

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 12, 2012

Mr. John Nohrstedt U.S. Army Corps of Engineers Engineering and Support Center, Huntsville Attn: CEHNC-ED-CS-P 4820 University Square Huntsville, AL 35816-1822

SUBJECT: Draft 2011 Long-Term Monitoring Annual Report for the Open Burning (OB)

Grounds, Seneca Army Depot Activity; Contract W912DY-08-D-0003, Task Order

0008

Dear Mr. Nohrstedt:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft 2011 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, New York. This work was performed in accordance with the Scope of Work for Task Order 0008 under Contract No. W912DY-08-D-0003. This report provides a review of long-term monitoring completed during 2011 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

Enclosures

cc: S. Absolom, SEDA

R. Battaglia, USACE, NY District

K. Hoddinott, USACHPPM

PARSONS

100 High Street • Boston, Massachusetts 02110-1713 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

March 12, 2012

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, NY 10007-1866

Mr. Kuldeep K. Gupta, P.E. New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Remedial Bureau A, Section C 625 Broadway Albany, NY 12233-7015

Mr. Mark Sergott Bureau of Environmental Exposure Investigation, Room 300 New York State Department of Health 547 River Street, Flanigan Square Troy, NY 12180

SUBJECT: Draft 2011 Long-Term Monitoring Annual Report for the Open Burning (OB)

Grounds, Seneca Army Depot Activity; Contract W912DY-08-D-0003, Task Order

0008

Dear Mr. Vazquez/Mr. Gupta/Mr. Sergott:

Parsons Infrastructure & Technology Group Inc. (Parsons) is pleased to submit the Draft 2011 Long-Term Monitoring Annual Report for the Open Burning (OB) Grounds (SEAD-23) at Seneca Army Depot Activity (SEDA) in Romulus, New York (EPA Site ID# NY0213820830 and NY Site ID# 8-50-006). This report provides a review of long-term monitoring completed during 2011 and provides recommendations for future long-term monitoring at SEAD-23.

Parsons appreciates the opportunity to provide you with the Annual Report. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

Enclosures

cc: J. Nohrstedt, USACE, Huntsville

K. Hoddinott, USACHPPM

S. Absolom, SEDA R. Battaglia, USACE, NY

M. Powers, TechLaw

US Army, Engineering & Support Center Huntsville, AL

00496

Seneca Army Depot Activity Romulus, NY

DRAFT LONG-TERM MONITORING ANNUAL REPORT 2011

OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS

MARCH 2012

DRAFT

2011 LONG-TERM MONITORING ANNUAL REPORT

FOR THE OPEN BURNING GROUNDS SENECA ARMY DEPOT ACTIVITY, ROMULUS, NEW YORK

Prepared for:

U.S. ARMY, CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE, ALABAMA

and

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared by:

PARSONS

100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order No. 0008 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

TABLE OF CONTENTS

Table	of Conte	ents	i
List of	Tables		ii
List of	Figures	S	ii
List of	Append	lices	iii
1.0	INTR	ODUCTION	1-1
	1.1	Long-Term Monitoring Activities	1-1
2.0	SITE	BACKGROUND	2-1
	2.1	Site Description	2-1
	2.2	Site Geology and Hydrology	2-1
	2.3	Summary of the Remedial Action	2-2
3.0	LONG	G-TERM GROUNDWATER MONITORING	3-1
	3.1	Groundwater Elevations	3-2
	3.2	Analytical Data	3-3
4.0	SOIL	COVER INSPECTION	4-1
	4.1	August 2010	4-1
	4.2	October 2011	4-1
5.0	REED	ER CREEK INSPECTION	5-1
	5.1	April 2009	5-1
	5.2	August 2010	5-1
	5.3	October 2011	5-2
	5.4	Inspection Observations	5-3
6.0	LONG	G-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS	6-1
7.0	REFE	RENCES	7-1

LIST OF TABLES

Table 1 Site-Specific Cleanup Goals for Groundwater
 Table 2 Groundwater Elevation Data
 Table 3 Summary of COCs in Groundwater
 Table 4 Soil Cover Inspection Log

LIST OF FIGURES

Figure 1	SEDA Site Map and AOC Location
Figure 2	Open Burning Grounds Site Map
Figure 3	Historic Groundwater Contours with October 2011 Elevations
Figure 4	Groundwater Elevation Profile
Figure 5	Concentrations of Lead and Copper at MW23-1
Figure 6	Concentrations of Lead and Copper at MW23-2
Figure 7	Concentrations of Lead and Copper at MW23-3
Figure 8	Concentrations of Lead and Copper at MW23-4
Figure 9	Concentrations of Lead and Copper at MW23-5
Figure 10	Concentrations of Lead and Copper at MW23-6
Figure 11	Open Burning Grounds Soil Cover Areas and Well Locations
Figure 12	Reeder Creek Inspection Photo Locations (October 2011)

March 2012 Page ii

Е

LIST OF APPENDICES

A	Open Burning Grounds Round 6 Field Forms
В	Field Log of October 2011 Reeder Creek Inspection
C	Reeder Creek Inspection Photos (October 2011)
D	Laboratory Report

Data Validation

March 2012 Page iii

1.0 INTRODUCTION

This Annual Report has been prepared by Parsons Infrastructure & Technology (Parsons) on behalf of the United States Army Corps of Engineers, Engineering and Support Center – Huntsville (USAESCH) and the Seneca Army Depot Activity (SEDA or the Depot) to provide a review of the long-term monitoring (LTM) activities conducted during 2011 for the Open Burning (OB) Grounds (the Site) located at SEDA in Seneca County, New York; and to provide recommendations for future LTM at the Site.

The Record of Decision (ROD) for the OB Grounds, was signed in 1999, and presented the selected remedy for addressing potential exposure to elevated levels of metals, specifically lead and copper, in the Site soils and the sediments of the adjacent Reeder Creek (Parsons, 1999). The remedy specified in the ROD is described in **Section 2.3**.

Presently, quantitative monitoring of sediment quality (i.e., submitting samples for copper and lead analysis as identified in the approved remedy for the Site in the ROD) is not included as part of the LTM activities, and is discussed in further detail in **Section 1.2**. In accordance with the approved remedy as presented in the ROD, the current LTM activities at the Site include the following three components:

- The annual collection and analysis of groundwater samples for analysis of lead and copper concentrations;
- The inspection of the vegetated, compacted soil cover that has been constructed over interred lead-contaminated soil as part of the Site remedial actions in order to assess if erosion or breaching of the protective cover has occurred, which could result in the potential migration of contaminated soil; and
- The inspection of Reeder Creek where the Creek abuts the OB Grounds to evaluate the potential for inward migration and redeposition of soil from the OB Grounds.

This report presents and summarizes the results of the most recent annual LTM event and provides recommendations for future long-term monitoring at the OB Grounds.

1.1 Long-Term Monitoring Activities

The OB Grounds LTM activities are being performed in accordance with the "Long-Term Monitoring Plan for the Open Burning Grounds, Final" (LTM Plan) (Parsons, 2007). Long-term monitoring activities include the collection of groundwater quality data to monitor the effectiveness of the implemented remedy at the Site for preventing future impacts to groundwater at the OB Grounds and to sediments in Reeder Creek. Additionally, monitoring of the vegetated compacted soil cover placed over the buried soils at the OB Grounds is required to assure the long-term integrity of the soil cover, including the potential mobilization and migration of lead-contaminated soil buried beneath the cover; and to prevent

direct contact with, and incidental ingestion of, soils containing lead at concentrations up to 500 mg/kg by terrestrial wildlife at the Site.

Part of the OB Grounds LTM program includes a qualitative assessment (i.e., visual inspection) of the Creek for evidence of migration of material via surface water flow or groundwater transport of contaminants into the remediated section of Reeder Creek adjacent to and downgradient of the OB Grounds. The visual inspection consists of walking the Creek bed (or embankment) to look for evidence of soil erosion or sloughing from the Creek embankment adjacent to the OB Grounds and/or the accumulation of sediment along the stream bed. Additionally, groundwater transport of contaminants is monitored by the annual groundwater sampling of the OB Grounds wells. Presently, quantitative monitoring of sediment quality (i.e., submitting samples for copper and lead analysis as identified in the approved remedy for the Site in the ROD) is not included as part of the LTM activities; the U.S. Army Corps of Engineers (Army), the U.S. Environmental Protection Agency (EPA), and the New York State Department of Environmental Conservation (NYSDEC) agreed that until data indicated that either groundwater transport of contaminants or soil transport from the OB Grounds was occurring, sampling and analysis of Creek sediments would not be required.

When the Army began LTM at the OB Grounds site, it was scheduled to occur on a quarterly basis. The first round (Round 1) of post-remedial action LTM was conducted between November 21, 2007 and November 28, 2007. The OB Grounds cover was first inspected on January 11, 2008. The results of the first LTM event were presented in a technical memo submitted on January 25, 2008. The second round (Round 2) of LTM sampling and cover inspections was completed between February 25, 2008 and February 26, 2008. The results of the second LTM event were presented in a technical memo submitted on May 19, 2008. The third round (Round 3) of LTM sampling and cover inspections was completed between May 20, 2008 and May 21, 2008. The results of the third monitoring event were presented in a technical memo submitted on September 16, 2008. The fourth round (Round 4) of groundwater sampling and cover inspections was completed between August 25, 2008 and August 26, 2008. The results of the fourth monitoring event were presented in a technical memo submitted on November 13, 2008. A fifth round (Round 5) of groundwater sampling and cover inspections, including an inspection of Reeder Creek, was completed between October 3, 2011 through October 6, 2011. The results of the fifth monitoring event were presented in the Draft Final 2010 Long-term Monitoring Annual Report for the Open Burning grounds, Seneca Army Depot Activity, Romulus, New York prepared by Parsons (March 2011).

The results of the first four LTM events were combined and summarized in the OB Grounds LTM Annual Report and Year One Review; this document, initially submitted as a draft in December 2008, recommended changing the frequency of monitoring from quarterly to annually. In February 2009, the Army received preliminary comments from the EPA that indicated monitoring of Reeder Creek was required per terms of the OB Grounds ROD, and questioned why the results of such inspections had not been reported. The EPA also indicated that they did not concur with the Army's recommended change in monitoring frequency, and requesting that monitoring be conducted twice a year, once in the spring and

again in the fall. The New York State Department of Environmental Conservation provided additional comments on the draft report in March 2009, indicating that they also believed that inspection of Reeder Creek was required but that they had no objection to the decrease in monitoring frequency from quarterly to annual.

The Army authorized the performance of an inspection of Reeder Creek as a result of these comments, but this work was delayed until April 2009 when safe access could be gained into the portion of Reeder Creek that is adjacent to the OB Grounds. The observations and conclusions of this inspection were then appended to subsequent versions of the OB Grounds Report (i.e., draft final, final). However, resolution of the approved monitoring frequency was not finalized until February 2010, once the final OB Grounds Report was approved by the EPA and NYSDEC and all parties agreed to an annual monitoring event frequency. Long term monitoring of the OB Grounds was also disrupted due to the expiration of the Army's ordering period under the contracting vehicle used to perform the original work. Due to the uncertainty associated with the requirements and frequency of the monitoring, the Army could not provide necessary funding and contract authorizations until an agreement was reached amongst all parties. The new contract vehicle and funding were awarded for the continuation of the work in May 2010. The fifth LTM round for the OB Grounds was performed between August 2 and August 5, 2010, and the sixth round was performed between October 3 and October 6, 2011. This Annual Report presents the results of this sixth monitoring event, or Round 6, completed in October 2011.

2.0 SITE BACKGROUND

2.1 Site Description

The Depot is a 10,587-acre former military facility located in Seneca County in the towns of Varick and Romulus, New York (**Figure 1**), and was owned by the United States Government and operated by the Department of the Army between 1941 and 2000. In 2000, the Army closed the Depot and assumed a care-takers role over the property, pending the closeout of its continuing environmental obligations and the leasing or transfer of property to other public or private parties for beneficial reuse purposes. Since 2000, more than 8,250 acres of land have been transferred to other parties.

The Depot is located between Seneca Lake and Cayuga Lake and is bordered by sparsely populated farmland and New York State Highway 96 to the east, by New York State Highway 96A to the west, and by sparsely populated farmland to the north and south. The OB Grounds is located in the northwestern portion of the Depot, as shown in **Figure 1**, where the planned future use of the land is currently designated for conservation purposes. As situated, the OB Grounds sit a minimum of 1,780 feet away from the nearest Depot boundary, which is located to the west of the area of concern (AOC). The OB Grounds site sits on gently sloping terrain (**Figure 2**), and is bounded on the east by Reeder Creek, a perennial creek that is generally less than 1 foot deep and which eventually flows into Seneca Lake as shown on **Figures 2** and **3**. The quality of surface water in Reeder Creek has been designated by the State of New York as a Class C water body (best usage of fresh water is fishing; the waters shall be suitable for fish propagation and survival). Seneca Lake is located approximately 10,000 feet west of the OB Grounds site and is used as a source of drinking water for numerous surrounding communities and the Depot.

The OB Grounds is vegetated with grass and brush and there are no permanent structures within the area other than small concrete bunkers and a metal garage structure. The former Open Detonation Area (SEAD-45) is located immediately north of the OB Grounds, and the former Explosive Ordnance Disposal Area (SEAD-57) is located approximately 4,000 to 5,000 feet south of the former OB Grounds. A Site plan of the former OB Grounds prior to the removal of contaminated soil is provided as **Figure 3**. The OB Grounds was historically used for surface burning of explosive trash and propellants.

2.2 Site Geology and Hydrology

The stratigraphy of the OB Grounds generally consists of between 2 and 10 feet of glacial till underlain by a zone of weathered bedrock (shale). The depth to groundwater in the till/weathered shale aquifer varies seasonally between approximately 2 and 7 feet below the ground surface. Infiltration of precipitation is the sole source of groundwater for the overburden aquifer and the direction of the groundwater flow in the till/weathered shale aquifer at the OB Grounds is generally to the east towards Reeder Creek as shown in **Figure 3**.

Historic groundwater elevation monitoring in wells located at the OB Grounds prior to the remedial action indicated the presence of a groundwater divide near the western edge of the Site. The approximate location of the apparent groundwater divide found in April 1993 is highlighted on **Figure 3** and represents a high point of the upgradient groundwater flow regime. The divide diverts a portion of the groundwater to the west, away from Reeder Creek, which lies to the east of the divide. Historic sampling results from wells located west of the identified divide suggest that the quality of groundwater has not been impacted by soils at the OB Grounds.

Pre-remedial action surface water drainage from the OB Grounds was primarily to the east-northeast via a series of man-made drainage ditches, culverts, and spillways to Reeder Creek. During the remedial action, many of the drainage ditches and culverts were destroyed or filled, altering the surface flow patterns. Additionally, the historic surface water spillways connecting the OB Grounds and Reeder Creek were plugged during the remedial action to prevent surface overflow to the creek.

Little of the current storm event runoff impacting the former OB Grounds reaches the creek via overland flow because it is captured in one of the numerous, localized topographic lows that are scattered throughout the AOC. The topographic lows result from the soil removal and interment remedial action performed at the AOC. The captured storm water subsequently infiltrates into the soil or evaporates.

2.3 Summary of the Remedial Action

The remedy specified in the ROD for the OB Grounds included:

- Removal of the berms surrounding the historic burn pads;
- Removal of at least 1 foot of all soils;
- Placement of a 9-inch vegetative cover over any soils with lead concentrations greater than 60 mg/kg, but less than or equal to 500 mg/kg;
- Excavation of sediments in Reeder Creek with elevated levels of copper or lead; and
- Implementation of a monitoring program for groundwater, sediment, and the capped areas.

The first four of these required remedial actions were conducted between June 1999 and May 2004 by Weston Solutions Inc. The long-term monitoring component of the remedy is currently being implemented by Parsons, with groundwater monitoring at the Site commencing in November 2007, and inspections of the cover commencing in January 2008.

The overall objectives of the OB Grounds LTM program is to monitor the effectiveness of the remedial action completed at the Site with respect to preventing future groundwater quality deterioration and the erosion or breaching of the vegetated soil cover. The purpose of the soil cover is to (1) prevent incidental contact and ingestion of contaminated soil left in place at the Site, and (2) prevent the potential

mobilization and migration of lead-contaminated soil interred beneath the cover. In addition to assessing the quality of Site groundwater and the integrity of the cover, the results of the periodic monitoring will be used to assess the need for the design and implementation of any sediment monitoring program that may subsequently be needed to assess potential Site impacts to the sediment quality found in Reeder Creek per the requirements set forth in the ROD.

3.0 LONG-TERM GROUNDWATER MONITORING

The four initial rounds of groundwater monitoring conducted at the OB Grounds from November 2007 to August 2008 were reported in the Final OB Grounds Long-Term Monitoring Annual Report and One Year Review (Parsons, 2009). The results for Round 5, which was conducted in August 2010, was reported in the Draft Final 2010 Long-Term Monitoring Annual Report for the Open Burning Grounds, Seneca Army Depot Activity, Romulus, New York (Parsons, March 2011). Round 6 was completed between October 3 and October 6, 2011. Six monitoring wells (MW23-1, MW23-2, MW23-3, MW23-4, MW23-5, and MW23-6), which were installed in 2007 to replace the historic monitoring well network that existed at the Site prior to the remedial action, were gauged and sampled as part of these monitoring events.

Monitoring dates are summarized as follows:

- Round 1 was completed between November 21, 2007 and November 28, 2007;
- Round 2 was completed between February 25, 2008 and February 26, 2008;
- Round 3 was completed between May 20, 2008 and May 21, 2008;
- Round 4 completed between August 25, 2008 and August 26, 2008;
- Round 5 was completed between August 2, 2010 and August 3, 2010; and
- Round 6 was completed on between October 3 and 6, 2011.

The results of this most recent round are presented in this Report.

For each sampling round conducted at the OB Grounds, groundwater samples were collected using low-flow sampling techniques. Sampling procedures, sample handling and custody, holding times, and collection of field parameters were conducted in accordance with the Final Sampling and Analysis Plan for Seneca Army Depot Activity(SAP)" (Parsons, 2005).

Groundwater samples and groundwater elevation measurements were collected from the six wells located at the OB Grounds during each of the six monitoring events. Groundwater samples for the recent event were collected and submitted to Katahdin Analytical Services in Scarborough, Maine for the analysis of total copper and total lead by USEPA SW846 Method 6010C. Note that previous rounds were submitted to Columbia Analytical Services (CAS) in Rochester, New York for the analysis of total copper and total lead by USEPA SW846 Method 6010B. Analytical results reported for copper and lead were compared to Site-specific action levels as defined in **Table 1**.

Groundwater quality parameters listed below were measured and recorded prior to sample collection and the groundwater samples were collected once parameters had stabilized within 10 percent:

pH

- Dissolved oxygen (DO)
- Temperature

- Oxidation/reduction Potential (ORP)
- Conductivity
- Turbidity

The pH, ORP, conductivity, and temperature of the groundwater were measured with a Horiba U-22 water quality meter, turbidity was measured with a LaMotte 2020 Turbidity Meter, and DO content was measured with an YSI 85 Dissolved Oxygen Meter. Field parameters were measured approximately every five minutes to assess when the well was adequately purged and the groundwater conditions had stabilized prior to sample collection, and to assess macro-groundwater quality.

3.1 Groundwater Elevations

Groundwater levels were recorded on November 20, 2007 (Round 1), February 25, 2008 (Round 2), May 20, 2008 (Round 3), August 25, 2008 (Round 4), August 2, 2010 (Round 5), and October 3, 2011 (Round 6). **Table 2** presents groundwater elevation data collected during the six monitoring events. **Appendix A** provides the field form documenting groundwater elevations measured prior to the collection of groundwater samples during the Round 6 monitoring activities.

Although the existing Site groundwater monitoring network does not provide coverage as comprehensive as the pre-remedial action well network, present groundwater flow patterns across the Site can be interpreted via evaluation of the current groundwater elevation data and the historic pre-remedial action groundwater data. Figure 3 presents groundwater elevation data from the Round 6 (October 2011) monitoring event on a map depicting historic groundwater contours developed from groundwater elevation data collected in April 1993. The groundwater data collected during the most recent monitoring round performed on the Site indicate a general east to northeast groundwater flow direction across the Site. There may be a portion of the Site near the southwest corner where groundwater flow direction is not well defined based on the limited data available at MW23-4 and MW23-5, where the elevations observed at MW23-5 are higher than those recorded at MW23-4 during all six monitoring events (see **Table 2**). A groundwater divide, as indicated by the evaluation of the groundwater contours generated from the April 1993 data, cannot be confirmed in the west-southwest portion of the Site from the limited data available from the current groundwater monitoring well network. Along the eastern boundary of the OB Grounds, in proximity to Reeder Creek, the groundwater elevations measured at MW23-2 in the center of the boundary continue to appear higher than those measured at MW23-1 and MW23-3. The data suggest some flow variations to the south and the north, in a direction opposite to the predominant east to northeasterly groundwater flow direction.

Further, evaluation of the October 2011 groundwater elevation data in addition to evaluation of historic Site groundwater elevation data indicates that all of the highest groundwater elevations were recorded during the Round 2 (February 2008) monitoring event, with the lowest groundwater elevations in five of the six wells (excluding MW23-4) observed during the Round 4 (August 2008) event. The lowest groundwater elevation was measured at MW23-4 during the Round 1 (November 2007) event.

3.2 Analytical Data

The analytical results from groundwater samples collected during monitoring Rounds 1 through 6 are presented in **Table 3**, and are compared to the groundwater cleanup goals listed in **Table 1**. **Figures 5** through **10** present a summary of the groundwater sampling results for monitoring wells MW23-1 through MW23-6, respectively, for the six monitoring events conducted following the completion of the remedial action.

Field forms documenting the collection of groundwater during Round 6 at the Site are provided in **Appendix A**. Lead was detected in six of the groundwater samples collected during monitoring Rounds 2, 5, and 6 as summarized below.

MW23-4:

- 5.4 μg/L (Round 2)
- 2.7 J μg/L (Round 5)

MW23-5:

- 2.4 J μg/L (Round 5) (associated duplicate sample was non-detect)
- 1.1 μg/L (Round 6)

MW23-6:

- 3.6 J μg/L (Round 5)
- 1.35 J µg/L average of the sample and its associated duplicate (Round 6)

Lead concentrations detected in groundwater were all below the EPA maximum contaminant limit (MCL) action level of 15 μ g/L. Copper was not detected above the applicable NYSDEC Class GA Groundwater Standard of 200 μ g/L in any of the samples collected during the six post-remedial action sampling rounds performed from November 2007 through October 2011. **Figures 5** through **10** present a summary of the groundwater sampling results for monitoring wells MW23-1 through MW23-6 from the six monitoring events conducted following the completion of the remedial action.

The LTM data support that groundwater at the Site has not been impacted by residual levels of copper that remain in the soils at the Site. All detections of lead were at a level similar to or below the detection limit of 5 μ g/L. Groundwater pH levels measured in the two impacted wells during the Round 6 event were weakly basic, ranging from 7.04 to 7.08 (MW23-5), and from 7.23 to 7.36 (MW23-6). Evaluation of the current water quality parameters measured at Site wells during current and previous LTM activities indicate generally mildly alkaline conditions, which suggest that lead should not be readily mobile in groundwater under current Site conditions.

4.0 SOIL COVER INSPECTION

The cover inspection consisted of documenting observations of the twenty-five (25) 125-foot by 125-foot grids, where soils with residual lead concentrations between 60 mg/kg and 500 mg/kg were interred under a 9 inch-thick soil cover. The locations of the grids are shown on **Figure 11**, which is based on a figure provided by Weston Solutions in the "Completion Report for the Open Burning Grounds Soil and Sediment Remediation" (Weston Solutions, 2005) and a recent aerial image of the OB Grounds obtained from <u>Bing.com</u>. A cover inspection log for all six monitoring events is presented in **Table 4**. Inspection forms documenting the Round 6 soil cover inspection at the Site are provided in **Appendix A**. Observations made during the cover inspection completed on October 6, 2011 as well as a summary of the observations made during the August 2010 cover inspection are provided below.

4.1 August 2010

No significant animal burrowing activity was observed in any of the capped areas. Minor erosion was observed in Grid Cell J8, adjacent to the location where a buried pipe, which allows surface water run-off to flow from the western portion of the Site towards Reeder Creek, runs beneath a Site road.

Evidence of erosion was noted in Grid Cell L7 where a portion of the access road that leads past former Burn Pad B and Burn Pad C was apparently overtopped by water that has cut an erosion channel through the road, thus allowing runoff to spill into the area of the former Burn Pad C. This erosion channel is located outside of the boundaries of the soil cover, and thus the Army does not presently intend to make repairs to this area.

The drainage cut (defined by Burn Pad G to Burn Pad C, across Grid Cells I4, J4/J5, K5, and L6) that was constructed as part of the remedial action to promote drainage of the accumulated water was included in the August 2010 soil cover inspection. No obvious signs of erosion were noted along the length of the drainage cut. The underlying soil showed signs of cracking at numerous locations suggesting that the area may have been dry for an extended period of time.

Soil erosion was observed on the east side of the paved access road leading into the OB Grounds (southeastern corner of Grid Cell S10). This location is not associated with any of the lead-contaminated soil that has been interred at the Site under the 9-inch soil cover. The noted erosion undermined the paved surface along the eastern side of the road to a point where future vehicular access into the OB Grounds was being threatened. The Army retained a contractor to reconstruct the culvert and the roadway in September 2010, and accepted the work as completed. This location will be reassessed during the next soil cover inspection.

4.2 October 2011

No animal burrowing activity was observed in any of the capped areas. During the October 6, 2011 soil cover inspection, surface conditions were wet, with standing water visible in numerous locations. Minor

erosion (approximately 3 to 4 inches deep) was observed along the sloped edges of Grid Cell I8 adjacent to the drainage ditch (between Grid Cells J8 and J9) as a result of surface water run-off from the western portion of the Site towards Reeder Creek in the following approximate dimensions: 70 ft long by 10 ft wide along the eastern edge; 100 ft long by 10 ft wide along the northern edge; 100 ft long by 20 ft wide along the western edge; and 20 ft long by 9 ft wide along the southern edge. The erosion appeared to a result of surface water run-off. These areas were also observed to have lower vegetation density than the rest of the Grid Cell I8. The condition of this location will be reassessed during the next inspection event to determine if corrective measures are needed.

Sparse vegetation relative to the surrounding areas was also observed in an approximately 70 ft by 70 ft area in Grid Cell D7. No signs of erosion were observed. The condition of this location will be reassessed during the next inspection event to determine if any erosion has occurred and if corrective measures are needed.

An area of minor erosion approximately 20-ft long was observed in Grid Cell K6, starting at the Grid Cell intersections of J6/K6 where the access roads crosses the grid lines, and heading northeast from the road edge. Although Grid Cell K6 is outside the area where lead-contaminated soil is interred beneath clean soil, it is located adjacent to Grid Cell J6, which has interred lead-contaminated soil. The condition of this location will be reassessed during the next inspection event to determine if corrective measures are needed.

The previously observed erosion in Grid Cell L7 remained unchanged in the area where a portion of the access road leading past former Burn Pad B and Burn Pad C was apparently overtopped by water, which was cutting a drainage pathway through the road and allowing runoff to spill into the area of the former Burn Pad C. This surface water pathway is outside of the area of the soil cover, and thus the Army currently does not intend to make repairs. This Site will be reassessed during future inspections to determine if conditions appear to be worsening, and to evaluate if corrective measures may need to be implemented.

The drainage cut constructed along the southern side of the former OB Grounds as part of the remedial action to promote drainage of the accumulated water in the area located between the former Site of the former Burn Pad G, the southern access road, and the southern bound of the OB Grounds Site in Grid Cells I4 and I5 was included in the soil cover inspection. No obvious signs of erosion were noted along the length of the drainage cut, and the drainage cut was surrounded by and covered with vegetation.

Grid Cell S10 was reassessed for erosion of soil as observed on the east side of the paved access road leading into the OB Grounds during the August 2010 inspection activities. As discussed above, the Army corrected the issue in September 2010, including removal of the ditch checks on the upgradient, OB Grounds side of the culvert. This location is not associated with any of the lead-contaminated soil that has been interred at the Site under the 9-inch soil cover. This location will be reassessed during the 2012 soil cover inspection activities.

5.0 REEDER CREEK INSPECTION

Accessible portions of Reeder Creek adjacent to the OB Grounds were inspected on October 3, 2011. The inspection was conducted by walking along the creek bed and making observations of the creek bottom and the creek embankments. Access to all portions of the creek was possible due to low water levels within the creek, which may be attributed to the removal of the beaver dam east of monitoring well MW23-2.

5.1 April 2009

The Army performed a visual inspection of the Reeder Creek streambed in April of 2009 at locations adjacent to the OB Grounds. The April 2009 inspection indicated that surface water flow within Reeder Creek had continued to scour the bedrock surface, and had limited and for the most part precluded the redeposition of sediment adjacent to the OB Grounds. Soil sloughing from upland surfaces bordering both edges of the creek was observed at many locations along the creek bed; however, this was noted only in areas where the creek's course broadened and where the wetted watercourse represented a portion of the entire creek bed's width. There was no evidence that the sloughed soil migrated into or was deposited in the main flow channel of Reeder Creek.

Examination of the spillways that allowed surface water from the OB Grounds to flow into Reeder Creek prior to spillway closure as part of the overall OB Grounds remedial action indicated that there was no visible evidence that overland surface water flow had transported soils from the OB Grounds into Reeder Creek. The spillways, which are generally naturally-occurring, in situ shale, were free of any accumulation of excessive debris and soil. It was also observed that the mechanisms that were placed at the OB Grounds to prevent surface water flow from entering the spillways were still present and functional.

5.2 August 2010

A visual inspection of the Reeder Creek streambed was conducted on August 5, 2010 at locations adjacent, downgradient, and upgradient to the OB Grounds. Locations downgradient and adjacent to the OB Grounds consisted of exposed bedrock streambeds with no observable sediment. However, a thin, brown slime-like material measuring only a few millimeters thick was observed in various segments of the creek in areas (depth >6 inches). These locations were typically associated with downstream bedrock outcrops which allow the creek water to pool until the water level exceeds the height of the outcrop and then flows over the top of the outcrop. The brown slime-like material was not observed beyond the outcrop overflow points.

No evidence was observed of material collapsing into the creek, with the exception an area beneath the eastern edge of the OB/OD Grounds access road (Grid Cell S10). Erosion in Grid Cell S10 was due to the undermining of the paved access road: this material's source was from the subgrade to the paved access road and was not from the OB Grounds soil cover. The issue was addressed in September 2010 as discussed in Section 4.1 of this report.

5.3 October 2011

A visual inspection of the Reeder Creek streambed was conducted on October 6, 2011 at locations adjacent, downgradient, and upgradient to the OB Grounds. Per the requirements set forth in the Site-Specific Health and Safety Plan, personal protective equipment and any additional health and safety equipment was used as appropriate.

Conditions at locations downgradient and adjacent to the OB Grounds were generally observed to be exposed bedrock streambed covered with thin, brown slime-like material similar to what was observed during previous annual inspections, with isolated pockets of sediment. Based on field observations the source of the sediment is believed to be from decomposition of leaves that have accumulated within the creek in addition to tree branches that were part of the former beaver dam. The portion of the Reeder Creek streambed from the OD Grounds to upgradient of OB Grounds was accessible due to low water levels in the creek, with occasional exposed areas of the creek bed readily observable.

Field notes from the October 6, 2011 Reeder Creek inspection are provided in **Appendix B.** Photos of Reeder Creek were taken to document the exposed bedrock streambed and the current condition of the creek's banks. Photo locations are shown on **Figure 14**, and Photo #01 through Photo #23 are provided in **Appendix C**.

The inspection started at the downgradient section of Reeder Creek within the adjacent OD Grounds and proceeded upstream inspecting the embankments and creek bottom. Sediment was observed downgradient of the OB Grounds in areas that were outside the prior creek bed excavation areas. The thin brown slime-like material measuring only a few millimeters thick was previously observed in limited locations of the creek (deeper than 6 inches), but was observed in nearly all sections of the bedrock streambed during the October 2011 inspection (**Photos # 5, 8, 10, 18,** and **21**). The only areas where the thin, brown, slime-like material was absent were areas of fast-moving water over bedrock outcrops (**Photos #9** and **19**). Representative photographs of the general creek conditions and occurrence of sediment in the creek were taken. Descriptions of the photos and corresponding photo numbers are as follows:

- a bedrock outcrop allows for pooling until the outcrop is overtopped (**Photos 6** and **7**);
- washout of existing creek embankment material (**Photos 12** and **13**);
- accumulation of leaves due to thick vegetation (**Photo 15**); and
- collection of tree branches upgradient of the former beaver dam (**Photo 22**).

Decomposition appears to be the source of the sediment versus soil transport. Mats of dead leaves were observed covering the creek bottom in several locations; these were typically stretches of the creek surround by thick vegetation. The sediment released bubbles when a walking stick was inserted into the sediment matrix, and no residue was typically found on the tip of the walking stick. The other decomposition source was localized upgradient of the former beaver dam. Leaves and tree branches of

various size littered the bottom of the creek bed in the area between monitoring wells MW23-1 and MW23-2. Once again, bubbles were released from the sediment matrix when poked, however residual material was present on the tip of the walking stick. Sediment was also observed in sections of the creek where pooling was allowed due to a bedrock outcrop; in these cases the sediment source is suspected to be upstream decomposition that settles out of water column in these pooled sections.

The banks of Reeder Creek were inspected for evidence of material collapsing into the creek. The northeast bank of Reeder Creek (non OB Grounds side) generally exhibited similar conditions as the southwest bank, although several locations where deer trails descend the creek bank had visible signs of sidewall material collapse, migration, and accumulation down in the creek bed. These locations appeared to be solely related to deer activity and not from surface water run-off.

Examination of the spillways where surface water from the OB Grounds to Reeder Creek found that no visible evidence that overland surface water flow had transported soils from the OB Grounds into Reeder Creek. The spillways were free of any accumulation of excessive debris and soil. Field observations also noted that the mechanisms that were placed at the OB Grounds to prevent surface water flow from entering the spillways were still evident and working except at the culvert between monitoring MW23-1 and MW23-2 (Grid Cell S10) where erosion of the subgrade had required repair in September 2010.

5.4 Inspection Observations

As reported above, the groundwater data collected during historic sampling events as well as during the six rounds of the Long-Term Monitoring Program show no evidence of a release of copper or lead from the OB Grounds. The prior soil cover inspections did reveal that occasional animal burrows and shallow erosion depressions were present in the cover at the contaminated soil burial areas, but none of the past noted burrow holes or depressions were sufficiently sized to allow buried soils to escape their containment. All of the noted holes and depressions were repaired in August 2008 as part of the Army's continuing maintenance activities. Other than the discussed location where material to the east of the access roadway had eroded and collapsed into the Reeder Creek (repaired September 3, 2010), there are no visible signs that OB Grounds site soils are being released via overland flow to Reeder Creek. Soil from the location that had collapsed is not located near lead contaminated soil that was interred beneath the soil cover that was constructed during the remedial action, and there is no indication that soils from the west side of the access road have collapsed into the creek. As such, the Army does not see any evidence to suggest that a release of lead or copper above background levels is occurring from the OB Grounds site. The recent detections of lead in three wells (MW23-4, MW23-5, and MW23-6) below the action level were located on the western edge of the OB Grounds (MW23-4 and MW23-5) and south of the OB Grounds (MW23-6). The absence of detectable concentrations of lead and copper in the three wells (MW23-1, MW23-2, and MW23-3) immediately adjacent to Reeder Creek supports the observation that Reeder Creek has not been impacted by lead or copper.

Based on these data and this information, the Army has not conducted sediment sampling and analysis of Reeder Creek as part of the long-term monitoring at the OB Grounds. The Army will conduct another visual inspection of the creek bed and spillways connecting the OB Grounds to Reeder Creek during the next scheduled annual monitoring event, and if evidence of overland transport of soil or groundwater migration of contaminants from the OB Grounds to Reeder Creek is identified, a plan will be prepared and submitted for approval which will identify a sediment monitoring program that will be conducted.

6.0 LONG-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made based on the results of the sixth round of LTM at the OB Grounds:

- Residual lead and copper concentrations remaining in the soils have not impacted groundwater at, or in the immediate vicinity of, the Site above the applicable action levels.
- The integrity of the vegetated soil cover overlying interred contaminated soils at the Site was intact and there was no evidence that terrestrial wildlife are exposed or will be exposed to the lead-contaminated soils interred below the 9-inch soil cover.
- The washout area noted during in Grid Cell L7 in (identified as L8 in 2008 Report) during the February and May 2008 inspections and in the August 2010 inspection was observed again during the 2011 soil cover inspection. As discussed in Section 4.2 the washout area is outside of the areas where contaminated soils were interred beneath clean soil; this area therefore will not be repaired by the Army at this time. If subsequent inspections suggest that this area is becoming larger, the Army will evaluate the need for a permanent repair.
- An approximately 21-ft long area of minor erosion was observed in Grid Cell K6, outside of the area where lead-contaminated soil is interred beneath clean soil. Grid Cell K6 is located adjacent to Grid Cell J6, which is part of the soil cover, and therefore the condition of this location will be reassessed during the next inspection event to determine if corrective measures are needed.
- The Army will continue to monitor soil cover erosion, and will note any instance of cover erosion or exposed native or interred soil.
- Based on evaluation of the groundwater data and the results of the cover inspection, there is no
 evidence to suggest that the OB Grounds may be contributing to the degradation of sediment
 quality in Reeder Creek.
- The Army will continue to inspect Reeder Creek for evidence of sediment deposition and if it is observed, a sediment sampling and analysis program plan will be prepared, submitted for approval, and implemented for Reeder Creek at locations adjacent to the OB Grounds.

Based on the result of the LTM events conducted at the OB Grounds, the Army recommends continuing the monitoring frequency of once per year. As presented and summarized above, available monitoring data shows no evidence of lead or copper in the groundwater above the cleanup goals subsequent to the completion of the remedial action for the Site. These findings are consistent with the groundwater analytical results obtained during the remedial investigation stage (1990s) of work at the Site, indicating that there is no evidence of groundwater quality deterioration over approximately 15 years. Further, the annual inspections of the soil cover have shown minimal evidence of erosion or animal breaching of the

protective soil cover. Additionally, the examination of spillways connecting the OB Grounds to Reeder Creek indicate that measures performed to eliminate overland surface water flow the OB Grounds to Reeder Creek continue to exist and have been effective, as there is no indication that soil or debris from the OB Grounds is located in the spillways downgradient of the control measures. Finally, the inspections of Reeder Creek indicate that the bedrock that underlies the watercourse adjacent to the OB Grounds continues to be scoured by the perennial flow within the creek. There is no current indication that sediment is being redeposited at locations from which it was previously excavated. Therefore, due to the absence of any evidence that suggests contaminants of concern have been mobilized from the OB Grounds either via the groundwater or overland flow of storm-event waters, and due to the continued scouring of the creek bed by the perennial flow of water, there is no reason to develop or implement a sediment monitoring plan for Reeder Creek at this time.

The next LTM monitoring event, including groundwater sampling, soil cover inspection, and inspection of Reeder Creek, is scheduled to occur in 2012. Results of the 2012 monitoring efforts at the OB Grounds will be evaluated, and recommendations regarding changes to the frequency or extent of monitoring will be made at that time. Subsequent rounds of LTM for the OB Grounds are expected to continue annually thereafter, unless altered by mutual agreement of all parties.

7.0 REFERENCES

Parsons, 1994. Final Remedial Investigation Report at the Open Burning (OB) Grounds, Seneca Army Depot Activity (3 Volumes).

Parsons, 1999. Final Record of Decision, Open Burning (OB) Grounds, Seneca Army Depot Activity.

Parsons, 2007. Final Long-term Monitoring Plan for the Open Burning (OB) Grounds.

Parsons, 2009. Final OB Grounds Long-Term Monitoring Annual Report and One Year Review.

Weston Solutions, 2005. Completion Report, Soil and Sediment Remediation Open Burning Grounds, Seneca Army Depot, Romulus, New York.

TABLES

Table 1	Site-Specific Cleanup Goals for Groundwater
Гable 2	Groundwater Elevation Data
Table 3	Summary of COCs in Groundwater
Table 4	Soil Cover Inspection Log

Table 1
Site-Specific Cleanup Goals for Groundwater
OB Grounds LTM 2011Annual Report
Seneca Army Depot Activity

ANALYTES	Contract Required Quantitation Limits Water (µg/L)	Action Level Water (µg/L)
Copper	20	200
Lead	5	15

Notes:

- Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998 through addendum June 2004).
- Lead action level is from USEPA Maximum Contaminant Limit (MCL); www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Referenced from Table 5-1 in "Final Long-Term Monitoring Plan for the Open Burn (OB) Grounds", (Parsons, January 2007)

Table 2Groundwater Elevation Data
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

	Top of	Roun	d 1 - November	2007	Rou	Round 2 - February 2008			ound 3 - May 20	08	Round 4 - August 2008		
Monitoring	Riser Elevation		Depth to Groundwater	Water Level Elevation		Depth to Groundwater	Water Level Elevation		Depth to Groundwater	Water Level Elevation		Depth to Groundwate	Water Level Elevation
Well	(ft)	Date	(ft)	(ft)	Date	(ft)	(ft)	Date	(ft)	(ft)	Date	r (ft)	(ft)
MW23-1	622.64	11/20/2007	12	610.635	02/25/2008	11.46	611.175	05/20/2008	11.63	611.005	08/25/2008	12.10	610.54
MW23-2	622.28	11/20/2007	9.6	612.68	02/25/2008	8.78	613.5	05/20/2008	9.17	613.11	08/25/2008	9.84	612.44
MW23-3	619.18	11/20/2007	10.8	608.381	02/25/2008	9.24	609.941	05/20/2008	9.68	609.501	08/25/2008	10.59	608.59
MW23-4	637.11	11/20/2007	8.6	628.507	02/25/2008	3.2	633.907	05/20/2008	4.14	632.967	08/25/2008	7.82	629.29
MW23-5	639.47	11/20/2007	7	632.472	02/25/2008	2.85	636.622	05/20/2008	5.19	634.282	08/25/2008	8.33	631.14
MW23-6	632.59	11/20/2007	8.35	624.244	02/25/2008	3.78	628.814	05/20/2008	5.54	627.054	08/25/2008	10.08	622.51

	Top of	Rou	ınd 5 - August 2	010	Rou	nd 6 - October	2011		Historica	al Data	
	Riser		Depth to	Water Level		Depth to	Water Level	Groui	ndwater Elevati	on (ft)	
Monitoring Well	Elevation (ft)	Date	Groundwater (ft)	Elevation (ft)	Date	Groundwater (ft)	Elevation (ft)	Maximum	Minimum	Range	Well Depth (ft)
MW23-1	622.64	08/02/2010	12.06	610.58	10/03/2011	11.57	611.07	611.18	610.54	0.64	15.50
MW23-2	622.28	08/02/2010	9.4	612.88	10/03/2011	6.84	615.44	615.44	612.44	3.00	15.50
MW23-3	619.18	08/02/2010	9.97	609.21	10/03/2011	9.31	609.87	609.94	608.38	1.56	15.50
MW23-4	637.11	08/02/2010	5.81	631.30	10/03/2011	4.47	632.64	633.91	628.51	5.40	17.50
MW23-5	639.47	08/02/2010	7.51	631.96	10/03/2011	5.22	634.25	636.62	631.14	5.48	17.50
MW23-6	632.59	08/02/2010	8.79	623.80	10/03/2011	9.48	623.11	628.81	622.51	6.30	17.60

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID:									OB Grounds MW23-1 GW OBLM20001	OB Grounds MW23-1 GW OBLM20008	OB Grounds MW23-1 GW OBLM20009
Date: QC Code: Study ID: Study Round									39407 SA LTM 1	39504 SA LTM 2	39504 DU LTM 2
Parameter	Unit	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	0	2.09	2.09

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-1	MW23-1	MW23-1
Matrix:									GW	GW	GW
Sample ID:									OBLM20015	OBLM20022	OBLM20029
Date:									39589	39686	40393
QC Code:									SA	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									3	4	5
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	0.42	0.9	1.3

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- 2. Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID: Date:									OB Grounds MW23-1 GW OBLM20036 40821	OB Grounds MW23-2 GW OBLM20002 39407	OB Grounds MW23-2 GW OBLM20010 39503
QC Code: Study ID:									SA LTM	SA LTM	SA LTM
Study Round									6	1	2
Parameter	Unit	Maximum Value	Frequency of	Action Level	Action Level	Number of Exceedances	Number of Times	Number of Samples	_		
		Value	Detection	Source	Level	Of Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	25 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	1	0	2.37

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID:									OB Grounds MW23-2 GW OBLM20016	OB Grounds MW23-2 GW OBLM20017	OB Grounds MW23-2 GW OBLM20023
Date:									39589	39589	39686
QC Code:									SA	DU	SA
Study ID:									LTM	LTM	LTM
Study Round									3	3	4
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	0.15	0.15	0.85

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID: Date:									OB Grounds MW23-2 GW OBLM20030 40393 SA	OB Grounds MW23-2 GW OBLM20037 40821 SA	
QC Code: Study ID: Study Round									LTM 5	LTM 6	LTM
Parameter	Unit	Maximum Value	Frequency of Detection	Action Level Source	Action Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	25 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	3.4	1.3	0

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

OP Crounda OP Crounda

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-3	MW23-3	MW23-3
Matrix:									GW	GW	GW
Sample ID:									OBLM20004	OBLM20011	OBLM20018
Date:										39503	39589
QC Code:									DU	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									1	2	3
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit		Value Of Detection	Level	Level	of Exceedances	Times	Samples			
		value		Source			Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	0	9.91	2

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

Drainat.

J = the reported value is an estimated concentration

NA = Not Applicable

OP Croundo

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-3	MW23-3	MW23-3
Matrix:									GW	GW	GW
Sample ID:									OBLM20024	OBLM20031	OBLM20038
Date:			39686	40392	40820						
QC Code:									SA	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									4	5	6
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection Source	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	25 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	UTU	750	NA	NA	NA	NA	NA	NA	7.9	1.5	1.1

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID: Date:									OB Grounds MW23-4 GW OBLM20005 39407	OB Grounds MW23-4 GW OBLM20012 39510	MW23-4 GW OBLM20019 39589
QC Code: Study ID:				SA LTM	SA LTM	SA LTM					
Study Round									1	2	3
Parameter	Unit	Maximum Value	of	Action Level	Action Level	Number of Exceedances	Number of Times	Number of Samples	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	Detection 0%	Source GA	200	0	Detected	Analyzed 42	value Qual	value Quai	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5.4	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	2	41.1	6.3

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-4	MW23-4	MW23-4
Matrix:									GW	GW	GW
Sample ID:									OBLM20025	OBLM20026	OBLM20032
Date:									39685	39685	40392
QC Code:									SA	DU	SA
Study ID:									LTM	LTM	LTM
Study Round									4	4	5
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	2.7 J
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	5.27	5.27	1.6

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID:									OB Grounds MW23-4 GW OBLM20039	OB Grounds MW23-5 GW OBLM20006	MW23-5 GW OBLM20013
Date:									40821	39407	39504
QC Code:									SA	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									6	1	2
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	25 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	1.7	0	6.72

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project: Location ID: Matrix: Sample ID:									OB Grounds MW23-5 GW OBLM20020	OB Grounds MW23-5 GW OBLM20027	
Date:									39589	39685	40392
QC Code:									SA	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									3	4	5
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	4.5	2.13	1

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

OP Crounda OP Crounda

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-5	MW23-5	MW23-6
Matrix:									GW	GW	GW
Sample ID:									OBLM20034	OBLM20040	OBLM20007
Date:									40392	40820	39414
QC Code:									DU	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									5	6	1
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	25 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	2.4 J	1.1 J	5 U
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	1	1.3	8

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

Drainat.

J = the reported value is an estimated concentration

NA = Not Applicable

OP Croundo

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-6	MW23-6	MW23-6
Matrix:									GW	GW	GW
Sample ID:									OBLM20014	OBLM20021	OBLM20028
Date:									39504	39588	39686
QC Code:									SA	SA	SA
Study ID:									LTM	LTM	LTM
Study Round									2	3	4
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	20 U	20 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	5 U	5 U	5 U
Turbidity	UTN	750	NA	NA	NA	NA	NA	NA	2.84	8.2	48

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

Qual = Qualifier

U = compound was not detected

J = the reported value is an estimated concentration

Summary of COCs detected in Groundwater OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Project:									OB Grounds	OB Grounds	OB Grounds
Location ID:									MW23-6	MW23-6	MW23-6
Matrix:									GW	GW	GW
Sample ID:									OBLM20035	OBLM20041	OBLM20042
Date:									40393	40821	40821
QC Code:									SA	SA	DU
Study ID:						LTM	LTM	LTM			
Study Round									5	6	6
		Maximum	Frequency	Action	Action	Number	Number of	Number of			
Parameter	Unit	Value	of	Level	Level	of Exceedances	Times	Samples			
		value	Detection	Source	Level	OI Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual
Copper	UG/L	0	0%	GA	200	0	0	42	20 U	25 U	25 U
Lead	UG/L	5.4	17%	MCL	15	0	7	42	3.6 J	1.2 J	1.5 J
Turbidity	NTU	750	NA	NA	NA	NA	NA	NA	10	2.1	2.1

Notes:

- 1. Copper action level is from NYSDEC Class GA Groundwater Standard (TOGS 1.1.1, June 1998).
- 2. Lead action level is from US EPA Maximum Contaminant Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 3. Round 6 samples were analyzed by SW846-6010C. Rounds 1 through 5 were analyzed using SW846-6010B.

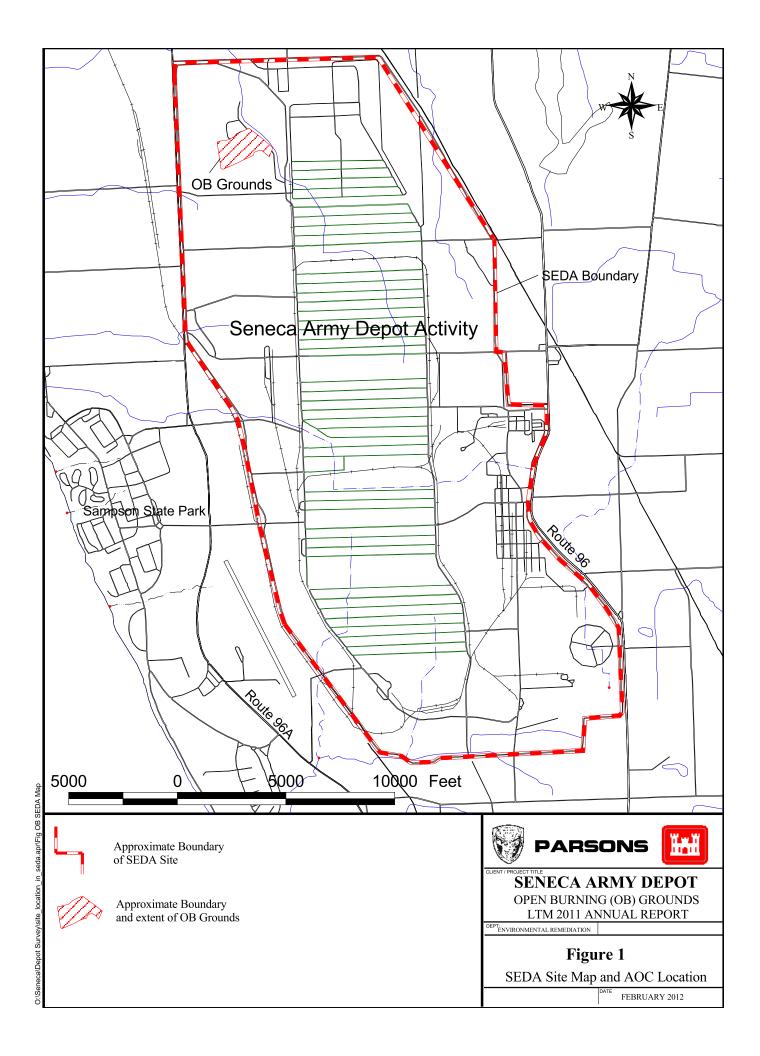
Qual = Qualifier

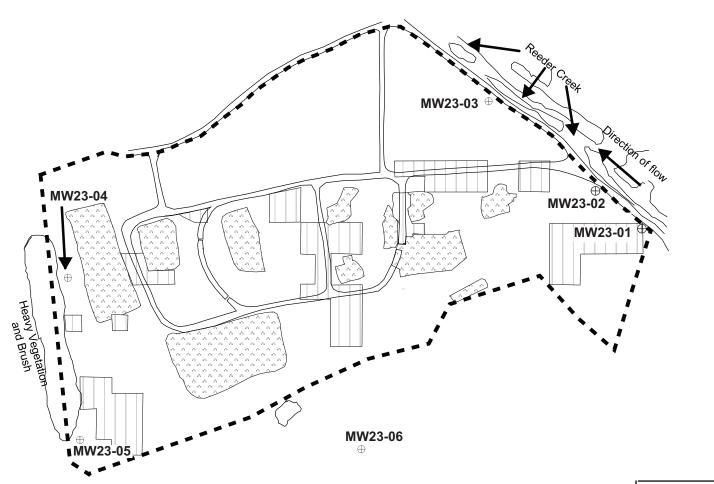
U = compound was not detected

J = the reported value is an estimated concentration

Soil Cap Inspection Log OB Grounds LTM 2011 Annual Report Seneca Army Depot Activity

Grid #	Round 1 - January 2008	Round 2 - February 2008	Round 3 - May 2008	Round 4 - August 2008
S8	Several 1" to 2" size mice holes were observed	No change	No change	No change
S8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	No change
R8	Several 1" to 2" size mice holes were observed on the ground surface.	No change	No change	A mouse hole approximately 6" wide and approximately 6" deep was observed. Hole was repaired August 2008.
Q8	2" mice hole was observed on the ground surface.	No change	No change	No change
Q8	A cluster of 1" to 2" size mice holes was observed.	No change		No change
P10		No change		No change
L9	Two mice holes approximately 6" deep			No change
L9	A mouse hole approximately 6"deep was observed	No change		No change
L9	A mouse hole approximately 6"deep and 6" diameter was observed	No change	No change	No change
L8	Minor erosion along the edge of the soil cap from surface water flow. This location should be called L7.	Surface water runoff path forming. Repaired drainage path May 2008. This location should be called L7.	Repaired drainage path May 2008. This location should be called L7.	No change
18	A mouse hole about 2" to 3" in size was observed	Vegetation spotty, large amounts of surface soil exposed. Reseeded May 2008.	Reseeded May 2008.	No change
18	Minor erosion of the soil cap.	Surface water runoff path forming. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change
16	A cluster of 1" to 2" size mice holes was observed.	No change	No change	No change
J6	2" mice holes were observed on the ground surface.	Short surface water drainage path; native soil not visible. Repaired drainage path May 2008.	Repaired drainage path May 2008.	No change
H9	Two mice 2" size holes was observed.	No change	No change	No change
D7		No change	No change	No change
В3	A mouse hole approximately 6" wide and approximately 6" deep was observed	No change	No change	No change


Grid #	Round 5 - August 2010	Round 6 - October 2011
S8	No animal holes were observed.	No animal holes were observed.
S8	No animal holes were observed.	No animal holes were observed.
R8	No animal holes were observed.	No animal holes were observed.
Q8	No animal holes were observed.	No animal holes were observed.
Q8	No animal holes were observed.	No animal holes were observed.
P10	No animal holes were observed.	No animal holes were observed.
L9	No animal holes were observed.	No animal holes were observed.
L9	No animal holes were observed.	No animal holes were observed.
L9	No animal holes were observed.	No animal holes were observed.
L8	Erosion of road area due to surface water flow. <i>This location should be called L7.</i>	No animal holes were observed.
J8	Erosion along road edge due to surface water flow off of road surface.	No animal holes were observed.
J8	Erosion around a culvert outlet due to surface water flow off of road surface.	No animal holes were observed.
18	No animal holes were observed.	Surface soil erosion previously observed along ditchline from surface water runoff, erosion 3-4 inches deep or less.
16	No animal holes were observed.	No animal holes were observed.
J6	No animal holes were observed.	No animal holes were observed.
H9	No animal holes were observed.	No animal holes were observed.
D7	No animal holes were observed.	No animal holes were observed. Patch of sparse vegetation 70' by 70'.
В3	No animal holes were observed.	No animal holes were observed.


Votes

- 1. All grids capped areas were inspected. Grids with no signs of erosion or other disturbances to the cover are not included in this log.
- 2. The Army repaired the washout areas noted above, and reseeded areas with sparse vegetation on or before May 22, 2008.

