L: 50 mL Sample	14 PM Std.Dev. RSD 0.12% 140.29% 12.36% 175.18% 0.91% 1.42% 44.20% 52.00% 413.78% 176.26% 11.53% 1.46% 18.81 2.78% 0.67% 1.65% 1.14% 576.96% 0.75% 53.49% 65.78% 160.66% 25.00% 4.88% 318.77%

	6010 L Opt4		Page 54	27 UL U 4 V	8/13/2010 8:49:2
Ca 227.546†	20597.1	35.65 mg/L	0.332		Ο.
Sr 460.733†	443114.0	1.714 mg/L	0.0005		Ο.
Sample conc. not o	alculated. Samp	le Prep. Vol. AN	ND Initial Vol. :	required OR sample	e units incorrec
=======================================	***************************************				
Sequence No.: 78			Autosampler Loc		
Sample ID: R100414	1-005			: 8/13/2010 8:43:2	26 PM
Analyst:			Data Type: Orig		
Initial Sample Wt	£		Initial Sample		
Dilution:			Sample Prep Vol	L: 50 mL	
				· · · · · · · · · · · · · · · · · · ·	
Mean Data: R100414	11-005 Mean Corrected	Calib		Sample	
Analyte		Conc. Units	Std.Dev.	Conc. Units	Std.Dev. R
Y 371.029	8038233.9	0.9206 mg/L	0.00453	conc. birteb	0.4
Ag 328.068†	110.0				
-	110.0	0.0000 mg/L 0.0033 mg/L	0.00078		>999
Al 308.215†	755.9	0.0033 mg/L	0.00244		73.
As 188.979†	-46.0	-0.0047 mg/L	0.00441		94.3
B 249.772t	30203.5	0.1173 mg/L	0.00280		2.3
Ba 233.527†	20688.4	-0.0047 mg/L 0.1173 mg/L 0.0565 mg/L	0.00068		1.2
Be 313.107†	-931.9	-0.0001 mg/L	0.00002		29.2
Cd 226.502†	-81.0	-0.0002 mg/L	0.00013		62.8
Co 228.616†	5.2	-0.0001 mg/L	0.00026		330.5
Cr 267.716†		0.0003 mg/L	0.00032		113.7
Cu 324.752†		0.0013 mg/L	0.00034		25.4
Fe 238.863†	26035.8	0.4159 mg/L	0.01010		2.4
K 404.721†	449.4	2.			227.76 50.6
Mg 279.077†		26.28 mg/L	0.029		0.1
Mn 257.610†	38740.3	0.0218 mg/L	0.00040		
					1.8
Mo 202.031†		0.0001 mg/L	0.00060		555.2
Ni 231.604†	92.7	0.0003 mg/L	0.00011		37.7
Na 330.237†		18.53 mg/L	0.010		0.0
Pb 220.353†	-4.3	0.0006 mg/L	0.00081		129.9
Sb 206.836†	-18.6	-0.0034 mg/L	0.00104		30.5
Se 196.026†		0.0103 mg/L	0.00382		37.1
Sn 189.927†		0.0057 mg/L	0.00008		1.3
Ti 337.279†	-192.0	-0.0010 mg/L	0.00016		15.5
Tl 190.801†	-10.3	-0.0009 mg/L	0.00114		121.1
V 292.402†	222.0	0.0008 mg/L	0.00022		26.5
Zn 206.200†	982.4	0.0016 mg/L	0.00002		1.0
Ca 227.546†		107.3 mg/L	1.57		1.4
Sr 460.733†	249319.7	0.9624 mg/L	0.00898		0.9
Sample conc. not c				equired OR sample	
Sequence No.: 79			Autosampler Loc		_
Sequence No.: 79 Sample ID: R100414	1-005D		Date Collected:	8/13/2010 8:47:3	6 PM
Sequence No.: 79 Sample ID: R100414 Analyst:			-	8/13/2010 8:47:3	6 PM
Sequence No.: 79 Sample ID: R100414			Date Collected:	8/13/2010 8:47:3 inal	6 PM
Sequence No.: 79 Sample ID: R100414 Analyst:			Date Collected: Data Type: Orig	8/13/2010 8:47:3 inal Vol:	6 PM
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution:			Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	8/13/2010 8:47:3 inal Vol:	
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt:	 1-005D		Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	8/13/2010 8:47:3 final Vol: : 50 mL	
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414	1-005D Mean Corrected	Calib	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	8/13/2010 8:47:3 final Vol: : 50 mL Sample	
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte	1-005D Mean Corrected Intensity	Calib Conc. Units	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	8/13/2010 8:47:3 final Vol: : 50 mL	Std.Dev. RS
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029	1-005D Mean Corrected Intensity 8009909.8	Calib Conc. Units 0.9173 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte	1-005D Mean Corrected Intensity	Calib Conc. Units	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029	1-005D Mean Corrected Intensity 8009909.8	Calib Conc. Units 0.9173 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00096 0.00104 0.00266 0.00266 0.00376	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00096 0.00104 0.00266 0.00266 0.00376	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L -0.0002 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L 0.109 mg/L 0.0580 mg/L -0.0001 mg/L -0.0001 mg/L 0.0001 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0008 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7 1070.4	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L -0.0001 mg/L 0.0001 mg/L 0.0008 mg/L 0.00013 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0008 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7 1070.4	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L -0.0001 mg/L 0.0001 mg/L 0.0008 mg/L 0.00013 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2 2.4
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7 1070.4 26796.2 438.9	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0008 mg/L 0.0013 mg/L 0.4285 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2 2.4 6.03 1.3
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: 	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7 1070.4 26796.2 438.9 1027035.3	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L -0.0001 mg/L 0.0001 mg/L 0.0008 mg/L 0.0013 mg/L 0.4285 mg/L 26.12 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2 2.4 6.03 1.3 0.4
Sequence No.: 79 Sample ID: R100414 Analyst: Initial Sample Wt: Dilution: Mean Data: R100414 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	1-005D Mean Corrected Intensity 8009909.8 49.2 941.9 -90.2 28731.8 21215.9 -915.2 -66.2 24.1 139.7 1070.4 26796.2 438.9	Calib Conc. Units 0.9173 mg/L -0.0001 mg/L 0.0077 mg/L -0.0098 mg/L 0.1109 mg/L 0.0580 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0008 mg/L 0.0013 mg/L 0.4285 mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 8:47:3 final Vol: : 50 mL Sample	Std.Dev. RS 0.1 851.6 57.4 26.9 3.3 1.1 2.3 95.7 277.1 1.9 12.2 2.4

Method: AXIAL200	-6010 t. 00+4		Page 55	Datas	8/13/2010 8:5	9.01 mm
MOLHOU, AALADZVV	-0010 11 0013		Page 55	Date:_	0/13/2010 0:3	M4 10101
Ni 231.604†	25.7	-0.0001 mg/L	0.00034		2	30.42%
Na 330.237†	33917.6	18.51 mg/L	0.001			0.00%
Pb 220.353†	-14.4	0.0002 mg/L	0.00043		1	73.97%
Sb 206.8361	5.4	0.0008 mg/L	0.00010			13.33%
Se 196.026†	34.2	0.0048 mg/L	0.00004			0.86%
Sn 189.927†		0.0072 mg/L	0.00099			13.71%
Ti 337.279†		-0.0011 mg/L	0.00003			2.72%
Tl 190.801†		-0.0023 mg/L	0.00087			37.31%
V 292.402†		0.0007 mg/L	0.00022			33.38%
Zn 206.200† Ca 227.546†	537.4	0.0001 mg/L	0.00010			68.64%
Sr 460.733†	61897.5 246559.0	107.1 mg/L 0.9517 mg/L	1.69 0.00138			1.58% 0.15%
				. required OR sampl	e unite incor	
	carcaracea. Bampre	. 110p. (01. 1.		· required on bamps	e unaco ancoa	1000,
=======================================			*****			======
Sequence No.: 80			Autosampler	Location: 88		
Sample ID: R1004	141-0055		Date Collect	ed: 8/13/2010 8:51:	45 PM	
Analyst:			Data Type: O	-		
Initial Sample W	t:		Initial Samp			
Dilution:			Sample Prep	Vol: 50 mL		
Mean Data: R1004						
	Mean Corrected	Calib		Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
¥ 371.029	7954625.0	0.9110 mg/L	0.00036			0.04%
Ag 328.068†	19772.3	0.0528 mg/L	0.00004			0.07%
Al 308.215†	91184.5	2.101 mg/L	0.0076			0.36%
As 188.979†	335.4	0.0403 mg/L	0.00061			1.52%
B 249.772†	256646.3	1.094 mg/L	0.0074			0.67%
Ba 233.527†	755675.0	2.098 mg/L	0.0028			0.13%
Be 313.107†	331123.4	0.0505 mg/L	0.00004			0.09%
Cd 226.5021	19493.8	0.0509 mg/L 0.5106 mg/L	0.00051			0.99%
Co 228.616† Cr 267.716†	68272.0 46572.6		0.00397			0.78% 1.12%
Cu 324.752†	118400.6	0.2107 mg/L 0.2499 mg/L	0.00236 0.00171			0.69%
Fe 238.863†	90859.8	1.486 mg/L	0.0014			0.09%
K 404.721†	4185.6	1.400 mg/H	0.0014		163.44	3.90%
Mg 279.077†	1095666.5	27.87 mg/L	0.047		100.11	0.17%
Mn 257.610†	952968.8	0.5551 mg/L	0.00084			0.15%
Mo 202.031†	28438.3	0.5320 mg/L	0.00697			1.31%
Ni 231.604†	68064.4	0.4534 mg/L	0.00084			0.18%
Na 330.237†	73120.0	40.01 mg/L	0.085			0.21%
Pb 220.353†	14579.6	0.5324 mg/L	0.00655			1.23%
Sb 206.836†	2832.3	0.4951 mg/L	0.00111			0.22%
Se 196.026†	6224.0	1.072 mg/L	0.0001			0.01%
Sn 189.927†	173048.3	5.701 mg/L	0.0392			0.69%
Ti 337.279†	273116.5	0.5339 mg/L	0.00665			1.25%
Tl 190.801†	15291.1	1.991 mg/L	0.0102			0.51%
V 292.402†	140782.0	0.5234 mg/L	0.00278			0.53%
Zn 206.200† Ca 227.546†	158967.5	0.5208 mg/L 107.6 mg/L	0.00189			0.36%
Sr 460.733†	62130.4 243792.5	0.9410 mg/L	0.86 0.00010			0.80% 0.01%
		.		. required OR sample	e units incor:	
				. Todatton ou pumba		
================					==============	ng==#=
Sequence No.: 81			Autosampler I	Location: 89		
Sample ID: R10041	L41-005A			ed: 8/13/2010 8:56:	03 PM	
Analyst:			Data Type: Or	-		
Initial Sample W			Initial Sampl			
Dilution:			Sample Prep N	Vol: 50 mL		
Mean Data: R10041						
20000 A2001	Mean Corrected	Calib		Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
Y 371.029	7898517.0	0.9046 mg/L	0.00014			0.02%
Ag 328.068†	18945.3	0.0506 mg/L	0.00015			0.30%
Al 308.215†	88403.5	2.036 mg/L	0.0012			0.06%
As 188.979†	317.7	0.0383 mg/L	0.00732		1	19.12%
B 249.772†	257149.5	1.096 mg/L	0.0046			0.42%
Ba 233.527†	733460.5	2.036 mg/L	0.0022			0.11%

_

Method: AXIAL200	-6010 L Opt4	1	age 56	Date: 8/13/2010 9:07:53 PM
De 210 1074	231000 0	0 0401 /7	0.00000	
Be 313.107† Cd 226.502†	321889.9 18987.4	0.0491 mg/L 0.0496 mg/L	0.00000 0.00057	0.00% 1.15%
Co 228.616†	66787.1	0.4995 mg/L	0.00401	0.80%
Cr 267.716†	45716.1	0.2068 mg/L	0.00401	1.14%
Cu 324.752†	117179.8	0.2473 mg/L	0.00132	0.53%
Fe 238.863†		1.454 mg/L		
K 404.721†	88961.1	1.454 mg/L	0.0010	0.07% 41.79 1.07%
Mg 279.077†	3906.3	27 02 mm/T	0 000	
-	1098047.5	27.93 mg/L	0.008	0.03%
Mn 257.610†	924635.6	0.5386 mg/L	0.00044	0.08%
Mo 202.031†	43.9 65457.6	0.0008 mg/L 0.4360 mg/L	0.00073	88.56%
Ni 231.604†			0.00154	0.35%
Na 330.237†	72163.9 14169.7	39.48 mg/L	0.127	0.32%
Pb 220.353†	14169.7	0.5175 mg/L	0.01415	2.74%
Sb 206.836†	9.8	0.0015 mg/L 0.0173 mg/L	0.00188	124.25%
Se 196.026†	105.5	0.0173 mg/L	0.00249	14.42%
Sn 189.927†		0.0185 mg/L	0.00173	9.33%
Ti 337.279†	-268.7	-0.0012 mg/L	0.00020	16.86%
Tl 190.801†	15088.7	1.965 mg/L	0.0152	0.78%
V 292.402†	136801.1	0.5086 mg/L	0.00085	0.17%
Zn 206.200†		0.5117 mg/L	0.00127	0.25%
Ca 227.546†	62854.0	108.8 mg/L	1.03	0.94%
Sr 460.733†	246742.4	0.9524 mg/L	0.00801	0.84%
Sample conc. not	calculated. Sampl	e Prep. Vol. AN	D Initial Vol.	required OR sample units incorrect.
	=======================================	*==============		=======================================
Sequence No.: 82			Autosampler L	
Sample ID: R1004	141-005L			d: 8/13/2010 9:00:20 PM
Analyst:			Data Type: Or	
Initial Sample W	t:		Initial Sampl	
Dilution:			Sample Prep V	ol: 50 mL
Mean Data: R1004				_
_ _ .	Mean Corrected			Sample
Analyte	Intensity		Std.Dev.	Conc. Units Std.Dev. RSD
Y 371.029	8484367.2	0.9717 mg/L	0.00884	0.91%
Ag 328.068†	131.6		0.00014	44.84%
Al 308.215†	-10.1		0.00118	39.48%
			0 00000	>999,9%
As 188.979†		0.0000 mg/L	0.00008	2222
As 188.979† B 249.772†	-1.3 4704.4	0.0176 mg/L	0.00100	5.66%
		0.0176 mg/L 0.0156 mg/L		5.66% 2.72%
B 249.772†	4704.4	0.0176 mg/L	0.00100	5.66%
B 249.772† Ba 233.527†	4704.4 5689.3	0.0176 mg/L 0.0156 mg/L	0.00100 0.00043	5.66% 2.72%
B 249.772† Ba 233.527† Be 313.107†	4704.4 5689.3 198.3	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002	5.66% 2.72% 36.90%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	4704.4 5689.3 198.3 1.0	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002 0.00003	5.66% 2.72% 36.90% >999.9%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	4704.4 5689.3 198.3 1.0 41.5 0.3	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010	5.66% 2.72% 36.90% >999.9% 52.16% 332.50%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0000 mg/L 0.0000 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0000 mg/L 0.0003 mg/L 3.476 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.0902	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0000 mg/L 0.0000 mg/L 3.476 mg/L 0.0012 mg/L	0.00100 0.00043 0.00002 0.00015 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.0902 0.0902	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 3.476 mg/L 0.0012 mg/L 0.0003 mg/L	0.00100 0.00043 0.00002 0.00015 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.0902 0.0902 0.00026 0.00163	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 3.476 mg/L 0.0012 mg/L 0.0003 mg/L 0.0003 mg/L 0.0001 mg/L	0.00100 0.00043 0.00002 0.00015 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00002 0.0902 0.00026 0.00163 0.00051	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92 46.15
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 3.476 mg/L 0.0012 mg/L 0.0013 mg/L 0.0011 mg/L 0.0049 mg/L	0.00100 0.00043 0.0002 0.00015 0.00010 0.00048 0.0048 0.0048 0.0048 0.0048 0.0048 0.00023 0.00007 0.00002 0.0002 0.00026 0.00163 0.00051 0.00057	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 $213.110.264.77709.478.052.6021.03566.9246.1511.70$
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 3.476 mg/L 0.0012 mg/L 0.0011 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L	0.00100 0.00043 0.00002 0.00015 0.0010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.0003	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 $213.110.264.77709.478.052.6021.03566.9246.1511.706.42$
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0000 mg/L 0.0003 mg/L 0.0012 mg/L 0.0012 mg/L 0.0011 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0050 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.0048 0.0141 0.00023 0.00007 0.00002 0.0902 0.00026 0.00163 0.00051 0.00051 0.00051 0.00052	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 $213.110.264.77709.478.052.6021.03566.9246.1511.706.4218.20$
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0012 mg/L 0.0012 mg/L 0.0011 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0049 mg/L 0.0050 mg/L 0.0050 mg/L 0.0007 mg/L	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.0902 0.00026 0.00051 0.00051 0.00057 0.00003 0.00092 0.00092 0.00022	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92 46.15 11.70 6.42 18.20 3.63
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0012 mg/L 0.0012 mg/L 0.0013 mg/L 0.0011 mg/L 0.0050 mg/L 0.0050 mg/L 0.0007 mg/L 0.0041 mg/L	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.0048 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00057 0.00003 0.00092 0.00092 0.00022 0.00092 0.00022 0.00092 0.00017	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92 46.15 11.70 6.42 18.20 3.63 4.09
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0050 mg/L 0.0041 mg/L 0.0041 mg/L 20.73 mg/L	0.00100 0.00043 0.0002 0.0003 0.00015 0.0010 0.00048 0.0048 0.0141 0.00023 0.0007 0.0002 0.0002 0.00026 0.00163 0.00051 0.00057 0.00003 0.00092 0.00022 0.0002 0.00027 0.00027 0.00003 0.00092 0.00022 0.0002 0.00027 0.00002	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92 46.15 11.70 6.42 18.20 3.63 4.09 1.40
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0011 mg/L 0.0050 mg/L 0.0050 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L	0.00100 0.00043 0.0002 0.0003 0.00015 0.0010 0.00048 0.0141 0.00023 0.0002 0.0002 0.00026 0.00163 0.00051 0.00051 0.00057 0.000057 0.0	5.66 2.72 36.90 >999.9 52.16 332.50 19.08 5.14 125.82 213.11 0.26 4.77 709.47 8.05 2.60 21.03 566.92 46.15 11.70 6.42 18.20 3.63 4.09 1.40 0.82
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0025 mg/L 0.1336 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0011 mg/L 0.0050 mg/L 0.0050 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L	0.00100 0.00043 0.0002 0.0003 0.00015 0.0010 0.00048 0.0141 0.00023 0.0002 0.0002 0.00026 0.00163 0.00051 0.00051 0.00057 0.000057 0.0	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40%
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00051 0.00051 0.00051 0.00052 0.00002 0.00	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82%
В 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.00002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00051 0.00057 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00007 0.00002 0.00002 0.00002 0.00007 0.00002 0.00	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00057 0.000051 0.00057 0.000051 0.00057 0.00002 0.00017 0.290 0.00160 D Initial Vol.	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not Sequence No.: 83 Sample ID: R1004; Analyst:	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00057 0.00003 0.00057 0.00003 0.00057 0.00003 0.00057 0.00002 0.000160 D Initial Vol. Autosampler L Date Collected Data Type: Or.	<pre>5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.</pre>
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not Sequence No.: 83 Sample ID: R10041 Analyst: Initial Sample With	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00057 0.00003 0.00057 0.00003 0.00092 0.00002 0.00017 0.290 0.00160 D Initial Vol. Autosampler L Date Collecter Data Type: Or. Initial Sample	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not Sequence No.: 83 Sample ID: R1004; Analyst:	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00057 0.00003 0.00057 0.00003 0.00057 0.00003 0.00057 0.00002 0.000160 D Initial Vol. Autosampler L Date Collected Data Type: Or.	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.
B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample Conc. not ====================================	4704.4 5689.3 198.3 1.0 41.5 0.3 1261.0 8259.6 -59.0 210828.9 8658.0 0.0 55.9 6368.7 30.3 1.8 7.6 94.3 -191.2 38.1 182.1 1337.7 11973.9 50668.5 calculated. Sampl	0.0176 mg/L 0.0156 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0000 mg/L 0.0025 mg/L 0.1336 mg/L 5.362 mg/L 0.0049 mg/L 0.0003 mg/L 0.0003 mg/L 0.0012 mg/L 0.0011 mg/L 0.0005 mg/L 0.0005 mg/L 0.0007 mg/L 0.0041 mg/L 20.73 mg/L 0.1956 mg/L e Prep. Vol. AN	0.00100 0.00043 0.0002 0.00003 0.00015 0.00010 0.00048 0.00688 0.0141 0.00023 0.00007 0.00002 0.00026 0.00163 0.00051 0.00051 0.00057 0.00003 0.00057 0.00003 0.00057 0.00003 0.00017 0.290 0.00160 D Initial Vol. Autosampler L Date Collecter Data Type: Or. Initial Sample	5.66% 2.72% 36.90% >999.9% 52.16% 332.50% 19.08% 5.14% 125.82 213.11% 0.26% 4.77% 709.47% 8.05% 2.60% 21.03% 566.92% 46.15% 11.70% 6.42% 18.20% 3.63% 4.09% 1.40% 0.82% required OR sample units incorrect.

Mean Data: Ri	L004141-006					
	Mean Corrected		Calib		Sample	
Analyte	Intensity		Units	Std.Dev.	Conc. Units	Std.Dev. RSD
Y 371.029	8211167.4			0.00125		0.13%
Ag 328.068†	61.8	-0.0001	- · ·	0.00010		108.42%
Al 308.215†	196.5	-0.0091		0.00163		17.91%
As 188.979†	-53.9	-0.0057		0.00383		67.12%
B 249.772†		0.0918		0.00022		0.24%
Ba 233.527†	20207.4	0.0553		0.00019		0.35%
Be 313.107†	-543.7	0.0000		0.00001		44.61%
Cd 226.502†	-67.4	-0.0002	<u> </u>	0.00009		58.40%
Co 228.616† Cr 267.716†	-4.3	-0.0001 0.0004		0.00006		46.03%
Cu 324.7521	59.5 1214.7			0.00069		182.20%
Fe 238.8631	13813.0	0.0016 0.2147		0.00002		1.05% 0.12%
K 404.721†	434.2	0.2147	mg/ E	0.00026		5.24 1.21%
Mq 279.077†	973300.7	24.76	mer / T.	0.071		0.29%
Mn 257.610†	19046.4	0.0103	<u> </u>	0.00001		0.29%
Mo 202.031†	20.1	0.0003		0.00044		143.97%
Ni 231.604†	88.9	0.0003	- · .	0.00012		42.68%
Na 330.237†	30059.9	16.40		0.034		0.21%
Pb 220.353†	45.0	0.0024	<u> </u>	0.00102		42.36%
Sb 206.836†	-1.6	-0.0004		0.00126		288.70%
Se 196.026†	48.6	0.0072		0.00035		4.85%
Sn 189.927†	-36.8	0.0075		0.00034		4.46%
Ti 337.279†	-250.7	-0.0011		0.00001		0.65%
Tl 190.801t		0.0003		0.00391		>999.9%
V 292.402†	112.7	0.0004	- · .	0.00003		6,74%
Zn 206.200†	2181.1	0.0056		0.00022		3.90%
Ca 227.546†	59746.3	103.4		0.08		0.08%
Sr 460.733†	206254.8	0.7958	mg/L	0.00124		0.16%
Sample conc.	not calculated. Sample	e Prep. N	/ol. AN	D Initial Vol.	required OR sample	units incorrect.
Sequence No.: Sample ID: R1				Autosampler Lo		
Analyst: Initial Sampl Dilution:				Date Collected Data Type: Ori Initial Sample Sample Prep Vo.	Vol:	3 PM
Analyst: Initial Sampl Dilution:				Data Type: Ori Initial Sample Sample Prep Vo.	ginal Vol:	3 PM
Analyst: Initial Sampl Dilution:	e Wt:			Data Type: Ori Initial Sample Sample Prep Vo.	ginal Vol:	3 PM
Analyst: Initial Sampl Dilution:	e Wt:		Calib	Data Type: Ori Initial Sample Sample Prep Vo.	ginal Vol:	3 PM
Analyst: Initial Sampl Dilution:	e Wt: 		Calib	Data Type: Ori Initial Sample Sample Prep Vo.	ginal Vol: 1: 50 mL	3 PM Std.Dev. RSD
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029	e Wt: 004141-007 Mean Corrected Intensity 7984989.9	Conc. 0.9145	Calib Units mg/L	Data Type: Ori Initial Sample Sample Prep Vo	ginal Vol: 1: 50 mL Sample	
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0	Conc. 0.9145 0.0002	Calib Units mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2	Conc. 0.9145 0.0002 2.745	Calib Units mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1	Conc. 0.9145 0.0002 2.745 -0.0047	Calib Units mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.00338	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438	Calib Units mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.00338 0.00498	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835	Calib Units mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori. Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001 0.00015	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori. Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001 0.00015 0.00015 0.00015 0.00023	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.000126 0.00001 0.00015 0.00023 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.00498 0.00126 0.00001 0.00015 0.00023 0.00008 0.00020	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.000126 0.00001 0.00015 0.00023 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 1.6.44% 1.97% 4.72% 0.09%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00126 0.000126 0.00001 0.00015 0.00023 0.00008 0.00020 0.0017	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001 0.00015 0.00023 0.00008 0.00020 0.0017 0.019	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001 0.00015 0.00023 0.00008 0.00020 0.0017 0.019 0.00009	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00001 0.00015 0.00023 0.00003 0.00008 0.00020 0.0017 0.019 0.00009 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 0.72%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604‡	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 676.9	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00015 0.00023 0.00003 0.00003 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 0.72% 9.11%
Analyst: Initial Sampl Dilution: Mean Data: RL Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604‡ Na 330.237†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 676.9 67380.2	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.0001 0.00015 0.00023 0.00023 0.00023 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00038 0.00038 0.072	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 0.72% 9.11% 0.20%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 676.9 67380.2 73.1	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0043 1.811 27.46 0.1056 0.014 0.0042 36.87 0.0036	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00126 0.00015 0.00015 0.00023 0.00023 0.00023 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.20% 15.09%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0043 1.811 27.46 0.1056 0.0144 0.0042 36.87 0.0036 0.0035	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.00498 0.00126 0.00015 0.00023 0.00023 0.00023 0.00023 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008 0.00038 0.072 0.00054 0.00434	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.54% 0.09% 12.22 1.50%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2 33.3	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0036 0.0035 0.0050	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.00498 0.00126 0.00015 0.00023 0.00001 0.00023 0.00008 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008 0.00038 0.00038 0.072 0.00054 0.00434 0.00547	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.54% 0.20% 15.09% 123.72% 109.53%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Cd 226.502† Cd 226.502† Cd 226.502† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2 33.3 -34.7	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0036 0.0035 0.0050 0.0078	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.00015 0.00021 0.00015 0.00023 0.00008 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008 0.00038 0.00038 0.00038 0.00038 0.00034 0.00054 0.00054 0.00054 0.000547 0.00066	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.20% 15.09% 123.72% 109.53% 8.49%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 233.527† Ba 233.527† Cd 226.502† Cd 226.502† Cd 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2 33.3	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0035 0.0035 0.0035 0.0078 0.0078 0.0168	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.00015 0.00026 0.00015 0.00023 0.00008 0.00020 0.00017 0.019 0.00008 0.00008 0.00008 0.00008 0.00008 0.00038 0.072 0.00054 0.0047	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.20% 15.09% 123.72% 109.53% 8.49% 2.81%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 233.527† Ba 233.527† Cd 226.502† Cd 226.502† Cd 226.502† Cd 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2 33.3 -34.7 8902.2	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0036 0.0035 0.0050 0.0078	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. Std.Dev. 0.00120 0.00015 0.0138 0.0038 0.00498 0.00126 0.00015 0.00021 0.00015 0.00023 0.00008 0.00020 0.0017 0.019 0.00009 0.00008 0.00008 0.00008 0.00038 0.00038 0.00038 0.00038 0.00034 0.00054 0.00054 0.00054 0.000547 0.00066	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.20% 15.09% 123.72% 109.53% 8.49%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 67380.2 73.1 21.2 3.3 -34.7 8902.2 9.7	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0035 0.0035 0.0078 0.0168 0.0017	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00015 0.00023 0.000015 0.00023 0.00008 0.00020 0.0017 0.019 0.00008 0.000008 0.000008 0.00008 0.000008 0.00008	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.07% 0.09% 12.22 1.64% 0.07% 0.09% 12.28 15.09% 123.72% 109.53% 8.49% 2.81% 135.92%
Analyst: Initial Sampl Dilution: Mean Data: Rl Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402†	e Wt: 004141-007 Mean Corrected Intensity 7984989.9 141.0 118928.2 -51.1 37174.0 30387.6 -429.8 -19.6 207.4 841.5 2367.1 110504.0 746.6 1079697.0 182501.9 608.2 676.9 67380.2 73.1 21.2 33.3 -34.7 8902.2 9.7 1911.1	Conc. 0.9145 0.0002 2.745 -0.0047 0.1438 0.0835 0.0000 -0.0002 0.0014 0.0040 0.0043 1.811 27.46 0.1056 0.0114 0.0042 36.87 0.0035 0.0035 0.0050 0.0078 0.0168 0.0072	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Data Type: Ori, Initial Sample Sample Prep Vo. 0.00120 0.00015 0.0138 0.00338 0.00498 0.00126 0.00015 0.00020 0.00015 0.00023 0.00008 0.00020 0.0017 0.019 0.00008 0.000008 0.000008 0.00000000	ginal Vol: 1: 50 mL Sample	Std.Dev. RSD 0.13% 64.95% 0.50% 71.07% 3.46% 1.51% 130.47% 91.36% 16.44% 1.97% 4.72% 0.09% 12.22 1.64% 0.09% 12.22 1.64% 0.07% 0.09% 12.28 15.09% 123.72% 109.53% 8.49% 2.81% 135.92% 1.49%

SCHOOL ANIANZOU-0	010 L Opt4	Pag	e_58		Date:	8/13/2010 9:3	L8:46 P
: 460.733† ample conc. not c	335490.2 alculated. Sample	1.296 mg/L Prep. Vol. AND	0.0059 Initial Vol.	required	OR sampl	e units inco	0.46% crect.
							*****==
equence No.: 85 ample ID: CCV alyst: itial Sample Wt:		D D I	utosampler Lo ate Collected ata Type: Or: nitial Samplo	1: 8/13/20 iginal e Vol:		25 PM	
lution:			ample Prep Vo				
an Data: CCV							
	Mean Corrected	Calib			Sample		
alyte 371.029	Intensity 8381027.8	Conc. Units	Std.Dev. 0.00795	Conc.	Units	Std.Dev.	RSD 0.83%
328.0681	8381027.8 193506.4	0.5191 mg/L	0.00075	0.5191	mg/L	0.00075	
QC value within 308.215†	limits for Ag 32	8.068 Recovery 10.11 mg/L		10 11	mer / T.	0.110	1.09%
	limits for Al 30			10.11	шgүл	0.110	1.054
	8588.2			1.007	mg∕L	0.0032	0.32%
QC value within 249.772†	limits for As 18 552411.9	2.372 mg/L		2.372	mg/L	0.0376	1.58%
QC value within	limits for B 249	.772 Recovery =	94.88%		-		
	3510916.6 limits for Ba 23			9.752	mg/L	0.0870	0.89%
313.107†	1614945.5	0.2458 mg/L	0.00205	0.2458	mg/L	0.00205	0.84%
	limits for Be 31				/-	0 00045	0 688
	193489.7 limits for Cd 22			0.5057	шдүг	0.00345	0.68%
228.616†	323229.9	2.418 mg/L	0.0222	2.418	mg/L	0.0222	0.92%
QC value within	limits for Co 22 112308.6	8.616 Recovery =	= 96.71% 0 00202	0 5079	mcr/T.	0.00202	0.40%
	limits for Cr 26				_		0.108
324.752†		1.216 mg/L		1.216	mg∕L	0.0120	0.98%
	limits for Cu 32 309838.7			5.108	mg/L	0.0649	1.27%
QC value within	limits for Fe 23	8.863 Recovery	= 102.16%		2.		
404.721† Unable to evalu	4623.4 ate OC.					209.31	4.53%
279.0771	1014545.7			25.80	mg/L	0.273	1.06%
QC value within 257.610†	limits for Mg 27	9.077 Recovery = 0.7595 mg/L		0 7505	ma /T	0.00678	0.89%
	limits for Mn 25			0.7595	шд\п	0.00078	0.091
202.031†	130731.8	2.446 mg/L -	0.0640	2.446	mg/L	0.0640	2.61%
QC value within 231.604†	limits for Mo 20. 309671.3	2.031 Recovery : 2.064 mg/L	= 97.84% 0.0034	2.064	ma/L	0.0034	0.17%
QC value within	limits for Ni 23	1.604 Recovery	= 103.21%				
330.237†	45696.9	25.05 mg/L	0.131	25.05	mg/L	0.131	0.52%
220.353†	limits for Na 33 14159.6	0.237 Recovery = 0.5172 mg/L	= 100.18% 0.00531	0.5172	ma/L	0.00531	1.03%
QC value within	limits for Pb 22	0.353 Recovery	= 103,43%				
206.836†	28052.0 limits for Sb 20	4.905 mg/L	0.0207	4.905	mg/L	0.0207	0.42%
196.026†	2921.2	0.5045 mg/L	0.00002	0.5045	mg/L	0.00002	0.00%
	limits for Se 19			5 1 C 5		0 0000	1 600
189.927† OC value within	156910.9 limits for Sn 18:	5.165 mg/L 9.927 Recoverv :	0.0827 = 103.30%	5.165	mg/L	0.0827	1.60%
337.279†	1287662.5	2.520 mg/L	0.0348	2.520	mg/L	0.0348	1.38%
QC value within 190.801†	limits for Ti 33 7752.2	7.279 Recovery = 1.010 mg/L	= 100.80% 0.0022	1 010	mg/L	0.0022	0.21%
	limits for Tl 19			1.010	ug/ D	0.0022	V.21%
292.4021	662726.7	2.464 mg/L	0.0325	2.464	mg/L	0.0325	1.32%
QC value within 206.200†	limits for V 292 316831.8	.402 Recovery = 1.040 mg/L	98.56% 0.0088	1.040	mg/L	0.0088	0.84%
QC value within	limits for Zn 200	6.200 Recovery :	= 104.01%		2.		
227.546t	14408.3 limits for Ca 22	25.21 mg/L 7 546 Recovery :	0.123	25.21	mg/L	0.123	0.49%
			0.0218	2 627	mg/L	0.0218	0.83%
460.7331	678941.4	2.627 mg/L	0.0210			0.0210	