FIGURES

Figure 1	SEDA Site Map and AOC Location
Figure 2	Open Burning Grounds Site Map
Figure 3	Historic Groundwater Contours with October 2011 Elevations
Figure 4	Groundwater Elevation Profile
Figure 5	Concentrations of Lead and Copper at MW23-1
Figure 6	Concentrations of Lead and Copper at MW23-2
Figure 7	Concentrations of Lead and Copper at MW23-3
Figure 8	Concentrations of Lead and Copper at MW23-4
Figure 9	Concentrations of Lead and Copper at MW23-5
Figure 10	Concentrations of Lead and Copper at MW23-6
Figure 11	Open Burning Grounds Soil Cover Areas and Well Locations
Figure 12	Reeder Creek Inspection Photo Locations (October 2011)

Interred Soils

Former Burning Pads

OB Grounds Boundary

Existing Monitoring Wells

Notes:

(1) Map is not to scale. Location of all features shown is approximate.

(2) Map is based on information presented on Figure 4.13 of *Soil and Sediment Remediation, Open Burning Grounds, Completion Report* (Weston Solutions Inc., June 2005).

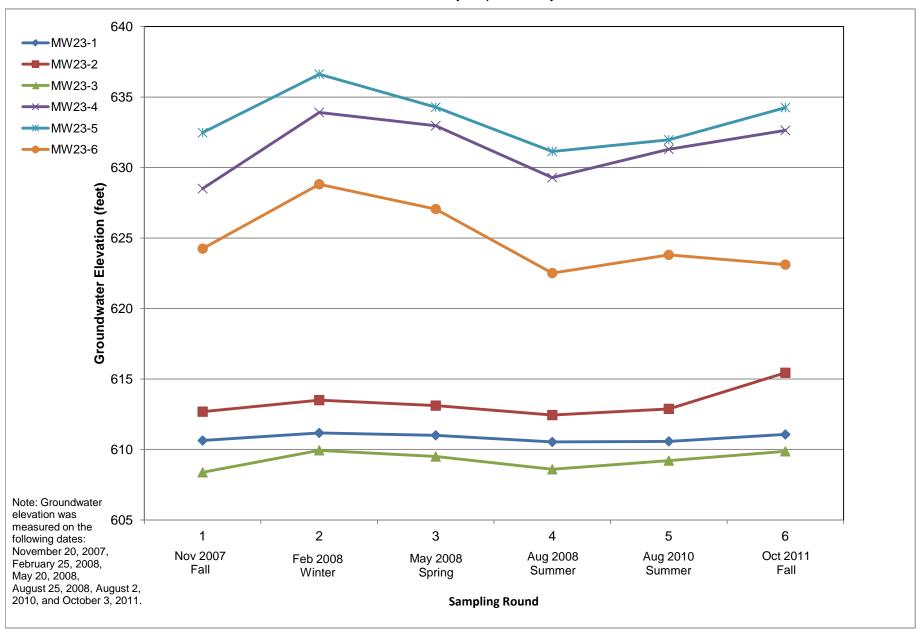
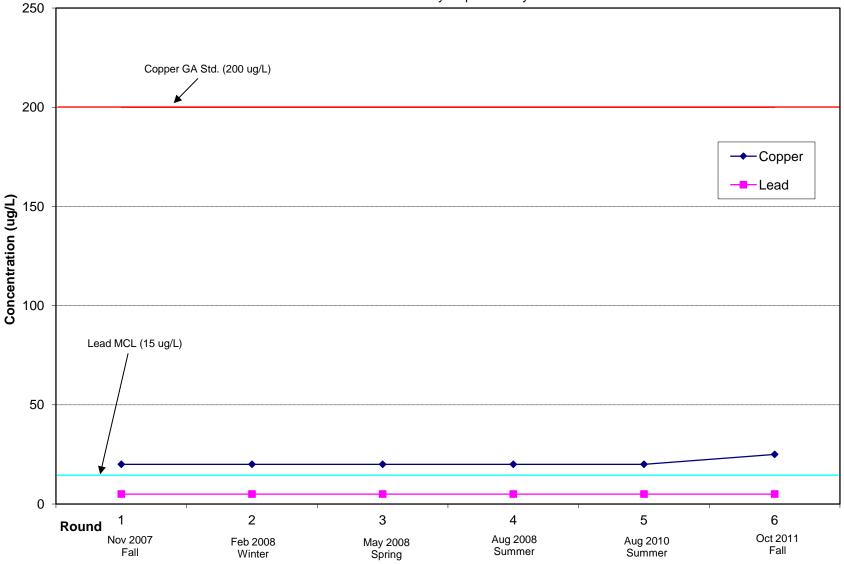
PARSONS

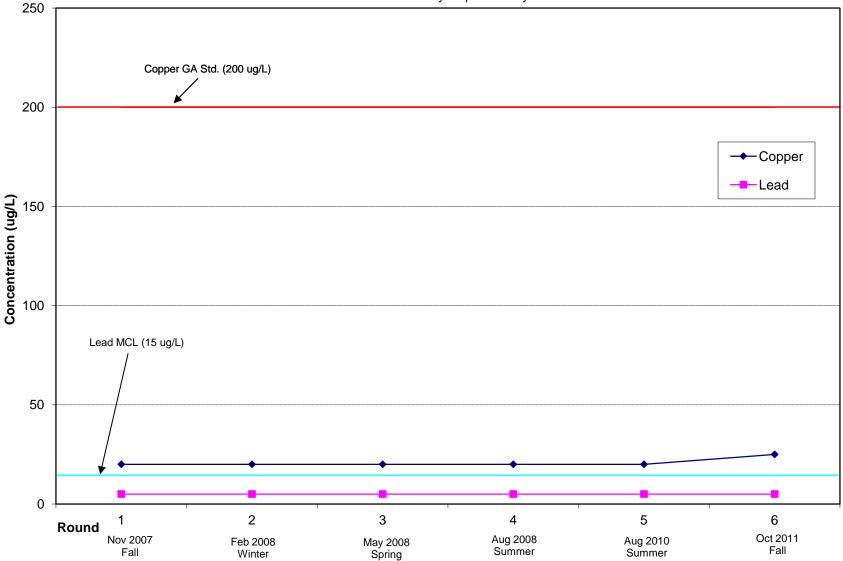
SENECA ARMY DEPOT ACTIVITY OPEN BURNING (OB) GROUNDS LONG-TERM MONITORING 2011 ANNUAL REPORT

> FIGURE 2 Open Burning Grounds Site

> > DATE: February 2012

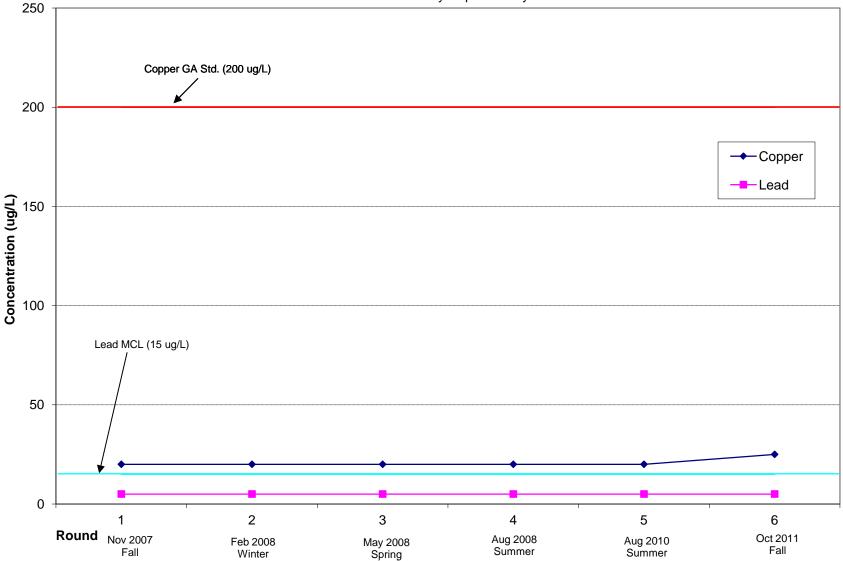
Figure 4
OB Grounds Groundwater Elevation
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity


Figure 5
Concentrations of Lead and Copper at MW23-1
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

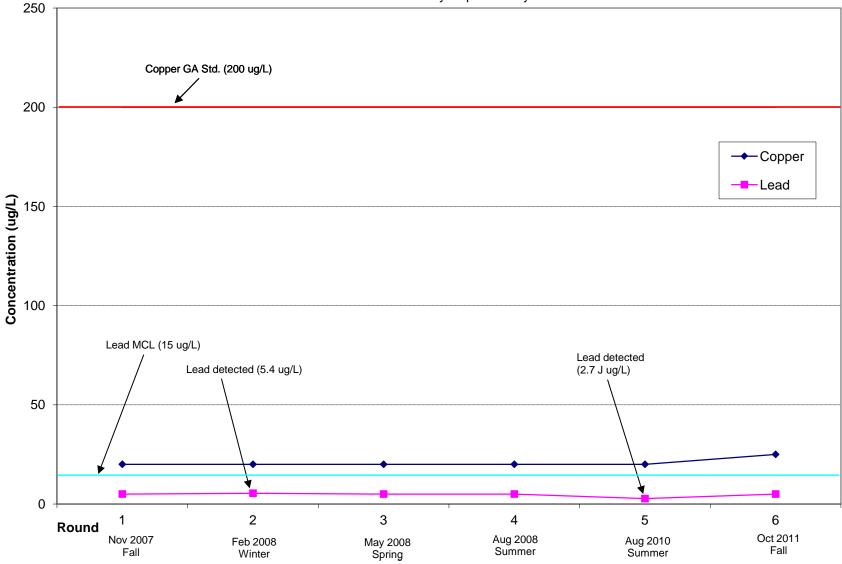
Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits.


Figure 6
Concentrations of Lead and Copper at MW23-2
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

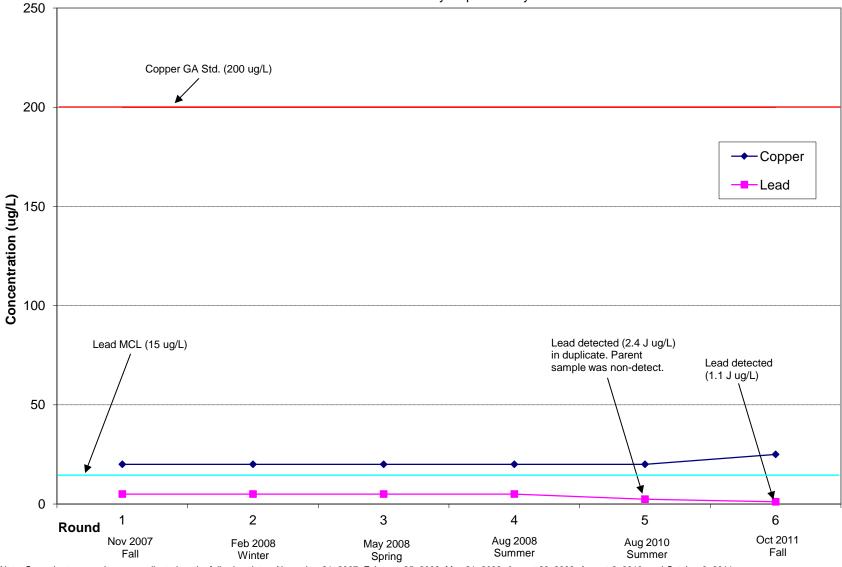
Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits.


Figure 7
Concentrations of Lead and Copper at MW23-3
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

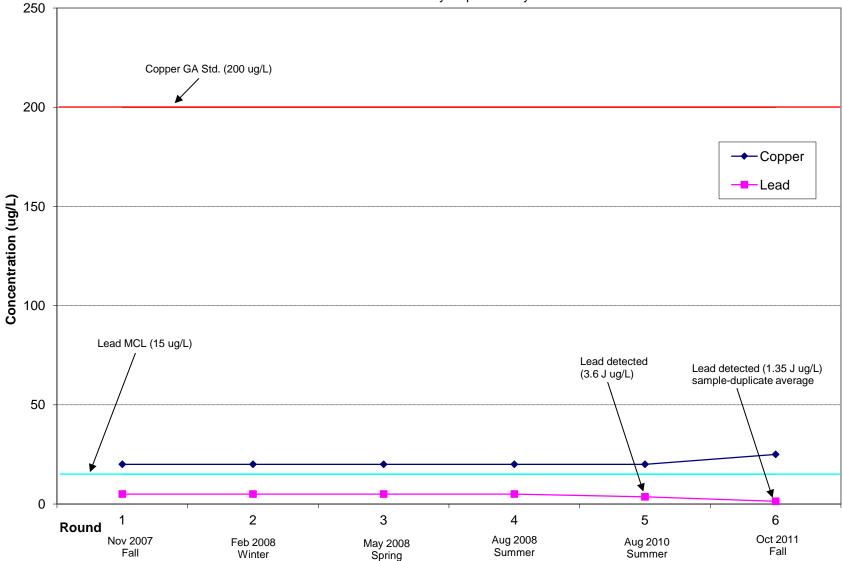
Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits.


Figure 8
Concentrations of Lead and Copper at MW23-4
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits except where otherwise noted.


Figure 9
Concentrations of Lead and Copper at MW23-5
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

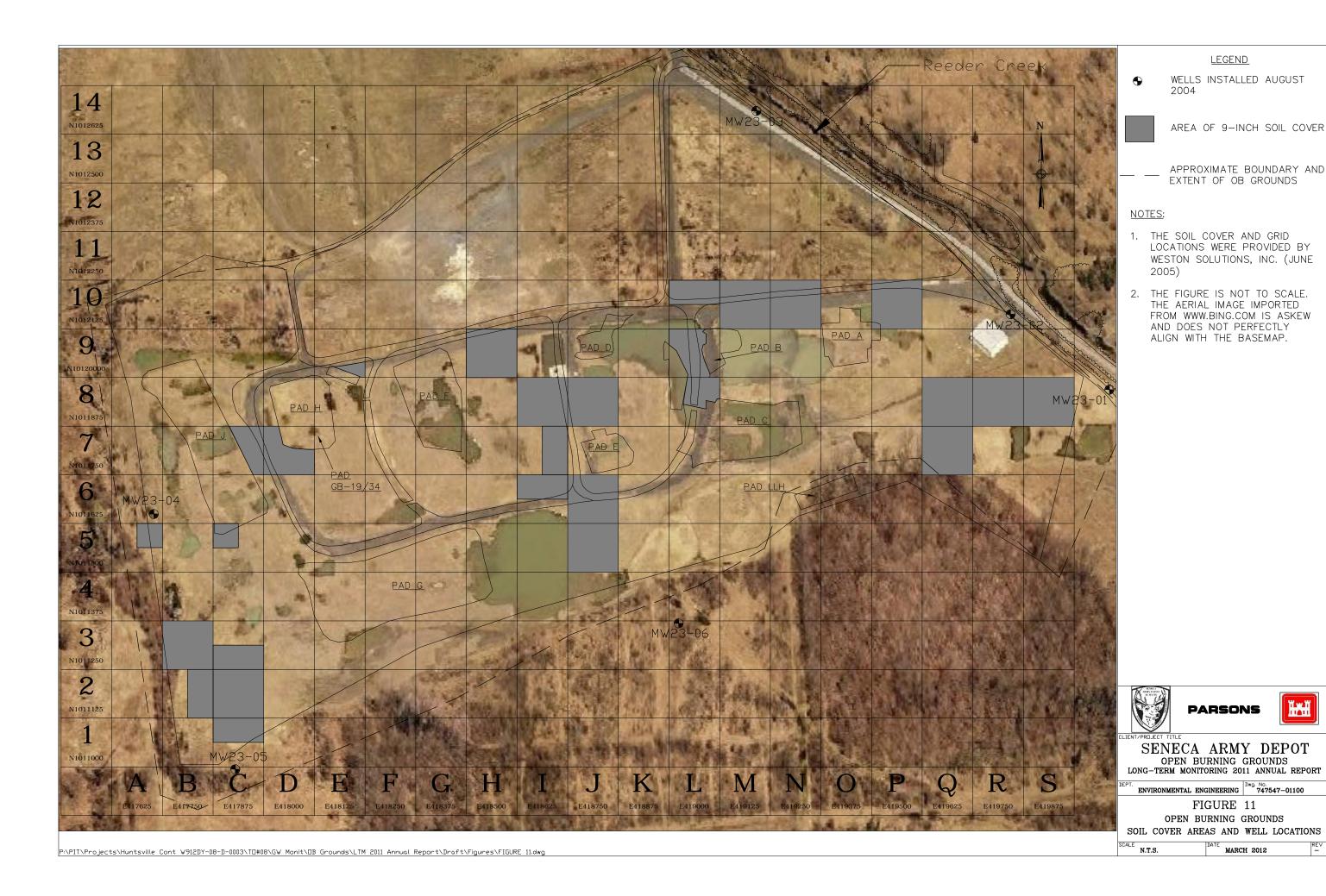

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits except where otherwise noted.


Figure 10
Concentrations of Lead and Copper at MW23-6
OB Grounds LTM 2011 Annual Report
Seneca Army Depot Activity

Note: Groundwater samples were collected on the following dates: November 21, 2007, February 25, 2008, May 21, 2008, August 26, 2008, August 2, 2010, and October 3, 2011.

Groundwater sampling was performed quarterly through August 2, 2010, and annually thereafter. All copper and lead concentrations in groundwater were below detection limits except where otherwise noted.

APPENDICES

A	Open Burning Grounds Round 6 Field Forms
В	Field Log of October 2011 Reeder Creek Inspection
C	Reeder Creek Inspection Photos (October 2011)
D	Laboratory Report
Е	Data Validation

APPENDIX A

OPEN BURNING GROUNDS ROUND 6 FIELD FORMS

			C	ROUN	DWAT	ER EI	LEVAT	ION F	REPORT
PARSO	NS			CLIENT:					DATE: 10/3 /11
PROJECT:		vounds	LTM	Round	6				PROJECT NO: INSPECTOR: RBO > ME
	EQUIPMENT:	V SUCLE-F			WATER LEV	EL INDICATOR		COLUMNIA	
INSTRUMENT	DECTECTOR	BGD	TIME	REMARKS	INSTRUM		CORRECTIO	ON FACTOR	Tesp ~55 = overcest
				Add	2.2+ tax	cell+sp	>		-[
		DEST	1170 6	CORRECTED	MEASURED	INSTALLED	PRODUCT		WELL STATUS / COMMENTS
WELL	TIME	WATER	TREBERT	WATER LEVEL	POW	POW	SPEC GRAV	(Lock	 Well #3, Surface Disturbance?, Ruser marked?, Condition of riser, concrete, protective casing, etc.)
MWZ3-1	1357	11.57	15.06	15.06	,				
23-2	1400	6.84	1490						
23-3	1403	9.31	14.72						
13-4	1412	4.47	17.62						
23-5	1418	5,22	17.42					12.55.L	y well cap
23-6	1426	9.48	17.38						

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

Section No Appendix C Revision No 0 Date 6/15/2005 Page C-23

S	SAM	PLING R	E	CO	RD) -	GR	OU	ND	W	ATER	?]
SENEGA	ARMY I	DEPOT ACTIVITY				PA	RSON	15		W	ELL #: /44	JZ.	3-1	
PROJECT:		OB Grounds L	TM (round	water S	Sampli	ng - Roun	d 6			DATE: (0	15/	(1)	1
LOCATION	:		R	OMUL	JUS, NY	ĭ				INSPECTORS: BROEME				
33/12 4 (T) (() ()	/ PIPLD	CONDITIONS CHECK	L'I TC'	r	/D1	CODI	D. MA IOD	CHANY	200)	PUMP #: Parson Periskut				ı
WEATHER	7 FIELD	CONDITIONS CHECK		EL.	WIN		D MAJOR (FROM)	T		OBLM20036				ı
TIME	ТЕМР	WEATHER		IDITY	VELOC	$\overline{}$	IRECTION	1			MONIT			1
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPI	RX)	(0 - 360)	COND	TIONS	INSTRUMENT		DE	DETECTOR	
21465	54	Sanny Party			10-2	51	1-7E	vet			OVM-580		PID	1
		clandy								d) from a			 _	4
DIAMETER (I)	(CHES):	UME CALCULATION FAC 0.25 1 2	3	4	6	lo	NE WELL VO				BILIZED WATER 1. FACTOR (GAL/FT)			
GALLONS / F LITERS/FO		0 0026 0 041 0 102 0 010 0 151 0 617	0 367 1 389	0 654 2 475	1 47 5 564							_		
		DEPTH TO POINT OF WELL			TH TO P OF	SCRET LENGT		WELL EVELOPME	NT NT	D	WELL EVELOPMENT	DF.	WELL VELOPMENT	1
HISTORIC D	ATA	(2OT)			N (TOC)	(FT)		TURBIDIT		1	pH	SF	PEC COND	1
		15.06+0.2	汗					-					-	
DATA COLLEC	TED AT	PID READING			DEPTH 1			DEPTH TO STABILIZE		DI	PTH TO PUMP INTAKE	PUM	PING START TIME	1
WELL SO		(OPENING WELL)		WAT	ER LEVE			TER LEVEL			(TOC)		11-112	1
			11.77 12.0			ク	14/12				╛			
RADIATION SCR DATA	REENING	PUMP PRIOR TO SAMPLING teps)	PUAIP AFTER SAMPLING (cps)						-					
	MON	ITORING DATA	СО	LLEC	CTED	DUI	RING P	URGIN	NG OP	ER.	ATIONS			
TIME WATER (min) LEVEL R	PUMPING ATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV YGEN (TEM (C)		. COND	рΗ		ORP (mV)		TURBIDITY (NTU)	1
407 175/	2	(YSI Probe	0.5	CI GEAL	DE 177	(0)	(44)				(111.7)	寸		1
42	0	- J</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\dashv</td> <td></td> <td>1</td>										\dashv		1
1117 11 42	1416	STATES	1	3	?	15.	2 2 5	750	6.8	2	10 1		in	1
477 11.46	1151		1	.41	D	15:	- 0 .,	25 2	6.8	- 4	105			1
4127 11 0 7	150	_			7	15.	9	54	67	7	147	\dashv	72	1
1422 1108		^ =					0.0	<u>57</u>	(0, 7,	5 /	95	_	5.3	1
11271146	(701	-0.5gar		0.8		/5.		<u> </u>	6.		73	\dashv		1
1444	144	0.25		101		15	-	51	6,6	1	9	\dashv	7.2	┨
71411114	162	W. Lb gai) (6			_	857	6.7	\rightarrow	360	\dashv	1.5	+
K134 1199	150			.4-		15.	3 0.			-	76		1.3	+
564 12.0	160			,41		15.		800	6.7	-	22	_	1,2	-
509/20	152		C), 4 ₍	<u>'</u>	15	3 0.	857	6.7	4/	21		1.2	
514 120	156		0	13	2	153	3 0	857	زف	6	17		1.0	
	iami	DIP I								[<u> </u>			
		d Sump &	-	رحالم	- hica)(₂	17D	Sam		e Geno	,,,	made	
1534 2.00)	~2.75	O	0		15	3 0	852	(0.7	3	e Geor		1.1	Γ.
13.74 1/14			Ť	-		1.5								1
Horibert	152.9				_							一		
	-	ter #3210]
		ivometer H		165	Š							7		
Parsons	Opsi	Statuc Punt	٠.,		7						_			1
	P-04.1	1011										\dashv		1
														1

SAMPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
ORDER			COUNT: VOLUME	TYPĒ	NUMBER		DATE
METALS 6010C			1 5001	HDPE	018LM 200	1524	·MEE K
METALS 6010C	4 deg C	HNO3	1 x 500 mL	HUPE	1 36	1 7	+
						1	
					 	-	+
64 5 5	•						ļ
			* , , , , , , , , , , , , , , , , , , ,		1,	Action 13 and	114 5
		, 52 📋	41}			PRO STATE OF THE S	
					2 . ava.,		
					0 6 7 T		
-					2.501125	. \	
					T.	70 2	40 ·
					118 . 1 . July	2	
	** T= 2.3	lān;		· 6 .	and and the	2 1 1 44.	
		i,			10 10 July	Contraction of the contraction o	
	4 4 1	Ž.			20 min 10	2	
	* * * * * * * * * * * * * * * * * * * *	Ž.					
		i d					
		Ċ.	97 09.34 P 922		ing E		
		i d					
		Ċ.		ley!	ing A		
		Ċ.			ing A		
DW INFORMATION				day:	ing A		
DW INFORMATION					ing A		
WINFORMATION				day:	ing A		
DW INFORMATION					కిచర్ద లో - ఒక జెకి.		
DW INFORMATION				day:	Sagar Length		
DW INFORMATION					Sagar Length		
WINFORMATION					Sagar Length		
DW INFORMATION					Sagar Length		

S	AM	PLING R	E	CO	RD	-	G	ROU	ND	W	ATER	R
SENECA.	ARMY D	EPOT ACTIVITY				PAI	150	NS		WI	ELL #: ML	123-2
PROJECT: LOCATION:		OB Grounds L			water S .US, NY		ıg - Ro	ınd 6	-		DATE: (O SPECTORS:) MP#: O	BOE ME
WEATHER	/ FIELD	CONDITIONS CHEC	KLIST	r	(RI			OR CHAN		SA	MPLE ID #:	
				EL.	WIN			GROUN		O	3LM200	
TIME	TEMP	WEATHER		IDITY	(APPI		RECTIO 0 - 360		FACE ITIONS	INS	MONIT STRUMENT	DETECTOR
(24 HR) 1227	(APPRX)	SUM	(6)	EN)	10-Z	_	-7E		-	1,40	OVM-580	PID
1251	30.3	2011				-		100		\vdash		
DIAMETER (IN GALLONS / FO LITERS/FO	CHES): DOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0 367 1 389	4 0 654 2 475	6 1 47 5 564	0.9	É WELL				BILIZED WATER L FACTOR (GAL/FT)	
		DEPTIL TO POINT OF WELL			TH TO	SCREE		WELL DEVELOPM	ENT	DI	WELL EVELOPMENT	WELL DEVELOPMENT
HISTORIC DA	ATA	(TOC)			N (TOC)	(FĪ)	-	TURBIDIT	<u> </u>		ρH	SPEC_COND
		14.90+0.2	7									
DATA COLLECT WELL SITE		PID READING (OPENING WELL)		W'A1	DEPTH 1 STATIC FR LEVE	L (TOC)	v	DEPTH TO STABILIZE ATER LEVEL	D	DE	PTH TO PUMP INTAKE (TOC)	PUMPING START TIME
					7.39	<u> </u>	<u> </u>					1232
RADIATION SCRU DATA	EENING	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT SAMPLING				
	MON	ITORING DATA	CO	LLEC	CTED	DUF	UNG	PURGI	NG OI	PER	ATIONS	LaroH
	PUMPING ATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV YGEN (1		5 (C)	SP	EC. COND (umbos)	рН		ORP (mV)	TURBIDITY (NTU)
123 7.32 0	2 8	YSI probe		LANG	11					\neg		
1232 /	UND	Etanted						·				
1240 829	154			3.16)	17.	5 0	.686	7.1	/	89	3.4
1245 8.31	60		-	1.15		17:5		694	7.1	7	94	2.0
250 8.41	57			.27		17.4		697	7.10	4	98	1.5
1255 0.44	148		_).Z	_	17.	_	691	7.0	9	101	1.8
1300 8.47	135	~0.50	_	7,7		17.1	_	686	7.0	2	97	1.3
305 8.48	138			2:		7.3		0.679		3	93	1.2
10	128			12		17.		5.682	1	-	92	1.5
13158.53				.2-		17,	_	. 683			86	5.6
1320 8,53		~1.5		7.2				.669	T .		86	1./
1325 8.56).20		ıή.		.659		180	80	1,0
1330 8.601				1.2		T T	$\overline{}$.662			80	1.0
1335 8.58	.,			125		T .	1	665			78	1,3
1345- 5		10	10		<u>, </u>	/ /1~	7		 '''	1	1,0	
		d pump }	1-	m	nc2	54		010	Co.		aretu	to ac-C
1 7 7	THE CAL	~2.75		2 1				656			76	1.0
1385		-6.13	0			1 11:	100	<u> </u>	7,0		14_	
Horizon L	725	# 1529			_		1					
YSI DO		_ ,					_					
		bidometer	13	` 3	108	<u> </u>						

SA	MPLING	1	PRESERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
(ORDER			COUNT VOLUME	ТУРЕ	NUMBER		DATE
ı META	LS 6010C	4 de	g C HNO3	1 x 500 mL _.	HDPE	26037	1345	MES
(7)	4						-	
3	4 .			_				
3 - 7 - 1 - 1	Play Bak at				1			
4 74	on the end	***						
5								
			હેવએ ફિ				5 - 1	
6			3 47 44				34 -	
7								
		21						
					1	11		
				= .	, .			
	TS: (QA/Q	OC?)			•			
		_ ,						
and the second								
45. 1.8° ±				* .	E No. 1	٠.		
in the second				*:	and the second	i.	The state of the s	
e jedinar a				• ; .	to See S.	rise fig.	The Company	
and an ar	Fs	s 1 ∘ €1				arys of the	ings on the second	
	Fg2* 	. 1 . q					and the second	
		, 1 , 1 , 1		7	₹T.1.	arys of g	Section 1	
		5 9 6 47 5 47		7				Asset 3
S. I.	Ti .					9735 F		natur
	Ti .							April 1971
	Ti .						77 (1) 77 (2) 7 (3)	ADDE TO THE
S. J.	Ti .							12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
S. J.	Ti .						77 (1) 77 (2) 7 (3)	ALEXE TO THE STATE OF THE STATE
IDW-INFO	PRMĀTIO					14.2.5	77 (1) 77 (2) 7 (3)	ALEXE TO THE STATE OF THE STATE
	ORMĀTIO!	N:				14.2.5	77 (1) 77 (2) 7 (3)	
IDW:INFO	PRMĀTIO	N				14.2.5	77 (1) 77 (2) 7 (3)	NAME OF THE PARTY
DW INFO	PRMĀTIO	N:				14.2.5		
IDW:INFO	ORMATIO	N:				14.3.3.3.		
IDW-INFO	PRMĀTIO	N:				14.2.jc.		

		SAM	PLING R	E(CO	RD	_	G	R	<u>U</u> C	ND	W	ATER	<u> </u>	
ľ	SENEC	A ARMY D	DEPOT ACTIVITY				PA	RSC	ONS			W	ELL #: M W	123	-03
	PROJEC LOCATIO		OB Grounds I.			water <u>S</u> US, NY		ng - Ro	ound (6		PU	SPECTORS: _ MP#: /o v	m	1/11 EE+88 5 Percas
Ī	WEATH	ER / FIELD	CONDITIONS CHEC		r EL.	(RE				CHANG ROUNI			MPLE ID #: BLM 200	37]
	TIME	TEMP	WEATHER		DITY	VELOC	-	IRECT		SURF)î		MONITO		
	(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPI	(X)	(0 - 36		CONDI		IN	STRUMENT	DE'	rector
- 1	1412	503	overcast	_	_		+		+	M ois	1		OVM-580		PID
	DIAMETER GALLONS LITERS	(INCHES): 7 FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0 367 1 389	4 0 654 2 475	6 1 47 5 564	0	NE WEL	L VOLU	X W) =](POW ELL DIAM	- STA ETER	BILIZED WATER LI FACTOR (GAL/FT)	evel) l	
	HISTORIO	T DATA	DEPTH TO POINT OF WELL (TOC)	7	TO	III TO P OF N (TOC)	SCREE LENGT (FT)	па		WELL ELOPMEN URBIDITY		D	WELL DEVELOPMENT pH		WELL ELOPMENT EC COND
			14.72+0.3	مك	whee	DEPTH 1	-			EPTH TO		Di	EPTIL TO PUMP	PLIMI	PING START
	DATA COLL WELL		PID READING (OPENING WELL)			STATIC ER LEVE		1	ST	ABILIZED		, Di	INTAKE (TOC)	- (-	TIME
	RADIATION	CONTRACTOR OF THE PROPERTY OF	PUMP PRIOR TO		5	5.92			PU	MP AFTE	R.			1-1	123
	DA'	ГА	SAMPLING (cps)						SAM	IPLING (e	ps)				
	TIME WATER		CUMULATIVE VOL		LLEC		DUI		SPEC. C	-	G OP	ER	ATIONS ORP	\neg	TURBIDITY
	(min) LEVEL	1 4		0.	YGEN (t	ng/L)	(C)	+	(umbo	01)	pll	\dashv	(mV)	+	(NTU)
	142 1	1	terreu					+							
	1430 9.04	158	1001	0	112		17.	7	0.4	067	7.0	6	-26	\Box	2.8
	135 4.08	200		0	108		<i>احد</i>	00	<i>و</i> ا ، ر	54	6.9	7	-36	<u>.</u>	2.0
	1440900	230		_	,0		161	90		50	6.9		- 44	+	1.5
	1445 9.11	700	20.75	_	0,0	9	16.	8	0.0	048	6.9		-48	+	1.
	14509.11	180	175	σ	1	2-0	16.	3 0	16		6.9	4	- 47	-+	1.3
1455		718	1.25		. 28	5	10.	1 0	6		6.9	7	- LIG	+	1.4
	1500 9.11			1	19	i	1100	7 6	5.10	45	6.9			十	1,4
	1510 4.1	210			. 17		ila	6	0.6	045		14		工	1.1
	1518 - 5	ample	OBLM	ZĎ	03	8					_				•
	1523 -		BB 6 10/5/11					\perp						\dashv	
	1527 P	omp R	estacted for	~	Pos	L Sa	ets.	عاد	6	eop	aca	M	eters	\dashv	1
	1534 9.1	1	~2.25	0	13		16	60	.6	41	6.9	3	-49	+	1.4
														1	
														_	
							<u> </u>	+						\dashv	
				-				+				_	_	+	
		1											L		

S	SAMPLING	PRESERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED I	81/
	ORDER		COUNT: VOLUME	ТҮРЕ	NUMBER		DATE	
r Mei	TARE 6010C	4 deg C IfNO3	1 x 500 mL	HDPE	PB FW 5 003	1518	MEE	10/6
	G.					·		
45 3 3 5	*1							\dashv
3/9 i (A)			_	-				-1
4 Σ*	700 5 A. NO							4
5								╝
,		237. 11	=.		42.50	A 3	371	
,	•							
+								\dashv
-								\dashv
								_
	b =0			1	5	41		
				30.004	41.	, •		
COMME	NTS: (QA/QC?)	, t°					
COMME	ENTS: (QA/QC?					1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - 1 - 1 - 1	
COMME	ENTS: (QA/QC?			est of		1 m/ 2 1 m		
COMME	ENTS: (QA/QC?		. 3. H11 			1 m/ 2 1 m	1 - 1 - 1 - 1	
COMME	ENTS: (QA/QC?			11 17	⇔ n#	vani z Pan	1 - 1 - 1 - 1	
OMME	ENTS: (QA/QC?			11 17	⇔ n#	vani z Pan	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
OMME	ENTS: (QA/QC?			G . 15	1354 1367	10/2 M	The state of the s	
OMME	ENTS: (QA/QC?			11 17	⇔ n#	10/2 M	The care of the ca	7.7
OMME	NTS: (QA/QC?			G . 15	1354 1367	10/2 M	The same and the s	7.7
OMME	NTS: (QA/QC?				1354 1156	10/2 M		27
OMME	INTS: (QA/QC?							7.7
OMME	INTS: (QA/QC?							27
OMME	ORMATION:							27
COMME	ORMATION:							

SE.			EPOT ACT					PAR				_	ATER	_	3-4
PRO	JECT: ATION:			ounds LT				ampling				INSI		<u>/5</u>	14
WE	ATHER	/ FIELD	CONDITIONS	СНЕСК	LIST					CHANG	FS) S	SAN	IPLE ID #:	74	- 31-1-0
		mira. cp	22722 A 1878 E	en	RE		WIN		ROM) ECTION	GROUNI SURF.		<i>0</i> 0	MONITO		
(24 I		(APPRX)	WEATH (APPR)		HUMI (GE		(APPR		- 360)	CONDI		INS	TRUMENT		ЕТЕСТО
102		506	Partly clas	dy			10-2	5 W	->E	Vet	-		OVM-580		PID
GAL	ETER (IN LONS / FO	CHES): OOT:	UME CALCULA 0.25 1 0.0026 0.041 0.010 0.151	Q 163	3	4 0 654 2 475	6 1 47 5 564		MELT A0	1.11)= (POW - S ELL DIAMET	STAB FER F	ILIZED WATER L FACTOR (GAL/FT)	EVEL	
	STORIC D		OF V			TOI	TH TO P OF N (TOC)	SCREEN LENGTH (FT)		WILL EVELOPMEN TURBIDITY		DE	WELL EVELOPMENT pH		WELL EVEL OPMEN SPEC COND
BATTA	COLLECT	TED AT	17.62.	HO.Z	7		DEPTH T			DEPTH TO STABILIZED		DEF	PTH TO PUMP INTAKE	PL:	MPING STA
	WELL SIT			G WELL)	\dashv		LE LEVE	L (TOC)	WAT	TER LEVEL (TOC)		(TOC)	(627
RADIA	TION SCR DATA	EENING		RIOR TO NG (cps)						PUMP AFTE AMPLING (c					
		MON	ITORING				CTED	DURI			G OPE	ERA	ATIONS	_	TURBIDI
	WATER LEVEL R	PUMPING ATE (ml/mln)	CUMULATIV (GALLO)	1		ISSOLV YGEN (1		TEMP (C)		(COND (toda)	рΗ	_	ORP (m ^V)	Ц	(NTU)
1026	1.45	Purp 2	YSI Pro	ee ih	60	11			_			4			
1027		Juny >	moted_								7.61	+	/ 1	-	111
1303	6.56	124				04		154	_	739	7,82	r	61	-	14
1300 E	6.28	87				1.18		15.0		742	7.83	_	29	_	6.5
1043	661	108				118		15.7		731	(1. /	4	-11		43
1048	7.51	116			0	<u>, [</u>	7_	15.8		721	7.6		-30	-	3.
1053	7/94		20.79	gal		<u>0,</u>	16	15.18		713	7.6	$\overline{}$	-34	_	10
1058		104	-			. 18		15.9	0.	7/2	7.6		-34		1.8
1103		Щ	1.25	201		.2		Τ	O.	_	7.6	\neg	~21		1.4
1113			11 03	المول	C	2.4	0	123	0-7	7-07	7.56		-13		1.2
118	7.78	150			0	.6	5_	15.8	0.	705	7.5	8	-8		1.5
N23	0.20	132			\mathcal{C}		<u>53</u> _		0.		7.6		-4		1.4
1128	1060]	_	. 6				704	7. 5	. 1	7	_	1, 6
		138	22.0	2526		2.6		15.8	10-	099	7.6	$-\tau$			1.6
1138		108	_			7,7		15.8		699	7.6			_	1.7
1/4/3		112	22.2	. 2	_	5 . S	_	/ 5,	10.	697		1		_	1.7
1148		110	12.1	<u>_</u>		2.8				695	7.6	- 1	25	_	<u> </u>
11153	11,98		1, - L.	ے		<u>D . '</u>	87	110	10.	697	7.6	긔	25		1

1206 Restarted pump to collect Post sample Gerpara 1211 12.35 2.75 gals 0.83 15.6 0.693 7.60 45

1.7

SA	MPLING	PRESE	RVATIVES	BOTT	LES	SAMPLE	TIME	CHECKE	D BY/
O	DRDER			COUNT/ VOLUME	TYPE	NUMBER		DAT	E
I META	LS 6010C	4 dey C	HNO3	1 x 500 mL	HDPE	OBL M20	103	MEE	10
•	4		200 4 100	1110	1100111			1	一门
2 2 2 2 2		•		 -	-				\dashv
3. 41 . 34	pertent 1								
4	128.1								
									$\neg \uparrow$
5	_						*	 	-
6			niż II	* * * * * * * * * * * * * * * * * * * *	1	All Carlot	Parel of Tarent		T.
7									
			4				<u>-</u>		
					-		·	-	\dashv
					4	10 III-			
					l			1	
2 - 20				31	* 1				
COMMEN	15. (QAQC.	,			· · · · · · · · · · · · · · · · · · ·	tur ya kir,			
						ter specify			
ia)				· ""	i se al	Part with Son	The second of the second		H.
		:	±2 . −. ·	11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Part Add St.	g		- 1
ia)						Part with Sen	The second of th		H.
ia)		:	±2 . −. ·			. •	المامي المحاموة المامية المامي المامية المامية المامي		
		:		F. 7.		Part of the			H.
			±2 . −. ·	F. 7.		. •	المامي المحاموة المامية المامي المامية المامية المامي		
									1
						. •			
DW INFO	RMATION:								
	RMATION:								
DW INFO	RMATION:								
DW INFO	RMATION:								
DW INFO	RMATION:								
DW INFO	RMATION:								
DW INFO	RMATION:								

S	SAM	PLING R	E	CO	RD	-	GR	OU	ND	W	ATER	3		
SENECA	ARMY D	EPOT ACTIVITY				PAR	SON	JS			ELL #: MA			
PROJECT: LOCATION		OB Grounds L			water S .US, NY		- Roun	d 6		INS PU	DATE: SPECTORS: B MP #: Pars	10/ 80	+ ME	alti
WEATHER	R / FIELD	CONDITIONS CHEC	KLIST	r	(RE			CHANG		SA	MPLE ID #:			
				EL.	WIN		_	GROUN		0	BLAZOC			
TIME	TEMP	WEATHER (APPRX)		idity EN)	VELOC (APPF	- 1	ECTION - 360)		TIONS	IN	MONIT STRUMENT		TECTOR	
(24 HR) 12 4 9	50'S	overcast	(G	EIN)	10		(L)	Moi		7	OVM-580		PID	
r & r q	1303	OWA CLESS		_							NA	٨	J/A	
DIAMETER (IN GALLONS / F LITERS/FO	NCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	0.367	3 4 6 367 0 654 1 47 1 389 2 475 5 56			WELLVO	<i>N K</i>	L) = [(POW ELL DIAM	-STA LETER	BILIZEÐ WATER I FACTOR (GAL/FT	LEVEL) D		
		DEPTH TO POINT OF WELL		то	P OF	SCREEN LENGTH	D	WELL EVELOPME		C	WELL DEVELOPMENT		WELL FLOPMENT EC COND	
HISTORIC D	DATA	17.42+0.3	7	SCREE	N (TOC)	(FT)		TURBIDITY				SF.	EC COND	1
DATA COLLEC		PID READING (OPENING WELL)	+7/1	WAT	DEPTH T STATIC TER LEVE		WA	DEPTH TO STABILIZE FER LEVEL	D	DI	EPTH TO PUMP INTAKE (TOC)	PUMI	PING START TIME	
		NIA		5	.413			7.19				12	56	
RADIATION SCI DATA	REENING	PUMP PRIOR TO SAMPLING (cps)			NA			PUMP AFTI AMPLING (NA			
	MON	ITORING DATA	CO	LLEC	CTED	DURI	NG F	PURGIN	(G OI	PER	ATIONS			
TIME WATER (min) LEVEL F	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV TYGEN ((TEMP (C)		COND	pii		ORP (mV)		TURBIDITY (NTU)	
1255 5.33	اندا لاسا	SI in well	4	1.3-		15.1	0	726	7.0	4	-30			
1301 6.37	180			33		15.1	0	720	7,0	2/	- 30			
1304 6.58	154		0	x Z 5	· ·	15.1	0.	706	7.0	3	-23		3.0]
300 (0.91	148		†	>,0		15.1	()	665	7.0	J	- 09		19	
1219 6.95	130		$\overline{}$.00		15.1	0.	649	7.0	7	-1		15	
1318 7.01	132		6	.0		15.0		653	7.0	5	7		1.3	
1323700	132	_			,4	14.9		655	7.0	25	12		1.3]
328 7.11	132	-	0	.00	5	14,8	0.	660	7.0	6	16		1.3]
1333	130	21.25 50		.05	F	14.7		659			18		1.3_]
1339 7.15	12,5		(5 .11	3			658			73		1.3	
1344 7/1	7		7	21	10			654			25		1.3]
1349 21				21/8				660					1.3]
1359 Sa	MADIE	22.0 gale				200]
30	MATTER STATE]
MICH De	to otro	PUMP +		olle	ol	Post	- 54	mile	Se	P	ILMS]
MO9 7.0	1		7	٠2		141.4	0.1	656	70	5	32		1.2	
	1													

S.	AMPLING	PRESERVATIVES	BOTTL	17/3	SAMPLE	TIME	CHECKED E
	ORDER		COUNT/ VOLUME	TYPE	NUMBER		DATE
n MET	ALS 6010C	4 deg C HNO	3 1 x 500 ml.	HDPE	OBLM 20040	1359	MEE 10
2	J.				,		
31 41 7/	(4.23)						
			 				+
4 .	industrial de la Contraction d	Oi (ļ				
5							
		55.171	· · · · · · · · · · · · · · · · · · ·			. 21 :	Y to
6	-1		1	-			
7	,			ļ			
	Ì				2		
-			-		<u> </u>		
				,	2.5 + 5 + 5		
				ede	min v 14		
				.1			
		A. Carrier and A. Car					
COMME	NTS: (QA/Q			A		· • • • • • • • • • • • • • • • • • • •	e *!!
	NTS: (QA/Q	C?)		A	31-7-1	1 d c	
IDW INF	ORMATION	C?)				1 d c	
COMME		C?)				1 d c	
IDW INF	ORMATION	C?)				1 d c	

SE	NECA	ARMY D	EPOT-ACTIVITY				PA	AS	ON	ıs		WI	ELL #: /14	123-6
				TMC	round	water S	amnl	ing -	Round	16			DATE: [O	
	OJECT: CATION		OB Grounds L	R	OMUL	US, NY	,	<u></u> -				INS	PECTORS:	BOIME Permelie
1,00			Programme and the first									PU	MP#: Passa	Permelie
WE	ATHE		CONDITIONS CHECK			_			1	CHANG		SA	MPLE ID #: (BLMZO
			1,1200,2015	RI	EL.	WIN		•		GROUNI			3LM 200 MONIT	
TIN		TEMP	WEATHER		IDITY	VELOC	ı		CTION	SURF.		TNO	TRUMENT	DETECTOR
(24		(APPRX)	(APPRX)	(G	EN)	(APPI		_	360)	vet	11043	1/45	OVM-580	PID
83	7_	54	Clear	_	-	10-4	4	V -		Del	-	_	OAM-200	110
		WELLVOL	UME CALCULATION FAC	TORS		<u> </u>	10	DNE V	ELL VO	LUME (GAL) = [(POW	- STAI	BILIZED WATER I	EVEL)
	ETER (I	NCHES):	0.25 1 2 0.0026 0.041 0.163	3 () 367	4 0 654	6 1 47				XW	ELL DIAM	ETER	FACTOR (GAL/FT)	I
	LLONS / .ITERS/F0		0010 0151 0617	1.389	2 475	5 564								11/71
			DEPTH TO POINT OF WELL			THI TO	SCRE LENG		D	WELL EVELOPME	\$T	Di	WELL EVELOPMENT	WELL DEVELOPMENT
111	ISTORIC I	DATA	(TOC)		SCREE	ENITOCI	(FT			TURBIDITY			PH	SPEC COND
			17.38 +0	127	Tipe	of Pro	oe)		•	_			_	-
					l	DEPTH 1	ro	_		DEPTH TO		DE	PTH TO PUMP INTAKE	PUMPING STAR
DATA	WELL SI		PID READING (OPENING WELL)		WA	STATIO TER LEVE		5		TER LEVEL			(TOC)	
					0	1.24	1							0850
RADI		REENING	PUMP PRIOR TO		Π.			寸		PUMP AFTE AMPLING (c				
_	DATA		SAMPLING (cps)									DED	ATIONS	LaMoth
 T	WATER	MON	CUMULATIVE VOL	_	LLEC	CTED	DU JEN	$\overline{}$		COND	G UI	r E.K.	ATIONS ORP	TURBIDIT
TIME (mln)		RATE (ml/min)	(GALLONS)		MGEN (124(C	2	(ur	nhos)	pH	\dashv	(mV)	(NTU)
1545	9.14	Purp	LYSI Probe	N	م ١	ell_								
650		Pano	Started				1							
855	10.5	190		0	41		14	\overline{I}	6.	758	7.2	3	220	19
	11.14	170		-	30		14	-		742	7,:	-	216	+-41-
2900	11-1-1	132		10	<u>30</u>		1.			777		5	198	3.0
2905	17.0	88		10	<u>. 5</u>	<u> </u>	14		\mathcal{O}_{i}	/33		_		3.0
0110	17.00	114		C). <u>4</u>	0		(-7	<u> </u>	738		32	186	7
3915	12.75	708_	0.5 au	\perp	2	8	\prod_{c}	<u> </u>	01	<u> 136</u>	7.3	33	180	
2920	1270	124	J	10	20	7	14.	4	6.	733	7.	<u>35</u>	175	2,1
	13.0	114	1 gai		.4		14	1.4	0.	729	7.	36	171	120
_			, 20,		. 41					7 72	7.		172	
	13,21				_	_	111	,	~ -	122	7.3			1.9
	13.45		101	10	<u>, L</u>	17								
0940		102	V1.532/3	<u> c</u>	16	_	117	ib	0.7	25	7,2	0	174	2.1
5950	50	impl		<u> </u>			\vdash			_	ļ			
		+MS												
0.00	30		Dupe											
P. DC	20	1.451	,		_									
1005	0		E LOI	1	11.	+ Pe	LI	_ <	and a	6	eo l	Par	240	
1005	111	up rei	tartal to				10	1	0	745	7,3		146	4.9
	14.82		~ 2,0915	1 C), (5	7	113	10	0.	170	FV.	U	110	7 6
Hori	ba	052	H 1529	\perp		_	1-							
		0H3	210											
سهب	~ ~		by Mex	114	^	-								

S	AMPLING	PRESERVATIVES	вотті	T	SAMPLE	TIME	CHECKED BY/
	ORDER		COUNT: VOLUME	TYPI:	NUMBER D / D / 200	W > 0.5 A	DATE
1 MET	ALS 6010C	4 deg C HNO3	1 x 500 mL	HDPE	9BCM/506	410450	10/6/1
21	<u> </u>	 			OBLMZa	41M5 950	MEET
3	1 marine	_		_	0 RL M 20	an m 20 2	MEE 10
4	13.50 31		-		08CM200	42 1000	MEE 101
5							
6		100	1 1 1		19	* V V	67 4
7							
			2000/12	56 7 11			
1				34			-
			<u> </u>		<u>. </u>		<u>L</u>
COMME	NTS: (QA/QC?	<u> </u>	30."				
ĎWINFO	DRMATION:						
el 11	1 1 2 m 1 1 m		NC 2		7.10 7.100	Verice VI	
•		3 5	3	4 1			

OB Grounds Task Order #08 Round 6 Inspection

my with me property painting a second contraction

Date of Inspection: 10/6/11
Weather Conditions: Clear Tenps 40-50's Wind NE-25W 5mph

Observations should include assessment of integrity of 9-inch soil cap placed over residual lead contaminated soil in 25 125'x125' grids.

Assessment should be made with respect to caps ability to ensure that indegenous terrestrial wildlife are not exposed via direct dermal contact or incidental ingestion.

Note signs of erosion or animal burrowing to ensure underlying soils are not exposed to the environment.

Grid No. Observations/Location of Disturbed Soils

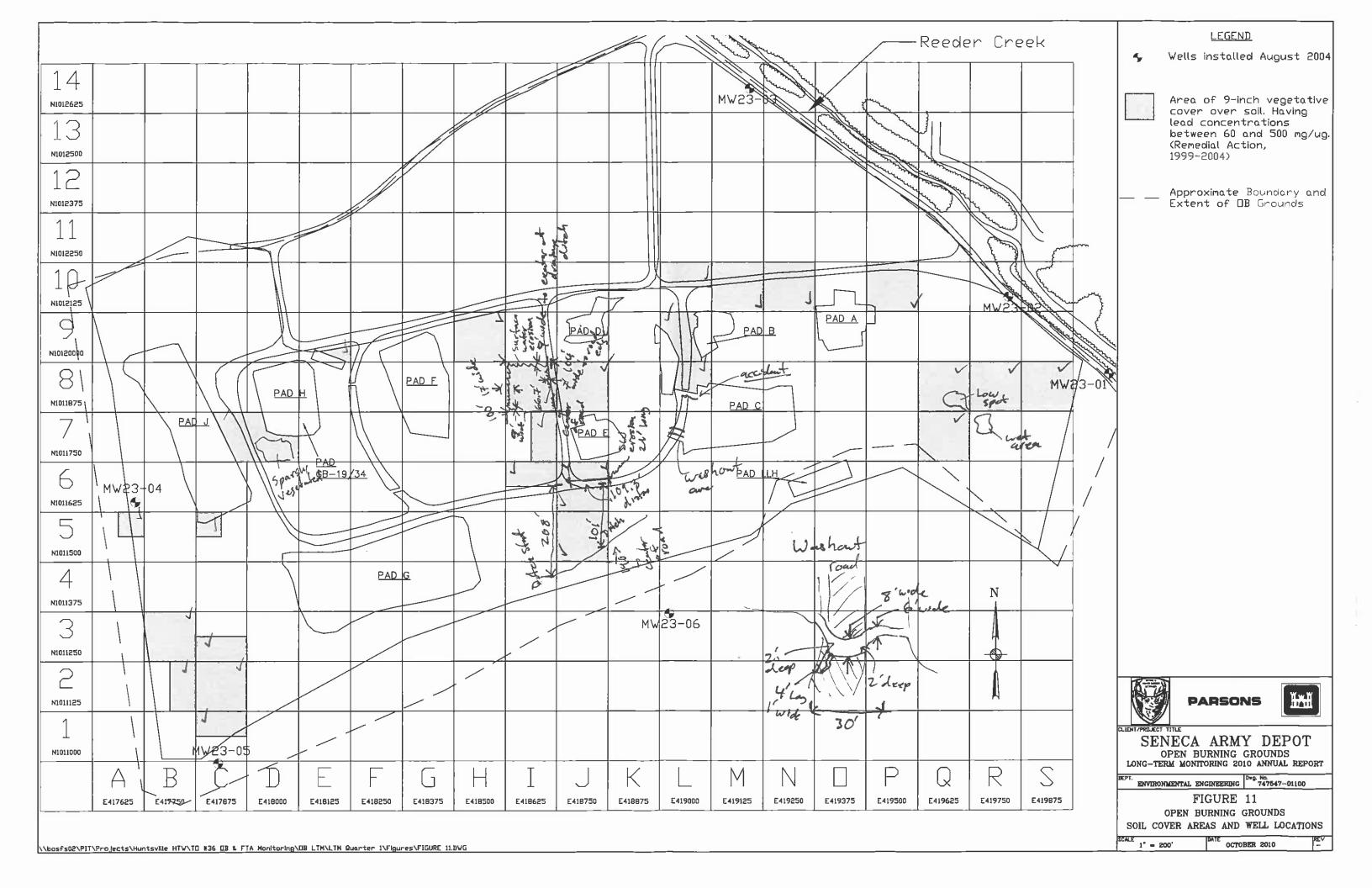
1 A5

2 C5

Save 43 A5

Plus water on ground suffer

Plus water on ground suffer


In impediate are

1	A <u>5</u>	no animal holes o broned. Place water on ground suffer
2	C5	Same as A5 Plas water on ground suffice
3	В3	sare as A5
4	B2	sure es A5
5	СЗ	Some as AS
6	C2	same as A5
7	C1	same as AS
8	C7	no animals observed.
9	D7	Parton of sparsh regelated area 70 by 70' approx Size
10	E9	no animal hole's observed
11	H9	Standar unter in sarrounds areas.
12	16	no animal holes observed.
13	17	no animal holes observed.
14	18	fur surface water run off, ~ 3-4" or LCS
15	J5	no animal hotes observed. (Not in 35. Drawage Dites Car)
16	J6	no save es JE Plus, 109 ff from center of road 1
17	J8	Standary water was observed, water in adjacent
		grods

OB Grounds Task Order #08 Round 6 Inspection

		Round o mopeodon
	Grid No.	Observations/Location of Disturbed Soils
18	L8	Standay water by Innedocte area around grown
19	L9	sue as L8
20	L10	Standing unfor in imprediate area around grad
21	M10	save as L10
22	N10	same as LIO
23	P10	a couple of ruts from part vehicle activity
24	Q7	no animal heles observed
2,5	Q8	no animal holes observed
26	300	no animaliholes observed
27	S8	no animal holes observed

The state of the s

APPENDIX B

FIELD LOG OF OCTOBER 2011 REEDER CREEK INSPECTION

erosion aren from surface unter sun off on NE corner of gred running into Grid KG (not soil capped). Flow puth is approx 21 long & ~ 4" deposit.

Ford JS has previously observed dramage cut evossing the AGrid SW-> NE. Dramage cut is ~ 101' from center of access road due south along J/K Grid separator. Dramage cut is ~ 208' from center of access road due south along J/K Grid separator. Dramage cut is ~ 208' from center of access road due south along J/J Grid separator, ~ 7 Sind D7 had a ~ 70' by 70' area of sparse vegetation, but no sistes of safface water crostoms.