Sequence No.: 86 Sample ID: CCB Analyst: Initial Sample Wt: Dilution:

Initial Sample Wt:

Autosampler Location: 5 Date Collected: 8/13/2010 9:18:46 PM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB	Mean Corrected	đ	Calib			Sample		
Analyte Y 371.029 Ag 328.068†	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSD
¥ 371.029	8813592.5	1.009	mg/L	0.0052				0.52%
Ag 328.068†	179.9	0.0005	mg/L	0.00048	0.0005	mg/L	0.00048	99.679
QC value within	limits for Ag	328.068	Recovery	= Not calculat	ed:			
Al 308.215†		-0.0143		0.00213	-0.0143	mg/L	0.00213	14.929
QC value within	limits for Al	308.215	Recovery	= Not calculat				
	13.5					mg/L	0.00031	19.34%
QC value within	limits for As	188.979	Recovery	= Not calculat	ed	-		
B 249.772†		-0.0146		0.00291	-0.0146	mg/L	0.00291	19.978
QC value within	limits for B :	249.772 R	ecovery =	Not calculate	ed	-		
Ba 233.527†						mq/L	0.00040	8.809
QC value within						27		
Be 313.107†		0.0001		0.00002	0.0001	mg/L	0.00002	20.669
QC value within	limits for Be	313.107	Recovery	= Not calculat	ed	2.		
Cd 226.5021				0.00004	0.0000	mg/L	0.00004	170.84%
QC value within	limits for Cd	226,502	Recoverv	= Not calculat				
Co 228.616†		0.0004		0.00006	0.0004	mg/L	0.00006	15.229
QC value within	limits for Co	228.616	Recoverv		ed	51		
Cr 267.716†	-29.8	-0.0001	mg/L	0.00004	-0.0001	mg/L	0.00004	28.639
QC value within	limits for Cr	267.716	Recovery	= Not calculat	ed.			
Cu 324.752†	1598.6	0.0034	ma/ĭ	0.00112	0,0034	mg/L	0.00112	32,969
QC value within							• • • • • • • • • • • • • • • • • • • •	
	3068.0				0.0507	mg/L	0.00339	6.70
QC value within								
K 404.721†	-229.7			. noo ourouru.			118.03	51.399
Unable to evalua								00.000
Mg 279.077†	-195 7	-0 0050	ma/L	0.00062	-0 0050	mm / T.	0 00062	12 375
QC value within	limits for Ma	279 077	Recovery	- Not calculat	ed.		0.00002	
	365.1				0 0002	mg/L	0 00006	27 919
QC value within	limite for Mr.	257 410	Recovery	- Not calculat	-0.0002	шg/ш	0.00000	27,71
Mo 202.031†		0.0007		0.00014	,eu 0 0007	mg/L	0 00014	21 879
QC value within	limite for Mo	202 021	Regenerativ	- Not calculat	.000.0	шg/ш	0.00014	21.071
Ni 231.604†	37.5	0 0003	ma/T		0 0003	$m \sigma / \tau$	0 00001	1 589
QC value within						шg/ш	0.00001	
Na 330.237†	-71 1	-0.0387	ma/L	0.04640	-0 0397	mg/L	0 04640	110 769
QC value within	limite for No.	220 227	nig/ 1	- Not calculat	-0.0307	шд/ п	0.04040	117.70
	13.8					mg/L	0 00055	110 029
QC value within	LJ.O limita for Db	120.000	ng/ D	- Not oplaylat		шgлы	0.000000	110.014
		0.0001		0.00060		mg/L	0 00060	001 209
Sb 206.836†						шgүл	0.00060	302.337
QC value within						ma / T	0 00060	10 029
	-9.8 linita fan 2a					щgлы	0.00068	40.031
QC value within					ea aaaa	mg/L	0 00150	10 000
Sn 189.927†		0.0083				ացչո	0.00158	19.051
QC value within							0 00015	100 000
Ti 337.279†	-41.5	-0.0001	mg/L	0.00015	-0.0001	mg/L	0.00015	186.824
QC value within						t a		
Tl 190.801†	7.2			0.00056	0.0009	mg/L	0.00056	60.09%
QC value within						t		
V 292.402†	51.2	0.0002		0.00002	0.0002	mg/L	0.00002	8.448
QC value within						4-		
Zn 206.200†	66.0	0.0002		0.00003	0.0002	mg/L	0.00003	13.51%
QC value within								
Ca 227.546†	-53.4	-0.0897		0.01735	-0.0897	mg/L	0.01735	19.348
QC value within								
Sr 460.733†	16.0	0.0001		0.00024	0.0001	mg/L	0.00024	369.59%
QC value within								
All analyte(s) pass	sed QC. One or	more analy	ytes were	not evaluated	ι.			
==============================	**=============					***======		========
Sequence No.: 87				utosampler Loc				
Sample ID: MRL				ate Collected:		10 9:24:28	PM	
Analyst:			D	ata Type: Orig	inal			
Initial Sample Wt:			7	nitial Sample	Vol:			

Initial Sample Vol:

~_____

Page 60 Date: 8/13/2010 9:32:05 PM

Dilution:

Mean Data: ICSA

Sample Prep Vol:

	Mean Corrected	l Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 371.029 Ag 328.068†	8694069.0	0.9957 mg/L	0.00185		1-		0.19
49 328.0687 07 mplus udaba	4022.6 Jimita fam Ba	0.0108 mg/L	0.00011	0.0108	mg/L	0.00011	1.04
		328.068 Recovery		0 1000	/T	0 00057	1 00
	8146.8		0.00357	0.1888	шд\г	0.00357	1.89
		308.215 Recovery 0.0221 mg/L		0 0001	/T	0.00006	0.29
				0.0221	mg/⊥	0.00006	0.29
249.772†		188.979 Recovery 0.1639 mg/L		0 1 6 2 0	mg/L	0.00199	1.22
· ·				0.1639	щg/ц	0.00199	1.24
		249.772 Recovery 0.2069 mg/L		0 2069	mg/L	0.00073	0.35
		233.527 Recovery		0.2069	μgγμ	0.00073	0.35
e 313.107†		0.0048 mq/L	0.00001	0 0049	mg/L	0.00001	0.17
		313.107 Recovery		0.0048	шдүл	0.00001	0.17
		0.0099 mg/L		0 0099	mg/L	0.00007	0.74
		226.502 Recovery		0.0099	шдул	0.00007	0.74
028.616	6763.2		0.00011	0 0506	mq/L	0.00011	0.21
		228.616 Recovery		0.0500	шgул	0.00011	0.21
		0.0099 mg/L		0 0099	mg/L	0.00011	1.14
		267.716 Recovery		0.0000	mg/ 1	0.00011	T ' T 4
u 324.752†	11617.8		0.00025	0 0246	mg/L	0.00025	1.02
		324.752 Recovery	7 - 98 39%	0.0240	((G) 1	0.00025	1.02
		0.1591 mg/L		0 1591	mar/T.	0.00095	0.60
		er limit for Fe 23				0.000055	0.00
404.721†	8.8		Notorial	- 105.0		56.06 6	39.75
Unable to evalu						20.00 0	
g 279.077†	41139 2	1.046 mg/L	0 0005	1 046	ma/L	0.0005	0.05
		279.077 Recovery		1.010		0.0005	0.05
n 257.610†		0.0152 mg/L		0 0152	mg/L	0.00012	0.78
		257.610 Recovery		0.0102		0.00012	0.70
	1326.6			0 0248	mg/L	0.00001	0.04
		202.031 Recovery		0.0210		0.00002	0.01
		0.0406 mg/L		0 0406	mg/L	0.00000	0.00
		231.604 Recovery					
a 330.237†	1610.4			0.8826	mg/L	0.03510	3.98
		330.237 Recovery					
b 220.353†	301.0	0.0110 mg/L	0.00066	0.0110	mg/L	0.00066	6.03
		220.353 Recovery					
b 206.836†			0.00062	0.0572	mg/L	0.00062	1.09
		206.836 Recovery					
		0.0107 mg/L		0.0107	mg/L	0.00016	1.50
		196.026 Recovery					
n 189.927†	16279.5	0.5356 mg/L		0.5356	mg/L	0.00161	0.30
		189.927 Recovery					
		0.0483 mg/L		0.0483	mg/L	0.00088	1.81
		337.279 Recovery					
1 190.801†	152.9	0.0199 mg/L	0.00142	0.0199	ma/L	0.00142	7.15
		190.801 Recovery					
292.4021	13080.7	0.0486 mg/L	0.00008	0.0486	ma/L	0.00008	0.17
· · ·		92.402 Recovery					
n 206.200†	6134.9	0.0201 mg/L	0.00006	0.0201	ma/L	0.00006	0.29
		206.200 Recovery					
a 227.546†	457.9	0.8009 mg/L	0.02027	0.8009	mg/L	0.02027	2.53
		227.546 Recovery					
c 460.733†	25784.0	0.0998 mg/L	0.00092	0.0998	mg/L	0.00092	0.93
		460.733 Recovery					
C Failed. Contin							
	· ····································						
		********		*********			******
equence No.: 88			Autosampler Loc	ation: 7			
ample ID: ICSA			Date Collected:		.0 9:30:13	L PM	
nalyst:			Data Type: Orig				
nitial Sample Wt:			Initial Sample				

Calib Mean Corrected Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Y 371.029 0.8813 mg/L 0.31% 7695587.7 0.00272 Ag 328.068† -1888.9 -0.0001 mg/L 0.00068 -0.0001 mg/L 0.00068 667.63% QC value within limits for Ag 328.068 Recovery = Not calculated Al 308.215† 10728717.2 248.8 mg/L 0.72 248.8 mg/L 0.72 0.29% QC value within limits for Al 308.215 Recovery = 99.52% As 188.979† -284.0 0.0058 mg/L 0.00232 0.0058 mg/L 0.00232 40.19% QC value within limits for As 188.979 Recovery = Not calculated 79971.7 B 249.772† -0.0001 mg/L 0.00678 -0.0001 mg/L 0.00678 >999.9% 0.0031 mg/L 0.0031 mg/L Ba 233.527† 3783.2 0.00026 0.00026 8.44% Be 313.107† 0.0000 mg/L 0.0000 mg/L 0.00000 10.50% -1777.0 0.00000 QC value within limits for Be 313.107 Recovery = Not calculated Cd 226.502† 2774.3 -0.0005 mg/L 0.00004 7.67% -0.0005 mg/L 0.00004 QC value within limits for Cd 226.502 Recovery = Not calculated 0.0000 mg/L 0.00027 0.0000 mg/L 0.00027 >999.9% Co 228.616† 279.4QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† -1373.2 -0.0011 mg/L 0.00052 -0.0011 mg/L 0.00052 46.01% QC value within limits for Cr 267.716 Recovery = Not calculated -6242.9 -0.0033 mg/L 0.00044 -0.0033 mg/L Cu 324.752† 0.00044 13.58% QC value within limits for Cu 324.752 Recovery = Not calculated 5763088.5 95.06 mg/L 0.312 Fe 238.863† 95.06 mg/L 0.312 0.33% QC value within limits for Fe 238.863 Recovery = 95.06% 0.78% K 404.721† -418.43.28 0.83 Mg 279.077† 9661234.5 245.7 mg/L 245.7 mg/L 0.83 0.34% QC value within limits for Mg 279.077 Recovery = 98.27% Mn 257.610† -195.6 -0.0074 mg/L 0.00012 -0.0074 mg/L 0.00012 1.66% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† -355.4 -0.0003 mg/L 0.00116 -0.0003 mg/L 0.00116 359.92% -0.0010 mg/L Ni 231.604† 35.8 0.00010 -0.0010 mg/L 0.00010 9.63% QC value within limits for Ni 231.604 Recovery = Not calculated 0.0434 mg/L 0.04061 93.53% Na 330.237† 141.3 0.0434 mg/L 0.04061 0.0005 mg/L 0.00058 108.67% -645.5 0.0005 mg/L 0.00058 Pb 220.3531 QC value within limits for Pb 220.353 Recovery = Not calculated ~0.0022 mg/L 7.3 -0.0022 mg/L 0.00339 0.00339 153.10% Sb 206.836† QC value within limits for Sb 206.836 Recovery = Not calculated 0.0021 mg/L -79.2 0.0021 mg/L 0.00733 0.00733 353.11% Se 196.026† QC value within limits for Se 196.026 Recovery = Not calculated 0.0496 mg/L 0.00055 Sn 189,927t -47.2 0.0496 mg/L 0.00055 1,12% -0.0033 mg/L Ti 337.279† 250.4 0.00006 -0.0033 mg/L 0.00006 1.91% 0.0046 mg/L Tl 190.801† 0.0046 mg/L 0.00188 41.42% -22.0 0.00188 QC value within limits for Tl 190.801 Recovery = Not calculated -2648.3 -0.0011 mg/L 0.00000 -0.0011 mg/L 0.00000 0.24% V 292.402† QC value within limits for V 292.402 Recovery = Not calculated Zn 206.2001 1049.9 -0.0115 mg/L 0.00014 -0.0115 mg/L 0.00014 1.20% QC value within limits for Zn 206.200 Recovery = Not calculated 227.546† 143931.4 254.3 mg/L 1.41 QC value within limits for Ca 227.546 Recovery = 101.72% Ca 227.546† 1.41 254.3 mg/L. 1.41 0.56% Sr 460.7331 1811.1 0.0021 mg/L 0.00032 0.0021 mg/L 0.00032 15.47% All analyte(s) passed QC. Sequence No.: 89 Autosampler Location: 8 Date Collected: 8/13/2010 9:34:23 PM Sample ID: ICSAB Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: ICSAB Mean Corrected Calib Sample Intensity Conc. Units Conc. Units Analyte Std.Dev. Std.Dev. RSD 0.8718 mg/L 0.00058 0.07% Y 371.029 7612600.9 0.2170 mg/L Ag 328.068† 0.2170 mg/L 0.00035 79037.0 0.00035 0.16% QC value within limits for Ag 328.068 Recovery = 108.49% 10863764.0 251.9 mg/L 0.42 251.9 mg/L 0.17% Al 308.215† 0.42 QC value within limits for Al 308.215 Recovery = 100.77% 544.5 0.1033 mg/L 0.00167 0.1033 mg/L 0.00167 As 188.979† 1.62% QC value within limits for As 188.979 Recovery = 103.27% B 249.772† 79628.8 -0.0067 mg/L 0.00300 -0.0067 mg/L 0.00300 45.08% Ba 233.527† 192788.6 0.5280 mg/L 0.00077 0.5280 mg/L 0.00077 0.15%

QC value within limits for Ba 233.527 Recovery = 105.60%

Page 61

Method: AXIAL200-6010 L Opt4

Date: 8/13/2010 9:36:25 PM

	010 L Opt4	Paç	ge 62		Date:	8/13/2010 9:	40:45 PM
Be 313.107;		0.5113 mg/L		0.5113	mg/L	0.00118	0.23%
Cd 226.502†	391250.2	313.107 Recovery 1.015 mg/L 226.502 Recovery	0.0007	1.015	mg∕L	0.0007	0.07%
Co 228.616†	66643.7	0.4964 mg/L 228.616 Recovery	0.00421	0.4964	mg∕L	0.00421	0.85%
Cr 267.716†	112238.7	0.5124 mg/L 267.716 Recovery	0.00074	0.5124	mg/L	0.00074	0.14%
Cu 324.752†	237187.9	0.5122 mg/L 324.752 Recovery	0.00150	0.5122	mg∕L	0.00150	0.29%
Fe 238.863†	5851463.9		0.231	96.52	mg/L	0.231	0.24%
K 404.721† Mg 279.077†	-282.6	249.7 mg/L		249.7	mg/L	10.85 0.63	3.84% 0.25%
QC value within Mn 257.610;	limits for Mg	279.077 Recovery 0.5124 mg/L	= 99.87%	0.5124	mg/L	0.00093	0.18%
QC value within Mo 202.031†		257.610 Recovery -0.0011 mg/L		-0.0011	ma/T.	0.00045	41 518
Ni 231.604†	150748.5	1.004 mg/L	0.0011	1.004		0.0011	0.11%
		231.604 Recovery	= 100.36%	0 4400	ma /T	0 00000	21 00%
Na 330.237† Pb 220.353†	-759.0 759.3	-0.4496 mg/L 0.0520 mg/L		-0.4496 0.0520	- · .	0.09800 0.00327	21.80%
		220.353 Recovery		0.0520	шgлш	0.00327	0.29%
Sb 206.836†	3703.7	0.6441 mg/L 206.836 Recovery	0.00724	0.6441	mg∕L	0.00724	1.12%
Se 196.026†	235.1	0.0565 mg/L 196.026 Recovery	0.00468	0.0565	mg/L	0.00468	8.27%
Sn 189.927†	-98.6	0.0486 mg/L	0.00058	0.0486	mg/L	0.00058	1.20%
Sn 189.927† Ti 337.279† Tl 190.801†	217.2	0.0486 mg/L -0.0034 mg/L	0.00009	-0.0034	mg/L	0.00009	2.53%
Tl 190.801†	725.2	0.1019 mg/L		0.1019	mg/L	0.00026	0.25%
V 292.402†	132886.1	190.801 Recovery 0.5028 mg/L	0.00099	0.5028	mg/L	0.00099	0.20%
Zn 206.200†	315067.4	292.402 Recovery = 1.020 mg/L	0.0006	1.020	mg/L	0.0006	0.06%
Ca 227.546†	145444.8	206.200 Recovery 257.0 mg/L	0.45	257.0	mg/L	0.45	0.18%
Sr 460.733†	1922.7	227.546 Recovery 0.0025 mg/L		0.0025	mg/L	0.00022	8.85%
All analyte(s) pas Sequence No.: 90			 Autosampler L				
Sample ID: CCV			Date Collecte		LO 9:38	:43 PM	
Analyst:			Data Type: Or				
Initial Sample Wt:							
Dilution:		I	(nitial Sampl	e Vol:			
		I		e Vol:			
Mean Data: CCV		ו S	(nitial Sampl	e Vol:			
Analyte		I Calib · Conc. Units	Initial Sampl Sample Prep V Std.Dev.	e Vol: ol:	Sample Units		RSD
Analyte Y 371.029 Ag 328.068†	Intensity 8187153.0 194947.6	I Calib • Conc. Units 0.9376 mg/L 0.5230 mg/L	Initial Sampl Sample Prep V 	e Vol: ol: Conc.	Units		RSD 0.44% 0.56%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215†	Intensity 8187153.0 194947.6 Limits for Ag 441449.8	I Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L	Initial Sample Sample Prep V Std.Dev. 0.00410 0.00291 = 104.60% 0.008	e Vol: 'ol: Conc. 0.5230	Units mg/L	Std.Dev.	0.44%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1	I Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L	<pre>Initial Sampl. Sample Prep V 0.00410 0.00291 = 104.60% 0.008 = 102.34% 0.0062</pre>	e Vol: fol: Conc. 0.5230 10.23	Units mg/L	Std.Dev. 0.00291 0.008	0.44% 0.56%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3	T S Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 188.979 Recovery 2.411 mg/L	<pre>Initial Sampl. Sample Prep V </pre>	e Vol: fol: Conc. 0.5230 10.23 1.032	Units mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062	0.44% 0.56% 0.08%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2	T Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 188.979 Recovery 2.411 mg/L 249.772 Recovery = 9.864 mg/L	<pre>Initial Sampl. Sample Prep V </pre>	e Vol: fol: Conc. 0.5230 10.23 1.032 2.411	Units mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058	0.44% 0.56% 0.08% 0.60%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2 limits for Ba 1639226.1	T Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 188.979 Recovery 2.411 mg/L 49.772 Recovery 9.864 mg/L 233.527 Recovery 0.2495 mg/L	Std.Dev. 0.00410 0.00291 = 104.60% 0.008 = 102.34% 0.0062 = 103.24% 0.0058 = 96.44% 0.0009 = 98.64% 0.00080	e Vol: 'ol: Conc. 0.5230 10.23 1.032 2.411 9.864	Units mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058	0.44% 0.56% 0.08% 0.60% 0.24%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2 limits for Ba 1639226.1 limits for Be 195725.7	I Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 188.979 Recovery 2.411 mg/L 49.772 Recovery 9.864 mg/L 233.527 Recovery 0.2495 mg/L 313.107 Recovery 0.5115 mg/L	<pre>Std.Dev. Std.Dev. 0.00410 0.00291 = 104.60% 0.008 = 102.34% 0.0062 = 103.24% 0.0058 = 96.44% 0.0009 = 98.64% 0.00080 = 99.81% 0.00067</pre>	e Vol: 'ol: Conc. 0.5230 10.23 1.032 2.411 9.864	Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058 0.0009 0.00080	0.44% 0.56% 0.08% 0.60% 0.24% 0.01%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2 limits for Ba 1639226.1 limits for Be 195725.7 limits for Cd 327024.6	T Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 308.215 Recovery 2.411 mg/L 49.772 Recovery = 9.864 mg/L 233.527 Recovery 0.2495 mg/L 313.107 Recovery 0.5115 mg/L 226.502 Recovery 2.446 mg/L	<pre>Std.Dev. 0.00410 0.00291 = 104.60% 0.0062 = 102.34% 0.0062 = 103.24% 0.0058 = 96.44% 0.0009 = 98.64% 0.00080 = 99.81% 0.00067 = 102.30% 0.0008</pre>	e Vol: fol: Conc. 0.5230 10.23 1.032 2.411 9.864 0.2495 0.5115	Units mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058 0.0009 0.00080 0.00080	0.44% 0.56% 0.08% 0.60% 0.24% 0.01% 0.32%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2 limits for Ba 1639226.1 limits for Ba 195725.7 limits for Cd 327024.6 limits for Co 114750.3	T S Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 308.215 Recovery 2.411 mg/L 49.772 Recovery 9.864 mg/L 233.527 Recovery 0.2495 mg/L 313.107 Recovery 0.5115 mg/L 228.616 Recovery 0.5190 mg/L	<pre>Std.Dev. 0.00410 0.00291 = 104.60% 0.0062 = 102.34% 0.0062 = 103.24% 0.0058 = 96.44% 0.0009 = 98.64% 0.00080 = 99.81% 0.00067 = 102.30% 0.0008 = 97.85% 0.00241</pre>	e Vol: fol: Conc. 0.5230 10.23 1.032 2.411 9.864 0.2495 0.5115	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058 0.0009 0.00080 0.00080 0.00067 0.0008	0.44% 0.56% 0.08% 0.60% 0.24% 0.01% 0.32% 0.13%
Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752†	Intensity 8187153.0 194947.6 limits for Ag 441449.8 limits for Al 8808.1 limits for As 561484.3 limits for B 2 3551469.2 limits for Ba 1639226.1 limits for Ba 195725.7 limits for Cd 327024.6 limits for Co 114750.3 limits for Cr 583937.8	T Calib Conc. Units 0.9376 mg/L 0.5230 mg/L 328.068 Recovery 10.23 mg/L 308.215 Recovery 1.032 mg/L 308.215 Recovery 2.411 mg/L 49.772 Recovery 9.864 mg/L 233.527 Recovery 0.2495 mg/L 313.107 Recovery 0.5115 mg/L 226.502 Recovery 2.446 mg/L 228.616 Recovery	<pre>Std.Dev. 0.00410 0.00291 = 104.60% 0.008 = 102.34% 0.0062 = 103.24% 0.0058 = 96.44% 0.00058 = 96.44% 0.00058 = 96.44% 0.00080 = 99.81% 0.00067 = 102.30% 0.0008 = 97.85% 0.00241 = 103.79% 0.0019</pre>	e Vol: 'ol: Conc. 0.5230 10.23 1.032 2.411 9.864 0.2495 0.5115 2.446 0.5190	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00291 0.008 0.0062 0.0058 0.0009 0.00080 0.00080 0.00087 0.0008 0.0008	0.44% 0.56% 0.08% 0.60% 0.24% 0.01% 0.32% 0.13% 0.03%

Method: AXIAL200-6	010 L Opt4	Pag	e 63		Date:	8/13/2010 9	:46:28 PM
Fe 238.863†		5.200 mg/L 238.863 Recovery :		5.200	mg/L	0.0078	0.15%
K 404.721† Unable to evalu	4446.8	238.863 Recovery	= 103.99%			31.90	0.72%
Mg 279.077†	1026834.9	26.11 mg/L 279.077 Recovery :		26.11	mg/L	0.024	0.09%
Mn 257.610†	1318246.9	0.7683 mg/L 257.610 Recovery :	0.00004	0.7683	mg/L	0.00004	0.00%
Mo 202.031†	132971.7	2.488 mg/L 202.031 Recovery	0.0105	2.488	mg/L	0.0105	0.42%
Ni 231.604†	312116.8	2.080 mg/L 231.604 Recovery :	0.0098	2.080	mg∕L	0.0098	0.47%
Na 330.237†	46238.1	25.34 mg/L 330.237 Recovery :	0.232	25.34	mg/L	0.232	0.91%
		0.5219 mg/L 220.353 · Recovery =	0.00556 = 104.38%	0.5219	mg/L	0.00556	1.06%
Sb 206.836† QC value within		5.060 mg/L 206.836 Recovery :	0.0071 = 101.20%	5.060	mg/L	0.0071	0.14%
Se 196.026† QC value within	2983.4 limits for Se 1	0.5153 mg/L 196.026 Recovery =	0.00579 = 103.05%	0.5153	mg∕L	0.00579	1.12%
Sn 189.927; QC value within	157767.2 limits for Sn 1	5.193 mg/L 189.927 Recovery :	0.0076 = 103.86%	5.193	mg/L	0.0076	0.15%
	limits for Ti 3	2.532 mg/L 337.279 Recovery =	= 101.28 %	2.532	mg/L	0.0180	0.71%
	limits for Tl J	1.026 mg/L 190.801 Recovery =	= 102.57%		mg/L		
	limits for V 29	2.498 mg/L 92.402 Recovery =	99.91%		mg/L		0.55%
	limits for Zn 2	1.053 mg/L 206.200 Recovery =	= 105.35%		mg/L		
	limits for Ca 2	25.47 mg/L 227.546 Recovery =			mg/L		
Sr 460.733† QC value within All analyte(s) pas	limits for Sr 4	2.651 mg/L 460.733 Recovery =	= 106.03%		mg/L	0.0034	0.13%
All analyte(s) pas	seu QC. One or i	Note analyces were	not evaluated	l•			
Sequence No.: 91		Αι	itosampler Loc	ation: 5			:#P4===
Sequence No.: 91 Sample ID: CCB Analyst:		Au Da Da	itosampler Loc ate Collected: ata Type: Orig	ation: 5 8/13/201 inal			******
Sequence No.: 91 Sample ID: CCB		Aı Da Da Ir	itosampler Loc ate Collected:	ation: 5 8/13/201 inal Vol:			
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt:		Aı Da Da Ir	itosampler Loc ate Collected: ata Type: Orig atial Sample	ation: 5 8/13/201 inal Vol:			
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt:		Au Da Da Ir Sa	itosampler Loc ate Collected: ata Type: Orig atial Sample	ation: 5 8/13/201 inal Vol:	.0 9:43:		
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte	Mean Corrected Intensity	Au Da Da Ir Sa Calib Conc. Units	atosampler Loc ate Collected: ata Type: Orig mitial Sample ample Prep Vol 	ation: 5 8/13/201 inal Vol:	.0 9:43: Sample		RSD
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029	Mean Corrected Intensity 8699060.6	Au Da Da Ir Sa Calib Conc. Units 0.9962 mg/L	atosampler Loc ate Collected: ata Type: Orig mitial Sample - ample Prep Vol 	ation: 5 8/13/201 inal Vol: : Conc.	.0 9:43: Sample Units	04 PM Std.Dev.	RSD 0.16%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068†	Mean Corrected Intensity 8699060.6 60.0	Au Da Da Ir Sa Calib Conc. Units 0.9962 mg/L 0.0002 mg/L	atosampler Loc ate Collected: ata Type: Orig atial Sample T ample Prep Vol 	ation: 5 8/13/201 inal Vol: : Conc. 0.0002	.0 9:43: Sample Units	04 PM Std.Dev.	RSD 0.16%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068t QC value within Al 308.215t	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1	Au Da Da Da Ir Sa Calib Conc. Units 0.9962 mg/L 0.0002 mg/L 328.068 Recovery = -0.0080 mg/L	std.Dev. 0.00154 0.000440	ation: 5 8/13/201 inal Vol: : Conc. 0.0002 ed -0.0080	.0 9:43: Sample Units mg/L	04 PM Std.Dev.	RSD 0.16% 236.15%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979†	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2	Au Da Da Da Da Da Ir Sa Conc. Units 0.9962 mg/L 0.0002 mg/L 328.068 Recovery = -0.0080 mg/L 308.215 Recovery = 0.0000 mg/L	std.Dev. 0.00154 0.00440 0.00013 0.00013 0.00013 0.00013	ation: 5 8/13/201 inal Vol: : Conc. 0.0002 ed -0.0080 ed 0.0000	.0 9:43: Sample Units mg/L	04 PM Std.Dev. 0.00039 0.00440	RSD 0.16% 236.15% 54.87%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772†	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. 0.00154 0.00154 0.00154 0.00440 Not calculat. 0.00013 Not calculat. 0.00413 Not calculat. 0.00013 Not calculat. 0.00013 Not calculat. 0.00013 Not calculat. 0.00013	ation: 5 8/13/201 inal Vol: : Conc. 0.0002 ed 0.0000 ed -0.0123	.0 9:43: Sample Units mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013	RSD 0.16% 236.15% 54.87% >999.9%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527†	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1 limits for B 24 1905.5	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. o.000154 o.00013 Not calculat. 0.00221 Not calculat. 0.00221 Not calculat. 0.00235	ation: 5 8/13/201 inal Vol: : Conc. 0.0002 ed -0.0080 ed 0.0000 ed -0.0123 d 0.0053	.0 9:43: Sample Units mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221	RSD 0.16% 236.15% 54.87% >999.9% 17.93%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107†	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1 limits for B 24 1905.5 limits for Ba 2 586.1	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. o.000154 o.00013 Not calculate 0.00221 Not calculate 0.0035 Not calculate 0.00221 Not calculate 0.0035 Not calculate 0.0035 Not calculate 0.0035 Not calculate 0.0035 Not calculate 0.00035	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed -0.0080 ed 0.0000 ed 0.0000 ed 0.0053 ed 0.0001	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035	RSD 0.16% 236.15% 54.87% >9999.9% 17.93% 6.68%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: 	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1 limits for B 24 1905.5 limits for Ba 2 586.1 limits for Be 3 55.8	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. Std.Dev. 0.00154 0.00039 Not calculate 0.00013 Not calculate 0.00013 Not calculate 0.00013 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.00040 Not calculate 0.00035 Not calculate 0.00040 Not calculate 0.00040 Not calculate 0.00040 Not calculate 0.00040	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed -0.0080 ed 0.0000 ed 0.0000 ed 0.0053 ed 0.0001 ed 0.0001	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035 0.00004	RSD 0.16% 236.15% 54.87% >9999.9% 17.93% 6.68% 48.41%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within B 249.772† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616†	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1 limits for As 1 -2802.1 limits for Be 24 1905.5 limits for Be 2 586.1 limits for Be 3 55.8 limits for Cd 2 51.3	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. o.00154 o.000154 o.000154 o.000154 o.000154 o.000139 = Not calculat. o.00013 = Not calculat. o.00013 = Not calculat. o.00021 Not calculat. o.00035 = Not calculat. o.00035 = Not calculat. o.0004 = Not calculat. o.00004 = Not calculat. o.00005 = Not calculat. o.00005 = Not calculat. o.00005 = Not calculat. o.00005	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed 0.0000 ed 0.0000 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0004	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035 0.00004	RSD 0.16% 236.15% 54.87% >999.9% 17.93% 6.68% 48.41% 35.01%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Co 228.616† QC value within	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for As 1 -2802.1 limits for As 1 -2802.1 limits for Be 24 1905.5 limits for Be 2 586.1 limits for Be 3 55.8 limits for Cd 2 51.3 limits for Co 2 -2.8	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. o.00154 o.000154 o.000154 o.000154 o.000154 o.000139 Not calculate o.00440 Not calculate o.00221 Not calculate o.00035 Not calculate o.00035 Not calculate o.00004 Not calculate o.00004 Not calculate o.00005 Not calculate o.00005 Not calculate o.00005 Not calculate o.00005 Not calculate o.00005 Not calculate o.00005	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed -0.0080 ed 0.0000 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0004 ed 0.0000 ed 0.0004 ed 0.0000 ed	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035 0.00004 0.00005 0.00008 0.00008 0.00002	RSD 0.16% 236.15% 54.87% >999.9% 17.93% 6.68% 48.41% 35.01% 22.06%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 313.107† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for Al 3 -2802.1 limits for B 24 1905.5 limits for B 24 1905.5 limits for B 2 586.1 limits for B 3 55.8 limits for Cd 2 51.3 limits for Cd 2 -2.8 limits for Cr 2 -2.8	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. o.00154 o.00039 Not calculate 0.00039 Not calculate 0.00440 Not calculate 0.00221 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.0004 Not calculate 0.00005 Not calculate 0.00008 Not calculate 0.00002 Not calculate 0.00008 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed -0.0080 ed 0.0000 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0004 ed 0.0004 ed 0.00037	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035 0.00004 0.00005 0.00008 0.00008 0.00002	RSD 0.16% 236.15% 54.87% >999.9% 17.93% 6.68% 48.41% 35.01% 22.06% 157.91%
Sequence No.: 91 Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Y 371.029 Ag 328.068† QC value within Al 308.215† QC value within Al 308.215† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Cu 324.752† QC value within	Mean Corrected Intensity 8699060.6 60.0 limits for Ag 3 -346.1 limits for Al 3 -0.2 limits for As 1 -2802.1 limits for B 24 1905.5 limits for B 24 1905.5 limits for Ba 2 586.1 limits for Ba 3 55.8 limits for Cd 2 51.3 limits for Cd 2 -2.8 limits for Cr 2 -2.8 limits for Cr 2 1728.0 limits for Cu 3 3712.7	Au Da Da Da Da Da Da Da Da Da Da Da Da Da	std.Dev. Std.Dev. 0.00154 0.00039 Not calculate 0.00039 Not calculate 0.00033 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.00035 Not calculate 0.0004 Not calculate 0.0004 Not calculate 0.00005 Not calculate 0.00005 Not calculate 0.00005 Not calculate 0.00005 Not calculate 0.00008 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002 Not calculate 0.00002	ation: 5 8/13/201 inal Vol: Conc. 0.0002 ed -0.0080 ed 0.0000 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0001 ed 0.0004 ed 0.00037 ed 0.0613	.0 9:43: Sample Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	04 PM Std.Dev. 0.00039 0.00440 0.00013 0.00221 0.00035 0.00004 0.00005 0.00008 0.00002 0.00117 0.00174	RSD 0.16% 236.15% 54.87% >9999.9% 17.93% 6.68% 48.41% 35.01% 22.06% 157.91% 31.95%

Method: AXIAL200	-6010 L Opt4	Pa	ge 64	Date:	8/13/2010 9:52:13 PM
Mg 279.077†	-164.7	-0.0042 mg/L	0.00284	-0.0042 mg/L	0.00284 67.13%
Mn 257.610†	395.4	279.077 Recovery 0.0002 mg/L	0.00006	0.0002 mg/Ľ	0.00006 23.89%
QC value with Mo 202.031†	in limits for Mn 29.5	257.610 Recovery 0.0006 mg/L	= Not calcula 0.00017	ated 0.0006 mg/L	0.00017 30.75%
QC value with	in limits for Mo	202.031 Recovery	= Not calcula	ated	
Ni 231.604† OC value with	47.3 in limits for Ni	0.0003 mg/L 231.604 Recovery	0.00002 = Not calcula	0.0003 mg/L ated	0.00002 6.69%
Na 330.237†	-20.6	-0.0111 mg/L 330.237 Recovery	0.01522	-0.0111 mg/L	0.01522 137.70%
Pb 220.353†	22.8	0.0008 mg/L	0.00009	0.0008 mg/L	0.00009 11.31%
QC value with Sb 206.836†		220.353 Recovery 0.0018 mg/L		ated 0.0018 mg/L	0.00062 33.87%
QC value with	in limits for Sb	206.836 Recovery	= Not calcula	ated	
		-0.0003 mg/L 196.026 Recovery		-0.0003 mg/L ated	
Sn 189.927†	270.2	0.0089 mg/L 189.927 Recovery	0.00209	0.0089 mg/L	0.00209 23.56%
Ti 337.279†	-190.6	-0.0004 mg/L	0.00003	-0.0004 mg/L	0.00003 9.15%
QC value with Tl 190.801†	in limits for Ti 8.4	337.279 Recovery 0.0011 mg/L	= Not calcula	0.0011 mg/I	0.00102 92.44%
QC value with	in limits for Tl	190.801 Recovery	= Not calcula	ated	
V 292.402† QC value with		0.0005 mg/L 92.402 Recovery =		0.0005 mg/L ed	0.00024 52.03%
Zn 206.200†	87.4	0.0003 mg/L 206.200 Recovery	0.00007	0.0003 mg/L	0.00007 24.94%
Ca 227.546†	-46.1	-0.0765 mg/L	0.03281	-0.0765 mg/L	0.03281 42.90%
QC value with: Sr 460.733†	in limits for Ca : 10.9	227.546 Recovery	= Not calcula	0.0000 mg/L	0.00021 473.50%
QC value with:	in limits for Sr -	460.733 Recovery more analytes were	= Not calcula	ated	
sequence No.: 92 Sample ID: PBW-1		I	Autosampler Lo Date Collected	ocation: 93 l: 8/13/2010 9:48	:48 PM
sequence No.: 92	17222	2 1 1 1	Autosampler Lo	ocation: 93 d: 8/13/2010 9:48 Iginal a Vol:	:48 PM
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W	17222 t:	2 	Autosampler Lo Date Collected Data Type: Ori Initial Sample	ocation: 93 d: 8/13/2010 9:48 Iginal a Vol:	:48 PM
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1:	17222 t: 17222 Mean Corrected	2 I J S Calib	Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution:	17222 t: 17222 Mean Corrected Intensity 8832381 7	Calib Conc. Units	Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0 0152	ocation: 93 d: 8/13/2010 9:48 Lginal a Vol: bl: 50 mL	
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4	Calib Conc. Units 1.012 mg/L -0.0004 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo Std.Dev. 0.0152 0.00028	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6	2 I I Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo Std.Dev. 0.0152 0.00028 0.00289	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0007 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample We Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0007 mg/L -0.0191 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0022 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00070 0.00173 0.00029 0.00003	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0002 mg/L 0.0000 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00003 0.00000	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00000 0.00010	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00010 0.00010 0.00003	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Cd 226.502† Cd 226.716† Cu 324.752† Fe 238.863† K 404.721†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0005 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00010 0.00003 0.00003 0.00025 0.00931	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample W Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0003 mg/L 0.0005 mg/L -0.0506 mg/L -0.0060 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00028 0.00029 0.00003 0.00003 0.00003 0.00003 0.00003 0.00025 0.00031 0.00037	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wt Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0506 mg/L 0.0000 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00028 0.00029 0.00003 0.00003 0.00003 0.00003 0.00003 0.00025 0.00031 0.00037 0.00037 0.00002	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0506 mg/L -0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00028 0.00028 0.00029 0.00003 0.00000 0.00010 0.00003 0.00003 0.00025 0.00037 0.00002 0.00014	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0006 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00003 0.00003 0.00003 0.00025 0.00031 0.00037 0.00025 0.00031 0.00037 0.00002 0.00014 0.00008	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Nn 231.604† Na 330.237†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0506 mg/L 0.0506 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0341 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00028 0.00028 0.00070 0.00173 0.00029 0.00003 0.00000 0.00010 0.00003 0.00002 0.00031 0.00037 0.00002 0.00014 0.00008 0.00322	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604†	17222 t: 17222 Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0002 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0341 mg/L 0.0006 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.0152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00000 0.00010 0.000000	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Mean Data: PBW-1: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 257.610† Mn 257.610† Na 330.237† Pb 220.353† Sb 206.836†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0006 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00000 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00003 0.00002 0.00037 0.00002 0.00014 0.00008 0.00038 0.00036	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0006 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00028 0.00029 0.00000 0.00010 0.00010 0.00003 0.00000 0.00010 0.00003 0.000025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00032 0.00038 0.00036 0.00213	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Mean Data: PBW-1: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mn 257.610† Mn 257.610† Mn 257.610† Mn 257.610† Na 330.237† Pb 220.353† Sb 206.836†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00000 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00003 0.00002 0.00037 0.00002 0.00014 0.00008 0.00038 0.00036	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96% 27.46%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Ni 231.604† Ni 231.604† Ni 231.604† Ni 231.604† Si 196.026† Si 189.927†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9 106.0	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0022 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0006 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00010 0.00003 0.00003 0.000025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00038 0.00036 0.00213 0.00096	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Ni 231.604† Ni 231.604† Ni 231.604† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9 106.0 -56.0	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0001 mg/L 0.0001 mg/L 0.0008 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00000 0.00003 0.00003 0.000025 0.00031 0.00025 0.00037 0.00002 0.00014 0.00037 0.00022 0.00014 0.00038 0.00036 0.00036 0.00036 0.00096 0.00003	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96% 27.46% 26.16%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Fl 190.801†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9 106.0 -56.0 6.3	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00028 0.00029 0.00003 0.00000 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00014 0.00037 0.00038 0.00038 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96% 27.46% 26.16% 10.33%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Ba 233.527† Ba 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9 106.0 -56.0 6.3 62.6	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00003 0.00000 0.00003 0.00003 0.00003 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00022 0.00014 0.00036 0.00036 0.00213 0.00096 0.00003 0.00096 0.00003 0.00008 0.00008 0.00008	cation: 93 1: 8/13/2010 9:48 [ginal > Vol: 51: 50 mL Sample	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96% 27.46% 26.16% 10.33% 2.61%
Sequence No.: 92 Sample ID: PBW-1: Analyst: Initial Sample Wi Dilution: Mean Data: PBW-1: Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772† Ba 233.527† Be 313.107† Cd 226.502† Co 228.616† Cr 267.716† Cu 324.752† Fe 238.863† K 404.721† Mg 279.077† Mn 257.610† Mo 202.031† Ni 231.604† Ni 231.604† Ni 231.604† Ni 231.604† Ni 231.604† Ni 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	17222 t: Mean Corrected Intensity 8832381.7 -151.4 -527.6 -6.0 -4371.8 795.4 324.8 0.9 2.0 68.4 246.5 3061.2 -130.2 -236.1 -80.9 8.9 7.8 61.8 15.4 1.5 -1.9 106.0 -56.0 6.3 62.6 667.3 -50.8 -65.1	Calib Conc. Units 1.012 mg/L -0.0004 mg/L -0.0122 mg/L -0.0122 mg/L -0.0122 mg/L -0.0191 mg/L 0.0007 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0005 mg/L 0.0005 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0000 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L	Autosampler Lo Date Collected Data Type: Ori Enitial Sample Sample Prep Vo 0.00152 0.00028 0.00289 0.00070 0.00173 0.00029 0.00000 0.00010 0.00010 0.00003 0.00003 0.000025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00031 0.00025 0.00038 0.00025 0.00038 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00096 0.00003 0.00008 0.00003 0.00008 0.00003 0.00008 0.00003 0.00008 0.00003 0.00008 0.00001 0.00004 0.0004 0.0004 0.00032	ocation: 93 d: 8/13/2010 9:48 dginal e Vol: bl: 50 mL Sample Conc. Units	Std.Dev. RSD 1.50% 68.41% 23.62% 102.83% 9.05% 12.91% 53.86% 84.10% 679.86% 8.37% 47.22% 18.42% 140.16 107.65% 6.20% 36.90% 81.37% 158.30% 9.43% 67.93% 137.44% 696.96% 27.46% 26.16% 10.33% 2.61% 1.85%

-

				Autosampler Loc				
Sample ID: LCSW-11	17222			Date Collected		9:54:3	1 PM	
Analyst:				Data Type: Orio				
Initial Sample Wt:	i			Initial Sample				
Dilution:				Sample Prep Vol	L: 50 ML			
fean Data: LCSW-13								
iean Data: LCSW-13	Mean Corrected		Calib			ample		
alyte	Intensity	Conc.			Conc. U	nits	Std.Dev.	
371.029	8454253.7		<u> </u>					0.11
g 328.068† 1 308.215†	19058.6	0.0512		0.00025				0.49
	88360.3	2,049	mg/L	0.0055				0.27
s 188.979†	374.0 208732.4	0.0442 0.9001	mg/L	0.00107				2.43
249.772†	208732.4	0.9001 1.991 0.0478	mg/L					0.66
a 233.527†	716719.0 314057.3	1.991	mg/L	0.0021				0.11
e 313.107†	314057.3	0.0478	mg/L	0.00002				0.05
d 226.502†	19580.0 69086.7	0.0511 0.5168	mg/L	0.00008				0.17
0 228.616†	69086.7			0.00179				0.35
r 267.716†	44429.9 124372.8	0.2008		0.00009				0.04
u 324.752†		0.2634		0.00026				0.10
e 238.863† 404.721†	66821.9	1.103	mg/ц	0.0020			150 04	0.18
	3320.8 81762.0	2 070	ma / T	0 0004			156.64	
g 279.077† n 257.610†	860743.7	2.079 0.5021		0.0004 0.00024				0.02
0 202.031†	27264.2	0.5021		0.01047				0.05
i 231.604†	68718.0	0.4581		0.00079				0.17
a 330.237†		19.78		0.081				0.41
b 220.353†	14564.2			0.01056				1.99
5 220.3331 5 206.836†	2655.2	0.5311 0.4643	$m\alpha/L$	0.00496				1.07
e 196.026†	5914.9	1 020	m_{α}/L	0.0019				0.19
n 189.927†	168597.4	1.020 5.545	mg/1	0.0275				0.50
i 337.279†	260584.5	0 5100	ma/L	0.00792				1.55
1 190.801†	260584.5 15196.8	1.979	ma/T	0,0116				0.59
292.4021	131576.6	0.4892	mg/L	0.00361				0.74
n 206.200†	131576.6 161770.4	0.5316	mq/L	0.00011				0.02
a 227.546†	1056.5	1.888	mg/L	0.0465				2.46
r 460.733†	145.3	1.888 0.0005	mg/L	0.00027				51.17
ample conc. not c	alculated. Sample	e Prep. V	/ol. AN	ID Initial Vol. r	equired OR	sample	units inco	rrect.
			******		******	========	=====pps====	22222
equence No.: 94				Autosampler Loc				
	4-001			Date Collected:	• •	9:58:50	U PM	
ample ID: R100414				Data Type: Orig				
nalyst:								
nalyst: nitial Sample Wt:				Initial Sample	Vol:			
nalyst: nitial Sample Wt:					Vol:			
halyst: hitial Sample Wt: Llution:				Initial Sample	Vol:			
nalyst: nitial Sample Wt: ilution:			Calib	Initial Sample	Vol: : 50 mL 	ample		
halyst: hitial Sample Wt: ilution: ean Data: R100414	4-001	Conc.	Units	Initial Sample Sample Prep Vol 	Vol: : 50 mL		Std.Dev.	
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte	4-001 Mean Corrected	0.7977	Units mg/L	Initial Sample Sample Prep Vol	Vol: : 50 mL 		Std.Dev.	
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029	4-001 Mean Corrected Intensity 6965297.6 143.3	0.7977 0.0010	Units mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0	0.7977 0.0010 0.0289	Units mg/L mg/L mg/L	Initial Sample Sample Prep Vol Std.Dev. 0.00462	Vol: : 50 mL 		Std.Dev.	0.58 59.86
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2	0.7977 0.0010 0.0289 0.0489	Units mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58 59.86 4.43 1.07
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3	0.7977 0.0010 0.0289 0.0489 0.7778	Units mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58 59.86 4.43 1.07 0.98
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068f l 308.215f s 188.979f 249.772f a 233.527f	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6	0.7977 0.0010 0.0289 0.0489 0.7778 0.2795	Units mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58 59.86 4.43 1.07 0.98 0.20
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2	0.7977 0.0010 0.0289 0.0489 0.7778 0.2795 -0.0002	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58 59.86 4.43 1.07 0.98 0.20 20.58
halyst: hitial Sample Wt: hitial Sample Wt: hitial Sample Wt: hitial Sample Wt: san Data: R100414 halyte 371.029 g 328.068† . 308.215† s 188.979† 249.772† a 233.527† s 313.107† d 226.502†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8	0.7977 0.0010 0.0289 0.0489 0.7778 0.2795 -0.0002 -0.0003	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		Std.Dev.	0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4	0.7977 0.0010 0.0289 0.0489 0.7778 0.2795 -0.0002 -0.0003 -0.0009	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 			0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0009\\ 0.0001 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 			0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 116.19
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† 1 324.752†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0003\\ -0.0009\\ 0.0001\\ 0.0027 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol Std.Dev. 0.00462 0.00060 0.00128 0.00052 0.00765 0.00056 0.0005 0.00011 0.00000 0.00007 0.00029	Vol: : 50 mL 			0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 116.19 10.93
halyst: hitial Sample Wt: ilution: ean Data: R100414 halyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† h 324.752† e 238.863†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0009\\ 0.0001 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		2	0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 116.19 10.93 0.81
halyst: hitial Sample Wt: llution: ean Data: R100414 halyte 371.029 g 328.068† 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† h 324.752† e 238.863† 404.721†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7 10348.1	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0003\\ 0.0001\\ 0.0027\\ 19.19 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol Std.Dev. 0.00462 0.00060 0.00128 0.00052 0.00056 0.00056 0.00005 0.00011 0.00000 0.00007 0.00029 0.155	Vol: : 50 mL 			0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 116.19 10.93 0.81 1.26
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† i 324.752† e 238.863† 404.721† g 279.077†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7 10348.1 1787793.9	0.7977 0.0010 0.0289 0.0489 0.7778 0.2795 -0.0002 -0.0003 -0.0009 0.0001 0.0027 19.19 45.46	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		2	0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 16.19 10.93 0.81 1.26 0.60
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7 10348.1 1787793.9 1399025.7	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0009\\ 0.0001\\ 0.0027\\ 19.19\\ 45.46\\ 0.8147 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		2	0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.09 10.93 0.81 1.26 0.60 0.46
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7 10348.1 1787793.9 1399025.7 5.8	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0009\\ 0.0001\\ 0.0027\\ 19.19\\ 45.46\\ 0.8147\\ 0.0007 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol Sample Prep Vol 0.00462 0.00060 0.00128 0.00052 0.00765 0.00056 0.00011 0.00005 0.00011 0.00007 0.00029 0.155 0.274 0.00373 0.00061	Vol: : 50 mL 		2	0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.05 0.609 10.93 0.81 1.26 0.60 0.46 85.02
nalyst: nitial Sample Wt: ilution: ean Data: R100414 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610†	4-001 Mean Corrected Intensity 6965297.6 143.3 2601.0 341.2 198533.3 101673.6 -2508.2 451.8 -23.4 -171.8 575.0 1163886.7 10348.1 1787793.9 1399025.7	$\begin{array}{c} 0.7977\\ 0.0010\\ 0.0289\\ 0.0489\\ 0.7778\\ 0.2795\\ -0.0002\\ -0.0003\\ -0.0009\\ 0.0001\\ 0.0027\\ 19.19\\ 45.46\\ 0.8147 \end{array}$	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Initial Sample Sample Prep Vol 	Vol: : 50 mL 		2	RSD 0.58 59.86 4.43 1.07 0.98 0.20 20.58 33.055 0.09 10.93 0.81 1.26 0.60 0.46 85.02 24.48 0.03

Page 65

Date: 8/13/2010 10:00:49 PM

Method: AXIAL200	-6010 L Opt4		P	age 66		Date: 8	/13/2010 10	:09:25
Sb 206.836†	-11.8	-0.0026 n	na/T.	0.00323				126.49%
Se 196.026†	24.9	0.0071 n	ng/L	0.00206				29.17%
Sn 189.927†		0.0212 n		0.00151				7.09%
i 337.279†	-412.9	-0.00212 Π						13.28%
l 190.801†		-0.0022 n -0.0017 n		0.00029 0.00044				26.62%
/ 292.4021		0.0017 n						20.02%
n 206.200†	-143.5	0.0012 n 0.0000 n	ю/ц ж/т	0.00006				
				0.00017				421.52%
a 227.546†	140382.9	243.9 n		1.55				0.64%
Sr 460.733† Sample conc. not	1439549.3 calculated. Samp	5.565 t le Prep. Vo		0.0015 D Thitial Vol.	required	OR sample	units inco	0.03% rrect.
		-			-	-		
equence No.: 95	1======================================	********	***===	Autosampler Lo			===========	
ample ID: R10041	L44-001D			Date Collected	1: 8/13/20	10 10:03:	08 PM	
malyst:				Data Type: Ori	iginal			
initial Sample Wt	::			Initial Sample	a Vol:			
Dilution:				Sample Prep Vo	ol: 50 mL			
ean Data: R10041	Mean Corrected	c	alib			Sample		
nalyte	Intensity			Std.Dev.	Conc.	Units	Std.Dev.	RSD
371.029	6642828.8	0.7608 m	na∕L	0.00242				0.32%
g 328.068†	40.2	0.0007 π	ıg/L	0.00074				99.86%
1 308.215†	2725.3	0.0311 n	a/L	0.00352				11.33%
s 188.979†	364.7	0.0518 m	a/L	0.00575				11.08%
249.7721	201013.9	0.7865 m		0.00631				0.80%
a 233.527†	104244.8	0.2866 m		0.00026				0.09%
e 313.107†	-2936.4	-0.0003 m		0.00003				8,70%
d 226.502†	512.4	-0.0002 m		0.00017				79.40%
228.616†	-64.3	-0.0012 m	- · .	0.00004				3.47%
r 267.716†	-64.3 31.7	0.0012 m		0.00044				43.55%
		0.0010 m 0.0043 m						43.55%
u 324.752†				0.00028				
e 238.863t	1194822.9	19.70 m	чγл	0.012			160 76	0.06%
404.721†	10869.6	10	~ /7	0 0F0			169.76	1.56%
g 279.077†	1830713.5	46.55 π	ig/ь	0.052				0.11%
n 257.610†		0.8290 m	lg/L	0.00011				0.01%
o 202.031†	22.5	0.0010 m		0.00033				31.44%
i 231.604†	178.3	0.0004 m		0.00038				84.46%
a 330.237†	3417590.4	1874 m		1.8				0.10%
b 220.353†		0.0023 π		0.00217				95.97%
b 206.836†	-6.9	-0.0017 π		0.00100				58.53%
e 196.026†	38.5	0.0095 m		0.00815				85.88%
n 189.927†	-112.7	0.0192 π	ġ/L	0.00109				5.70%
i 337.279†	-855.2	-0.0031 m	g/L	0.00021				6.65%
l 190.801†	-39.6	-0.0035 m	g/L	0.00056				15.74%
292.402†	-174.6	0.0011 m		0.00031				27.95%
n 206.200†	1438.2	0.0012 m		0.00014				11.49%
a 227.546†	143418.5	249.2 π	-	0.16				0.07%
r 460.733†	1506372.6	5.823 m		0.0555				0.95%
	calculated. Sampl				required (OR sample	units inco	
	*********	*********	2222 43	************				
equence No.: 96				Autosampler Lo	cation: 97	1		
ample ID: R10041	44-001S			Date Collected		LU LU:07:	45 PM	
nalyst:				Data Type: Ori	-			
nitial Sample Wt	•			Initial Sample				
ilution:				Sample Prep Vo	or: 20 mL			
								 _
	44-001S	~	alib			Sample		
	Mean Corrected	L L		Std.Dev.	Conc	Units	Std.Dev.	RSD
ean Data: R10041	Mean Corrected Intensity	Conc. II	nits					1.09%
ean Data: R10041 nalyte	Intensity	Conc. U 0.7971 m		0.00873				
ean Data: R10041 nalyte 371.029	Intensity 6960073.9	0.7971 m	g/L	0.00873				
ean Data: R10041 halyte 371.029 g 328.068†	Intensity 6960073.9 17876.9	0.7971 m 0.0485 m	g/L g/L	0.00042				0.87%
ean Data: R10041 aalyte 371.029 g 328.068† L 308.215†	Intensity 6960073.9 17876.9 74943.8	0.7971 m 0.0485 m 1.712 m	g/L g/L g/L	0.00042 0.0110				0.87% 0.65%
ean Data: R10041 141yte 371.029 3328.068† 1 308.215† 5 188.979†	Intensity 6960073.9 17876.9 74943.8 664.2	0.7971 m 0.0485 m 1.712 m 0.0857 m	g/L g/L g/L g/L	0.00042 0.0110 0.00272			·	0.87% 0.65% 3.18%
aan Data: R10041 aalyte 371.029 328.068† 308.215† 5 188.979† 249.772†	Intensity 6960073.9 17876.9 74943.8 664.2 362580.2	0.7971 m 0.0485 m 1.712 m 0.0857 m 1.497 m	a\r a\r a\r a\r	0.00042 0.0110 0.00272 0.0150			·	0.87% 0.65% 3.18% 1.00%
ean Data: R10041 141yte 371.029 328.068† 1 308.215† 5 188.979† 249.772† 4 233.527†	Intensity 6960073.9 17876.9 74943.8 664.2 362580.2 684899.8	0.7971 m 0.0485 m 1.712 m 0.0857 m 1.497 m 1.900 m	g/L g/L g/L g/L	0.00042 0.0110 0.00272 0.0150 0.0055			·	0.87% 0.65% 3.18% 1.00% 0.29%
ean Data: R10041 141yte 371.029 328.068† 308.215† 5188.979† 249.772† 4233.527† 313.107†	Intensity 6960073.9 17876.9 74943.8 664.2 362580.2 684899.8 271173.9	0.7971 m 0.0485 m 1.712 m 0.0857 m 1.497 m 1.900 m 0.0414 m	g/L g/L g/L g/L g/L	0.00042 0.0110 0.00272 0.0150 0.0055 0.00002				0.87% 0.65% 3.18% 1.00% 0.29% 0.06%
ean Data: R10041 141yte 371.029 328.068† 1 308.215† 5 188.979† 249.772†	Intensity 6960073.9 17876.9 74943.8 664.2 362580.2 684899.8	0.7971 m 0.0485 m 1.712 m 0.0857 m 1.497 m 1.900 m	g/L g/L g/L g/L g/L g/L g/L	0.00042 0.0110 0.00272 0.0150 0.0055				0.87% 0.65% 3.18% 1.00% 0.29%

Method: AXIAL20	0-6010 L Opt4		Page 67	Date: 8/13,	/2010 10:18:02 PM
Cr 267.716†	37683.9	0.1711 mg/L	0.00059		0.35%
Cu 324.752†	108714.2	0.2315 mg/L	0.00034		0.15%
Fe 238.863†	1049005.2	17.30 mg/L	0.117		0.68%
K 404.721†	13194.1	17.50 mg/ L	0.11/		18.60 0.14%
Mg 279.077†	1604123.4	40.79 mg/L	0.227		0.56%
Mn 257.610†	1915811.2	1.116 mg/L	0.0020		0.18%
Mo 202.031†	23552.8	0.4412 mg/L	0.00158		0.36%
Ni 231.604†	58367.8	0.3885 mg/L			0.10%
Na 330.2371			0.00041 13.0		
Pb 220.353†	2918853.1	1600 mg/L 0.4520 mg/L			0.81%
	12382.4		0.00372		0.82%
Sb 206.836† Se 196.026†	2501.9	0.4371 mg/L	0.00733		1.68%
	5632.2	0.9738 mg/L	0.00696		0.71%
Sn 189.927†	138194.0	4.564 mg/L	0.0624		1.37%
Ti 337.279†	220688.1	0.4308 mg/L	0.00634		1.47%
Tl 190.801;	12743.9	1.661 mg/L	0.0032		0.19%
V 292.402†	116129.9	0.4332 mg/L	0.00342		0.79%
Zn 206.200†	143960.3	0.4701 mg/L	0.00260		0.55%
Ca 227.546†	118705.1	206.3 mg/L	0.80		0.39%
Sr 460.733†		4.905 mg/L	0.0951		1.94%
Sample conc. no	t calculated. Sample	Prep. Vol. AN	ND Initial Vol.	required OR sample uni	ts incorrect.
		==================			
Sequence No.: 9			Autosampler L		
Sample ID: R100	4144-001A			d: 8/13/2010 10:11:45 F	'M
Analyst:			Data Type: Or		
Initial Sample N	Wt:		Initial Sampl		
Dilution:			Sample Prep V	ol: 50 mL	
Mean Data: R1004		6-1 41		a	
	Mean Corrected	Calib	<i></i>	Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units S	td.Dev. RSD
Y 371.029	6389192.0	0.7317 mg/L	0.00423		0.58%
Ag 328.068†	19773.0	0.0537 mg/L	0.00037		0.69%
Al 308.215†	86762.9	1.982 mg/L	0.0030		0.15%
As 188.979†	768.3	0.0989 mg/L	0.00535		5.41%
B 249.772†	407040.3	1.680 mg/L	0.0025		0.15%
Ba 233.527†	782489.6	2.171 mg/L	0.0057		0.26%
Be 313.107†	308569.2	0.0471 mg/L	0.00034		0.72%
Cd 226.502†	19634.6	0.0498 mg/L	0.00072		1.45%
Co 228.616†	64880.3	0.4847 mg/L	0.00551		1.14%
Cr 267.716†	42823.4	0.1944 mg/L	0.00254		1.31%
Cu 324.752†	124976.4	0.2661 mg/L	0.00069		0.26%
Fe 238.863†	1188277.4	19.59 mg/L	0.031		0.16%
K 404.721†	15438.5				192.84 1.25%
Mg 279.077†	1803091.2	45.85 mg/L	0.083		0.18%
Mn 257.610†	2163410.4	1.261 mg/L	0.0044		
Mo 202.031†	27322.9	0.5118 mg/L	0.00441		0.35%
Ni 231.604†	66982.8	0.4458 mg/L			0.80%
Na 330.237†			0.00122		0.27%
Pb 220.353†	3373950.5	1850 mg/L	6.0		0.33%
	13883.5	0.5068 mg/L	0.00837		1.65%
Sb 206.836†	2893.6	0.5055 mg/L	0.01404		2.78%
Se 196.026†		1.172 mg/L	0.0192		1.64%
Sn 189.927†	166427.4	5.495 mg/L	0.0085		0.15%
Ti 337.279†	258851.6	0.5053 mg/L	0.00182		0.36%
Tl 190.801†	14021.3	1.827 mg/L	0.0374		2.05%
V 292.402†	134125.4	0.5003 mg/L	0.00086		0.17%
Zn 206.200†	166730.8	0.5446 mg/L	0.00061		0.11%
Ca 227.546†		234.3 mg/L	0.10		0.04%
Sr 460.733†		5.739 mg/L	0.0031		0.05%
Sample conc. not	calculated. Sample	Prep. Vol. AN	D Initial Vol.	required OR sample uni	ts incorrect.
					===============
Sequence No.: 98	3		Autosampler L	ocation: 99	
Sample ID: R1004			—	d: 8/13/2010 10:16:07 P	м
Analyst:			Data Type: Or		
Initial Sample W	it:		Initial Sample	-	
Dilution:			Sample Prep Vo		
Mean Data: R1004					
Acan Daca: K1004	Mean Corrected	Calib		Sample	
	Hour Corrected	Carto		Зашћте	