1215 Reader Creek Inspection,
Started at excevator access point
Due East of Northern top of OD Hill,
Sloped grown / shale ramp to creek,
-> Sediment was observed in general
along much of the creek bed but
was United to a thin layer (less
then I can) that also had a sliny
organic appearance & fell.

-> Pluces were sodinat appeared to accumulate were abundant in dead leaves ? tree branches lying the creek bottom. -> frectured shale pieces or compatent bedrock creek bottom present along. creek inspection except in the North end (down gradet) info the OD Grounds, north of entrance range. Other location was South of former Beaver Dan, locatel befores the OB Grands Metal garage & concock blocks, in Grads RIO/SIO toco. -> Sediment updredient of former Beaver Dam app was overlay ad a/ mats of tree branches possible placed by beavers, Sediment release numerous 6-66 when policed u/ stock suggesting decomposition as source of sediment as compared to deposition of Suppended naterial.

		Name and Address of the Owner, where the Park	THE RESERVE TO THE PARTY OF THE		_	_
10/6/	al.					
1330.	Creek will	completed	No.			
1311	D 11 07	Grounds - Car	(), ()			
(242	Cold office	Grounds for	<u> </u>			
	The state of the second					
1400 (Returned to	freld offree.				
· · · · · · · · · · · · · · · · · · ·	alocaded seen.	organized Pro				
K,850.7	WIDNESST , Decl	and OK K an alac				
fo	eld forms,	JCENNEOL				
ne -	All Property and State of the S	Scenned	• , , , ,			
16/530	ME Departed	field ofto ship & Pine				
<u></u>	aupes to	ship & Phe		-		
700	0 ft 2 w 1 m 2 m					
440 LGC	O BBO Depar	ted foold				
	three to Bo	ston				
F 4 4 2			X I			
1 00		1 1				
- 18 to - 8		The state of the s				
	mey."	Va. 1 Va 2 o Va		1 1		
		1000				

Appendix B

Transcript of Log Book notes from 10/6/2011 Reeder Creek inspection OB Grounds LTM 2011 Annual Report

Seneca Army Depot Activity

Note: implied words or missing suffixes have been (added) to this transcription of the field notes for ease of comprehension.

1215 – Reader Creek inspection

- Started at excavation access point due east of the northern tip of OD Hill, sloped grave/shale ramp to creek.
- Sediment was observed in general along much of the creek bed, but was limited to a thin layer (less than 1 cm) that also had a slimy organic appearance and felt.
- Places were <sic> sediment appeared to accumulate were abundant in dead leaves and tree branches lying (on) the creek bottom.
- Fractured shale pieces or competent bedrock creek bottom present along creek inspection except in the North end (downgradient) into the OD Grounds, north of the entrance ramp. Other location was South of former Beaver dam, located between the OB Grounds Metal garage and concrete blocks, in Grids R10/S10 loco.
- Sediment upgradient of former Beaver Dam app was overlayed w / mats of tree branches
 possible placed by beavers. Sediment release(d) numerous bubble(s) when poked w/ stick
 suggesting decomposition as source of sediment as compared to deposition of suspended
 material.

1330 - Creek walk completed

APPENDIX C

REEDER CREEK INSPECTION PHOTOS

Photo #01 - Looking south (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west) of the creek. Creek bottom fractured shale over apparent bedrock (shale) with thin organic/sediment layer on/between rocks.

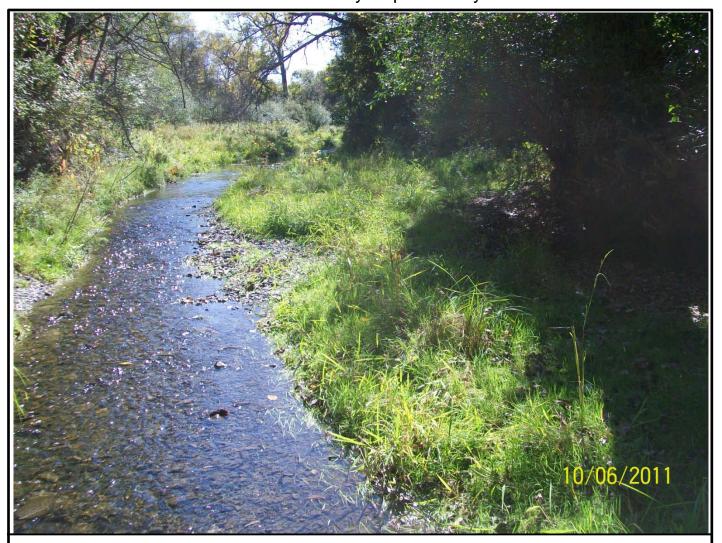


Photo #02 - Looking south (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west) of the creek. Creek bottom fractured shale over apparent bedrock (shale) with thin organic/sediment layer between rocks.

Photo #03 - Looking southeast (upstream) at Reeder Creek. Creek bottom composed of sediment intermixed with shale pieces; no indication of prior excavation. Area maybe outside excavated area.

Photo #04 - Looking at west embankment (OB/OD Side) of Reeder Creek. Approximately 18 inches of creek bank have been scoured out beneath a tree located on the embankment; first observed in April 2009 inspection.

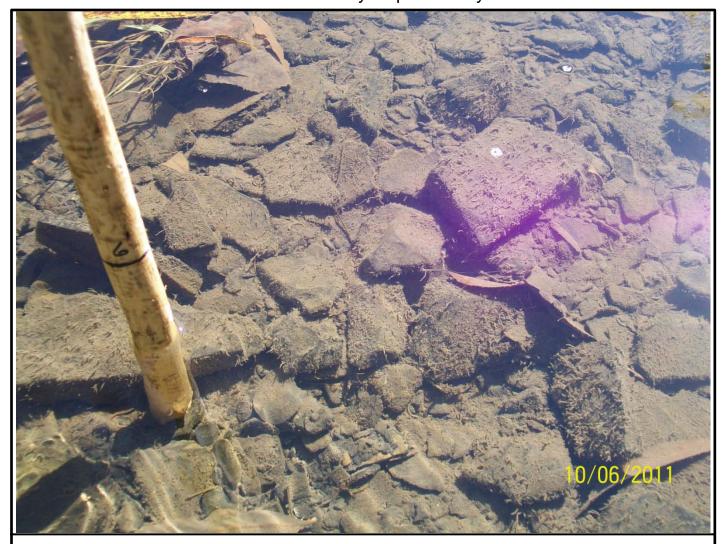


Photo #05 – Looking at Reeder Creek stream bottom. Creek bottom composed of fractured shale pieces with thin organic/sediment layer on/between rocks. Water is approximately 3 inches deep; 6-inch mark on stick visible.

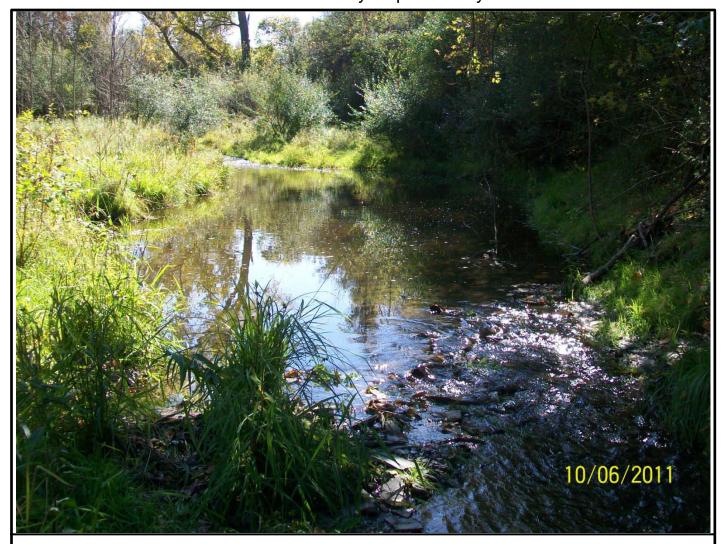


Photo #06 – Looking at south (upstream) at Reeder Creek. Water appears to be slowed and pooling in this area, slight topographical rise in lower right corner of photo. See Photo #07 for creek bottom conditions.

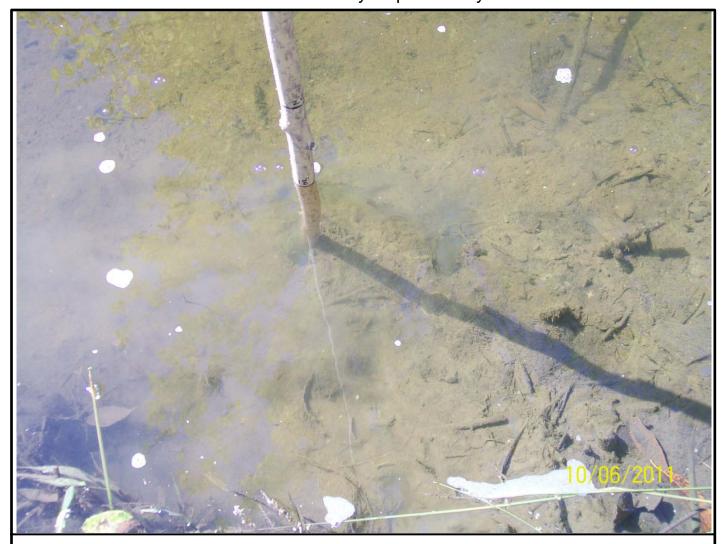


Photo #07 – Adjacent to vegetated east (SEAD-12) embankment looking at creek bottom in pooled area (Photo #06). Sediment material approximately 6 - 12 inches thick. Leaves and tree branches in abundance on creek bottom.

Photo #08 – Upstream of pooled area (Photo #06). Creek bottom is apparent bedrock with thin organic/sediment layer on rock surface. Water is approximately 5 inches deep; 6-inch mark on stick visible.

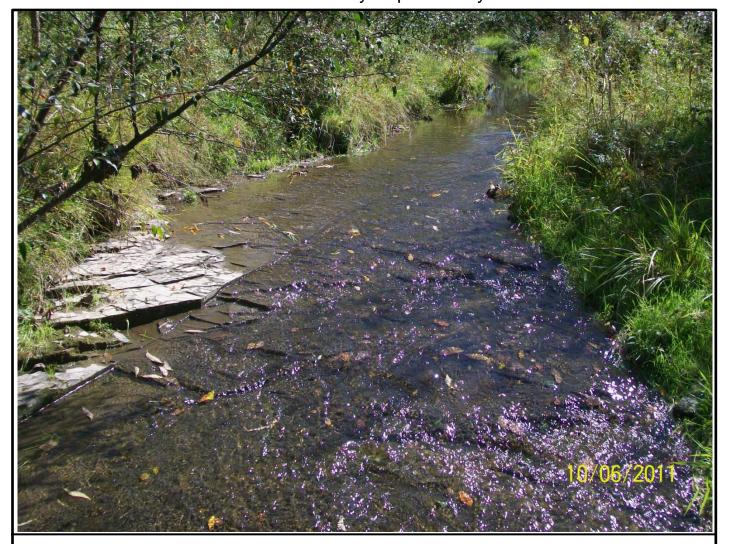


Photo #09 – Looking at Reeder Creek upstream of pooled area (Photo #06). Creek bottom is apparent bedrock with thin organic/sediment layer on rock surface.

Photo #10 – Looking southeast (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west). Creek bottom composed of apparent bedrock (left side) and shale pieces on top of apparent bedrock (right side). The bottom has a thin organic/sediment layer on surface.

Photo #11 – Looking Southeast at Reeder Creek upstream. Shale slope on east embankment and vegetated embankment on west side (OB Grounds). Creek bottom composed of apparent bedrock (shale) (left side) and shale pieces on top of apparent bedrock (right side). The bottom has a thin organic/sediment layer on surface.

Photo #12 – Looking southeast (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west). Creek bottom composed of shale pieces on top of apparent bedrock (right side) and sediment behind. Vegetated island observed on left side of creek (Photo #13). Bottom has a thin organic/sediment layer on surface.

Photo #13 – Looking southeast (upstream) at vegetated island in Reeder Creek upstream. Sediment and dead leaves observed in creek cut along left side of photo.

Photo #14 – Looking at east (SEAD-12) embankment of Reeder Creek. Embankment composed of shale layers with thin vegetated layer. Deer trails to creek are visible in photo.

Photo #15 – Looking southeast (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west). Creek bottom composed of shale pieces on top of apparent bedrock. Bottom has a thin organic/sediment layer on surface.

Photo #16 – Looking southeast (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west). Creek bottom exposed in several spots. Thin (<1 inch) sediment/soil layer on exposed areas. Creek bottom composed of large shale pieces on top of apparent bedrock. Bottom has a thin organic/sediment layer on surface.

Photo #17 – Looking at apparent bedrock creek bottom of Reeder Creek.

Photo #18 – Looking southeast (upstream) at Reeder Creek. Creek bottom composed of large shale pieces on top of apparent bedrock. Bottom has a thin organic/sediment layer on surface.

Photo #19 – Looking southeast (upstream) at Reeder Creek. Vegetated embankments on both sides (east & west). Creek bottom composed of apparent bedrock with scattered shale pieces. Bottom has a thin organic/sediment layer on surface.

Photo #20 – Looking south (upstream) at Reeder Creek. Former beaver dam was located in top-of-center of photo; see Photo #4 from OB Grounds LTM 2010 Annual Report, Appendix C . Vegetated embankments on both sides. Creek bottom composed of apparent bedrock with scattered shale pieces. Bottom has a thin organic/sediment layer on surface.

Photo #21 – Looking downgradient of the former beaver dam. Creek bottom composed of apparent bedrock with a thin organic/sediment layer on surface.

Photo #22 – Looking at Reeder Creek bottom 10 feet upgradient of the former beaver dam. Creek bottom composed of mats of branches and leaves on top of sediment. Sediment approximately 3 inches thick. An abundant release of bubbles was observed when sediment was poked suggesting ongoing decomposition.

Photo #23 – Looking southeast (upstream) at Reeder Creek, upgradient of the former beaver dam. Vegetated embankments on both sides (east & west). Creek bottom composed of sediment with no apparent signs of prior excavations. Small island mound with vegetation (center of photo) observed during previous inspections.

APPENDIX D

LABORATORY REPORT

APPENDIX E

DATA VALIDATION

PARSONS OPEN BURNING (OB) GROUNDS LONG TERM MONITORING (SENECA) SE6546

KATAHDIN ANALYTICAL SERVICES, INC. 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074

TABLE OF CONTENTS Total number of pages: 169

SAMPLE DATA PACKAGE		0000001		
Narrative		0000002	to	0000004
Supporting Documents	*************	0000005	to	0000005
Chain of Custody Record		0000006	to	0000006
Login Report		0000007	to	8000008
SAMPLE DATA SUMMARY Report of Analytical Results		A0000001	to	A0000009
METALS DATA		4000001		
Sample Data		4000002	to	4000011
QC Summary	8-4 2 4-4-4 m g 6-4 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a	4000012	to	4000043
Raw Data		4000044	to	4000150
Logbooks and Supporting Documents		4000151	to	4000152

SAMPLE DATA PACKAGE

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES PARSONS OPEN BURNING (OB) GROUNDS LONG TERM MONITORING (SENECA) SE6546

Sample Receipt

The following samples were received on October 07, 2011 and were logged in under Katahdin Analytical Services work order number SE6546 for a hardcopy due date of October 27, 2011.

KATAHDIN	PARSONS
Sample No.	Sample Identification
SE6546	OBLM20036
SE6546	OBLM20037
SE6546	OBLM20038
SE6546	OBLM20039
SE6546	OBLM20040
SE6546	OBLM20041
SE6546	OBLM20042

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Jennifer Obrin. This narrative is an integral part of the Report of Analysis.

Metals Analysis

The samples of Katahdin Work Order SE6546 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix Katahdin Sample Numbers SE6546-(1-7) were digested for ICP analysis on 10/26/2011 (QC Batch BJ26ICW1) in accordance with USEPA Method 3010A. Katahdin Sample Number SE5646-6 was prepared with duplicate matrix-spiked aliquots.

ICP analyses of Katahdin Work Order SE6546 sample digestates were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010B. All samples were analyzed within holding times and all analytical run QC criteria were met.

Matrix QC Summary

The measured recovery of all elements the matrix-spiked aliquots of Katahdin Sample Number SE5646-6 were within the laboratory's acceptance criteria (75% - 125% recovery of the added element, if the native concentration is less than four times the amount added).

The matrix spike duplicate analyses of Katahdin Sample Number SE6545-6 is within the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots).

The serial dilution analyses of Katahdin Sample Number SE5646-6 is within the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the IDL) for all analytes.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the laboratory's practical quantitation limits (PQLs) are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the MDL is listed in the concentration column. These MDLs and PQLs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, MDLs, and PQLs are listed on Form 10 of the accompanying data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or Quality Assurance Officer, as verified by the following signature.

Justie Dimond

11.77.11

Leslie Dimond

Quality Assurance Officer

Client: Parsons			KAS	PM:	Kt	Sampled By: Went
Project:			KIMS	S Entry	By:]	Delivered By: Fed Ex
KAS Work Order#: SELE544		1	KIM	S Revie	w By:	Received By: DM
SDG#:	Cooler: _		of	<u> </u>		Date/Time Rec.: 10/7/// 10:15
Receipt Criteria		Υ	N	EX*	NA	Comments and/or Resolution
Custody seals present / intact?		1				
2. Chain of Custody present in cooler?						
3. Chain of Custody signed by client?		-				
4. Chain of Custody matches samples	?					Toma (9C):
Temperature Blanks present? If no temperature of any sample w/ IR gun.	ot, take					Temp (°C): 1.9
Samples received at <6 °C w/o free:	zing? -					Note: Not required for metals analysis.
Ice packs of ice present?						The lack of ice or ice packs (i.e. no attemp begin cooling process) may not meet certa regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process b ice or packs present) and sample colle <6hrs., but samples are not yet cool?	egun (i.e. ection times				V	Note: No cooling process required for met analysis.
Volatiles free of headspace: Aqueous: No bubble larger than a Soil/Sediment: Received in airtight container?	pea .				14	
Received in methanol?		-	-			-
Methanol covering soil?						
7. Trip Blank present in cooler?					V	
8. Proper sample containers and volume	me?	1	1_			
9. Samples within hold time upon rece		V				
10. Aqueous samples properly prese Metals, COD, NH3, TKN, O/G, ph	rved?	1-	+	_	1	
TPO4, N+N, TOC, DRO, TPH-	pH <2 [#]		-	-	10	オ
Sulfide - >9 Cyanide – pH >12		-		-	V	7
* Log-In Notes to Exceptions: doc	ument any	proble	ems v	vith sa	mples	s or discrepancies or pH adjustments
egicacja Ad						
		·	·			0000005

Natalium Analytical Services, mo.

STUBUL

ANALYSIS PROJECT & CLIENT INFORMATION PROJECT & CLIENT INFORMATION PROJECT & CLIENT INFORMATION PROJECT REFERENCEMANE PROJECT WANGER Independent of the proper period of the project of the p	SAMPLE M20030 M20041 M20041 M20042 M20042 M20042	HAIN OF CUSTODY RECOR Project State W/	CORONALE TIPE CORONALE TIP	C C C C C C C C C C	Ratahdin Analytical Service of Search Control of	Iniarb com Required Analyses NUMBER OF CONTAINERS SUBMITTED AUGUSHED BY: (stawnture)	Serial or COC # Possible Hazards: Sample Disposal: Lab D Fhace 1 TAT/ DATE DUI POR APPOOR Octege EDD 30 busis TAT/ DATE DUI POR APPOOR OCTEGE EDD 30 busis TAT/ DATE DUI POR APPOOR OCTEGE TAT/ DATE DUI POR APPOOR OCTEGE TAT/ DATE DUI TAT/ DATE TAT/ DATE DUI TAT/ DATE TAT/ DATE DUI TAT/ DATE TAT/ DATE DUI TAT/ DATE TAT/	Disposa Girona Triffiction Pro Circ Triffiction Pro Triffictio	te at least one): 14. 18. 18. 18. 18. 18. 18. 18.
RECEIVED BY: (stoymyre)	1/2 DATE TIME	RECEIVED BY: (SIGNATURE)	тияе)		DATE TIME	E RECEIVED BY: (SIGNATURE)			ш
REGEIVED FOR LABORATORY BY: (SIGNATURE)	Y BY: DATE TIME	CUSTODY INTACT (YES ON O	CUSTODY SEAL NO.	LABORAT LAB Y RE	LABORATORY USE ONLY LABORATOR Y REMARKS:				

0000006

Original - Return to Laboratory with Sample(s)

Katahdin Analytical Services

Login Chain of Custody Report (Ino1)

Oct. 10, 2011 06:45 AM

Login Number: SE6546

Project:

Jeff Adams

Parsons

Primary Report Address:

100 High Street, 4th Floor

Account: PARSONS002 **PARSONS**

NoWeb

Login Information:

Quote/Incoming:

ANALYSIS INSTRUCTIONS : 6010C, Reporting limit 10ug/L for lead and

Page: 1 of 2

25ug/L for copper.

CHECK NO.

CLIENT PO#

: 747547-01100

CLIENT PROJECT MANAGE:

: 747547-01100 CONTRACT

COOLER TEMPERATURE : 1.9 : Fed Ex DELIVERY SERVICES EDD FORMAT : KAS126-CSV

LOGIN INITIALS

: DM

PM PROJECT NAME

: Open Burning (OB) Grounds Long Term

Monitoring (Seneca)

QC LEVEL

REGULATORY LIST

REPORT INSTRUCTIONS

SDG ID SDG STATUS

Huntsville, AL 35816

Boston, MA 02110

Prinary invoice Address:

Attn: D. O'Keefe/R. Allen

4890 University Square, Suite 2

Parsons Infrastructure & Technology Grp

Report CC Addresses:

Invoice CC Addresses:

Laboratory	Client Sample Number	Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
Sample ID	Sample Number	Daterrime		PK		Date	Manen

SE6546-1	OBLM20036	05-OCT-11 15:24	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-COPPER	02-APR-12	250mL Plastic+HNO3			
Aqueous	S \$W6010-LEAD	02-APR-12	250mL Plastic+HNO3			
SE6546-2	OBLM20037	05-OCT-11 13:45	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-COPPER	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-LEAD	02-APR-12	250mL Plastic+HNO3			
SE6546-3	OBLM20038	04-OCT-11 15:18	07-OCT-11	27-OCT-11	•	
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	01-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-COPPER	01-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-LEAD	01-APR-12	250mL Plastic+HNO3			
SE6546-4	OBLM20039	05-OCT-11 12:03	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-COPPER	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-LEAD	02-APR-12	250mL Plastic+HNO3			
SE6546-5	OBLM20040	04-OCT-11 13:50	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	01-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-COPPER	01-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-LEAD	01-APR-12	250mL Plastic+HNO3			
SE6546-6	OBLM20041	05-OCT-11 09:50	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	
Aqueous	S SW3010-PREP	02-APR-12	250mL Plastic+HNO3		MS/MSD	
Aqueous	S SW6010-COPPER	02-APR-12	250mL Plastic+HNO3			
Aqueous	S SW6010-LEAD	02-APR-12	250mL Plastic+HNO3			
SE6546-7	OBLM20042	05-OCT-11 10:00	07-OCT-11	27-OCT-11		
Matrix	Product	Hold Date (shortest)	Bottle Type	Bottle Count	Comments	Chil
Aqueous	S SW3010-PREP	02-APR-12	250mL Plastic+HNO3			101101
Aqueous	S SW6010-COPPER	02-APR-12	250mL Plastic+HNO3			0000007
Aqueous	S SW6010-LEAD	02-APR-12	250mL Plastic+HNO3			000007

Katahdin Analytical Services

Login Chain of Custody Report (Ino1)

Oct. 10, 2011 06:45 AM

Quote/Incoming:

Login Number: SE6546 Account: PARSONS002

PARSONS

NoWeb

Project:

Campions 1 110 Sate 1110 S	Laboratory Sample ID	Client Sample Number	Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
--	-------------------------	-------------------------	----------------------	-----------------	----	----------------	-------------	--------

Total Samples:

7

Total Analyses:

21

10/10/11

Page: 2 of 2

SAMPLE DATA SUMMARY PACKAGE

METALS SAMPLE FLAGGING

FLAG	SPECIFIED MEANING
E	The reported value is estimated because of the presence of interference (as indicated by serial dilution).
N	Spiked sample recovery not within control limits.
*	Duplicate sample analysis not-within control limits.
•	Analytical run QC sample (e.g. ICV, CCV, ICB, CCB, ICSA, ICSAB) not within control limits.
· U	The analyte was not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client. Note: All results reported as "U" MDL have a greater rate for false negatives, i.e. greater than 1%, than those results reported as "U" PQL/LOQ or "U" LOD.
J	The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ) (previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20036

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-001

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	3.0	J		P	1	25	0.63
	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

l

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20037

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-002

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	2.4	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20038

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-003

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF Adj	usted CRDL Ad	justed MDL
7440-50-8	COPPER, TOTAL	2.3	J		P	1	25	0.63
	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20039

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-004

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	0.63	U		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

ĺ

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20040

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-005

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF Adjı	usted CRDL A	djusted MDL
7440-50-8	COPPER, TOTAL	1.8	J		P	1	25	0.63
	LEAD, TOTAL	1.1	J		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-006

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	1.7	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.2	J		P	1	5.0	1,07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20042

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-007

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF Adj	usted CRDL Ac	ljusted MDL
7440-50-8	COPPER, TOTAL	1.5	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.5	J		P	1	5.0	1.07

METALS DATA

Sample Data Section

METALS SAMPLE FLAGGING

FLAG	SPECIFIED MEANING
E	The reported value is estimated because of the presence of interference (as indicated by serial dilution).
N	Spiked sample recovery not within control limits.
*	Duplicate sample analysis not within control limits.
•	Analytical run QC sample (e.g. ICV, CCV, ICB, CCB, ICSA, ICSAB) not within control limits.
U	The analyte was not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client. Note: All results reported as "U" MDL have a greater rate for false negatives, i.e. greater than 1%, than those results reported as "U" PQL/LOQ or "U" LOD.
J	The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ) (previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Katahdin Analytical Services

SDG Name: SE6546	SOW No. SW846
SINT NAME: SEOSTO	

Client Field ID	Lab Sample ID
OBLM20036	SE6546-001
OBLM20037	SE6546-002
OBLM20038	SE6546-003
OBLM20039	SE6546-004
OBLM20040	SE6546-005
OBLM20041	SE6546-006
OBLM20041	SE6546-006P
OBLM20041	SE6546-006S
OBLM20042	SE6546-007

Were ICP interelement corrections applied ?	Yes	
Were ICP background corrections applied?	Yes	
If yes - were raw data generated before application of background corrections?	No	

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: OPEN MILL	Name: Heather Manz
Date: 11-3-11	Title: Augly5+(

COVER PAGE - IN

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20036

Matrix: WATER

SDG Name: SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-001

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF A	djusted CRDL Adju	sted MDL
7440-50-8	COPPER, TOTAL	3.0	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20037

SE6546

Matrix: WATER

SDG Name:

Percent Solids: 0.00

Lab Sample ID: SE6546-002

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	2.4	J		Р	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20038

SE6546

Matrix: WATER

SDG Name:

Percent Solids: 0.00

Lab Sample ID: SE6546-003

 $\textbf{Concentration Units:} \ ug/L$

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	2.3	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20039

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-004

 $\textbf{Concentration Units:} \ ug/L$

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL A	djusted MDL
7440-50-8	COPPER, TOTAL	0.63	U		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.07	U		P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20040

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-005

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL A	djusted MDL
7440-50-8	COPPER, TOTAL	1.8	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.1	J		P	1	5.0	1.07

I INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-006

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C Q	M	DF Adj	usted CRDL Adju	sted MDL
7440-50-8	COPPER, TOTAL	1.7	J	P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.2	J	P	1	5.0	1.07

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20042

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-007

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	Adjusted CRDL	Adjusted MDL
7440-50-8	COPPER, TOTAL	1.5	J		P	1	25	0.63
7439-92-1	LEAD, TOTAL	1.5	J		P	1	5.0	1.07

QC Summary Section

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: ICV

File: IBJ26A	Oct	26, 2011	15:42	File: IBJ26A	Oct	26, 2011	16:05
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	9779.00	97.8	ALUMINUM	12500.0	12400.00	99.2
CALCIUM	10000.0	9735.00	97.4	CALCIUM	12500.0	12510.00	100.1
COPPER	400.0	398.30	99.6	COPPER	500.0	494.90	99.0
IRON	10000.0	9899.00	99.0	IRON	12500.0	12390.00	99.1
LEAD	400.0	405.30	101.3	LEAD	500.0	505.80	101.2
MAGNESIUM	10000.0	9996.00	100.0	MAGNESIUM	12500.0	12810.00	102.5

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CC	V			SAMPLE: CCV				
File: IBJ26A	Oct	26, 2011	16:59	File: IBJ26A	Oct	26, 2011	17:53	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)	
ALUMINUM	12500.0	12600.00	100.8	ALUMINUM	12500.0	12810.00	102.5	
CALCIUM	12500.0	12670.00	101.4	CALCIUM	12500.0	12670.00	101.4	
COPPER	500.0	517.20	103.4	COPPER	500.0	516.70	103.3	
IRON	12500.0	12630.00	101.0	IRON	12500.0	12790.00	102.3	
LEAD	500.0	513.20	102.6	LEAD	500.0	510.30	102.1	
MAGNESIUM	12500.0	13010.00	104.1	MAGNESIUM	12500.0	12900.00	103.2	

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	26, 2011	18:48	File: IBJ26A	Oct	26, 2011	19:43
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12790.00	102.3	ALUMINUM	12500.0	12820.00	102.6
CALCIUM	12500.0	12370.00	99.0	CALCIUM	12500.0	12430.00	99.4
COPPER	500.0	498.40	99.7	COPPER	500.0	497.70	99.5
IRON	12500.0	12460.00	99.7	IRON	12500.0	12640.00	101.1
LEAD	500.0	501.00	100.2	LEAD	500.0	501.40	100.3
MAGNESIUM	12500.0	12660.00	101.3	MAGNESIUM	12500.0	12690.00	101.5

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	26, 2011	20:37	File: IBJ26A	Oct	26, 2011	21:32
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12780.00	102.2	ALUMINUM	12500.0	12590.00	100.7
CALCIUM	12500.0	12420.00	99.4	CALCIUM	12500.0	12370.00	99.0
COPPER	500.0	493.50	98.7	COPPER	500.0	495.70	99.1
IRON	12500.0	12510.00	100.1	IRON	12500.0	12380.00	99.0
LEAD	500.0	501.40	100.3	LEAD	500.0	497.20	99.4
MAGNESIUM	12500.0	12670.00	101.4	MAGNESIUM	12500.0	12650.00	101.2

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	26, 2011	22:27	File: IBJ26A	Oct	26, 2011	23:21
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12540.00	100.3	ALUMINUM	12500.0	12580.00	100.6
CALCIUM	12500.0	12320.00	98.6	CALCIUM	12500.0	12420.00	99.4
COPPER	500.0	492.40	98.5	COPPER	500.0	492.50	98.5
IRON	12500.0	12330.00	98.6	IRON	12500.0	12560.00	100.5
LEAD	500.0	496.40	99.3	LEAD	500.0	498.00	99.6
MAGNESIUM	12500.0	12520.00	100.2	MAGNESIUM	12500.0	12600.00	100.8

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	27, 2011	0:16	File: IBJ26A	Oct	27, 2011	1:11
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12760.00	102.1	ALUMINUM	12500.0	12690.00	101.5
CALCIUM	12500.0	12490.00	99.9	CALCIUM	12500.0	12470.00	99.8
COPPER	500.0	493.90	98.8	COPPER	500.0	491.50	98.3
IRON	12500.0	12700.00	101.6	IRON	12500.0	12700.00	101.6
LEAD	500.0	499.50	99.9	LEAD	500.0	498.50	99.7
MAGNESIUM	12500.0	12630.00	101.0	MAGNESIUM	12500.0	12560.00	100.5

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	27, 2011	2:06	File: IBJ26A	Oct	27, 2011	2:24
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12410.00	99.3	ALUMINUM	12500.0	12810.00	102.5
CALCIUM	12500.0	12340.00	98.7	CALCIUM	12500.0	12620.00	101.0
COPPER	500.0	490.50	98.1	COPPER	500.0	489.20	97.8
IRON	12500.0	12530.00	100.2	IRON	12500.0	12720.00	101.8
LEAD	500.0	496.60	99.3	LEAD	500.0	492.20	98.4
MAGNESIUM	12500.0	12500.00	100.0	MAGNESIUM	12500.0	12430.00	99.4

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Concentration Units: ug/L

SAMPLE: CCV

File: IBJ26A	Oct	2:47	
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12280.00	98.2
CALCIUM	12500.0	12140.00	97.1
COPPER	500.0	487.00	97.4
IRON	12500.0	12370.00	99.0
LEAD	500.0	497.60	99.5
MAGNESIUM	12500.0	12560.00	100.5

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2B CRDL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name:

Concentration Units: ug/L

SAMPLE: #Error

File: #Error #Error

Analyte TRUE FOUND % R

2C PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	PQL			SAMPLE:	PQL		
File: IBJ26A	Oct	26, 2011	15:51	File: IBJ26A	Oct	27, 2011	02:33
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	300.0	297.70	99.2	ALUMINUM	300.0	295.20	98.4
CALCIUM	100.0	105.90	105.9	CALCIUM	100.0	103.90	103.9
COPPER	25.0	27.07	108.3	COPPER	25.0	26.17	104.7
IRON	100.0	102.70	102.7	IRON	100.0	103.50	103.5
LEAD	5.0	5.79	115.8	LEAD	5.0	5.18	103.6
MAGNESIUM	100.0	104.70	104.7	MAGNESIUM	100.0	103.30	103.3

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	ICB		SAMPLE:	CCB		SAMPLE:	CCB	
File: IBJ26A	Oct 26, 2011	15:46	File: IBJ26A	Oct 26, 2011	16:09	File: IBJ26A	Oct 26, 2011	17:03
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	14.400	U	ALUMINUM	14.400	U	ALUMINUM	14.400	U
CALCIUM	11.400	U	CALCIUM	11.400	U	CALCIUM	11.400	U
COPPER	0.640	U	COPPER	0.640	U	COPPER	0.640	U
IRON	3.020	U	IRON	3.020	U	IRON	3.020	U
LEAD	1.330	U	LEAD	1.330	U	LEAD	1.330	U
MAGNESIUM	5.500	U	MAGNESIUM	5.500	U	MAGNESIUM	5.500	IJ

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	CCB		SAMPLE:	CCB		SAMPLE:	CCB	
File: IBJ26A	Oct 26, 2011	17:58	File: IBJ26A	Oct 26, 2011	18:52	File: IBJ26A	Oct 26, 2011	19:47
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	14.400	U	ALUMINUM	14.400	U	ALUMINUM	14.400	U
CALCIUM	11.400	U	CALCIUM	11.400	U	CALCIUM	11.400	U
COPPER	0.640	U	COPPER	0.640	U	COPPER	0.640	U
IRON	5.534	J	IRON	4.449	J	IRON	10.710	J
LEAD	1.330	U	LEAD	1.330	U	LEAD	1.330	U
MAGNESIUM	5.500	U	MAGNESIUM	5.500	U	MAGNESIUM	5.500	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	CCB		SAMPLE:	CCB		SAMPLE:	CCB	
File: IBJ26A	Oct 26, 2011	20:42	File: IBJ26A	Oct 26, 2011	21:36	File: IBJ26A	Oct 26, 2011	22:31
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	14.400	U	ALUMINUM	14.400	U	ALUMINUM	14.400	U
CALCIUM	11.400	U	CALCIUM	11.400	U	CALCIUM	11.400	U
COPPER	0.640	U	COPPER	0.640	U	COPPER	0.640	U
IRON	4.420	J	IRON	3.020	U	IRON	3.020	U
LEAD	1.330	U	LEAD	1.330	U	LEAD	1.330	U
MAGNESIUM	5.500	U	MAGNESIUM	5.500	U	MAGNESIUM	5.500	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE: C	CB		SAMPLE:	CCB		SAMPLE:	CCB	
File: IBJ26A	Oct 26, 2011	23:26	File: IBJ26A	Oct 27, 2011	0:20	File: IBJ26A	Oct 27, 2011	1:15
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C _
ALUMINUM	14.400	U	ALUMINUM	14.400	U	ALUMINUM	14.400	U
CALCIUM	11.400	U	CALCIUM	11.400	U	CALCIUM	11.400	U
COPPER	0.640	U	COPPER	0.640	U	COPPER	0.640	U
IRON	3.020	U	IRON	3.020	U	IRON	3.020	U
LEAD	1.330	U	LEAD	1.330	U	LEAD	1.330	U
MAGNESIUM	5.500	U	MAGNESIUM	5.500	U	MAGNESIUM	5.500	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

SAMPLE:	CCB		SAMPLE:	CCB		SAMPLE:	CCB	
File: IBJ26A	Oct 27, 2011	2:10	File: IBJ26A	Oct 27, 2011	2:28	File: IBJ26A	Oct 27, 2011	2:51
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	14.400	U	ALUMINUM	14.400	U	ALUMINUM	14.400	U
CALCIUM	11.400	U	CALCIUM	11.400	U	CALCIUM	11.400	U
COPPER	0.640	U	COPPER	0.640	U	COPPER	0.640	U
IRON	4.614	J	IRON	3.020	U	IRON	3.020	U
LEAD	1.330	U	LEAD	1.330	U	LEAD	1.330	U
MAGNESIUM	5.500	U	MAGNESIUM	5.500	U	MAGNESIUM	5.500	U

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWBJ26ICW1

Matrix: WATER

SDG Name: SE6546

QC Batch ID: BJ26ICW1

Analyte	RESULT	C	
COPPER	0.816	J	
LEAD	1.070	U	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	ICSA			SAMPLE:	ICSAB			
File: IBJ26A	Oc	et 26, 2011	15:55	File: IBJ26A	Oc	t 26, 2011	16:00	
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R	
ALUMINUM	500000	488600	97.7	ALUMINUM	500000	482800	96.6	_
CALCIUM	500000	450700	90.1	CALCIUM	500000	441600	88.3	
COPPER	0	9		COPPER	500	529	105.8	
IRON	200000	180100	90.0	IRON	200000	178400	89.2	
LEAD	0	1		LEAD	50	47	94.0	
MAGNESIUM	500000	449300	89.9	MAGNESIUM	500000	441600	88.3	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SE6546

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: IBJ26A	Oc	et 27, 2011	02:37	File: IBJ26A	Oc	t 27, 2011	02:42
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	500000	478300	95.7	ALUMINUM	500000	480200	96.0
CALCIUM	500000	443300	88.7	CALCIUM	500000	448700	89.7
COPPER	0	10		COPPER	500	521	104.2
IRON	200000	177200	88.6	IRON	200000	179000	89.5
LEAD	0	0		LEAD	50	47	94.0
MAGNESIUM	500000	445700	89.1	MAGNESIUM	500000	435600	87.1

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041S

Matrix: WATER

SDG Name: SI

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-006P

Concentration Units: ug/L

Analyte	Spiked Sample Result C	Sample Result C	Spike Added	%R Q	Control Lin Low	nits (%R) High	M
COPPER, TOTAL	230.3000	1.7140 J	250	91.4	75	125	P
LEAD, TOTAL	95.4200	1.1840 J	100	94.2	75	125	P

Comments:

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041S

SE6546

Matrix: WATER

SDG Name:

Percent Solids: 0.00

Lab Sample ID: SE6546-006S

 $\textbf{Concentration Units:} \ ug/L$

Analyte	Spiked Sample Result C	Sample Result C	Spike Added	%R Q	Control Lin Low	nits (%R) High	M
COPPER, TOTAL	254.2000	1.7140 J	250	101.0	75	125	P
LEAD, TOTAL	105.0000	1.1840 J	100	103.8	75	125	P

Comments:

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041

Matrix: WATER

SDG Name:

SE6546

Percent Solids: 0.00

Lab Sample ID: SE6546-006

Concentration Units: ug/L

Analyte	Control Limits	Spike Result	C Spike Dup. Result C	RPD	Q M
COPPER, TOTAL		254.2000	230.3000	9.9	P
LEAD, TOTAL		105.0000	95.4200	9.6	P

Comments:

7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWBJ26ICW1

Matrix: WATER

SDG Name: SE6546

QC Batch ID: BJ26ICW1

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
COPPER	250.00	254.20	101.7	80	120
LEAD	100.00	108.20	108.2	80	120

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services

Client Field ID: OBLM20041L

Matrix: WATER

SDG Name: SE6546

Lab Sample ID: SE6546-006L

Analyte	Sample Result	C	Dilution Result	C	% Difference	Q	M
COPPER, TOTAL	1.71	J	1.63	U	100.0		P
LEAD, TOTAL	1.18	J	1.40	U	100.0		P

10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical Services

Instrument Code: I

Instrument Name: THERMO ICAP 6500

Date: 6/9/2011

Analyte	CRDL	IDL	M
ALUMINUM	300	14.40	P
CALCIUM	100	11.40	P
COPPER	25	0.64	P
IRON	100	3.02	P
LEAD	5.0	1.33	P
MAGNESIUM	100	5.50	P

10 METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical Services

Instrument Code: I

Instrument Name: THERMO ICAP 6500

Date: 1/19/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
COPPER	0.63	ug/L	P	SW846 3010A / SW846 6010C
LEAD	1.07	ug/L	P	SW846 3010A / SW846 6010C

11

ICP INTERELEMENT CORRECTION FACTORS

Lab Name: Katahdin Analytical Services SDG Name: SE6546

Date: 4/29/2011 Instrument ID: I Instrument Name: THERMO ICAP 6500

	Wavelength				Interelement	Interelement Correction Factors for:	ctors for:							
Analyte	(mu)	Ψ	Ca	Fe	Mg	As	Ċ	Co	Cu	Mn	Mo	Z	Ē	>
ALUMINUM	396.15	0.0	0.0002086	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0429115	0.0	0.0	0.0
ANTIMONY	206.88	0.0000122	0.0	0.0000328	0.0	-0.0001492	0.0127235	0.0	0.0	0.0	-0.0003049	-0.0005901	0.0	-0.0014750
ARSENIC	189.04	0.0000000	0.0	-0.0001627	0.0	0.0	0.0005362	0.0	0.0	0.0	0.0009188	0.0	0.0	0.0
BARIUM	455.40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BERYLLIUM	313.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0005721	0.0001425
BORON	208.96	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0377834	0.0	0.0	0.0
CADMIUM	226.50	0.0	0.0	0.0003106	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.00000800	0.0	0.0
CALCIUM	315.89	0.0	0.0	0.0	0.0	0.0	0.0	-0.0009160	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	267.72	0.0	0.0	-0.0000059	0.0	0.0	0.0	0.0	0.0	0.0001110	0.0	0.0	0.0	0.0000720
COBALT	228.62	0.0	0.0	0.0000151	0.0	0.0	-0.0000030	0.0	0.0	0.0	0.0	0.0002140	0.0021732	0.0
COPPER	327.40	0.0	0.0	-0.0000222	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0006350	0.0001092
IRON	259.94	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	220.35	-0.0001215	0.0	0.0000341	0.0	0.0	0.0	0.0000540	0.0000406	0.0	-0.0012070	0.0002080	-0.0000711	0.0
LITHIUM	87.079	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAGNESIUM	202.50	0.0	0.0	0.0001162	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0003128	0.0
MANGANESE	257.61	0.0000000	0.0	0.0000138	-0.0000037	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MOLYBDENUM	202.03	0.0	0.0	0.0	0.0	0.0	0.0001080	0.0	0.0	0.0	0.0	0.0	0.0	-0.0001920
NICKEL	231.60	0.0	0.0	-0.0000509	0.0	0.0	0.0	0.0000689	0.0	0.0	0.0027299	0.0	0.0	0.0
POTASSIUM	766.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SELENIUM	196.09	0.0000289	0.0	0.0000050	0.0	-0.0001745	0.0	-0.0001909	0.0	0.0002049	0.0	0.0	0.0	-0.0001715
SILICON	251.61	0.0	0.0	-0.0001166	0.0	0.0	0.0	0.0	0.0	0.0	0.0115903	0.0	0.0009942	0.0
SILVER	328.07	0.0	0.0	-0.0003802	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0002850	0.0
SODIUM	589.59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STRONTIUM	421.55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
THALLIUM	190.86	0.0000038	0.0	-0.0000002	0.0	0.0	0.0	0.0032040	0.0001434	-0.0010500	0.0000740	0.0	-0.0006398	0.0001102
AIIN	189.99	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TITANIUM	334.90	0.0	0.0	0.0	0.0	0.0	0.0001287	0.0	0.0	0.0	0.0004768	0.0	0.0	0.0
VANADIUM	292.40	0.0	0.0	0.0000149	0.0	0.0	-0.0013158	0.0	0.0	-0.0008201	-0.0081695	0.0	0.0003853	0.0
ZINC	206.20	0.0	0.0	0.0	0.0	0.0	-0.0011406	0.0	0.0	0.0	0.0	0.0	0.0	0.0

FORM XI - IN

12 ICP LINEAR RANGES

Lab Name: Katahdin Analytical Services

Instrument Code: 1

Instrument Name: THERMO ICAP 6500

Date: 10/28/2011

Concentration	Units:	ug/L
Concentiation	CIIIII.	451

		75	
Analyte	Integration Time (sec)	Linear Range	M
ALUMINUM	5.00	1000000	P
CALCIUM	5.00	500000	P
COPPER	10.00	20000	P
IRON	5.00	200000	P
LEAD	45.00	20000	P
MAGNESIUM	45.00	500000	P

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: BJ26ICW1

Matrix: WATER

SDG Name: SE6546

Method: P

Prep Date: 10/26/2011

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWBJ26ICW1	LCSWBJ26ICW1	0.05	0.05	
PBWBJ26ICW1	PBWBJ26ICW1	0.05	0.05	
OBLM20036	SE6546-001	0.05	0.05	Α
OBLM20037	SE6546-002	0.05	0.05	Α
OBLM20038	SE6546-003	0.05	0.05	Α
OBLM20039	SE6546-004	0.05	0.05	Α
OBLM20040	SE6546-005	0.05	0.05	Α
OBLM20041	SE6546-006	0.05	0.05	Α
OBLM20041P	SE6546-006P	0.05	0.05	Α
OBLM20041S	SE6546-006S	0.05	0.05	Α
OBLM20042	SE6546-007	0.05	0.05	A

14 ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Instrument ID: THERMO ICAP 6500

File Name: IBJ26A

Date:

10/26/2011

Method: P

	Date: 10/26	0/2011		Method: P	
Lab Sample ID	Client ID D.F.	Time		Elements	
Blank	1	15:33 AL	CA	CU FE PB MG	
Std 1	1_	15:38 AL	CA	CU FE PB MG	
ICV		15:42 AL	CA	CU FE PB MG	
ICB	1	15:46 AL	CA	CU FE PB MG	
PQL	1	15:51 AL	CA	CU FE PB MG	
ICSA	1_	15:55 AL	CA	CU FE PB MG	
ICSAB	1	16:00 AL	CA	CU FE PB MG	
CCV ·	1	16:05 AL	CA	CU FE PB MG	
CCB		16:09 AL	CA	CU FE PB MG	
PBWBJ26ICW1	1	16:14		CU PB	
LCSWBJ26ICW1	_ 1	16:18		CU PB	
SE6546-001	OBLM20036 1	16:23		CU PB	
SE6546-002	OBLM20037 1	16:27		CU PB	
SE6546-003	OBLM20038 1	16:32		CU PB	
SE6546-004	OBLM20039 _ 1	16:36		CU PB	
SE6546-005	OBLM20040 1	16:41		CU PB	-
SE6546-006	OBLM20041 1	16:46		CU PB	
SE6546-006L	OBLM20041L 5	16:50		CU PB	
SE6546-006S	OBLM20041S 1	16:55		CU PB	
CCV	1	16:59 AL	CA	CU FE PB MG	
ССВ	1	17:03 AL	CA	ÇU FE PB MG	
SE6546-006P	OBLM20041P 1	17:08	0,1	CU PB	
SE6546-007	OBLM20042 1	17:12		CU PB	
ZZZZZZ	1	17:17		00 12	
777777	1	17:21			
777777	1	17:26			
777777	1	17:30			
777777	1	17:35			
777777	1	17:40			
777777	1	17:44			-
ZZZZZZ	1	17:49			
CCV	1	17:53 AL	CA	CU FE PB MG	
CCB	1	17:58 AL	CA	_ CU FE PB MG	
777777	1	18:02	OA	_ OU I E I B WIG	
777777 _	1	18:07			
777777	1	18:11			
777777	1	18:16			7-
777777	1	18:20			
777777	1	18:25			
777777	= '	18:30			
777777	1	18:34			
777777	1	18:39			
777777	1	18:43			
CCV	1	18:48 AL	ÇA	CU FE PB MG	
CCB	1	18:52 AL	CA CA	CU FE PB MG	
ZZZZZZ	1		CA	CO FE FD MIG	
777777	5	18:57 19:01			
777777		19:06			
777777	1	19:10			
777777	1				
	1	19:15			

14 ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Instrument ID: THERMO ICAP 6500

File Name: IBJ26A

Method: P Date: 10/26/2011

Lab Sample ID	Client ID	D.F.	Time	Elements	
7777ZZ		1	19:20		
777777		1	19:24		
777777		1	19:29		
777777		1	19:33		
777777		1	19:38		
CCV		1	19:43 AL	CA CU FE PB MG	
CCB		1	19:47 AL	CA CU FE PB MG	
ZZZZZZ		1	19:52		
<u> </u>		1_	19:56		
777777		1_	20:01		
<u> </u>		1	20:05		
777777		1	20:10		
777777		11	20:14		
777777		1	20:19		
777777		1	20:24		
777777		1	20:28		
777777		1	20:33		
CCV		1_	20:37 AL	CA CU FE PB MG	
ССВ		1_	20:42 AL	CA CU FE PB MG	
ZZZZZZ		1	20:46		
777777		. 1	20:51		
777777		11	20:55		
777777		1	21:00		<u></u>
777777		1_	21:04		
777777		1111	21:09		
<u> </u>		1_	21:14		
ZZZZZ		1	21:18		
777777		1	21:23		
777777		5	21:27		
CCV		1	21:32 AL	CA CU FE PB MG	
CCB		1_	21:36 AL	CA CU FE PB MG	
777777		1	21:41		
777777		1_	21:45		
77777 Z		1	21:50		
777777		1	21:55		
777777		1	21:59		
777777		1	22:04		
<u>777777</u>		1	22:08		
777777		1	22:13		
777777		111	22:18		
777777		1	22:22		
CCV		1	22:27 AL	CA CU FE PB MG	
CCB		1	22:31 AL	CA CU FE PB MG	
777777		5	22:36		
777777		1	22:40		
777777		1	22:45		
777777		1_	22:49		
777777		1	22:54		
777777		1	22:58		
ZZZZZZ		2	23:03		
777777		10	23:07		

14 ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services

SDG Name: SE6546

Instrument ID: THERMO ICAP 6500

File Name: IBJ26A

Date: 10/26/2011 **Method:** P

	Date	10,20				Without I	
Lab Sample ID	Client ID	D.F.	Time			Elements	
ZZZZZZ		2	23:12				
777777		2	23:17				
CCV		1	23:21	AL	CA	CU FE PB MG	
ССВ		1	23:26	AL	CA	CU FE PB MG	
777777		2	23:30				
<u> </u>		1	23:35				
777777	-14	1	23:39				
777777		1	23:44				
777777		1	23:48				
777777		1	23:53				
ZZZZZZ		1	23:58				
777777		1	0:02				
777777		1	0:07				
777777		1	0:11				
CCV		1	0:16	Al	CA	CU FE PB MG	
CCB		1	0:20		CA	CU FE PB MG	
777777		1	0:25	7 4	0,1	00.12.10.110	
777777		1	0:29				
777777		1	0:34				
777777		1	0:39			•	
777777		1	0:43				
777777		1	0:48				
<u>777777</u>		1	0:52				
777777		1					
777777		1	0: <u>57</u> 1:01				
		1	1:06				
CCV		1	1:11	ΑΙ.	CA	CU FE PB MG	
CCB		=			CA	CU FE PB MG	
		1	1:15 1:20	AL	CA	CO PE PB MG	
777777		1					
777777.		1	1:24				
<u>777777</u>			1:29				
<u>777777</u>		1	1:34				
<u>777777</u>		5	1:38				
<u>777777</u>		1	1:43				
777777		_ 1	1:47				
<u>777777</u>		11	1:52				
777777		1_	1:56				
777777		1	2:01	A.1	2.4	OU EE DO MO	
CCV_		1	2:06		CA	CU FE PB MG	
CCB		1	2:10	AL	CA	CU FE PB MG	
777777		1	2:15				
<u>777777</u>		1	2:19	A1	-	OU SE PRIMO	
CCV		1_	2:24		CA	CU FE PB MG	
CCB		1	2:28		CA	CU FE PB MG	
PQL		1_	2:33		CA	CU FE PB MG	
ICSA		1	2:37		CA	CU FE PB MG	
ICSAB		1_	2:42		CA	CU FE PB MG	
CCV		1	2:47		CA	CU FE PB MG	
CCB		1	2:51	AL	CA	CU FE PB MG	

Raw Data Section

KATAHDIN ANALYTICAL SERVICES, INC. METALS ANALYSIS RUN INFORMATION SHEET

		KUN IIII O	MVIATION SILL	132 3.	
INSTR. ID: I - Ther		ST: Lan	ANALYSIS DATE: 10-76-1		
FILE NAME: IBJ2	6A MET	HOD:			
REVIEWED	ICP	нор:	ICP-MS	CVAA	
		20.7	☐ 200.8	☐ 245	
MHM 11371	<u> </u>			☐ 747	
KATAHDIN ANALYTICAL			□ 6020		
METALS SECTION		LP	☐ CLP	\square CLP	
STANDARDS USED:					
Standard Name	Standard ID -	Prep Date		- Standard Conc.	
Blank/ICB/CCB	mw 13299	10-01-11	10-01-12	0 0916	
5+11	MW13323	10-13-11	07-13-12	varies by element	
Icv	MW13324	19-13-11	01-13-12	1	
PRL	AW 13322	1	12-30-11		
ICSA	MW 13281	09-27-11	12-22-11		
ICSAB	MW13300	10-03-11	01-03-12		
CCV	MW 13349	10-26-11	01-56-15	C/	
Internal Stl	MW 13346	10-21-11	11-01-11	V 5 mg/L	
	10-27-11			- 0	
	20-00				
Additional Comments and	l Notes:				
		7-11	and the second s		
		100			
	mm	1			
	4111				
/					
				-	

INSTRUMENT RUNLOG

Instrument: ICAP 6500

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST	
Blank	1.000	IBJ26A	10/26/2011	15:33	EAM	
Std 1	1.000	IBJ26A	10/26/2011	15:38	EAM	
ICV	1.000	IBJ26A	10/26/2011	15:42	EAM	
ICB	1.000	IBJ26A	10/26/2011	15:46	EAM	
PQL	1.000	IBJ26A	10/26/2011	15:51	EAM	
ICSA	1.000	IBJ26A	10/26/2011	15:55	EAM	
ICSAB	1.000	IBJ26A	10/26/2011	16:00	EAM	
CCV	1.000	IBJ26A	10/26/2011	16:05	EAM	
CCB	1.000	IBJ26A	10/26/2011	16:09	EAM	
PBWBJ26ICW1	1.000	IBJ26A	10/26/2011	16:14	EAM	
LCSWBJ26ICW1	1.000	IBJ26A	10/26/2011	16:18	EAM	
SE6546-001	1.000	IBJ26A	10/26/2011	16:23	EAM	
SE6546-002	1.000	IBJ26A	10/26/2011	16:27	EAM	
SE6546-003	1.000	IBJ26A	10/26/2011	16:32	EAM	
SE6546-004	1.000	IBJ26A	10/26/2011	16:36	EAM	
SE6546-005	1.000	IBJ26A	10/26/2011	16:41	EAM	
SE6546-006	1.000	TBJ26A	10/26/2011	16:46	EAM	
SE6546-006L	5.000	IBJ26A	10/26/2011	16:50	EAM	
SE6546-006S	1.000	IBJ26A	10/26/2011	16:55	EAM	
CCV	1.000	IBJ26A	10/26/2011	16:59	EAM	
CCB	1.000	IBJ26A	10/26/2011	17:03	EAM	
SE6546-006P	1.000	IBJ26A	10/26/2011	17:08	EAM	
SE6546-007	1.000	IBJ26A	10/26/2011	17:12	EAM	
SE6762-001	1.000	IBJ26A	10/26/2011	17:17	EAM	
SE6762-002	1.000	IBJ26A	10/26/2011	17:21	EAM	
LCSWBJ25ICW1	1.000	IBJ26A	10/26/2011	17:26	EAM	
SE6975-001	1.000	IBJ26A	10/26/2011	17:30	EAM	
PBSBJ21ICS2	1.000	IBJ26A	10/26/2011	17:35	EAM	
LCSOBJ21ICS2	1.000	IBJ26A	10/26/2011	17:40	EAM	
SE6616-001	1.000	IBJ26A	10/26/2011	17:44	EAM	
SE6616-002	1.000	IBJ26A	10/26/2011	17:49	EAM	
CCV	1.000	IBJ26A	10/26/2011	17:53	EAM	
CCB	1.000	IBJ26A	10/26/2011	17:58	EAM	
SE6616-003	1.000	IBJ26A	10/26/2011	18:02	EAM	
SE6616-004	1.000	IBJ26A	10/26/2011	18:07	EAM	
SE6616-005	1.000	IBJ26A	10/26/2011	18:11	EAM	
SE6616-006	1.000	IBJ26A	10/26/2011	18:16	EAM	
SE6616-007	1.000	IBJ26A	10/26/2011	18:20	EAM	
SE6616-008	1.000	IBJ26A	10/26/2011	18:25	EAM	
SE6616-009	1.000	ІВЈ26А	10/26/2011	18:30	EAM	
SE6616-010	1.000	IBJ26A	10/26/2011	18:34	EAM	
SE6616-011	1.000	IBJ26A	10/26/2011	18:39	EAM	
SE6616-012	1.000	IBJ26A	10/26/2011	18:43	EAM	
CCV	1.000	IBJ26A	10/26/2011	18:48	EAM	