Method: AXIAL200	-6010 L Opt4						-	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Y 371.029	6802324.2	0.7790	mg/⊥	0.00200				0.269
Ag 328.068†	395.0	0.0012	mg/L	0.00027				22.569
ll 308.215†	742.3	0.0109	mg/L	0.00005				0.499
s 188.979†	99.8	0.0136		0.00441				32.459
249.772†	38958.1	0.1515	mg/L	0.00159				1.059
la 233.527†	22716.6	0.0625	mg/L	0.00008				0.129
e 313.107†	-2385.0	-0.0003		0.00004				12.579
d 226.502†	95.3	-0.0001	mg/L	0.00013			-	170.669
o 228.616†	-0.2	-0.0001	mg/T	0.00060				413.539
r 267,716†	-69.4	-0.0001		0.00036				274.17
u 324.752†	605.3	0.0016	<u> </u>	0.00010			-	6.209
e 238.863†	249817.5	4.120	- · .	0,0158				0.389
404.721†	2123.0	4.140	шg/ ц	0.0130			270 60	
		0 475	m ~ / T	0.0007			378.68	
g 279.077†	372615.0	9.475	-	0.0607				0.649
n 257.610†	277021.0	0.1613		0.00060				0.37
0 202.031†	-60.6	-0.0010		0.00034				34.36
i 231.604†	32.2	0.0001	- · .	0.00002				22.42
a 330.237†	684994.2	375.6	mg∕L	1.41				0.379
b 220.353†	62.3	0.0024	mg/L	0.00030				12.569
b 206.836†	22.0	0.0037	mg∕L	0.00102				27.20%
e 196.026†	78.8	0.0142	mg/L	0.00032				2.25
n 189.927†	767.2	0.0298	- · · ·	0.00180				6.03%
i 337.279†	-1538.3	-0.0033		0.00012				3.61%
1 190.801†	11.0	0.0018		0.00557			2	315.389
292.4021	349.0	0.0018		0.00028				16.559
n 206.200†	1392.2	0.0017		0.00028				5.659
a 227.546†	28177.3	48.97		0.564				1.15%
r 460.733†	342394.2 calculated. Sampi	1.324		0.0031			• • •	0.23%
equence No.: 99 ample ID: R10041 nalyst:	L44-002			Autosampler Loc Date Collected Data Type: Orig Initial Sample	cation: 1 : 8/13/20 ginal	00	21 PM	
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution:	L44-002			Autosampler Loc Date Collected Data Type: Orig	cation: 1 : 8/13/20 ginal Vol:	00	21 PM	
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt	144-002 5: 144-002			Autosampler Loo Date Collected Data Type: Orig Initial Sample	cation: 1 : 8/13/20 ginal Vol:	00 10 10:20:	:21 PM	
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041	144-002 C: 144-002 Mean Corrected		Calib	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vo	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample		
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte	144-002 C: 144-002 Mean Corrected Intensity	Conc.	Calib Units	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vol	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20:	21 PM Std.Dev.	RSD
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029	L44-002 L44-002 Mean Corrected Intensity 6888164.0	Conc. 0.7889	Calib Units mg/L	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vo Std.Dev. 0.00073	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068;	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7	Conc. 0.7889 0.0019	Calib Units mg/L mg/L	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vo Std.Dev. 0.00073 0.00033	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.09% 17.37%
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: ean Data: R10041 halyte 371.029 g 328.068; l 308.215;	L44-002 L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9	Conc. 0.7889 0.0019 0.2201	Calib Units mg/L mg/L mg/L	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00073 0.00033 0.00323	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: can Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979;	L44-002 L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3	Conc. 0.7889 0.0019 0.2201 0.0107	Calib Units mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00380	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772;	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00380 0.00023	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638 0.128
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: ean Data: R10041 halyte 371.029 g 328.068; 1308.215; 188.979; 249.772; a 233.527;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00380 0.00023 0.00244	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638 0.128 0.328
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107;	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00380 0.0023 0.00244 0.00001	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.63% 0.12% 0.32% 4.28%
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00380 0.00023 0.00244	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638 0.128 0.328 4.288 34.028
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; l 226.502;	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00380 0.0023 0.00244 0.00001	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638 0.128 0.328 4.288 34.028
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: an Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; l 226.502; o 228.616;	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00380 0.00380 0.00023 0.00244 0.00001 0.00011	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.098 17.378 1.478 35.638 0.128 0.328 4.288 34.028 5.338
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: can Data: R10041 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716†	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loo Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.638 0.128 4.288 34.028 5.338 75.428
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; a 233.527; a 313.107; l 226.502; o 228.616; c 267.716; 1 324.752;	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.129 4.289 34.029 5.339 75.428 3.178
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† 1 324.752† e 238.863†	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.638 0.128 0.328 4.288 34.029 5.338 75.428 3.178 0.178
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: can Data: R10041 nalyte 371.029 g 328.068; 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; c 267.716; 1 324.752; e 238.863; 404.721;	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00244 0.00001 0.00021 0.00021 0.00021 0.00026 0.0157	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.09 17.37 1.47 35.63 0.12 4.28 4.28 34.02 5.33 75.42 3.17 0.17 3.37
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† 1 324.752† e 238.863† 404.721† g 279.077†	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.129 0.329 4.289 34.029 5.339 5.339 5.349 3.179 0.179 3.379 0.099
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068† 308.215† 5 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† c 267.716† 1 324.752† e 238.863† 404.721† g 279.077† 1 257.610†	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.00012 0.0003 0.0081 9.110 34.09 0.3530	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 0.00073 0.00033 0.00323 0.00323 0.00380 0.00023 0.00244 0.00001 0.00011 0.00007 0.00021 0.00026 0.0157 0.031 0.00075	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.128 0.328 4.288 34.029 5.338 75.428 3.178 0.178 3.378 0.098 0.098
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt lution: an Data: R10041 halyte 371.029 328.068; 308.215; 308.215; 3188.979; 249.772; 4233.527; 313.107; 228.616; 228.616; 228.616; 324.752; 238.863; 404.721; 3279.077; 257.610; 202.031;	L44-002 .: L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.128 0.328 4.289 34.029 5.338 75.428 3.179 0.178 0.178 0.218 2.848
aquence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: an Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; s 133.107; d 226.502; b 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; 1 257.610; b 202.031; c 231.604;	L44-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2	Conc. 0.7889 0.0019 0.2201 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.128 0.328 4.289 34.029 5.338 75.428 3.179 0.178 0.178 0.218 2.848 9.958
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt lution: an Data: R10041 halyte 371.029 g 328.068; 308.215; 308.215; 308.215; 308.215; 308.215; 308.215; 3188.979; 249.772; 4233.527; 424.752; 228.616; 528.616; 528.616; 528.863; 404.721; g 279.077; 1257.610; 5202.031; 231.604; 330.237;	144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev.	0.099 17.379 1.479 35.639 0.129 0.129 4.289 34.029 5.339 75.429 3.179 0.179 0.179 3.379 0.219 2.848 9.958 0.339
aquence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: an Data: R10041 halyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.604; a 232.610; b 222.031; l 257.610; b 202.031; a 231.604; a 330.237; b 220.353; b 220.353; b 220.353; b 2004; b 220.353; b 220.353; b 2004; b 220.353; b 2004; b 220.353; b 2004; b 220.353; b 2004; b 220.353; b 2004; b 220.353; b 2004; b 220.353; b 2004; b 2004; b 220.353; b 220.353; b 2004; b	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1	0.099 17.379 1.479 35.639 0.128 4.289 5.338 75.428 3.179 0.178 3.378 0.218 9.958 0.338 9.958
aquence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: an Data: R10041 halyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.527; a 233.604; a 230.237; b 220.353; b 206.836; b 206.836; b 200,000; b 220.353; b 206.836; b 200,000; c 2	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1	0.099 17.379 1.479 35.639 0.129 4.289 34.029 34.029 3.379 0.179 0.179 3.378 0.099 0.218 2.849 9.958 0.338 30.298 85.398
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: ean Data: R10041 halyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; l 226.502; b 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; h 257.610; b 202.031; c 231.604; a 330.237; b 220.353; b 206.836; e 196.026;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0139	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1	0.099 17.379 1.479 35.638 0.128 4.288 34.028 5.338 75.428 3.178 0.178 3.378 0.218 2.848 9.958 0.338 30.298 85.398 1.498
aquence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: an Data: R10041 halyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; d 226.502; b 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; h 257.610; b 202.031; c 231.604; a 330.237; b 206.836; e 196.026; h 189.927;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0012 0.0139 0.0212	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1	0.099 17.379 1.479 35.639 0.129 0.329 4.289 34.029 5.339 75.428 3.179 0.179 3.379 0.098 0.218 2.848 9.958 0.329 85.398 1.498 2.938
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0139	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1	0.099 17.379 1.479 35.638 0.128 0.328 4.288 34.029 5.338 75.428 3.178 0.178 3.378 0.098 0.218 2.848 9.958 0.328 85.398 1.498 2.938
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; l 257.610; o 220.031; l 231.604; a 330.237; o 220.836; e 196.026; n 189.927; l 337.279;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0012 0.0139 0.0212	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1 136.22 2	0.09 17.37 1.47 35.63 0.12 4.28 4.28 34.03 5.33 75.42 3.17 0.09 0.21 8 3.37 0.09 0.21 2.84 9.95 0.39 85.39 1.49 2.93 42.84 9.95 0.32 2.84 9.95 0.32 2.84 9.95 0.32 2.84 9.95 0.32 2.84 9.95 0.32 2.84 9.95 2.84 9.95 2.84 9.95 2.84 9.95 2.84 9.95 2.93 42.75 82.75 42.75
equence No.: 99 ample ID: R10041 nalyst: nitial Sample Wt ilution: ean Data: R10041 nalyte 371.029 g 328.068; l 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; o 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; h 257.610; o 202.031; i 231.604; a 330.237; o 206.836; e 196.026; n 189.927;	144-002 .: 144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4 397.0	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0012 0.0139 0.0212 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1 136.22 2	0.099 17.379 1.479 35.638 0.128 0.328 4.288 34.038 5.328 5.328 0.178 0.178 0.098 0.218 2.848 9.958 0.338 30.298 85.398 1.498 2.938 42.848 9.958 1.498 2.938 42.758 41.538
aquence No.: 99 ample ID: R10041 halyst: hitial Sample Wt ilution: an Data: R10041 halyte 371.029 g 328.068; 308.215; s 188.979; 249.772; a 233.527; e 313.107; d 226.502; b 228.616; c 267.716; 1 324.752; e 238.863; 404.721; g 279.077; h 257.610; b 202.031; c 231.604; a 330.237; b 206.836; e 196.026; h 189.927; s 337.279; h 190.801;	144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4 397.0 12.2	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.00012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0012 0.0139 0.0212 0.0001 0.0024	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol Sample Orig Sample Prep Vol Samp	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1 136.22 2	0.09 17.37 1.47 35.63 0.12 4.28 4.28 34.03 5.33 3.17 0.09 0.17 3.37 0.09 0.21 2.84 9.95 0.33 30.29 85.39 1.49 2.93 42.75 42.75 41.53 10.05
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt llution: an Data: R10041 halyte 371.029 g 328.068; 308.215; 3 188.979; 249.772; a 233.527; a 313.107; a 226.502; b 228.616; c 267.716; a 324.752; e 238.863; 404.721; g 279.077; a 231.604; a 330.237; b 202.031; c 231.604; a 330.237; b 220.353; b 206.836; a 196.026; a 196.026; a 199.801; c 292.402; a 206.200; b 202.00; c 2	144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4 397.0 12.2 228.7 1825.1	Conc. 0.7889 0.0019 0.2201 0.0107 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0010 0.0012 0.0033 301.1 0.0012 0.0012 0.00212 0.0001 0.0024 0.0024	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol 	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1 136.22 2	0.09 17.37 1.47 35.63 0.12 0.32 4.28 34.02 5.33 75.42 3.17 0.17 3.37 0.21 8 0.21 8 9.95 30.29 85.39 1.49 2.93 42.28 2.95 30.29 85.39 1.47 2.93 42.28 2.93 42.28 2.93 42.28 2.93 42.28 2.93 30.29 85.39 1.47 2.93 42.29 2.93 42.29 2.93 42.29 2.93 42.29 2.93 42.29 2.93 42.29 2.29 3.37 2.29 3.37 2.93 3.39 2.93 3.39 3.39 3.39 3.39 2.93 3.39
equence No.: 99 ample ID: R10041 halyst: hitial Sample Wt lution: an Data: R10041 halyte 371.029 g 328.068; 308.215; s 188.979; 249.772; a 233.527; a 313.107; d 226.502; b 228.616; c 267.716; h 324.752; e 238.863; 404.721; g 279.077; h 257.610; b 202.031; c 231.604; a 330.237; b 206.836; e 196.026; h 189.927; d 337.279; h 190.801; c 292.402;	144-002 Mean Corrected Intensity 6888164.0 576.7 10038.9 55.3 54110.9 276304.7 -2088.7 249.9 -125.8 -53.7 3549.9 552502.8 4042.8 1340403.3 606975.6 -95.0 541.2 549162.7 25.6 8.4 71.7 352.4 397.0 12.2 228.7	Conc. 0.7889 0.0019 0.2201 0.1974 0.7662 -0.0003 -0.0001 -0.0012 0.0003 0.0081 9.110 34.09 0.3530 -0.0015 0.0033 301.1 0.0015 0.0033 301.1 0.0010 0.0012 0.0013 0.0212 0.0001 0.0024 0.0017	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol Sample Orev October Octo	cation: 1 : 8/13/20 yinal Vol: l: 50 mL	00 10 10:20: Sample	Std.Dev. 1 136.22 2	0.09 17.37 1.47 35.63 0.12 4.28 4.28 34.03 5.33 3.17 0.09 0.17 3.37 0.09 0.21 2.84 9.95 0.33 30.29 85.39 1.49 2.93 42.75 42.75 41.53 10.05

Sb 206.836†

3.9

0.0002 mg/L

0.00027

Page 69

Date: 8/13/2010 10:30:45 PM

Sequence No.: 100 Autosampler Location: 101 Sample ID: R1004293-001 Date Collected: 8/13/2010 10:24:37 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL

 '93-001
 Calib

 Mean Corrected
 Calib

 Intensity
 Conc. Units
 Std.Dev.

 6688482.4
 0.7660 mg/L
 0.00201

 896.5
 0.0012 mg/L
 0.00060

 3866.3
 0.0288 mg/L
 0.00092

 9.1
 0.0033 mg/L
 0.00351

 5486.3
 -0.0306 mg/L
 0.00045

 0.0885 mg/L
 0.00027

 Mean Data: R1004293-001 Sample Conc. Units Std. Dev. RSD Analyte Y 371.029 0.26% Ag 328.068† 50.92%

 3866.3

 9.1
 0.0033 mg/L

 5486.3
 -0.0306 mg/L

 33317.1
 0.0885 mg/L

 2149.1
 -0.0003 mg/L

 2001 mg/L

 Al 308.215† 3.18% As 188.979† 105.72% B 249.772† 1.47% 33317.1 -3649.1 0.00027 0.00003 0.00006 0.00048 0.00020 0.00034 Ba 233.527† 0.30% Be 313.107† 9.89% -43.5 -32.7 10.4 Cd 226.502† 0.0001 mg/L 55.82% Co 228,616† -0.0008 mg/L 58.28%

 10.4
 -0.0004 mg/L

 10317.6
 0.0191 mg/L

 21266.6
 0.3037 mg/L

 846.4
 157494.9

 11367.9
 0.0066 mg/L

 -39.3
 -0.0011 mg/L

 58.0
 -0.0009 mg/L

 589377.8
 322.7 mg/L

 -63.7
 0.0020 mg/L

 Cr 267.716† -0.0004 mg/L 50.20% Cu 324.752† 1.80% Fe 238.863† 0.00252 0.83% K 404.721† Mg 279.077† 143.08 16.90% 0.0171 0.43% 0.00002 0.00078 0.00042 Mn 257.610† 0.25% Mo 202.031† 70.96% Ni 231.604† 0.00042 45.19% Na 330.237† 1.48 0.46% 0.00077 0.00338 0.00293 0.00005 0.00014 0.00565 0.00006 Pb 220.353† -63.7 0.0020 mg/L 39.17% Sb 206.836† -0.0031 mg/L -14.7 109.93% 102.3 -49.2 0.0121 mg/L 0.0353 mg/L Se 196.026† 24.23% Sn 189.927† 0.15% Ti 337.279† -1979.1 -0.0057 mg/L 2.52% Tl 190.801† 2.8 0.0012 mg/L 483.11% V 292.402† 989.4 0.0035 mg/L 0.00006 1.70% Zn 206.200† 0.0109 mg/L 4367.2 0.00028 2.55% Ca 227.546†307331.5Sr 460.733†147362.1 531.8 mg/L 3.00 0.5585 mg/L 0.00222 0.56% 0.40% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 101 Autosampler Location: 102 Sample ID: R1004293-002 Date Collected: 8/13/2010 10:28:50 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: 50 mL . Mean Data: R1004293-002 a: R1004293-002 Mean Corrected Calib Intensity Conc. Units Std.Dev. 6758371.0 0.7740 mg/L 0.00040 0.00014 Sample Conc. Units Analyte Std.Dev. Std.Dev. RSD Y 371.029 0.05% 806.9 2889.1 9.7 5719.6 39546.8 0.0010 mg/L 0.0080 mg/L 0.0033 mg/L Ag 328.068† 0.00014 0.00025 0.00396 14.17% Al 308.215† 3.16% As 188.979† 119.68% B 249.772† -0.0278 mg/ъ 0.00117 4.20% 0.1060 mg/L Ba 233.527† 0.00028 0.27% -3327.3 Be 313.107† -0.0002 mg/L 0.00001 2.29% 0.0001 mg/L Cd 226.502† -60.0 0.00018 332.20% Co 228.616† -36.4 51.7 -0.0008 mg/L 0.00020 23.66% Cr 267.716† Cu 324.752† 51.7 9653.9 19044.1 1010.1 158525.3 -0.0002 mg/L 0.00003 14.12% 0.0178 mg/L 0.00005 0.25% 0.2685 mg/L Fe 238.863† 0.00149 0.55% K 404.721† 29.31 2.90% 4.033 mg/L 0.0057 mg/L -0.0001 -- (-Mg 279.077† 0.0078 0.19% Mn 257.610† 0.00000 9913.4 0.08% Mo 202.031† 12.9 52.9 -0.0001 mg/L -0.0001 mg/L -0.0009 mg/L 315.1 mg/L 0.00012 117.35% 52.9 575392.6 Ni 231.604† 0.00014 14.76% Na 330.237† 0.64 0.20% Pb 220.353† -58.7 0.0020 mg/L 0.00253 125.04%

139.08%

Method: AXIAL200-6010 L Opt4 Page 70 Date: 8/13/2010 10:35:07 PM Se 196.026† 72.6 0.0071 mg/L 0.00181 25.29% Sn 189.927† -59.7 0.0337 mg/L 0.00193 5.72% Ti 337.279† -1781.3 -0.0053 mg/L 0.00001 0.15% 0.0019 mg/L Tl 190.801† 8.6 0.00019 10.00% V 292.402† 842.1 0.0030 mg/L 0.00015 5.09% Zn 206.200† 7684.6 0.0219 mg/L 0.00003 0.12% 297532.7 Ca 227.546† 514.9 mg/L 1.19 0.5492 mg/L 0.00294 514.9 mg/L 1.19 0.23% Sr 460.733† 144852.8 0.54% Sample conc. not calculated. Sample Prep. Vol. AND Initial Vol. required OR sample units incorrect. Sequence No.: 102 Autosampler Location: 4 Sample ID: CCV Date Collected: 8/13/2010 10:33:04 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: CCV Mean Corrected Calib Sample
 Intensity
 Conc.
 Units

 7226539.8
 0.8276 mg/L
 198049.4
 0.5313 mg/L
 Std.Dev. Analvte Std.Dev. Conc. Units RSD Y 371.029 0.00776 0.94% Ag 328.068† 0.00943 0.5313 mg/L 0.00943 1.77% QC value within limits for Ag 328.068 Recovery = 106.26% 308.215† 468601.6 10.86 mg/L 0.181 Al 308.215† 10.86 mg/L 1.67% 0.181 QC value within limits for Al 308.215 Recovery = 108.64% 8868.4 1.040 mg/L 0.0075 As 188.979† 1.040 mg/L 0.0075 0.72% QC value within limits for As 188.979 Recovery = 103.95% B 249.772† 546202.5 2.344 mg/L 0.0340 2.344 mg/L 0.0340 1.45% QC value within limits for B 249.772 Recovery = 93.76% Ba 233.527† 3572384.4 9.922 mg/L 0.1673 9.922 mg/L 0.1673 1.69% QC value within limits for Ba 233.527 Recovery = 99.22* 1584185.7 0.2412 mg/L 0.00483 Be 313.107† 0.2412 mg/L 0.00483 2.00% QC value within limits for Be 313.107 Recovery = 96.46% Cd 226.502† 195933.6 0.5120 mg/L 0.00592 0.5120 mg/L 0.00592 1.16% QC value within limits for Cd 226.502 Recovery = 102.40% Co 228.616† 325421.0 2.434 mg/L 0.0439 2.434 mg/L 0.0439 1.80% QC value within limits for Co 228.616 Recovery = 97.37% 114143.6 0.5162 mg/L 0.00760 Cr 267.716† 0.5162 mg/L 0.00760 1.47% QC value within limits for Cr 267.716 Recovery = 103.25% 571667.3 1.210 mg/L 0.0183 Cu 324.752† 1.210 mg/L 0.0183 1.51% QC value within limits for Cu 324.752 Recovery = 96.84% Fe 238.863† 326742.8 5.387 mg/L 0.1034 5.387 mg/L 0.1034 1.92% QC value within limits for Fe 238.863 Recovery = 107.74% K 404.721† 5406.5 15.41 0.29% Unable to evaluate QC. Mg 279.077† 1047539.4 26.64 mg/L 0.480 26.64 mg/L 0.480 1.80% QC value within limits for Mg 279.077 Recovery = 106.56% Mn 257.610† 1306976.8 0.7617 mg/L 0.01342 0.7617 mg/L 0.01342 1.76% QC value within limits for Mn 257.610 Recovery = 101.55% Mo 202.031t 133976.5 2.507 mg/L 0.0369 2.507 mg/L 0.0369 1.47% QC value within limits for Mo 202.031 Recovery = 100.27% 314564.4 2.097 mg/L 0.0431 Ni 231.604† 2.097 mg/L 0.0431 2.06% QC value within limits for Ni 231.604 Recovery = 104.84%
 Na 330.237t
 55034.6
 30.16 mg/L
 0.398
 30.16 mg

 QC value greater than the upper limit for Na 330.237
 Recovery = 120.66%
 30.16 mg/L 0.398 1.32% Pb 220.353† 14448.0 0.5277 mg/L 0.00334 0.5277 mg/L 0.00334 0.63% QC value within limits for Pb 220.353 Recovery = 105.55% Sb 206.836† 29044.3 5.079 mg/L 5.079 mg/L 0.0255 0.50% 0.0255 QC value within limits for Sb 206.836 Recovery = 101.57% Se 196.026† 3104.3 0.5361 mg/L 0.00026 0.5361 mg/L 0.00026 0.05% QC value within limits for Se 196.026 Recovery = 107.22% 162373.1 5.345 mg/L 0.0925 Sn 189.927† 5.345 mg/L 0.0925 1.73% QC value within limits for Sn 189.927 Recovery = 106.89% 1305975.8 Ti 337.279† 2.556 mg/L 0.0602 2.556 mg/L 0.0602 2.36% QC value within limits for Ti 337.279 Recovery = 102.24% Tl 190.801† 7806.3 1.017 mg/L 0.0026 1.017 mg/L 0.0026 0.25% QC value within limits for Tl 190.801 Recovery = 101.70% V 292.402† 679973.3 2.528 mg/L 0.0479 2.528 mg/L 0.0479 1.89% QC value within limits for V 292.402 Recovery = 101.13% 326001.4 1.070 mg/L 0.0197 Zn 206.200† 1.070 mg/L 0.0197 1.84% QC value within limits for Zn 206.200 Recovery = 107.02%

Method: AXIAL200-6	010 L Opt4	Pag	e 71		Date:	8/13/2010 10):39:23
a 227.546† QC value within	limits for Ca 2	27.546 Recovery	= 105.47%				
£ 460,733†	856292.3	3.313 mg/L limit for Sr 460	0.0454	3.313	mg∕L %	0.0454	1.37%
Failed. Continu			.,,, Kecover	.y - 152.51	. 0		
quence No.: 103			utosampler Lo ate Collected	cation: 5			:=======
mple ID: CCB alyst:			ata Type: Ori		0 10:31	:32 PM	
itial Sample Wt:		I	nitial Sample	Vol:			
ilution:		S	ample Prep Vo	1:			
an Data: CCB						<u>.</u> 	
	Mean Corrected	Calib			Sample		
nalyte	Intensity	Conc. Units 0.8988 mg/L 0.0006 mg/L	Std.Dev.	Conc.	Units	Std.Dev.	RSD
371.029	7847842.4	0.8988 mg/L	0.00404	0 0005	ma / T	0 00010	21 128
OC value within	limits for Ag 3	28.068 Recovery	= Not calcula	ted	шg/ ш	0.00019	31.420
L 308.215†		-0.0189 mg/L	0.00060		mg/L	0.00060	3.16%
QC value within		08.215 Recovery	= Not calcula	ted	2,		
	36.8	0.0044 mg/L	0.00049	0.0044	mg/L	0.00049	11.25%
		88.979 Recovery	= Not calcula 0.00127		ma / T	0 00100	14 200
249.772t OC value within		-0.0089 mg/L 9.772 Recovery =			ազչ ո	0.00127	14,32%
a 233.527†	3404.9	0.0095 mg/L	0.00005	0.0095	mg/L	0.00005	0.49%
	limits for Ba 23	33.527 Recovery	= Not calcula	ted	-		
313.107†		-0.0001 mg/L	0.00003	-0.0001	mg/L	0.00003	51.38%
QC value within 1 226.502†		13.107 Recovery 0.0002 mg/L			ma / T.	0.00009	16 168
	limits for Cd 2	26.502 Recovery	= Not calcula	ted	шgүш	0.00009	40.400
228.616†	8,6	0.0001 mg/L	0.00038	0.0001	mg/L	0.00038	616.74%
QC value within	limits for Co 22	28.616 Recovery	= Not calcula	ted	÷		
267.716†	-14.2	-0.0001 mg/L	0.00020	-0.0001	mg/L	0.00020	359.19%
		57.716 Recovery 0.0034 mg/L			mæ / T	0.00014	1 75%
OC value within	limits for Cu 33	24.752 Recovery	= Not calcula	ted	шgтш	0.00014	4.230
e 238.863†	11749.1	0.1941 mg/L	0.00247	0.1941	mg/L	0.00247	1.27%
		limit for Fe 238	.863 Recover	y = Not ca	lculate		
404.721† Unable to evalua	-29.4					56.88	193.46%
279.077†		-0.0230 mg/L	0.00253	-0.0230	ma/L	0.00253	11.02%
		79.077 Recovery					
1 257.610†	748.5	0.0004 mg/L	0.00005	0.0004	mg/L	0.00005	12.40%
QC value within	limits for Mn 25	57.610 Recovery	= Not calcula	ted	1-		
		-0.0010 mg/L 02.031 Recovery :			mg/L	0.00035	34.53%
		0.0000 mg/L			mα/T	0.00013	597.30%
		B1.604 Recovery		ted			
1 330.237†	748.9	0.4116 mg/L	0.03944	0.4116 1	ng/L	0.03944	9.58%
		30.237 Recovery			-		
220.353†	64.3 limite for Db 31	0.0023 mg/L 20.353 Recovery :	0.00119 - Not colculat	0,0023 1 ∺ođ	ng/L	0.00119	51.20%
206.836†		0.0013 mg/L			ma∕T,	0.00266	197.87%
	limits for Sb 20	06.836 Recovery	- Not calculat				
96.026†	25.4	0.0044 mg/L	0.00041	0.0044 1	ng/L	0.00041	9.27%
		96.026 Recovery			/T	A AA135	~ ~ ~ ~
	453.1 limits for Sn 18	0.0149 mg/L 39.927 Recovery :	U.UU137 = Not calculat	ט.0149 ו לפמ	ugyь	0.00137	9.23%
337.279†		-0.0019 mg/L			ng/L	0.00001	0.37%
	limits for Ti 33	37.279 Recovery :	= Not calculat	ted	2		
190.801†		0.0000 mg/L			ng/L	0.00200	>999.9%
		90.801 Recovery :				0 0000-	
292.402†		0.0012 mg/L 2.402 Recovery =			пд\г	0.00025	20.97%
	-1.1	0.0000 mg/L			ng/L	0.00029	>999.9%
	limits for Zn 20	6.200 Recovery	= Not calculat			0.00020	0
227.546†	-344.6	-0.5861 mg/L	0.07637	-0.5861 r	ng/L	0.07637	13.03%
QC value within	limits for Ca 22	7.546 Recovery	= Not calculat		/-		
		0.0007 mg/L			ng/L	0.00013	19.70%
QC value within	LIMILLS FOR ST 46	50.733 Recovery =	= NOC CALCULAT	lea			

Page 72

QC Failed. Continue with analysis.

Sequence No.: 104 Sample ID: R100429				Autosampler Loc Date Collected:	ation: 1	03		_
Analyst:				Data Type: Orig				
Initial Sample Wt:				Initial Sample	Vol:			
Dilution:				Sample Prep Vol	L: 50 mL			
Mean Data: R100429	6-001 Mean Corrected		Calib			Sample		
Analyte Y 371.029 Ag 328.068† Al 308.215†	Intensity	Conc.	Units	Std.Dev.	Cond	Units	Std Dev	. RSD
Y 371.029	7586756.9	0.8689	mg/L	0.00016		0112.00	blu.bev.	0.02
Aq 328.068t	571.3	0.0015	ma/L	0.00096				62.62
AI 308.215†	22443.0	0.5182	ma/L	0.00259				0.50
As 188.979†	8.1 663.6	0.0013	mq/L	0.00064				47.74
As 188.979† 3 249.772†	663.6	-0.0015	mg/L	0.00084				56.13
Ba 233.527†	10518.2	0.0290	mg/L	0.00023				0.79
3e 313.107†	-807.4	0.0290 -0.0001	mg/L	0.00002				16.17
Cd 226.502†	-3.6	-0.0001	mg/L	0.00011				165.35
Co 228.616†	21.3	0.0001	mg/L	0.00035				279.34
Cr 267.716†	195.3	0.0009 0.0067	mg/L	0.00021				22.49
Cu 324.752†	3161.6	0.0067	mg/L	0.00009				1.30
	48223.5	0.7940	mg/Ľ	0.00252				0.32
X 404.721†	204.3		_				133.00	
Ag 279.077† An 257.610†	167436.6	4.258 0.0882	mg/L	0.0094				0.22
(n 257.610†	151399.0			0.00037				0.42
10 202.031t	-52.9	-0.0010	- · .	0.00020				20.83
Ni 231.604†	74.5	0.0004		0.00013				29.76
		14.19		0.043				0.30
220.353†	88.2	0.0034		0.00069				20.60
3b 206.836t	25.0	0.0043		0.00275				63.61
Se 196.026†	39.2	0.0068 0.0074	mg/L	0.00139				20.60
Sn 189.927†	175.6	0.0074	mg/L	0.00014				1.84
Ci 337.279†	3845.1	0.0074 0.0031	mg/L	0.00013				1.81
fl 190.801†	23.2			0.00209				67.05
/ 292.402†	556.7 3376.3	0.0021 0.0108	mg/L ma/I	0.00042				19.79
Zn 206.200† Ca 227.546†	10231.1	17 75	шg/L ma/I					0.47
Sr 460.733†	21279.2	0.0108 17.75 0.0819	mg/L	0.022 0.00053				0.13
Sample conc. not ca	alculated. Sample	e Prep. N	/ol. AN		equired (DR sample u	units inco	0.65 rrect.
		=========	******	Autosampler Loc				======
Sequence No.: 105 Sample ID: R1004296			:5====	Autosampler Loc Date Collected:	ation: 10 8/13/201)4		
Sequence No.: 105 Sample ID: R1004296 Analyst:		===#68855	******	Autosampler Loc Date Collected: Data Type: Orig	ation: 10 8/13/201 inal)4		
Gequence No.: 105 Sample ID: R1004296 Analyst: Cnitial Sample Wt:				Autosampler Loc Date Collected: Data Type: Orig Initial Sample	ation: 10 8/13/201 inal Vol:)4		
equence No.: 105 ample ID: R1004296 nalyst: nitial Sample Wt:				Autosampler Loc Date Collected: Data Type: Orig	ation: 10 8/13/201 inal Vol:)4		
Sequence No.: 105 Sample ID: R1004296 nalyst: nitial Sample Wt: ilution:	5-001D			Autosampler Loc Date Collected: Data Type: Orig Initial Sample	ation: 10 8/13/201 inal Vol:)4		
Sequence No.: 105 Sample ID: R1004296 Analyst: Thitial Sample Wt: Dilution: Sean Data: R1004296	5-001D 5-001D Mean Corrected		Calib	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	
Sequence No.: 105 Sample ID: R1004296 nalyst: Conitial Sample Wt: Filution: Gean Data: R1004296 nalyte	5-001D 5-001D Mean Corrected Intensity	Conc.	Calib Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample		RSD
Sequence No.: 105 Sample ID: R1004296 nalyst: Cnitial Sample Wt: Filution: Gean Data: R1004296 nalyte 371.029	5-001D 5-001D Mean Corrected Intensity 7476383.7	Conc. 0.8562	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33
Gequence No.: 105 Sample ID: R1004296 nalyst: Conitial Sample Wt: Dilution: Gean Data: R1004296 nalyte 371.029 g 328.0681	5-001D Mean Corrected Intensity 7476383.7 326.7	Conc. 0.8562 0.0009	Calib Units mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33 ³ 9.13 ⁵
Gequence No.: 105 Sample ID: R1004296 nalyst: Cnitial Sample Wt: Pilution: Gean Data: R1004296 nalyte 371.029 g 328.068† l 308.215†	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6	Conc. 0.8562 0.0009 0.5435	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33 ³ 9.13 ³ 1.03 ³
equence No.: 105 ample ID: R1004296 nalyst: nitial Sample Wt: dilution: ean Data: R1004296 nalyte 371.029 g 328.068† l 308.215† s 188.979†	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5	Conc. 0.8562 0.0009 0.5435 0.0034	Calib Units mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00064	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33 9.13 1.03 18.90
Gequence No.: 105 Sample ID: R1004296 nalyst: nitial Sample Wt: ilution: Gean Data: R1004296 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5 175.7	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00064 0.00004	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33 9.13 1.03 18.90 1.15
Sequence No.: 105 Sample ID: R1004296 nalyst: nitial Sample Wt: ilution: Gean Data: R1004296 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527†	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5 175.7 9487.6	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00064 0.00004 0.00006	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	4 PM	RSD 1.33 9.13 1.03 18.90 1.15 0.24
Gequence No.: 105 Sample ID: R1004296 Inalyst: Conitial Sample Wt: Vilution: Gean Data: R1004296 Inalyte 371.029 g 328.0681 l 308.2155 i 188.9795 249.7725 a 233.5275 e 313.1075	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5 175.7 9487.6 -964.5	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00064 0.00004 0.00006 0.00000	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 9.13 1.03 18.90 1.15 0.24 1.31
Sequence No.: 105 Sample ID: R1004296 Inalyst: Chitial Sample Wt: Vilution: Gean Data: R1004296 Inalyte 371.029 g 328.0681 l 308.2151 s 188.9791 249.7721 a 233.5271 e 313.1071 d 226.5021	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5 175.7 9487.6 -964.5 44.3	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 1.03 1.03 1.03 18.90 1.15 0.24 1.31 323.28
equence No.: 105 sample ID: R1004296 malyst: initial Sample Wt: bilution: fean Data: R1004296 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	5-001D Mean Corrected Intensity 7476383.7 326.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 9.13 1.03 18.90 1.15 0.24 1.31 323.28 32.71
Gequence No.: 105 ample ID: R1004296 malyst: initial Sample Wt: bilution: Gean Data: R1004296 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716†	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7 276.8	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 9.13 1.03 1.03 1.15 1.15 3.23 323.28 32.71 7.06
equence No.: 105 ample ID: R1004296 nalyst: initial Sample Wt: ilution: Gean Data: R1004296 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752†	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013 0.0073	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 9.13 1.03 18.90 1.15 0.24 1.31 323.28 32.71 323.28 32.71 5.12
Sequence No.: 105 sample ID: R1004296 nalyst: initial Sample Wt: bilution: Gean Data: R1004296 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863†	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9 50584.0	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	PM	RSD 1.33 9.13 1.03 18.90 1.15 0.24 1.31 323.28 32.71 323.28 32.71 5.12 5.12 5.12
Sequence No.: 105 Sample ID: R1004296 malyst: mitial Sample Wt: ilution: Sean Data: R1004296 malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† c 404.721†	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9 50584.0 226.0	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013 0.0073 0.8329	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00004 0.00004 0.00006 0.00006 0.00000 0.00007 0.00026 0.00009 0.00037 0.00487	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	FM Std.Dev.	RSD 1.33 9.13 1.03 18.90 1.15 0.24 1.31 323.28 32.71 323.28 32.71 5.12 0.59 10.15
Sequence No.: 105 Sample ID: R1004296 inalyst: initial Sample Wt: ilution: Gean Data: R1004296 371.029 g 328.0681 l 308.2151 s 188.9791 249.7721 a 233.5271 e 313.1071 d 226.5021 o 228.6161 r 267.7161 u 324.7521 e 238.8631 c 404.7211 g 279.0771	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 1.75.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9 50584.0 226.0 169742.1	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013 0.0073 0.8329 4.317	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00006 0.00006 0.00006 0.00000 0.00017 0.00026 0.00009 0.00037 0.00487 0.0037	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	PM	RSD 1.33 9.13 1.03 1.03 1.15 0.24 1.31 322.71 322.71 7.065 5.12 0.59 10.15 0.09
Sequence No.: 105 Sample ID: R1004296 analyst: Cnitial Sample Wt: Dilution: Gean Data: R1004296 analyte 371.029 cg 328.0681 l 308.2151 s 188.9791 s 249.7721 da 233.5271 da 233.5271 da 226.5021 do 228.6161 fr 267.7161 du 324.7521 e 238.8631 : 404.7211 g 279.0771 n 257.6101	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 175.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9 50584.0 226.0 169742.1 155047.4	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013 0.0073 0.8329 4.317 0.0903	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00004 0.00006 0.00006 0.00006 0.00007 0.00026 0.00009 0.00037 0.00487 0.0037 0.0005	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	PM	RSD 1.33 9.13 1.03 1.03 1.03 1.15 0.24 1.31 323.28 323.71 7.065 5.125 0.59 10.155 0.095 0.055
Sequence No.: 105 Sample ID: R1004296 Analyst: Cnitial Sample Wt: Dilution: Mean Data: R1004296	5-001D Mean Corrected Intensity 7476383.7 23534.6 25.5 1.75.7 9487.6 -964.5 44.3 -100.7 276.8 3453.9 50584.0 226.0 169742.1	Conc. 0.8562 0.0009 0.5435 0.0034 -0.0037 0.0262 -0.0001 0.0001 -0.0008 0.0013 0.0073 0.8329 4.317	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.01136 0.00008 0.00560 0.00006 0.00006 0.00006 0.00000 0.00017 0.00026 0.00009 0.00037 0.00487 0.0037	ation: 10 8/13/201 inal Vol: : 50 mL)4 10 10:45:54 Sample	PM	RSD 1.33 ³ 9.13 ³