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
CCB	1.000	IBJ26A	10/26/2011	18:52	EAM
SE6616-013	1.000	IBJ26A	10/26/2011	18:57	EAM
SE6616-013L	5.000	IBJ26A	10/26/2011	19:01	EAM
SE6616-013A	1.000	IBJ26A	10/26/2011	19:06	EAM
SE6616-013D	1.000	IBJ26A	10/26/2011	19:10	EAM
SE6616-013S	1.000	IBJ26A	10/26/2011	19:15	EAM
SE6616-014	1.000	IBJ26A	10/26/2011	19:20	EAM
SE6616-015	1.000	IBJ26A	10/26/2011	19:24	EAM
SE6616-016	1.000	IBJ26A	10/26/2011	19:29	EAM
SE6616-017	1.000	IBJ26A	10/26/2011	19:33	FAM
SE6616-018	1.000	IBJ26A	10/26/2011	19:38	EAM
CCV	1.000	IBJ26A	10/26/2011	19:43	EAM
CCB	1.000	IBJ26A	10/26/2011	19:47	EAM
SE6616-019	1.000	IBJ26A	10/26/2011	19:52	EAM
SE6616-020	1.000	IBJ26A	10/26/2011	19:56	EAM
PBSBJ23ICS1	1.000	IBJ26A	10/26/2011	20:01	EAM
LCSOBJ23ICS1	1.000	IBJ26A	10/26/2011	20:05	EAM
SE6617-001	1.000	IBJ26A	10/26/2011	20:10	EAM
SE6617-002	1.000	IBJ26A	10/26/2011	20:14	EAM
SE6617-003	1.000	IBJ26A	10/26/2011	20:19	EAM
SE6617-004	1.000	IBJ26A	10/26/2011	20:24	EAM
SE6617-005	1.000	IBJ26A	10/26/2011	20:28	EAM
SE6617-007	1.000	IBJ26A	10/26/2011	20:33	EAM
CCV	1.000	IBJ26A	10/26/2011	20:37	EAM
ССВ	1.000	IBJ26A	10/26/2011	20:42	EAM
SE6617-008	1.000	IBJ26A	10/26/2011	20:46	EAM
SE6617-009	1.000	IBJ26A	10/26/2011	20:51	EAM
SE6617-010	1.000	IBJ26A	10/26/2011	20:55	EAM
SE6617-011	1.000	IBJ26A	10/26/2011	21:00	EAM
SE6617-012	1.000	IBJ26A	10/26/2011	21:04	EAM
SE6617-013	1.000	IBJ26A	10/26/2011	21:09	EAM
SE6617-014	1.000	ІВЈ26А	10/26/2011	21:14	EAM
SE6617-015	1.000	IBJ26A	10/26/2011	21:18	EAM
SE6617-016	1.000	IBJ26A	10/26/2011	21:23	EAM
SE6617-016L	5.000	IBJ26A	10/26/2011	21:27	EAM
CCV	1.000	IBJ26A	10/26/2011	21:32	EAM
CCB	1.000	IBJ26A	10/26/2011	21:36	EAM
SE6617-016A	1.000	IBJ26A	10/26/2011	21:41	EAM
SE6617-016D	1.000	IBJ26A	10/26/2011	21:45	EAM
SE6617-016S	1.000	IBJ26A	10/26/2011	21:50	EAM
SE6617-017	1.000	IBJ26A	10/26/2011	21:55	EAM
SE6617-018	1.000	IBJ26A	10/26/2011	21:59	EAM
SE6617-019	1.000	IBJ26A	10/26/2011	22:04	EAM
SE6617-020	1.000	IBJ26A	10/26/2011	22:08	EAM
SE6778-002	1.000	IBJ26A	10/26/2011	22:13	EAM
SE6778-003	1.000	IBJ26A	10/26/2011	22:18	EAM
SE6778-004	1.000	IBJ26A	10/26/2011	22:22	EAM
520770-00 1	1.000	1202021	2012012011		

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
CCV	1.000	IBJ26A	10/26/2011	22:27	EAM
CCB	1.000	IBJ26A	10/26/2011	22:31	EAM
SE6778-004L	5.000	IBJ26A	10/26/2011	22:36	EAM
SE6778-004A	1.000	IBJ26A	10/26/2011	22:40	EAM
SE6778-004D	1.000	Ш Ј26А	10/26/2011	22:45	EAM
SE6778-004S	1.000	IBJ26A	10/26/2011	22:49	EAM
SE6778-005	1.000	IBJ26A	10/26/2011	22:54	EAM
SE6778-006	1.000	IBJ26A	10/26/2011	22:58	EAM
SE6778-007	2.000	IBJ26A	10/26/2011	23:03	EAM
SE6778-007L	10.00	IBJ26A	10/26/2011	23:07	EAM
SE6778-007A	2.000	IBJ26A	10/26/2011	23:12	EAM
SE6778-007D	2.000	IBJ26A	10/26/2011	23:17	EAM
CCV	1.000	IBJ26A	10/26/2011	23:21	EAM
CCB	1.000	IBJ26A	10/26/2011	23:26	EAM
SE6778-007S	2.000	IBJ26A	10/26/2011	23:30	EAM
SE6778-008	1.000	IBJ26A	10/26/2011	23:35	EAM
SE6778-009	1.000	IBJ26A	10/26/2011	23:39	EAM
SE6778-010	1.000	IBJ26A	10/26/2011	23:44	EAM
SE6778-011	1.000	IBJ26A	10/26/2011	23:48	EAM
SE6778-012	1.000	IBJ26A	10/26/2011	23:53	EAM
SE6778-013	1.000	IBJ26A	10/26/2011	23:58	EAM
PBSBJ25ICS1	1.000	IBJ26A	10/27/2011	0:02	EAM
LCSOBJ25ICS1	1.000	IBJ26A	10/27/2011	0:07	EAM
SE6618-001	1.000	IBJ26A	10/27/2011	0:11	EAM
CCV	1.000	IBJ26A	10/27/2011	0:16	EAM
CCB	1.000	IBJ26A	10/27/2011	0:20	EAM
SE6618-002	1.000	IBJ26A	10/27/2011	0:25	EAM
SE6618-003	1.000	IBJ26A	10/27/2011	0:29	EAM
SE6618-004	1.000	IBJ26A	10/27/2011	0:34	EAM
SE6618-005	1.000	IBJ26A	10/27/2011	0:39	EAM
SE6618-006	1.000	IBJ26A	10/27/2011	0:43	EAM
SE6618-008	1.000	IBJ26A	10/27/2011	0:48	EAM
SE6618-009	1.000	IBJ26A	10/27/2011	0:52	EAM
SE6618-010	1.000	IBJ26A	10/27/2011	0:57	EAM
SE6618-011	1.000	IBJ26A	10/27/2011	1:01	EAM
SE6618-012	1.000	IBJ26A	10/27/2011	1:06	EAM
CCV	1.000	IBJ26A	10/27/2011	1:11	EAM
CCB	1.000	IBJ26A	10/27/2011	1:15	EAM
SE6618-013	1.000	IBJ26A	10/27/2011	1:20	EAM
SE6618-014	1.000	IBJ26A	10/27/2011	1:24	EAM
SE6618-015	1.000	IBJ26A	10/27/2011	1:29	EAM
SE6618-016	1.000	IBJ26A	10/27/2011	1:34	EAM
SE6618-016L	5.000	IBJ26A	10/27/2011	1:38	EAM
SE6618-016A	1.000	IBJ26A	10/27/2011	1:43	EAM
SE6618-016D	1.000	IBJ26A	10/27/2011	1:47	EAM
SE6618-016S	1.000	IBJ26A	10/27/2011	1:52	EAM
SE6618-017	1.000	IBJ26A	10/27/2011	1:56	EAM

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
SE6618-018	1.000	IBJ26A	10/27/2011	2:01	EAM
CCV	1.000	IBJ26A	10/27/2011	2:06	EAM
CCB	1.000	IBJ26A	10/27/2011	2:10	EAM
SE6618-019	1.000	IBJ26A	10/27/2011	2:15	EAM
SE6618-020	1.000	IBJ26A	10/27/2011	2:19	EAM
CCV	1.000	IBJ26A	10/27/2011	2:24	EAM
CCB	1.000	IBJ26A	10/27/2011	2:28	EAM
PQL	1.000	IBJ26A	10/27/2011	2:33	EAM
ICSA	1.000	IBJ26A	10/27/2011	2:37	EAM
ICSAB	1.000	IBJ26A	10/27/2011	2:42	EAM
CCV	1.000	IBJ26A	10/27/2011	2:47	EAM
CCB	1.000	IBJ26A	10/27/2011	2:51	EAM

Intensity Report

Author:

Published:

10/27/2011 8:52:03AM

Notes:

Blank

Method Name:

K6010-2011

FAM

Method Revision:

50

Analyst Name:	EAM				
Acquire Date:	10/26/2011 3:33:	31PM		Sample Type:	Standard
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	-0.0001455	Cts/S	0.000006014	4.132	-36.67
Al3961_R	0.0008478	Cts/S	0.00001751	2.065	19.25
As1891_A	-0.0001344	Cts/S	0.000002276	1.693	-1.229
Au2427_A	0.00009775	Cts/S	0.0002546	260.5	0.8982
B 2089_A	0.0002245	Cts/S	0.00001683	7.494	2.052
Ba4554_R	0.004087	Cts/S	0.0003537	8.655	92.82
Be3130_R	-0.0001370	Cts/S	0.0001763	128.7	-3.104
Ca3158_R	-0.001772	Cts/S	0.0001824	10.29	-40.25
Cd2265_A	-0.0001846	Cts/S	0.00004431	24.00	-1.688
Co2286_A	0.0006259	Cts/S	0.000004233	0.6763	5.721
Cr2677_A	0.00001886	Cts/S	0.000005734	30.40	4.761
Cu3273_A	-0.00001396	Cts/S	0.000003779	27.07	-3.522
Fe2599_R	0.0001442	Cts/S	0.00001987	13.78	3.276
K_7664_R	0.0004196	Cts/S	0.0009392	223.8	9.570
Li6707_R	-0.0001142	Cts/S	0.0001899	166.3	-2.585
Mg2025_A	-0.0003383	Cts/S	0.00001722	5.090	-3.092
Mn2576_R	0.0002481	Cts/S	0.00004245	17.11	5.635
Mo2020_A	-0.0001006	Cts/S	0.00003180	31.61	-0.9190
Na5895_R	0.001246	Cts/S	0.000003495	0.2805	28.29
Ni2316_A	-0.00008902	Cts/S	0.00005714	64.18	-0.8147
Pb2203_A	-0.00005167	Cts/S	0.00002488	48.15	-0.4727
Sb2068_A	0.00007907	Cts/S	0.00002773	35.07	0.7232
Se1960_A	0.0002184	Cts/S	0.00001615	7.393	1.996
Si2516_R	0.0004494	Cts/S	0.0001245	27.72	
Sn1899_A	0.0001408	Cts/S	0.00004639	32.95	1.286
Sr4215_R	-0.002968	Cts/S	0.0003599	12.13	-67.38
Ti3349_A	-0.0001474	Cts/S	0.00002796	18.97	-37.18
TI1908_A	-0.00004041	Cts/S	0.00001468	36.34	-0.3696
V_2924_A	0.000008296	Cts/S	0.00001402	169.0	-2.108
Zn2062_A	0.00005806	Cts/S	0.00001987	34.22	0.5303
Y_3600_R	22,709	Cts/S	88.171	0.38827	22,709
Y_2243_A	9,139.7		38.015	0.41593	9,139.7
V 0000 A	000 000	04-10	2 206 4	0.05072	252 030

Std 1

Y_3600_A

Method Name: Analyst Name: K6010-2011

252,030

EAM

Cts/S

Method Revision:

0.95072

50

252,030

Acquire Date:	10/26/201	1 3:38:05PN	1		Sample Type:	Standard	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Rati	0
Ag3280_A		0.09454	Cts/S	0.0003708	0.3922	22,97	0
Al3961 R		0.9021	Cts/S	0.004910	0.5443	20,30	0
As1891 A		0.03620	Cts/S	0.0001260	0.3481	324.	2
Au2427 A		0.4147	Cts/S	0.004334	1.045	3,71	4
B 2089 A		0.1046	Cts/S	0.0009233	0.8829	936.	7
Ba4554 R		2.384	Cts/S	0.008052	0.3378	53,64	0
Be3130 R		4.163	Cts/S	0.01560	0.3747	93,69	0
Ca3158 R		1.626	Cts/S	0.004178	0.2569	36,59	0
Cd2265 A		1.733	Cts/S	0.01170	0.6753	15,52	0
Co2286 A		0.4211	Cts/S	0.002140	0.5082	3,77	1
Cr2677 A		0.05890	Cts/S	0.00001051	0.01784	14,31	0
Cu3273 A		0.05661	Cts/S	0.00007597	0.1342	13,75	0
Fe2599_R		1.995	Cts/S	0.009419	0.4721	44,89	0

2,396.1

Published:

10/27/2011 8:52:03AM

Page 1 of 101

Std 1

Method Name: K6010-2011

Analyst Name: EAM

10/26/2011 3:38:05PM Acquire Date: Standard Sample Type: Elem Stddev %RSD Flags **A**vg Units Intensity Ratio K_7664_R 0.6663 0.002557 0.3838 Cts/S 14,990 Li6707_R 0.4462 Cts/S 0.2962 10,040 0.001322 Mg2025_A 0.5103 Cts/S 0.6820 0.003481 4,571 Mn2576_R 0.4558 Cts/S 0.0009918 0.2176 10,260 Mo2020 A 0.2326 Cts/S 0.002761 1.187 2,083 Na5895 R 1.980 Cts/S 0.005179 0.2616 44,550 Ni2316 A 0.2660 Cts/S 0.001800 0.6768 2,382 Pb2203_A 0.1203 Cts/S 0.0005934 0.4932 1,078 Sb2068 A 0.04205 Cts/S 0.0002362 0.5616 376.7 Se1960 A 0.02163 Cts/S 0.0002697 1.247 193.7 Si2516 R 0.5869 Cts/S 0.0007279 0.1240 13,210 Sn1899_A 0.05908 Cts/S 0.0004982 0.8434 529.1 Sr4215_R 3.253 Cts/S 0.4934 0.01605 73,200 Ti3349_A 0.1291 Cts/S 0.00002766 0.02142 31,370 TI1908_A 0.04880 Cts/S 0.0001939 0.3974 437.1 V_2924_A 0.06332 Cts/S 0.0004240 0.6697 15,380 Zn2062_A 0.3543 Cts/S 0.001251 0.3530 3,173 Y_3600_R 22,502 Cts/S 67.363 0.29936 22,502 Y 2243 A 8,956.6 Cts/S 32.361 0.36131 8,956.6

836.60

0.34438

ICV

Y_3600_A

Y_3600_R

Method Name: K6010-2011 Method Revision: 50

Cts/S

Analyst Name: EAM

242,930

10/26/2011 3:42:27PM QC Acquire Date: Sample Type: %RSD Elem **Flags** Units Stddev Intensity Ratio **A**vg Ag3280_A 397.2 ug/L 0.03293 0.008290 9,319 Al3961_R 9,779 ug/L 23.91 0.2445 7,952 As1891_A 388.7 ug/L 0.8595 0.2211 127.4 Au2427_A 387.3 ug/L 2.980 0.7695 1,463 B 2089 A 396.6 ug/L 1.495 0.3769 379.0 Ba4554 R 394.8 ug/L 0.1255 0.03178 21,230 Be3130_R 399.4 ug/L 0.9519 0.2383 37,410 Ca3158_R 9,735 14,230 ug/L 16.08 0.1651 Cd2265_A 398.6 6,290 ug/L 0.6683 0.1676 Co2286 A 401.5 ug/L 0.3610 1.450 1,543 Cr2677 A 399.3 ug/L 1.420 0.3556 5,852 Cu3273 A 398.3 ug/L 0.4275 0.1073 5,607 Fe2599 R 9,899 ug/L 22.92 0.2315 17,780 K 7664 R 13,500 ug/L 12.10 0.08965 8,098 Li6707 R 401.2 ug/L 0.8010 0.1996 4.027 Mg2025 A 9,996 ug/L 30.76 0.3077 1.856 Mn2576_R 398.3 ug/L 2.515 0.6316 4,087 Mo2020_A 402.2 ug/L 0.6367 0.1583 851.2 Na5895 R 9,733 ug/L 0.9796 0.01006 17,360 Ni2316_A 399.1 ug/L 0.2577 0.06458 966.1 Pb2203_A 405.3 ug/L 0.7202 0.1777 443.7 Sb2068_A 389.7 ug/L 1.974 0.5066 149.7 Se1960_A 398.5 ug/L 0.1819 0.04564 79.70 Si2516 R 9,661 ug/L 27.47 0.2843 5,110 Sn1899_A 397.9 ug/L 0.5459 0.1372 214.8 Sr4215 R 388.3 ug/L 0.1641 0.04227 28,380 Ti3349_A 392.7 ug/L 0.3529 0.08985 12,590 TI1908_A 406.4 0.05976 ug/L 0.2429 180.4 V_2924_A 397.0 ug/L 0.2884 0.07264 6,250 Zn2062 A 401.2 ug/L 0.3903 0.09727 1,295

50.867

Published: 10/27/2011 8:52:03AM

Cts/S

22,501

22,501

Page 2 of 101

0.22606

50

242,930

Method Revision:

ICV

K6010-2011 Method Name:

EAM Analyst Name:

QC Sample Type: Acquire Date: 10/26/2011 3:42:27PM

%RSD Intensity Ratio Elem Flags Avg Units Stddev 0.30051 9,105.9 Y 2243 A 9,105.9 Cts/S 27.365 248,730 Y_3600_A 282.00 0.11338 248,730 Cts/S

Method Revision:

50

ICB

Method Revision: 50 K6010-2011 Method Name:

EAM Analyst Name:

QC 10/26/2011 3:46:48PM Sample Type: Acquire Date: **Intensity Ratio Units** Stddev %RSD Elem **Flags A**vg 0.7093 544.6 -32.68 Ag3280 A 0.1302 ug/L 8.502 Al3961_R -13.36 ug/L 0.2923 2.188 -0.5737As1891 A 1.962 ug/L 0.4145 21.13 -0.8235 122.1 0.5553 Au2427 A -0.4548 ug/L 3.119 12.75 ug/L 0.1413 B 2089 A 1.108 209.0 98.30 ug/L 0.1670 Ba4554_R 0.07993 188.4 -5.201 -0.02144 ug/L 0.04039 Be3130_R 369.9 -41.12 0.9589 Ca3158_R -0.2593 ug/L -2.048 149.2 ug/L 0.03447 -0.02311 Cd2265_A 0.05518 21.13 6.707 0.2612 ug/L Co2286_A -0.04126 ug/L 0.1381 334.8 4.070 Cr2677_A 217.2 -9.598 Cu3273_A -0.4321 ug/L 0.9386 475.4 2.790 -0.2862 ug/L 1.360 Fe2599_R 2,493 9.158 -0.7989 ug/L 19.91 K_7664_R 25.19 20.37 Li6707_R 2.242 ug/L 0.5647 Mg2025_A -2.067ug/L 1.315 63.62 -3.470 0.3168 227.2 4.241 Mn2576 R -0.1394 ug/L Mo2020_A 0.4286 22.50 3.125 1.905 ug/L 17.40 10.19 165.0 Na5895_R -6.179ug/L ug/L 0.1313 46.62 -0.1243 Ni2316_A 0.2815 0.06949 Pb2203_A 0.4915 ug/L 0.3479 70.78 0.4968 Sb2068_A -0.5853 ug/L 0.4243 72.49 2.721 Se1960_A 84.43 3.735 ug/L 3.153 12.73 174.0 Si2516 R 4.431 ug/L 7.709 1.665 26.52 Sn1899 A 0.7088 ug/L 0.1880 -71.63 107.5 Sr4215 R -0.04564 ug/L 0.04907 -35.99 1,341 0.1571 Ti3349 A 0.01172 ug/L 23.65 0.2391 ug/L 0.3208 TI1908 A 1.356 38.28 4.955 ug/L 0.1735 V_2924_A 0.4533 66.30 0.6952 ug/L 0.03390 Zn2062_A 0.05113 22,984 Cts/S 12.064 0.052488 Y_3600_R 22,984 9,119.9 Cts/S 31.040 0.34036 Y_2243_A 9,119.9 246,550 Cts/S 4,484.6 1.8189 246,550 Y_3600_A

PQL

50 Method Revision: Method Name: K6010-2011

EAM Analyst Name:

10/26/2011 3:51:21PM

10/26/2011	3:51:21PM			Sample Type:	QC	
Flags	Avg	Units	Stddev	%RSD	<u>ln</u>	tensity Ratio
	10.77	ug/L	0.009185	0.08527	_	216.7
	297.7	ug/L	6.007	2.018		265.5
	8.626	ug/L	0.2883	3.343		1.642
	98.68	ug/L	0.8797	0.8915		372.1
	50.27	ug/L	0.4710	0.9369		49.18
	5.190	ug/L	0.01585	0.3054		377.0
	5.172	ug/L	0.04456	0.8616		490.1
	105.9	ug/L	1.824	1.722		. 117.5
	5.204	ug/L	0.05903	1.134		80.67
	10.95	ug/L	0.02844	0.2598		47.79
		Flags Avg 10.77 297.7 8.626 98.68 50.27 5.190 5.172 105.9 5.204	Flags Avg Units 10.77 ug/L 297.7 ug/L 8.626 ug/L 98.68 ug/L 50.27 ug/L 5.190 ug/L 5.172 ug/L 105.9 ug/L 5.204 ug/L	Flags Avg Units Stddev 10.77 ug/L 0.009185 297.7 ug/L 6.007 8.626 ug/L 0.2883 98.68 ug/L 0.8797 50.27 ug/L 0.4710 5.190 ug/L 0.01585 5.172 ug/L 0.04456 105.9 ug/L 1.824 5.204 ug/L 0.05903	Flags Avg Units Stddev %RSD 10.77 ug/L 0.009185 0.08527 297.7 ug/L 6.007 2.018 8.626 ug/L 0.2883 3.343 98.68 ug/L 0.8797 0.8915 50.27 ug/L 0.4710 0.9369 5.190 ug/L 0.01585 0.3054 5.172 ug/L 0.04456 0.8616 105.9 ug/L 1.824 1.722 5.204 ug/L 0.05903 1.134	Flags Avg Units Stddev %RSD in 10.77 ug/L 0.009185 0.08527 297.7 ug/L 6.007 2.018 8.626 ug/L 0.2883 3.343 98.68 ug/L 0.8797 0.8915 50.27 ug/L 0.4710 0.9369 5.190 ug/L 0.01585 0.3054 5.172 ug/L 0.04456 0.8616 105.9 ug/L 1.824 1.722 5.204 ug/L 0.05903 1.134

10/27/2011 8:52:03AM Published:

Page 3 of 101

PQL

Method Name: K6010-2011 Method Revision:

Analyst Name: EAM

10/26/2011 3:51:21PM Acquire Date: QC Sample Type: Elem Units %RSD Flags Avg Stddev **Intensity Ratio** Cr2677_A 10.88 ug/L 0.3370 3.096 163.0 Cu3273_A 27.07 ug/L 0.7532 2.783 375.6 Fe2599_R 102.7 1.138 ug/L 1.108 191.2 K_7664_R 967.5 40.00 600.5 ug/L 4.134 Li6707_R 102.5 0.7360 ug/L 0.7178 1,047 Mg2025_A 104.7 ug/L 1.053 1.006 16.44 Mn2576_R 4.994 ug/L 0.6040 12.09 57.86 Mo2020_A 1.090 11.07 ug/L 0.1206 22.61 Na5895_R 998.3 ug/L 4.811 0.4819 1,840 Ni2316_A 10.83 0.1039 0.9591 ug/L 25.53 Pb2203 A 5.794 ug/L 0.5670 9.787 5.877 ug/L Sb2068_A W 6.274 0.9657 15.39 3.135 Se1960_A 11.22 ug/L 1.575 14.04 4.190 Si2516_R 197.1 ug/L 1.735 0.8803 116.3 Sn1899_A 101.7 ug/L 0.1991 0.1957 56.06 Sr4215_R 10.02 ug/L 0.01490 0.1488 679.8 Ti3349_A 15.75 ug/L 0.2749 1.745 466.8 TI1908_A 16.63 ug/L 0.6713 4.038 7.071 V_2924_A 10.63 ug/L 0.3388 3.188 164.2 Zn2062_A 21.01 ug/L 0.08480 0.4037 68.54 Y_3600_R 22,931 Cts/S 65.011 0.28351 22,931 Y_2243_A 9,134.9 Cts/S 41.938 0.45909 9,134.9 Y_3600_A 247,180 Cts/S 4,700.1 1.9015 247,180

ICSA

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 3:55:56PM Sample Type:

Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-1.907	ug/L	0.2513	13.18	-682.1
Al3961_R		488,600	ug/L	14,890	3.049	389,300
As1891_A		1.116	ug/L	0.2550	22.85	-10.23
Au2427_A		-4.625	ug/L	0.2830	6.118	93.44
B_2089_A		0.5277	ug/L	0.4986	94.48	2.276
Ba4554_R		1.305	ug/L	0.2554	19.57	159.1
Be3130_R		-0.09760	ug/L	0.02553	26.16	-12.17
Ca3158_R		450,700	ug/L	14,610	3.241	649,800
Cd2265_A		0.9393	ug/L	0.03538	3.766	217.0
Co2286_A		-1.085	ug/L	0.4362	40.21	3.991
Cr2677_A		4.850	ug/L	0.1206	2.486	91.68
Cu3273_A		9.383	ug/L	0.1592	1.697	37.77
Fe2599_R		180,100	ug/L	90.38	0.05018	318,300
K_7664_R		11.70	ug/L	40.65	347.4	15.92
Li6707_R		4.699	ug/L	0.9366	19.93	43.81
Mg2025_A		449,300	ug/L	868.7	0.1933	76,360
Mn2576_R		-0.8656	ug/L	0.1812	20.93	16.88
Mo2020_A		-2.162	ug/L	0.2690	12.44	-5.021
Na5895_R		-16.83	ug/L	4.173	24.79	-1.993
Ni2316_A		1.885	ug/L	0.1154	6.123	-9.967
Pb2203_A		1.399	ug/L	2.435	174.0	-56.76
Sb2068_A		-1.753	ug/L	1.070	61.00	4.104
Se1960_A		2.360	ug/L	3.120	132.2	5.839
Si2516_R		10.04	ug/L	1.616	16.09	9.623
Sn1899_A		5.284	ug/L	0.5023	9.506	3.762
Sr4215_R	W	54.35	ug/L	0.4249	0.7818	3,854
Ti3349_A		1.860	ug/L	0.1041	5.595	20.72
TI1908_A		1.929	ug/L	0.4151	21.52	0.7103

Published: 10/27/2011 8:52:03AM Page 4 of 101

QC

50

п	0	C	Α
	·	3	~

K6010-2011 Method Name:

EAM Analyst Name:

Acquire Date:	10/26/2011	3:55:56PM			Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
V 2924 A		0.2040	ug/L	0.1778	87.17	26.65
Zn2062 A		2.025	ug/L	0.1222	6.035	6.441
Y 3600 R		22,146	Cts/S	511.36	2.3090	22,146
Y 2243 A	6	3,318.6	Cts/S	11.653	0.14008	8,318.6
Y_3600_A	2	23,190	Cts/S	713.28	0.31958	223,190

ICSAB

Method Name:

K6010-2011

Analyst Name: EAM Method Revision:

Method Revision:

50

50

Acquire Date:	10/26/20	11 4:00:43	BPM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		213.7	ug/L	0.09884	0.04625	3,838
Al3961_R		482,800	ug/L	9,112	1.887	380,200
As1891_A		99.48	ug/L	0.6423	0.6457	19.60
Au2427_A		496.9	ug/L	1.923	0.3871	1,795
B_2089_A		496.3	ug/L	0.7776	0.1567	427.9
Ba4554_R		498.0	ug/L	1.406	0.2824	26,020
Be3130_R		499.0	ug/L	0.6254	0.1253	45,450
Ca3158_R		441,600	ug/L	9,861	2.233	629,100
Cd2265_A		922.5	ug/L	0.1860	0.02016	13,330
Co2286_A		459.5	ug/L	0.3367	0.07327	1,598
Cr2677_A		486.5	ug/L	1.961	0.4031	6,322
Cu3273_A		528.7	ug/L	2.281	0.4315	6,507
Fe2599_R		178,400	ug/L	2,570	1.441	311,500
K_7664_R		20,710	ug/L	136.7	0.6602	12,080
Li6707_R		521.6	ug/L	0.6851	0.1313	5,091
Mg2025_A		441,600	ug/L	529.2	0.1198	74,240
Mn2576_R		471.6	ug/L	2.984	0.6327	4,725
Mo2020_A		486.6	ug/L	1.509	0.3101	930.9
Na5895_R		20,790	ug/L	86.77	0.4173	36,030
Ni2316_A		907.3	ug/L	0.2085	0.02298	1,973
Pb2203_A		46.96	ug/L	0.6781	1.444	-10.23
Sb2068_A		591.6	ug/L	1.160	0.1960	208.5
Se1960_A		47.82	ug/L	4.189	8.760	13.77
Si2516_R		1,969	ug/L	12.28	0.6238	1,018
Sn1899_A		464.1	ug/L	0.6271	0.1351	226.2
Sr4215_R		551.9	ug/L	2.353	0.4263	39,250
Ti3349_A		502.9	ug/L	1.598	0.3177	14,260
TI1908_A		90.64	ug/L	0.8547	0.9430	35.32
V_2924_A		490.3	ug/L	0.1555	0.03172	6,852
Zn2062_A		931.1	ug/L	0.3894	0.04182	2,716
Y 3600 R		21,880	Cts/S	197.61	0.90314	21,880
Y 2243 A		8,229.3	Cts/S	16.891	0.20526	8,229.3
Y_3600_A		219,800	Cts/S	1,544.2	0.70256	219,800

CCV

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/2011	4:05:25	PM	(Sample Type: QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		494.2	ug/L	1.181	0.2390	11,510
Al3961 R		12,400	ug/L	72.98	0.5887	10,290
As1891 A		494.4	ug/L	4.759	0.9625	161.0
Au2427 A		495.0	ug/L	4.816	0.9730	1,854
B 2089 A		499.5	ug/L	0.4164	0.08337	472.7
Ba4554 R		494.4	ug/L	0.4611	0.09325	27,130
Be3130_R		492.7	ug/L	0.6233	0.1265	47,130

Published:

10/27/2011 8:52:03AM

Page 5 of 101

CCV

K6010-2011 Method Name:

Analyst Name:

EAM

Method Revision:

50

Analyst Name:	EAM					
Acquire Date:	10/26/20	011 4:05:25	PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ca3158_R	- .	12,510	ug/L	3.648	0.02915	18,680
Cd2265_A		501.0	ug/L	0.3127	0.06241	7,839
Co2286_A		503.0	ug/L	0.2410	0.04791	1,915
Cr2677_A		497.0	ug/L	0.04738	0.009534	7,226
Cu3273_A		494.9	ug/L	0.4640	0.09375	6,912
Fe2599_R		12,390	ug/L	100.5	0.8105	22,720
K_7664_R		12,240	ug/L	138.6	1.132	7,498
Li6707_R		499.1	ug/L	2.898	0.5806	5,115
Mg2025_A		12,810	ug/L	4.110	0.03210	2,359
Mn2576_R		493.8	ug/L	1.827	0.3699	5,174
Mo2020_A		499.3	ug/L	2.156	0.4318	1,048
Na5895_R		12,470	ug/L	15.75	0.1263	22,700
Ni2316_A		505.0	ug/L	0.2017	0.03995	1,212
Pb2203_A		505.8	ug/L	1.784	0.3527	549.2
Sb2068_A	W	468.3	ug/L	10.47	2.236	178.2
Se1960_A		499.3	ug/L	2.496	0.4999	98.51
Si2516_R		12,370	ug/L	40.20	0.3249	6,680
Sn1899_A		506.9	ug/L	0.5623	0.1109	271.0
Sr4215_R		497.6	ug/L	0.4635	0.09314	37,160
Ti3349_A		493.7	ug/L	0.4190	0.08487	15,710
TI1908_A		511.0	ug/L	1.659	0.3247	225.0
V_2924_A		491.6	ug/L	0.8123	0.1652	7,681
Zn2062_A		501.3	ug/L	0.9029	0.1801	1,604
Y_3600_R		22,975	Cts/S	82.405	0.35868	22,975
Y_2243_A		9,028.5	Cts/S	43.391	0.48060	9,028.5
Y_3600_A		246,770	Cts/S	390.61	0.15829	246,770

CCB

Method Name:

K6010-2011

Method Revision:

50

Analyst Name: **EAM** Acquire Date: 10/26/2011 4:09:47PM Sample Type: QC Elem Flags Avg Units Stddev %RSD **Intensity Ratio** Ag3280_A -0.06148 0.2462 400.6 -37.18 ug/L Al3961_R -5.981 4.911 82.12 ug/L 14.27 As1891_A 1.005 0.7858 78.19 -0.8836 ug/L Au2427_A 0.5588 ug/L 0.6576 117.7 2.962 B 2089 A 0.4775 ug/L 0.4702 98.48 2.508 Ba4554_R 0.1036 ug/L 0.2265 218.6 97.37 Be3130 R 0.07512 ug/L 0.03579 47.65 3.976 Ca3158 R 3.815 ug/L 3.758 98.50 -34.30Cd2265_A -0.01427 ug/L 0.001001 7.015 -1.889Co2286_A 0.2513 ug/L 0.1951 77.64 6.609 Cr2677_A -0.01769 ug/L 0.2723 1,540 4.394 Cu3273_A 160.8 0.3491 ug/L 0.5613 1.388 Fe2599_R 1.983 0.4382 22.10 ug/L 6.805 K_7664_R 28.87 -25.28 ug/L 7.299 -5.730 Li6707_R 1.268 ug/L 1.602 126.4 10.25 Mg2025_A 0.8834 ug/L 1.577 178.6 -2.893 Mn2576_R -0.1284 344.8 4.291 ug/L 0.4426 Mo2020_A 1.950 ug/L 0.07836 4.018 3.191 Na5895_R -8.129 4.039 ug/L 0.3283 13.55 Ni2316_A 0.4806 0.0003136 0.06525 0.3557 ug/L Pb2203_A -0.4007 ug/L 0.6795 169.6 -0.9046 Sb2068_A 1.235 ug/L 0.6194 50.17 1.178 Se1960_A 2.064 0.6720 32.56 ug/L 2.372 Si2516_R -3.234 7.950 245.9 8.436 ug/L

0.1365

Published:

Sn1899 A

10/27/2011 8:52:03AM

0.2628

ug/L

Page 6 of 101

1.412

51.95

CCB

K6010-2011 Method Name:

EAM Analyst Name:

Sample Type: QC 10/26/2011 4:09:47PM Acquire Date:

rioquilo Duio.							
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Sr4215_R		0.1133	ug/L	0.1554	137.2	-58.37	
Ti3349 A		0.01702	ug/L	0.3422	2,010	-35.53	
TI1908 A		-0.6373	ug/L	0.2516	39.48	-0.6484	
V 2924 A		0.2875	ug/L	0.2515	87.48	2.283	
Zn2062 A		-0.08031	ug/L	0.04150	51.67	0.2672	
Y 3600 R		22,486	Cts/S	270.76	1.2041	22,486	
Y 2243 A		9,035.3	Cts/S	11.586	0.12823	9,035.3	
Y_3600_A		245,320	Cts/S	2,703.9	1.1022	245,320	

PBWBJ26ICW1

50 K6010-2011 Method Revision: Method Name:

EAM Analyst Name:

Unknown Acquire Date: 10/26/2011 4:14:23PM Sample Type: %RSD Intensity Ratio Units Stddev Elem **Flags** Avg 0.9278 292.2 -29.30 0.3175 ug/L Ag3280_A 4.536 52.70 26.37 Al3961_R 8.608 ug/L 1.639 128.2 -0.7960 As1891_A 1.278 ug/L Au2427_A 0.3147 ug/L 0.5412 172.0 2.073 2.849 B_2089_A 0.8639 ug/L 0.02814 3.258 122.5 0.5454 ug/L 0.03419 6.268 Ba4554_R -3.515 -0.004372 ug/L 0.02037 465.8 Be3130 R -26.39 Ca3158_R 11.04 9.404 ug/L 1.038 -1.973 Cd2265 A -0.02087 ug/L 0.03658 175.3 6.432 62.21 Co2286_A 0.2034 ug/L 0.1266 11.71 34.35 Cr2677_A 0.4688 ug/L 0.1610 25.33 8.119 0.2066 Cu3273_A 0.8156 ug/L ug/L 1.933 10.21 37.64 Fe2599_R 18.92 122.1 -13.65K_7664_R -38.19ug/L 46.64 23.22 8.100 ug/L 0.2447 Li6707_R 1.054 -1.846 1.017 15.46 Mg2025_A 6.577 ug/L 0.1601 28.86 11.40 0.5548 ug/L Mn2576_R 1.217 1.010 ug/L 0.2267 22.44 Mo2020 A 68.61 18.18 3.880 -5.655 ug/L Na5895 R 18.67 -0.1179 0.05322 0.2851 ug/L Ni2316 A 299:5 -0.3560 ug/L 0.3072 0.1026 Pb2203_A -0.2377 ug/L 0.5829 245.2 0.6266 Sb2068_A 1.602 112.0 2.252 1.430 ug/L Se1960_A 12.39 ug/L 4.932 39.80 16.85 Si2516_R 0.1968 78.99 1.141 Sn1899_A -0.2491 ug/L -71.06 0.1079 227.0 Sr4215_R -0.04755ug/L -0.2304ug/L 0.01042 4.522 -44.67 Ti3349_A -0.2554 TI1908 A 0.2491 ug/L 0.1159 46.52 0.7195 18.16 0.1816 ug/L 0.03299 V 2924 A 4.040 0.3058 1.096 ug/L 0.003351 Zn2062 A 0.36164 22,754 22,754 Cts/S 82.289 Y 3600 R 0.24030 9,045.4 Y 2243 A 9,045.4 Cts/S 21.736 252,240 Cts/S 3,101.3 1.2295 Y_3600_A 252,240

LCSWBJ26ICW1

Method Revision: K6010-2011 Method Name:

FAM Analyst Name:

10/26/2011 4:18:59PM Sample Type: Unknown Acquire Date:

Acquire Date.	,0,20,20		***			
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		51.06	ug/L	0.2545	0.4984	1,157
Al3961 R		1,987	ug/L	11.82	0.5950	1,650
As1891 A	W	116.2	ug/L	2.277	1.959	37.00
Au2427_A		0.9183	ug/L	0.4059	44.20	9.807

Page 7 of 101 10/27/2011 8:52:03AM Published:

50

50

Method Revision:

LCSWBJ26ICW1

Method Name: K6010-2011 Method Revision:

Analyst Name: EAM
Acquire Date: 10/26/2011 4:18:59PM Sample Type:

Acquire Date:	10/26/2011	4:18:59	9PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
B_2089_A		503.8	ug/L	0.1152	0.02286	471.9
Ba4554_R		2,013	ug/L	15.56	0.7732	108,600
Be3130_R		51.89	ug/L	0.1946	0.3750	4,872
Ca3158_R		2,595	ug/L	13.52	0.5211	3,789
Cd2265_A		268.0	ug/L	0.3549	0.1324	4,178
Co2286_A		515.1	ug/L	1.642	0.3188	1,958
Cr2677_A		201.8	ug/L	0.7186	0.3561	2,941
Cu3273_A		254.2	ug/L	0.1587	0.06242	3,555
Fe2599_R		1,020	ug/L	3.217	0.3156	1,847
K_7664_R	•	10,390	ug/L	9.836	0.09466	6,281
Li6707_R		497.9	ug/L	3.944	0.7922	5,033
Mg2025_A		5,398	ug/L	8.348	0.1546	990.6
Mn2576_R		500.0	ug/L	1.324	0.2649	5,166
Mo2020_A		300.6	ug/L	1.405	0.4672	629.5
Na5895_R		7,805	ug/L	33.25	0.4260	14,020
Ni2316_A		512.9	ug/L	1.112	0.2168	1,230
Pb2203_A		108.2	ug/L	0.4419	0.4083	117.0
Sb2068_A		99.18	ug/L	0.2887	0.2911	38.15
Se1960_A		104.0	ug/L	1.886	1.812	22.08
Si2516_R		4,776	ug/L	8.239	0.1725	2,550
Sn1899_A		497.9	ug/L	0.9934	0.1995	265.8
Sr4215_R		489.0	ug/L	3.392	0.6935	36,020
Ti3349_A		495.4	ug/L	0.4156	0.08389	15,780
TI1908_A		108.4	ug/L	0.7388	0.6817	46.22
V_2924_A		504.7	ug/L	1.845	0.3656	7,924
Zn2062 A		518.1	ug/L	1.543	0.2979	1,656
Y_3600_R	2	22,661	Cts/S	82.747	0.36515	22,661
Y_2243_A	9	,014.3	Cts/S	13.464	0.14936	9,014.3
Y_3600_A	24	7,080	Cts/S	943.63	0.38191	247,080

SE6546-001

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 4:23:24PM Sample Type: Unknown

Acquire Date:	10/26/2011	4:23:24	4PM		Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD	Inten si	ty Ratio
Ag3280_A	-(0.09721	ug/L	0.05375	55.29		-38.03
Al3961_R		69.23	ug/L	19.24	27.79		75.18
As1891_A		1.802	ug/L	1.151	63.90		-0.6060
Au2427_A		-0.5106	ug/L	0.3808	74.57		0.2504
B_2089_A		38.77	ug/L	0.03286	0.08477		36.21
Ba4554_R		68.87	ug/L	0.04827	0.07009		3,778
Be3130_R	(0.02043	ug/L	0.02413	118.1		-1.160
Ca3158_R	1	159,000	ug/L	167.4	0.1053	;	232,800
Cd2265_A	-(0.06486	ug/L	0.02889	44.54		-2.290
Co2286_A		1.049	ug/L	0.1585	15.11		9.213
Cr2677_A		1.319	ug/L	0.1366	10.35		23.33
Cu3273_A		2.980	ug/L	0.9107	30.56		37.04
Fe2599_R		235.3	ug/L	2.154	0.9154		425.5
K_7664_R		2,201	ug/L	19.86	0.9021		1,328
Li6707_R		29.31	ug/L	2.691	9.182		291.5
Mg2025_A		22,460	ug/L	91.11	0.4057		3,961
Mn2576_R		78.24	ug/L	0.7945	1.015		807.0
Mo2020_A		3.291	ug/L	0.08789	2.671		5.746
Na5895_R		5,056	ug/L	10.51	0.2078		9,026
Ni2316_A		3.331	ug/L	0.07596	2.281		6.874
Pb2203_A		0.9841	ug/L	1.664	169.1		0.5759
Sb2068_A		-1.810	ug/L	0.8642	47.74	(0.03458

Published: 10/27/2011 8:52:03AM Page 8 of 101

50

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Acquire Date:	10/26/201	1 4:23:24	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Se1960_A		1.034	ug/L	1.814	175.4	2.082
Si2516 R		4,349	ug/L	22.52	0.5178	2,303
Sn1899 A		1.236	ug/L	0.6615	53.52	1.846
Sr4215 R		499.2	ug/L	0.6145	0.1231	36,490
Ti3349 A	_	0.06324	ug/L	0.2426	383.6	-37.27
TI1908_A		0.9016	ug/L	0.4434	49.18	-0.04426
V 2924 A		-0.1189	ug/L	0.09187	77.27	-4.457
Zn2062 A		2.808	ug/L	0.04895	1.743	9.102
Y 3600 R		22,490	Cts/S	91.382	0.40633	22,490
Y 2243 A		8.638.8	Cts/S	6.1603	0.071309	8,638.8
Y_3600_A		240,220	Cts/S	3,200.5	1.3323	240,220

SE6546-002

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Analyst Name:	EAM	5.4DM		0	Linksons
Acquire Date:	10/26/2011 4:27:			Sample Type:	Unknown
Elem	Flags Avg		Stddev	%RSD	Intensity Ratio
Ag3280_A	0.06592	•	0.1289	195.5	-33.50
Al3961_R	47.91	ug/L	3.105	6.480	58.58
As1891_A	0.6723	ug/L	0.7681	114.3	-0.9660
Au2427_A	-0.9788	ug/L	0.8266	84.45	-2.625
B_2089_A	42.88	ug/L	1.506	3.511	40.49
Ba4554_R	53.32	ug/L	1.013	1.901	2,979
Be3130_R	0.01213	ug/L	0.02303	189.9	-1.964
Ca3158_R	105,000	ug/L	2,504	2.384	155,500
Cd2265_A	-0.04936	ug/L	0.004861	9.847	-2.355
Co2286_A	0.4113	ug/L	0.01838	4.469	7.008
Cr2677_A	1.192	ug/L	0.2564	21.51	21.44
Cu3273 A	2.350	ug/L	0.9191	39.11	28.79
Fe2599_R	14.65	ug/L	1.577	10.77	29.84
K_7664_R	1,307	ug/L	17.77	1.360	801.3
Li6707_R	24,64		0.5469	2.219	247.6
Mg2025 A	17,720		16.78	0.09471	3,175
Mn2576_R	2.989	ug/L	0.5001	16.73	36.56
Mo2020 A	2.866	ug/L	0.2847	9.934	4.973
Na5895_R	6,959	ug/L	157.1	2.258	12,550
Ni2316_A	0.9154	ug/L	0.4747	51.85	1.360
Pb2203_A	0.05963	ug/L	0.7626	1,279	-0.3993
Sb2068_A	-1.597	ug/L	0.4612	28.88	0.1102
Se1960 A	-1.287	ug/L	0.7025	54.57	1.677
Si2516_R	4,981	ug/L	95.13	1.910	2,667
Sn1899_A	-0.001428	ug/L	0.1930	13,520	1.236
Sr4215_R	348.7	ug/L	7.882	2.260	25,750
Ti3349 A	-0.4844	ug/L	0.4727	97.59	-50.57
TI1908 A	0.5930	ug/L	0.7534	127.1	-0.1014
V_2924_A	0.3422	ug/L	0.05077	14.84	2.962
Zn2062_A	1.253		0.07392	5.901	4.407
Y 3600 R	22,748		516.66	2.2712	22,748
Y_2243_A	8,781.4	Cts/S	33.895	0.38599	8,781.4
Y_3600_A	240,370		4,466.6	1.8582	240,370

SE6546-003

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 4:32:28PM

Sample Type:

Method Revision:

Unknown **Intensity Ratio**

Acquire Date: %RSD Elem Units Stddev Flags -30.68 0.2503 0.05386 21.52 Ag3280_A ug/L

Published:

10/27/2011 8:52:03AM

Page 9 of 101

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 4:32:28PM Unknown Acquire Date: Sample Type:

Elem	Flags	Avg	U	nits	Stddev		%RSD	Inter	nsity Ratio
Al3961_R		49.50		ug/L	4.789		9.673		60.81
As1891_A		2.276		ug/L	0.8974		39.43		-0.4699
Au2427_A		-1.138	1	ug/L	0.3156		27.73		-1.837
B_2089_A		99.59	1	ug/L	0.6645		0.6672		91.66
Ba4554_R		60.91		ug/L	0.3275		0.5376		3,436
Be3130_R	-	-0.008856		ug/L	0.03543		400.1		-4.008
Ca3158_R		110,300	1	ıg/L	471.9		0.4278		165,500
Cd2265_A	-	-0.003239	1	ıg/L	0.03208		990.4		-1.314
Co2286_A		0.6231	1	ug/L	0.1382		22.18		7.815
Cr2677_A		1.292	1	ıg/L	0.1722		13.32		23.25
Cu3273_A		2.317	1	ıg/L	0.07117		3.072		28.38
Fe2599_R		300.4	1	ıg/L	3.741		1.245		555.9
K_7664_R		1,095	1	ıg/L	35.28		3.222		681.9
Li6707_R		27.07	1	ıg/L	1.891		6.985		275.7
Mg2025_A		13,860	1	ıg/L	30.12		0.2174		2,491
Mn2576_R		88.31	1	ıg/L	0.08330	(0.09432		932.9
Mo2020_A		4.611	1	ıg/L	0.09338		2.025		8.566
Na5895_R		8,221	;	Jg/L	33.19		0.4037		15,030
Ni2316_A		1.498	1	ıg/L	0.2679		17.88		2.715
Pb2203_A		-0.4671		ıg/L	1.201		257.1		-0.9500
Sb2068_A		-1.612		ıg/L	0.4815		29.87		0.1077
Se1960_A		-0.1538		ıg/L	0.1371		89.17		1.900
Si2516_R		4,258		ıg/L	13.64		0.3203		2,312
Sn1899_A		0.09722	1	ıg/L	0.1863		191.6		1.291
Sr4215_R		449.2		ıg/L	1.231		0.2741		33,650
Ti3349_A		-0.5161	1	ıg/L	0.2540		49.21		-51.95
TI1908_A		0.06746	I	ıg/L	0.2554		378.5		-0.4176
V_2924_A		0.2572		ıg/L	0.3007		116.9		1.196
Zn2062_A		1.711	1	ıg/L	0.04945		2.890		5.852
Y_3600_R		23,053	С	ts/S	389.53		1.6897		23,053
Y_2243_A		8,808.5	С	ts/S	27.160	().30834		8,808.5
Y_3600_A		242,930	С	ts/S	626.60	().25793		242,930

SE6546-004

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

Acquire Date: 10/26/2011 4:36:59PM Sample Type: Unknown Elem Flags **Units** Stddev %RSD Intensity Ratio Avg Ag3280_A 0.07631 0.1107 145.0 -33.35 ug/L Al3961_R 33.09 ug/L 4.964 15.00 46.76 As1891_A 0.8250 ug/L 1.216 147.4 -0.9147 Au2427 A 0.3860 ug/L 0.002339 0.6059 2.498 B_2089_A 1,258 ug/L 4.656 0.3702 1,127 Ba4554_R 40.46 ug/L 0.1092 0.2699 2,289 Be3130_R 0.004410 ug/L 0.06444 1,461 -2.662 Ca3158_R 33,230 ug/L 39.76 0.1196 49,320 Cd2265_A -0.06342 ug/L 0.01577 24.87 -2.519 Co2286_A 0.01669 ug/L 505.7 0.08439 5.539 Cr2677_A 1.200 ug/L 0.1496 12.47 21.50 Cu3273_A 0.4368 ug/L 0.4964 113.6 2.576 Fe2599_R 49.30 ug/L 0.1137 0.2307 93.00 K_7664_R ug/L 0.008373 2,900 0.2428 1,771 Li6707_R 0.5072 0.4820 105.2 ug/L 1,068 Mg2025_A 14,290 0.2530 2,553 ug/L 36.16 Mn2576_R 15.66 ug/L 0.05149 0.3288 168.3 Mo2020_A 7.863 ug/L 0.02783 0.3539 15.14 Na5895_R 105,000 ug/L 507.6 0.4832 189,600

Published: 10/27/2011 8:52:03AM Page 10 of 101

Method Revision:

K6010-2011 Method Name:

EAM Analyst Name:

Analyst Name.	F=1_((A)					
Acquire Date:	10/26/201	1 4:36:59F	M		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ni2316 A		0.6648	ug/L	0.1073	16.13	0.7848
Pb2203 A		0.4005	ug/L	1.071	267.5	-0.03927
Sb2068 A		-1.555	ug/L	0.1919	12.34	0.1227
Se1960 A		3.415	ug/L	3.100	90.78	2.552
Si2516 R		5,492	ug/L	13.72	0.2499	2,947
Sn1899 A		0.6484	ug/L	0.3929	60.60	1.567
Sr4215 R		1,544	ug/L	0.5949	0.03853	114,600
Ti3349 A		-0.3585	ug/L	0.01307	3.644	-46.35
TI1908 A		0.2773	ug/L	0.1353	48.77	-0.2521
V 2924 A		0.8568	ug/L	0.4385	51.18	10.37
Zn2062 A		3.113	ug/L	0.1213	3.897	10.17
Y 3600 R		22,806	Cts/S	138.21	0.60604	22,806
Y 2243 A		8.754.7	Cts/S	25.165	0.28745	8,754.7
Y_3600_A		239,900	Cts/S	25.536	0.010644	239,900

SE6546-005

50 Method Revision: K6010-2011 Method Name:

EAM Analyst Name:

Unknown 10/26/2011 4:41:30PM Sample Type: Acquire Date: %RSD **Intensity Ratio** Units Stddev Elem Flags Avg 192.7 -34.83 0.04957 Aq3280 A 0.02573 ug/L 57.02 6.539 3.026 Al3961 R 46.27 ug/L -1.050 763.4 2.989 As1891_A 0.3916 ug/L -0.06244 27.34 ug/L 0.09392 Au2427_A -0.3435 0.06350 113.5 0.07946 125.1 ug/L B_2089_A 0.01517 0.02878 2,937 52.70 ug/L Ba4554_R -4.288-0.01262 ug/L 0.03109 246.4 Be3130_R 0.1293 153,900 134.8 Ca3158_R 104,200 ug/L 80.95 -2.2830.03986 -0.04924 ug/L Cd2265_A ug/L 12.62 6.819 0.04686 0.3714 Co2286_A 1.393 ug/L 0.4858 34.86 24.42 Cr2677_A 21.30 2.875 1.801 ug/L 0.05178 Cu3273_A 1.467 2.408 113.5 60.90 ug/L Fe2599_R 26.82 1.450 1,127 1,849 ug/L K_7664_R 0.5613 1.934 291.2 Li6707_R 29.03 ug/L 4,219 23,680 ug/L 44.90 0.1896 Mg2025_A 213.9 ug/L 0.07072 0.3508 Mn2576_R 20.16 0.5164 Mo2020_A 0.6867 ug/L 0.03853 5.612 25,290 0.02543 14,070 ug/L 3.578 Na5895 R 6.773 0.1284 0.3913 ug/L 0.02650 Ni2316 A 56.45 0.7277 1.124 ug/L 0.6347 Pb2203 A -0.06057 21.73 0.4505 Sb2068 A -2.073ug/L 1.869 695.8 1.379 Se1960 A -0.1983 ug/L 0.1550 2,577 7.481 Si2516_R 4,827 ug/L 130.1 1.626 ug/L 1.003 Sn1899_A 0.7709 50,170 0.8230 0.1210 Sr4215_R 680.3 ug/L -40.67 73.83 ug/L 0.1193 Ti3349_A -0.1616 -0.06842 142.5 0.7089 ug/L 1.010 TI1908_A 0.1741 91.34 0.7302 ug/L V_2924_A 0.1907 3.418 9.856 ug/L 0.1033 3.023 Zn2062_A 0.10428 22,680 22,680 Cts/S 23.651 Y_3600_R 0.32857 8,724.8 Cts/S 28.667 8,724.8 Y 2243 A 1,539.6 0.63656 241,860 241,860 Cts/S Y_3600_A

SE6546-006

Method Revision: 50 Method Name: K6010-2011

Analyst Name: **EAM**

Page 11 of 101 10/27/2011 8:52:03AM Published:

50

Method Revision:

K6010-2011 Method Name:

EAM Analyst Name:

40/00/0044 4.40.00084

Acquire Date:	10/26/2011	4:46:00	PM		Sample Type:	Unknown
Elem_	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	-(0.1508	ug/L	0.3260	216.2	-39.02
Al3961_R		138.4	ug/L	6.336	4.579	133.6
As1891_A	(0.1357	ug/L	0.7777	573.1	-1.138
Au2427_A	-(0.4536	ug/L	0.1065	23.48	0.7742
B_2089_A		366.3	ug/L	0.1487	0.04058	329.0
Ba4554_R		63.96	ug/L	0.3369	0.5267	3,563
Be3130_R	-0.	01293	ug/L	0.01386	107.2	-4.358
Ca3158_R	ϵ	88,720	ug/L	111.1	0.1617	102,000
Cd2265_A	-0.	06861	ug/L	0.02447	35.66	-2.412
Co2286_A	(0.6309	ug/L	0.1891	29.97	7.779
Cr2677_A		1.304	ug/L	0.007304	0.5602	23.08
Cu3273_A		1.714	ug/L	0.02641	1.541	19.83
Fe2599_R		199.2	ug/L	0.8708	0.4372	365.6
K_7664_R		4,126	ug/L	25.67	0.6220	2,515
Li6707_R		29.31	ug/L	0.3281	1.120	295.5
Mg2025_A	2	20,790	ug/L	13.88	0.06677	3,704
Mn2576_R		102.1	ug/L	0.2972	0.2910	1,066
Mo2020_A		23.08	ug/L	0.2522	1.093	46.00
Na5895_R	6	64,600	ug/L	104.3	0.1615	116,600
Ni2316_A		2.580	ug/L	0.1523	5.903	5.256
Pb2203_A		1.184	ug/L	0.4143	35.01	0.7668
Sb2068_A	,	-1.025	ug/L	0.6167	60.17	0.3082
Se1960_A		1.814	ug/L	2.055	113.3	2.251
Si2516_R		6,722	ug/L	7.914	0.1177	3,603
Sn1899_A	C	.4756	ug/L	0.5232	110.0	1.473
Sr4215_R		1,808	ug/L	2.914	0.1611	134,200
Ti3349_A	C).2157	ug/L	0.1374	63.73	-28.28
TI1908_A		1.097	ug/L	1.075	98.05	0.01235
V_2924_A	C	8088.0	ug/L	0.07735	8.781	9.122
Zn2062_A		1.764	ug/L	0.1477	8.376	5.962
Y_3600_R	2	2,794	Cts/S	76.856	0.33718	22,794
Y_2243_A	8,	,727.9	Cts/S	15.220	0.17438	8,727.9
Y_3600_A	23	9,470	Cts/S	175.08	0.073111	239,470

SE6546-006L

K6010-2011 Method Name:

Analyst Name: EAM Method Revision: 50

50

Method Revision:

Acquire Date: 10/26/2011 4:50:31PM Unknown Sample Type: Elem Flags Avg Units Stddev %RSD **Intensity Ratio** Ag3280_A 1.982 ug/L 1.053 53.11 -26.98 Al3961_R 106.5 44.39 ug/L 41.69 37.69 As1891_A 6.681 ug/L 1.554 23.26 -0.7735 Au2427_A -6.576 ug/L 0.8689 13.21 -3.658 B_2089_A 375.0 ug/L 3.839 1.024 71.09 Ba4554_R 66.34 ug/L 0.07007 0.1056 827.3 Be3130_R 0.1252 ug/L 0.5640 450.5 -0.8273 71,880 Ca3158_R 0.3230 21,680 ug/L 232.2 Cd2265 A -0.2585 0.09937 ug/L 38,43 -2.416 Co2286 A 1.299 ug/L 0.1463 11.26 6.614 Cr2677_A 1.045 ug/L 1.100 105.2 7.803 Cu3273_A 1.631 ug/L 2.729 167.3 1.099 Fe2599_R 210.2 ug/L 9.778 4.652 81.19 K_7664_R 4,163 ug/L 158.5 3.806 524.4 Li6707_R 28.88 ug/L 7.536 26.10 57.00 Mg2025_A 22,320 ug/L 57.15 0.2560 818.1 Mn2576_R 108.1 ug/L 1.582 1.464 234.1 Mo2020_A 25.35 ug/L 0.9246 3.648 9.715

10/27/2011 8:52:03AM Published:

SE6546-006L

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

10/26/20	11 4:50:31P	M		Sample Type:	Unknown
Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
	67,870	ug/L	219.4	0.3232	24,950
	2.966	ug/L	0.2069	6.977	0.6292
	1.402	ug/L	2.445	174.4	-0.1662
	-7.471	ug/L	6.365	85.19	0.1482
	22.27	ug/L	3.509	15.76	2.825
	6,917	ug/L	54.86	0.7931	762.9
	1.865	ug/L	0.7276	39.02	1.466
	1,887	ug/L	3.929	0.2082	28,430
	-2.382	ug/L	1.781	74.79	-51.88
	1.399	ug/L	6.132	438.4	-0.2633
	2.989	ug/L	0.2949	9.866	6.893
	1.809	ug/L	0.4044	22.35	1.677
	23,198	Cts/S	422.30	1.8204	23,198
	9,003.5	Cts/S	13.378	0.14858	9,003.5
	248,790	Cts/S	1,031.9	0.41477	248,790
		Flags Avg 67,870 2.966 1.402 -7.471 22.27 6,917 1.865 1,887 -2.382 1.399 2.989 1.809 23,198 9,003.5	Flags Avg Units 67,870 ug/L 2.966 ug/L 1.402 ug/L -7.471 ug/L 22.27 ug/L 6,917 ug/L 1.865 ug/L 1,887 ug/L -2.382 ug/L 1.399 ug/L 2.989 ug/L 1.809 ug/L 23,198 Cts/S 9,003.5 Cts/S	Flags Avg Units Stddev 67,870 ug/L 219.4 2.966 ug/L 0.2069 1.402 ug/L 2.445 -7.471 ug/L 6.365 22.27 ug/L 3.509 6,917 ug/L 54.86 1.865 ug/L 0.7276 1,887 ug/L 3.929 -2.382 ug/L 1.781 1,399 ug/L 6.132 2,989 ug/L 0.2949 1,809 ug/L 0.4044 23,198 Cts/S 422.30 9,003.5 Cts/S 13.378	Flags Avg Units Stddev %RSD 67,870 ug/L 219.4 0.3232 2.966 ug/L 0.2069 6.977 1.402 ug/L 2.445 174.4 -7.471 ug/L 6.365 85.19 22.27 ug/L 3.509 15.76 6,917 ug/L 54.86 0.7931 1.865 ug/L 0.7276 39.02 1,887 ug/L 3.929 0.2082 -2.382 ug/L 1.781 74.79 1.399 ug/L 6.132 438.4 2.989 ug/L 0.2949 9.866 1.809 ug/L 0.4044 22.35 23,198 Cts/S 422.30 1.8204 9,003.5 Cts/S 13.378 0.14858

SE6546-006S

K6010-2011 Method Name:

Method Revision:

50

A	TANA	•				
Analyst Name:	EAM	4 55 00014			0 1 7	Makanawa
Acquire Date:	10/26/2011	4:55:03PM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		51.18	ug/L	0.3792	0.7409	1,131
Al3961_R		2,132	ug/L	15.09	0.7079	1,790
As1891_A		118.1	ug/L	0.8047	0.6814	36.52
Au2427_A	2	0.7106	ug/L	0.9246	130.1	10.21
B_2089_A		867.8	ug/L	0.3245	0.03740	784.0
Ba4554_R		2,053	ug/L	2.235	0.1088	112,100
Be3130_R		51.84	ug/L	0.1301	0.2509	4,924
Ca3158_R	(69,340	ug/L	193.0	0.2784	103,500
Cd2265_A		262.7	ug/L	0.4577	0.1742	3,977
Co2286_A		502.6	ug/L	0.1912	0.03805	1,855
Cr2677_A		202.1	ug/L	0.8628	0.4269	2,876
Cu3273_A		254.2	ug/L	1.232	0.4848	3,470
Fe2599_R		1,189	ug/L	18.75	1.577	2,178
K_7664_R		14,280	ug/L	129.4	0.9057	8,730
Li6707_R		514.7	ug/L	0.02549	0.004953	5,263
Mg2025_A		25,110	ug/L	12.82	0.05106	4,488
Mn2576_R		590.5	ug/L	4.547	0.7701	6,170
Mo2020_A		321.8	ug/L	0.9109	0.2831	654.4
Na5895_R	(69,730	ug/L	284.4	0.4079	126,500
Ni2316_A		501.2	ug/L	0.6152	0.1227	1,167
Pb2203_A		105.0	ug/L	1.541	1.468	110.2
Sb2068_A		99.49	ug/L	1.184	1.190	37.15
Se1960_A		106.8	ug/L	2.741	2.566	21.97
Si2516_R		11,350	ug/L	114.6	1.009	6,114
Sn1899_A		490.5	ug/L	0.1838	0.03746	254.3
Sr4215_R		2,242	ug/L	7.862	0.3507	167,300
Ti3349_A		497.3	ug/L	1.750	0.3519	15,470
TI1908 A		104.0	ug/L	0.1097	0.1055	42.90
V_2924_A		508.2	ug/L	1.544	0.3038	7,789
Zn2062_A		509.7	ug/L	0.8641	0.1695	1,582
Y_3600_R		22,923	Cts/S	437.67	1.9093	22,923
Y_2243_A		3,753.6	Cts/S	36.698	0.41923	8,753.6
Y_3600_A		41,240	Cts/S	625.94	0.25947	241,240

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 13 of 101

CCV

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 4:59:29PM Sample Type: QC

Acquire Date:	10/26/2011	4:59:29	PM		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		513.1	ug/L	1.394	0.2717	11,760
Al3961_R	1	2,600	ug/L	1.363	0.01082	10,540
As1891_A		505.2	ug/L	1.086	0.2149	163.7
Au2427_A		510.4	ug/L	2.112	0.4138	1,901
B_2089_A		510.5	ug/L	1.337	0.2620	480.4
Ba4554_R		501.9	ug/L	0.8505	0.1695	27,760
Be3130_R		500.4	ug/L	0.07184	0.01436	48,250
Ca3158_R	1	2,670	ug/L	15.79	0.1246	19,070
Cd2265_A		508.3	ug/L	1.796	0.3534	7,912
Co2286_A		510.3	ug/L	1.820	0.3566	1,933
Cr2677_A		514.6	ug/L	1.345	0.2613	7,364
Cu3273_A		517.2	ug/L	1.493	0.2887	7,108
Fe2599_R	1.	2,630	ug/L	17.99	0.1424	23,350
K_7664_R	1.	2,510	ug/L	106.6	0.8523	7,727
Li6707_R		512.6	ug/L	0.4131	0.08059	5,296
Mg2025_A	1	3,010	ug/L	39.41	0.3028	2,385
Mn2576_R		501.8	ug/L	1.672	0.3333	5,299
Mo2020_A		507.4	ug/L	0.6984	0.1376	1,060
Na5895_R	1:	2,200	ug/L	13.32	0.1092	22,390
Ni2316_A		512.1	ug/L	2.087	0.4074	1,223
Pb2203_A		513.2	ug/L	1.352	0.2634	554.4
Sb2068_A		479.0	ug/L	7.359	1.536	181.4
Se1960_A	;	507.7	ug/L	2.052	0.4043	99.61
Si2516_R	1:	2,630	ug/L	21.96	0.1739	6,872
Sn1899_A	;	513.8	ug/L	2.990	0.5819	273.2
Sr4215_R	;	506.6	ug/L	1.266	0.2499	38,140
Ti3349_A	;	511.5	ug/L	2.348	0.4591	16,020
TI1908_A		518.7	ug/L	0.1636	0.03154	227.2
V_2924_A		512.8	ug/L	2.052	0.4001	7,886
Zn2062_A	:	506.1	ug/L	1.918	0.3791	1,611
Y_3600_R	2	3,160	Cts/S	88.729	0.38311	23,160
Y_2243_A	8,9	982.1	Cts/S	19.756	0.21995	8,982.1
Y_3600_A	242	2,840	Cts/S	1,180.6	0.48618	242,840

CCB

Li6707_R

Mg2025_A

Mn2576_R

Mo2020_A

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

4.240

1.789

1.929

-0.04033

ug/L

ug/L

ug/L

ug/L

Acquire Date: 10/26/2011 5:03:51PM Sample Type: QC Elem Avg Units %RSD **Intensity Ratio** Stddev Ag3280 A 0.4475 ug/L 0.2668 59.61 -25.30 Al3961_R 4.377 ug/L 7.304 166.9 22.90 As1891_A 0.2152 ug/L 1.352 628.1 -1.146 Au2427_A ug/L 1.449 0.5203 35.90 6.288 B_2089_A 1.029 ug/L 0.1049 10.19 3.021 Ba4554_R 0.07516 ug/L 0.01281 17.05 96.88 Be3130_R 0.1551 ug/L 0.03647 23.52 11.57 Ca3158_R 3.665 ug/L 1.862 50.82 -34.83 Cd2265_A 0.02439 ug/L 0.05023 206.0 -1.284 Co2286 A 0.1549 ug/L 0.2227 143.8 6.249 Cr2677_A 0.1098 93.70 ug/L 0.1029 6.244 -1.938 Cu3273_A 0.1039 ug/L 0.4169 401.1 Fe2599_R 2.441 ug/L 0.6064 24.84 7.701 K_7664_R -22.92 ug/L 30.86 134.7 -4.316

Published: 10/27/2011 8:52:03AM Page 14 of 101

0.2667

0.7702

0.3319

0.3396

40.39

-2.729

5.214

3.151

6.290

43.05

823.0

17.61

CCB

Method Name: K6010-2011 Method Revision:

Analyst Name: EAM

Acquire Date:	10/26/2011 5:03	3:51PM		Sample Type:	QC
Elem	Flags Av	g Units	Stddev	%RSD	Intensity Ratio
Na5895_R	3.78	30 ug/L	7.611	201.3	35.11
Ni2316_A	0.467	71 ug/L	0.1658	35.49	0.3227
Pb2203_A	0.355	57 ug/L	0.4937	138.8	-0.08204
Sb2068_A	-0.0263	37 ug/L	2.424	9,194	0.7063
Se1960 A	2.69	91 ug/L	0.8957	33.28	2.497
Si2516_R	8.34	18 ug/L	6.029	72.21	14.67
Sn1899_A	0.231	l2 ug/L	0.08835	38.21	1.397
Sr4215_R	0.195	50 ug/L	0.1693	86.85	-53.00
Ti3349_A	-0.0219	90 ug/L	0.2836	1,295	-36.86
TI1908 A	0.197	74 ug/L	1.173	594.4	-0.2772
V 2924_A	0.360	06 ug/L	0.01830	5.075	3.454
Zn2062_A	0.0670)2 ug/L	0.02959	44.15	0.7401
Y 3600 R	22,71	12 Cts/S	44.002	0.19373	22,712
Y 2243_A	9,046	.6 Cts/S	40.065	0.44287	9,046.6
Y_3600_A	246,05	50 Cts/S	3,922.6	1.5942	246,050

SE6546-006P

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 5:08:30PM Sample Type: Unknown

Acquire Date:	10/26/2011	5:08:30PM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		46.20	ug/L	0.4666	1.010	1,021
Al3961_R		1,963	ug/L	5.053	0.2574	1,650
As1891_A		107.2	ug/L	1.424	1.328	33.20
Au2427_A		1.261	ug/L	0.6798	53.89	11.58
B_2089_A		780.1	ug/L	3.334	0.4274	708.4
Ba4554_R		1,856	ug/L	0.2266	0.01221	101,400
Be3130_R		46.92	ug/L	0.05749	0.1225	4,459
Ca3158_R	6	61,390	ug/L	55.87	0.09101	91,650
Cd2265_A		239.2	ug/L	0.8381	0.3504	3,639
Co2286_A		454.8	ug/L	2.166	0.4764	1,687
Cr2677_A		182.1	ug/L	0.5273	0.2896	2,598
Cu3273_A		230.3	ug/L	1.015	0.4408	3,152
Fe2599_R		1,077	ug/L	3.085	0.2866	1,974
K_7664_R	1	12,930	ug/L	46.04	0.3560	7,911
Li6707_R		464.5	ug/L	2.072	0.4460	4,753
Mg2025_A	2	22,480	ug/L	73.71	0.3279	4,036
Mn2576_R		532.3	ug/L	1.991	0.3740	5,566
Mo2020_A		290.6	ug/L	1.777	0.6116	593.7
Na5895_R	6	32,070	ug/L	199.9	0.3221	112,700
Ni2316_A		453.5	ug/L	1.889	0.4167	1,061
Pb2203_A		95.42	ug/L	0.6983	0.7318	100.6
Sb2068_A		91.75	ug/L	0.7454	0.8124	34.48
Se1960_A		95.87	ug/L	1.898	1.980	20.01
Si2516_R	•	10,190	ug/L	61.71	0.6058	5,491
Sn1899_A		444.8	ug/L	0.9273	0.2085	231.8
Sr4215_R		1,989	ug/L	1.041	0.05231	148,500
Ti3349_A		444.6	ug/L	1.398	0.3144	13,870
TI1908_A		95.16	ug/L	0.06465	0.06794	39.43
V_2924_A		457.8	ug/L	0.2558	0.05587	7,035
Zn2062_A		461.8	ug/L	1.986	0.4301	1,441
Y_3600_R	2	22,937	Cts/S	498.84	2.1748	22,937
Y_2243_A	8	,795.7	Cts/S	11.910	0.13541	8,795.7
Y_3600_A	24	41,880	Cts/S	559.68	0.23139	241,880

SE6546-007

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 15 of 101

K6010-2011 Method Name: Method Revision:

EAM Analyst Name:

Acquire Date:	10/26/201	1 5:12:56F	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.05246	ug/L	0.6569	1,252	-34.36
Al3961_R		128.4	ug/L	5.824	4.536	125.1
As1891_A		0.03904	ug/L	0.02797	71.64	-1.162
Au2427_A		0.3346	ug/L	0.7513	224.6	3.649
B_2089_A		366.8	ug/L	1.247	0.3399	328.0
Ba4554_R		65.34	ug/L	0.09189	0.1406	3,626
Be3130_R		0.06016	ug/L	0.02410	40.06	2.579
Ca3158_R		70,860	ug/L	156.6	0.2211	104,800
Cd2265_A	-	0.01898	ug/L	0.02665	140.4	-1.698
Co2286_A		0.2649	ug/L	0.1731	65.36	6.409
Cr2677_A		1.358	ug/L	0.09954	7.331	23.91
Cu3273_A		1.513	ug/L	0.6618	43.74	17.16
Fe2599_R		163.7	ug/L	0.7845	0.4791	300.1
K_7664_R		4,194	ug/L	56.91	1.357	2,547
Li6707_R		29.11	ug/L	0.3059	1.051	292.5
Mg2025_A		21,300	ug/L	86.89	0.4079	3,778
Mn2576_R		107.9	ug/L	0.2495	0.2311	1,123
Mo2020_A		24.18	ug/L	0.08489	0.3511	48.02
Na5895_R		63,650	ug/L	117.8	0.1851	114,500
Ni2316_A		2.268	ug/L	0.3271	14.42	4.518
Pb2203_A		1.547	ug/L	0.7891	51.02	1.144
Sb2068_A		-1.988	ug/L	1.511	76.01	-0.04285
Se1960_A		1.200	ug/L	2.968	247.3	2.127
Si2516_R		6,787	ug/L	19.89	0.2931	3,626
Sn1899_A		0.5345	ug/L	0.5361	100.3	1.497
Sr4215_R		1,826	ug/L	3.995	0.2188	135,000
Ti3349_A		0.1332	ug/L	0.07451	55.93	-30.89
TI1908_A		0.3926	ug/L	0.1953	49.73	-0.2947
V_2924_A		1.080	ug/L	0.1618	14.98	12.07
Zn2062_A		1.470	ug/L	0.04009	2.726	5.031
Y_3600_R		22,719	Cts/S	44.626	0.19642	22,719
Y_2243_A		8,689.2	Cts/S	13.307	0.15314	8,689.2
Y_3600_A		240,090	Cts/S	638.18	0.26581	240,090

SE6762-001

K6010-2011 Method Revision: 50 Method Name:

Analyst Name:	EAM					
Acquire Date:	10/26/20	11 5:17:27	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.3456	ug/L	0.1494	43.24	-27.90
Al3961_R		42.06	ug/L	22.04	52.40	54.31
As1891_A		-0.4944	ug/L	1.785	361.1	-1.371
Au2427_A		0.8465	ug/L	1.143	135.0	4.457
B_2089_A		3.616	ug/L	0.2068	5.719	5.358
Ba4554_R		11.90	ug/L	0.06463	0.5432	745.1
Be3130_R	-	0.006976	ug/L	0.03914	561.0	-3.809
Ca3158_R		30,570	ug/L	16.36	0.05351	45,740
Cd2265_A		0.04965	ug/L	0.006218	12.52	-0.8151
Co2286_A		-0.1239	ug/L	0.1849	149.2	5.156
Cr2677_A		1.306	ug/L	0.02622	2.008	23.55
Cu3273_A		1.286	ug/L	0.6325	49.19	14.49
Fe2599_R		58.78	ug/L	0.9000	1.531	111.2
K_7664 _ R		10,670	ug/L	51.68	0.4843	6,545
Li6707_R		15.54	ug/L	0.4220	2.716	156.8
Mg2025_A		6,907	ug/L	44.88	0.6498	1,265
Mn2576_R		27.72	ug/L	0.1940	0.6999	296.1
Mo2020_A		1.186	ug/L	0.1653	13.94	1.576

10/27/2011 8:52:03AM Published: Page 16 of 101

SE6762-001

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 5:17:27PM Sample Type: Unknown

Acquire Date:	10/26/20	011 5:17:27	PIVI		Sample Type:	OHKHOWH	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R		13,450	ug/L	0.05747	0.0004272		24,510
Ni2316_A		0.6795	ug/L	0.2353	34.63		0.8209
Pb2203_A		0.1808	ug/L	0.3246	179.6		-0.2735
Sb2068 A		-1.577	ug/L	0.9964	63.17		0.1233
Se1960 A		1.481	ug/L	2.100	141.8		2.247
Si2516 R		7,734	ug/L	3.672	0.04747		4,181
Sn1899 A		0.7675	ug/L	0.1393	18.15		1.671
Sr4215 R		155.2	ug/L	0.6345	0.4088		11,550
Ti3349 A		0.05010	ug/L	0.1331	265.6		-34.57
TI1908 A		-0.03854	ug/L	1.355	3,516		-0.4124
V 2924 A		0.7531	ug/L	0.1274	16.91		9.503
Zn2062 A		18.37	ug/L	0.04171	0.2270		59.06
Y 3600 R		22,995	Cts/S	83.179	0.36172		22,995
Y 2243 A		8,984.0	Cts/S	45.272	0.50392		8,984.0
Y 3600 A		245,550	Cts/S	2,030.5	0.82692		245,550

SE6762-002

Method Name: K6010-2011

Analyst Name: EAM

50 Method Revision:

Acquire Date: Unknown 10/26/2011 5:21:58PM Sample Type: %RSD Intensity Ratio **Units** Stddev Elem Flags **A**vg ug/L 0.08428 13.32 -156.30.6326 Ag3280_A Al3961_R 5.853 5.311 111.5 110.2 ug/L -2.266 As1891_A 3.187 ug/L 0.07420 2.328 25.68 Au2427_A 0.7967 6,007 -0.01326 ug/L 5.665 0.04819 1.240 B_2089_A 3.885 ug/L 1,139 ug/L 0.1697 0.8944 Ba4554_R 18.98 0.06055 ug/L 0.03846 63.52 2.500 Be3130_R 0.7768 46,550 Ca3158_R 30,940 ug/L 240.3 42.79 Cd2265 A -0.05406 ug/L 0.01271 23.51 32.10 0.7241 Co2286 A 6.899 ug/L 0.04996 5.526 39.20 Cr2677_A 2.047 ug/L 0.1131 43.77 28.92 Cu3273 A 4.712 ug/L 1.363 0.7740 68,220 Fe2599_R 36,970 ug/L 286.1 1.607 4,772 124.2 K 7664 R 7,731 ug/L 3.738 196.9 0.7227 ug/L Li6707 R 19.34 23.36 0.3701 1,151 6,310 ug/L Mg2025_A 0.3211 1,407 132.8 ug/L 0.4265 Mn2576_R 9.877 ug/L 0.05130 0.9914 Mo2020_A 5.175 28,800 ug/L 162.4 1.033 15,720 Na5895_R 0.01170 0.09510 6.035 1.576 ug/L Ni2316_A ug/L 1.127 87.12 2.011 1.294 Pb2203_A 45.77 0.9239 -0.7703 ug/L 0.3526 Sb2068_A 33.53 2.162 0.5288 ug/L 0.1773 Se1960_A 0.8998 8,238 15,170 ug/L 136.5 Si2516_R 0.009959 1.977 1.526 0.5037 ug/L Sn1899_A 198.6 ug/L 1.410 0.7100 14,890 Sr4215_R 0.03472 1.002 72.74 Ti3349_A 3.464 ug/L 0.7132 ug/L 1.857 260.3 -0.2365 TI1908_A 25.39 V_2924_A 1.393 ug/L 0.1353 9.717 80.94 Zn2062_A 25.34 ug/L 0.07295 0.2879 23,127 23,127 Cts/S 205.15 0.88706 Y 3600 R 8,951.0 Y 2243 A 8,951.0 Cts/S 41.815 0.46716 242,040 1.9538 Cts/S 4,729.1 Y_3600_A 242,040

LCSWBJ25ICW1

Method Name: K6010-2011

50 Method Revision:

Page 17 of 101

50

Method Revision:

Published:

10/27/2011 8:52:03AM

LCSWBJ25ICW1

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 5:26:31PM Acquire Date: Sample Type: Unknown %RSD Elem Flags **A**vg Units Stddev **Intensity Ratio** Ag3280_A W 58.02 ug/L 0.5983 1.031 1,327 Al3961_R 2,280 ug/L 0.3470 0.01522 1,955 As1891 A ug/L 110.6 0.5807 0.5248 35.91 ug/L Au2427_A 1.102 0.3550 32.22 11.60 B_2089_A 563.5 ug/L 0.6803 0.1207 538.3 Ba4554_R W 2,309 ug/L 5.015 0.2172 129,000 Be3130_R W 59.51 ug/L 0.07548 0.1268 5,784 Ca3158_R 2,709 0.3408 4,095 ug/L 9.232 0.07462 Cd2265_A 282.6 ug/L 0.02641 4,500 Co2286 A W 591.1 ug/L 1.629 0.2756 2,293 Cr2677_A W 237.3 ug/L 1.430 0.6025 3,478 Cu3273 A W 292.5 ug/L 3.791 1.296 4,116 Fe2599 R 1,145 ug/L 5.886 0.5142 2.145 K_7664_R 10,930 2.380 ug/L 0.02177 6,838 Li6707 R 557.4 0.1674 0.03002 ug/L 5,831 Mg2025_A W 5,776 ug/L 2.253 0.03901 1,083 Mn2576_R W 578.8 ug/L 1.075 0.1858 6,188 Mo2020 A 312.0 ug/L 8.168 2.617 667.4 Na5895_R 7,977 ug/L 23.59 0.2957 14,830 W Ni2316_A 593.8 ug/L 1.063 0.1790 1,454 Pb2203_A 114.1 ug/L 0.8263 0.7240 126.0 Sb2068_A ug/L 104.0 1.506 1.449 40.85 Se1960_A 108.7 ug/L 0.6980 0.6419 23.48 Si2516_R ug/L 5,248 0.3056 16.04 2,899 Sn1899_A 551.4 ug/L 2.189 0.3969 300.5 Sr4215_R 542.6 ug/L 0.4317 0.07956 41,360 Ti3349_A 550.4 3.301 ug/L 0.5996 17,650 TI1908_A W 116.1 ug/L 0.3566 0.3071 50.48 V_2924_A W 585.4 ug/L 4.820 0.8233 9,249 Zn2062_A W 597.6 ug/L 1.275 0.2134 1,951 Y 3600 R 23,451 Cts/S 196.55 0.83814 23,451

SE6975-001

Y 2243 A

Y_3600_A

K6010-2011 Method Name:

Analyst Name:

EAM

9,206.8

248,560

Cts/S

Cts/S

23.284

2,478.0

0.25290

0.99695

Method Revision:

Acquire Date:	10/26/201	1 5:30:59	PM			Sample Type:	Unknown	
Elem	Flags	A vg		Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		0.2890		ug/L	0.03909	13.53		-29.18
Al3961_R		8.432		ug/L	8.385	99.43		26.95
As1891_A		5.836		ug/L	0.4683	8.025		0.7197
Au2427_A		0.5240		ug/L	0.6431	. 122.7		2.888
B_2089_A		6.298		ug/L	0.1324	2.102		8.030
Ba4554_R		0.6777		ug/L	0.002348	0.3464		133.2
Be3130_R		0.06478		ug/L	0.02543	39.26		3.144
Ca3158_R		17,590		ug/L	25.19	0.1432		26,730
Cd2265_A	-	0.01248		ug/L	0.01160	93.01		-1.893
Co2286_A		0.2772		ug/L	0.08616	31.08		6.817
Cr2677_A		0.2798		ug/L	0.2586	92.43		8.726
Cu3273_A		7.527		ug/L	0.2591	3.442		102.0
Fe2599_R		2.588		ug/L	1.017	39.28		8.208
K_7664_R		766.8		ug/L	25.45	3.319		486.9
Li6707_R		-1.702		ug/L	0.1041	6.119		-20.42
Mg2025_A		1,118		ug/L	10.10	0.9030		206.8
Mn2576_R		-0.1876		ug/L	0.1837	97.94		3.813
Mo2020_A		2.624		ug/L	0.3592	13.69		4.690

10/27/2011 8:52:03AM Published:

9,206.8

248,560

50

50

Method Revision:

SE6975-001

Method Name: K6010-2011

Analyst Name: EAM

EAM

Method Revision:

50

, and you main or							
Acquire Date:	10/26/2011	5:30:59PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	_	Intensity Ratio
Na5895_R		5,901	ug/L	0.7671	0.01300		10,940
Ni2316_A	1	0.3422	ug/L	0.005097	1.489		0.02533
Pb2203_A		0.6409	ug/L	0.4929	76.90		0.2374
Sb2068_A		-1.597	ug/L	0.1531	9.587		0.1126
Se1960 A	1	0.6646	ug/L	0.04891	7.359		2.138
Si2516_R		3,464	ug/L	23.72	0.6847		1,909
Sn1899_A	1	0.8280	ug/L	0.2287	27.62		1.743
Sr4215_R		56.70	ug/L	0.2808	0.4953		4,245
Ti3349_A		0.3574	ug/L	0.2338	65.40		-47.79
TI1908_A		0.6914	ug/L	0.3238	46.83		-0.05873
V 2924 A		0.5474	ug/L	0.1797	32.83		6.346
Zn2062 A		27.57	ug/L	0.1701	0.6171		90.41
Y 3600_R		23,368	Cts/S	305.11	1.3057		23,368
Y 2243 A	9	9,190.8	Cts/S	64.467	0.70143		9,190.8
Y_3600_A	2	47,050	Cts/S	287.34	0.11631		247,050

PBSBJ21ICS2

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/2	2011 5:35:36	SPM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2645	ug/L	0.1209	45.72	-30.69
Al3961 R		-1.705	ug/L	0.3225	18.92	18.33
As1891 A		-0.8079	ug/L	0.9188	113.7	-1.504
Au2427_A		-0.05647	ug/L	0.4240	750.9	0.7121
B_2089_A		1.226	ug/L	0.02540	2.071	3.244
Ba4554_R		0.8081	ug/L	0.1162	14.38	139.6
Be3130_R		0.05307	ug/L	0.01273	23.99	1.920
Ca3158_R	F	107.5	ug/L	2.736	2.544	121.5
Cd2265_A		-0.02743	ug/L	0.02244	81.81	-2.092
Co2286_A		-0.1552	ug/L	0.2185	140.8	5.150
Cr2677_A		0.8603	ug/L	0.1499	17.42	17.65
Cu3273_A		0.4206	ug/L	0.1152	27.40	2.487
Fe2599_R		29.59	ug/L	2.346	7.928	58.18
K_7664_R		-11.59	ug/L	5.593	48.27	2.584
Li6707_R		-0.03344	ug/L	1.486	4,444	-3.024
Mg2025_A		35.03	ug/L	2.261	6.454	3.461
Mn2576_R		0.5143	ug/L	0.3374	65.61	11.20
Mo2020_A		1.749	ug/L	0.3108	17.77	2.812
Na5895_R		28.93	ug/L	3.141	10.86	82.10
Ni2316_A		0.5633	ug/L	0.2024	35.94	0.5604
Pb2203_A		0.6044	ug/L	0.1870	30.94	0.1954
Sb2068_A		-1.111	ug/L	0.08226	7.405	0.3016
Se1960_A		1.058	ug/L	1.471	139.0	2.212
Si2516_R		18.04	ug/L	1.253	6.948	20.27
Sn1899_A		13.59	ug/L	0.3709	2.729	8.642
Sr4215_R		0.3015	ug/L	0.08026	26.62	-46.11
Ti3349_A		0.5404	ug/L	0.05510	10.20	-19.68
TI1908_A		-0.9916	ug/L	0.07185	7.246	-0.8184
V_2924_A		-0.04769	ug/L	0.2366	496.1	-3.054
Zn2062_A		0.6671	ug/L	0.04106	6.155	2.700
Y_3600_R		23,225	Cts/S	77.210	0.33245	23,225
Y_2243_A		9,173.5	Cts/S	18.096	0.19727	9,173.5
Y_3600_A		254,040	Cts/S	1,506.0	0.59284	254,040
L CCOR INVICE	63					

LCSOBJ21ICS2

Method Name: K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 19 of 101

LCSOBJ21ICS2

K6010-2011 Method Name:

EAM Analyst Name:

Acquire Date: 10/26/2011 5:40:11PM Sample Type: Unknown

Acquire Date:	10/26/2011	5:40:TTP	IVI		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		51.33	ug/L	0.02537	0.04943	1,160
Al3961_R		2,052	ug/L	26.44	1.289	1,733
As1891_A		102.3	ug/L	0.6799	0.6646	32.61
Au2427_A	0.	07963	ug/L	0.2207	277.1	7.034
B_2089_A		492.2	ug/L	2.781	0.5650	464.1
Ba4554_R		2,063	ug/L	6.292	0.3050	113,300
Be3130_R		53.64	ug/L	0.1471	0.2742	5,124
Ca3158_R		2,636	ug/L	12.95	0.4911	3,916
Cd2265_A		258.6	ug/L	1.207	0.4667	4,055
Co2286_A		528.2	ug/L	2.504	0.4742	2,019
Cr2677_A		214.0	ug/L	0.5934	0.2772	3,112
Cu3273_A		268.1	ug/L	0.6203	0.2313	3,741
Fe2599_R		1,089	ug/L	13.57	1.246	2,006
K_7664_R	1	10,260	ug/L	50.26	0.4901	6,306
Li6707_R		514.5	ug/L	0.02245	0.004363	5,291
Mg2025_A		5,211	ug/L	20.73	0.3978	961.8
Mn2576_R		521.7	ug/L	2.220	0.4256	5,482
Mo2020_A		311.1	ug/L	2.297	0.7384	655.4
Na5895_R		7,479	ug/L	32.71	0.4374	13,670
Ni2316_A		527.6	ug/L	2.525	0.4786	1,272
Pb2203_A		104.4	ug/L	0.4891	0.4683	113.5
Sb2068_A		97.70	ug/L	1.605	1.643	37.83
Se1960_A		102.1	ug/L	1.950	1.910	21.83
Si2516_R		4,393	ug/L	6.175	0.1406	2,387
Sn1899_A		516.6	ug/L	1.793	0.3471	277.3
Sr4215_R		502.1	ug/L	1.707	0.3400	37,620
Ti3349_A		514.3	ug/L	1.620	0.3149	16,350
TI1908_A		104.6	ug/L	1.877	1.794	44.75
V_2924_A		526.0	ug/L	0.2135	0.04058	8,240
Zn2062_A		524.5	ug/L	2.240	0.4271	1,687
Y_3600_R	2	3,052	Cts/S	87.599	0.38001	23,052
Y_2243_A	9	,067.4	Cts/S	25.837	0.28494	9,067.4
Y_3600_A	24	6,500	Cts/S	126.76	0.051422	246,500

SE6616-001

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

50

50

Method Revision:

/ widiyot realito.						
Acquire Date:	10/26/20	011 5:44:41	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		45.00	ug/L	1.559	3.465	-257.2
Al3961_R		77,150	ug/L	165.6	0.2146	64,790
As1891_A		135.5	ug/L	3.991	2.946	23.85
Au2427_A		-1.311	ug/L	2.838	216.6	239.4
B_2089_A		301.3	ug/L	0.7114	0.2361	277.5
Ba4554_R		185.0	ug/L	0.1144	0.06184	10,360
Be3130_R		2.650	ug/L	0.003452	0.1302	138.5
Ca3158_R		59,450	ug/L	47.62	0.08010	90,260
Cd2265_A		22.37	ug/L	0.7446	3.329	753.4
Co2286_A		113.5	ug/L	0.3033	0.2673	450.2
Cr2677_A		1,872	ug/L	3.158	0.1687	26,640
Cu3273_A		7,081	ug/L	7.032	0.09930	96,670
Fe2599_R	F	339,300	ug/L	10,220	3.013	631,500
K_7664_R		11,220	ug/L	18.01	0.1604	6,982
Li6707_R		154.6	ug/L	1.236	0.7995	1,607
Mg2025_A		93,180	ug/L	72.70	0.07802	16,880
Mn2576_R		2,385	ug/L	0.8849	0.03710	25,370
Mo2020_A		120.7	ug/L	0.3425	0.2839	248.6

Published: 10/27/2011 8:52:03AM

Method Name: K6010-2011

Analyst Name: EAM Method Revision:

50

10/26/2011 5:44:4	11 DM		O 1 T	11
	r I I IVI		Sample Type:	Unknown
lags Avg	Units	Stddev	%RSD	Intensity Ratio
55,260	ug/L	93.45	0.1691	102,000
482.2	ug/L	0.9083	0.1884	1,111
8,978	ug/L	3.386	0.03772	9,618
11,100	ug/L	26.69	0.2405	4,123
4.968	ug/L	0.1483	2.985	4.437
2,109	ug/L	19.72	0.9353	1,155
1,092	ug/L	2.589	0.2371	572.7
617.9	ug/L	0.8020	0.1298	46,860
2,130	ug/L	3.768	0.1769	66,360
-2.241	ug/L	2.366	105.6	-4.977
328.6	ug/L	0.1800	0.05476	5,032
14,980	ug/L	26.03	0.1738	47,150
23,326	Cts/S	320.45	1.3738	23,326
8,875.9	Cts/S	30.921	0.34837	8,875.9
241,260	Cts/S	58.674	0.024320	241,260
	55,260 482.2 8,978 11,100 4.968 2,109 1,092 617.9 2,130 -2.241 328.6 14,980 23,326 8,875.9	55,260 ug/L 482.2 ug/L 8,978 ug/L 11,100 ug/L 4.968 ug/L 2,109 ug/L 1,092 ug/L 617.9 ug/L 2,130 ug/L -2.241 ug/L 328.6 ug/L 14,980 ug/L 23,326 Cts/S 8,875.9 Cts/S	55,260 ug/L 93.45 482.2 ug/L 0.9083 8,978 ug/L 3.386 11,100 ug/L 26.69 4.968 ug/L 0.1483 2,109 ug/L 19.72 1,092 ug/L 2.589 617.9 ug/L 0.8020 2,130 ug/L 3.768 -2,241 ug/L 2.366 328.6 ug/L 0.1800 14,980 ug/L 26.03 23,326 Cts/S 320.45 8,875.9 Cts/S 30.921	lags Avg Units Stddev %RSD 55,260 ug/L 93.45 0.1691 482.2 ug/L 0.9083 0.1884 8,978 ug/L 0.9083 0.1884 8,978 ug/L 3.386 0.03772 11,100 ug/L 26.69 0.2405 4.968 ug/L 0.1483 2.985 2,109 ug/L 19.72 0.9353 1,092 ug/L 2.589 0.2371 617.9 ug/L 0.8020 0.1298 2,130 ug/L 3.768 0.1769 -2.241 ug/L 2.366 105.6 328.6 ug/L 0.1800 0.05476 14,980 ug/L 26.03 0.1738 23,326 Cts/S 320.45 1.3738 8,875.9 Cts/S 30.921 0.34837

SE6616-002

Method Name: K6010-2011 Method Revision:

50

Analyst Name:	EAM					H-L
Acquire Date:	10/26/2011	5:49:12P			Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		40.97	ug/L	0.7006	1.710	-248.7
Al3961_R	1	56,600	ug/L	340.5	0.2175	132,700
As1891_A		160.9	ug/L	2.287	1.422	33.21
Au2427_A		-1.545	ug/L	1.536	99.42	224.9
B_2089_A		505.2	ug/L	0.4175	0.08265	458.7
Ba4554_R		895.6	ug/L	0.2731	0.03050	50,270
Be3130_R		4.083	ug/L	0.04671	1.144	285.9
Ca3158_R	2	00,200	ug/L	66.21	0.03307	306,900
Cd2265_A		18.10	ug/L	0.4264	2.356	645.9
Co2286_A		151.9	ug/L	0.2993	0.1971	583.7
Cr2677_A		2,575	ug/L	18.21	0.7072	35,970
Cu3273_A		8,690	ug/L	92.26	1.062	116,600
Fe2599_R	F 3	12,900	ug/L	3,024	0.9665	587,800
K_7664_R		12,570	ug/L	14.40	0.1145	7,893
Li6707_R		169.7	ug/L	0.9930	0.5853	1,780
Mg2025_A		88,750	ug/L	159.9	0.1802	15,840
Mn2576_R		2,766	ug/L	3.127	0.1131	29,690
Mo2020_A		287.5	ug/L	0.3769	0.1311	584.1
Na5895_R		65,360	ug/L	121.2	0.1854	121,800
Ni2316_A		547.6	ug/L	0.9653	0.1763	1,249
Pb2203_A		6,409	ug/L	8.924	0.1392	6,753
Sb2068 A		16,340	ug/L	32.02	0.1960	5,976
Se1960_A		7.049	ug/L	2.041	28.95	5.311
Si2516_R		3,189	ug/L	9.753	0.3058	1,764
Sn1899 A		445.0	ug/L	0.2289	0.05144	230.5
Sr4215 R		2,976	ug/L	1.424	0.04784	228,100
Ti3349 A		2,145	ug/L	13.13	0.6123	65,670
TI1908_A	-	0.2119	ug/L	0.6836	322.7	-6.021
V_2924_A		1,176	ug/L	10.37	0.8814	17,710
Zn2062_A		13,370	ug/L	34.64	0.2591	41,450
Y_3600_R		23,541	Cts/S	257.07	1.0920	23,541
Y 2243 A		8,743.4	Cts/S	10.905	0.12472	8,743.4
Y_3600_A		37,030	Cts/S	1,456.0	0.61429	237,030

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 21 of 101

CCV

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 5:53:42PM Sample Type: QC Elem Flags Units Stddev %RSD **Intensity Ratio** Avg Ag3280 A 515.3 ug/L 11.30 2.194 11,880 Al3961 R 12,810 0.7983 ug/L 102.2 10,640 As1891 A 504.0 1.797 0.3565 ug/L 165.0 Au2427_A 510.6 ug/L 3.845 0.7531 1.923 B 2089 A 507.5 ug/L 1.179 0.2323 482.8 Ba4554_R 500.8 ug/L 0.1499 0.02994 27,520 Be3130_R 506.9 ug/L 2.338 0.4612 48,560 Ca3158_R 12,670 ug/L 16.20 0.1278 18,950 Cd2265_A 503.5 ug/L 0.09303 0.01848 7,921 Co2286_A 508.7 ug/L 0.6223 0.1223 1,947 Cr2677_A 511.1 ug/L 10.40 2.036 7,355 Cu3273_A 516.7 ug/L 10.25 1.983 7,143 Fe2599 R 12,790 ug/L 116.7 23,490 0.9124 K 7664 R 12,520 ug/L 63.68 0.5088 7,681 Li6707_R 511.8 1.323 0.2586 ug/L 5,253 Mg2025_A 12,900 ug/L 17.06 0.1322 2,390 Mn2576_R 506.4 ug/L 3.192 0.6303 5,314 Mo2020_A 505.2 2.189 0.4333 ug/L 1,066 Na5895 R 12,230 ug/L 2.379 0.01945 22,310 Ni2316_A 510.1 ug/L 0.4986 0.09775 1,231 Pb2203 A 510.3 ug/L 0.3733 0.07316 557.1 Sb2068 A 485.5 ug/L 7.125 1.468 185.8 Se1960 A 503.7 0.7665 ug/L 0.1522 99.92 Si2516 R 12,700 51.31 0.4040 ug/L 6.865 ug/L Sn1899_A 511.1 0.3934 0.07697 274.7 Sr4215_R 507.8 ug/L 1.292 0.2545 37,980 Ti3349_A 505.9 ug/L 11.57 2.288 15,940 TI1908_A 512.8 ug/L 0.01765 0.003443 227.0 V_2924_A 514.9 ug/L 12.16 2.362 7,964

CCB

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

Method Name: K6010-2011

Analyst Name: EAM

EAM

505.0

23,011

9,078.7

244,290

ug/L

Cts/S

Cts/S

Cts/S

11 Method Revision:

0.008332

146.29

30.813

4,320.6

0.001650

0.63572

0.33940

1.7686

Analyst Name:	CAIVI						
Acquire Date:	10/26/2011	1 5:58:07P	M		Sample Type:	QC	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio	5
Ag3280_A		0.3437	ug/L	0.5794	168.6	-28.44	1
Al3961_R		2.040	ug/L	14.34	702.9	21.71	1
As1891_A		0.5674	ug/L	0.5286	93.17	-1.036	3
Au2427_A	-(0.07324	ug/L	0.04426	60.43	0.6123	3
B_2089_A		0.8997	ug/L	0.07979	8.869	2.927	7
Ba4554_R		0.2192	ug/L	0.08213	37.46	108.0)
Be3130_R		0.1279	ug/L	0.03206	25.06	9.259	€
Ca3158_R		10.14	ug/L	4.368	43.06	-26.04	1
Cd2265_A	0.	003360	ug/L	0.007491	222.9	-1.622	2
Co2286_A		0.2366	ug/L	0.07955	33.62	6.611	1
Cr2677_A		0.1657	ug/L	0.2680	161.7	7.206	3
Cu3273_A	(0.08028	ug/L	0.06243	77.77	-2.374	1
Fe2599_R		5.534	ug/L	1.649	29.79	13.74	ŀ
K_7664_R		-64.54	ug/L	47.74	73.97	-30.38	3
Li6707_R		2.812	ug/L	0.5738	20.41	26.76	3
Mg2025_A		0.3237	ug/L	3.417	1,056	-3.020)
Mn2576_R		-0.3793	ug/L	0.1807	47.64	1.771	J
Mo2020_A		2.178	ug/L	0.3475	15.96	3.703	3

Published: 10/27/2011 8:52:03AM

1,625

23,011

9,078.7

244,290

50

Method Revision:

CCB

Method Name: K6010-2011

Analyst Name: EAM

alyst Name. Law guire Date: 10/26/2011 5:58:07PM

Acquire Date:	10/26/201	1 5:58:07	7PM		Sample Type:	QC	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R		-17.20	ug/L	1.305	7.586		-2.704
Ni2316_A		0.09584	ug/L	0.09505	99.17		-0.5739
Pb2203_A		0.1371	ug/L	0.2125	155.1		-0.3223
Sb2068 A		4.219	ug/L	2.184	51.76		2.326
Se1960 A		2.569	ug/L	0.5741	22.35		2.491
Si2516_R		5.147	ug/L	2.907	56.48		13.38
Sn1899 A		-0.2236	ug/L	0.5419	242.3		1.162
Sr4215 R		0.2567	ug/L	0.04795	18.68		-49.97
Ti3349 A		0.5450	ug/L	0.2199	40.35		-19.33
TI1908 A		0.04118	ug/L	0.1355	329.0		-0.3490
V 2924 A	-	0.07297	ug/L	0.01267	17.37		-3.448
Zn2062 A		0.05524	ug/L	0.05715	103.5		0.7072
Y 3600 R		23,444	Cts/S	126.38	0.53906		23,444
Y 2243 A		9,110.8	Cts/S	39.869	0.43760		9,110.8
Y_3600_A		251,660	Cts/S	426.94	0.16965		251,660

SE6616-003

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

Analyst Pater 10/26/2011 6:02:40PM Sample Type: Unknown

Acquire Date:	10/26/2011	6:02:40PN	1		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		3.298	ug/L	0.5205	15.78		-480.4
Al3961_R		68,330	ug/L	113.2	0.1656		58,130
As1891_A		50.91	ug/L	0.9966	1.958		7.954
Au2427_A		0.7573	ug/L	0.8173	107.9		102.3
B_2089_A		230.7	ug/L	0.9175	0.3976		216.7
Ba4554_R		199.8	ug/L	0.4564	0.2284		11,330
Be3130_R		4.227	ug/L	0.06213	1.470		229.5
Ca3158_R		57,740	ug/L	239.2	0.4142		88,810
Cd2265_A		3.085	ug/L	0.01070	0.3468		214.0
Co2286_A		34.50	ug/L	0.09155	0.2654		166.8
Cr2677_A		236.3	ug/L	1.044	0.4417		3,443
Cu3273_A		354.0	ug/L	4.177	1.180		4,832
Fe2599_R	1	34,300	ug/L	751.0	0.5593		253,200
K_7664_R		20,210	ug/L	75.88	0.3755		12,730
Li6707_R		149.6	ug/L	0.4080	0.2728		1,575
Mg2025_A		40,070	ug/L	10.07	0.02512		7,448
Mn2576_R		1,290	ug/L	2.660	0.2061		13,900
Mo2020_A		8.589	ug/L	0.008482	0.09875		17.24
Na5895_R		82,790	ug/L	87.63	0.1058		154,800
Ni2316_A		106.5	ug/L	0.1583	0.1487		246.2
Pb2203_A		265.7	ug/L	0.4873	0.1834		285.7
Sb2068_A		2.264	ug/L	0.9322	41.18		4.272
Se1960_A		2.537	ug/L	0.8784	34.63		3.402
Si2516_R		4,051	ug/L	17.37	0.4287		2,253
Sn1899_A		40.33	ug/L	0.1601	0.3970		22.92
Sr4215_R		444.0	ug/L	2.066	0.4654		34,090
Ti3349_A		3,288	ug/L	0.4334	0.01318		104,300
TI1908_A		-2.237	ug/L	0.3660	16.36		-4.266
V_2924_A		230.4	ug/L	0.8065	0.3500		3,639
Zn2062_A		855.6	ug/L	1.336	0.1561		2,762
Y_3600_R		23,630	Cts/S	106.60	0.45112		23,630
Y_2243_A	Ş	9,102.0	Cts/S	20.169	0.22158		9,102.0
Y_3600_A	2	45,600	Cts/S	112.13	0.045654		245,600

SE6616-004

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 23 of 101

50

Method Revision:

Method Name:

K6010-2011

Method Revision:

50

Analyst Name: Acquire Date: Elem Ag3280_A	EAM 10/26/2011 6:07:11F Flags Av g	M			
Elem Ag3280_A		M		o	
Ag3280_A	Flags Ava			Sample Type:	Unknown
		Units	Stddev	%RSD	Intensity Ratio
ALCOCAL D	2.668	ug/L	0.6272	23.50	-932.8
Al3961_R	84,630	ug/L	187.9	0.2220	73,410
As1891_A	99.07	ug/L	1.752	1.768	17.50
Au2427_A	0.07978	ug/L	0.3670	460.1	198.2
B_2089_A	109.0	ug/L	0.4929	0.4522	105.1
Ba4554_R	161.2	ug/L	0.3659	0.2271	9,340
Be3130_R	4.196	ug/L	0.1001	2.385	273.5
Ca3158_R	21,240	ug/L	17.60	0.08285	33,290
Cd2265_A	5.212	ug/L	0.2067	3.967	395.0
Co2286_A	111.6	ug/L	0.02467	0.02210	462.4
Cr2677_A	286.0	ug/L	1.569	0.5487	4,247
Cu3273_A	418.8	ug/L	1.434	0.3425	5,779
Fe2599_R	249,200	ug/L	1,535	0.6160	479,100
K_7664_R	12,300	ug/L	10.99	0.08938	7,903
Li6707_R	199.4	ug/L	0.6918	0.3470	2,142
Mg2025_A	38,660	ug/L	145.3	0.3759	7,270
Mn2576_R	2,530	ug/L	1.857	0.07341	27,790
Mo2020_A	24.49	ug/L	0.5510	2.250	51.47
Na5895_R	43,480	ug/L	17.16	0.03947	82,940
Ni2316_A	277.4	ug/L	0.6692	0.2412	658.2
Pb2203_A	303.3	ug/L	0.4539	0.1497	332.2
Sb2068_A	9.143	ug/L	0.08404	0.9192	8.693
Se1960_A	7.088	ug/L	0.7602	10.72	4.830
Si2516_R	3,446	ug/L	9.868	0.2863	1,951
Sn1899_A	40.49	ug/L	0.5793	1.431	23.27
Sr4215_R	228.3	ug/L	0.05874	0.02573	17,840
Ti3349_A	2,559	ug/L	2.525	0.09866	82,500
Tl1908_A	-4.086	ug/L	1.181	28.91	-6.585
V_2924_A	328.7	ug/L	1.325	0.4031	5,272
Zn2062_A	1,518	ug/L	2.326	0.1532	4,957
Y_3600_R	24,097	Cts/S	52.792	0.21908	24,097
Y_2243_A	9,208.0	Cts/S	34.325	0.37277	9,208.0
Y_3600_A	249,620	Cts/S	1,662.1	0.66587	249,620

SE6616-005

Method Name:

Analyst Name: EAM

K6010-2011

Method Revision:

50

Analyst Name.	C/ (14)						
Acquire Date:	10/26/2011	6:11:44PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	. 1	Intensity Ratio
Ag3280_A		4.784	ug/L	0.3173	6.632		-538.4
Al3961_R	-	77,530	ug/L	327.8	0.4228		66,500
As1891_A		58.06	ug/L	0.3085	0.5314		8.876
Au2427_A	(0.4644	ug/L	1.224	263.6		125.4
B_2089_A		260.2	ug/L	1.039	0.3992		243.7
Ba4554_R		450.9	ug/L	1.973	0.4376		25,660
Be3130_R		4.667	ug/L	0.01866	0.3998		257.0
Ca3158_R	(97,320	ug/L	310.0	0.3186		151,000
Cd2265_A		7.632	ug/L	0.04796	0.6285		316.1
Co2286_A		44.66	ug/L	0.08827	0.1976		208.3
Cr2677_A		328.4	ug/L	1.091	0.3322		4,752
Cu3273_A		685.2	ug/L	3.350	0.4889		9,380
Fe2599_R	15	59,400	ug/L	356.7	0.2238		303,000
K_7664_R	2	21,030	ug/L	22.27	0.1059		13,350
Li6707_R		172.2	ug/L	0.06368	0.03698		1,828
Mg2025_A	4	11,620	ug/L	108.7	0.2611		7,720
Mn2576_R		1,487	ug/L	2.457	0.1652		16,150
Mo2020_A		16.27	ug/L	0.06562	0.4034		33.42

Published:

10/27/2011 8:52:03AM

Page 24 of 101

K6010-2011 Method Name:

EAM Analyst Name:

Allalyst Hallic.	-/ 1141						
Acquire Date:	10/26/2011	6:11:44PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895 R		80,260	ug/L	348.9	0.4346		151,400
Ni2316_A		227.0	ug/L	0.2324	0.1024		534.8
Pb2203 A		481.3	ug/L	0.7290	0.1515		521.0
Sb2068_A		4.968	ug/L	3.121	62.83		5.884
Se1960 A		8.010	ug/L	0.3059	3.819		4.605
Si2516 R		3,124	ug/L	19.67	0.6297		1,753
Sn1899 A		61.46	ug/L	0.5104	0.8305		34.18
Sr4215_R		557.1	ug/L	1.109	0.1990		43,150
Ti3349_A		3,614	ug/L	1.474	0.04079		114,100
TI1908 A		-2.101	ug/L	0.2538	12.08		-4.628
V_2924_A		289.5	ug/L	1.494	0.5162		4,542
Zn2062_A		1,774	ug/L	3.539	0.1995		5,714
Y 3600 R		23,825	Cts/S	151.19	0.63457		23,825
Y 2243 A	9	0.83.0	Cts/S	21.643	0.23829		9,083.0
Y_3600_A		44,310	Cts/S	121.11	0.049572		244,310

Method Revision:

Method Revision:

50

50

SE6616-006

K6010-2011 Method Name: Analyst Name:

EAM 10/26/2011 6:16:18PM

Acquire Date:	10/26/2011	6:16:1	8PM			Sample Type:	Unknown
Elem	Flags	Avg		Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.069		ug/L	0.5498	26.57	-1,169
Al3961_R	•	107,300		ug/L	239.9	0.2237	93,540
As1891_A		142.9		ug/L	3.200	2.239	28.66
Au2427_A		-1.996		ug/L	1.787	89.54	236.2
B_2089_A		150.1		ug/L	0.2393	0.1594	143.4
Ba4554_R		208.3		ug/L	0.1462	0.07017	12,110
Be3130_R		5.387		ug/L	0.04742	0.8803	344.3
Ca3158_R		28,570		ug/L	55.01	0.1925	45,040
Cd2265_A		5.355		ug/L	0.1837	3.431	471.3
Co2286_A		144.9		ug/L	0.4754	0.3281	598.0
Cr2677_A		279.2		ug/L	0.6149	0.2202	4,124
Cu3273_A		552.9		ug/L	1.520	0.2749	7,577
Fe2599_R	F 3	308,900		ug/L	2,552	0.8263	597,100
K_7664_R		16,520		ug/L	92.16	0.5579	10,670
Li6707_R		248.6		ug/L	0.4513	0.1815	2,685
Mg2025_A		47,460		ug/L	106.9	0.2252	8,905
Mn2576_R		3,082		ug/L	1.269	0.04118	34,040
Mo2020_A		24.15		ug/L	0.06681	0.2766	50.62
Na5895_R		57,520		ug/L	2.718	0.004726	110,300
Ni2316_A		324.6		ug/L	0.7290	0.2246	766.9
Pb2203_A		281.2		ug/L	1.012	0.3598	305.5
Sb2068_A		7.430		ug/L	0.2730	3.675	8.900
Se1960_A		7.637		ug/L	0.3535	4.628	5.274
Si2516_R		3,490		ug/L	22.49	0.6443	1,985
Sn1899_A		41.74		ug/L	0.8284	1.984	23.89
Sr4215_R		293.1		ug/L	0.8692	0.2966	23,050
Ti3349_A		3,443		ug/L	19.18	0.5571	110,100
TI1908_A		-4.314		ug/L	1.008	23.36	-7.573
V_2924_A		341.0		ug/L	0.6077	0.1782	5,438
Zn2062_A		1,348		ug/L	0.5605	0.04158	4,391
Y_3600_R		24,228		Cts/S	108.30	0.44699	24,228
Y_2243_A		9,186.4		Cts/S	5.0146	0.054587	9,186.4
Y_3600_A	2	247,560		Cts/S	141.92	0.057328	247,560

SE6616-007

50 Method Revision: K6010-2011 Method Name:

Page 25 of 101 10/27/2011 8:52:03AM Published:

Method Name: K6010-2011 Analyst Name: EAM

Analyst Name: EAM
Acquire Date: 10/26/2011 6:20:49PM Sample Type: Unknown

Acquire Date:	10/26/20	11 6:20:4	9РМ		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		3.818	ug/L	0.3062	8.022	-885.4
Al3961_R		64,920	ug/L	1,587	2.445	54,000
As1891_A		69.24	ug/L	0.5582	0.8062	6.998
Au2427_A		-3.006	ug/L	0.5551	18.47	167.8
B_2089_A		252.9	ug/L	0.7067	0.2795	231.1
Ba4554_R		672.3	ug/L	19.07	2.837	37,060
Be3130_R		3.874	ug/L	0.08913	2.301	208.1
Ca3158_R		278,400	ug/L	1,052	0.3777	418,900
Cd2265_A		4.494	ug/L	0.3163	7.038	373.1
Co2286_A		36.26	ug/L	0.5004	1.380	168.0
Cr2677_A		272.3	ug/L	5.166	1.897	3,887
Cu3273_A		710.9	ug/L	11.13	1.566	9,519
Fe2599_R	W	252,600	ug/L	4,631	1.833	465,800
K_7664_R		18,950	ug/L	528.9	2.790	11,670
Li6707_R		143.2	ug/L	3.214	2.245	1,474
Mg2025_A		41,820	ug/L	16.45	0.03934	7,561
Mn2576_R		1,556	ug/L	41.65	2.678	16,390
Mo2020_A		22.46	ug/L	0.02021	0.08999	45.35
Na5895_R		78,480	ug/L	1,545	1.968	143,500
Ni2316_A		147.6	ug/L	0.5020	0.3402	326.8
Pb2203_A		267.8	ug/L	0.4429	0.1654	284.2
Sb2068_A		3.537	ug/L	0.2132	6.028	6.281
Se1960_A		6.258	ug/L	0.5463	8.730	4.318
Si2516_R		3,098	ug/L	61.18	1.975	1,683
Sn1899_A		47.02	ug/L	0.06614	0.1407	25.78
Sr4215_R		1,218	ug/L	35.60	2.923	91,570
Ti3349_A		2,967	ug/L	63.78	2.150	91,900
TI1908_A		-0.5080	ug/L	0.3183	62.65	-3.735
V_2924_A		239.2	ug/L	3.461	1.447	3,704
Zn2062_A		2,285	ug/L	4.796	0.2099	7,173
Y_3600_R		23,102	Cts/S	151.22	0.65456	23,102
Y_2243_A		8,853.0	Cts/S	13.828	0.15619	8,853.0
Y_3600_A		239,880	Cts/S	2,730.1	1.1381	239,880

SE6616-008

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 6:25:27PM Sample Type: Unknown

Acquire Date:	10/26/201	1 6:25:2	7PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		14.23	ug/L	1.199	8.430	-602.8
Al3961_R		122,200	ug/L	765.3	0.6265	107,100
As1891_A		87.67	ug/L	1.553	1.771	14.69
Au2427_A		-1.134	ug/L	0.2276	20.06	174.6
B_2089_A		348.5	ug/L	3.746	1.075	328.3
Ba4554_R		413.6	ug/L	0.5003	0.1210	24,090
Be3130_R		7.537	ug/L	0.07848	1.041	458.9
Ca3158_R		87,400	ug/L	303.7	0.3475	138,700
Cd2265_A		16.85	ug/L	0.1417	0.8407	554.2
Co2286_A		68.08	ug/L	0.1627	0.2389	314.5
Cr2677_A		756.0	ug/L	9.720	1.286	11,010
Cu3273_A		1,275	ug/L	16.88	1.324	17,660
Fe2599_R		231,500	ug/L	6,136	2.650	450,200
K_7664_R		32,820	ug/L	100.6	0.3066	21,310
Li6707_R		257.7	ug/L	0.7923	0.3075	2,800
Mg2025_A		60,440	ug/L	474.1	0.7845	11,280
Mn2576_R		2,056	ug/L	10.64	0.5174	22,850
Mo2020_A		44.42	ug/L	0.5245	1.181	93.50

Published: 10/27/2011 8:52:03AM

50

Method Revision:

Method Revision:

Method Name: K6010-2011 Analyst Name:

EAM

Method Revision:

50

Acquire Date:	10/26/20	11 6:25:27	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		97,830	ug/L	166.1	0.1698	188,700
Ni2316 A		285.5	ug/L	1.647	0.5770	674.6
Pb2203_A		2,467	ug/L	11.07	0.4488	2,711
Sb2068 A		27.56	ug/L	0.3890	1.411	16.82
Se1960 A		9.261	ug/L	3.540	38.22	5.444
Si2516_R		2,719	ug/L	10.00	0.3678	1,560
Sn1899 A		137.3	ug/L	0.8896	0.6481	75.24
Sr4215 R		568.6	ug/L	1.592	0.2799	45,050
Ti3349 A		5,299	ug/L	61.03	1.152	168,800
Tl1908_A		-3.594	ug/L	0.3228	8.982	<i>-</i> 7.125
V 2924 A		601.5	ug/L	9.088	1.511	9,492
Zn2062 A		8,703	ug/L	51.68	0.5938	28,220
Y 3600 R		24,370	Cts/S	246.20	1.0102	24,370
Y 2243 A		9,141.7	Cts/S	31.876	0.34869	9,141.7
Y_3600_A		246,560	Cts/S	3,820.4	1.5495	246,560

SE6616-009

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/20	011 6:30:01	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		5.353	ug/L	0.048 12	0.8989	-435.0
Al3961 R		53,940	ug/L	195.6	0.3626	46,600
As1891_A		47.13	ug/L	0.7533	1.598	6.622
Au2427_A		-1.992	ug/L	0.3725	18.70	98.89
B 2089 A		102.2	ug/L	0.7090	0.6940	97.87
Ba4554_R		130.1	ug/L	0.02841	0.02184	7,527
Be3130_R		2.719	ug/L	0.006671	0.2454	154.6
Ca3158 R		13,720	ug/L	4.148	0.03023	21,400
Cd2265_A		5.847	ug/L	0.1042	1.781	260.4
Co2286_A		50.33	ug/L	0.09452	0.1878	217.5
Cr2677_A		227.2	ug/L	0.08657	0.03811	3,348
Cu3273_A		516.3	ug/L	3.173	0.6146	7,182
Fe2599_R		136,000	ug/L	32.85	0.02416	260,400
K_7664_R		10,780	ug/L	42.61	0.3954	6,899
Li6707_R		134.5	ug/L	0.6586	0.4895	1,438
Mg2025_A		26,900	ug/L	82.36	0.3062	
Mn2576_R		1,297	ug/L	0.4926	0.03799	
Mo2020_A		27.45	ug/L	0.2496	0.9094	57.34
Na5895_R		49,710	ug/L	104.7	0.2106	
Ni2316_A		156.9	ug/L	0.1968	0.1254	369.3
Pb2203_A		373.0	ug/L	0.4087	0.1096	407.0
Sb2068_A		13.78	ug/L	0.9330	6.772	
Se1960_A		1.292	ug/L	1.770	137.0	3.079
Si2516_R		2,455	ug/L	14.93	0.6081	1,389
Sn1899_A		56.47	ug/L	1.344	2.380	31.67
Sr4215_R		135.4	ug/L	0.3958	0.2924	10,510
Ti3349_A		2,033	ug/L	1.494	0.07348	65,190
TI1908_A		-0.9044	ug/L	1.568	173.4	-3.487
V_2924_A		302.1	ug/L	0.9210	0.3049	4,806
Zn2062_A		1,546	ug/L	0.01345	0.0008704	5,005
Y_3600_R		23,999	Cts/S	45.181	0.18826	23,999
Y_2243_A		9,130.5	Cts/S	8.0213	0.087852	9,130.5
Y_3600_A		248,350	Cts/S	1,128.2	0.45428	248,350
				-		

SE6616-010

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 27 of 101

Method Name: K6010-2011

10/26/2011 6:34:28PM

Method Revision: Analyst Name: EAM Unknown

Acquire Date:	10/26/2011	6:34:28	PM			Sample Type:	Unknown	
Elem	Flags	A vg	U	its	Stddev	%RSI)	Intensity Ratio
Ag3280_A		2.606	ι	g/L	1.035	39.69)	-497.2
Al3961_R	6	8,040	L	g/L	234.2	0.3442	2	59,090
As1891_A		55.05	ι	g/L	0.5485	0.9964	ļ	9.238
Au2427_A	-C	.3810	u	g/L	1.021	267.9)	106.1
B_2089_A		231.3	u	g/L	0.3228	0.1396	3	218.3
Ba4554_R		221.9	u	g/L	0.1595	0.0718	5	12,840
Be3130_R		4.071	u	g/L	0.05166	1.269)	226.2
Ca3158_R	4	3,840	u	g/L	56.72	0.1294	ļ	68,830
Cd2265_A		3.457	u	g/L	0.1330	3.846	3	223.8
Co2286_A		39.44	u	g/L	0.1181	0.2994	ļ	185.5
Cr2677_A		233.1	u	g/L	7.808	3.349)	3,350
Cu3273_A		323.3	u	g/L	11.61	3.592	2	4,344
Fe2599_R	13	6,600	u	g/L	1,642	1.202	2	262,900
K_7664_R	1	9,400	u	g/L	108.4	0.5587	•	12,480
Li6707_R		148.4	u	g/L	0.7890	0.5318	3	1,595
Mg2025_A	4	0,060	u	g/L	46.90	0.117		7,481
Mn2576_R		1,322	u	g/L	5.324	0.4027	,	14,540
Mo2020_A		10.09	u	g/L	0.1965	1.948	3	20.50
Na5895_R		3,580	u	g/L	111.4	0.1332	?	159,600
Ni2316_A		110.9	u	g/L	0.4073	0.3673	3	257.8
Pb2203_A		263.6	u	g/L	1.059	0.4018	3	284.9
Sb2068_A	-	1.145	u	g/L	1.711	149.4		3.008
Se1960_A		4.755	u	g/L	2.293	48.22	?	3.859
Si2516_R		2,661	u	g/L	3.597	0.1352	!	1,513
Sn1899_A		47.77	u	g/L	0.5348	1.120)	27.04
Sr4215_R		298.0	u	g/L	0.7337	0.2462	2	23,340
Ti3349_A		3,155	u	g/L	121.4	3.849)	98,700
Tl1908_A	-	1.893	u	g/L	0.6859	36.24	ļ	-4.152
V_2924_A		240.1	u	g/L	8.828	3.676	;	3,738
Zn2062_A		2,234	u	g/L	2.874	0.1287	•	7,245
Y_3600_R	2	4,123		s/S	68.315	0.28319	1	24,123
Y_2243_A	9,	145.9	Ct	s/S	19.358	0.21166	i	9,145.9
Y_3600_A	24	2,340	Ct	s/S	9,261.6	3.8217	•	242,340

SE6616-011

Method Name: K6010-2011

EAM Analyst Name:

10/26/2011 6:39:03PM

Acquire Date:	10/26/20)11 6:39:03F	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		4.815	ug/L	0.9753	20.25	-481 .9
Al3961_R		77,180	ug/L	916.4	1.187	65,660
As1891_A		91.25	ug/L	1.659	1.819	20.38
Au2427_A		-1.787	ug/L	0.5143	28.79	110.2
B_2089_A		611.7	ug/L	2.459	0.4020	561.9
Ba4554_R		270.0	ug/L	0.009206	0.003410	15,280
Be3130_R		4.172	ug/L	0.04950	1.186	214.6
Ca3158_R		152,100	ug/L	250.7	0.1648	234,000
Cd2265_A		4.309	ug/L	0.4370	10.14	243.1
Co2286_A		41.12	ug/L	0.3198	0.7777	190.7
Cr2677_A		258.0	ug/L	0.5654	0.2191	3,718
Cu3273_A		616.2	ug/L	2.430	0.3943	8,386
Fe2599_R		145,300	ug/L	4,371	3.008	274,000
K_7664_R		18,760	ug/L	101.3	0.5401	11,810
Li6707_R		147.4	ug/L	1.497	1.016	1,551
Mg2025_A		134,800	ug/L	322.7	0.2395	24,670
Mn2576_R		1,738	ug/L	3.142	0.1808	18,720
Mo2020_A		10.64	ug/L	0.06656	0.6256	21.21

10/27/2011 8:52:03AM Published:

50

Method Revision:

Method Name:

K6010-2011

EAM

Analyst Name:

Method Revision:

50

Acquire Date:	10/26/2011	6:39:03	BPM			Sample Type:	Unknown	
Elem	Flags	A vg	Ur	iits	Stddev	%RSD		Intensity Ratio
Na5895_R	-	87,990	u	g/L	241.8	0.2748		164,600
Ni2316 A		137.1	u	g/L	0.1768	0.1289		314.4
Pb2203 A		439.9	u	g/L	1.219	0.2770		468.8
Sb2068 A		5.226	u	g/L	0.1330	2.545		5.516
Se1960 A		4.552	u	g/L	2.927	64.31		3.851
Si2516 R		2,455	u	g/L	26.94	1.097		1,368
Sn1899 A		47.85	u	g/L	0.1010	0.2110		26.53
Sr4215 R		760.3	u	g/L	2.384	0.3136		58,430
Ti3349 A		3,469	u	g/L	3.311	0.09547		108,800
TI1908_A		-2.682	U	g/L	1.438	53.61		-5.103
V 2924 A		322.5	U	g/L	1.341	0.4157		5,028
Zn2062 A		1,431	u	g/L	3.583	0.2505		4,545
Y 3600 R		23,629	Ct	s/S	22.491	0.095183		23,629
Y 2243 A		8,958.7	Ct	s/S	30.670	0.34235		8,958.7
Y_3600_A	2	242,950	Ct	s/S	369.34	0.15203		242,950

SE6616-012

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/20	11 6:43:36	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		8.448	ug/L	0.9018	10.67	-787.4
Al3961 R		97,010	ug/L	157.9	0.1628	86,250
As1891_A		88.25	ug/L	1.132	1.283	14.11
Au2427_A		-0.4519	ug/L	0.3942	87.24	194.9
B 2089 A		218.5	ug/L	1.049	0.4803	208.8
Ba4554 R		193.3	ug/L	0.5076	0.2626	11,460
Be3130 R		4.960	ug/L	0.01682	0.3391	316.2
Ca3158_R		25,280	ug/L	9.183	0.03633	40,610
Cd2265_A		11.47	ug/L	0.02802	0.2444	492.0
Co2286_A		104.4	ug/L	0.2336	0.2239	441.7
Cr2677_A		423.1	ug/L	2.051	0.4848	6,247
Cu3273_A		948.6	ug/L	6.172	0.6507	13,240
Fe2599 R		246,200	ug/L	117.9	0.04790	485,200
K_7664_R		17,930	ug/L	63.74	0.3556	11,800
Li6707_R		231.5	ug/L	1.992	0.8604	2,549
Mg2025_A		46,840	ug/L	83.86	0.1790	8,828
Mn2576_R		2,531	ug/L	3.887	0.1535	28,500
Mo2020 A		36.43	ug/L	0.1295	0.3554	77.19
Na5895_R		64,070	ug/L	55.98	0.08737	125,300
Ni2316_A		283.6	ug/L	0.05303	0.01870	675.2
Pb2203_A		933.5	ug/L	3.144	0.3368	1,033
Sb2068 A		40.08	ug/L	2.336	5.828	20.95
Se1960_A		8.099	ug/L	0.9122	11.26	5.141
Si2516_R		2,309	ug/L	4.100	0.1776	1,342
Sn1899_A		157.8	ug/L	2.241	1.420	87.12
Sr4215_R		265.8	ug/L	0.1338	0.05035	21,300
Ti3349_A		3,315	ug/L	14.82	0.4471	106,600
TI1908_A		-3.540	ug/L	0.4563	12.89	-7.036
V 2924 A		551.3	ug/L	2.918	0.5293	8,795
Zn2062_A		2,833	ug/L	6.061	0.2140	9,272
Y_3600_R		24,698	Cts/S	16.494	0.066782	24,698
Y_2243_A		9,230.5	Cts/S	34.609	0.37494	9,230.5
Y_3600_A		249,010	Cts/S	1,752.3	0.70372	249,010

CCV

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 29 of 101

CCV

K6010-2011 Method Name:

Method Revision: 50 Analyst Name: EAM 10/26/2011 6:48:11PM

Acquire Date:	10/26/20	011 6:48:11	PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		504.9	ug/L	0.06795	0.01346	11,840
Al3961_R		12,790	ug/L	55.69	0.4354	11,000
As1891_A		501.9	ug/L	2.833	0.5644	165.9
Au2427_A		502.2	ug/L	4.790	0.9538	1,909
B_2089_A		496.0	ug/L	0.3919	0.07900	476.4
Ba4554_R		493.9	ug/L	0.5194	0.1052	28,080
Be3130_R		506.0	ug/L	1.419	0.2804	50,160
Ca3158_R		12,370	ug/L	4.780	0.03865	19,140
Cd2265_A		493.1	ug/L	0.008886	0.001802	7,831
Co2286_A		504.5	ug/L	0.8275	0.1640	1,950
Cr2677_A		492.8	ug/L	0.7316	0.1485	7,215
Cu3273_A		498.4	ug/L	0.4223	0.08474	7,010
Fe2599_R		12,460	ug/L	61.45	0.4930	23,690
K_7664_R		12,230	ug/L	41.36	0.3382	7,767
Li6707_R		506.2	ug/L	0.2101	0.04150	5,377
Mg2025_A		12,660	ug/L	5.865	0.04633	2,367
Mn2576_R		496.4	ug/L	2.449	0.4933	5,390
Mo2020_A		492.5	ug/L	2.782	0.5649	1,049
Na5895_R	W	11,570	ug/L	3.648	0.03152	21,840
Ni2316_A		503.5	ug/L	0.02407	0.004780	1,227
Pb2203_A		501.0	ug/L	1.657	0.3307	552.1
Sb2068_A		477.9	ug/L	11.33	2.370	184.6
Se1960_A		493.0	ug/L	1.265	0.2565	98.76
Si2516_R		12,490	ug/L	49.14	0.3935	6,987
Sn1899_A		501.9	ug/L	1.335	0.2660	272.4
Sr4215_R		500.1	ug/L	0.5307	0.1061	38,700
Ti3349_A		494.5	ug/L	1.083	0.2190	15,850
TI1908_A		500.7	ug/L	0.003527	0.0007044	223.7
V_2924_A		509.1	ug/L	0.2894	0.05685	8,012
Zn2062_A		500.6	ug/L	0.6596	0.1318	1,626
Y_3600_R		23,812	Cts/S	206.80	0.86846	23,812
Y_2243_A		9,164.4	Cts/S	1.8870	0.020591	9,164.4
Y_3600_A		248,500	Cts/S	502.27	0.20212	248,500

CCB

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

Acquire Date:	10/26/201	1 6:52:39	PM				Sample Type:	QC		
Elem	Flags	A vg	เ	Jnits	Stdo	lev	%RSD)	Intensity	Ratio
Ag3280_A		0.1287		ug/L	0.097	'97	76.13	1	-	33.41
Al3961_R		-4.601		ug/L	1.4	39	31.28	}		16.13
As1891_A	0.	.008006		ug/L	0.49	82	6,222	<u> </u>	-	1.235
Au2427_A		-0.6243		ug/L	0.31	43	50.34		-	1.462
B_2089_A		1.001		ug/L	0.43	65	43.61			3.050
Ba4554_R	(0.07120		ug/L	0.11	91	167.2	!		100.1
Be3130_R		0.1365		ug/L	0.020	26	14.84			10.13
Ca3158_R		2.197		ug/L	5.7	43	261.4		_	38.26
Cd2265_A	(0.01368		ug/L	0.046	10	336.9)	-	1.475
Co2286_A	-0.	.004858		ug/L	0.076	93	1,584			5.746
Cr2677_A		0.2420		ug/L	0.061	59	25.45	!		8.305
Cu3273_A	(0.03485		ug/L	0.17	09	490.3		-	3.025
Fe2599_R		4.449		ug/L	0.39	16	8.801			11.75
K_7664_R		-0.2012		ug/L	20	39	10,130			9.828
Li6707_R		3.567		ug/L	0.44	91	12.59			34.79
Mg2025_A		0.9650		ug/L	0.47	65	49.38		-	2.933
Mn2576_R	-(0.04897		ug/L	0.16	51	337.1			5.299
Mo2020_A		1.994		ug/L	0.28	33	14.21			3.348

Published: 10/27/2011 8:52:03AM Page 30 of 101

CCB

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

50

Acquire Date:	10/26/2011	6:52:39	PM			Sample Type:	QC	
Elem	Flags	Avg	l	Jnits	Stddev	%RSD		Intensity Ratio
Na5895_R		36.48		ug/L	13.74	37.68		97.38
Ni2316_A		0.3478		ug/L	0.3517	101.1		0.03557
Pb2203_A		0.7073		ug/L	0.2818	39.84		0.3102
Sb2068_A		0.7719		ug/L	0.07788	10.09		1.024
Se1960 A		0.7206		ug/L	0.9914	137.6		2.153
Si2516_R		1.280		ug/L	9.141	714.2		11.32
Sn1899_A		0.8183		ug/L	0.3690	45.10		1.741
Sr4215_R		0.2151		ug/L	0.08785	40.85		-53.29
Ti3349 A		0.2845		ug/L	0.01179	4.144		-27.70
TI1908_A		0.1038		ug/L	0.2509	241.6		-0.3255
V 2924 A		0.3054		ug/L	0.1493	48.90		2.609
Zn2062_A	-	0.1134		ug/L	0.09254	81.58		0.1638
Y 3600 R		23,522	(Cts/S	310.56	1.3203		23,522
Y 2243_A	9	9,207.1	(Cts/S	34.356	0.37315		9,207.1
Y_3600_A	2	50,600	(Cts/S	3,830.2	1.5284		250,600

SE6616-013

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Acquire Date:	10/26/2	011 6:57:1	5PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		3.755	ug/L	0.2206	5.876	-498.8
Al3961 R		59,990	ug/L	56.09	0.09350	51,580
As1891_A		57.39	ug/L	0.5358	0.9336	9.321
Au2427_A		-1.510	ug/L	0.6197	41.06	104.9
B 2089_A		162.1	ug/L	0.9636	0.5945	150.4
Ba4554_R		157.1	ug/L	0.2669	0.1698	9,030
Be3130_R		3.315	ug/L	0.07923	2.390	188.9
Ca3158_R		255,600	ug/L	5,376	2.103	397,500
Cd2265_A		3.583	ug/L	0.01163	0.3245	231.4
Co2286_A		46.72	ug/L	0.2282	0.4885	203.2
Cr2677_A		227.8	ug/L	2.022	0.8876	3,285
Cu3273_A		386.1	ug/L	2.126	0.5507	5,223
Fe2599_R		145,100	ug/L	1,341	0.9245	276,500
K_7664_R		13,590	ug/L	9.654	0.07106	8,652
Li6707_R		140.7	ug/L	0.9805	0.6967	1,497
Mg2025_A		32,980	ug/L	105.0	0.3182	6,029
Mn2576_R		1,326	ug/L	0.3714	0.02802	14,440
Mo2020_A		10.70	ug/L	0.2168	2.025	21.35
Na5895_R		49,020	ug/L	42.74	0.08718	92,690
Ni2316_A		130.1	ug/L	0.7238	0.5562	297.5
Pb2203_A		355.9	ug/L	0.5388	0.1514	380.0
Sb2068_A		3.661	ug/L	1.305	35.65	4.806
Se1960_A		2.726	ug/L	1.573	57.70	3.354
Si2516_R		2,281	ug/L	1.830	0.08024	1,285
Sn1899_A		43.01	ug/L	1.104	2.567	23.95
Sr4215_R		842.9	ug/L	1.077	0.1278	65,480
Ti3349_A		2,449	ug/L	12.29	0.5017	76,820
TI1908_A		-1.839	ug/L	0.4856	26.40	-3.831
V_2924_A		229.2	ug/L	1.030	0.4495	3,577
Zn2062_A		979.6	ug/L	1.892	0.1931	3,110
Y_3600_R		23,883	Cts/S	334.48	1.4005	23,883
Y 2243_A		8,951.0	Cts/S	23.772	0.26558	8,951.0
Y_3600_A		242,910	Cts/S	2,810.6	1.1571	242,910

SE6616-013L

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 31 of 101

SE6616-013L

Method Name: Analyst Name:

K6010-2011

EAM

12.95

1,048

23,301

9,166.1

247,840

50,820

ug/L

ug/L

ug/L

Cts/S

Cts/S

Cts/S

Method Revision:

50

Allary of Harrie.	-,						
Acquire Date:	10/26/2011 7	:01:55PM			Sample Type:	Unknown	
Elem	Flags	Avg -	Units	Stddev	%RSD	Ir	ntensity Ratio
Ag3280_A	4.	184	ug/L	1.770	42.30		-135.8
Al3961_R	62,	820	ug/L	141.3	0.2250		10,550
As1891_A	59	9.05	ug/L	9.688	16.41		0.9259
Au2427_A	-0.3	637	ug/L	2.372	652.3		24.51
B_2089_A	17	71.6	ug/L	1.605	0.9353		34.24
Ba4554_R	16	52.7	ug/L	1.267	0.7786		1,899
Be3130_R	3.	623	ug/L	0.02619	0.7228		39.88
Ca3158_R	269,	800	ug/L	28.17	0.01044		81,850
Cd2265_A	2.	965	ug/L	0.1549	5.223		46.44
Co2286_A	50	0.26	ug/L	1.235	2.457	•	49.02
Cr2677_A	24	11.4	ug/L	2.339	0.9692		713.9
Cu3273_A	39	98.2	ug/L	2.182	0.5480		1,096
Fe2599_R	154,	500	ug/L	17.86	0.01156		57,460
K_7664_R	14,	230	ug/L	168.8	1.186		1,776
Li6707_R	16	54.7	ug/L	0.04188	0.02542		340.0
Mg2025_A	35,	390	ug/L	57.76	0.1632		1,322
Mn2576_R	1,	408	ug/L	3.286	0.2334		2,996

Ni2316_A 1.513 137.3 ug/L 1.102 63.61 Pb2203_A 387.9 ug/L 0.2948 0.07599 84.50 Sb2068_A -4.023 ug/L 0.04342 1.079 1.011 Se1960_A 7.275 539.1 1.350 ug/L 2.245 Si2516_R 2,367 1.315 0.05557 268.4 ug/L Sn1899 A 49.73 2.351 4.728 6.664 ug/L Sr4215_R 880.2 ug/L 0.4251 0.04830 13,290 Ti3349_A 2,489 ug/L 5.649 0.2270 15,900 TI1908_A 2.552 ug/L 3.945 154.6 -0.7122 V_2924_A 239.8 ug/L 1.590 0.6628 762.0

1.294

188.6

0.1788

251.00

41.917

1,136.2

SE6616-013A

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

Mo2020_A

Na5895_R

Method Name: K6010-2011 Method Revision:

9.997

0.3711

0.01706

0.45730

0.45846

1.0772

50

4.593

18,770

681.5

23,301

9,166.1

247,840

Analyst Name:	EAM						
Acquire Date:	10/26/2011	7:06:24PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity R	atio
Ag3280_A		497.1	ug/L	5.162	1.038	10,	860
Al3961_R	1	69,600	ug/L	319.7	0.4593	59,	460
As1891_A		536.4	ug/L	4.084	0.7614	16	35.4
Au2427_A		-1.225	ug/L	0.8667	70.75	11	12.2
B_2089_A		627.4	ug/L	0.05825	0.009285	58	34.5
Ba4554_R		627.0	ug/L	3.413	0.5444	35,	490
Be3130_R		499.7	ug/L	3.142	0.6287	49,	220
Ca3158_R	2	45,400	ug/L	10,240	4.173	379,	100
Cd2265_A		458.9	ug/L	1.302	0.2836	7,	277
Co2286_A		511.8	ug/L	3.098	0.6053	1,	951
Cr2677_A		684.7	ug/L	6.467	0.9446	9,	794
Cu3273_A		856.8	ug/L	7.133	0.8325	11,	670
Fe2599_R	14	48,100	ug/L	3,795	2.562	280,	400
K_7664_R	:	22,790	ug/L	7.899	0.03467	14,	410
Li6707_R		615.8	ug/L	1.005	0.1633	6,	517
Mg2025_A	;	37,400	ug/L	123.6	0.3304	6,	828
Mn2576_R		1,781	ug/L	6.575	0.3691	19,	260
Mo2020_A		482.9	ug/L	4.355	0.9017	1,	004

Published: 10/27/2011 8:52:03AM Page 32 of 101

SE6616-013A

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

/ indigot realing.						
Acquire Date:	10/26/20	11 7:06:24F	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		53,180	ug/L	174.2	0.3275	99,870
Ni2316_A		584.8	ug/L	3.699	0.6324	1,379
Pb2203 A		804.1	ug/L	3.696	0.4596	861.8
Sb2068_A		486.6	ug/L	0.6453	0.1326	185.8
Se1960_A		480.6	ug/L	4.471	0.9302	94.80
Si2516 R		2,483	ug/L	8.212	0.3307	1,392
Sn1899 A		531.7	ug/L	1.989	0.3741	281.4
Sr4215 R		1,298	ug/L	6.040	0.4654	100,200
Ti3349 A		2,870	ug/L	34.13	1.189	89,820
TI1908 A		446.1	ug/L	0.9041	0.2026	191.7
V 2924 A		709.0	ug/L	7.384	1.042	10,930
Zn2062 A		1,420	ug/L	10.85	0.7641	4,499
Y 3600 R		23,721	Cts/S	173.67	0.73217	23,721
Y 2243 A		8,940.2	Cts/S	55.703	0.62306	8,940.2
Y_3600_A		242,310	Cts/S	1,130.8	0.46666	242,310

SE6616-013D

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/20	011 7:10:59F	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280 A		4.150	ug/L	0.03368	0.8117	-545.7
Al3961 R		63,540	ug/L	65.54	0.1032	54,670
As1891_A		59.74	ug/L	0.4872	0.8156	9.524
Au2427_A		-2.318	ug/L	0.3983	17.18	112.1
B_2089_A		176.2	ug/L	0.2450	0.1390	165.8
Ba4554 R		167.8	ug/L	0.3493	0.2081	9,643
Be3130_R		3.598	ug/L	0.00006901	0.001918	204.8
Ca3158_R		68,920	ug/L	85.13	0.1235	107,200
Cd2265_A		3.345	ug/L	0.1272	3.804	246.4
Co2286 A		49.05	ug/L	0.05308	0.1082	217.1
Cr2677_A		219.6	ug/L	1.698	0.7733	3,223
Cu3273_A		596.6	ug/L	1.052	0.1764	8,252
Fe2599 R		157,400	ug/L	1,167	0.7414	300,200
K_7664_R		14,510	ug/L	12.65	0.08713	9,248
Li6707_R		148.0	ug/L	1.930	1.304	1,576
Mg2025_A		34,800	ug/L	58.36	0.1677	6,456
Mn2576 R		1,386	ug/L	3.733	0.2694	15,100
Mo2020 A		13.41	ug/L	0.2917	2.175	27.40
Na5895_R		46,350	ug/L	78.64	0.1697	87,700
Ni2316_A		137.6	ug/L	0.1436	0.1044	318.9
Pb2203 A		305.4	ug/L	0.5108	0.1672	330.3
Sb2068 A		2.849	ug/L	0.08721	3.061	4.726
Se1960 A		6.354	ug/L	0.4466	7.028	4.171
Si2516 R		2,865	ug/L	21.17	0.7390	1,613
Sn1899 A		44.01	ug/L	0.3369	0.7655	24.84
Sr4215_R		329.9	ug/L	0.4281	0.1298	25,600
Ti3349 A		2,668	ug/L	1.194	0.04474	85,130
TI1908_A		-0.6668	ug/L	0.01612	2.417	-3.498
V 2924 A		233.1	ug/L	0.2167	0.09298	3,702
Zn2062_A		1,195	ug/L	0.1050	0.008792	3,849
Y_3600_R		23,901	Cts/S	115.59	0.48360	23,901
Y_2243_A		9,084.8	Cts/S	38.167	0.42012	9,084.8
Y_3600_A		247,030	Cts/S	953.76	0.38608	247,030

SE6616-013S

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 33 of 101

SE6616-013S

Method Name: K6010-2011

EAM Analyst Name:

Acquire Date: 10/26/2011 7:15:34PM Sample Type: Unknown

Ag3280_A 54.22 ug/L 0.9785 1.805 6 Al3961_R 77,260 ug/L 384.0 0.4970 67 As1891_A 154.1 ug/L 0.8727 0.5662 2 Au2427_A -0.6697 ug/L 0.9429 140.8 1 B_2089_A 628.6 ug/L 3.255 0.5178 5 Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 5 Ca3158_R 56,110 ug/L 115.3 0.2054 86 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283			Unknown	Sample Type:			011 7:15:34PM	re Date: 10/26/201	Acquire Date
A3961_R 77,260 ug/L 384.0 0.4970 67 As1891_A 154.1 ug/L 0.8727 0.5662 2 Au2427_A -0.6697 ug/L 0.9429 140.8 1 B_2089_A 628.6 ug/L 3.255 0.5178 5 Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 5 Ca3158_R 56,110 ug/L 115.3 0.2054 88 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 6 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6	/ Ratio	Intensity R		%RSD	Stddev	Units	A∨g	Flags	Elem
As1891_A 154.1 ug/L 0.8727 0.5662 4 Au2427_A -0.6697 ug/L 0.9429 140.8 1 B_2089_A 628.6 ug/L 3.255 0.5178 5 Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 5 Ca3158_R 56,110 ug/L 115.3 0.2054 88 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 6 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 13.83 0.7679 19	661.2	6		1.805	0.9785	ug/L	54.22	30_A	Ag3280_A
Au2427_A -0.6697 ug/L 0.9429 140.8 1 B_2089_A 628.6 ug/L 3.255 0.5178 5 Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 5 Ca3158_R 56,110 ug/L 115.3 0.2054 88 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 6 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	67,060	67		0.4970	384.0	ug/L	77,260		
B_2089_A 628.6 ug/L 3.255 0.5178 5 Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 5 Ca3158_R 56,110 ug/L 115.3 0.2054 86 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 6 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19	41.62	4		0.5662	0.8727	ug/L	154.1		
Ba4554_R 2,185 ug/L 1.220 0.05581 125 Be3130_R 55.32 ug/L 0.06370 0.1152 55 Ca3158_R 56,110 ug/L 115.3 0.2054 85 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 6 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	116.4	1		140.8	0.9429	ug/L	-0.6697	27_A	Au2427_A
Be3130_R 55.32 ug/L 0.06370 0.1152 55 Ca3158_R 56,110 ug/L 115.3 0.2054 88 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	593.8	5		0.5178	3.255	ug/L	628.6		
Ca3158_R 56,110 ug/L 115.3 0.2054 88 Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	25,500	125		0.05581	1.220	ug/L	2,185		
Cd2265_A 240.2 ug/L 1.697 0.7063 3 Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	5,367	5		0.1152	0.06370	ug/L	55.32	80_R	Be3130_R
Co2286_A 533.2 ug/L 2.678 0.5022 2 Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	88,050	88		0.2054	115.3	ug/L	56,110		
Cr2677_A 415.5 ug/L 0.6752 0.1625 6 Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	3,974	3		0.7063	1.697	ug/L	240.2	65_A	Cd2265_A
Cu3273_A 582.2 ug/L 1.506 0.2587 8 Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	2,077	2		0.5022	2.678	ug/L	533.2		
Fe2599_R 147,400 ug/L 2,714 1.842 283 K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	6,047	6		0.1625	0.6752	ug/L	415.5	7_A	Cr2677_A
K_7664_R 25,830 ug/L 155.4 0.6015 16 Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	8,021	8		0.2587	1.506	ug/L	582.2		
Li6707_R 621.5 ug/L 1.658 0.2669 6 Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	83,500	283		1.842		ug/L	147,400	9_R	Fe2599_R
Mg2025_A 37,930 ug/L 213.1 0.5617 7 Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018 6	16,600	16		0.6015	155.4	ug/L		_	
Mn2576_R 1,801 ug/L 13.83 0.7679 19 Mo2020_A 293.1 ug/L 2.057 0.7018	6,684	6		0.2669		ug/L		_	_
Mo2020_A 293.1 ug/L 2.057 0.7018	7,068	7.		0.5617		ug/L	37,930		
_	19,790	19				ug/L	•		
Na5895_R 57,710 ug/L 58.74 0.1018 110	621.2	6:		0.7018	2.057	ug/L	293.1		
	10,100	110		0.1018	58.74	ug/L	57,710		
Ni2316_A 611.5 ug/L 3.737 0.6110 1	1,472	1,		0.6110	3.737	ug/L	611.5	6_A	Ni2316_A
	393.9	3			0.5205	ug/L		3_A	Pb2203_A
	24.63	24		0.3362	0.1849	ug/L		_	_
Se1960_A 99.61 ug/L 4.417 4.434 2	22.49	2:		4.434	4.417	ug/L	99.61	60_A	Se1960_A
Si2516_R 3,793 ug/L 9.301 0.2452 2	2,154	2,		0.2452	9.301	ug/L	3,793	6_R	Si2516_R
	269.7	20		0.4471	2.231	ug/L	499.0		
Sr4215_R 786.9 ug/L 1.738 0.2209 61	61,700	61,		0.2209	1.738	ug/L	786.9	5_R	Sr4215_R
	05,500	105,		0.02740	0.9091		3,319		
	36.49	30		1.368	1.253	ug/L			
	11,460	11,		0.1653					
	4,560	4,		0.5378	7.579	ug/L	•		
	24,107			1.1071	266.88	Cts/S	24,107	0_R	Y_3600_R
	,125.5			0.28907	26.379	Cts/S	9,125.5		
Y_3600_A 246,070 Cts/S 333.32 0.13546 246	46,070	246,		0.13546	333.32	Cts/S	246,070	0_A :	Y_3600_A

SE6616-014

Method Name: K6010-2011

Analyst Name: EAM Method Revision:

Method Revision:

50

50

Analyst Name.						
Acquire Date:	10/26/201	1 7:20:06PN	M		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.9288	ug/L	0.1670	17.98	-833.1
Al3961_R		51,550	ug/L	85.19	0.1653	44,440
As1891_A		63.44	ug/L	2.935	4.627	7.576
Au2427_A		-1.198	ug/L	0.02845	2.375	160.1
B_2089_A		51.18	ug/L	0.3946	0.7709	50.43
Ba4554_R		49.80	ug/L	0.3695	0.7420	2,935
Be3130_R		2.325	ug/L	0.01306	0.5617	157.9
Ca3158_R		6,838	ug/L	24.47	0.3579	10,620
Cd2265_A		1.593	ug/L	0.1033	6.487	293.6
Co2286_A		96.15	ug/L	0.2639	0.2744	391.9
Cr2677_A		102.6	ug/L	0.2575	0.2509	1,549
Cu3273_A		200.4	ug/L	0.3545	0.1769	2,720
Fe2599_R		214,000	ug/L	2,888	1.350	408,800
K_7664_R		5,233	ug/L	38.33	0.7325	3,347
Li6707_R		144.9	ug/L	0.9267	0.6396	1,545
Mg2025_A		23,730	ug/L	10.13	0.04270	4,471
Mn2576_R		1,801	ug/L	7.528	0.4179	19,670
Mo2020_A		6.297	ug/L	0.04094	0.6502	12.56

Published:

10/27/2011 8:52:03AM

Page 34 of 101

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 7:20:06PM Acquire Date:

50 Method Revision:

Unknown Sample Type: %RSD **Intensity Ratio** Stddev Elem Units Flags Avg 0.5205 55,000 151.0 Na5895_R 29,010 ug/L 0.2276 441.4 0.4265 187.4 ug/L Ni2316_A 92.30 1.017 ug/L 0.8544 Pb2203_A 84.03 7.590 8.386 ug/L 0.8388 Sb2068_A 11.05 18.16 3.805 0.6847 Se1960_A 3.771 ug/L 1.039 1,393 25.71 2,474 ug/L Si2516 R 5.351 9.804 0.8369 ug/L Sn1899_A 15.64 0.09638 9,036 ug/L 0.1126 Sr4215 R 116.8 40,610 ug/L 1.244 0.09884 Ti3349_A 1,259 -4.820 0.5510 15.06 -3.659 ug/L TI1908_A ug/L 0.1533 0.1094 2,269 V_2924_A 140.1 0.5207 0.09873 1,726 527.3 ug/L Zn2062_A 23,942 23,942 Cts/S 136.51 0.57015 Y_3600_R 9,226.3 Cts/S 3.9814 0.043153 Y_2243_A 9,226.3 249,910 0.073337 Y_3600_A 249,910 Cts/S 183.27

SE6616-015

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Acquire Date:	10/26/2011	7:24:4	1PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-0.1360	ug/L	1.853	1,363	-944.1
Al3961 R		76,290	ug/L	278.7	0.3653	65,970
As1891_A		58.04	ug/L	1.649	2.842	4.419
Au2427_A		-1.042	ug/L	2.540	243.7	178.0
B 2089 A		43.99	ug/L	0.9825	2.233	43.55
Ba4554_R		53.53	ug/L	0.4963	0.9272	3,159
Be3130_R		2.571	ug/L	0.01905	0.7410	183.0
Ca3158_R		9,460	ug/L	41.66	0.4403	14,760
Cd2265_A		1.528	ug/L	0.6581	43.06	
Co2286_A		102.8	ug/L	0.4850	0.4716	
Cr2677_A		122.1	ug/L	0.9796	0.8024	1,837
Cu3273_A		153.5	ug/L	0.2292	0.1493	
Fe2599_R	:	236,800	ug/L	7,203	3.041	454,000
K_7664_R		4,828	ug/L	55.42	1.148	
Li6707_R		193.3	ug/L	1.026	0.5309	
Mg2025_A		31,550	ug/L	217.3	0.6887	
Mn2576_R		1,984	ug/L	16.51	0.8324	
Mo2020_A		4.178	ug/L	0.04502	1.077	
Na5895_R		29,990	ug/L	33.94	0.1132	
Ni2316_A		210.1	ug/L	0.8634	0.4110	
Pb2203 A		64.53	ug/L	0.6669	1.034	
Sb2068 A		-1.025	ug/L	2.312	225.6	
Se1960_A		1.791	ug/L	0.7736	43.20	
Si2516_R		2,840	ug/L	24.67	0.8687	
Sn1899_A		13.97	ug/L	0.5866	4.199	
Sr4215 R		120.6	ug/L	0.1460	0.1211	9,361
Ti3349 A		1,263	ug/L	0.5152	0.04081	40,690
TI1908_A		-4.444	ug/L	0.1146	2.579	
V_2924_A		164.3	ug/L	0.8109	0.4936	
Zn2062_A		510.3	ug/L	1.996	0.3911	1,667
Y_3600_R		24,023	Cts/S	327.10	1.3616	
Y_2243_A		9,213.1	Cts/S	43.104	0.46786	
Y_3600_A		249,640	Cts/S	149.14	0.059742	249,640

SE6616-016

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 35 of 101

Method Name: K6010-2011 Analyst Name: EAM

Method Revision: 50

Acquire Date:	10/26/20	11 7:29:1	5PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		8.657	ug/L	0.3938	4.549	-872.7
Al3961_R		104,200	ug/L	327.2	0.3141	92,380
As1891_A		108.3	ug/L	1.733	1.600	19.36
Au2427_A		-1.287	ug/L	2.163	168.1	203.3
B_2089_A		277.8	ug/L	1.914	0.6892	262.1
Ba4554_R		308.8	ug/L	0.1472	0.04766	18,210
Be3130_R		5.953	ug/L	0.009251	0.1554	371.9
Ca3158_R		74,960	ug/L	17.96	0.02397	120,200
Cd2265_A		36.55	ug/L	0.3084	0.8438	912.6
Co2286_A		102.9	ug/L	0.1193	0.1159	438.3
Cr2677_A		1,186	ug/L	4.683	0.3950	17,280
Cu3273_A		1,347	ug/L	6.397	0.4749	18,700
Fe2599_R	W	270,500	ug/L	3,032	1.121	531,800
K_7664_R		24,650	ug/L	8.070	0.03273	16,190
Li6707_R		234.6	ug/L	1.664	0.7094	2,577
Mg2025_A		57,470	ug/L	118.6	0.2064	10,700
Mn2576_R		2,410	ug/L	5.513	0.2287	27,070
Mo2020_A		58.61	ug/L	0.1746	0.2979	123.4
Na5895_R		88,100	ug/L	30.92	0.03509	171,800
Ni2316_A		483.4	ug/L	0.6852	0.1417	1,151
Pb2203_A		7,564	ug/L	23.76	0.3142	8,324
Sb2068_A		163.9	ug/L	0.6489	0.3959	70.29
Se1960_A		9.876	ug/L	2.372	24.02	5.571
Si2516_R		2,549	ug/L	9.523	0.3736	1,477
Sn1899_A		146.7	ug/L	0.1343	0.09155	80.18
Sr4215_R		622.7	ug/L	0.02577	0.004138	49,880
Ti3349_A		4,138	ug/L	16.93	0.4091	132,000
TI1908_A		-1.370	ug/L	1.234	90.12	-6.883
V_2924_A		901.3	ug/L	3.663	0.4064	14,210
Zn2062_A		15,560	ug/L	12.95	0.08322	50,350
Y_3600_R		24,637	Cts/S	93.009	0.37752	24,637
Y_2243_A		9,125.4	Cts/S	33.158	0.36336	9,125.4
Y_3600_A		247,000	Cts/S	1,305.9	0.52869	247,000

SE6616-017

Method Name: K6010-2011

EAM Analyst Name:

10/26/2011 7:33:49PM

Acquire Date:	10/26/20	011 7:33:491	PM		Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Ag3280_A		2.293	ug/L	1.415	61.73	-938.9	
Al3961_R		79,810	ug/L	205.7	0.2577	70,620	
As1891_A		100.9	ug/L	2.256	2.237	18.23	
Au2427_A		-1.251	ug/L	2.318	185.4	193.0	
B_2089_A		104.8	ug/L	1.066	1.017	101.9	
Ba4554_R		152.5	ug/L	0.2262	0.1483	9,023	
Be3130_R		3.750	ug/L	0.03222	0.8592	245.6	
Ca3158_R		15,140	ug/L	9.741	0.06434	24,190	
Cd2265_A		5.266	ug/L	0.4479	8.506	397.8	
Co2286_A		113.1	ug/L	0.2908	0.2572	469.1	
Cr2677_A		212.5	ug/L	1.381	0.6496	3,169	
Cu3273_A		367.4	ug/L	2.809	0.7645	5,056	
Fe2599_R		248,700	ug/L	5,521	2.220	487,900	
K_7664_R		10,840	ug/L	18.09	0.1669	7,105	
Li6707_R		198.2	ug/L	0.8473	0.4275	2,172	
Mg2025_A		35,930	ug/L	85.27	0.2373	6,798	
Mn2576_R		2,460	ug/L	3.214	0.1306	27,570	
Mo2020_A		26.51	ug/L	0.3120	1.177	56.16	

10/27/2011 8:52:03AM Published:

50

Method Revision:

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

50

Acquire Date:	10/26/2011	7:33:49F	PM		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio	1
Na5895_R		41,470	ug/L	47.09	0.1135	80,710	ł
Ni2316_A		242.0	ug/L	0.3207	0.1325	575.2	
Pb2203_A		360.3	ug/L	0.1856	0.05152	398.7	
Sb2068_A		186.4	ug/L	0.1952	0.1048	77.09	ı
Se1960 A		7.008	ug/L	1.176	16.78	4.802	:
Si2516_R		1,860	ug/L	15.94	0.8571	1,076	i
Sn1899_A		39.83	ug/L	0.7008	1.760	23.06	i
Sr4215_R		192.0	ug/L	0.3001	0.1563	15,290	ł
Ti3349 A		2,344	ug/L	26.60	1.135	75,590)
TI1908_A		-2.703	ug/L	0.5567	20.59	-5.775	i
V 2924 A		289.7	ug/L	2.332	0.8048	4,656	i
Zn2062_A		2,475	ug/L	3.446	0.1393	8,133	,
Y 3600 R		24,581	Cts/S	309.15	1.2576	24,581	
Y 2243 A	9	9,267.1	Cts/S	18.168	0.19605	9,267.1	
Y_3600_A	2	49,730	Cts/S	2,583.4	1.0345	249,730	

SE6616-018

Method Name: Analyst Name:

EAM

K6010-2011

Method Revision:

50

Acquire Date:	10/26/2	011 7:38:24	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1032	ug/L	0.9315	902.3	-1,299
Al3961_R		89,840	ug/L	78.28	0.08713	78,440
As1891_A		144.7	ug/L	1.025	0.7085	28.12
Au2427_A		-3.405	ug/L	1.674	49.18	256.9
B_2089_A		83.15	ug/L	0.2089	0.2512	81.41
Ba4554_R		160.3	ug/L	0.3931	0.2453	9,349
Be3130_R		4.551	ug/L	0.01710	0.3758	316.1
Ca3158_R		16,490	ug/L	18.11	0.1098	26,000
Cd2265_A		2.534	ug/L	0.1694	6.685	461.7
Co2286_A		156.5	ug/L	0.6056	0.3870	641.2
Cr2677_A		174.0	ug/L	2.383	1.370	2,592
Cu3273_A		294.3	ug/L	4.143	1.408	3,940
Fe2599_R	F	333,100	ug/L	1,962	0.5891	644,700
K_7664_R		9,706	ug/L	12.37	0.1274	6,280
Li6707_R		233.2	ug/L	1.373	0.5889	2,521
Mg2025_A		39,570	ug/L	47.31	0.1196	7,502
Mn2576_R		3,635	ug/L	4.460	0.1227	40,190
Mo2020_A		24.56	ug/L	0.3680	1.498	52.04
Na5895_R		40,920	ug/L	111.9	0.2735	78,570
Ni2316_A		303.6	ug/L	0.6921	0.2280	721.1
Pb2203_A		125.9	ug/L	1.230	0.9768	137.9
Sb2068_A		0.8201	ug/L	1.812	221.0	6.433
Se1960_A		7.309	ug/L	3.302	45.18	5.220
Si2516_R		2,486	ug/L	16.28	0.6549	1,415
Sn1899_A		19.74	ug/L	0.6768	3.428	12.11
Sr4215_R		206.3	ug/L	0.09949	0.04822	16,220
Ti3349_A		2,463	ug/L	46.53	1.889	78,660
Tl1908_A		-3.335	ug/L	0.7463	22.38	-7.354
V_2924_A		242.7	ug/L	4.257	1.754	3,881
Zn2062_A		769.7	ug/L	1.050	0.1364	2,534
Y_3600_R		24,252	Cts/S	21.360	0.088074	24,252
Y_2243_A		9,280.7	Cts/S	19.699	0.21226	9,280.7
Y_3600_A		247,350	Cts/S	6,382.4	2.5802	247,350
0.014						

CCV

Method Name: K6010-2011 Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 37 of 101

CCV

Method Name: K6010-2011 Method Revision:

Analyst Name: EAM

Analyst Pate: 10/26/2011 7:43:03PM Sample Type: 00

Acquire Date:	10/26/20	11 7:43:02	PΜ	5	Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		504.3	ug/L	3.597	0.7133	11,850
Al3961_R		12,820	ug/L	166.6	1.300	11,070
As1891_A		502.6	ug/L	1.368	0.2721	166.1
Au2427_A		501.0	ug/L	0.3073	0.06134	1,904
B_2089_A		497.3	ug/L	0.6381	0.1283	477.5
Ba4554_R		493.6	ug/L	0.3540	0.07172	28,210
Be3130_R		510.5	ug/L	5.777	1.132	50,860
Ca3158_R		12,430	ug/L	65.42	0.5262	19,330
Cd2265_A		494.1	ug/L	0.05510	0.01115	7,845
Co2286_A		505.6	ug/L	0.8584	0.1698	1,953
Cr2677_A		492.0	ug/L	2.905	0.5904	7,218
Cu3273_A		497.7	ug/L	1.772	0.3561	7,013
Fe2599_R		12,640	ug/L	208.5	1.650	24,130
K_7664_R		12,230	ug/L	110.5	0.9038	7,803
Li6707_R		505.8	ug/L	1.040	0.2056	5,400
Mg2025_A		12,690	ug/L	11.27	0.08883	2,372
Mn2576_R		501.0	ug/L	7.572	1.511	5,467
Mo2020_A		495.4	ug/L	2.057	0.4152	1,055
Na5895_R	W	11,670	ug/L	66.28	0.5681	22,130
Ni2316_A		504.0	ug/L	0.09445	0.01874	1,228
Pb2203_A		501.4	ug/L	1.464	0.2920	552.4
Sb2068_A		480.6	ug/L	7.650	1.592	185.6
Se1960_A		496.9	ug/L	4.937	0.9935	99.51
Si2516_R		12,640	ug/L	187.1	1.480	7,105
Sn1899_A		503.9	ug/L	0.3880	0.07700	273.4
Sr4215_R		501.7	ug/L	2.884	0.5749	39,020
Ti3349_A		494.6	ug/L	3.000	0.6066	15,890
TI1908_A		501.6	ug/L	0.9110	0.1816	224.1
V_2924_A		508.1	ug/L	3.712	0.7306	8,012
Zn2062_A		501.7	ug/L	0.05339	0.01064	1,629
Y_3600_R		23,932	Cts/S	407.43	1.7025	23,932
Y_2243_A		9,162.6	Cts/S	26.242	0.28640	9,162.6
Y_3600_A		249,000	Cts/S	4,518.6	1.8147	249,000

ССВ

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

, and your vario.						
Acquire Date:	10/26/20	011 7:47:27	PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.5050	ug/L	0.1549	30.68	-24.58
Al3961_R		-0.6133	ug/L	1.313	214.1	19.99
As1891_A		1.025	ug/L	0.2479	24.18	-0.8960
Au2427_A		0.2318	ug/L	0.8132	350.8	1.787
B_2089_A		0.1885	ug/L	0.3371	178.8	2.286
Ba4554_R		0.09227	ug/L	0.1350	146.3	103.9
Be3130_R		0.07051	ug/L	0.04149	58.84	3.760
Ca3158_R		2.506	ug/L	2.040	81.40	38.80
Cd2265_A		0.04795	ug/L	0.01404	29.28	-0.9247
Co2286_A		0.1156	ug/L	0.1578	136.6	6.225
Cr2677_A		-0.07311	ug/L	0.06761	92.47	3.671
Cu3273_A		0.2372	ug/L	0.4763	200.9	-0.2240
Fe2599_R		10.71	ug/L	2.810	26.25	24.07
K_7664_R		4.277	ug/L	7.256	169.7	12.85
Li6707_R		5.097	ug/L	0.6715	13.17	52.13
Mg2025_A		2.497	ug/L	1.832	73.35	-2.651
Mn2576_R		-0.2124	ug/L	0.04699	22.12	3.649
Mo2020_A		1.782	ug/L	0.2904	16.30	2.897