Method: AXIAL200-	6010 L Opt4]	Page 73	Date: 8	3/13/2010 10	:56:26 PM
		· •				
Pb 220.353†	> 71.6	0.0028 mg/L	0.00126			45.93%
Sb 206.836†	20.5	0.0036 mg/L	0.00332			93.29%
Se 196.026†	44.2	0.0076 mg/L	0.00203			26.67%
Sn 189.927†			0.00206			33.48%
Ti 337.279†	4466.1	0.0062 mg/L 0.0086 mg/L	0.00000			0.02%
Tl 190.801†	-28 9	-0.0037 mg/L	0.00029			7.89%
V 292.402†	596.7	-0.0037 mg/L 0.0023 mg/L	0.00016			7.17%
Zn 206.200†		0.0096 mg/L	0.00001			0.07%
Ca 227.546†	10316.9	17.90 mg/L	0.065			0.37%
Sr 460.733†	21255.7	J.,	0.00057			0.70%
				required OR sample	unite inco	
bampre conc. not	carcarated. Sampre	Frep. Vor. A	ND INICIAL VOL.	reduited on sample	; unites incos	
Sequence No.: 106			Autosampler Lo		0.7 . 734	
Sample ID: R10042	96-0018			l: 8/13/2010 10:50:	07 PM	
Analyst:			Data Type: Ori	-		
Initial Sample Wt	:		Initial Sample			
Dilution:			Sample Prep Vo	01: 50 mL		
Mean Data: R10042						
-	Mean Corrected	Calib		Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
¥ 371.029	7254593.7	0.8308 mg/L	0.00353			0.42%
Ag 328.068†	20114.2	0.0540 mg/L	0.00012			0.22%
Al 308.215†	116472.2	2.699 mg/L	0.0016			0.06%
As 188.979†	468.0	0.0556 mg/L	0.00144			2.58%
B 249.772t	223161.4	0.9580 mg/L	0.00999			1.04%
Ba 233.527†	751098.9	2.086 mg/L	0.0038			0.18%
Be 313.107†	322072.2	0.0490 mg/L	0.00017			0.35%
Cd 226.502†	20531.5	0.0535 mg/L	0.00007			0.14%
Co 228.616†	72585.1	0.5429 mg/L	0.00389			0.72%
Cr 267.716†						
	47463.8	0.2146 mg/L	0.00101			0.47%
Cu 324.752†	126684.9	0.2683 mg/L	0.00122			0.46%
Fe 238.863†	116343.3	1.918 mg/L	0.0056			0.29%
K 404.721†	4523.4				46.07	1.02%
Mg 279.077†	255207.1	6.490 mg/L	0.0274			0.42%
-			0 00163			
Mn 257.610†	1059391.5	0.6178 mg/L	0.00163			0.26%
-	1059391.5 29588.4	0.6178 mg/L 0.5536 mg/L	0.00140			0.26%
Mn 257.610†	29588.4 71905.9	0.5536 mg/L 0.4793 mg/L				
Mn 257.610† Mo 202.031†	29588.4	0.5536 mg/L	0.00140			0.25%
Mn 257.610† Mo 202.031† Ni 231.604†	29588.4 71905.9	0.5536 mg/L 0.4793 mg/L	0.00140 0.00392			0.25% 0.82%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237†	29588.4 71905.9 70972.0	0.5536 mg/L 0.4793 mg/L 38.90 mg/L	0.00140 0.00392 0.028			0.25% 0.82% 0.07%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353†	29588.4 71905.9 70972.0 15572.0	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L	0.00140 0.00392 0.028 0.00369			0.25% 0.82% 0.07% 0.65%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836†	29588.4 71905.9 70972.0 15572.0 2931.6	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L	0.00140 0.00392 0.028 0.00369 0.00861			0.25% 0.82% 0.07% 0.65% 1.68%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066			0.25% 0.82% 0.07% 0.65% 1.68% 0.60%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 6.054 mg/L 0.5321 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 6.054 mg/L 0.5321 mg/L 2.056 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.90%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 6.054 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.90% 0.90%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 6.054 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.90% 0.90% 0.71% 0.38%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 6.054 mg/L 0.5321 mg/L 2.056 mg/L 0.5547 mg/L 20.30 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† T1 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032	required OP cample	units incom	0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.37% 0.37% 0.38% 0.49% 0.40%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† T1 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733†	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032	required OR sample	units incor	0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.37% 0.37% 0.38% 0.49% 0.40%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not 6	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not o	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.			0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of Sequence No.: 107	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.	======================================		0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of Sequence No.: 107 Sample ID: R100425	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.	cation: 106 : 8/13/2010 10:54:		0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of Sequence No.: 107 Sample ID: R100425 Analyst:	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.	cation: 106 : 8/13/2010 10:54: ginal		0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sample ID: R100425 Analyst: Initial Sample Wt	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.	cation: 106 : 8/13/2010 10:54: ginal Vol:		0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of Sequence No.: 107 Sample ID: R100425 Analyst:	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol.	cation: 106 : 8/13/2010 10:54: ginal Vol:		0.25% 0.82% 0.07% 0.65% 1.68% 0.60% 0.34% 0.37% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sample ID: R100425 Analyst: Initial Sample Wt	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5321 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol: l: 50 mL	 26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100429 Analyst: Initial Sample Wt Dilution:	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5321 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol:	 26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.40% rect.
<pre>Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100429 Analyst: Initial Sample Wt </pre>	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol: l: 50 mL	 26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100425 Analyst: Initial Sample Wt Dilution: Mean Data: R100425	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5557 mg/L 0.55547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.37% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100425 Analyst: Initial Sample Wt Dilution: Mean Data: R100425 Analyte	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5321 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L Prep. Vol. AN Prep. Vol. AN Calib Conc. Units	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol: l: 50 mL	 26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100425 Analyst: Initial Sample Wt Dilution: Mean Data: R100425	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5557 mg/L 0.55547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.37% 0.71% 0.38% 0.49% 0.40% rect.
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100425 Analyst: Initial Sample Wt Dilution: Mean Data: R100425 Analyte	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L 0.0525 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev.	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.34% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect.
<pre>Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of sequence No.: 107 Sample ID: R100429 Analyst: Initial Sample Wt Dilution: Mean Data: R100429 Analyte Y 371.029</pre>	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5321 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.34% 0.37% 0.90% 0.71% 0.38% 0.40% rect. ======
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of ====================================	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L 0.0525 mg/L 2.746 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.00198 0.0186 0.00375 0.00208 0.099 0.00032 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208 0.00208 0.00208 0.00208 0.00012	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.90% 0.71% 0.38% 0.40% rect. ======
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of ====================================	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Conc. Units 0.8362 mg/L 0.0525 mg/L 2.746 mg/L 0.0492 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208 0.0028 0.0028 0.0028 0.0028 0.00272	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.90% 0.71% 0.38% 0.49% 0.40% rect. ====== RSD 0.25% 0.22% 0.10% 5.53%
<pre>Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample Conc. not of sample Conc. not of sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†</pre>	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 96-001A Mean Corrected Intensity 7301824.4 19556.2 118509.4 413.3 224067.8	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L 0.0525 mg/L 2.746 mg/L 0.0492 mg/L 0.9622 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208 0.0028 0.0028 0.00272 0.00153	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.49% 0.40% rect. ====== RSD 0.25% 0.22% 0.10% 5.53% 0.16%
Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Ti 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not of ====================================	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 96-001A Salculated. Sample 96-001A Mean Corrected Intensity 7301824.4 19556.2 118509.4 413.3 224067.8 734323.0	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L 0.0525 mg/L 2.746 mg/L 0.0492 mg/L 0.9622 mg/L 2.039 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208 0.00212 0.0028 0.00272 0.00153 0.0011	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.49% 0.40% rect. ====== 0.25% 0.25% 0.22% 0.10% 5.53% 0.16% 0.05%
<pre>Mn 257.610† Mo 202.031† Ni 231.604† Na 330.237† Pb 220.353† Sb 206.836† Se 196.026† Sn 189.927† Ti 337.279† Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample Conc. not of sample Conc. not of sample ID: R10042 Analyst: Initial Sample Wt Dilution: Mean Data: R10042 Analyte Y 371.029 Ag 328.068† Al 308.215† As 188.979† B 249.772†</pre>	29588.4 71905.9 70972.0 15572.0 2931.6 6408.8 184028.6 271895.8 15787.3 141321.7 168876.1 11669.1 20641.3 calculated. Sample 96-001A Mean Corrected Intensity 7301824.4 19556.2 118509.4 413.3 224067.8	0.5536 mg/L 0.4793 mg/L 38.90 mg/L 0.5680 mg/L 0.5126 mg/L 1.105 mg/L 0.5321 mg/L 2.056 mg/L 0.5255 mg/L 0.5547 mg/L 20.30 mg/L 0.0794 mg/L Prep. Vol. AN Calib Conc. Units 0.8362 mg/L 0.0525 mg/L 2.746 mg/L 0.0492 mg/L 0.9622 mg/L	0.00140 0.00392 0.028 0.00369 0.00861 0.0066 0.0207 0.0198 0.0186 0.00375 0.00208 0.099 0.00032 ID Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00208 0.0028 0.0028 0.00272 0.00153	cation: 106 : 8/13/2010 10:54: ginal Vol: 1: 50 mL Sample	26 PM	0.25% 0.82% 0.07% 0.65% 1.68% 0.34% 0.37% 0.37% 0.71% 0.38% 0.49% 0.40% rect. ====== RSD 0.25% 0.22% 0.10% 5.53% 0.16%

Method: AXIAL200-6010	л оргч	·····	Page 74	Date: 8/13/2010 11:04:46
Co 228.616†	70380.4	0.5264 mg/L	0.00192	0.36%
r 267.716†	45887.6	0.2075 mg/L	0.00062	0.30
u 324.752†	124479.7	0.2636 mg/L	0.00003	0.01
e 238.863†	113296.2	1.868 mg/L	0.0119	0.545
404.721†	4329.5	2.		200.22 4.62
g 279.077†	248694.5	6.324 mg/L	0.0199	0.31
n 257.610†	1032422.8	0.6021 mg/L	0.00076	0.139
0 202.031†	28080.6	0.5254 mg/L	0.00200	0.38
i 231.604†	70179.7	0.4677 mg/L	0.00052	0.119
a 330.237†		37.76 mg/L	0.119	0.328
b 220.353†		0.5382 mg/L	0.00457	0.85%
b 206.836†	2905.8	0.5081 mg/L	0.00856	1.688
e 196.026†		1.136 mg/L	0.0084	0.74%
n 189.927†	181222.9	5.962 mg/L	0.0310	0.529
i 337.279†	268428.5	0.5253 mg/L	0.00841	1.60%
1 190.801†		2.001 mg/L	0.0097	0.498
292.4021	138168.3	0.5138 mg/L	0.00431	0.84%
n 206.200†	167024.4	0.5486 mg/L	0.00058	
a 227.546†		19.63 mg/L		0.11%
r 460.733†			0.065	0.33%
			0.00048	0.62% required OR sample units incorrect.
equence No.: 108			Autosampler Lo	ocation: 107
ample ID: R1004296-0	01L			d: 8/13/2010 10:58:45 PM
nalyst:			Data Type: Or:	
nitial Sample Wt:			Initial Sample	
ilution:			Sample Prep Vo	ol: 50 mL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· • • •	
an Data: R1004296-0 Me	01L an Corrected	Calib		Sample
_	Intensity	Conc. Units	Std.Dev.	Conc. Units Std.Dev. RSD
371.029	7774734.8	0.8904 mg/L	0.00049	0.05%
328.0681	217.9	0.0006 mg/L	0.00047	78.88%
308.215†	4052.2	0.0936 mg/L	0.00264	2.82%
188.979†	43.6	0.0052 mg/L	0.00000	0.03%
249.7721		-0.0061 mg/L	0.00099	16.21%
		0.0110 mg/L	0.00008	0.69%
233 527t	3985 9		0.00000	0.09%
			0 00001	11 1/9
∋ 313.107†	-457.0	-0.0001 mg/L	0.00001	11.14%
e 313.107† 1 226.502†	-457.0 83.9	-0.0001 mg/L 0.0002 mg/L	0.00001	2.58%
e 313.107† 1 226.502† 5 228.616†	-457.0 83.9 -79.0	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L	0.00001 0.00054	2.58% 90.03%
2 313.107† 1 226.502† 2 228.616† 5 267.716†	-457.0 83.9 -79.0 -4.5	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L	0.00001 0.00054 0.00030	2.58% 90.03% >999.9%
e 313.107† 1 226.502† 5 228.616† 5 267.716† 1 324.752†	-457.0 83.9 -79.0 -4.5 436.1	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L	0.00001 0.00054 0.00030 0.00012	2.58% 90.03% >999.9%
2 313.107† 1 226.502† 2 228.616† 2 267.716† 1 324.752† 2 338.863†	-457.0 83.9 -79.0 -4.5 436.1 19101.5	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L	0.00001 0.00054 0.00030	2.58% 90.03% >999.9% 13.06%
2 313.107† 1 226.502† 2 228.616† 2 267.716† 1 324.752† 2 338.863†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365	2.58% 90.03% >999.9%
2 313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L	0.00001 0.00054 0.00030 0.00012	2.58% 90.03% >999.9% 13.06% 1.16%
2313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9%
313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.8367 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06%
313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610† 202.031†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.8367 mg/L 0.0180 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17%
2 313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610† 202.031† 231.604†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.8367 mg/L 0.0180 mg/L -0.0017 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00021	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52%
313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610† 202.031† 231.604† 330.237†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.8367 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 3.089 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00003 0.0922	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99%
313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610† 202.031† 231.604† 330.237† 220.353†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0017 mg/L 3.089 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 2.57% 265.52% 2.99% 27.52%
2 313.107† 2 228.616† 2 228.616† 2 228.616† 2 267.716† 3 24.752† 2 38.863† 404.721† 2 79.077† 2 57.610† 9 202.031† 2 31.604† 3 30.237† 2 20.353† 2 206.836†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 3.089 mg/L -0.0011 mg/L -0.0009 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82%
2 313.107† 2 226.502† 2 228.616† 2 267.716† 3 24.752† 2 38.863† 404.721† 2 79.077† 2 57.610† 2 02.031† 2 31.604† 3 30.237† 2 20.353† 2 06.836† 1 96.026†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L 0.0017 mg/L 0.0002 mg/L 3.089 mg/L -0.0011 mg/L 0.0009 mg/L 0.0074 mg/L	0.00001 0.00054 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21%
<pre>2 313.107† 1 226.502† 2 228.616† 2 228.616† 2 267.716† 3 24.752† 2 238.863† 404.721† 7 279.077† 1 257.610† 2 202.031† 2 231.604† 3 330.237† 2 220.353† 2 206.836† 2 196.026† 1 89.927†</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0017 mg/L -0.0011 mg/L -0.0011 mg/L 0.0074 mg/L 0.0155 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131	2.58 90.03 >999.9 13.06 1.16 281.56 >999.9 1.06 1.17 2.57 265.52 2.99 27.52 186.82 41.21 8.44
2 313.107† 2 226.502† 2 228.616† 2 228.616† 2 238.863† 404.721† 2 79.077† 2 57.610† 2 02.031† 2 31.604† 3 30.237† 2 20.353† 2 206.836† 1 96.026† 1 89.927† 3 37.279†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L 0.0180 mg/L 0.0002 mg/L 3.089 mg/L -0.0001 mg/L 0.0074 mg/L 0.0055 mg/L 0.0001 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021	2.58 90.03 >999.9 13.06 1.16 281.56 >999.9 1.06 1.17 265.52 265.52 2.57 265.52 2.99 27.52 186.82 41.21 8.44 260.84
2 313.107† 1 226.502† 2 228.616† 2 228.616† 2 238.863† 4 04.721† 1 279.077† 2 279.077† 2 257.610† 2 202.031† 2 31.604† 3 30.237† 2 206.836† 2 196.026† 1 89.927† 3 37.279† 1 90.801†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0001 mg/L 0.0074 mg/L 0.0055 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L	0.00001 0.00054 0.00012 0.00365 0.00891 0.00021 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00021 0.00182	$\begin{array}{c} 2.58 \\ 90.03 \\ 999.9 \\ 13.06 \\ 1.16 \\ 281.56 \\ 999.9 \\ 1.06 \\ 1.06 \\ 1.17 \\ 2.57 \\ 265.52 \\ 2.99 \\ 27.52 \\ 186.82 \\ 41.21 \\ 8.44 \\ 260.84 \\ 41.36 \\ \end{array}$
<pre>2 313.107† 2 226.502† 2 228.616† 2 227.716† 2 324.752† 2 328.863† 404.721† 9 279.077† 2 257.610† 2 202.031† 2 331.604† 3 330.237† 2 206.836† 2 196.026† 1 189.927† 3 37.279† 190.801† 292.402†</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0001 mg/L 0.0074 mg/L 0.0001 mg/L 0.0001 mg/L 0.0014 mg/L 0.0014 mg/L	0.00001 0.00054 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004	$\begin{array}{c} 2.58 \\ 90.03 \\ 999.9 \\ 13.06 \\ 1.16 \\ 281.56 \\ 999.9 \\ 1.06 \\ 1.17 \\ 2.57 \\ 265.52 \\ 2.57 \\ 265.52 \\ 2.99 \\ 27.52 \\ 186.82 \\ 41.21 \\ 8.44 \\ 260.84 \\ 41.36 \\ 2.95 \\ \end{array}$
2 313.107† 2 226.502† 2 228.616† 2 228.616† 2 267.716† 2 324.752† 2 38.863† 404.721† 9 279.077† 1 257.610† 2 202.031† 2 31.604† 1 330.237† 2 220.353† 2 206.836† 2 196.026† 1 89.927† 3 37.279† 1 90.801† 2 92.402† 1 206.200†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0001 mg/L 0.0074 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0062 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.00007	$\begin{array}{c} 2.58 \\ 90.03 \\ 999.9 \\ 13.06 \\ 1.16 \\ 281.56 \\ 999.9 \\ 1.06 \\ 1.17 \\ 2.57 \\ 265.52 \\ 2.99 \\ 27.52 \\ 186.82 \\ 41.21 \\ 8.44 \\ 260.84 \\ 41.36 \\ 2.95 \\ 1.13 \\ \end{array}$
2 313.107† 2 226.502† 2 228.616† 2 228.616† 2 267.716† 2 238.863† 404.721† 2 279.077† 2 279.077† 2 202.031† 2 31.604† 1 330.237† 2 20.353† 2 206.836† 2 196.026† 1 89.927† 3 37.279† 1 90.801† 2 92.402† 2 206.200† 2 227.546†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0001 mg/L 0.0074 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.00007 0.2388	$\begin{array}{c} 2.58 \\ 90.03 \\ 999.9 \\ 13.06 \\ 1.16 \\ 281.56 \\ >999.9 \\ 1.06 \\ 1.17 \\ 2.57 \\ 265.52 \\ 2.99 \\ 27.52 \\ 186.82 \\ 41.21 \\ 8.44 \\ 260.84 \\ 41.36 \\ 2.95 \\ 1.13 \\ 7.75 \\ \end{array}$
2 313.107† 2 226.502† 2 228.616† 2 228.616† 2 267.716† 3 24.752† 2 38.863† 404.721† 1 279.077† 1 257.610† 2 202.031† 2 330.237† 2 20.353† 2 20.353† 2 206.836† 2 196.026† 1 189.927† 3 37.279† 1 90.801† 2 92.402† 2 20.546† 2 460.733†	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.6 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L 0.0180 mg/L 0.0017 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0015 mg/L 0.0014 mg/L 0.0015 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00131 0.00182 0.00004 0.00007 0.2388 0.00023	2.58 90.03 >999.9 13.06 1.16 281.56 > 999.9 1.06 2.57 265.52 2.99 27.52 186.82 41.21 8.44 260.84 41.36 2.958 1.13 1.13 7.75 1.29
<pre>2 313.107† d 226.502† o 228.616† r 267.716† 1 324.752† e 238.863† 404.721† g 279.077† 1 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026† 1 189.927† i 337.279† l 190.801† 292.402† 1 206.200† a 227.546† r 460.733†</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.6 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0000 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L 0.0180 mg/L 0.0017 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0015 mg/L 0.0014 mg/L 0.0015 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L 0.0017 mg/L	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00131 0.00182 0.00004 0.00007 0.2388 0.00023	$\begin{array}{c} 2.58 \\ 90.03 \\ 999.9 \\ 13.06 \\ 1.16 \\ 281.56 \\ >999.9 \\ 1.06 \\ 1.17 \\ 2.57 \\ 265.52 \\ 2.99 \\ 27.52 \\ 186.82 \\ 41.21 \\ 8.44 \\ 260.84 \\ 41.36 \\ 2.95 \\ 1.13 \\ 7.75 \\ \end{array}$
	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.4 32904.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00131 0.00021 0.00182 0.00004 0.00007 0.2388 0.00023 ID Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.
e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026† n 189.927† i 337.279† l 190.801† 292.402† n 206.200† a 227.546† r 460.733† ample conc. not calcu	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.000131 0.00182 0.00023 ID Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.
<pre>2 313.107† 1 226.502† 2 228.616† 2 267.716† 2 324.752† 2 338.863† 404.721† 9 279.077† 1 257.610† 2 202.031† 1 231.604† 4 330.237† 2 203.353† 2 206.836† 2 196.026† 1 89.927† 1 337.279† 1 90.801† 2 92.402† 1 206.200† 4 227.546† 2 460.733† tmple conc. not calcument 2 guence No.: 109 mple ID: R1004296-00</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.000131 0.00182 0.00023 ID Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.
<pre>2 313.107† 1 226.502† 2 228.616† 2 67.716† 1 324.752† 2 38.863† 404.721† 9 279.077† 1 257.610† 2 20.031† 2 31.604† 1 330.237† 2 20.353† 2 20.353† 2 206.836† 2 196.026† 1 189.927† 3 37.279† 1 90.801† 2 92.402† 1 206.200† 1 227.546† 2 460.733† mmple conc. not calcuments aquence No.: 109</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.000131 0.00182 0.00023 ID Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.
<pre>2 313.107† 2 226.502† 2 228.616† 2 228.616† 2 267.716† 2 324.752† 2 338.863† 404.721† 2 27.610† 2 202.031† 2 201.064† 3 30.237† 2 20.353† 2 206.836† 2 196.026† 1 89.927† 3 37.279† 190.801† 292.402† 206.200† 227.546† 460.733† mple conc. not calcument quence No.: 109 mple ID: R1004296-00 alyst: itial Sample Wt:</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00021 0.00030 0.00176 0.00304 0.00131 0.00021 0.00131 0.00021 0.00131 0.00021 0.00131 0.00021 0.00004 0.00007 0.2388 0.00023 D Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.
<pre>313.107† 226.502† 228.616† 267.716† 324.752† 238.863† 404.721† 279.077† 257.610† 202.031† 231.604† 330.237† 220.353† 206.836† 196.026† 189.927† 337.279† 190.801† 292.402† 206.200† 227.546† 460.733† mple conc. not calcuments quence No.: 109 mple ID: R1004296-00 alyst:</pre>	-457.0 83.9 -79.0 -4.5 436.1 19101.5 9.4 32904.4 30845.9 -94.0 -33.9 5636.6 -30.3 -5.3 42.5 462.2 52.0 33.6 376.4 1912.7 1770.8 4538.2 ulated. Sample	-0.0001 mg/L 0.0002 mg/L -0.0006 mg/L 0.0009 mg/L 0.3150 mg/L 0.3150 mg/L 0.3150 mg/L 0.0180 mg/L -0.0017 mg/L -0.0002 mg/L 0.0011 mg/L 0.0011 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.0014 mg/L 0.00175 mg/L Prep. Vol. AN	0.00001 0.00054 0.00030 0.00012 0.00365 0.00891 0.00021 0.00004 0.00063 0.0922 0.00030 0.00176 0.00304 0.00131 0.00021 0.00182 0.00004 0.00021 0.00021 0.00182 0.00004 0.00023 ID Initial Vol.	2.58% 90.03% >999.9% 13.06% 1.16% 281.56 >999.9% 1.06% 1.17% 2.57% 265.52% 2.99% 27.52% 186.82% 41.21% 8.44% 260.84% 41.36% 2.95% 1.13% 7.75% 1.29% required OR sample units incorrect.

Method: AXIAL200-6	5010 L Opt4			age 75		Dates	8/13/2010 11:08:58 PM
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Y 371.029	7547723.5	0.8644		0.00329			0.38%
Ag 328.068†	318.6	0.0008	mg/L	0.00036			43.79%
Al 308.215†	395.5	0.0064	mg/L	0.00012			1.91%
As 188.979†	0.6	0.0003	mq/L	0.00618			>999.9%
B 249.772†	1967.1	0.0053	-	0.00052			9.76%
Ba 233.527†	20392.2	0.0565		0.00007			0.12%
Be 313.107†	-932.1	-0.0001		0.00000			2.96%
Cd 226.502†	-23.5	-0.0001		0.00007			86.49%
Co 228.616†	-11.8	-0.0001		0.00016			141.37%
Cr 267.716†	-22.3	-0.0001		0.00010			
Lu 324.752†							131.68%
	1212.4	0.0024	<b>.</b>	0.00010			3.96%
Fe 238.863†	17308.9	0.2833	шg/ь	0.00162			0.57%
( 404.721†	153.3		<i>,</i> _				207.41 135.26%
lg 279.077†	163698.3	4.164	<u> </u>	0.0199			0.48%
in 257.610†	2396.2	0.0013		0.00007			5.66%
lo 202.031†	-49.1	-0.0009	mg∕L	0.00057			61.39%
i 231.604†	65.4	0.0004	mg/L	0.00005			14.14%
Ja 330.237†	29873.6	16.36		0,203			1.24%
b 220.353†	40.5	0.0016	mg∕L	0.00045			27.66%
Sb 206.836†	2.8	0.0004		0.00195			434.17%
Se 196.026†	42.6	0.0072		0.00870			121.02%
in 189.927†	164.0	0.0072		0.00021			2.96%
li 337.279†	-1026.3	-0.0021		0.00005			2.40%
1 190.801†	9.7	0.0013		0.00195			146.18%
292.402t	371.4	0.0014					20.49%
in 206.200†			- · .	0.00029			
	6490.8	0.0210		0.00031			1.49%
a 227.546†	12233.7	21.18		0.117			0.55%
r 460.733†	21608.3	0.0831		0.00002			0.03% units incorrect.
equence No.: 110 ample ID: R100429 analyst: anitial Sample Wt:	6-005	=======	482222	Autosampler Loc Date Collected: Data Type: Orig Initial Sample	ation: 10 8/13/201 inal Vol:	)9	05 PM
Sequence No.: 110 Sample ID: R100429 Analyst: Cnitial Sample Wt: Dilution:	6-005		******	Autosampler Loc Date Collected: Data Type: Orig	ation: 10 8/13/201 inal Vol:	)9	
Sequence No.: 110 Sample ID: R100429 Analyst: Enitial Sample Wt:	6-005			Autosampler Loc Date Collected: Data Type: Orig Initial Sample	ation: 10 8/13/201 inal Vol:	)9 LO 11:07:	
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429	6-005 6-005 Mean Corrected		Calib	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	:05 PM
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte	6-005 6-005 Mean Corrected Intensity	Conc.	Calib Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	ation: 10 8/13/201 inal Vol:	9 0 11:07: Sample	Std.Dev. RSD
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029	6-005 6-005 Mean Corrected Intensity 6711299.2	<b>Conc.</b> 0.7686	Calib Units mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2	Conc. 0.7686 0.0014	Calib Units mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6	Conc. 0.7686 0.0014 0.0384	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† 1 308.215† s 188.979†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2	Conc. 0.7686 0.0014	Calib Units mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† 1 308.215† s 188.979†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6	Conc. 0.7686 0.0014 0.0384 ~0.0008 -0.0095	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2	Conc. 0.7686 0.0014 0.0384 -0.0008	Calib Units mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0	Conc. 0.7686 0.0014 0.0384 ~0.0008 -0.0095	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3	Conc. 0.7686 0.0014 0.0384 ~0.0008 -0.0095 0.0475	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00001 0.00006	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6	Conc. 0.7686 0.0014 -0.0088 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752†	6-005 6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0001 -0.0004 0.0003 0.0286 0.2983	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† 1 324.752† e 238.863† 404.721† g 279.077†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0004 0.0003 0.0286 0.2983 3.172	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† i 324.752† e 238.863† 404.721† g 279.077† n 257.610†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† a 324.752† e 238.863† 404.721† g 279.077† a 257.610† o 202.031†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00001 0.00006 0.00008 0.00008 0.00001 0.00001 0.00024 0.0002 0.00129	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39% 273.69%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† l 324.752† e 238.863† 404.721† g 279.077† l 257.610† o 202.031† i 231.604†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00006 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.0002 0.00129 0.00006	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39% 273.69% 28.57%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0002 214.6	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00006 0.00008 0.00068 0.00002 0.00001 0.0024 0.0002 0.00129 0.00006 0.31	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39% 273.69% 28.57% 0.14%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0002 214.6 0.0019	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00006 0.00008 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.00002 0.00129 0.00006 0.31 0.00281	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† b 220.353† b 206.836†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5	Conc. 0.7686 0.0014 0.0384 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023 0.0115	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00006 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.0002 0.00129 0.00006 0.31 0.00281 0.00111 0.00305	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026† n 189.927†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5	Conc. 0.7686 0.0014 0.0384 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0005 -0.0003 -0.0003 -0.0005 -0.0003 -0.00003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0003 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00010 0.00068 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.00022 0.00129 0.00006 0.31 0.00281 0.00281 0.00111 0.00305 0.00163	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51% 7.73%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 220.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026† n 189.927† i 337.279†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023 0.0115 0.0211 -0.0047	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00006 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.0002 0.00129 0.00006 0.31 0.00281 0.00111 0.00305	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: 	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7 -17.7	Conc. 0.7686 0.0014 0.0384 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0005 -0.0003 -0.0003 -0.0005 -0.0003 -0.00003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0005 -0.0003 -0.0003 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00010 0.00068 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.00022 0.00129 0.00006 0.31 0.00281 0.00281 0.00111 0.00305 0.00163	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51% 7.73%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 206.836† e 196.026† n 189.927† i 337.279† l 190.801†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023 0.0115 0.0211 -0.0047	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51% 7.73% 2.96%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 206.836† e 196.026† n 189.927† i 337.279† l 190.801† 292.402†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7 -17.7	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023 0.0115 0.0211 -0.0047 -0.0018	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Sample Prep Vol Sample Prep Vol Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant Occupant	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 2.96% 166.14% 8.65%
equence No.: 110 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031† i 231.604† a 330.237† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.353† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354† o 220.354†	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7 -17.7 1002.3	Conc. 0.7686 0.0014 0.0384 -0.0008 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0019 0.0023 0.0115 0.0211 -0.0047 -0.0018 0.0036	Calib Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00188 0.00007 0.00218 0.00400 0.00116 0.00067 0.00001 0.00067 0.00001 0.00068 0.00008 0.00008 0.00008 0.00002 0.00001 0.0024 0.00002 0.00129 0.00006 0.31 0.00281 0.00111 0.00281 0.00111 0.00281 0.00163 0.00014 0.00294 0.00031	ation: 10 8/13/201 inal Vol: : 50 mL	9 0 11:07: Sample	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.08% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51% 7.73% 2.96% 166.14% 8.65% 2.50%
equence No.: 110 Sample ID: R100429 Malyst: Snitial Sample Wt: Vilution:	6-005 Mean Corrected Intensity 6711299.2 822.2 3365.6 -20.2 6066.0 18030.3 -3200.5 0.2 1.6 129.2 14343.3 19940.4 712.4 124688.1 9508.5 -12.9 97.2 391843.9 -24.7 15.0 87.5 -89.5 -1781.7 -17.7 1002.3 4292.2 200169.3 99171.1	Conc. 0.7686 0.0014 0.0384 -0.0095 0.0475 -0.0003 0.0001 -0.0004 0.0003 0.0286 0.2983 3.172 0.0055 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002 214.6 0.0011 -0.0047 -0.0018 0.0211 -0.0018 346.4 0.3761	Calib Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	ation: 10 8/13/201 Jinal Vol: : 50 mL Conc.	99 10 11:07: Sample Units	Std.Dev. RSD 0.24% 5.06% 5.68% 471.38% 12.22% 1.41% 4.42% 47.13% 20.58% 225.12% 1.13% 0.00% 61.42 8.62% 0.39% 273.69% 28.57% 0.14% 148.60% 48.52% 26.51% 7.73% 2.96% 166.14% 8.65% 2.50% 0.04% 0.07%

***********					.===========		
Sequence No.: 111 Sample ID: R100429 Analyst:				Autosampler Loc Date Collected: Data Type: Oric	ation: 110 8/13/2010		
Initial Sample Wt	:			Initial Sample	Vol:		
Dilution:				Sample Prep Vol	.: 50 mL		
lean Data: R100429	96-006 Mean Corrected		Calib		_		
Analyte	Thtongity			Std.Dev.	Conc. U	ample nits	Std.Dev. RS
7 371.029	6964869.2	0.7976		0.00585			0.7
Ag 328.068†	519.0	0.0006		0.00026			43.1
J 308.215†	2309.9	0.0141	mq/L	0.00379			26.8
s 188.979†	0.2	0.0015		0.00239			158.8
249.7721	6218.2	-0.0085		0.00038			4.5
		0.0652	<b>-</b> · .	0.00068			1.0
e 313.107†	-2888.4	-0.0003		0.00000			0.1
d 226.502†		0.0002		0.00019			80.8
0 228.616†	-87.6	-0.0010		0.00050			48.8
r 267.716†		0.0003		0.00087			283.7
u 324.752†	11839 2	0.0233	<u> </u>	0.00016			0.6
e 238.863†	11839.2 16980.2	0.2496		0.00667			2.6
404.7211	670.9	0.2490	шgлш	0.00887			
q 279.077†		2 1 6 9		0 0001			107.72 16.00
	124502.8	3.168		0.0001			0.00
n 257.610†	6823.4	0.0039		0.00008			2.0
0 202.031†		0.0000		0.00042			>999.9
i 231.604†	49.3 391943.8	-0.0005		0.00028			53.50
a 330.237†		214.6		0.05			0.03
b 220.353†	7.6	0.0031	mg/L	0.00018			5.79
b 206.836†		0.0013		0.00368			282.97
e 196.026†	60.6	0.0069		0.00270			39.21
n 189.927†	-139.0	0.0193	mg∕L	0.00131			6.73
i 337.279†	-1651.8	-0.0044	mg/L	0.00037			8.26
1 190.801†	4.4	0.0011	mg/L	0.00134			121.10
292.402†	980.6	0.0035	mg/L	0.00010			2.80
n 206.200†	8949.3	0.0272	mg/L	0.00027			1.00
a 227.546†	198945.1	344.3	mq/L	0.52			0.19
r 460.733†	98374.0	0.3731		0.00240			0.64
ample conc. not c	alculated. Sampl	e Prep. V	IOI. AN	D Initial Vol. r	equired OR	sample	
				**********			
	:======================================						
				Autosampler Loc	ation: 111		
equence No.: 112				Autosampler Loc Date Collected:		11:15:	27 PM
equence No.: 112 ample ID: R100429 nalyst:	96-009			Date Collected: Data Type: Orig	8/13/2010 inal	11:15:	27 PM
equence No.: 112 ample ID: R100429 nalyst:	96-009			Date Collected: Data Type: Orig Initial Sample	8/13/2010 inal Vol:	11:15:	27 PM
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt:	96-009			Date Collected: Data Type: Orig	8/13/2010 inal Vol:	11:15:	27 PM
equence No.: 112 ample ID: R100429 alyst: itial Sample Wt:	96-009			Date Collected: Data Type: Orig Initial Sample	8/13/2010 inal Vol:	11:15:	27 PM
equence No.: 112 ample ID: R100429 aalyst: nitial Sample Wt: alution:	96-009			Date Collected: Data Type: Orig Initial Sample	8/13/2010 inal Vol:	11:15:	27 PM
equence No.: 112 mple ID: R100429 alyst: ditial Sample Wt: lution: ean Data: R100429	06-009 06-009 Mean Corrected		Calib	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol	8/13/2010 inal Vol: : 50 mL 	ample	
equence No.: 112 imple ID: R100429 nalyst: iitial Sample Wt: lution: 	96-009 96-009 Mean Corrected Intensity	Conc.	Units	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev.	8/13/2010 inal Vol: : 50 mL	ample	Std.Dev. RSI
equence No.: 112 imple ID: R100429 malyst: iitial Sample Wt: lution: an Data: R100429 malyte 371.029	96-009 96-009 Mean Corrected Intensity 6991387.9	Conc. 0.8007	<b>Units</b> mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068†	96-009 96-009 Mean Corrected Intensity 6991387.9 750.0	Conc. 0.8007 0.0010	<b>Units</b> mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† . 308.215†	96-009 96-009 Mean Corrected Intensity 6991387.9 750.0 4627.4	Conc. 0.8007 0.0010 0.0581	Units mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† . 308.215† g 188.979†	96-009 96-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1	Conc. 0.8007 0.0010 0.0581 -0.0030	Units mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432 0.00183	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† . 308.215† g 188.979†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353	Units mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† . 308.215† ; 188.979† 249.772†	96-009 96-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1	Conc. 0.8007 0.0010 0.0581 -0.0030	Units mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432 0.00183	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSL 0.06 1.54 7.44 61.30
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: llution: ean Data: R100429 halyte 371.029 g 328.068† . 308.215† s 188.979† 249.772† a 233.527†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353	Units mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432 0.00183 0.00029	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† 308.215† s 188.979† 249.772† a 233.527† s 313.107†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† L 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70
equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 g 328.068† 371.029 g 328.068† 308.215† s 188.979† 249.772† a 233.527† a 213.107† d 226.502† o 228.616† c 267.716†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006 -0.0004	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09
<pre>equence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: ean Data: R100429 halyte 371.029 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† l 226.502† b 228.616† c 267.716† a 324.752†</pre>	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006 -0.0004 0.0168	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: 	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006 -0.0004	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25
aquence No.: 112 ample ID: R100429 halyst: hitial Sample Wt: ilution: 	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6	Conc. 0.8007 0.0010 0.0581 -0.00353 0.0742 -0.0002 0.0000 -0.0006 -0.0004 0.0168 0.2559	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00048 0.00002 0.00432 0.00183 0.00029 0.00039 0.00002 0.00039 0.00002 0.00016 0.00004 0.00008 0.00051 0.00065	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: 	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6 161812.6	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006 -0.0004 0.0168 0.2559 4.117	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  0.00048 0.0002 0.00432 0.00183 0.00029 0.00039 0.00002 0.00016 0.00004 0.00004 0.000051 0.00051 0.00065 0.0594	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02 1.44
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 nalyte 371.029 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† i 324.752† e 238.863† 404.721† g 279.077† n 257.610†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6 161812.6 5219.4	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0006 -0.0004 0.0168 0.2559 4.117 0.0030	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02 1.44 2.40
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† 1 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† n 257.610† o 202.031†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6 161812.6 5219.4 15.4	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0004 0.0168 0.2559 4.117 0.0030 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432 0.00183 0.00029 0.00039 0.00002 0.00016 0.00004 0.00004 0.000051 0.00065 0.0594 0.0007 0.00067	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02 1.44 2.40 >999.9
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 g 328.068† l 308.215† s 188.979† 249.772† a 233.527† e 313.107† d 226.502† o 228.616† r 267.716† u 324.752† e 238.863† 404.721† g 279.077† h 257.610† o 202.031† i 231.604†	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6 161812.6 5219.4 15.4 3.9	Conc. 0.8007 0.0010 0.0581 -0.0035 0.0742 -0.0002 0.0000 -0.0006 -0.0004 0.0168 0.2559 4.117 0.0030 0.0000 -0.0010	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol 	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02 1.44 2.40 >999.9 6.29
equence No.: 112 ample ID: R100429 nalyst: nitial Sample Wt: ilution: ean Data: R100429 malyte 371.029 g 328.068t 1 308.215t s 188.979t 249.772t a 233.527t e 313.107t d 226.502t o 228.616t r 267.716t u 324.752t e 238.863t 404.721t g 279.077t n 257.610t o 220.031t i 231.604t a 330.237t b 220.353t	26-009 Mean Corrected Intensity 6991387.9 750.0 4627.4 -41.1 2017.5 27900.3 -2851.1 -70.0 -12.5 -15.5 8976.9 17825.5 860.6 161812.6 5219.4 15.4	Conc. 0.8007 0.0010 0.0581 -0.0030 -0.0353 0.0742 -0.0002 0.0000 -0.0004 0.0168 0.2559 4.117 0.0030 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Date Collected: Data Type: Orig Initial Sample Sample Prep Vol  Std.Dev. 0.00048 0.00002 0.00432 0.00183 0.00029 0.00039 0.00002 0.00016 0.00004 0.00004 0.000051 0.00065 0.0594 0.0007 0.00067	8/13/2010 inal Vol: : 50 mL 	ample	Std.Dev. RSI 0.06 1.54 7.44 61.30 0.82 0.52 11.79 >999.9 6.70 20.09 3.04 0.25 275.53 32.02 1.44 2.40 >999.9

	5010 L Opt4		P	age 77		Date:	8/13/2010 11	:25:51 PM
Sb 206.836†	15.5	0.0023	ma/L	0.00606				264.59%
Se 196.026†	66.9	0.0071		0.00084				11.94%
Sn 189.927†		0.0253		0.00089				3.51%
Ti 337.279†		-0.0046		0.00035				7.62%
Tl 190.801†				0.00015				10.55%
V 292.402†	-16.0 938.7	0.0033	ma/L	0.00017				5.13%
Zn 206.200†		0.0041		0.00018				4.36%
Ca 227.546†		429.5		5.80				1.35%
Sr 460.733†	122846.8	0.4659	mg/L	0.00592				1.27%
Sample conc. not c	alculated. Sample	Prep.	Vol. ANI	D Initial Vol.	required	OR sampl	e units inco	rrect.
======================================			=======				====≈≈=======	*=====
Sequence No.: 113 Sample ID: R100429	6-010			Autosampler Lo Date Collected	d: 8/13/20		:39 PM	
Analyst: Initial Sample Wt:				Data Type: Ori Initial Sample				
Dilution:				Sample Prep Vo				
DITUCION:				Sample Frep VC	11 0C 11C			
Mean Data: R100429	}6-010						<b></b>	
	Mean Corrected		Calib			Sample		
Analyte		Conc.		Std.Dev.	Conc.	Units	Std.Dev.	
Y 371.029	6737618.9	0.7716	- · .	0.00455				0.59%
Ag 328.0681	840.4	0.0012		0.00069				56.05%
Al 308.215†	3621.4 ,	0.0334		0.00174				5.21%
As 188.979†	12.4	0.0033		0.00473				141.90%
B 249.772†		-0.0231		0.00064				2.78%
Ba 233.527†	51149.1 -3470.6	0.1387	mg/ь mg/т	0.00107				0.77%
Be 313.107† Cd 226.502†		0.0003		0.00001				2.88%
Co 228.616†		-0.0008		0.00001 0.00041				11.11% 49.98%
Cr 267.716†	108.2	0.0001	ma/ĭ.	0.00042				476.83%
Cu 324.752†	7639.1	0.0139	mg/L	0.00024				1.71%
Fe 238.863†	19339.3	0.2798		0.00107				0.38%
K 404.721†	755.8						1.45	0.19%
Mg 279.077†	166719.3	4.242	mg/L	0.0236				0.56%
Mn 257.610†	3817.0	0.0022		0.00007				3.16%
Mo 202.031†	4.6	-0.0002	mg/L	0.00029				141.08%
Ni 231.604†		-0.0007		0.00009				13.49%
Na 330.237†		262.6		1.07				0.41%
Pb 220.353†		0.0052		0.00104				19.98%
Sb 206.836† Se 196.026†		-0.0001		0.00553				>999.9%
Se 196.0267 Sn 189.927†		0.0073		0.00239				32.87%
SH 102.2271		-0.0055		0.00119 0.00013				4.49% 2.34%
mi 227 270+		.0.0077	шgлш					
Ti 337.279† Tl 190 801†			ma/L					
Tl 190.801†	15.4	0.0027		0.00213				79.42%
Tl 190.801† V 292.402†	15.4 961.7	0.0027 0.0034	mg/L	0.00213 0.00004				79.42% 1.10%
Tl 190.801† V 292.402† Zn 206.200†	15.4 961.7 12288.7	0.0027 0.0034 0.0375	mg∕L mg/L	0.00213 0.00004 0.00023				79.42% 1.10% 0.61%
Tl 190.801† V 292.402†	15.4 961.7 12288.7 254885.6	0.0027 0.0034 0.0375 441.1	mg/L mg/L mg/L	0.00213 0.00004 0.00023 2.44				79.42% 1.10%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546†	15.4 961.7 12288.7 254885.6 126131.3	0.0027 0.0034 0.0375 441.1 0.4784	mg/L mg/L mg/L mg/L	0.00213 0.00004 0.00023 2.44 0.00223	required (	DR sample	e units inco	79.42% 1.10% 0.61% 0.55% 0.47%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANE	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol.				79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANE	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo	cation: 4			79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANE	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected	ocation: 4 1: 8/13/201			79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 valculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANI	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori	ocation: 4 1: 8/13/201 .ginal			79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 valculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANI	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample	ocation: 4 1: 8/13/201 .ginal 2 Vol:			79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 valculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L mg/L Vol. ANI	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori	ocation: 4 1: 8/13/201 .ginal 2 Vol:			79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 valculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3	mg/L mg/L mg/L mg/L Vol. ANE	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	Decation: 4 l: 8/13/20 ginal 2 Vol: Dl:	LO 11:23:	:50 PM	79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3	mg/L mg/L mg/L mg/L Vol. ANE	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	Decation: 4 l: 8/13/20 ginal 2 Vol: Dl:	LO 11:23:	:50 PM	79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L Vol. ANI	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	Decation: 4 l: 8/13/20 ginal 2 Vol: Dl:	LO 11:23:	:50 PM	79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V	mg/L mg/L mg/L Vol. ANI	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	ocation: 4 1: 8/13/201 ginal 2 Vol: 01:	LO 11:23;	:50 PM	79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c 	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample 	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 7 	mg/L mg/L mg/L Vol. ANI  Calib Units mg/L	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo	Conc.	Sample Units	50 PM Std.Dev.	79.42% 1.10% 0.61% 0.55% 0.47% rrect. ========= RSD 0.09%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c 	15.4 961.7 12288.7 254885.6 126131.3 valculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 7 	mg/L mg/L mg/L Vol. AND Calib Units mg/L mg/L	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00078 0.00059	Conc.	Sample Units	:50 PM	79.42% 1.10% 0.61% 0.55% 0.47% rrect. ========= RSD 0.09%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3 	mg/L mg/L mg/L Vol. AND Calib Units mg/L mg/L Recovery	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00078 0.00059 v = 107.31%	cation: 4 i: 8/13/201 ginal a Vol: bl: Conc. 0.5366	Sample Units mg/L	50 PM Std.Dev. 0.00059	79.42% 1.10% 0.61% 0.55% 0.47% rrect. RSD 0.09% 0.11%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample Mean Corrected Intensity 7214333.0 20006.3 limits for Ag 323 474776.3	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3 	mg/L mg/L mg/L Vol. ANI Calib Units mg/L mg/L Recovery mg/L	0.00213 0.00004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00078 0.00059 7 = 107.31% 0.001	cation: 4 1: 8/13/201 .ginal a Vol: bl: Conc. 0.5366 11.01	Sample Units mg/L mg/L	50 PM Std.Dev.	79.42% 1.10% 0.61% 0.55% 0.47% rrect. ========= RSD 0.09%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 calculated. Sample Mean Corrected Intensity 7214333.0 20006.3 limits for Ag 324 474776.3 r than the upper 1	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3 	mg/L mg/L mg/L Vol. AND Calib Units mg/L mg/L Recovery mg/L or Al 30	0.00213 0.00004 0.00023 2.44 0.00223 0 Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00078 0.00059 7 = 107.31% 0.001 08.215 Recover	cation: 4 i: 8/13/201 ginal vol: ol: Conc. 0.5366 11.01 Ty = 110.07	Sample Units mg/L %	50 PM Std.Dev. 0.00059 0.001	79.42% 1.10% 0.61% 0.55% 0.47% rrect.
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample Mean Corrected Intensity 7214333.0 20006.3 limits for Ag 328 474776.3 r than the upper 1 9162.3	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3 	mg/L mg/L mg/L Vol. AND Calib Units mg/L mg/L Recovery mg/L or Al 30 mg/L	0.00213 0.00004 0.00023 2.44 0.00223 0 Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 4 1: 8/13/201 .ginal a Vol: bl: Conc. 0.5366 11.01	Sample Units mg/L %	50 PM Std.Dev. 0.00059	79.42% 1.10% 0.61% 0.55% 0.47% rrect. RSD 0.09% 0.11%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample 	0.0027 0.0034 0.0375 441.1 0.4784 Prep. 3 ======== 0.8262 0.5366 8.068 H 11.01 limit fc 1.074 8.979 H	mg/L mg/L mg/L Vol. ANE Calib Units mg/L Recovery mg/L Cor Al 30 mg/L Recovery	0.00213 0.0004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo 	cation: 4 4: 8/13/201 ginal 2 Vol: bl: Conc. 0.5366 11.01 5y = 110.07 1.074	Sample Units mg/L % mg/L	50 PM Std.Dev. 0.00059 0.001 0.0066	79.42% 1.10% 0.61% 0.55% 0.47% rrect. <b>RSD</b> 0.09% 0.11% 0.01% 0.61%
Tl 190.801† V 292.402† Zn 206.200† Ca 227.546† Sr 460.733† Sample conc. not c ====================================	15.4 961.7 12288.7 254885.6 126131.3 salculated. Sample 	0.0027 0.0034 0.0375 441.1 0.4784 Prep. V ====================================	mg/L mg/L mg/L Vol. AND 	0.00213 0.0004 0.00023 2.44 0.00223 D Initial Vol. Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Std.Dev. 0.00078 0.00059 Y = 107.31% 0.001 08.215 Recover 0.0066 Y = 107.39% 0.0154	cation: 4 4: 8/13/201 ginal 2 Vol: bl: Conc. 0.5366 11.01 5y = 110.07 1.074	Sample Units mg/L %	50 PM Std.Dev. 0.00059 0.001 0.0066	79.42% 1.10% 0.61% 0.55% 0.47% rrect.

	5010 L Opt4	P	age 78		Date: 8	3/13/2010 1	1:30:02
Ba 233.527†		10.10 mg/L 233.527 Recover		10.10	mg/L	0.004	0.04%
3e 313.107†	1610848.2		0.00019	0.2452	mg/L	0.00019	0.08%
d 226.502†	201926.9	0.5277 mg/L 226.502 Recover	0.00092	0.5277	mg/L	0.00092	0.178
0 228.616†	331959.1	2.483 mg/L 228.616 Recover	0.0016	2.483	mg/L	0.0016	0.07%
r 267.716†	117075.1	0.5295 mg/L 267.716 Recover	0.00019	0.5295	mg∕L	0.00019	0.04%
u 324.752†	579890.9	1.228 mg/L 324.752 Recover	0.0034	1.228	mg/L	0.0034	0.27%
e 238.863†	330697.7		0.0045	5.452	mg/L	0.0045	0.08%
404.721† Unable to evalu	5379.6 ate QC.		-			212.93	3.96%
g 279.077† QC value within		27.16 mg/L 279.077 Recover		27.16	mg/L	0.027	0.10%
1 257.610†	1330317.1	0.7753 mg/L 257.610 Recover	0.00075	0.7753	mg∕L	0.00075	0.10%
b 202.031†	137439.8		0.0092	2.571	mg/L	0.0092	
231.604† QC value within	318602.4 limits for Ni	2.124 mg/L 231.604 Recover	0.0043 y = 106.18%	2.124	mg/L	0.0043	0.20%
330.237† QC value greate	r than the uppe	30.96 mg/L r limit for Na 3	30.237 Recovery	y ≈ 123.84	mg/L 1೪	0.002	0.01%
	r than the uppe	0.5515 mg/L r limit for Pb 2:	20.353 Recovery	$\gamma = 110.30$	ງຈີ່	0.00186	
	limits for Sb :	5.162 mg/L 206.836 Recover	0.0375 y = 103.25%			0.0375	
		r limit for Se 1		r = 110.29			
	r than the uppe:	r limit for Sn 1:		/ ≈ 110.08	mg/L 3%		
	limits for Ti	2.582 mg/L 337.279 Recovery			mg/L		
QC value within	8009.1 limits for Tl :	190.801 Recover	0.0074 y = 104.34%		mg/L		
	limits for V 2: 332754.1	2.560 mg/L 92.402 Recovery 1.092 mg/L	0.0049 = 102.41% 0.0011		mg/L mg/L		
QC value within	limits for Zn 2	206.200 Recovery 27.16 mg/L	y = 109.24%		mg/L		
QC value within	limits for Ca 2	27.10 mg/L 227.546 Recovery 3.326 mg/L	y = 108.63%		mg/L		0.21%
	r than the upper	r limit for Sr 40				0.0070	0.218
			Autosampler Loc	ation: 5			
-			Deto Colloctoda	9/12/201		TT LLI	
aquence No.: 115 umple ID: CCB alyst: nitial Sample Wt:			Date Collected: Data Type: Orig Initial Sample	inal Vol:	.0 11:20:		
mple ID: CCB alyst: itial Sample Wt: lution:			Data Type: Orig Initial Sample Sample Prep Vol	vol: .:			
mple ID: CCB alyst: itial Sample Wt: lution:	Mean Corrected		Data Type: Orig Initial Sample Sample Prep Vol	vol: .:			
mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte	Mean Corrected Intensity	Calib Conc. Units	Data Type: Orig Initial Sample Sample Prep Vol Std.Dev.	yinal Vol: .:			RSD
mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068†	Mean Corrected Intensity 7851596.5 266.0	Calib Conc. Units 0.8992 mg/L 0.0007 mg/L	Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00039 0.00015	<pre>pinal Vol: .: Conc. 0.0007</pre>	Sample Units	Std.Dev.	RSD 0.04%
mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215†	Mean Corrected Intensity 7851596.5 266.0 limits for Ag 3 -660.3	Calib Conc. Units 0.8992 mg/L 0.0007 mg/L 328.068 Recovery -0.0153 mg/L	Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00039 0.00015 Y = Not calculat 0.00206	rinal Vol: .: Conc. 0.0007 ed -0.0153	Sample Units	<b>Std.Dev</b> .	RSD 0.04% 20.75%
mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979†	Mean Corrected Intensity 7851596.5 266.0 limits for Ag 3 -660.3 limits for Al 3 16.5	Calib Conc. Units 0.8992 mg/L 0.0007 mg/L 328.068 Recovery -0.0153 mg/L 308.215 Recovery 0.0020 mg/L	Data Type: Orig Initial Sample Sample Prep Vol 	rinal Vol: .: Conc. 0.0007 .ed ~0.0153 .ed 0.0020	Sample Units mg/L	<b>Std.Dev.</b> 0.00015 0.00206	RSD 0.04% 20.75% 13.47%
<pre>mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772†</pre>	Mean Corrected Intensity 7851596.5 266.0 limits for Ag 3 -660.3 limits for Al 3 16.5 limits for As 3 -3796.7	Calib Conc. Units 0.8992 mg/L 0.0007 mg/L 328.068 Recovery -0.0153 mg/L 308.215 Recovery 0.0020 mg/L 188.979 Recovery -0.0169 mg/L	Data Type: Orig Initial Sample Sample Prep Vol 	rinal Vol: .: Conc. 0.0007 .ed 0.0153 .ed 0.0020 .ed -0.0169	Sample Units mg/L mg/L	Std.Dev. 0.00015 0.00206 0.00745	RSD 0.04% 20.75% 13.47% 371.84%
<pre>mple ID: CCB alyst: itial Sample Wt: lution: an Data: CCB alyte 371.029 328.068† QC value within 308.215† QC value within 188.979† QC value within 249.772† QC value within 233.527†</pre>	Mean Corrected Intensity 7851596.5 266.0 limits for Ag 3 -660.3 limits for Al 3 16.5 limits for As 1 -3796.7 limits for B 24 3706.6	Calib Conc. Units 0.8992 mg/L 0.0007 mg/L 328.068 Recovery -0.0153 mg/L 308.215 Recovery 0.0020 mg/L 188.979 Recovery	Data Type: Orig Initial Sample Sample Prep Vol Std.Dev. 0.00039 0.00015 7 = Not calculat 0.00206 7 = Not calculat 0.00745 7 = Not calculat 0.00062 = Not calculate 0.00002	rinal Vol: .: Conc. 0.0007 .ed -0.0153 .ed 0.0020 .ed -0.0169 .ed 0.0103	Sample Units mg/L mg/L mg/L	Std.Dev. 0.00015 0.00206 0.00745 0.00062	RSD 0.04% 20.75% 13.47% 371.84% 3.68%

## <u>86155</u>

Method: AXIAL200-60	010 L Opt4	P	age 79		Date:	8/13/2010 1	1:34:14
Cd 226.502†		0.0000 mg/L			mg/L	0.00002	46.10%
QC value within	limits for Cd	226.502 Recover	y = Not calcula	ted	<b>1</b>		
Co 228.616†	-12.5 limita for Co	-0.0001 mg/L 228.616 Recover	0.00007 	-0.0001	mg/L	0.00007	72.92%
Cr 267.716†	-22.4	-0.0001 mg/L	$y \approx NOC Carcura 0.00029$		ma/T	0.00029	303.62%
QC value within	limits for Cr	267.716 Recover	y = Not calcula	ted		0.00025	202.020
Cu 324.752†	1433.5	0.0031 mg/L	0.00006	0.0031	mg/L	0.0006	1.85%
	limits for Cu	324.752 Recover	y = Not calcula		<i>.</i> _		
Fe 238.863†	11527.3 c than the uppe	0.1904 mg/L r limit for Fe 2	0.00269	0.1904 			1.41%
K 404.721t	-127.3	I IIMIC IOI FE Z	20.003 RECOVEL	y = NOL C	arcurati		29.59%
Unable to evalua	ate QC.					5	29.090
Mg 279.077†	-953.3	-0.0244 mg/L	0.00263	-0.0244	mg/L	0.00263	10.79%
	limits for Mg	279.077 Recover					
Mn 257.610†	589.1 Jimite for Mn	0.0003 mg/L 257.610 Recover	0.00002	0.0003	mg/L	0.00002	6.91%
40 202.031	-10.4		y = NOt Calculation 0.00035		ma/L	0.00035	189 178
		202.031 Recover	v = Not calculat	ted	11197 II	0.00033	102.119
∛i 231.604†	12.4	0.0001 mg/L	0.00027	0.0001	mg/L	0.00027	318.38%
	limits for Ni	231.604 Recover	y = Not calculat	ted			
Ja 330.237†	696.6	0.3828 mg/L 330.237 Recover	0.10157	0.3828	mg/L	0.10157	26.54%
b 220.353†	20.7	0.0007 mg/L	y = NOT Calculat 0.00289		ma/L	0.00289	201 718
	limits for Pb	220.353 Recover	v = Not calculat	ted	"G\"	0.00289	221.172
Sb 206.836†	8.4	0.0015 mg/L	0.00504	0.0015	mg/L	0.00504	341.54%
QC value within	limits for Sb	206.836 Recover	y = Not calculat	ted			
Ge 196.026† QC value within	16.5	0.0029 mg/L	0.00469	0.0029	mg/L	0.00469	161.17%
n 189.927t	limits for Se	196.026 Recover 0.0126 mg/L	y = Not calculat		ma /1	0.00092	7 7 10.
	limits for Sn	189.927 Recover	v = Not calculat	0.0126 -ed	шgть	0.00092	1.27.2
'i 337.279†	-887.5	-0.0017 mg/L	0.00004	-0.0017	mq/L	0.00004	2.34%
QC value within	limits for Ti	337.279 Recover	y = Not calculat	ted	-		
1 190.801†	-22.1	-0.0029 mg/L	0.00065	-0.0029	mg/L	0.00065	22.70%
QC value within 292.402t	limits for TL	190.801 Recovery 0.0012 mg/L	y = Not calculat	ed	ma / T	0 00000	10 400
	limits for V 2	92.402 Recovery	= Not calculate	-d	шgүл	0.00023	19.468
n 206.200†	168,8	0.0006 mg/L	0.00007	0.0006	mg/L	0.00007	12.88%
QC value within	limits for Zn :	206.200 Recovery	y = Not calculat	ed	_		
la 227.546†	-229.4		0.02039	-0.3870	mg/L	0.02039	5.27%
QC value within Sr 460.733†	limits for Ca 1	227.546 Recover	y -= NOT Calculat	ced		0.00058	100 078
QC value within	limits for Sr	460.733 Recovery	v = Not calculat	0.0008	шgт	0.00056	100.978
C Failed. Continu							
equence No.: 116			Autosampler Loc			============	
ample ID: R1004296	-013		Date Collected:			2:21 PM	
nalyst:			Data Type: Orig	•			
nitial Sample Wt: ilution:			Initial Sample				
TTUCTÓN:			Sample Prep Vol	C: 20 MT			
an Data: R1004296							
	Mean Corrected	Calib			Sample		
nalyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
371.029	7679747.1	0.8795 mg/L	0.00378				0.43%
328.068†	190.9	0.0005 mg/L	0.00008				15.82%
. 308.215†	6533.1	0.1493 mg/L	0.00287				1.93%
s 188.979†	-1.8	0.0000 mg/L	0.00416				>999.9%
249.772† 233.527†	-1625.2 7086.1	-0.0102 mg/L 0.0195 mg/L	0.00023 0.00033				2.28%
e 313.107†	-830.3	-0.0001 mg/L	0.00001				1.68% 10.07%
l 226.502†	68.0	0.0001 mg/L	0.00015				101.27%
228.616;	-57.1	-0.0005 mg/L	0.00004				9.02%
267.716†	83.2	0.0004 mg/L	0.00016				39.12%
1 324.752†	1550.4	0.0032 mg/L	0.00024				7.63%
≥ 238.863†	26010.7	0.4273 mg/L	0.00087			_	0.20%
404.721†	148.6		· ····			54.82	36.88%
g 279.077†	161001.2	4.095 mg/L	0.0128				0.31%
n 257.610† o 202.031†	65743.6 -74.0	0.0382 mg/L -0.0014 mg/L	0.00013 0.00072				0.34% 52.23%
- 202.0311	= / + . U		0.00072				~ / / **
i 231.604†	40.0	0.0002 mg/L	0.00009				43.99%

Method: AXIAL200-6	010 L Opt4			Page 80		Date:	8/13/2010 1	1:42:38 PM
Na 330.237†	24380.3	13.36	ma / T	0.083				0.62%
Pb 220.353†	32.6	0.0013		0.00031				23.99%
Sb 206.836†	15.0	0.0013	mg/L	0.00236				23.99% 90.75%
Se 196.026†	64.3	0.0028		0.00765				59.54%
Sn 189.927†	80.4	0.0041		0.00002				0.39%
Ti 337.279†	315.5	0.00041		0.00002				18.03%
Tl 190.801†	-11.2	-0.0014		0.00162				117.55%
V 292.402†	472.2	0.0018		0.00020				11.21%
Zn 206.200†	2036.6	0.0018		0.00017				2.70%
Ca 227.546†	9745.3	16.89	•	0.455				2.70%
Sr 460.733†	20031.1	0.0771		0.00007				0.09%
Sample conc. not c					equired (	OR samp	le units inc	
	encendent camp.				edarree .	on bump		0110001
=======================================			======					======
Sequence No.: 117				Autosampler Loc	ation: 1	14		
Sample ID: R100431	7-001			Date Collected:			5:34 PM	
Analyst:				Data Type: Orig				
Initial Sample Wt:				Initial Sample				
Dilution:				Sample Prep Vol				
Mean Data: R100431	7-001 Mean Corrected		Calib			0.000.7 -		
Analyte		0000	Units	Std.Dev.	0000	Sample Units	013 D	DOD
Y 371.029	Intensity 6622585.6	0.7584		0.00277	conc.	OUTER	Std.Dev	
Ag 328.068†	653.5	0.0006		0.00026				0.378
AJ 308.215†								44.57%
As 188.979†	6899.2	0.1019	<b>-</b> · .	0.00130				1.27%
B 249.772†	-25.4	-0.0008		0.00080				101.49%
Ba 233.527†	3201.9	-0.0382 0.0942		0.00047				1.23%
Be 313.107†	35283.0 -3718.2	-0.0003		0.00113				1.20%
Cd 226.502†	-110.9	-0.0003		0.00003 0.00001				11.71%
Co 228.616†	-18.3	-0.0007	mg/L					14.58%
Cr 267.716†	7.2	-0.0004		0.00025				35.62%
Cu 324.752†	15274.7	0.0297		0.00014 0.00007				35.94%
Fe 238.863†	24295.6	0.3559						0.22%
K 404.721†	845.4	0.3559	щg/ъ	0.00160			E3 30	0.45%
Mq 279.077†	165918.5	4.221	ma/I.	0.0301			53.29	6.30%
Mn 257.610†	91820.4	0.0535		0.00025				0.71% 0.47%
Mo 202.031†	-40.4	-0.0011		0.00025				23.16%
Ni 231.604†	111.1	-0.00011		0.00042				81.35%
Na 330.237†	453703.1	248.4		0.00042				0.38%
Pb 220.353†	-45.5	0.0024		0.00196				80.42%
Sb 206.836t	35.2	0.0057		0.00454				80.10%
Se 196.026†	47.7	0.0030		0.00033				11.25%
Sn 189.927†	-110.4	0.0316		0.00127				4.03%
Ti 337.279†		-0.0055		0.00017				3.19%
Tl 190.801†		-0.0029		0.00098				33.76%
V 292.402†		0.0038		0.00018				4.66%
Zn 206.200†		0.0157		0.00025				1.61%
Ca 227.546†	293116.6	507.2		2.30				0.45%
Sr 460.733†	136534.7	0.5172		0.00355				0.69%
Sample conc. not ca	alculated. Sampl	e Prep. N			equired C	)R sampl	e units inco	
•	<b></b>	-1			1	· - ····E· -		
=======================================		========		=======================================	**======		=======================================	
Sequence No.: 118				Autosampler Loca				
Sample ID: R1004317	7-002			Date Collected:		11:40	:46 PM	
Analyst:				Data Type: Origi				
Initial Sample Wt:				Initial Sample V				
Dilution:				Sample Prep Vol:	: 50 mL			
Mean Data: R1004317								
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.		Units	Std.Dev.	RSD
¥ 371.029	6724457.5	0.7701	mg/L	0.00281				0.36%
Ag 328.068†	940.3	0.0014	mg/L	0.00052				38.08%
Al 308.215†	3440.6	0.0225		0.00356				15.81%
As 188.979†	-29.6	-0.0013	<u> </u>	0.00158				117.35%
B 249.772†			<u> </u>					
	3146.8	-0.0375	mg/հ	0.00000				0.01%
Ba 233.527†		-0.0375 0.1092		0.00000				0.01% 0.58%
			mg/L					

.