Published: 10/27/2011 8:52:03AM Page 38 of 101

CCB

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 7:47:27PM Sample

Acquire Date:	10/26/201	11 7:47:27	7PM		Sample Type:	QC ·
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		26.49	ug/L	1.067	4.030	80.61
Ni2316 A		0.2746	ug/L	0.1794	65.32	-0.1433
Pb2203 A		-0.2479	ug/L	0.4407	177.8	-0.7535
Sb2068 A		0.3993	ug/L	1.099	275.2	0.8820
Se1960 A		2.288	ug/L	0.2360	10.32	2.467
Si2516_R		7.123	ug/L	3.839	53.90	14.87
Sn1899_A		0.1155	ug/L	0.1436	124.3	1.362
Sr4215 R		0.1543	ug/L	0.04561	29.57	-59.48
Ti3349 A		0.1354	ug/L	0.08712	64.32	-32.56
TI1908 A		-0.7092	ug/L	0.8108	114.3	-0.6947
V 2924 A		0.1434	ug/L	0.08629	60.16	0.08838
Zn2062 A		-0.06424	ug/L	0.08076	125.7	0.3259
Y 3600 R		24,120	Cts/S	149.15	0.61835	24,120
Y 2243 A		9,228.0	Cts/S	5.4157	0.058688	9,228.0
Y_3600_A		251,120	Cts/S	6,629.0	2.6398	251,120

SE6616-019

Method Name: K6010-2011

Analyst Name: EAM
Acquire Date: 10/26/2011 7:52:04PM Sample Type: Unknown

Acquire Date:	10/26/2011	7:52:04PM			Sample Type:	UNKNOWN
Elem	Flags	A vg	Units _	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.166	ug/L	1.020	87.51	-1,344
Al3961_R	1	11,500	ug/L	436.0	0.3910	99,640
As1891_A		147.3	ug/L	1.986	1.348	28.30
Au2427_A		-1.928	ug/L	1.464	75.91	271.9
B_2089_A		146.9	ug/L	1.418	0.9653	142.0
Ba4554_R		224.3	ug/L	1.137	0.5071	13,350
Be3130_R		5.383	ug/L	0.05084	0.9445	372.6
Ca3158_R		20,010	ug/L	35.09	0.1754	32,290
Cd2265_A		9.333	ug/L	0.1888	2.023	586.6
Co2286_A		163.5	ug/L	0.02656	0.01624	673.8
Cr2677_A		571.7	ug/L	1.509	0.2639	8,502
Cu3273_A		499.1	ug/L	1.992	0.3992	6,896
Fe2599_R	F 3	45,900	ug/L	3,345	0.9671	685,000
K_7664_R		14,640	ug/L	16.29	0.1113	9,689
Li6707_R		268.8	ug/L	3.786	1.408	2,974
Mg2025_A		49,580	ug/L	74.51	0.1503	9,389
Mn2576_R		3,718	ug/L	0.9285	0.02497	42,060
Mo2020_A		35.03	ug/L	0.05257	0.1501	74.64
Na5895_R		56,840	ug/L	345.7	0.6083	111,700
Ni2316_A		329.3	ug/L	0.06967	0.02116	783.0
Pb2203_A		1,706	ug/L	4.724	0.2769	1,904
Sb2068_A		107.1	ug/L	0.4262	0.3978	48.97
Se1960_A		5.482	ug/L	0.2182	3.981	5.063
Si2516_R		2,519	ug/L	13.65	0.5420	1,467
Sn1899_A		52.51	ug/L	0.5874		30.01
Sr4215_R		261.2	ug/L	0.8004	0.3064	21,040
Ti3349_A		3,110	ug/L	20.16	0.6482	100,700
TI1908_A		-5.077	ug/L	0.5086	10.02	-8.786
V_2924_A		411.8	ug/L	2.744	0.6663	6,630
Zn2062_A		4,754	ug/L	7.116	0.1497	15,640
Y_3600_R		24,820	Cts/S	346.25	1.3951	24,820
Y_2243_A	9	9,275.1	Cts/S	55.846	0.60210	9,275.1
Y_3600_A	2	50,810	Cts/S	1,458.8	0.58165	250,810

SE6616-020

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 39 of 101

50

50

Method Revision:

Method Revision:

K6010-2011 Method Name: Analyst Name: EAM

Method Revision:

50

Acquire Date:	10/26/2011	7:56:38PM			Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		14.44	ug/L	0.4530	3.138	-394.0
Al3961_R	23	34,700	ug/L	1,891	0.8057	208,300
As1891_A		62.50	ug/L	0.1567	0.2507	9.479
Au2427_A		-2.478	ug/L	1.125	45.40	133.5
B_2089_A		365.2	ug/L	1.043	0.2855	351.5
Ba4554_R		147.2	ug/L	1.019	0.6923	8,740
Be3130_R		4.298	ug/L	0.1358	3.161	280.8
Ca3158_R	•	17,250	ug/L	122.8	0.7117	27,660
Cd2265_A		46.49	ug/L	0.05436	0.1169	980.4
Co2286_A		54.44	ug/L	0.3904	0.7172	245.4
Cr2677_A		819.5	ug/L	4.382	0.5347	12,000
Cu3273_A		1,656	ug/L	8.859	0.5349	23,170
Fe2599_R	18	30,900	ug/L	600.3	0.3318	356,100
K_7664_R	•	12,850	ug/L	148.4	1.155	8,451
Li6707_R		179.8	ug/L	2.841	1.580	1,976
Mg2025_A	3	32,210	ug/L	35.64	0.1106	6,141
Mn2576_R		1,508	ug/L	12.11	0.8033	16,960
Mo2020_A		47.53	ug/L	0.01496	0.03148	102.4
Na5895_R	4	11,910	ug/L	214.8	0.5125	81,840
Ni2316_A		362.4	ug/L	1.217	0.3358	884.7
Pb2203_A		2,198	ug/L	2.347	0.1068	2,450
Sb2068_A		67.11	ug/L	2.083	3.104	32.55
Se1960_A		11.71	ug/L	2.230	19.05	6.695
Si2516_R		2,678	ug/L	31.85	1.189	1,556
Sn1899_A		138.3	ug/L	0.03853	0.02786	77.44
Sr4215_R		160.9	ug/L	0.7738	0.4809	12,850
Ti3349_A		2,747	ug/L	15.39	0.5604	88,000
TI1908_A		-1.472	ug/L	1.040	70.63	-4.570
V_2924_A		523.9	ug/L	5.372	1.025	8,294
Zn2062_A		4,344	ug/L	21.76	0.5008	14,390
Y_3600_R	2	24,665	Cts/S	518.95	2.1039	24,665
Y_2243_A	9	,341.1	Cts/S	31.543	0.33768	9,341.1
Y_3600_A	24	18,000	Cts/S	2,730.5	1.1010	248,000

PBSBJ23ICS1

Method Name: K6010-2011

Analyst Name: EAM

10/26/2011 8:01:14PM

Acquire Date:	10/26/20	011 8:01:14	·PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.4908	ug/L	0.1495	30.45	-25.71
Al3961_R		16.88	ug/L	1.235	7.314	34.84
As1891_A		0.03547	ug/L	1.169	3,296	-1.245
Au2427_A		-0.9090	ug/L	0.8650	95.15	-2.547
B_2089_A		1.202	ug/L	0.7494	62.36	3.254
Ba4554_R		0.3317	ug/L	0.07335	22.11	116.6
Be3130_R		0.07375	ug/L	0.05846	79.26	4.030
Ca3158_R	F	100.3	ug/L	4.478	4.464	113.8
Cd2265_A		-0.05179	ug/L	0.003490	6.738	-2.507
Co2286_A		-0.02303	ug/L	0.1012	439.2	5.758
Cr2677_A		0.7806	ug/L	0.04923	6.307	16.75
Cu3273_A		0.8212	ug/L	0.1263	15.38	8.396
Fe2599_R		41.54	ug/L	0.07659	0.1844	82.72
K_7664_R		18.79	ug/L	22.43	119.4	22.03
Li6707_R		2.019	ug/L	1.294	64.10	18.80
Mg2025_A		34.02	ug/L	0.3062	0.9000	3.329
Mn2576_R		0.2481	ug/L	0.01593	6.420	8.639
Mo2020_A		0.6534	ug/L	0.2008	30.73	0.4798

Published: 10/27/2011 8:52:03AM Method Revision:

PBSBJ23ICS1

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/2011	8:01:14PM			Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Na5895 R		57.15	ug/L	1.133	1.983	138.0	
Ni2316 A	(0.6625	ug/L	0.1724	26.03	0.8124	
Pb2203 A	0	.03367	ug/L	1.175	3,491	-0.4467	
Sb2068 A		-2.075	ug/L	1.531	73.79	-0.06855	
Se1960 A		1.470	ug/L	3.613	245.8	2.332	
Si2516 R		16.09	ug/L	2.742	17.04	19.77	
Sn1899 A		11.55	ug/L	0.3861	3.343	7.668	
Sr4215 R		0.3476	ug/L	0.07691	22.13	-43.90	
Ti3349 A		0.5844	ug/L	0.1454	24.88	-18.56	
TI1908 A	-	0.3227	ug/L	0.7555	234.1	-0.5254	
V 2924 A	0	.03222	ug/L	0.09306	288.8	-1.696	
Zn2062 A		1.092	ug/L	0.004936	0.4519	4.154	
Y 3600 R		23,917	Cts/S	65.703	0.27471	23,917	
Y 2243 A	ç	9.333.4	Cts/S	16.122	0.17273	9,333.4	
Y_3600_A		58,360	Cts/S	126.93	0.049130	258,360	

LCSOBJ23ICS1

Method Name:	K6010-2011	I			Me	thod Revision:	50
Analyst Name:	EAM						
Acquire Date:	10/26/2011	8:05:51PM			Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD	Inter	sity Ratio
Ag3280_A		49.22	ug/L	0.4368	0.8874		1,149
Al3961 R		2,023	ug/L	2.660	0.1315		1,780
As1891 A		100.9	ug/L	0.3853	0.3819		32.73
Au2427 A		1.376	ug/L	0.9124	66.28		11.81
B_2089_A		474.0	ug/L	0.02443	0.005154		455.2
Ba4554_R		1,989	ug/L	1.865	0.09375		113,800
Be3130_R		52.54	ug/L	0.1422	0.2706		5,230
Ca3158_R		2,512	ug/L	5.419	0.2157		3,887
Cd2265_A		251.1	ug/L	0.1579	0.06288		4,010
Co2286 A		511.7	ug/L	0.6157	0.1203		1,992
Cr2677 A		199.9	ug/L	0.7538	0.3770		3,006
Cu3273 A		251.2	ug/L	1.902	0.7570		3,624
Fe2599_R	•	1,033	ug/L	2.117	0.2050		1,983
K 7664_R		9,763	ug/L	58.33	0.5974		6,256
Li6707_R		499.6	ug/L	1.062	0.2125		5,353
Mg2025_A		5,073	ug/L	21.54	0.4245		953.3
Mn2576_R		500.0	ug/L	0.3724	0.07448		5,476
Mo2020_A		299.3	ug/L	1.664	0.5558		642.0
Na5895_R		7,130	ug/L	22.62	0.3172		13,580
Ni2316_A		507.7	ug/L	0.3402	0.06702		1,247
Pb2203_A		100.9	ug/L	0.001640	0.001625		111.7
Sb2068_A		96.04	ug/L	0.6744	0.7022		37.86
Se1960 A		98.05	ug/L	2.689	2.742		21.43
Si2516_R	F	3,885	ug/L	1.540	0.03964		2,201
Sn1899_A		501.6	ug/L	0.2742	0.05466		274.3
Sr4215 R		486.6	ug/L	0.2141	0.04401		37,980
Ti3349_A		492.9	ug/L	0.4738	0.09612		16,200
TI1908 A		100.4	ug/L	1.158	1.154		43.72
		E00 7	//	2.262	0.4465		8 200

2.262

0.4800

55.284

25.779

785.94

SE6617-001

V_2924_A

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

Method Name:

K6010-2011

Method Revision:

0.4465

0.09395

0.23017

0.27919

0.30829

50

8,209

1,673

24,019

9,233.6

254,940

Published:

10/27/2011 8:52:03AM

506.7

510.9

24,019

9,233.6

254,940

ug/L

ug/L

Cts/S

Cts/S

Cts/S

Page 41 of 101

SE6617-001

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

		_		
Acquire Date:	10/26/2011	8:10:16PM		Sample T

Acquire Date:	10/26/20	011 8:10:16	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.009	ug/L	0.6117	60.62	-454.0
Al3961_R		37,510	ug/L	108.6	0.2895	32,440
As1891_A		62.84	ug/L	0.5021	0.7990	13.14
Au2427_A		-1.630	ug/L	0.7068	43.35	84.05
B_2089_A		25.68	ug/L	0.3034	1.181	26.33
Ba4554_R		74.89	ug/L	0.06168	0.08236	4,378
Be3130_R		1.277	ug/L	0.01305	1.022	62.14
Ca3158_R		41,320	ug/L	128.7	0.3114	64,580
Cd2265_A		0.7703	ug/L	0.1495	19.40	153.9
Co2286_A		36.04	ug/L	0.02550	0.07075	155.5
Cr2677_A		64.74	ug/L	0.3265	0.5043	978.7
Cu3273_A		50.32	ug/L	0.1844	0.3666	645.6
Fe2599_R		114,300	ug/L	1,418	1.241	219,000
K_7664_R		3,865	ug/L	2.490	0.06443	2,482
Li6707_R		100.3	ug/L	0.7847	0.7822	1,072
Mg2025_A		16,890	ug/L	47.84	0.2833	3,163
Mn2576_R		1,107	ug/L	7.935	0.7170	12,120
Mo2020_A		9.782	ug/L	0.03957	0.4045	· 19.95
Na5895_R		17,400	ug/L	49.38	0.2838	33,100
Ni2316_A		82.68	ug/L	0.1905	0.2305	191.6
Pb2203_A		35.44	ug/L	0.9697	2.737	36.87
Sb2068_A		-1.885	ug/L	0.3961	21.01	1.875
Se1960_A		6.263	ug/L	1.077	17.20	3.865
Si2516_R		1,089	ug/L	26.71	2.452	620.9
Sn1899_A		13.33	ug/L	0.1328	0.9962	8.499
Sr4215_R		161.3	ug/L	0.05639	0.03496	12,540
Ti3349_A		1,099	ug/L	0.2514	0.02287	35,570
T11908_A		-0.5781	ug/L	0.1791	30.99	-2.399
V_2924_A		77.15	ug/L	0.1784	0.2312	1,253
Zn2062_A		221.5	ug/L	0.8869	0.4004	, 721.1
Y_3600_R		24,015	Cts/S	246.75	1.0275	24,015
Y_2243_A		9,176.1	Cts/S	9.6013	0.10463	9,176.1
Y_3600_A		250,680	Cts/S	406.92	0.16233	250,680

SE6617-002

K6010-2011 Method Name:

Method Revision:

Analyst Name:	EAM				
Acquire Date:	10/26/2011 8:14:4	48PM		Sample Type:	Unknown
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	1.322	ug/L	0.43 18	32.65	-719.9
Al3961_R	57,250	ug/L	429.1	0.7495	50,410
As1891_A	93.35	ug/L	2.217	2.375	19.34
Au2427_A	-0.5655	ug/L	1.066	188.5	142.1
B_2089_A	57.13	ug/L	0.4601	0.8054	56.36
Ba4554_R	105.9	ug/L	1.006	0.9496	6,264
Be3130_R	2.380	ug/L	0.05226	2.195	138.8
Ca3158_R	15,380	ug/L	168.3	1.095	24,450
Cd2265_A	2.269	ug/L	0.03944	1.738	268.6
Co2286_A	75.37	ug/L	0.04922	0.06531	315.4
Cr2677_A	107.3	ug/L	0.3866	0.3603	1,616
Cu3273_A	177.5	ug/L	0.3808	0.2145	2,410
Fe2599_R	185,300	ug/L	1,712	0.9240	361,700
K_7664_R	6,956	ug/L	101.5	1.459	4,541
Li6707_R	146.2	ug/L	0.3955	0.2706	1,593
Mg2025_A	24,710	ug/L	9.043	0.03660	4,661
Mn2576_R	1,638	ug/L	14.97	0.9145	18,260
Mo2020_A	19.25	ug/L	0.09774	0.5079	40.40

Published: 10/27/2011 8:52:03AM

SE6617-002

Method Name: K6010-2011

Analyst Name: **EAM** Method Revision:

50

Acquire Date:	10/26/2011	8:14:48PM			Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R	- 2	27,200	ug/L	176.3	0.6482		52,680
Ni2316 A		163.3	ug/L	0.1867	0.1143		385.0
Pb2203_A		78.53	ug/L	0.3078	0.3920		84.52
Sb2068_A		1.077	ug/L	3.092	287.2		4.177
Se1960 A		3.398	ug/L	1.903	55.99		3.690
Si2516 R		1,460	ug/L	7.926	0.5430		843.0
Sn1899 A		15.12	ug/L	0.5851	3.868		9.533
Sr4215 R		129.8	ug/L	0.7635	0.5882		10,260
Ti3349 A		1,741	ug/L	10.45	0.6005		56,290
TI1908 A		-1.269	ug/L	1.461	115.2		-3.686
V 2924 A		145.8	ug/L	0.7873	0.5401		2,360
Zn2062 A		414.8	ug/L	0.08475	0.02043		1,359
Y 3600 R	2	24,459	Cts/S	527.54	2.1569		24,459
Y 2243 A	9	,236.1	Cts/S	12.564	0.13603		9,236.1
Y_3600_A	25	50,370	Cts/S	1,669.6	0.66686		250,370

SE6617-003

K6010-2011 Method Name:

Analyst Name: **EAM** Method Revision:

50

Analyst Name:	EAIVI	044 0.40.000			Comple Trees	Unknown
Acquire Date:	10/26/20			0.11	Sample Type:	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		10.32	ug/L	1.385	13.41	-886.9
Al3961_R		70,630	ug/L	390.3	0.5526	61,950
As1891_A		89.98	ug/L	0.08629	0.09590	12.37
Au2427_A		-1.593	ug/L	3.244	203.7	202.4
B_2089_A		280.5	ug/L	3.010	1.073	264.9
Ba4554_R		207.6	ug/L	0.001948	0.0009386	12,130
Be3130_R		4.360	ug/L	0.03925	0.9003	265.8
Ca3158_R		38,600	ug/L	64.39	0.1668	61,200
Cd2265_A		11.64	ug/L	0.7560	6.498	532.9
Co2286_A		77.27	ug/L	0.6713	0.8689	330.0
Cr2677_A		912.7	ug/L	4.684	0.5132	13,480
Cu3273_A		3,606	ug/L	18.11	0.5022	50,950
Fe2599_R	W	283,800	ug/L	6,926	2.440	551,900
K_7664_R		18,910	ug/L	131.6	0.6962	12,280
Li6707_R		151.4	ug/L	1.475	0.9742	1,644
Mg2025_A		67,080	ug/L	556.9	0.8302	12,440
Mn2576_R		1,935	ug/L	10.10	0.5219	21,500
Mo2020 A		132.1	ug/L	1.750	1.325	278.2
Na5895 R		68,420	ug/L	94.83	0.1386	132,000
Ni2316_A		785.8	ug/L	6.577	0.8370	1,875
Pb2203_A		3,993	ug/L	36.03	0.9024	4,376
Sb2068_A		37.86	ug/L	1.744	4.607	21.45
Se1960_A		7.278	ug/L	0.9650	13.26	4.789
Si2516 R		1,522	ug/L	16.36	1.075	873.4
Sn1899 A		168.4	ug/L	2.542	1.510	91.40
Sr4215_R		339.5	ug/L	1.361	0.4009	26,860
Ti3349 A		3,053	ug/L	16.49	0.5402	98,600
TI1908 A		-1.566	ug/L	0.8326	53.15	-5.124
V_2924_A		493.1	ug/L	1.115	0.2262	7,879
Zn2062 A		7,670	ug/L	48.08	0.6270	24,700
Y 3600 R		24,366	Cts/S	204.31	0.83850	24,366
Y 2243 A		9,082.7	Cts/S	69.436	0.76448	9,082.7
Y_3600_A		250,040	Cts/S	554.32	0.22170	250,040

SE6617-004

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 43 of 101

SE6617-004

K6010-2011 Method Name: EAM

Analyst Name:

Method Revision:

50

Acquire Date:	10/26/2011	8:24:00P	М		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280 A		12.02	ug/L	1.378	11.46	-1,036
Al3961_R	2	208,800	ug/L	313.7	0.1503	183,800
As1891_A		86.26	ug/L	2.051	2.378	8.251
Au2427_A		-2.972	ug/L	2.866	96.43	243.0
B_2089_A		434.3	ug/L	2.685	0.6183	410.8
Ba4554_R		208.6	ug/L	0.7052	0.3380	12,240
Be3130_R		4.953	ug/L	0.04431	0.8945	318.0
Ca3158_R		23,760	ug/L	19.09	0.08035	37,790
Cd2265_A		19.70	ug/L	0.6013	3.052	732.5
Co2286_A		71.33	ug/L	0.1347	0.1889	312.7
Cr2677_A		1,161	ug/L	0.4016	0.03460	16,950
Cu3273_A		2,011	ug/L	0.3642	0.01811	28,010
Fe2599_R	F 3	36,300	ug/L	7,228	2.149	656,400
K_7664_R		18,960	ug/L	38.27	0.2019	12,360
Li6707_R		193.8	ug/L	2.346	1.210	2,113
Mg2025_A		60,170	ug/L	62.66	0.1041	11,260
Mn2576_R		2,540	ug/L	2.753	0.1084	28,330
Mo2020_A		94.73	ug/L	0.01185	0.01251	201.1
Na5895_R		68,820	ug/L	137.2	0.1994	133,200
Ni2316_A		466.2	ug/L	0.3792	0.08134	1,109
Pb2203_A		3,329	ug/L	5.780	0.1736	3,665
Sb2068_A		98.36	ug/L	0.1641	0.1668	46.76
Se1960_A		9.203	ug/L	2.576	27.99	6.407
Si2516_R		1,742	ug/L	0.1880	0.01079	1,001
Sn1899_A		240.7	ug/L	0.6296	0.2615	131.4
Sr4215_R		261.1	ug/L	0.4624	0.1771	20,720
Ti3349_A		3,276	ug/L	0.4814	0.01469	104,700
Tl1908_A		-1.964	ug/L	0.4008	20.41	-7.170
V_2924_A		962.7	ug/L	0.2002	0.02079	15,210
Zn2062_A		7,951	ug/L	6.545	0.08231	25,860
Y_3600_R		24,456	Cts/S	186.47	0.76250	24,456
Y_2243_A	9	9,171.2	Cts/S	0.79816	0.0087029	9,171.2
Y_3600_A	2	47,350	Cts/S	103.97	0.042034	247,350

SE6617-005

K6010-2011 Method Name:

Analyst Name: EAM Method Revision:

50

,, 01 , 1011101						
Acquire Date:	10/26/2011	8:28:32F	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.137	ug/L	5.709	502.2	-1,527
Al3961_R	1	33,900	ug/L	8,551	6.387	119,400
As1891_A		186.5	ug/L	4.659	2.499	38.77
Au2427_A		-2.274	ug/L	6.998	307.8	306.7
B_2089_A		145.9	ug/L	1.463	1.003	143.4
Ba4554_R		211.4	ug/L	12.62	5.971	12,570
Be3130_R		5.653	ug/L	0.2066	3.655	392.5
Ca3158_R	;	35,990	ug/L	2,007	5.578	58,050
Cd2265_A		5.303	ug/L	2.492	47.00	581.2
Co2286_A		176.6	ug/L	0.5960	0.3375	726.4
Cr2677_A		605.8	ug/L	6.773	1.118	9,026
Cu3273_A		2,164	ug/L	27.58	1.275	30,590
Fe2599_R	F 3	93,000	ug/L	30,930	7.871	777,100
K_7664_R		15,990	ug/L	845.7	5.291	10,560
Li6707_R		320.2	ug/L	19.10	5.966	3,539
Mg2025_A	;	58,510	ug/L	38.99	0.06665	11,080
Mn2576_R		4,094	ug/L	237.7	5.804	46,260
Mo2020_A		152.6	ug/L	0.6568	0.4303	328.4

Published: 10/27/2011 8:52:03AM Page 44 of 101

K6010-2011 Method Name:

50 Method Revision:

Analyst Name:	EAM						
Acquire Date:	10/26/2011	8:28:32PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R		52,830	ug/L	2,797	5.295		103,700
Ni2316_A	3	649.8	ug/L	0.5397	0.08306		1,570
Pb2203 A		272.4	ug/L	0.6723	0.2468		297.8
Sb2068 A		4.345	ug/L	3.207	73.80		9.882
Se1960 A		9.304	ug/L	3.559	38.26		6.118
Si2516_R		1,561	ug/L	87.76	5.621		908.1
Sn1899 A		68.82	ug/L	0.6204	0.9014		38.91
Sr4215 R		315.3	ug/L	18.60	5.900		25,370
Ti3349 A		3,224	ug/L	32.42	1.005		104,600
TI1908_A		-5.618	ug/L	1.088	19.36		-9.219
V 2924_A		337.4	ug/L	4.332	1.284		5,445
Zn2062 A		1,238	ug/L	3.497	0.2825		4,069
Y 3600 R		24,808	Cts/S	731.22	2.9475		24,808
Y 2243 A	9	9,272.3	Cts/S	25.168	0.27144		9,272.3
Y_3600_A	2	51,220	Cts/S	2,469.4	0.98298		251,220

SE6617-007

Analyst Name:

K6010-2011 Method Name:

EAM

Method Revision:

50

10/26/2011 8:33:06PM Sample Type: Unknown Acquire Date: Avg Stddev %RSD Intensity Ratio Flags Units Elem Ag3280_A 4.511 ug/L 0.9722 21.55 -54**1.7** 72,940 82,420 ug/L 203.0 0.2462 Al3961_R 11.42 64.91 ug/L 1.507 2.321 As1891_A 114.7 41.88 Au2427_A -2.623ug/L 1.098 231.1 0.06270 B_2089_A 243.8 ug/L 0.1528 13,470 0.04712 Ba4554_R 228.5 ug/L 0.1077 0.3495 312.5 0.01795 Be3130 R 5.135 ug/L 0.06519 115,800 47.18 Ca3158 R 72,380 ug/L 17.19 245.4 ug/L 0.5407 Cd2265 A 3.145 0.3716 201.5 ug/L 0.1570 Co2286_A 42.25 0.1078 4,255 Cr2677_A 290.3 ug/L 0.3129 1.037 0.2536 5,620 408.8 ug/L Cu3273_A 307,600 3.593 156,800 ug/L 5,634 Fe2599_R ug/L 25.31 0.1087 15,250 23,270 2,031 ug/L 1.872 1.010 185.4

K_7664_R Li6707_R 0.1085 8,427 48.72 Mg2025_A 44,900 ug/L 0.06271 17,540 0.9814 1,565 ug/L Mn2576_R 0.07931 0.6141 26.64 ug/L 12.92 Mo2020_A 79,300 ug/L 94.28 0.1189 154,300 Na5895 R 0.1654 0.1295 298.7 Ni2316_A 127.8 ug/L 0.9178 0.2951 337.4 311.0 ug/L Pb2203_A Sb2068_A 0.2062 20.46 4.327 1.008 ug/L Se1960_A 4.134 5.178 ug/L 0.8983 17.35 ug/L 1.203 0.08346 838.9 Si2516_R 1,442 26.71 Sn1899_A 46.92 ug/L 0.2477 0.5278 42,430 531.0 ug/L 0.07167 0.01350 Sr4215 R 115,800 0.06513 3,626 ug/L 2.362 Ti3349 A -4.834 44.23 -2.177 ug/L 0.9630 TI1908 A 4,726 0.5084 297.6 ug/L 1.513 V 2924 A 2,926 0.1293 Zn2062 A 897.9 ug/L 1.161 0.21663 24,583 53.254 Y_3600_R 24,583 Cts/S 0.097272 9.190.3 8.9396 Y 2243 A 9,190.3 Cts/S 247,250 Cts/S 127.59 0.051604 Y_3600_A 247,250

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 45 of 101

CCV

K6010-2011 Method Name:

Acquire Date: 10/26/2011 8:37:41PM

Method Revision: 50 EAM Analyst Name:

Acquire Date:	10/26/20	011 8:37:41P	PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		502.1	ug/L	6.005	1.196	11,880
Al3961_R		12,780	ug/L	79.80	0.6245	11,130
As1891_A		505.0	ug/L	4.257	0.8430	166.8
Au2427_A		502.2	ug/L	1.336	0.2661	1,907
B_2089_A		496.5	ug/L	3.669	0.7390	476.5
Ba4554_R		492.1	ug/L	1.726	0.3507	28,360
Be3130_R		511.1	ug/L	2.688	0.5258	51,350
Ca3158_R		12,420	ug/L	42.97	0.3459	19,470
Cd2265_A		494.0	ug/L	3.323	0.6726	7,840
Co2286_A		508.2	ug/L	4.442	0.8742	1,962
Cr2677_A		487.9	ug/L	4.430	0.9080	7,205
Cu3273_A		493.5	ug/L	6.254	1.267	7,000
Fe2599_R		12,510	ug/L	39.77	0.3179	24,090
K_7664_R		12,230	ug/L	24.40	0.1995	7,870
Li6707_R		509.6	ug/L	2.428	0.4763	5,485
Mg2025_A		12,670	ug/L	93.33	0.7367	2,367
Mn2576_R		499.0	ug/L	0.2917	0.05845	5,490
Mo2020_A		494.9	ug/L	1.462	0.2955	1,054
Na5895_R	W	11,630	ug/L	73.01	0.6279	22,230
Ni2316_A		505.0	ug/L	3.117	0.6172	1,230
Pb2203_A		501.4	ug/L	4.424	0.8823	552.2
Sb2068_A		479.8	ug/L	4.866	1.014	185.2
Se1960_A		492.0	ug/L	2.099	0.4266	98.49
Si2516_R		12,560	ug/L	42.83	0.3409	7,122
Sn1899_A		503.5	ug/L	4.013	0.7971	273.0
Sr4215_R		499.7	ug/L	0.2316	0.04634	39,190
Ti3349_A		494.1	ug/L	4.489	0.9085	15,970
TI1908_A		503.0	ug/L	3.833	0.7620	224.6
V_2924_A		505.7	ug/L	5.411	1.070	8,025
Zn2062_A		503.6	ug/L	3.836	0.7616	1,635
Y_3600_R		24,127	Cts/S	286.07	1.1857	24,127
Y_2243_A		9,158.2	Cts/S	44.234	0.48300	9,158.2
Y_3600_A		250,640	Cts/S	2,418.0	0.96473	250,640

CCB

Method Name: K6010-2011

EAM Analyst Name:

Method Revision: 50

Acquire Date:	10/26/201	11 8:42:05	5PM		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.5830	ug/L	0.1706	29.27	-22.73
Al3961_R		-3.278	ug/L	1.170	35.71	17.40
As1891_A		0.1973	ug/L	0.5324	269.9	-1.173
Au2427_A		0.6523	ug/L	0.1309	20.07	3.375
B_2089_A		0.8062	ug/L	0.006154	0.7633	2.864
Ba4554_R		-0.1221	ug/L	0.1157	94.74	90.16
Be3130_R		0.05981	ug/L	0.003059	5.115	2.656
Ca3158_R		2.842	ug/L	1.136	39.96	-37.70
Cd2265_A		-0.01687	ug/L	0.008731	51.75	-1.966
Co2286_A		0.1757	ug/L	0.2318	132.0	6.452
Cr2677_A		-0.2268	ug/L	0.02090	9.216	1.391
Cu3273_A		0.3038	ug/L	0.06612	21.76	0.8249
Fe2599_R		4.420	ug/L	0.5301	11.99	11.80
K_7664_R		33.94	ug/L	10.76	31.72	31.45
Li6707_R		4.379	ug/L	1.289	29.43	43.75
Mg2025_A		0.2220	ug/L	3.321	1,496	-3.077
Mn2576_R		-0.3099	ug/L	0.1488	48.00	2.544
Mo2020_A		1.690	ug/L	0.3056	18.08	2.699

10/27/2011 8:52:03AM Published:

CCB

Na5895_R

Ni2316_A

Pb2203_A

Sb2068_A

Se1960_A

Si2516_R

Sn1899_A

Sr4215 R

Ti3349_A

TI1908 A

V 2924_A

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 8:42:05PM Acquire Date: Std Units Elem Flags Avg 19.18

0.3241

0.4150

-1.111

1.592

3.586

0.1747

0.2794

0.1243

-0.4759

0.02360

0.01788

23,755

9,219.9

251,880

ug/L

Cts/S

Cts/S

Cts/S

)
,
)
į.
ò
3
,
3
-
3
)
5
7
7346

0.49705

0.048150

1.0530

Method Revision:

50

23,755

9,219.9

251,880

50

SE6617-008

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision:

118.07

4.4394

2,652.2

Acquire Date:	10/26/2011	8:46:42	2PM			Sample Type:	Unknown	
Elem	Flags	Avg		Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		7.797		ug/L	0.5772	7.403		-599 .5
Al3961_R	•	101,600		ug/L	642.7	0.6328		90,400
As1891_A		76.13		ug/L	1.927	2.531		13.33
Au2427_A		-0.6548		ug/L	0.1397	21.33		148.0
B_2089_A		289.2		ug/L	0.02582	0.008930		275.0
Ba4554_R		306.1		ug/L	0.7499	0.2449		18,120
Be3130_R		6.507		ug/L	0.05280	0.8115		408.8
Ca3158_R		51,430		ug/L	27.02	0.05255		82,780
Cd2265_A		6.835		ug/L	0.3943	5.769		347.0
Co2286_A		51.85		ug/L	0.2131	0.4110		246.8
Cr2677_A		391.4		ug/L	2.873	0.7342		5,790
Cu3273_A		668.4		ug/L	1.720	0.2573		9,331
Fe2599_R	•	189,800		ug/L	4,134	2.178		374,500
K_7664_R		28,010		ug/L	15.57	0.05560		18,460
Li6707_R		218.4		ug/L	1.353	0.6196		2,408
Mg2025_A		52,620		ug/L	16.26	0.03090		9,921
Mn2576_R		1,833		ug/L	1.387	0.07567		20,670
Mo2020_A		12.80		ug/L	0.2911	2.275		26.50
Na5895_R		98,520		ug/L	116.8	0.1186		192,800
Ni2316_A		170.3		ug/L	0.1015	0.05957		401.7
Pb2203_A		490.1		ug/L	0.8844	0.1805		536.8
Sb2068_A		4.402		ug/L	0.3432	7.796		6.456
Se1960_A		6.905		ug/L	0.2628	3.806		4.739
Si2516_R		1,522		ug/L	7.395	0.4860		889.6
Sn1899_A		83.36		ug/L	0.1099	0.1319		46.65
Sr4215 R		354.7		ug/L	0.7921	0.2233		28,490
Ti3349 A		4,430		ug/L	6.390	0.1442		143,000
TI1908_A		-3.137		ug/L	0.8873	28.28		-5.967
V_2924_A		363.5		ug/L	2.219	0.6105		5,831
Zn2062_A		2,261		ug/L	4.548	0.2011		7,402
Y 3600_R		24,730		Cts/S	334.73	1.3535		24,730
Y 2243 A		9,232.1		Cts/S	8.4789	0.091841		9,232.1
Y_3600_A		249,790		Cts/S	1,135.6	0.45461	_	249,790

SE6617-009

K6010-2011 Method Name:

Method Revision:

Page 47 of 101

50

Published:

10/27/2011 8:52:03AM

Method Name: K6010-2011 Analyst Name: EAM

Method Revision: 50

Analyst Name:	EAM					
Acquire Date:	10/26/20)11 8:51:15PM			Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.777	ug/L	2.094	75.40	-1,617
Al3961_R		111,900	ug/L	1,600	1.430	101,000
As1891_A		380.6	ug/L	2.528	0.6640	102.6
Au2427_A		-2.764	ug/L	0.9256	33.49	307.1
B_2089_A		227.1	ug/L	0.09862	0.04342	218.5
Ba4554_R		248.6	ug/L	1.912	0.7692	14,930
Be3130_R		6.501	ug/L	0.1578	2.427	467.8
Ca3158_R		21,260	ug/L	228.7	1.076	34,650
Cd2265_A		14.89	ug/L	1.038	6.968	782.6
Co2286_A		166.9	ug/L	0.9327	0.5589	692.8
Cr2677_A		1,573	ug/L	7.287	0.4631	23,190
Cu3273_A		734.5	ug/L	1.997	0.2719	10,150
Fe2599_R	F	429,000	ug/L	10,070	2.347	858,000
K_7664_R		19,440	ug/L	318.1	1.637	12,980
Li6707_R		259.2	ug/L	0.08267	0.03189	2,897
Mg2025_A		58,490	ug/L	258.8	0.4425	11,080
Mn2576_R		2,667	ug/L	34.98	1.312	30,480
Mo2020_A		46.40	ug/L	0.6013	1.296	99.46
Na5895_R		63,110	ug/L	438.4	0.6946	125,200
Ni2316_A		346.4	ug/L	0.6894	0.1990	819.6
Pb2203_A	F	23,820	ug/L	101.8	0.4276	26,700
Sb2068_A		389.5	ug/L	4.475	1.149	162.6
Se1960_A		8.902	ug/L	7.572	85.06	5.959
Si2516_R		1,322	ug/L	9.462	0.7155	775.9
Sn1899_A		80.45	ug/L	1.110	1.380	45.35
Sr4215_R		262.4	ug/L	3.436	1.310	21,340
Ti3349_A		3,561	ug/L	4.620	0.1297	114,800
TI1908_A		-3.625	ug/L	0.1353	3.732	-7.719
V_2924_A		626.7	ug/L	3.522	0.5620	10,000
Zn2062_A		17,250	ug/L	65.37	0.3790	56,830
Y_3600_R		25,064	Cts/S	241.08	0.96185	25,064
Y_2243_A		9,289.4	Cts/S	49.552	0.53343	9,289.4
Y_3600_A		249,610	Cts/S	2,038.7	0.81678	249,610

SE6617-010

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

Acquire Date:	10/26/2011	8:55:46PM			Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.077	ug/L	0.1712	8.244	-887.0
Al3961_R	7	71,000	ug/L	125.8	0.1772	62,760
As1891_A		174.7	ug/L	1.620	0.9272	43.98
Au2427_A		-2.504	ug/L	0.3261	13.02	166.2
B_2089_A		84.67	ug/L	0.1250	0.1476	82.53
Ba4554_R		129.0	ug/L	0.1941	0.1504	7,638
Be3130_R		3.584	ug/L	0.01122	0.3132	232.8
Ca3158_R	2	25,720	ug/L	114.0	0.4431	41,090
Cd2265_A		2.967	ug/L	0.08257	2.783	339.4
Co2286_A		91.87	ug/L	0.1122	0.1221	384.4
Cr2677_A		175.4	ug/L	0.2479	0.1414	2,633
Cu3273_A		238.8	ug/L	0.9941	0.4162	3,261
Fe2599_R	23	32,600	ug/L	994.8	0.4277	455,700
K_7664_R	1	10,190	ug/L	41.12	0.4034	6,677
Li6707_R		175.2	ug/L	1.632	0.9313	1,917
Mg2025_A	3	32,830	ug/L	1.599	0.004870	6,192
Mn2576_R		1,718	ug/L	0.6990	0.04070	19,230
Mo2020_A		29.05	ug/L	0.04724	0.1626	61.45

Published: 10/27/2011 8:52:03AM

K6010-2011 Method Name:

EAM Analyst Name

Method Revision: 50

Analyst Name.							
Acquire Date:	10/26/2011	8:55:46PM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895 R		39,230	ug/L	135.8	0.3463		76,250
Ni2316 A		187.1	ug/L	0.3051	0.1631		439.5
Pb2203 A		507.2	ug/L	0.4026	0.07937		561.7
Sb2068 A		6.736	ug/L	1.481	21.99		7.233
Se1960 A		4.085	ug/L	1.422	34.82		4.062
Si2516 R		1,275	ug/L	4.894	0.3837		738.9
Sn1899 A		28.33	ug/L	0.2544	0.8980		16.72
Sr4215_R		212.0	ug/L	0.4349	0.2051		16,880
Ti3349 A		2,258	ug/L	2.110	0.09341		73,200
TI1908 A		-3.239	ug/L	0.7783	24.03		-5.012
V_2924_A		216.2	ug/L	0.1161	0.05370		3,502
Zn2062 A		938.1	ug/L	1.151	0.1227		3,072
Y 3600 R	2	24,553	Cts/S	318.94	1.2990		24,553
Y 2243 A		,234.3	Cts/S	10.746	0.11637		9,234.3
Y_3600_A		50,980	Cts/S	94.857	0.037795		250,980

SE6617-011

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision: 50

Unknown 10/26/2011 9:00:19PM Sample Type: Acquire Date: Stddev %RSD Intensity Ratio **A**vg Units Elem Flags Ag3280_A 4.203 ug/L 0.07871 1.873 -988.8 95,430 ug/L 338.3 0.3546 84,700 Al3961_R 117.5 ug/L 1.512 1.287 22.49 As1891_A 206.4 Au2427 A -1.915 ug/L 0.6447 33.66 0.6005 145.6 B 2089_A 151.4 ug/L 0.9093 10,940 Ba4554_R 184.7 ug/L 0.07301 0.03954 317.6 0.9735 Be3130 R 4.675 ug/L 0.04551 32,430 0.02690 Ca3158 R 20,220 ug/L 5.440 0.05189 0.6270 472.9 Cd2265 A 8.276 ug/L 482.6 ug/L 0.2595 0.2239 Co2286_A 115.9 4,416 0.06483 Cr2677_A 294.7 ug/L 0.1910 0.2279 7,749 554.2 ug/L 1.263 Cu3273_A 533,300 0.2002 W 271,000 ug/L 542.6 Fe2599_R 104.9 0.7089 9,726 14,790 ug/L K_7664_R ug/L 2.378 1.039 2,515 Li6707_R 228.8 0.05445 8,307 ug/L 23.97 Mg2025_A 44,030 0.6692 29,200 17.39 2,598 ug/L Mn2576_R 1.227 66.45 0.3851 31.40 ug/L Mo2020 A 58,140 ug/L 232.2 0.3994 113,500 Na5895_R 0.04443 600.3 Ni2316_A 253.7 ug/L 0.1127 0.8902 0.1552 633.8 Pb2203_A 573.6 ug/L Sb2068_A 1.654 7.411 14.13 22.32 ug/L Se1960_A 4.454 4.338 ug/L 1.058 24.38 793.6 0.4899 0.03586 Si2516_R 1,366 ug/L 31.85 Sn1899 A 56.11 ug/L 0.5107 0.9101 19,200 240.0 ug/L 0.2051 0.08542 Sr4215 R 0.07089 90,200 2,774 ug/L 1.967 Ti3349 A -7.127 TI1908_A 48.71 -4.230 ug/L 2.060 7,525 V 2924 A 465.9 ug/L 0.02490 0.005344 0.07591 5,902 1.367 Zn2062 A 1,801 ug/L 24,658 Cts/S 102.85 0.41712 Y_3600_R 24,658 0.34390 9,238.7 Cts/S 31.772 Y 2243 A 9,238.7 Cts/S 817.04 0.32456 251,730 Y_3600_A 251,730

SE6617-012

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 49 of 101

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 9:04:53PM Unknown Sample Type: Elem Units Stddev %RSD Flags Avg **Intensity Ratio** Ag3280_A 6.325 26.54 ug/L 1.679 -453.5 Al3961_R 75,070 ug/L 232.5 0.3097 66,050 As1891_A 55.86 9.044 ug/L 1.884 3.373 Au2427_A -0.8565 ug/L 1.253 146.3 111.0 B_2089_A 220.6 ug/L 1.118 0.5068 208.8 Ba4554_R 236.2 ug/L 0.4114 0.1741 13,840 Be3130_R 4.681 0.02861 0.6112 ug/L 284.3 Ca3158 R 54.800 ua/L 125.3 0.2286 87.180

Method Revision:

50

Ca3156_R	54,800	ug/L	125.3	0.2286	87,180
Cd2265_A	3.956	ug/L	0.4850	12.26	243.3
Co2286_A	40.98	ug/L	0.6306	1.539	193.1
Cr2677_A	308.0	ug/L	3.233	1.050	4,507
Cu3273_A	598.5	ug/L	6.366	1.064	8,282
Fe2599_R	145,300	ug/L	7,196	4.951	283,400
K_7664_R	19,630	ug/L	114.1	0.5810	12,790
Li6707_R	169.8	ug/L	0.8084	0.4761	1,849
Mg2025_A	39,580	ug/L	296.2	0.7485	7,412
Mn2576_R	1,376	ug/L	5.847	0.4248	15,340
Mo2020_A	7.973	ug/L	0.4364	5.474	16.04
Na5895_R	61,300	ug/L	185.4	0.3024	118,600
Ni2316_A	147.4	ug/L	1.341	0.9102	346.7
Pb2203_A	466.6	ug/L	4.752	1.018	509.7
Sb2068_A	-0.1975	ug/L	1.419	718.5	3.722
Se1960_A	5.833	ug/L	1.157	19.84	4.161
Si2516_R	1,017	ug/L	10.64	1.046	590.6
Sn1899_A	60.28	ug/L	0.02186	0.03627	33.87
Sr4215_R	347.7	ug/L	0.4492	0.1292	27,600
Ti3349_A	3,281	ug/L	50.57	1.541	104,700
TI1908_A	-2.541	ug/L	0.6600	25.98	-4.626
V_2924_A	279.3	ug/L	3.085	1.104	4,431
Zn2062_A	1,321	ug/L	13.85	1.048	4,295

229.44

68.069

3,461.4

0.93873

0.74225

1.4007

Method Revision:

SE6617-013

Y_3600_R

Y_2243_A

Y_3600_A

K6010-2011 Method Name:

EAM Analyst Name:

Cts/S

Cts/S

Cts/S

Acquire Date:	10/26/201	1 9:09:2	9PM			Sample Type:	Unknown	
Elem	Flags	A vg	Un	its	Stddev	%RSD)	Intensity Ratio
Ag3280_A		0.2286	u	g/L	0.7149	312.7		-1,311
Al3961_R		130,300	u	g/L	4,280	3.284		119,600
As1891_A		156.7	uş	g/L	0.1956	0.1249)	33.07
Au2427_A		-1.163	u	J/L	2.984	256.5	;	254.7
B_2089_A		199.0	u	g/L	0.9216	0.4631		194.2
Ba4554_R		305.4	ug	J/L	8.237	2.697	•	18,640
Be3130_R		10.28	u	J/L	0.09586	0.9323	1	808.0
Ca3158_R		29,790	u	J/L	814.4	2.733		49,420
Cd2265_A		4.785	ug	g/L	0.2322	4.852	!	492.3
Co2286_A		151.3	ug	J/L	0.1245	0.08226	;	647.0
Cr2677_A		282.0	ug	J/L	1.116	0.3957		4,271
Cu3273_A		772.3	ug	J/L	3.483	0.4511		10,900
Fe2599_R	F	324,400	uç	J/L	4,678	1.442		660,100
K_7664_R		20,880	ug	J/L	542.7	2.599		14,190
Li6707_R		307.7	ug	j/L	9.502	3.088		3,498
Mg2025_A		55,190	ug	J/L	90.98	0.1649		10,580
Mn2576_R		3,067	ug	J/L	97.55	3.181		35,640
Mo2020_A		60.22	uç	J/L	0.8841	1.468		130.5

Published: 10/27/2011 8:52:03AM

24,441

9,170.7

247,110

24,441

9,170.7

247,110

Method Name: Ki

K6010-2011

Analyst Name: EAM

AM

Method Revision:

50

Allalyst Hallic.							
Acquire Date:	10/26/2011	9:09:29PN	Л		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		ntensity Ratio
Na5895_R		49,570	ug/L	1,231	2.483		100,000
Ni2316_A		350.8	ug/L	1.209	0.3446		848.0
Pb2203 A		550.3	ug/L	1.736	0.3155		614.0
Sb2068 A	(0.4812	ug/L	0.9045	188.0		6.650
Se1960 A		8.529	ug/L	1.106	12.97		5.782
Si2516 R		2,202	ug/L	81.54	3.703		1,320
Sn1899 A		186.6	ug/L	1.686	0.9038		104.5
Sr4215_R		268.4	ug/L	8.382	3.123		22,200
Ti3349 A		4,671	ug/L	9.147	0.1958		153,100
TI1908_A		-5.906	ug/L	0.3729	6.314		-8.886
V 2924 A		380.1	ug/L	1.791	0.4710		6,216
Zn2062_A		4,702	ug/L	3.822	0.08128		15,650
Y 3600 R	2	25,500	Cts/S	421.15	1.6516		25,500
Y 2243 A	9	,386.6	Cts/S	9.3050	0.099131		9,386.6
Y_3600_A	2	53,750	Cts/S	50.964	0.020084		253,750

SE6617-014

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Flags	Acquire Date:	10/26/2	011 9:14:03	BPM		Sample Type:	Unknown
Ag3280_A 7,924 ug/L 1.325 16.72 -728.1 Al3961_R 115,600 ug/L 317.0 0.2743 102,300 As1991_A 89.05 ug/L 0.6820 0.7659 15.63 Au2427_A -1.317 ug/L 0.6820 0.7659 15.63 Au2427_A -1.317 ug/L 0.6428 0.1860 327.8 Ba4554_R 318.5 ug/L 0.5482 0.1721 18.740 Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 0.9941 9.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr2677_A 421.7 ug/L 0.1507 0.03574 6,23 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe259_R 224,500 ug/L <td>•</td> <td>Flags</td> <td>Avg</td> <td>Units</td> <td>Stddev</td> <td>%RSD</td> <td>Intensity Ratio</td>	•	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ai3961_R	Ag3280 A		7.924	ug/L	1.325	16.72	-728.1
Au2427_A -1.317 ug/L 3.110 236.2 172.7 B_2089_A 345.7 ug/L 0.6428 0.1860 327.8 Ba4554_R 318.5 ug/L 0.5482 0.1721 18,740 Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr2677_A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.72 0.3872 20,760 Li6707_R 257.6 ug/L 0.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 <td>-</td> <td></td> <td>115,600</td> <td></td> <td>317.0</td> <td>0.2743</td> <td>102,300</td>	-		115,600		317.0	0.2743	102,300
Au2427_A -1.317 ug/L 3.110 236.2 172.7 B_2089_A 345.7 ug/L 0.6428 0.1860 327.8 Ba4554_R 318.5 ug/L 0.5482 0.1721 18,740 Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr267_A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 12,27 0.3872 20,760 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mc2020_A 14.41 ug/L 0.2594 <td>As1891_A</td> <td></td> <td>89.05</td> <td>ug/L</td> <td>0.6820</td> <td>0.7659</td> <td></td>	As1891_A		89.05	ug/L	0.6820	0.7659	
Ba4554_R 318.5 ug/L 0.5482 0.1721 18,740 Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr2677_A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K,7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2202_A 14.41 ug/L 0.2594 1,800 29.91 Na5895_R 106,000 ug/L 32.16 </td <td></td> <td></td> <td>-1.317</td> <td>ug/L</td> <td>3.110</td> <td>236.2</td> <td></td>			-1.317	ug/L	3.110	236.2	
Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr267_A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5,205 440,300 K_7664_R 31,690 ug/L 12,27 0.3872 20,760 Li6707_R 257.6 ug/L 30,53 0.04895 11,740 Mg2025_A 62,380 ug/L 6,723 0.3088 24,400 Mm2576_R 2,177 ug/L 6,723 0.3088 24,400 Mo2020_A 14,41 ug/L 0.2594 1,800 29,91 N8589_R 106,000 ug/L 0.3951 <td>B_2089_A</td> <td></td> <td>345.7</td> <td>ug/L</td> <td>0.6428</td> <td>0.1860</td> <td></td>	B_2089_A		345.7	ug/L	0.6428	0.1860	
Be3130_R 7.212 ug/L 0.01674 0.2321 458.5 Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr267_A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Ni2316_A 189.1 ug/L 0.5875	Ba4554_R		318.5		0.5482	0.1721	18,740
Ca3158_R 65,820 ug/L 49.90 0.07581 105,300 Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr2677_A 421.7 ug/L 0.1507 0.03574 6.223 Cu3273_A 645.8 ug/L 0.5498 0.08813 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951	Be3130 R		7.212		0.01674	0.2321	458.5
Cd2265_A 8.537 ug/L 0.8112 9.502 417.5 Co2286_A 65.79 ug/L 0.09415 0.1431 303.8 Cr267_A 421.7 ug/L 0.1507 0.03574 6.223 Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb206B_A 7.471 ug/L 3.164	Ca3158 R		65,820		49.90	0.07581	105,300
Cr2677 A 421.7 ug/L 0.1507 0.03574 6,223 Cu3273 A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599 R 224,500 ug/L 11,690 5,205 440,300 K,7664 R 31,690 ug/L 122.7 0.3872 20,760 Li6707 R 257.6 ug/L 2.292 0.8899 2,824 Mg2025 A 62,380 ug/L 30.53 0.04895 11,740 Mn2576 R 2,177 ug/L 6.723 0.3088 24,400 Mo2020 A 14.41 ug/L 0.2594 1.800 29.91 Na5895 R 106,000 ug/L 32.16 0.03035 206,200 Ni2316 A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203 A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068 A 7.471 ug/L 3.164 42.36 8.238 Se1960 A 5.198 ug/L 1.4333	_		8.537	ug/L	0.8112	9.502	417.5
Cu3273 A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599 R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 0.808	Co2286 A		65.79	ug/L	0.09415	0.1431	303.8
Cu3273_A 645.8 ug/L 0.5498 0.08513 8,963 Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 0.800	Cr2677 A		421.7	ug/L	0.1507		6,223
Fe2599_R 224,500 ug/L 11,690 5.205 440,300 K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351			645.8	ug/L	0.5498	0.08513	
K_7664_R 31,690 ug/L 122.7 0.3872 20,760 Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 0.8808 1.346 36.84 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351	_		224,500	ug/L	11,690	5.205	440,300
Li6707_R 257.6 ug/L 2.292 0.8899 2,824 Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 <t< td=""><td>_</td><td></td><td></td><td></td><td>122.7</td><td>0.3872</td><td>20,760</td></t<>	_				122.7	0.3872	20,760
Mg2025_A 62,380 ug/L 30.53 0.04895 11,740 Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314				ug/L	2.292	0.8899	2,824
Mn2576_R 2,177 ug/L 6.723 0.3088 24,400 Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 Tl1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 <			62,380	ug/L	30.53	0.04895	11,740
Mo2020_A 14.41 ug/L 0.2594 1.800 29.91 Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 <t< td=""><td>-</td><td></td><td></td><td></td><td>6.723</td><td>0.3088</td><td>24,400</td></t<>	-				6.723	0.3088	24,400
Na5895_R 106,000 ug/L 32.16 0.03035 206,200 Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18	_		14.41		0.2594	1.800	29.91
Ni2316_A 189.1 ug/L 0.5875 0.3108 444.3 Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723	_		106,000		32.16	0.03035	206,200
Pb2203_A 547.0 ug/L 0.3951 0.07222 598.4 Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	-		189.1	ug/L	0.5875	0.3108	444.3
Sb2068_A 7.471 ug/L 3.164 42.36 8.238 Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	_		547.0	ug/L	0.3951	0.07222	598.4
Se1960_A 5.198 ug/L 1.433 27.56 4.609 Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	_		7.471	ug/L	3.164	42.36	8.238
Si2516_R 1,498 ug/L 22.21 1.483 869.4 Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 Tl1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	_			ug/L	1.433	27.56	4.609
Sn1899_A 65.42 ug/L 0.8808 1.346 36.84 Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 Tl1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	_		1,498	ug/L	22.21	1.483	869.4
Sr4215_R 454.5 ug/L 0.6351 0.1397 36,310 Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 Tl1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4			65.42	ug/L	0.8808	1.346	36.84
Ti3349_A 4,779 ug/L 8.202 0.1716 153,700 Ti1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4	_		454.5	ug/L	0.6351	0.1397	36,310
TI1908_A -3.363 ug/L 1.314 39.08 -6.642 V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4			4,779		8.202	0.1716	153,700
V_2924_A 401.0 ug/L 0.4206 0.1049 6,414 Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4			-3.363	ug/L	1.314	39.08	-6.642
Zn2062_A 3,241 ug/L 5.504 0.1698 10,600 Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4			401.0		0.4206	0.1049	6,414
Y_3600_R 24,584 Cts/S 524.18 2.1322 24,584 Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4			3,241		5.504	0.1698	10,600
Y_2243_A 9,218.4 Cts/S 6.2723 0.068041 9,218.4					524.18	2.1322	24,584
					6.2723	0.068041	9,218.4
					1,052.9	0.42281	249,020