Method: AXIAL200-6	010 L Opt4	P	age 81		Date:	8/13/2010 11	.:46:59 PM
Cd 226.502†	-53.3	0.0001 mg/L	0.00034				EAC 06%
Co 228.616†	-45.0	-0.0009 mg/L	0.00023				506.06% 25.91%
Cr 267.716†	-30.4	~0.0006 mg/L	0.00082				
Cu 324.752†	7940.2	0.0142 mg/L	0.00003				148.62%
Fe 238.863†		0.2614 mg/L					0.19%
	18535.3	0.2814 mg/L	0.00095			4 66	0.36%
K 404.721†	769.4					4.00	
Mg 279.077†	163706.4	4.165 mg/L	0.0039				0.09%
Mn 257.610†	3216.3	0.0018 mg/L	0.00007				3.91%
Mo 202.031†	-12.0	-0.0006 mg/L	0.00020				35.60%
Ni 231.604†	55.0		0.00009				9.99%
Na 330.237†	448402.5	245.5 mg/L 0.0014 mg/L	0.55				0.22%
Pb 220.353†	-73.8	0.0014 mg/L	0.00121				89.22%
Sb 206.836†	-9.2	-0.0021 mg/T	0.00419				200.72%
Se 196.026†	56.1		0.00186				41.85%
Sn 189.927†							
	-102.4	0.0294 mg/L -0.0055 mg/L	0.00074				2.52%
Ti 337.279†	-1918.0	-0.0055 mg/L	0.00000				0.00%
Tl 190.801†	-6.2	-0.0001 mg/L 0.0035 mg/L	0.00203				>999.9%
V 292.402†	978.8	0.0035 mg/L	0.00009				2.47%
Zn 206.200†	5724.1	0.0156 mg/L					0.25%
Ca 227.546†	289030.4	500.2 mg/L	0.80				0.16%
Sr 460.733†	134651.6	0.5100 mg/L	0.00374				0.73%
Sample conc. not c	alculated. Sam	nle Pren Vol AN	D Initial Vol	required (	OR samo	le units inco	
oumpre come. not e	arcazacca. Dam	pre rrep. vor. AN	D iniciai voi.	required	or samp.	re unres inco	IIECC.
****************			========================				
Sequence No.: 119			Autosampler Lo	cation: 4			
Sample ID: CCV			Date Collected	: 8/13/20	10 11:44	4:57 PM	
Analyst:			Data Type: Ori				
Initial Sample Wt:			Initial Sample	•			
Dilution:							
Dilution:			Sample Prep Vo	1:			
		<b></b>					
Mean Data: CCV							
Mean Data: CCV	Name Commonte	a <u>a 14</u> 2			<i>a</i>		
<b>7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</b>	Mean Correcte				Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	
Y 371.029	7309648.6	0.8371 mg/L					0.29%
Aq 328.068†	198016.5	$\Delta r 2 1 0 / 7$					
		0.5312 mg/L	0.00040	0.5312	mg/L	0.00040	0.08%
QC value within	limits for Ag	328.068 Recover		0.5312	mg/L	0.00040	0.08%
QC value within Al 308.215†	limits for Ag	328.068 Recover;	y = 106.25%				
QC value within Al 308.215†	limits for Ag 470335.6	328.068 Recover 10.90 mg/L	y = 106.25% 0.055		mg/L mg/L		0.08% 0.51%
QC value within Al 308.215† QC value within	limits for Ag 470335.6 limits for Al	328.068 Recover 10.90 mg/L 308.215 Recover	y = 106.25% 0.055 y = 109.04%	10.90	mg/L	0.055	0.51%
QC value within Al 308.215† QC value within As 188.979†	limits for Ag 470335.6 limits for Al 8913.8	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040	10.90		0.055	
QC value within Al 308.215† QC value within As 188.979† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49%	10.90 1.045	mg/L mg/L	0.055 0.0040	0.51% 0.38%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308	10.90 1.045	mg/L	0.055 0.0040	0.51%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95\%	10.90 1.045	mg/L mg/L	0.055 0.0040	0.51% 0.38%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465	10.90 1.045 2.349	mg/L mg/L	0.055 0.0040 0.0308	0.51% 0.38%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465	10.90 1.045 2.349	mg/L mg/L mg/L	0.055 0.0040 0.0308	0.51% 0.38% 1.31%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94%	10.90 1.045 2.349 9.994	mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465	0.51% 0.38% 1.31% 0.47%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127	10.90 1.045 2.349 9.994	mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308	0.51% 0.38% 1.31%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Be	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94%	10.90 1.045 2.349 9.994 0.2424	mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127	0.51% 0.38% 1.31% 0.47% 0.52%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Be 197153.5	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722	10.90 1.045 2.349 9.994 0.2424	mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465	0.51% 0.38% 1.31% 0.47% 0.52%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Be     197153.5 limits for Cd</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04%	10.90 1.045 2.349 9.994 0.2424 0.5152	mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722	0.51% 0.38% 1.31% 0.47% 0.52% 1.40%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Be     197153.5 limits for Cd     328284.7</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover 2.456 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106	10.90 1.045 2.349 9.994 0.2424 0.5152	mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127	0.51% 0.38% 1.31% 0.47% 0.52%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Be     197153.5 limits for Cd     328284.7</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106	10.90 1.045 2.349 9.994 0.2424 0.5152	mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722	0.51% 0.38% 1.31% 0.47% 0.52% 1.40%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Be     197153.5 limits for Cd     328284.7</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456	mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Co     114293.1</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover 2.456 mg/L 228.616 Recover 0.5169 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456	mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106	0.51% 0.38% 1.31% 0.47% 0.52% 1.40%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716† QC value within	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover 2.456 mg/L 228.616 Recover 0.5169 mg/L 267.716 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716† QC value within Cu 324.752†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 267.716 Recovery 1.214 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169	mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1 limits for Cu</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover 2.456 mg/L 228.616 Recover 0.5169 mg/L 267.716 Recover 1.214 mg/L 324.752 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 97.10%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for B     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1 limits for Cu     327422.6</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 267.716 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 97.10% 0.0329	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within	<pre>limits for Ag</pre>	328.068 Recover 10.90 mg/L 308.215 Recover 1.045 mg/L 188.979 Recover 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recover 0.2424 mg/L 313.107 Recover 0.5152 mg/L 226.502 Recover 2.456 mg/L 228.616 Recover 0.5169 mg/L 267.716 Recover 1.214 mg/L 324.752 Recover	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 97.10% 0.0329	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within K 404.721†	<pre>limits for Ag     470335.6 limits for Al     8913.8 limits for As     547323.9 limits for Ba     3598254.3 limits for Ba     1592036.7 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1 limits for Cu     327422.6 limits for Fe     5332.1</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 267.716 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 97.10% 0.0329	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within	<pre>limits for Ag     470335.6 limits for Al         8913.8 limits for As     547323.9 limits for Ba     3598254.3 limits for Ba     1592036.7 limits for Ba     197153.5 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1 limits for Cu     327422.6 limits for Fe     5332.1 ate QC.</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 267.716 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within K 404.721†	<pre>limits for Ag     470335.6 limits for Al         8913.8 limits for As     547323.9 limits for Ba     3598254.3 limits for Ba     1592036.7 limits for Ba     197153.5 limits for Cd     328284.7 limits for Co     114293.1 limits for Cr     573227.1 limits for Cu     327422.6 limits for Fe     5332.1 ate QC.</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 267.716 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0073 0.0329 42.82	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalue Mg 279.077†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Fe 5332.1 ate QC. 1057191.4	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 26.89 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0073	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Co 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Co 114293.1 limits for Cu 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 26.89 mg/L 279.077 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610†	<pre>limits for Ag</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 267.716 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 26.89 mg/L 279.077 Recovery 0.7668 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00106 y = 103.38% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cu 324.752† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Co 114293.1 limits for Cr 573227.1 limits for Cu 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg 1315729.0	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 2.6.89 mg/L 279.077 Recovery 0.7668 mg/L 257.610 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.60% 0.61% 0.80% 0.59% 0.45%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610†	<pre>limits for Ag</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 279.077 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.00637 y = 103.38% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mo 202.031†	<pre>limits for Ag</pre>	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 2.6.89 mg/L 279.077 Recovery 0.7668 mg/L 257.610 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.00637 y = 103.38% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mo 202.031‡ QC value within Ni 231.604†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Cu 327422.6 limits for Cu 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for Mo 316383.7	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 234.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L 202.031 Recovery 2.109 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 100.86% 0.0050	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.60% 0.61% 0.80% 0.59% 0.45%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mo 202.031‡ QC value within Ni 231.604†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Cu 327422.6 limits for Cu 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for Mo 316383.7	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 234.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L 202.031 Recovery 2.109 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 100.86% 0.0050	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalue Mg 279.077† QC value within Mn 257.610† QC value within Mo 202.031† QC value within Ni 231.604† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Cu 327422.6 limits for Cu 327422.6 limits for Cu 327422.6 limits for Fe 5332.1 Ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for No 316383.7	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 234.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L 202.031 Recovery 2.109 mg/L 231.604 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 100.86% 0.0050 y = 105.44%	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428 0.0428 0.0050	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70% 0.24%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Ni 231.604† QC value within Na 330.237†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Ca 328284.7 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for Ni 316383.7 limits for Ni 56180.7	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 224.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 2.5398 mg/L 238.863 Recovery 2.521 mg/L 20.031 Recovery 2.109 mg/L 231.604 Recovery 30.79 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 105.44% 0.162	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109 30.79	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Be 313.107† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Ni 231.604† QC value within Na 330.237† QC value greater	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for B 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 328284.7 limits for Cd 327422.6 limits for Fe 5332.1 ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for Ni 56180.7 r than the upper	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 228.616 Recovery 0.5169 mg/L 228.616 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 2.5398 mg/L 238.863 Recovery 2.521 mg/L 202.031 Recovery 2.521 mg/L 231.604 Recovery 30.79 mg/L er limit for Na 33	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 102.23% 0.0428 y = 100.86% 0.0050 y = 105.44% 0.162 80.237 Recover:	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109 30.79 y = 123.17	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428 0.0428 0.0050 0.162	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.61% 0.80% 0.59% 0.45% 1.70% 0.24% 0.53%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 233.527† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Ni 231.604† QC value within Na 330.237† QC value greaten Pb 220.353†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Co 114293.1 limits for Co 327422.6 limits for Fe 5332.1 Ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mo 316383.7 limits for Ni 56180.7 than the uppo 14449.8	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 226.616 Recovery 1.214 mg/L 324.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L 20.031 Recovery 2.109 mg/L 231.604 Recovery 30.79 mg/L er limit for Na 33 0.5278 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00722 y = 103.04% 0.0106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.96% 0.160 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 102.23% 0.0428 y = 102.86% 0.0050 y = 105.44% 0.162 30.237 Recover 0.01138	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109 30.79 y = 123.17	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428 0.0428 0.0050	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.61% 0.61% 0.80% 0.59% 0.45% 1.70% 0.24% 0.53%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 233.527† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within Fe 238.863† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Ni 231.604† QC value within Na 330.237† QC value greater Pb 220.353† QC value within	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Be 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Co 114293.1 limits for Co 327422.6 limits for Cu 327422.6 limits for Fe 5332.1 Ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mn 134765.1 limits for Ni 56180.7 r than the uppo 14449.8 limits for Pb	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 226.616 Recovery 1.214 mg/L 324.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 2.521 mg/L 257.610 Recovery 2.521 mg/L 231.604 Recovery 30.79 mg/L 21.604 Recovery 30.79 mg/L 220.353 Recovery	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.54% 0.0329 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 102.23% 0.0428 y = 102.86% 0.0050 y = 105.44% 0.162 0.01138 $y = 105.56%$	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109 30.79 y = 123.17 0.5278	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0073 0.0329 42.82 0.160 0.00348 0.0428 0.0050 0.162 0.01138	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70% 0.24% 0.53% 2.16%
QC value within Al 308.215† QC value within As 188.979† QC value within B 249.772† QC value within Ba 233.527† QC value within Ba 233.527† QC value within Cd 226.502† QC value within Cd 228.616† QC value within Cr 267.716† QC value within Cr 267.716† QC value within Fe 238.863† QC value within Fe 238.863† QC value within K 404.721† Unable to evalua Mg 279.077† QC value within Mn 257.610† QC value within Mn 257.610† QC value within Ni 231.604† QC value within Na 330.237† QC value greaten Pb 220.353†	limits for Ag 470335.6 limits for Al 8913.8 limits for As 547323.9 limits for Ba 3598254.3 limits for Ba 1592036.7 limits for Ba 197153.5 limits for Cd 328284.7 limits for Cd 328284.7 limits for Co 114293.1 limits for Co 327422.6 limits for Fe 5332.1 Ate QC. 1057191.4 limits for Mg 1315729.0 limits for Mo 316383.7 limits for Ni 56180.7 than the uppo 14449.8	328.068 Recovery 10.90 mg/L 308.215 Recovery 1.045 mg/L 188.979 Recovery 2.349 mg/L 249.772 Recovery 9.994 mg/L 233.527 Recovery 0.2424 mg/L 313.107 Recovery 0.5152 mg/L 226.502 Recovery 2.456 mg/L 226.616 Recovery 1.214 mg/L 324.752 Recovery 1.214 mg/L 324.752 Recovery 5.398 mg/L 238.863 Recovery 0.7668 mg/L 257.610 Recovery 2.521 mg/L 20.031 Recovery 2.109 mg/L 231.604 Recovery 30.79 mg/L er limit for Na 33 0.5278 mg/L	y = 106.25% 0.055 y = 109.04% 0.0040 y = 104.49% 0.0308 = 93.95% 0.0465 y = 99.94% 0.00127 y = 96.94% 0.00127 y = 96.94% 0.00106 y = 98.23% 0.00637 y = 103.38% 0.0073 y = 103.38% 0.0073 y = 107.54% 0.0329 y = 107.54% 0.00348 y = 102.23% 0.0428 y = 102.23% 0.0428 y = 102.86% 0.0050 y = 105.44% 0.162 0.01138 $y = 105.56%$	10.90 1.045 2.349 9.994 0.2424 0.5152 2.456 0.5169 1.214 5.398 26.89 0.7668 2.521 2.109 30.79 y = 123.17 0.5278	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.055 0.0040 0.0308 0.0465 0.00127 0.00722 0.0106 0.00637 0.0073 0.0329 42.82 0.160 0.00348 0.0428 0.0428 0.0050 0.162	0.51% 0.38% 1.31% 0.47% 0.52% 1.40% 0.43% 1.23% 0.60% 0.60% 0.61% 0.80% 0.59% 0.45% 1.70% 0.24% 0.53% 2.16%

Method: AXIAL200-6010 L Opt4 Page 82 Date: 8/13/2010 11:51:09 PM QC value within limits for Sb 206.836 Recovery = 103.41% Se 196.026† 0.5378 mg/L 0.00425 0.5378 mg/L 0.00425 0.79% 3114.1 QC value within limits for Se 196.026 Recovery = 107.56% Sn 189.927† 165576.4 5.450 mg/L 0.0559 5.450 mg/L 0.0559 1.03% QC value within limits for Sn 189.927 Recovery = 109.00% Ti 337.279† 1303840.9 2.552 mg/L 0.0288 2.552 mg/L 0.0288 1.13% QC value within limits for Ti 337.279 Recovery = 102.07% Tl 190.801† 7883.2 1.027 mg/L 0.0140 1.027 mg/L 0.0140 1.36% QC value within limits for Tl 190.801 Recovery = 102.70% 2.534 mg/L V 292.402† 681654.0 0.0205 2.534 mg/L 0.0205 0.81% QC value within limits for V 292.402 Recovery = 101.38% Zn 206.200† 329304.2 1.081 mg/L 1.081 mg/L 0.39% 0.0042 0.0042 QC value within limits for Zn 206.200 Recovery = 108.11% 15217.9 26.63 mg/L Ca 227.546† 26.63 mg/L 0.289 1.09% 0.289 QC value within limits for Ca 227.546 Recovery = 106.51% Sr 460.733† 852669.6 3.299 mg/L 0.0103 3.299 mg/L 0.0103 0.31% QC value greater than the upper limit for Sr 460.733 Recovery = 131.95% QC Failed. Continue with analysis. Sequence No.: 120 Autosampler Location: 5 Sample ID: CCB Date Collected: 8/13/2010 11:49:18 PM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Mean Data: CCB Mean Corrected Calib Sample Conc. Units Analyte Conc. Units RSD Intensity Std.Dev. Std.Dev. Y 371.029 7697341.4 0.8815 mg/L 0.00383 0.43% 0.0002 mg/L 0.0002 mg/L Ag 328.068† 81.0 0.00027 0.00027 114.77% QC value within limits for Ag 328.068 Recovery = Not calculated -0.0153 mg/L Al 308.215† -662.4 -0.0153 mg/L 0.00122 0.00122 8,00% QC value within limits for Al 308.215 Recovery = Not calculated As 188.979† 26.2 0.0031 mg/L 0.00088 0.0031 mg/L 0.00088 27.99% QC value within limits for As 188.979 Recovery = Not calculated B 249.7721 -4142.9 -0.0185 mg/L 0.00031 -0.0185 mg/L 0.00031 1.68% QC value within limits for B 249.772 Recovery = Not calculated Ba 233.527† 3937.7 0.0109 mg/L 0.00024 0.0109 mg/L 0.00024 2.19% QC value within limits for Ba 233.527 Recovery = Not calculated 0.0000 mg/L 0.0000 mg/L Be 313.107† -312.2 0.00002 0.00002 31.91% QC value within limits for Be 313.107 Recovery = Not calculated 0.0003 mg/L Cd 226.502† 112.0 0.0003 mg/L 0.00020 0.00020 72.08% QC value within limits for Cd 226.502 Recovery = Not calculated 0.0003 mg/L Co 228.616† 38.0 0.0003 mg/L 0.00004 0.00004 15.02% QC value within limits for Co 228.616 Recovery = Not calculated Cr 267.716† -96.5 -0.0004 mg/L 0.00002 -0.0004 mg/L 0.00002 3.92% QC value within limits for Cr 267.716 Recovery = Not calculated Cu 324.752† 1497.8 0.0032 mg/L 0.00014 0.0032 mg/L 0.00014 4.47% QC value within limits for Cu 324.752 Recovery = Not calculated Fe 238.8631 12414.1 0.2051 mg/L 0.00141 0.2051 mg/L 0.00141 0.69% QC value greater than the upper limit for Fe 238.863 Recovery = Not calculated K 404.721† 9.2 146.29 >999.9% Unable to evaluate QC. Mg 279.077† -816.9 -0.0209 mg/L 0.00104 -0.0209 mg/L 0.00104 4.96% QC value within limits for Mg 279.077 Recovery = Not calculated Mn 257.610t 439.7 0.0003 mg/L 0.00009 0.0003 mg/L 0.00009 34.16% QC value within limits for Mn 257.610 Recovery = Not calculated Mo 202.031† 8,4 0.0002 mg/L 0.00019 0.0002 mg/L 0.00019 115.26% QC value within limits for Mo 202.031 Recovery = Not calculated -0.0001 mg/L 0.00057 -0.0001 mg/L Ni 231.604† -8.8 0.00057 980.74% QC value within limits for Ni 231.604 Recovery = Not calculated Na 330.237† 0.4409 mg/L 802.3 0.05445 0.4409 mg/L 0.05445 12.35% QC value within limits for Na 330.237 Recovery = Not calculated 0.0006 mg/L 0.0006 mg/L Pb 220.3531 16.5 0.00207 0.00207 355.00% QC value within limits for Pb 220.353 Recovery ≈ Not calculated 11.9 0.0021 mg/L Sb 206.836† 0.0021 mg/L 0.00037 0.00037 17.62% QC value within limits for Sb 206.836 Recovery = Not calculated Se 196.026† 17.0 0.0030 mg/L 0.00002 0.0030 mg/L 0.00002 0.71% QC value within limits for Se 196.026 Recovery = Not calculated 411.7 0.00240 0.00240 17.74% Sn 189.927† 0.0135 mg/L 0.0135 mg/L

Method: AXIAL200-6	010 L Opt4	Pag	e 83	<u></u>	Date:	8/13/2010 11	:55:17 PM
QC value within	limits for Sn 1	.89.927 Recovery	= Not calcula	ted		0 00010	5 000
Ti 337.279† QC value within	ι limits for Ti 3	37.279 Recovery	= Not calcula	ted	-	0.00010	
QC value within	limits for Tl 1	0.0012 mg/L 90.801 Recovery	= Not calcula	ted		0.00051	
	limits for V 29	2.402 Recovery =	Not calculate	ed	-	0.00001	
Zn 206.200† QC value within	204.3 Limits for Zn 2	0.0007 mg/L 06.200 Recovery :	0.00003 = Not calculat	0.0007 teđ	mg/L	0.00003	4.53%
Ca 227.546† QC value within	limits for Ca 2	27.546 Recovery	= Not calculat	ted			
Sr 460.733†	195.9 1imits for Sr 4	0.0008 mg/L 60.733 Recovery	0.00016	0.0008	mg/L	0.00016	21.34%
Sequence No.: 121 Sample ID: MRL Analyst: Initial Sample Wt: Dilution:		A Di Di In Si	ate Collected ata Type: Orig nitial Sample ample Prep Voi	sation: 6 : 8/13/201 ginal Vol: L:	.0 11:53	:28 PM	
••							
Mean Data: MRL	Mean Corrected	Calib		Gene	Sample	0+ 4 mar	242
Analyte Y 371.029 Ag 328.068†	7859701.8	0.9001 mg/L	0.00038	Conc.	Units	Std.Dev.	RSD 0.04%
QC value within	limits for Ag 3	28.068 Recovery =	= 105.42%				
	limits for Al 3	08.215 Recovery :	= 99.94%		_	0.00412	
As 188.979† QC value within		0.0194 mg/L 88.979 Recovery :		0.0194	mg/L	0.00023	1.21%
B 249.772† QC value less t		0.1481 mg/L mit for B 249.772			mg/L	0.00185	1.25%
Ba 233.527†	76948.0		0.00145		mg/L	0.00145	0.68%
Be 313.107† OC value within		0.0044 mg/L 13.107 Recovery =		0.0044	mg/L	0.00001	0.25%
Cd 226.502†	3938.1	0.0103 mg/L 26.502 Recovery =	0.00004	0.0103	mg/L	0.00004	0.43%
Co 228.616†	6687.8	0.0500 mg/L 28.616 Recovery =	0.00074	0.0500	mg/L	0.00074	1.48%
Cr 267.716†	2043.7	0.0093 mg/L 67.716 Recovery =	0.00000	0.0093	mg∕L	0.00000	0.02%
Cu 324.752†	11557.0		0.00029	0.0245	mg/L	0.00029	1.20%
Fe 238.863†	17785.1	0.2934 mg/L limit for Fe 238.	0.00280			0.00280	0.96%
K 404.721† Unable to evalua	187.6	IIMIL LOL FE 238.	. 663 Recovery	/ = 293.44	75	61.19	32.62%
Mg 279.077†	41842.3		0.0066	1.064	mg/L	0.0066	0.62%
Mn 257.610†	25980.6	79.077 Recovery = 0.0151 mg/L	0.00011	0.0151	mg/L	0.00011	0.76%
Mo 202.031†	1229.4	57.610 Recovery = 0.0230 mg/L	0.00042	0.0230	mg/L	0.00042	1.82%
Ni 231.604†	6071.2	02.031 Recovery = 0.0405 mg/L	0.00064	0.0405	mg∕L	0.00064	1.58%
Na 330.237†	2771.1	31.604 Recovery = 1.520 mg/L	0.0188		mg/L	0.0188	1.24%
Pb 220.353†	280.4	limit for Na 330. 0.0102 mg/L	0.00137			0.00137	13.35%
Sb 206.836†	343.2	20.353 Recovery = 0.0600 mg/L	0.00123		-		
Se 196.026†	106.7	06.836 Recovery = 0.0185 mg/L	0.00654			0.00654	35.41%
Sn 189.927†	r than the upper 16943.5	limit for Se 196. 0.5574 mg/L	026 Recovery 0.00865	= 184.69	8	0.00865	
QC value within Ti 337.279†	limits for Sn 1	89.927 Recovery = 0.0476 mg/L	- 111.48%		-	0.00010	
	limits for Ti 3	37.279 Recovery = 0.0201 mg/L	= 95 <b>.</b> 22%			0.00425	
	20110	,					

Method: AXIAL200-6	010 L Opt4	Page	84		Date:	8/14/2010 1	2:01:48
QC value within	limits for Tl	190.801 Recovery =	100.51%				
V 292.402†	13136.6	0.0489 mg/L 292.402 Recovery =	0.00043	0.0489	mg/L	0.00043	0.899
In 206.200†	6286.0	0.0206 mg/L 206.200 Recovery =	0.00015	0.0206	mg/L	0.00015	0.719
Ca 227.546‡	292.2	0.5211 mg/L	0.08734	0.5211	mg/L	0.08734	16.76%
OC value less t. Sr 460.733†	nan the lower . 35804.9	limit for Ca 227.546 0.1385 mg/L	Recovery 0.00085	= 52.11% 0.1385	mg/L	0.00085	0.61%
QC value greate QC Failed. Contin	r than the uppe	er limit for Sr 460.	733 Recov	ery = 138.5	3%		
**==***		******************	==============			*=================	
Sequence No.: 122 Sample ID: ICSA Analyst: Initial Sample Wt: Dilution:		Au Dai	tosampler : te Collect	Location: 7 ed: 8/13/20	10 11.5	7.35 DW	
Analyst:		Da	ta Type: O: itial Samp	riginal	10 41.0	PM	
Initial Sample Wt:		In:					
			mple Prep '				
fean Data: ICSA							
	Mean Corrected	l Calib			Sample		
Malyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Aq 328.0681	-1743.5	Conc. Units 0.7938 mg/L 0.0002 mg/L	0.00052	0.0002	mcr/T.	0.00052	0.248 227 039
QC value within	límits for Ag	328.068 Recovery =	Not calcul	Lated			
1 308.215†	10971901.5	254.4 mg/L	0.69	254.4	mg/L	0.69	0.27%
		308.215 Recovery =		0 00/1	mcz / T	0 00100	07 000
OC value within	Jimits for As	0.0044 mg/L 188.979 Recovery =	Not calcul	0.0044 ated	mg/ц	0.00120	27.388
3 249.772†	80121.3	0.0010 mg/L	0.00358	0.0010	mq/L	0.00358	368.78%
a 233.527†	5330.1	0.0010 mg/L 0.0074 mg/L -0.0001 mg/L	0.00071	0.0074	mg/L	0.00071	9.56%
e 313.107†	-2393.4	-0.0001 mg/L	0.00003	-0.0001	mg/L	0.00003	23.27%
d 226.502†	limits for Be	313.107 Recovery = -0.0005 mg/L	Not calcul	ated	ma /T	0.00011	20 168
QC value within	limits for Cd	226.502 Recoverv =	Not calcul	ated	шgлы	0.00011	20.400
0 228.616†	206.8	-0.0005 mg/L	0.00027	-0.0005	mg/L	0.00027	52.76%
	limits for Co	228.616 Recovery =	Not calcul				
r 267.716† OC value within	-1446.6 limits for Cr	-0.0015 mg/L 267.716 Recovery =	Not calcul		mg/L	0.00045	30.44%
u 324.752†	-5886.6	-0.0027 mg/L	0.00037	-0.0027	mq/L	0.00037	13.65%
QC value within	limits for Cu	324.752 Recovery =	Not calcul	.ated			
'e 238.863†		94.45 mg/L 238.863 Recovery =	0.105	94.45	mg/L	0.105	0.11%
404.721t	-62.6	238.863 Recovery =	94.45*			52 76	84.23%
ig 279.077†	9726368.3	247.3 mg/L	0.09	247.3	mg/L	0.09	0.04%
QC value within	limits for Mg	279.077 Recovery =	98.93%				
n 257.610†	-193.1	-0.0075 mg/L 257.610 Recovery =	0.00002	-0.0075	mg/L	0.00002	0.26%
0 202.031†	-416.8	-0.0014 mg/L	0.00152	-0.0014	ma/L	0.00152	105 49%
i 231.604†	14.0	-0.0012 mg/L	0.00007	-0.0012	mg/L	0.00152 0.00007	5.77%
	limits for Ni	231.604 Recovery =	Not calcul	ated	_		
a 330.237† b 220.353†	1283.5	0.6627 mg/L 0.0015 mg/L	0.02680	0.6627	mg/L	0.02680	4.04%
	limits for Ph	220.353 Recovery =	0.00385 Not calcul	u.UU15 ated	шgүь	0.00385	Z01.19%
b 206.836†	13.8	-0.0011 mg/L	0.00132	-0.0011	mg/L	0.00132	118.80%
		206.836 Recovery =		ated	_		
e 196.026†		0.0082 mg/L 196.026 Recovery =	0.00995	0.0082	mg/L	0.00995	120.81%
	47.1	0.0531 mg/L	0.00168	alea 0.0531	mcr/T.	0.00168	3,17%
n 189.927† i 337.279† 3 190 901+	-841.0	-0.0055 mg/L	0.00001	-0.0055	mg/L	0.00001	0.26%
T TAO'OOTI	-61.0	-0.0005 mg/L	0.00164	-0.0005	mg/L	0.00164	312.06%
	limits for Tl	190.801 Recovery =	Not calcul	ated			
292.402† OC value within	-2345.1 limits for V 2	-0.0001 mg/L 92.402 Recovery = N	0.00076 10t calcula	-0.0001 ted	տg/հ	0.00076	>999.9%
n 206.200†	1107.8	~0.0114 mg/L	0.00015	-0.0114	mg/L	0.00015	1.35%
	limits for Zn	206.200 Recovery =	Not calcul	ated			
	146502.8	258.7 mg/L	0.69	258.7	mg/L	0.69	0.27%
a 227.546†		LUI EAG DOGOTOWN -	103.49%				
a 227.546† QC value within	limits for Ca	0.0020 mg/L	0 00050	0 0000	ma /T	0 00000	20 202

Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: ____ Mean Data: ICSAB Calib Mean Corrected Sample 
 Intensity
 Conc. Units
 Std.Dev.

 6752134.2
 0.7733 mg/L
 0.00108

 78415.7
 0.2153 mg/L
 0.00126
 Analyte Std.Dev. Conc. Units RSD Std.Dev. Y 371.029 0.14% Ag 328.068† 0.2153 mg/L 0.00126 0.58% QC value within limits for Ag 328.068 Recovery = 107.66% Al 308.215† 11167883.3 259.0 mg/L 259.0 mg/L 1.38 1.38 0.53% QC value within limits for Al 308.215 Recovery = 103.59% As 188.979† 550.4 0.1041 mg/L 0.00618 0.1041 mg/L 0.00618 5.94% QC value within limits for As 188.979 Recovery = 104.09% 
 82349.5
 0.0023 mg/L
 0.00505

 193931.7
 0.5311 mg/L
 0.00334
 B 249.772† 0.0023 mg/L 0.00505 224.17% Ba 233.527† 193931.7 0.5311 mg/L 0.00334 0.63% QC value within limits for Ba 233.527 Recovery = 106.22% 3232202.9 0.4923 mg/L 0.00189 Be 313.107† 0.4923 mg/L 0.00189 0.38% QC value within limits for Be 313.107 Recovery = 98.45% 393771.3 1.022 mg/L 0.0049 1.022 mg/L Cd 226.502t 0.0049 0.48% QC value within limits for Cd 226.502 Recovery = 102.20% 65519.9 0.4880 mg/L 0.00638 Co 228.616† 0.4880 mg/L 0.00638 1.31% QC value within limits for Co 228.616 Recovery = 97.60% Cr 267.716† 111993.4 0.5113 mg/L 0.00253 0.5113 mg/L 0.00253 0.49% QC value within limits for Cr 267.716 Recovery = 102.26% Cu 324.752† 228830.3 0.4944 mg/L 0.00377 0.4944 mg/L 0.00377 0.76% QC value within limits for Cu 324.752 Recovery = 98.89% Fe 238.863† 5872859.6 96.87 mg/L 0.531 96.87 mg/L 0.531 0.55% QC value within limits for Fe 238.863 Recovery = 96.87% 9930182.9 K 404.721† 79.06 >999.9% Mg 279.077† 252.5 mg/L 252.5 mg/L 1.32 1.32 0.52% QC value within limits for Mg 279.077 Recovery = 101.01% Mn 257.610† 875668.2 0.5033 mg/L 0.00267 0.5033 mg/L 0.00267 0.53% QC value within limits for Mn 257.610 Recovery = 100.67% 
 Mo
 202.031t
 -507.6
 -0.0030 mg/L
 0.00017

 Ni
 231.604t
 148447.9
 0.9883 mg/L
 0.00095
 -0.0030 mg/L 0.00017 5.62% 0.9883 mg/L 0.00095 0.10% QC value within limits for Ni 231.604 Recovery = 98.83% 0.0870 mg/L 0.04688 0.0546 mg/L 0.00022 Na 330.237† 232.3 0.0870 mg/L 0.04688 53.89% 806.4 Pb 220.353† 0.0546 mg/L 0.00022 0.41% QC value within limits for Pb 220.353 Recovery = 109.21% 3660.9 0.6366 mg/L 0.00128 Sb 206.8361 0.6366 mg/L 0.00128 0.20% QC value within limits for Sb 206.836 Recovery = 106.09% Se 196.0261 285.0 0.0649 mg/L 0.00153 0.0649 mg/L 0.00153 2.36% QC value greater than the upper limit for Se 196.026 Recovery = 129.89% 
 Sn 189.927†
 -69.7¹
 0.0504 mg/L
 0.00076

 Ti 337.279†
 -1117.8
 -0.0061 mg/L
 0.00002
 0.0504 mg/L 0.00076 1.50% -0.0061 mg/L -0.0061 mg/L 0.00002 0.34% 0.1005 mg/L Tl 190.801† 713.5 0.00712 0.1005 mg/L 0.00712 7.08% QC value within limits for Tl 190.801 Recovery = 100.50% V 292.402† 133436.7 0.5049 mg/L 0.00276 0.5049 mg/L 0.00276 0.55% QC value within limits for V 292.402 Recovery = 100.98% 318008.9 1.030 mg/L 0.0057 Zn 206.200† 1.030 mg/L 0.0057 0.55% QC value within limits for Zn 206.200 Recovery = 102.99% 149468.8 264.0 mg/L 1.83 Ca 227.546† 264.0 mg/L 0.69% 1.83 QC value within limits for Ca 227.546 Recovery = 105.59% Sr 460.733† 1855.5 0.0021 mg/L 0.00063 0.0021 mg/L 0.00063 30.10% QC Failed. Continue with analysis. Sequence No.: 124 Autosampler Location: 4 Date Collected: 8/14/2010 12:06:25 AM Sample ID: CCV Analyst: Data Type: Original Initial Sample Vol: Initial Sample Wt: Dilution: Sample Prep Vol: Mean Data: CCV Mean Corrected Calib Sample Intensity Conc. Units 0.8485 mg/L Sta. De. 0.00357 Conc. Units Conc. Units Analyte Std.Dev. Std.Dev. RSD Y 371.029 7409151.0 0.42%

Page 85

Autosampler Location: 8

Date Collected: 8/14/2010 12:01:48 AM

Method: AXIAL200-6010 L Opt4

Sequence No.: 123

Sample ID: ICSAB

Date: 8/14/2010 12:08:32 AM

Ag 328.068† 193955.4 0.5203 mg/L QC value within limits for Ag 328.068 Recove Al 308.215† 458107.6 10.62 mg/L QC value within limits for Al 308.215 Recove					
Al 308.215† 458107.6 10.62 mg/L		0.5203	mg/L	0.00725	1.39%
UC VALUE WICHIN IIMILES IOF AL 308.215 RECOVE	0.112	10.62	mg/L	0.112	1.06%
As 188.979† 8858.0 1.038 mg/L	0.0020	1.038	mg/L	0.0020	0.19%
QC value within limits for As 188.979 Recove B 249.772t 533671.7 2.290 mg/L	0.0126	2.290	mg/L	0.0126	0.55%
QC value within limits for B 249.772 Recover Ba 233.527† 3504005.4 9.732 mg/L QC value within limits for Ba 233.527 Recove	0.0925	9.732	mg/L	0.0925	0.95%
QC value within limits for Ba 233.527 Recover QC value within limits for Be 313.107 Recover	0.00258	0.2370	mg/L	0.00258	1.09%
Cd 226.502† 196150.1 0.5126 mg/L QC value within limits for Cd 226.502 Recover	0.00142	0.5126	mg/L	0.00142	0.28%
	0.0243	2.389	mg/L	0.0243	1.02%
	0.00302	0.5143	mg/L	0.00302	0.59%
Cu 324.752† 561905.5 1.190 mg/L QC value within limits for Cu 324.752 Recove:	0.0092	1.190	mg/L	0.0092	0.77%
Fe 238.863t 320371.3 5.282 mg/L QC value within limits for Fe 238.863 Recove:	0.0580	5.282	mg/L	0.0580	1.10%
( 404.721† 5102.6 Unable to evaluate QC.				26.36	0.52%
4g 279.077† 1029633.4 26.19 mg/L QC value within limits for Mg 279.077 Recove:	0.276 rv = 104.74%	26.19	mg/L	0.276	1.06%
In 257.610† 1282083.1 0.7472 mg/L QC value within limits for Mn 257.610 Recove:	0.00750	0.7472	mg/L	0.00750	1.00%
40 202.031† 131252.4 2.456 mg/L QC value within limits for Mo 202.031 Recove	0.0130	2.456	mg/L	0.0130	0.53%
Vi 231.604† 308889.8 2.059 mg/L QC value within limits for Ni 231.604 Recover	0.0313	2.059	mg/L	0.0313	1.52%
Na 330.237† 53836.5 29.51 mg/L QC value greater than the upper limit for Na 3	0.109	29.51 = 118.03	mg/L ¦≹	0.109	0.37%
20.353 14427.2 0.5270 mg/L QC value within limits for Pb 220.353 Recover	0.00702	0.5270	mg/L	0.00702	1.33%
Bb 206.836t         28724.1         5.023 mg/L           QC value within limits for Sb 206.836         Recover	0.0470	5.023	mg/L	0.0470	0.94%
Se 196.026† 3047.4 0.5263 mg/L QC value within limits for Se 196.026 Recover	0.01112 cy = 105.26%	0.5263	mg/L	0.01112	2.11%
In 189.927† 159365.6 5.246 mg/L QC value within limits for Sn 189.927 Recover	ry ≕ 104.91%		mg/L		
i 337.279† 1274582.7 2.494 mg/L QC value within limits for Ti 337.279 Recover	cy = 99.78%		mg/L		
1 190.801† 7794.6 1.015 mg/L QC value within limits for Tl 190.801 Recover			mg/L		0.07%
292.402† 666076.5 2.477 mg/L QC value within limits for V 292.402 Recovery			mg/L		0.85%
n 206.200† 320181.9 1.051 mg/L QC value within limits for Zn 206.200 Recover			mg/L		1.18%
a 227.546† 14961.3 26.18 mg/L QC value within limits for Ca 227.546 Recover	0.087 :y = 104.71%		mg/L		
r 460.733† 821641.6 3.179 mg/L QC value greater than the upper limit for Sr 4 C Failed. Continue with analysis.	0.0324 60.733 Recovery :		mg∕L %	0.0324	1.02%
equence No.: 125	Autosampler Locat		¤¤========	==========	
ample ID: CCB	Date Collected: #	8/14/201	0 12:10:51	AM	
nalyst: nitial Sample Wt: ilution:	Data Type: Origin Initial Sample Vo				
liution:	Sample Prep Vol:				
ean Data: CCB Mean Corrected Calib	· <b></b>		Sample		<b>_</b>
nalyte Intensity Conc. Units 371.029 7838770.3 0.8977 mg/L	Std.Dev.	Conc.	Units	Std.Dev.	RSD 0.04%
g 328.068† 392.7 0.0011 mg/L QC value within limits for Ag 328.068 Recover	0.00057		mg/L	0.00057	
1 308.215† -491.5 -0.0113 mg/L	-	-0.0113	mg/L	0.00102	8.96%

Method: AXIAL200-6010 L Opt4 Page 87 Date: 8/14/2010 12:16:50 AM

Method: AXIAL200-	6010 L Opt4	Pa	ige 87		Date: 8	/14/2010 12	2:16:50 AM
As 188.979†		0.0065 mg/L				0.00131	20.05%
B 249.772†		-0.0146 mg/L	0.00071	-0.0146		0.00071	4.84%
Ba 233.527†		0.0095 mg/L	0.00017	0.0095	mg/L	0.00017	1.77%
Be 313.107†	n limits for Ba 2 403.5	0.0001 mg/L	0.00001	0.0001	mg/L	0.00001	9.31%
Cd 226.502†		0.0002 mg/L	0.00001	0.0002	mg/L	0.00001	6.21%
Co 228.616†	n limits for Cd 2. 39.3 n limits for Co 2.	0.0003 mg/L	0.00057	0.0003	mg/L	0.00057	195.53%
Cr 267.716†	-88.3 n limits for Cr 2	-0.0004 mg/L	0.00001	-0.0004	mg/L	0.00001	1.55%
Cu 324.752†	1848.7 n limits for Cu 3	0.0040 mg/L	0.00014	0.0040	mg/L	0.00014	3.57%
Fe 238.863†	12123.3 er than the upper	0.2003 mg/L	0.00035	0.2003	mg/L alculated	0.00035	0.17%
K 404.721† Unable to eval	-3.5						782.54%
Mg 279.077†		-0.0109 mg/L 79.077 Recovery	0.00059 = Not calculate	-0.0109 ∋d	mg/L	0.00059	5.47%
Mn 257.610†		0.0003 mg/L	0.0000	0.0003	mg/L	0.00000	1.62%
Mo 202.031†	-2.1 n limits for Mo 2	0.0000 mg/L 02.031 Recovery	0.00026 = Not calculate	0.0000	mg/L	0.00026	831.73%
Ni 231.604† QC value withi	n limits for Ni 2	0.0002 mg/L 31.604 Recovery	= Not calculate	0.0002 ed	mg/L	0.00036	169.76%
QC value withi	734.5 n limits for Na 3	30.237 Recovery	0.01866 = Not calculate	ed	mg/L		
	n limits for Pb 2	20.353 Recovery		ed	mg/L		
QC value withi	20.4 n limits for Sb 2	06.836 Recovery	= Not calculate	ed	mg/L		
	n limits for Se 1			ed	mg/L		
QC value withi	n limits for Sn 1	89.927 Recovery		ed	mg/L		
Ti 337.279† QC value withi Tl 190.801†	n limits for Ti 3		= Not calculate	ed	mg/L		
	n limits for Tl 1			ed.	mg/L mg/L		
	n limits for V 29 144.6	2.402 Recovery :	= Not calculated	1	mg/L		
	n limits for Zn 2	06.200 Recovery -0.4729 mg/L	= Not calculate	d			
QC value withi Sr 460.7331	n limits for Ca 2: 207.5	27.546 Recovery 0.0008 mg/L	<pre>&gt; Not calculate 0.00022</pre>	ed 0.0008		0.00022	
	n limits for Sr 4	60.733 Recovery		ed		0.00022	27.020
	_					=======================================	
Sequence No.: 126			Autosampler Loca				
Sample ID: Sample	116		Date Collected:		.0 12:15:0	0 AM	
Analyst: Initial Sample Wt			Data Type: Origi Initial Sample V				
Dilution:	•		Sample Prep Vol:				
Mean Data: Sample							
<b>N N</b> 1	Mean Corrected	Calib	<b>.</b> . <b>.</b> -		Sample		
Analyte Y 371.029	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068†	7839471.4 236.2	0.8978 mg/L 0.0006 mg/L	0.00045 0.00057	0.0006	mcz/T.	0.00057	0.05% 88 10%
Al 308.215†	-627.9	-0.0145 mg/L		-0.0145		0.00178	12.25%
As 188.979†	7.1	0.0009 mg/L	0.00448	0.0009		0.00448 4	
B 249.772†	-4355.8	-0.0194 mg/L		-0.0194	- · .	0.00014	0.73%
Ba 233.527†		0.0081 mg/L	0.00017	0.0081	mg/L	0.00017	2.07%
Be 313.107†	-293.1	0.0000 mg/L	0.00000	0.0000			7.98%
Cd 226.502†	49.5	0.0001 mg/L	0.00004	0.0001			34.18%
Co 228.616†	-37.9	-0.0003 mg/L	0.00007	-0.0003	mg/L	0.00007	24.12%

Method: AXIAL200-6	010 L Opt4	Page	88	Date:	8/14/2010 12:16:59 A	M.
Cr 267.716†	-121.7	-0.0005 mg/L	0.00035	-0.0005 mg/L	0.00035 64.55%	
Cu 324.752†	627.9	0.0014 mg/L	0.00011	0.0014 mg/L	0.00011 8.31%	
Fe 238.863†	12667.3	0.2092 mg/L	0.00243	0.2092 mg/L	0.00243 1.16%	
K 404.721†	60.5	•		<b>C</b> .	10.11 16.71%	
Mg 279.077†	-771.2	-0.0197 mg/L	0.00246	-0.0197 mg/L	0.00246 12.44%	
Mn 257.610†	330.0	0.0002 mg/L	0.00007	0.0002 mg/L	0.00007 34.42%	
Mo 202.031†	-67.6	-0.0013 mg/L	0.00006	-0.0013 mg/L	0.00006 4.89%	
Ni 231.604†	3.4	0.0000 mg/L	0.00032	0.0000 mg/L	0.00032 >999.9%	
Na 330.237†	750.7	0.4126 mg/L	0.20277	0.4126 mg/L	0.20277 49.15%	
Pb 220.353†	-43.4	-0.0016 mg/L	0.00203	-0.0016 mg/L	0.00203 126.28%	
Sb 206.836†	11.1	0.0019 mg/L	0.00197	0.0019 mg/L	0.00197 100.87%	
Se 196.026†	24.9	0.0044 mg/L	0.00004	0.0044 mg/L	0.00004 1.03%	
Sn 189.927†	206.4	0.0068 mg/L	0.00021	0.0068 mg/L	0.00021 3.14%	
Ti 337.279†	-1026.8	-0.0020 mg/L	0.00011	-0.0020 mg/L	0.00011 5.26%	
Tl 190.801†	-9.9	-0.0013 mg/L	0.00283	-0.0013 mg/L	0.00283 220.69%	
V 292.402†	355.1	0.0013 mg/L	0.00021	0.0013 mg/L	0.00021 15.74%	
Zn 206.200†	787.5	0.0026 mg/L	0.00008	0.0026 mg/L	0.00008 3.08%	
Ca 227.546†	-298.9	-0.5063 mg/L	0.03202	-0.5063 mg/L	0.03202 6.32%	
Sr 460.733†	67.2	0.0003 mg/L	0.00020	0.0003 mg/L	0.00020 75.59%	

## **Preparation Information Benchsheet**

Prep Run#: 117216 Team: Metals/DKRAFTSCHIK Prep WorkFlow: MetDigAqICP Prep Method: EPA 3010A

Status: Prepped Prep Date/Time: 8/11/10 02:33 PM

#	Lab Code	Client ID	B#	Amt. Ext	Method /Test	pН	AE	BN	Final Vol	Sample Desc. (Initial/Final)	SpikeAmt./Inv. ID	Comments
	RQ1006608-01	мв		50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T, 6010B/Cu T, Pb T	ł			50.00mL	Colorless/Clear		HB#1, 95c
	RQ1006608-02	LCS		50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T, 6010B/Cu T, Pb T		<b>†</b>		50.00mL	Colorless/Clear	0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
3	R1004110-001	10MB007	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		IV
4	RQ1006608-03	R1004110-001 DUP	.08	50mL	200.7/Ca T, Fc T, K T, Mg T, Mn T, Na T	<2	Î		50.00mL	Colorless/Clear		· · · · · · · · ·
5	RQ1006608-04	R1004110-001 MS	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clcar	0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
6	R1004110-002	10MB008	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
7	R1004110-003	10MB009	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear	· · · · · · · · · · · · · · · · · · ·	
8	R1004110-004	10MB010	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T. Na T	<2			50.00mL	Colorless/Clear		
9	R1004110-005	10MB011	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		· · · · · · · · · · · · · · · · · · ·
10	R1004110-006	10MB012	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
11	R1004110-007	10MB013	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T. Na T	<2			50.00mL	Colorless/Clear		
12	R1004110-009	10MB001	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		· · · · · · · · · · · · · · · · · · ·
13	R1004110-010	10MB003	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear	· · · · · · · · · · · · · · · · · · ·	
14	R1004110-011	10MB005	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
15	R1004110-012	10MB004	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T. Na T	<2			50.00mL	Colorless/Clcar		
16	R1004110-013	10MB006	.08	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
17	R1004110-014	10MB015	.01	50mL	200.7/Ca T, Fe T, K T, Mg T, Mn T, Na T	<2			50.00mL	Colorless/Clear		
18	R1004141-001	OBLM20029	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		IV
19	R1004141-002	OBLM20030	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		
	R1004141-003	OBLM20031	.01	50mL	6010В/Си Т, РЬ Т	<2			50.00mL	Colorless/Clear	· · · · · · · · · · · · · · · · · · ·	
	R1004141-004	OBLM20032	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear	· · · · · · · · · · · · ·	
	R1004141-005	OBLM20033	.02	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear	<u></u>	
-	RQ1006608-05	R1004141-005 DUP	.02	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear	·····	
Û	RQ1006608-06	R1004141-005 MS	.02	50mL	6010B/Cu T, Pb T	<2			50.00mL		0.0500 mL/14325; 0.2500 mL/18636; 0.5000 mL/18110; 0.5000 mL/18111	
	R1004141-006	OBLM20034	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		
26	R1004141-007	OBLM20035	.01	50mL	6010B/Cu T, Pb T	<2			50.00mL	Colorless/Clear		· · · · · · · · · · · · · · · · · · ·

.

## Preparation Information Benchsheet

Prep Run#: 117216 Team: Metals/DF	KRAFTSCHIK	P	Prep WorkFlow: MetDigAqICP Prep Method: EPA 3010A		s: Prepped e: 8/11/10 02:33 PM
Name: Custom LCS	00 ug/mL Se STD A Metals STD B Metals /mL Sn	Inventory ID14325Inventory ID18110Inventory ID18111Inventory ID18636	Logbook Ref: M1780101E Logbook Ref: M5280003N Logbook Ref: M5280003O Logbook Ref: M5280004C	Expires On:06/18/2011Expires On:05/20/2011Expires On:05/20/2011Expires On:12/11/2011	Lot #: 0932008 Lot #: 10E127 Lot #: 10E127 Lot #: 09F131
Preparation Materia 1:1 HCl Metals Grade Thermometer Preparation Steps	als 1:1 HCl (15840) 287 (12953)	Hot Block Cu	ps Hot Block Cups (15844)	Nitric Acid Metals Grade HNO3 M52800	03P (18245)
Step:         Digestion           Started:         8/11/10 14:33           Finished:         8/12/10 10:13					

R C C	omments:		
		Spike Witness: SDEVITO	Date:
Î.	hain of Custody		-
Г		Date: 8/12/10 10:30 Extracts Examined	
	Relinquished By: DK	Date: $8/12/10$ $10730$ <u>Extracts Examined</u> Date: Yes No	
	Received By: <u>R-A01</u>	Date.	

By:

DKRAFTSCHIK

AXIAL OPTIMA #3 CALIBRATION STANDARD #1 / RADIAL OPTIMA #1 Calibration Standard #2 (Standard is prepared weekly or as necessary)

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot #	Expiration Date	Pipet ID
Cal Std. 1 Int.	AL	m5350138A	20.0	1.00	1000	0.020	2%HNO3	DCB 8/3/10	A	~5280003P	~5280005A	8/10/10	mis mac
	AS		5.00			0.0050	5%HCl	Den 8/11/10	B	~5280003P	M528U005 A	8/18/10	
	CD		1.00			0.00 <b>6</b> 0	10		С				
	СО		3.00			0.0030	Dur		D				
	CR '		1.00	]		0.0010	]		E				
	NI		5.00			0.0050			F				
	PB		5.00	]		0.0050			G				
	SE		5.00			0.0050			Н				
	v		3.00			0.0030			I				
Cal Std. 1	CA	m 5280005E	5000	0.100		0.500			J				
·	K		5000			BELOW			K				
	MG		5000			0.500			L				
	NA		5000	1		0.500			M				
Single Element	BA	m17500960	1000	0.020		0.020			N				
	CU	m 17800%D	1000	0.010		0.010			0			<u> </u>	
	к	m 1780097 15	10000	0.150		2.00			P				
	MN	m52100026	1000	0.010		0.010			Q				
ĺ	MO	m 17801016	1000	0.025		0.025			R				
	SB	m 52800031	1000	0.010		0.010			S	<u> </u>			
	TL	m 17800971	1000	0.010		0.010			T				
	ZN	m S18000IAA	1000	0.010		0.010			U				
								· · · · · · · · · · · · · · · · · · ·	V				
									W				
									х				
									Y				

Z

# OPTIMA 5300DV (#3) / AXIAL (#2) CALIBRATION STANDARD #4 / HLCCV1 (Standard is prepared weekly or as necessary) (CALIBRATION STANDARD #2 IS A 1/100 DILUTION OF THIS STANDARD) (CALIBRATION STANDARD #3 IS A 1/5 DILUTION OF THIS STANDARD)

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot #	Expiration Date	Pipet ID
Cal Std 1	CA	M2280003E	5000	2.00	200	50.0	2%HNO3	8) 7/30/10	A	MSLBODO3P	M5080005A	8/6/10	424
1	MG		5000			50.0	5%HCl	DCR 8/6/10	В	m5280003P	~5280005A	8/13/10	m24
	K		5000			50.0		x selutio	C	~ Satocosp	m5280005A	8/18/10	m24
	NA		5000			50.0			D				
Cal Std 2	AG	M\$280003F	100	2.00		1.00			E				
	CR		100			1.00			F				
	MN		150			1.50			G				(
	NI		400			4.00			H				
	ZN		200			2.00			I				
Cal Std 3	AL	M5280003G	2000	2.00		20.0			J				
	BA		2000			20.0			K				
-	BE	_	50			0.500	]		L				
	CO		500			5.00	ļ		M				
	CU		250			2.50			N				
	FE		1000			10.0			0				
	V		500			5.00			P			ų.	
Cal Std 4	AS	M5280004D	100	4.00		2.00			Q				
	CD		50			1.00			R				
	PB		50			1.00			S				
	SE	-	50			1.00	ļ		T				
	TL		100	 	ł	2.00			U			r.	
Single	SB	M52800031	1000	2.00		10.0			v				
Metals	SN	M528-1780101P	1000	2.00	1	10.0			W				
	B	M1780101B	1000	1.00	4	5.00		l 	x				
	MO	M1780101C	1000	1.00	ļ	5.00			Y	1			
	TI	M1780101D	1000	1.00	ļ	5.00	1						
	SR	M52800016	1000	1.00		5.00			AA			1	

à	i	L14	<u>ن</u> اا	L	<u> </u>

## OPTIMA 5300DV (#3) / AXIAL (#2) ICV/CCV (Standard is prepared daily)

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid Lot #	Pipet ID
Cal Std 1	CA	m 523003Q	5000	1.00	200	25.0	2%HNO3	DCB elialia	A	m5280003P	m5280005 A	m24m23
	MG		5000			25.0	5%HCl	Der stistio	В	m5286003 A	m5280005A	mig
	К		5000			25.0			C			
	NA		5000			25.0			D			
Cal Std 2	AG	~ 52800D 3D	100	1.00		0.500			E			+
	CR	· ·	100	]		0.500	]		F			
	MN	]	150			0.750			G			-
	NI		400			2.00		-	Ħ			
	ZN		200			1.00			I		+	
Cal Std 3	AL	m52800054	2000	1.00		10.0			J			
	BA		2000	1		10.0			К			
	BE	]	50			0.250						
	CO		500			2.50			M			
	CU		250			1.25			N			
	FE		1000			5.00			0			
	v		500	1		2.50		· · · · · · · ·	P			
Cal Std 4	AS	m 5280004X	100	2.00		1.00			Q			
	CD		50			0.500			R			
	PB		50			0.500			s			<u> </u>
	SE		50			0.500			Т			
	TL	1	100			1.00			U			
Single	SB	M1780101F	1000	1.00		5.00			v			
Metals	SN	m5280004c	1000	1.00		5.00			W			
	В	m1780/00A	1000	0.500		2.50			X			
	MO	m52800025	1000	0.500		2.50			Y			<u> </u>
	TI	m1780100B	1000	0.500		2.50		┝━────┤	Z			<u> </u>
	SR	M52800056	1000	0.500		2.50			AA	·····		┼━╌──

0042

	Metal	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	Letter ID	Nitric Acid Lot#	Hydrochloric Acid	Expiration Date	Pipet ID
Cal Std 2	AG	M328003F	100	2.00	100	2.00	2%HNO3	5)7/30/10	A	MSLBOUGP	Lot# MSL80057A	01	1124
	CR		100			Below	5%HCl	Des 8/12/10	B	······		8/13/15	124 M26
	MN		150	1 .		Below		LCIS 8/12/10	C	M5230003P	-5280005A	8/20/10	
	NI		400			8.00			D		<u> </u>		┼
	ZN	]	200			4.00			E			 	
Cal Std 3	AL	MSL80003G	2000	2.00		Below		· · · · · · · · · · · · · · · · · · ·	F				<b> </b> -
	BA		2000			40.0			G		· · · · · · · · · · · · · · · · · · ·		
	BE		50			1.00			H				
	CO, V		500			10.0		<u></u>	I				
	CU		250			5.00			J		<u> </u>		
	FE	-	1000			Below			K				<u> </u>
Cal Std 4	AS, TL	MS280004D	100	4.00		4.00			L	<u> </u>			<u> </u>
	CD, SE		50			2.00			M				
	PB		50			Below			N				
Single	B	MINSCIOIB	1000	1.00		10.0			0				
Metals	MO	M1780101C	1000	1:00		10.0			P				
<u> </u>	TI	M1780101)	1000	1.00		10.0			Q		······································	J.	
	SR	MS280001G	1000	1.00		10.0			R				
	CA	M\$280002E	10000	2.50		250			S				
	MG	MSZ80002F	10000	5.00		500			T		· · · · · · · · · · · · · · · · · · ·		
	NA	MS280004N	10000	1.00	-	100		·	U				
j.	CR	M1780101Q	1000	0.800		10.0			V				
) ) )	FE	M1780097V	10000	0.800	ŀ	100			w				
	AL	MSJ80002T	10000	4.60	•	500			X				
ji	MN	M5280002G	1000	0.700	ŀ	10.0			Y				
	PB	MS280004M	1000	0.800	ŀ	10.0			Z				

## **OPTIMA 5300DV (#3) - HLCCV2 (Standard is prepared weekly or as necessary)**

1... ٩., ۱.... **.**.... ___¥ المسيسة المسيسة i.____# ___ł _1 _i ί... 1 Æ.

## OPTIMA 5300DV (#3) MRL

	METAL	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	ID Letter	Nitric Acid Lot #	Hydrochloric Acid Lot #	Exp. Date	Pipet ID
Cal	CA	M5280003E	5000	0.200	1000	1.00	5% HCL	SD 7/30110	A	M5280003P	MSCRODUSA		Milly
#1	ĸ		5000	(		1.00	2%HNO3	0.2 //30/13	В	P132300031	MISCICOUM	1/30/u	
	MG	1	5000			1.00			с			- <u> </u>	
ĺ	NA	1	5000			1.00							
Cal	CR	MS280003F	100	0.100		0.0100			E				+
#2	AG		100	J		0.0100			F				
	MN	1	150			0.0150			G	· ···			+
	ZN		200			0.0200			н				
ſ	ŇI		400			0.0400			I		· · · · · · · · · · · · · · · · · · ·		<u>-</u>
Cal	AL	M32800036	2000	0.100		0.200			J				
#3	BA		2000	J		0.200		 	- к		<del></del> , <u>, , , , , , , , , , , , , , , , , </u>		
	FE	1	1000			0.100			L		······		
	СО	-	500			0.050			M				
Ì	v		500			0.050			N				
ŀ	CU		250			0.025			0				
	BE		50			0.00500			P			<u>-</u>	
Cal	CD, PB, SE	M5280004D	50	0.20		0.0100			Q				
#4	AS, TL		100			0.0200			R				+
PQL	В	M5280002D	200	1.00		0.200			Т				
#2	МО		25	<b>نے</b> ۔۔۔۔ا		0.0250			U			·	
	SN		500			0.500			v				+
	TI	-	50			0.050			W				
Single	SB	M52800031	1000	0.060		0.060		·	X	·			<u>+</u>
Stds	SR	M52800016	1000	0.100		0.100			Y				<u> </u>
/		1	·						Z				┨─────

Element	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	ID Letter	Nitric Acid Lot #	Hydrochloric Acid Lot #	Expiration Date	Pipet ID
Int. A Sol'n	m5280004A	·Multi	50	1000	Multi	5% HCL	DCB 6/17/10	A	~ 5280002]	~5280002P	01/11/10	
AL		5000	* 10	200	250	2%HNO3	* DCA 6/23/10	В	m 5280002 j	-SLY0002F	12/23/10	
CA		5000	-		250	* 15%.HNO3		C	· · · · · · · · · · · · · · · · · · ·			
FE		2000			100		DCA 7/15/10	D	m5280003 P	m5280002P	ilistu	 
MG	,	5000			250			E			·	-
	]	L	J			]		F				 
								G				ļ
				•								ļ <u> </u>
												ļ
								J				
								K				
								L				
								M			1	
	-							N				
								0				
								Р				
								Q				
								R	<u>}</u> .			
								S	h			
								T			• • • • • • • • • • • • • • • • • • •	
								v				

## **OPTIMA #3 ICSA STANDARD**

۲.,

...1

 1-----

 1____

A....

۹.....

### **OPTIMA #3 ICSAB STANDARD**

Element	CAS Lot #	Conc. (ppm)	Vol. (mls)	Final Vol. (mls)	Final Conc. (ppm)	Matrix	Analyst/ Date	ID Letter	Nitric Acid Lot #	Hydrochloric Acid Lot #	Expiration Date	Pipet ID
Int. A Sol'n	m 5280004 p	Multi	25 ·	500	Multi	5 % HCl	XB 8/6/10	A	m5280003p	~5280005A	2/4/11	
AL		5000			250	2%HNO3	20 010110	В		·~3#80005A	210/11	
CA		5000			250			С				
FE	•	2000			100			D				┣━────┤
MG		5000			250			E				<u>+</u>
Int. B Sol'n	m 52800040	Multi	5		Multi		<u> </u>	F				
AG		20			0.200			G			· · · · ·	
BA		50			0.500			H				
BE		50			0.500			I				
CD		100			1.00			J	·			
CO		50			0.500			K		· · · · · · · · · · · · · · · · · · ·		<b> </b> ]
CR		50			0.500			L				<u>  </u>
CU		50			0.500			M				<b> </b>
MN		50			0.500			N		·····	 	<b> </b>
NI		100	,		1.00			0	· · · · · · · · · · · · · · · · · · ·			<u>  </u>
PB		5			0.0500			Р			<u> </u>	<u> </u>
V		50			0.500			Q				
ZN		100			1.00			R				
AS		10			0.100			S				
SB		60			0.600			Т				
SE		5			0.0500			U				
TL		10			0.100			V				

f

0128

.

<u>OPTIMA</u>	INTERNAL	STANDA	RD (ADDE)	D ON-LINE)

Metal	CAS Lot #	Conc.	Vol.	Final	Final	Matrix	Analyst/	Letter	Nitric	Hydro-	Expiration	Pipe
		(ppm)	(mls)	Vol.	Conc.		Date	ID	Acid Lot #	chloric Acid	Date	<b>D</b>
				(mls)	(ppm)					Lot #		
Y	5280003 J	10000	2.0	2000	10.0	5 % HC1 2%HNO3	6/29/10 203	Α	m5180003f	m5280002P	12/24/10	1724
CS	M5280003KK	10000	2.0	J	10.0		507/6/10	В	MSZ8003P	MS280002P	1/6/10	May
	Sonlyin	-	-				DCA 7/8/10	С	~5280003P	M5180002P	118/11	1m24
							DLA 1/14/10	D	m5280003P	m52800C2P	ilitin	miy
							DLB 7/15/10	E	m5280003P	m 5280002P	stista	may
							Des 7/20/10	F	m5280003P	~512002P	1/20/11	mrd
							ICO 7/20/10	G	m5280003 F	m5280002P	1/2.111	mzy
							DCA 7/23/20	H	m528003P	m 5280005A	1/25/11	m24
							507/27/13	I	M52800030	MSZ80005A	1/27/0	Mac
							DCA 8/5/10	J	M52POUSP	MS28000SA	2/5/11	m24
							DCB8/5/10	K	~5280003 P	MS280005A	2/5/11	m24
							DCA 8/9/10	L	m 5280003P	~ 5280005A	2/4/11	mzy
								M				
				•				N			:	
								0				
								P				
								Q				
								R				
								S				
								<u> </u>			· .	
								V	li			

#### **APPENDIX E**

#### DATA VALIDATION

PROJECT NAME/NO.	OB Grounds LTM Round 5
SDG:	<u>R1004141</u>
FRACTION:	metals (copper and lead)
LAB:	CAS
MEDIA:	Groundwater

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	No	Temp > 4° C	The cooler temperature was 6° C upon receipt by the laboratory. All samples were received in good condition based on the laboratory login report. Sample pH was below 2. Holding time met criteria. No action was taken on elevated temperature since it was < 10° C.	No
Calibration	Yes		Calibrations available, taken every ten samples, and within recovery limits (90-110%) for metals. Initial calibration R2 >0.99.	No
Blanks (method blank, prep blank)	No	Cu > MDL but < RL	ICB analyzed for Copper and Lead and detected Cu (5.014 ug/L) but < RL (20 ug/L). CCB analyzed for Cu and Pb every ten samples, all samples were less than the reporting limits (i.e., IDLs) for Lead. Copper was detected in all the CCBs ranging from 3.22 ug/L to 9.367 ug/L, but was < RL. Qualify all project sample Copper results as U and raise to the CRDL. Copper or lead was not detected in the preparation blank. No rinsate blank was collected for this SDG.	Yes
Interference Check Sample	Yes		Met requirements (80-120%) for Copper and Lead.	No
CRQL Standard	Yes		Initial and final CRQL Check Standards had recoveries within 70-130% for copper and lead. No action was taken.	No
Laboratory Control Sample	Yes		LCS results within limits (i.e., 80-120%) for copper and lead, no action was taken.	No
Duplicates	YES		Laboratory duplicate analysis was conducted for OBLM20033. Copper or lead was not detected either in the sample or the sample duplicate. A field duplicate pair (OBLM20033 and OBLM20034) was collected for this SDG. Copper and lead were detected in the duplicate sample but not the parent sample. No action was taken since the absolute difference between the results was < CRDL.	No
Spike Sample Analysis	YES		Spike analysis was conducted for OBLM20033 and the spike results were within 75%-125% limits. Post digest spike results for OBLM20033 were also within the 75%-125% limits.	No
ICP Serial Dilution	YES		ICP serial dilution was conducted for OBLM20033. As copper or lead was not detected in the original sample above the reporting limts, no action was taken.	No
Detection Limits	YES		IDL's available used as reporting limits. IDLs of copper and lead are less than CRDLs. No action was taken.	No
ICP Linear Range	YES		All results within the ICP linear range.	No