SE6617-015

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 51 of 101

Method Name:

K6010-2011

Analyst Name: EAM Method Revision:

50

Analyst Name:	EAW					
Acquire Date:	10/26/2011	9:18:35PM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		8.946	ug/L	0.4165	4.655	-492.3
Al3961_R		80,670	ug/L	177.6	0.2202	72,430
As1891_A		61.04	ug/L	0.2331	0.3820	9.434
Au2427_A		-1.042	ug/L	0.4280	41.09	128.2
B_2089_A		249.6	ug/L	0.1097	0.04394	236.9
Ba4554_R		236.4	ug/L	1.006	0.4257	14,130
Be3130_R		5.256	ug/L	0.02932	0.5579	334.7
Ca3158_R		43,840	ug/L	164.0	0.3741	71,150
Cd2265_A		5.799	ug/L	0.08154	1.406	303.3
Co2286_A		45.28	ug/L	0.08859	0.1956	212.9
Cr2677_A		401.9	ug/L	2.713	0.6749	5,996
Cu3273_A		797.5	ug/L	4.676	0.5863	11,280
Fe2599_R	10	69,100	ug/L	693.8	0.4103	336,500
K_7664_R	:	22,510	ug/L	83.46	0.3708	14,960
Li6707_R		183.5	ug/L	0.1443	0.07867	2,039
Mg2025_A	4	45,660	ug/L	17.06	0.03736	8,579
Mn2576_R		1,530	ug/L	9.788	0.6395	17,410
Mo2020_A		12.80	ug/L	0.1802	1.408	26.45
Na5895_R	•	74,220	ug/L	226.8	0.3056	146,500
Ni2316_A		163.7	ug/L	0.4297	0.2625	385.9
Pb2203_A		1,381	ug/L	1.028	0.07446	1,527
Sb2068_A		26.74	ug/L	0.4974	1.860	14.70
Se1960_A		4.858	ug/L	2.705	55.68	4.097
Si2516_R		1,448	ug/L	8.924	0.6162	854.6
Sn1899_A		74.44	ug/L	0.6369	0.8557	41.66
Sr4215_R		313.0	ug/L	1.765	0.5640	25,350
Ti3349_A		3,542	ug/L	40.91	1.155	115,300
TI1908_A		-1.895	ug/L	0.6415	33.85	-4.677
V_2924_A		313.2	ug/L	1.832	0.5850	5,065
Zn2062_A		1,810	ug/L	2.043	0.1129	5,907
Y_3600_R	2	24,940	Cts/S	18.540	0.074337	24,940
Y_2243_A		,201.4	Cts/S	10.070	0.10944	9,201.4
Y_3600_A		52,070	Cts/S	1,592.4	0.63175	252,070

SE6617-016

Method Name:

K6010-2011

Method Revision:

50

EAM					
10/26/20	011 9:23:09P	М		Sample Type:	Unknown
Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
	4.413	ug/L	0.371 3	8.414	-1,201
	116,300	ug/L	682.1	0.5864	104,300
	161.3	ug/L	1.803	1.118	32.52
	-2.175	ug/L	0.1566	7.202	252.0
	171.9	ug/L	0.9254	0.5384	160.8
	195.4	ug/L	1.112	0.5689	11,690
	5.300	ug/L	0.01325	0.2500	369.0
	23,040	ug/L	62.20	0.2700	37,330
	6.831	ug/L	0.004959	0.07259	520.2
	156.3	ug/L	0.2839	0.1816	626.3
	490.7	ug/L	0.9413	0.1918	7,104
	1,104	ug/L	1.478	0.1340	15,070
F	337,500	ug/L	512.5	0.1519	671,000
	16,670	ug/L	150.4	0.9025	11,070
	277.6	ug/L	0.6435	0.2318	3,084
	51,170	ug/L	96.40	0.1884	9,407
	3,304	ug/L	19.96	0.6041	37,530
	37.29	ug/L	0.3291	0.8824	77.18
	10/26/20 Flags	10/26/2011 9:23:09P Flags Avg 4.413 116,300 161.3 -2.175 171.9 195.4 5.300 23,040 6.831 156.3 490.7 1,104 F 337,500 16,670 277.6 51,170 3,304	Flags Avg Units Flags Avg Units 4.413 ug/L 116,300 ug/L 161.3 ug/L -2.175 ug/L 171.9 ug/L 195.4 ug/L 5.300 ug/L 23,040 ug/L 6.831 ug/L 490.7 ug/L 1,104 ug/L 16,670 ug/L 277.6 ug/L 51,170 ug/L 3,304 ug/L	Flags Avg Units Stddev Flags Avg Units Stddev 4.413 ug/L 0.3713 116,300 ug/L 682.1 161.3 ug/L 1.803 -2.175 ug/L 0.1566 171.9 ug/L 0.9254 195.4 ug/L 0.01325 23,040 ug/L 0.01325 23,040 ug/L 0.004959 156.3 ug/L 0.2839 490.7 ug/L 0.9413 1,104 ug/L 1.478 F 337,500 ug/L 512.5 16,670 ug/L 0.6435 51,170 ug/L 0.6435 51,170 ug/L 96.40 3,304 ug/L 19.96	Flags Avg Units Stddev %RSD 4.413 ug/L 0.3713 8.414 116,300 ug/L 682.1 0.5864 161.3 ug/L 1.803 1.118 -2.175 ug/L 0.1566 7.202 171.9 ug/L 0.9254 0.5384 195.4 ug/L 1.112 0.5689 5.300 ug/L 0.01325 0.2500 23,040 ug/L 62.20 0.2700 6.831 ug/L 0.004959 0.07259 156.3 ug/L 0.9413 0.1918 490.7 ug/L 0.9413 0.1918 1,104 ug/L 1.478 0.1340 F 337,500 ug/L 512.5 0.1519 16,670 ug/L 150.4 0.9025 277.6 ug/L 0.6435 0.2318 51,170 ug/L 96.40 0.1884 3,304 ug/L 19.96 0.6041

Published:

10/27/2011 8:52:03AM

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

Acquire Date: Unknown 10/26/2011 9:23:09PM Sample Type: %RSD **Intensity Ratio** Stddev Avg Units Elem Flags 579,200 293,700 ug/L 1,385 0.4715 Na5895_R 704.8 0.1132 Ni2316_A 305.9 ug/L 0.3462 4,599 Pb2203_A 0.04047 4,238 ug/L 1.715 15.83 Sb2068_A 2.290 23.68 ug/L 0.5422 5.689 Se1960_A 9.536 ug/L 1.884 19.75 853.9 1.262 Si2516_R 1,459 ug/L 18.41 39.26 0.8031 Sn1899_A 71.59 ug/L 0.5749 0.5460 20,140 1.361 Sr4215_R 249.2 ug/L 0.01463 96,070 ug/L 0.4461 Ti3349_A 3,049 -7.607 10.93 ug/L 0.4521 TI1908_A -4.135 6,431 0.02784 ug/L 0.1143 V_2924_A 410.4 13,320 0.1602 6.684 Zn2062_A 4,172 ug/L 0.35332 24,915 Cts/S 88.027 24,915 Y_3600_R 0.078810 9,003.7 Cts/S 7.0958 Y_2243_A 9,003.7 243,950 Cts/S 958.27 0.39281 243,950 Y_3600_A

SE6617-016L

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 9:27:47PM Sample Type: Unknown

Intensity Ratio
-283.7
21,280
5.703
57.73
36.52
2,495
77.71
7,807
109.3
141.4
1,539
3,193
142,200
2,537
713.5
2,065
7,883
16.19
122,300
151.7
1,017
3.462
2.560
189.5
10.24
4,104
20,130
-1.656
1,367
2,897
24,165
9,134.0
247,590

CCV

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 53 of 101

CCV

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 9:32:15PM Sample Type:

Acquire Date:	10/26/20	011 9:32:15	² M		Sample Type: QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		502.2	ug/L	2.769	0.5514	11,830
Al3961_R		12,590	ug/L	43.82	0.3479	10,970
As1891_A		501.1	ug/L	0.3655	0.07295	165.4
Au2427_A		502.5	ug/L	5.488	1.092	1,907
B_2089_A		495.9	ug/L	0.1355	0.02733	475.6
Ba4554_R		489.9	ug/L	1.223	0.2497	28,230
Be3130_R		505.2	ug/L	1.112	0.2202	50,740
Ca3158_R		12,370	ug/L	13.84	0.1119	19,390
Cd2265_A		492.5	ug/L	0.1119	0.02272	7,811
Co2286_A		505.1	ug/L	0.1531	0.03031	1,949
Cr2677_A		491.1	ug/L	1.864	0.3796	7,220
Cu3273_A		495.7	ug/L	2.017	0.4068	7,001
Fe2599_R		12,380	ug/L	39.29	0.3172	23,850
K_7664_R		12,220	ug/L	109.3	0.8949	7,860
Li6707_R		507.4	ug/L	0.8486	0.1672	5,461
Mg2025_A		12,650	ug/L	5.633	0.04454	2,361
Mn2576_R		495.0	ug/L	2.255	0.4555	5,446
Mo2020_A		493.9	ug/L	1.510	0.3057	1,051
Na5895_R	W	11,240	ug/L	37.61	0.3346	21,490
Ni2316_A		502.4	ug/L	0.6977	0.1389	1,222
Pb2203_A		497.2	ug/L	1.411	0.2838	547.1
Sb2068_A		479.5	ug/L	7.919	1.651	184.9
Se1960_A		490.3	ug/L	3.232	0.6593	98.08
Si2516_R		12,500	ug/L	2.142	0.01714	7,083
Sn1899_A		502.4	ug/L	0.3885	0.07733	272.3
Sr4215_R		496.0	ug/L	1.533	0.3091	38,900
Ti3349_A		494.3	ug/L	4.279	0.8657	15,910
TI1908_A		500.6	ug/L	0.5910	0.1180	223.4
V_2924_A		504.9	ug/L	3.937	0.7798	7,978
Zn2062_A		500.6	ug/L	1.169	0.2336	1,623
Y_3600_R		24,128	Cts/S	161.53	0.66946	24,128
Y_2243_A		9,151.0	Cts/S	10.043	0.10975	9,151.0
Y_3600_A		249,540	Cts/S	1,394.7	0.55893	249,540

CCB

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

Method Revision:

50

50

Acquire Date:	10/26/20	11 9:36:40	PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	•	0.1732	ug/L	0.2775	160.2	-32.61
Al3961_R		-2.409	ug/L	14.31	594.1	18.36
As1891_A		0.6746	ug/L	1.243	184.3	-1.012
Au2427_A		0.4350	ug/L	0.6499	149.4	2.547
B_2089_A		0.3833	ug/L	0.1056	27.54	2.457
Ba4554_R		0.1618	ug/L	0.3320	205.1	107.4
Be3130_R		0.03506	ug/L	0.003268	9.323	0.2132
Ca3158_R		-0.6087	ug/L	0.7921	130.1	-43.52
Cd2265_A	0	.0003329	ug/L	0.06012	18,060	-1.691
Co2286_A		0.03974	ug/L	0.1203	302.7	5.918
Cr2677_A		0.05409	ug/L	0.1996	369.0	5.590
Cu3273_A		0.04902	ug/L	0.1097	223.8	-2.835
Fe2599_R		2.123	ug/L	2.282	107.5	7.543
K_7664_R		93.26	ug/L	14.79	15.85	69.76
Li6707_R		5.456	ug/L	0.2262	4.146	55.74
Mg2025_A		1.389	ug/L	0.009780	0.7043	-2.854
Mn2576_R		-0.4849	ug/L	0.2263	46.66	0.6478
Mo2020_A		1.403	ug/L	0.6111	43.55	2.083

Published:

10/27/2011 8:52:03AM

CCB

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 9:36:40PM Sample Type: QC

10/20/201	11 9.30.40	JE IVI		Sample Type.	QU
Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
	123.6	ug/L	13.27	10.74	264.8
	0.1422	ug/L	0.03567	25.09	-0.4680
	0.4265	ug/L	0.06729	15.78	-0.002265
	-0.3963	ug/L	1.030	260.0	0.5743
	1.176	ug/L	0.6555	55.73	2.243
	5.811	ug/L	7.794	134.1	14.09
	0.2585	ug/L	1.343	519.4	1.438
	0.2007	ug/L	0.1259	62.72	-55.61
	0.07458	ug/L	0.1011	135.6	-34.79
	-0.08528	ug/L	1.557	1,825	-0.4120
	0.2643	ug/L	0.2468	93.38	2.025
	-0.1359	ug/L	0.007187	5.289	0.09053
	24,018	Cts/S	122.99	0.51209	24,018
	9,209.4	Cts/S	30.477	0.33093	9,209.4
	252,840	Cts/S	2,682.4	1.0609	252,840
	Flags	Flags Avg	Flags Avg Units 123.6 ug/L 0.1422 ug/L 0.4265 ug/L -0.3963 ug/L 1.176 ug/L 5.811 ug/L 0.2585 ug/L 0.2007 ug/L 0.07458 ug/L -0.08528 ug/L 0.2643 ug/L -0.1359 ug/L 24,018 Cts/S 9,209.4 Cts/S	Flags Avg Units Stddev 123.6 ug/L 13.27 0.1422 ug/L 0.03567 0.4265 ug/L 0.06729 -0.3963 ug/L 1.030 1.176 ug/L 0.6555 5.811 ug/L 7.794 0.2585 ug/L 1.343 0.2007 ug/L 0.1259 0.07458 ug/L 0.1011 -0.08528 ug/L 1.557 0.2643 ug/L 0.2468 -0.1359 ug/L 0.007187 24,018 Cts/S 122.99 9,209.4 Cts/S 30.477	Flags Avg Units Stddev %RSD 123.6 ug/L 13.27 10.74 0.1422 ug/L 0.03567 25.09 0.4265 ug/L 0.06729 15.78 -0.3963 ug/L 1.030 260.0 1.176 ug/L 0.6555 55.73 5.811 ug/L 7.794 134.1 0.2585 ug/L 1.343 519.4 0.2007 ug/L 0.1259 62.72 0.07458 ug/L 0.1011 135.6 -0.08528 ug/L 1.557 1,825 0.2643 ug/L 0.2468 93.38 -0.1359 ug/L 0.007187 5.289 24,018 Cts/S 122.99 0.51209 9,209.4 Cts/S 30.477 0.33093

SE6617-016A

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 9:41:16PM Sample Type: Unknown

Acquire Date:	10/26/2011	9:41:10	PIN				Sample Type:	Ulikii		
Elem	Flags	Avg		Units	S	tddev	%R		lı	ntensity Ratio
Ag3280_A		486.4		ug/L		4.327	0.88	396		9 ,969
Al3961_R	1	25,500		ug/L		1,243	0.99	900		111,100
As1891_A		637.1		ug/L		5.284	0.82	294		187.2
Au2427_A		-0.4871		ug/L		1.839		7.5		252.2
B_2089_A		619.4		ug/L		1.316	0.2	124		574.7
Ba4554_R		653.6		ug/L		1.312	0.20	800		38,360
Be3130_R		488.4		ug/L		2.763	0.56	357		49,840
Ca3158_R		27,800		ug/L		188.1	0.67			44,480
Cd2265_A		458.9		ug/L	C).7162	0.1			7,455
Co2286_A		614.0		ug/L		3.276	0.53			2,329
Cr2677_A		924.9		ug/L		16.39		772		13,270
Cu3273_A		1,534		ug/L		24.85		320		20,920
Fe2599_R	F 3	325,700		ug/L		0,970		369		638,900
K_7664_R		25,400		ug/L		435.8		716		16,640
Li6707_R		736.0		ug/L	C).7189	0.09			8,076
Mg2025_A		55,210		ug/L		147.8	0.20			10,030
Mn2576_R		3,755		ug/L		46.86		248		42,090
Mo2020_A		502.7		ug/L		1.006	0.20			1,039
Na5895_R	2	97,600		ug/L		6,211		087		579,200
Ni2316_A		748.5		ug/L		3.558	0.4			1,746
Pb2203_A		4,607		ug/L		3.954	0.08			4,938
Sb2068_A		497.3		ug/L		4.684	0.9			192.1
Se1960_A		487.3		ug/L		2.866	0.58			96.54
Si2516_R		1,716		ug/L		23.32		359		995.0
Sn1899_A		552.9		ug/L		1.447	0.20			291.1
Sr4215_R		700.4		ug/L		4.203	0.60			56,010
Ti3349_A		3,410		ug/L		38.72		135		106,900
TI1908_A		428.9		ug/L		1.512	0.3			180.6
V_2924_A		867.5		ug/L		11.62		339		13,420
Zn2062_A		4,542		ug/L		20.77	0.4	572		14,330
Y_3600_R		24,596		Cts/S		60.18	2.6			24,596
Y_2243_A		8,894.8		Cts/S		26.859	0.30			8,894.8
Y_3600_A	2	242,680		Cts/S	2	,233.0	0.920	016		242,680

SE6617-016D

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 55 of 101

50

Method Revision:

SE6617-016D

Method Name:

K6010-2011

Analyst Name: EAM

Method Revision:

50

Analyst Name.	LAIVI					
Acquire Date:	10/26/20	011 9:45:5	1PM		Sample Type:	Unknown
Elem_	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.575	ug/L	1.589	61.69	-1,370
Al3961_R		129,900	ug/L	426.8	0.3286	116,500
As1891_A		169.8	ug/L	1.499	0.8830	34.41
Au2427_A		-3.541	ug/L	2.228	62.92	275.2
B_2089_A		183.2	ug/L	0.9459	0.5164	175.1
Ba4554_R		219.4	ug/L	0.5003	0.2280	13,120
Be3130_R		5.953	ug/L	0.01542	0.2590	429.0
Ca3158_R		27,290	ug/L	33.96	0.1245	44,260
Cd2265_A		8.582	ug/L	0.6751	7.867	594.7
Co2286_A		171.3	ug/L	1.088	0.6349	699.3
Cr2677_A		338.2	ug/L	1.029	0.3044	4,997
Cu3273_A		574.9	ug/L	0.4235	0.07367	7,869
Fe2599_R	F	365,600	ug/L	10,260	2.806	727,300
K_7664_R		17,840	ug/L	70.82	0.3969	11,860
Li6707_R		318.3	ug/L	1.795	0.5640	3,538
Mg2025_A		57,430	ug/L	355.4	0.6188	10,790
Mn2576_R		3,636	ug/L	1.948	0.05358	41,320
Mo2020_A		45.19	ug/L	1.096	2.426	95.68
Na5895_R		80,970	ug/L	94.09	0.1162	159,800
Ni2316_A		341.0	ug/L	1.420	0.4165	803.6
Pb2203_A		758.4	ug/L	4.378	0.5772	834.2
Sb2068_A		14.08	ug/L	1.561	11.09	12.45
Se1960_A		7.492	ug/L	1.204	16.07	5.605
Si2516_R		1,216	ug/L	8.503	0.6991	711.6
Sn1899_A		50.08	ug/L	0.2382	0.4756	28.45
Sr4215_R		279.6	ug/L	0.7208	0.2578	22,620
Ti3349_A		3,193	ug/L	0.2603	0.008155	102,200
TI1908_A		-4.680	ug/L	0.1676	3.581	-8.636
V_2924_A		485.4	ug/L	0.6036	0.1243	7,731
Zn2062_A		5,641	ug/L	29.06	0.5151	18,400
Y_3600_R		24,927	Cts/S	7.9785	0.032008	24,927
Y_2243_A		9,198.6	Cts/S	27.304	0.29683	9,198.6
Y_3600_A		247,830	Cts/S	885.02	0.35711	247,830

SE6617-016S

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/20)11 9:50:30F	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		53.31	ug/L	0.9577	1.797	-51.32
Al3961_R		142,400	ug/L	855.9	0.6009	126,800
As1891_A		248.2	ug/L	1.572	0.6333	63.28
Au2427_A		-2.449	ug/L	1.105	45.14	257.7
B_2089_A		620.8	ug/L	1.018	0.1640	596.0
Ba4554_R		2,084	ug/L	1.611	0.07727	122,700
Be3130_R		54.94	ug/L	0.3882	0.7066	5,413
Ca3158_R		28,430	ug/L	62.70	0.2206	45,730
Cd2265_A		233.7	ug/L	0.1513	0.06473	4,164
Co2286_A		592.0	ug/L	0.2797	0.04725	2,348
Cr2677_A		598.8	ug/L	1.108	0.1850	8,912
Cu3273_A		851.3	ug/L	1.347	0.1582	11,920
Fe2599_R	F	330,800	ug/L	5,029	1.520	652,700
K_7664_R		30,350	ug/L	62.69	0.2065	20,000
Li6707_R		754.1	ug/L	0.3971	0.05265	8,319
Mg2025_A		58,730	ug/L	175.6	0.2990	11,120
Mn2576_R		3,677	ug/L	20.99	0.5709	41,430
Mo2020_A		310.4	ug/L	2.068	0.6662	668.0

Published:

10/27/2011 8:52:03AM

Page 56 of 101

SE6617-016S

Acquire Date:

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

F1	A	11-14-	Ctddox	0/ DCD	
10/26/2011	9:50:30PM			Sample Type:	Unknown

Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		79,220	ug/L	125.9	0.1589	155,000
Ni2316 A		765.0	ug/L	2.775	0.3627	1,858
Pb2203 A		934.2	ug/L	1.356	0.1451	1,034
Sb2068 A		62.01	ug/L	1.342	2.164	30.93
Se1960 A		97.80	ug/L	0.4764	0.4871	23.56
Si2516 R		1,881	ug/L	10.02	0.5328	1,095
Sn1899 A		489.4	ug/L	0.4571	0.09341	268.6
Sr4215 R		759.1	ug/L	1.846	0.2432	61,040
Ti3349 A		4,253	ug/L	1.616	0.03799	138,000
TI1908 A		82.06	ug/L	1.616	1.970	29.56
V 2924 A		1,035	ug/L	1.492	0.1441	16,620
Zn2062 A		2,884	ug/L	1.151	0.03991	9,476
Y 3600 R		24,725	Cts/S	86.347	0.34923	24,725
Y_2243_A		9,266.5	Cts/S	21.887	0.23619	9,266.5
Y_3600_A		251,160	Cts/S	250.77	0.099845	251,160

SE6617-017						
Method Name:	K6010-2011			Me	thod Revision:	50
Analyst Name:	EAM					
Acquire Date:	10/26/2011 9:55:01F	PΜ		Sample Type:	Unknown	
Elem	Flags Avg	Units	Stddev	%RSD	Inte	nsity Ratio
Ag3 28 0 A	4.240	ug/L	0.3410	8.042		-644.3
Al3961_R	88,300	ug/L	211.7	0.2398		78,270
As1891_A	78.52	ug/L	0.06745	0.08590		14.42
Au2427_A	-1.709	ug/L	0.1103	6.453		137.0
B_2089_A	265.6	ug/L	0.7402	0.2786		250.9
Ba4554_R	239.8	ug/L	1.167	0.4866		14,150
Be3130_R	5.362	ug/L	0.1400	2.612		328.8
Ca3158_R	91,170	ug/L	51.62	0.05662		146,200
Cd2265_A	3.654	ug/L	0.2106	5.763		285.4
Co2286_A	51.55	ug/L	0.2868	0.5564		238.1
Cr2677_A	306.7	ug/L	2.505	0.8166		4,482
Cu3273_A	412.3	ug/L	6.118	1.484		5,634
Fe2599_R	182,900	ug/L	1,396	0.7635		359,400
K_7664_R	23,210	ug/L	25.91	0.1116		15,240
Li6707_R	196.2	ug/L	0.1971	0.1005		2,153
Mg2025_A	48,110	ug/L	131.8	0.2740		9,004
Mn2576_R	1,735	ug/L	2.279	0.1314		19,480
Mo2020_A	10.36	ug/L	0.1037	1.001		21.11
				0.4700		445.000

129.7

0.3105

0.2335

0.1969

5.480

7.661

0.7192

0.7222

0.9767

4.954

1.741

96.090

10.728

2,486.8

41.76

0.1732

0.2040

0.07458

21.29

84.09

1.433

0.1609

1.112

47.53

1.620

0.1833

0.39022

0.11707

1.0094

0.5070

SE6617-018

Na5895_R

Ni2316_A

Pb2203_A

Sb2068_A

Se1960_A

Si2516_R

Sn1899_A

Sr4215_R

Ti3349 A

TI1908_A

V 2924 A

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

Method Name:

K6010-2011

74,870

152.2

313.1

6.517

1,511

50.18

448.9

3,754

-2.055

305.7

949.9

24,625

9,163.4

246,360

0.9249

ug/L

Cts/S

Cts/S

Cts/S

Method Revision:

50

145,900

355.2

338.7

4.708

4.504

879.6

28.39

35,920

-5.024

4,840

3,087

24,625

9.163.4

246,360

119,500

Published:

10/27/2011 8:52:03AM

Page 57 of 101

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 9:59:41PM Sample Type: Unknown

Acquire Date:	10/26/2011	9:59:4	1PM			Sample Type:	Unknown	
Elem_	Flags	Avg		Units	Stddev	%RSD	Intensity Ratio	
Ag3280_A		8.332		ug/L	1.312	15.75	-644.3	
Al3961_R		96,740		ug/L	385.7	0.3987	86,610	
As1891_A		88.29		ug/L	1.334	1.511	16.32	
Au2427_A		0.1714		ug/L	1.533	894.1	161.3	
B_2089_A		281.7		ug/L	0.1412	0.05012	265.3	
Ba4554_R		294.6		ug/L	0.4467	0.1516	17,540	
Be3130_R		6.182		ug/L	0.02864	0.4633	403.2	
Ca3158_R		49,080		ug/L	284.1	0.5789	79,450	
Cd2265_A		10.64		ug/L	0.4838	4.548	423.9	
Co2286_A		59.17		ug/L	0.03200	0.05408	269.1	
Cr2677_A		444.5		ug/L	2.725	0.6129	6,566	
Cu3273_A		793.1		ug/L	5.510	0.6948	11,080	
Fe2599_R	2	205,900		ug/L	5,159	2.505	408,600	
K_7664_R		25,460		ug/L	145.4	0.5711	16,880	
Li6707_R		220.2		ug/L	1.089	0.4946	2,442	
Mg2025_A		52,950		ug/L	24.96	0.04713	9,878	
Mn2576_R		1,935		ug/L	15.52	0.8017	21,950	
Mo2020_A		14.56		ug/L	0.002924	0.02009	29.99	
Na5895_R		82,980		ug/L	461.4	0.5560	163,400	
Ni2316_A		191.9		ug/L	0.4043	0.2106	449.0	
Pb2203_A		1,496		ug/L	4.446	0.2972	1,642	
Sb2068_A		143.5		ug/L	0.03933	0.02740	59.84	
Se1960_A		7.376		ug/L	1.782	24.16	4.797	
Si2516_R		1,285		ug/L	22.34	1.739	755.7	
Sn1899_A		72.49		ug/L	1.020	1.408	40.34	
Sr4215_R		372.2		ug/L	0.7606	0.2044	30,070	
Ti3349_A		3,997		ug/L	15.40	0.3853	128,800	
TI1908_A		-3.434		ug/L	0.4132	12.03	-6.042	
V_2924_A		364.7		ug/L	3.009	0.8250	5,841	
Zn2062_A		7,783		ug/L	7.789	0.1001	25,230	
Y_3600_R		24,871		Cts/S	428.13	1.7214	24,871	
Y_2243_A		9,139.8		Cts/S	7.0614	0.077260	9,139.8	
Y_3600_A	2	249,510		Cts/S	1,402.3	0.56201	249,510	

SE6617-019

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 10:04:17PM Sample Type: Unknown

Acquire Date:	10/20/2	011 10.04.1	/ F IVI		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		3.366	ug/L	1.554	46.18	-1,071
Al3961_R		104,500	ug/L	88.37	0.08456	92,280
As1891_A		89.17	ug/L	2.148	2.409	11.93
Au2427_A		-2.203	ug/L	1.724	78.25	215.2
B_2089_A		103.3	ug/L	0.3447	0.3339	100.2
Ba4554_R		120.3	ug/L	0.1931	0.1605	7,123
Be3130_R		4.174	ug/L	0.05828	1.396	305.3
Ca3158_R		20,270	ug/L	25.59	0.1262	32,350
Cd2265_A		3.790	ug/L	0.8853	23.36	425.0
Co2286_A		122.1	ug/L	0.5285	0.4327	502.7
Cr2677_A		249.0	ug/L	0.4444	0.1785	3,738
Cu3273_A		330.5	ug/L	1.393	0.4216	4,548
Fe2599_R	W	288,800	ug/L	11,480	3.974	565,300
K_7664_R		10,870	ug/L	37.78	0.3475	7,115
Li6707_R		244.8	ug/L	0.7699	0.3145	2,677
Mg2025_A		45,850	ug/L	28.73	0.06265	8,681
Mn2576_R		2,445	ug/L	7.988	0.3267	27,350
Mo2020_A		15.93	ug/L	0.08152	0.5117	33.38

Published: 10/27/2011 8:52:03AM

50

Method Revision:

Method Revision:

Method Name: K60

K6010-2011

Analyst Name: EAM

EAM

Method Revision:

50

Acquire Date:	10/26/20	11 10:04:17	PM		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895 R		38,720	ug/L	49.26	0.1272		75,210
Ni2316 A		265.0	ug/L	0.2856	0.1078		628.8
Pb2203 A		404.3	ug/L	3.139	0.7764		445.8
Sb2068 A		4.715	ug/L	0.6213	13.18		7.595
Se1960 A		4.886	ug/L	4.435	90.76		4.670
Si2516 R		1,360	ug/L	16.03	1.179		785.0
Sn1899 A		31.82	ug/L	0.1109	0.3485		18.69
Sr4215 R		191.2	ug/L	0.006791	0.003551		15,200
Ti3349 A		2,054	ug/L	3.117	0.1518		66,700
TI1908 A		-3.311	ug/L	0.3209	9.690		-5.939
V 2924 A		273.1	ug/L	0.2307	0.08448		4,427
Zn2062 A		1,123	ug/L	1.933	0.1721		3,692
Y 3600 R		24,533	Cts/S	95.230	0.38817		24,533
Y 2243 A		9.269.4	Cts/S	14.121	0.15234		9,269.4
Y_3600_A		251,510	Cts/S	1,078.4	0.42879		251,510

SE6617-020

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/2011 10:08:50PM				Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		7.057	ug/L	0.7039	9.974	-566 .3
Al3961_R		92,650	ug/L	381.1	0.4114	82,420
As1891 A		76.32	ug/L	0.7564	0.9910	14.16
Au2427 A		-0.6794	ug/L	0.6346	93.41	138.7
B_2089_A		246.8	ug/L	1.370	0.5550	235.7
Ba4554_R		261.2	ug/L	0.3470	0.1329	15,460
Be3130 R		5.626	ug/L	0.05680	1.010	349.1
Ca3158_R		32,650	ug/L	17.79	0.05447	52,510
Cd2265_A		5.800	ug/L	0.1327	2.287	315.2
Co2286 A		53.89	ug/L	0.2756	0.5114	250.6
Cr2677_A		367.6	ug/L	0.2003	0.05449	5,443
Cu3273_A		577.8	ug/L	0.5271	0.09122	8,066
Fe2599_R		177,200	ug/L	1,266	0.7147	349,400
K_7664_R		24,010	ug/L	85.31	0.3554	15,810
Li6707_R		212.2	ug/L	1.384	0.6520	2,338
Mg2025 A		47,940	ug/L	97.53	0.2035	9,057
Mn2576_R		1,744	ug/L	6.561	0.3763	
Mo2020_A		19.49	ug/L	0.3072	1.576	40.96
Na5895 R		76,030	ug/L	518.6	0.6821	148,700
Ni2316_A		173.7	ug/L	0.5333	0.3070	412.0
Pb2203 A		434.1	ug/L	1.718	0.3959	476.3
Sb2068 A		4.288	ug/L	0.1464	3.414	6.135
Se1960_A		7.141	ug/L	2.098	29.38	4.692
Si2516_R		1,340	ug/L	1.142	0.08526	783.8
Sn1899_A		63.80	ug/L	0.7199	1.128	36.09
Sr4215_R		266.5	ug/L	0.6613	0.2482	21,370
Ti3349_A		3,899	ug/L	13.46	0.3451	125,900
TI1908_A		-1.545	ug/L	0.9730	62.98	
V 2924 A		368.9	ug/L	0.7071	0.1917	5,918
Zn2062_A		1,425	ug/L	0.4079	0.02863	
Y 3600 R		24,712	Cts/S	231.21	0.93562	24,712
Y 2243 A		9,251.3	Cts/S	12.514	0.13526	9,251.3
Y_3600_A		250,040	Cts/S	1,245.4	0.49807	250,040

SE6778-002

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 59 of 101

Method Name: K6010-2011

Analyst Name:

Method Revision: 50

Acquire Date:	10/26/2011 10:13:27PM				Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2366	ug/L	0.1031	43.57	-166.8
Al3961_R		42,710	ug/L	131.6	0.3081	37,360
As1891_A		15.19	ug/L	1.107	7.286	1.946
Au2427_A		-0.3510	ug/L	0.9544	271.9	24.04
B_2089_A		9.498	ug/L	0.4023	4.236	11.24
Ba4554_R		173.9	ug/L	0.8831	0.5077	10,160
Be3130_R		1.470	ug/L	0.008308	0.5653	103.4
Ca3158_R		12,680	ug/L	8.986	0.07087	20,020
Cd2265_A		0.9443	ug/L	0.03359	3.557	56.69
Co2286_A		2.447	ug/L	0.1079	4.408	22.29
Cr2677_A		57.51	ug/L	0.01683	0.02926	875.8
Cu3273_A		20.04	ug/L	0.2567	1.281	263.7
Fe2599_R		33,620	ug/L	65.06	0.1935	65,190
K_7664_R		926.7	ug/L	30.45	3.286	609.8
Li6707_R		24.83	ug/L	0.3665	1.476	266.5
Mg2025_A		1,536	ug/L	0.9579	0.06235	291.2
Mn2576_R		144.4	ug/L	0.06770	0.04690	1,607
Mo2020_A		1.919	ug/L	0.04910	2.558	3.227
Na5895_R		368.5	ug/L	8.664	2.351	738.8
Ni2316_A		10.38	ug/L	0.2348	2.263	22.22
Pb2203_A		93.25	ug/L	0.7612	0.8163	99.80
Sb2068_A		-1.113	ug/L	1.921	172.7	1.100
Se1960_A		1.776	ug/L	1.300	73.24	2.819
Si2516_R		4,063	ug/L	9.399	0.2313	2,325
Sn1899_A		15.79	ug/L	0.5078	3.216	10.04
Sr4215_R		89.92	ug/L	0.3653	0.4063	7,041
Ti3349_A		734.7	ug/L	2.120	0.2886	24,240
TI1908_A		-1.180	ug/L	0.4356	36.93	-1.453
V_2924_A		68.28	ug/L	0.2112	0.3093	1,120
Zn2062_A		72.38	ug/L	0.4252	0.5875	240.9
Y_3600_R		24,295	Cts/S	84.030	0.34588	24,295
Y_2243_A		9,371.6	Cts/S	22.393	0.23894	9,371.6
Y_3600_A		255,720	Cts/S	1,547.0	0.60495	255,720

SE6778-003

Method Name: K6010-2011

Analyst Name: EAM Method Revision:

50

Analyst Name:	EAW					
Acquire Date:	10/26/20	011 10:18:00	PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.6217	ug/L	0.5993	96.40	-322.4
Al3961_R		81,050	ug/L	930.8	1.148	72,450
As1891_A		39.91	ug/L	0.2336	0.5854	8.101
Au2427_A		-1.044	ug/L	0.2915	27.91	51.55
B_2089_A		15.22	ug/L	0.1178	0.7738	17.02
Ba4554_R		272.8	ug/L	0.03708	0.01359	16,220
Be3130_R		5.065	ug/L	0.06736	1.330	482.5
Ca3158_R		29,050	ug/L	118.0	0.4063	46,930
Cd2265_A		0.1791	ug/L	0.09857	55.04	98.96
Co2286_A		44.66	ug/L	0.2028	0.4540	191.8
Cr2677_A		99.06	ug/L	0.6353	0.6414	1,535
Cu3273_A		10.16	ug/L	1.057	10.40	102.5
Fe2599_R		74,860	ug/L	1,088	1.454	148,300
K_7664_R		1,142	ug/L	41.63	3.646	765.5
Li6707_R		86.69	ug/L	1.599	1.844	957.8
Mg2025_A		5,799	ug/L	15.53	0.2678	1,129
Mn2576_R		290.6	ug/L	1.557	0.5358	3,301
Mo2020_A		1.549	ug/L	0.1699	10.97	2.452

10/27/2011 8:52:03AM Published:

Method Name:

Analyst Name:

K6010-2011

EAM

Method Revision:

Flom	Flage	Δνα	Units	Stddev	%RSD	
Acquire Date:	10/26/2011	10:18:00PM			Sample Type:	Unknown
/ wildry of i vario.						

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		696.8	ug/L	8.720	1.251	1,400
Ni2316 A		55.67	ug/L	0.7777	1.397	134.2
Pb2203 A		74.39	ug/L	0.2577	0.3464	75.64
Sb2068 A		-2.604	ug/L	0.3820	14.67	1.375
Se1960 A		3.932	ug/L	1.581	40.22	3.726
Si2516 R		6,019	ug/L	44.27	0.7355	3,514
Sn1899 A		14.85	ug/L	1.390	9.358	9.702
Sr4215_R		213.3	ug/L	1.073	0.5031	17,170
Ti3349 A		659.4	ug/L	0.1591	0.02413	22,140
TI1908_A		-1.040	ug/L	0.6113	58.75	-1.676
V 2924 A		124.7	ug/L	0.1860	0.1492	2,082
Zn2062 A		42.36	ug/L	0.3726	0.8798	143.6
Y 3600 R		24,834	Cts/S	219.91	0.88552	24,834
Y 2243 A		9,550.3	Cts/S	34.017	0.35618	9,550.3
Y_3600_A		260,280	Cts/S	537.36	0.20646	260,280

CEC770 004

SE6778-004					
Method Name:	K6010-2011			Me	thod Revision: 50
Analyst Name:	EAM				
Acquire Date:	10/26/2011 10:22:2	29PM		Sample Type:	Unknown
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	1.365	ug/L	0.2005	14.69	-219.6
Al3961_R	60,040	ug/L	45.60	0.07596	53,000
As1891_A	19.50	ug/L	0.3292	1.688	2.319
Au2427_A	-0.9039	ug/L	0.5067	56.06	39.16
B_2089_A	23.15	ug/L	0.1247	0.5388	24.36
Ba4554_R	477.5	ug/L	0.06020	0.01261	27,960
Be3130_R	2.373	ug/L	0.01805	0.7605	198.9
Ca3158_R	61,270	ug/L	59.55	0.09719	97,780
Cd2265_A	45.10	ug/L	0.02673	0.05927	799.9
Co2286_A	12.62	ug/L	0.2990	2.368	62.03
Cr2677_A	1,013	ug/L	18.72	1.848	15,070
Cu3273_A	113.9	ug/L	2.311	2.029	1,594
Fe2599_R	55,050	ug/L	83.86	0.1523	107,700
K_7664_R	1,218	ug/L	17.26	1.417	805.5
Li6707_R	40.14	ug/L	0.4998	1.245	436.4
Mg2025_A	3,643	ug/L	2.176	0.05971	692.2
Mn2576_R	357.0	ug/L	2.567	0.7192	3,997
Mo2020_A	5.055	ug/L	0.2886	5.709	10.27

10102020_/\	0.000	~g, =			
Na5895 R	495.0	ug/L	12.08	2.441	991.1
Ni2316 A	30.07	ug/L	0.2654	0.8826	69.52
Pb2203_A	1,688	ug/L	0.4075	0.02413	1,902
Sb2068 A	3.008	ug/L	1.178	39.16	5.908
Se1960 A	4.123	ug/L	0.1556	3.775	3.489
Si2516 R	4,285	ug/L	23.65	0.5519	2,473
Sn1899 A	20.11	ug/L	0.5606	2.788	12.42
Sr4215 R	208.0	ug/L	0.1142	0.05491	16,530
Ti3349 A	703.7	ug/L	13.88	1.973	22,930
TI1908_A	-0.9580	ug/L	0.4740	49.48	-1.691
V 2924 A	119.8	ug/L	2.637	2.201	1,895
Zn2062 A	2,200	ug/L	4.607	0.2094	7,307
Y 3600 R	24,519	Cts/S	74.430	0.30357	24,519
Y 2243 A	9,370.2	Cts/S	19.740	0.21066	9,370.2
Y_3600_A	252,620	Cts/S	5,192.6	2.0555	252,620

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 61 of 101

CCV

K6010-2011 50 Method Name: Method Revision:

 EAM Analyst Name:

Acquire Date:	10/26/20	011 10:27:0	3PM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		499.7	ug/L	3.921	0.7847	11,770
Al3961_R		12,540	ug/L	19.66	0.1567	11,060
As1891_A		495.6	ug/L	0.7940	0.1602	164.4
Au2427, A		496.7	ug/L	3.746	0.7543	1,894
B_2089_A		491.9	ug/L	1.239	0.2519	474.0
Ba4554_R		485.8	ug/L	0.5582	0.1149	28,320
Be3130_R		505.7	ug/L	0.5018	0.09924	51,390
Ca3158_R		12,320	ug/L	21.79	0.1769	19,540
Cd2265_A		488.6	ug/L	0.8655	0.1772	7,786
Co2286_A		501.4	ug/L	0.01352	0.002697	1,944
Cr2677_A		487.2	ug/L	4.302	0.8831	7,164
Cu3273_A		492.4	ug/L	5.228	1.062	6,955
Fe2599_R		12,330	ug/L	86.41	0.7008	24,020
K_7664_R		12,000	ug/L	59.21	0.4935	7,809
Li6707_R		501.5	ug/L	0.02653	0.005289	5,460
Mg2025_A		12,520	ug/L	16.31	0.1302	2,349
Mn2576_R		494.0	ug/L	0.1357	0.02747	5,498
Mo2020_A		488.5	ug/L	3.148	0.6444	1,044
Na5895_R	W	11,410	ug/L	15.25	0.1337	22,060
Ni2316_A		499.1	ug/L	0.6617	0.1326	1,220
Pb2203_A		496.4	ug/L	1.642	0.3308	548.9
Sb2068_A		474.7	ug/L	9.877	2.081	184.0
Se1960_A		489.5	ug/L	1.446	0.2953	98.40
Si2516_R		12,480	ug/L	74.27	0.5950	7,158
Sn1899_A		497.9	ug/L	1.392	0.2796	271.1
Sr4215_R		491.9	ug/L	0.2457	0.04994	39,020
Ti3349_A		490.2	ug/L	5.541	1.130	15,780
Tl1908_A		496.1	ug/L	1.215	0.2448	222.4
V_2924_A		504.8	ug/L	3.547	0.7028	7,978
Zn2062_A		498.1	ug/L	0.7685	0.1543	1,623
Y_3600_R		24,408	Cts/S	373.16	1.5288	24,408
Y_2243_A		9,195.8	Cts/S	20.015	0.21765	9,195.8
Y_3600_A		249,570	Cts/S	2,851.0	1.1424	249,570

CCB

K6010-2011 Method Name: Method Revision: 50

Analyst Name:	EAM						
Acquire Date:	10/26/20	11 10:31:28	8PM		Sample Type:	QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Ag3280_A		0.3799	ug/L	0.04375	11.52	-27.61	-
Al3961_R		-1.626	ug/L	1.124	69.09	19.05	
As1891_A		0.7188	ug/L	0.5126	71.31	-0.9923	
Au2427_A		0.4306	ug/L	0.4002	92.95	2.513	
B_2089_A		0.5544	ug/L	0.2069	37.31	2.612	
Ba4554_R		-0.1171	ug/L	0.1603	136.9	91.63	
Be3130_R		0.03079	ug/L	0.03837	124.6	-0.2180	
Ca3158_R		1.530	ug/L	0.9919	64.85	-40.23	
Cd2265_A		0.01600	ug/L	0.05753	359.6	-1.441	
Co2286_A		0.08855	ug/L	0.1831	206.7	6.081	
Cr2677_A		0.1626	ug/L	0.05874	36.12	7.183	
Cu3273_A		0.5072	ug/L	0.9114	179.7	3.625	
Fe2599_R		1.358	ug/L	0.1870	13.77	6.077	
K_7664_R		34.95	ug/L	6.210	17.77	32.47	
Li6707_R		3.809	ug/L	2.979	78.21	38.05	
Mg2025_A		2.722	ug/L	0.04778	1.755	-2.593	
Mn2576_R		-0.4659	ug/L	0.3745	80.37	0.8513	
Mo2020_A		1.605	ug/L	0.1983	12.35	2.502	

10/27/2011 8:52:03AM Page 62 of 101 Published:

CCB

Method Name: K6010-2011

Analyst Name: EAM

K6010-2011 Method Revision:

Allalyst Hallic.	L/ (141						
Acquire Date:	10/26/201	1 10:31:28	3PM		Sample Type:	QC	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895 R		45.02	ug/L	15.22	33.80		115.6
Ni2316 A		0.4682	ug/L	0.2408	51.43		0.3315
Pb2203 A		-0.1573	ug/L	0.1941	123.3		-0.6495
Sb2068 A		0.5252	ug/L	1.116	212.5		0.9269
Se1960 A		3.343	ug/L	0.1981	5.927		2.659
Si2516 R		7.217	ug/L	8.270	114.6		14.90
Sn1899 A		0.3611	ug/L	0.7893	218.6		1.486
Sr4215 R		0.1405	ug/L	0.001936	1.378		-60.39
Ti3349 A	_	0.03312	ug/L	0.02741	82.74		-38.26
TI1908 A	_	0.01829	ug/L	0.7641	4,177		-0.3779
V 2924 A		0.2219	ug/L	0.1845	83.12		1.362
Zn2062 A	_	0.02566	ug/L	0.1978	770.5		0.4502
Y 3600 R		24,055	Cts/S	140.05	0.58221		24,055
Y 2243 A		9,174.1	Cts/S	48.979	0.53389		9,174.1
Y_3600_A		252,370	Cts/S	4,272.0	1.6927		252,370

SE6778-004L

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

Unknown Acquire Date: 10/26/2011 10:36:08PM Sample Type: Intensity Ratio Stddev %RSD Elem Flags **A**vg Units **21**.83 -63.670.8141 3.729 ug/L Ag3280_A 0.3209 10,710 197.4 ug/L Al3961_R 61,510 1.854 9.894 -0.6086 ug/L As1891_A 18.73 560.2 9.896 0.6030 ug/L 3.378 Au2427_A ug/L 9.807 6.779 2.397 B 2089_A 24.44 5,750 0.1857 0.03777 491.6 ug/L Ba4554_R 0.04167 1.605 40.97 2.596 ug/L Be3130 R 19,770 62,980 ug/L 228.0 0.3620 Ca3158_R 163.8 ug/L 0.3477 0.7413 Cd2265_A 46.90 18.11 0.1255 0.8946 Co2286_A 14.03 ug/L 3,135 Cr2677_A 1,042 ug/L 3.999 0.3836 322.2 ug/L 2.977 2.587 Cu3273_A 115.1 21,790 56,520 ug/L 65.45 0.1158 Fe2599_R 153.9 K_7664_R 13.93 1,117 ug/L 155.6 121.9 27.45 Li6707_R 57.86 ug/L 15.88 0.3185 143.2 12.29 Mg2025 A 3,858 ug/L 0.2869 813.0 1.051 Mn2576_R 366.3 ug/L 2.901 8.634 Mo2020 A 8.764 ug/L 0.7568 1.424 260.8 ug/L 8.591 Na5895 R 603.5 14.25 5.845 ug/L 1.889 Ni2316_A 32.32 0.1694 401.3 3.039 Pb2203_A 1,794 ug/L 1.436 ug/L 1.781 118.9 Sb2068_A -1.49739.84 2.353 1.931 4.848 ug/L Se1960_A 1.061 494.3 45.32 ug/L Si2516_R 4,270 5.122 3.554 1.047 ug/L Sn1899_A 20.43 1.079 0.5054 3,288 213.6 ug/L Sr4215_R ug/L 2.390 0.3371 4,634 709.0 Ti3349_A 5.199 221.1 -0.3361 2.351 ug/L TI1908_A 387.1 121.8 ug/L 1.135 0.9316 V_2924_A 1,536 2,325 ug/L 14.00 0.6022 Zn2062_A Cts/S 175.61 0.72702 24,155 24,155 Y_3600_R 9,313.4 Y_2243_A 9.313.4 Cts/S 50.984 0.54743 254,920 0.072693 254,920 Cts/S 185.31 Y_3600_A

SE6778-004A

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 63 of 101

SE6778-004A

Method Name:

K6010-2011

Method Revision:

50

would rame.				IVIC	ariod inevision.
Analyst Name:	EAM				
Acquire Date:	10/26/2011 10:40:3	BPM		Sample Type:	Unknown
Elem_	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	486.8	ug/L	1.805	0.3708	11,490
Al3961_R	68,860	ug/L	240.5	0.3493	60,590
As1891_A	493.9	ug/L	2.327	0.4711	164.0
Au2427_A	1.274	ug/L	0.5960	46.77	54.53
B_2089_A	481.5	ug/L	1.680	0.3490	471.9
Ba4554_R	934.4	ug/L	0.2830	0.03029	54,430
Be3130_R	503.7	ug/L	3.014	0.5983	51,200
Ca3158_R	64,740	ug/L	216.3	0.3341	103,000
Cd2265_A	505.0	ug/L	1.804	0.3573	8,243
Co2286_A	489.4	ug/L	2.580	0.5273	1,936
Cr2677_A	1,445	ug/L	8.433	0.5836	21,620
Cu3273_A	589.4	ug/L	1.390	0.2359	8,450
Fe2599_R	58,530	ug/L	661.3	1.130	114,100
K_7664_R	10,420	ug/L	54.66	0.5245	6,791
Li6707_R	513.5	ug/L	1.383	0.2694	5,597
Mg2025_A	8,644	ug/L	38.17	0.4416	1,646
Mn2576_R	822.3	ug/L	3.523	0.4284	9,162
Mo2020_A	475.0	ug/L	2.592	0.5457	1,033
Na5895_R	5,338	ug/L	21.39	0.4008	10,350
Ni2316_A	497.4	ug/L	2.026	0.4073	1,233
Pb2203_A	2,101	ug/L	1.883	0.08962	2,363
Sb2068_A	473.3	ug/L	1.186	0.2507	190.3
Se1960_A	464.0	ug/L	4.139	0.8920	95.54
Si2516_R	4,401	ug/L	25.27	0.5741	2,534
Sn1899_A	524.0	ug/L	2.500	0.4770	290.1
Sr4215_R	664.1	ug/L	2.585	0.3893	52,760
Ti3349_A	1,161	ug/L	1.826	0.1572	38,100
TI1908_A	462.4	ug/L	1.991	0.4306	209.9
V_2924_A	602.8	ug/L	4.161	0.6903	9,680
Zn2062_A	2,621	ug/L	7.104	0.2710	8,689
Y_3600_R	24,431	Cts/S	169.72	0.69469	24,431
Y_2243_A	9,352.3	Cts/S	30.747	0.32876	9,352.3
Y_3600_A	254,060	Cts/S	2,100.4	0.82674	254,060

SE6778-004D

K6010-2011 Method Name:

Method Revision:

50

Analyst Name:	EAM					
Acquire Date:	10/26/20	011 10:45:02F	PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.6928	ug/L	0.1919	27.70	-259.6
Al3961_R		79,490	ug/L	338.7	0.4261	71,430
As1891_A		20.04	ug/L	0.1702	0.8493	2.061
Au2427_A		1.039	ug/L	1.299	125.0	49.94
B_2089_A		26.65	ug/L	0.1546	0.5802	27.90
Ba4554_R		420.8	ug/L	0.2415	0.05740	25,100
Be3130_R		3.082	ug/L	0.03024	0.9810	270.4
Ca3158_R		34,350	ug/L	3.507	0.01021	55,790
Cd2265_A		36.22	ug/L	0.09395	0.2594	668.7
Co2286_A		15.85	ug/L	0.07350	0.4637	76.25
Cr2677_A		683.2	ug/L	9.950	1.457	10,080
Cu3273_A		90.31	ug/L	1.190	1.318	1,242
Fe2599_R		61,730	ug/L	337.3	0.5465	123,000
K_7664_R		1,440	ug/L	9.634	0.6689	968.1
Li6707_R		55.31	ug/L	1.651	2.984	613.3
Mg2025_A		3,793	ug/L	14.95	0.3941	724.0
Mn2576_R		253.7	ug/L	0.1890	0.07451	2,897
Mo2020_A		5.756	ug/L	0.1644	2.857	11.79

Published:

10/27/2011 8:52:03AM

Page 64 of 101

SE6778-004D

Method Name:

K6010-2011

Analyst Name: Acquire Date:

EAM

10/26/2011 10:45:02PM

Method Revision:

50

	Sample Type:	Unknown	
,	%RSD		lı
<u> </u>	0.4115		

Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		500.7	ug/L	2.060	0.4115	1,020
Ni2316_A		35.11	ug/L	0.4516	1.286	82.02
Pb2203 A		1,179	ug/L	0.8835	0.07496	1,331
Sb2068 A		-0.8958	ug/L	0.01896	2.116	3.588
Se1960 A		4.049	ug/L	2.433	60.09	3.654
Si2516 R		4,177	ug/L	33.48	0.8016	2,455
Sn1899_A		19.92	ug/L	0.07769	0.3900	12.40
Sr4215_R		183.7	ug/L	0.09820	0.05345	14,860
Ti3349 A		802.8	ug/L	8.422	1.049	25,940
TI1908_A		-2.165	ug/L	0.4945	22.85	-2.191
V 2924 A		131.4	ug/L	1.663	1.266	2,081
Zn2062 A		3,487	ug/L	0.05962	0.001710	11,660
Y 3600_R		24,962	Cts/S	45.442	0.18205	24,962
Y 2243 A		9,428.7	Cts/S	2.1200	0.022484	9,428.7
Y_3600_A		250,430	Cts/S	2,945.9	1.1763	250,430

SE6778-004S

Method Name:

K6010-2011

Method Revision:

50

EAM Analyst Name: Acquire Date:

10/26/2011 10:49:35PM Sample Type: Unknown

Acquire Date.	10/20/2011 10:10:001 11					
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		48.21	ug/L	1.047	2.171	724.9
Al3961_R		179,700	ug/L	1,554	0.8648	160,800
As1891_A		110.0	ug/L	0.9388	0.8538	30.55
Au2427_A		-1.487	ug/L	0.5896	39.65	72.89
B_2089_A		457.9	ug/L	1.626	0.3551	445.1
Ba4554_R		2,381	ug/L	12.81	0.5379	141,000
Be3130_R		55.50	ug/L	0.2221	0.4002	5,655
Ca3158_R		37,170	ug/L	221.4	0.5957	60,130
Cd2265_A		254.6	ug/L	1.086	0.4264	4,249
Co2286_A		498.9	ug/L	3.545	0.7106	1,977
Cr2677_A		2,223	ug/L	90.43	4.069	33,530
Cu3273_A		308.4	ug/L	11.18	3.624	4,411
Fe2599_R		103,300	ug/L	677.0	0.6552	205,000
K_7664_R		11,970	ug/L	53.96	0.4507	7,937
Li6707_R		594.6	ug/L	2.555	0.4296	6,593
Mg2025_A		11,710	ug/L	38.55	0.3291	2,233
Mn2576_R		743.2	ug/L	3.130	0.4212	8,431
Mo2020_A		271.0	ug/L	1.233	0.4549	589.0
Na5895_R		7,550	ug/L	58.27	0.7719	14,880
Ni2316_A		516.1	ug/L	3.268	0.6331	1,275
Pb2203_A		6,018	ug/L	11.48	0.1907	6,768
Sb2068 A		49.53	ug/L	2.661	5.373	28.32
Se1960_A		89.02	ug/L	1.945	2.185	21.51
Si2516_R		5,437	ug/L	26.93	0.4954	3,179
Sn1899_A		477.0	ug/L	0.4906	0.1028	264.2
Sr4215 R		668.1	ug/L	3.484	0.5215	54,000
Ti3349_A		1,597	ug/L	61.95	3.879	52,840
TI1908_A		91.00	ug/L	1.179	1.296	38.98
V_2924_A		693.3	ug/L	26.05	3.758	11,230
Zn2062 A		2,056	ug/L	13.14	0.6392	6,810
Y_3600_R		24,858	Cts/S	439.33	1.7674	24,858
Y_2243_A		9,351.4	Cts/S	51.045	0.54585	9,351.4
Y_3600_A		256,280	Cts/S	7,232.1	2.8220	256,280

SE6778-005

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 65 of 101

Method Name: K6010-2011

Analyst Name:

Method Revision: EAM 10/26/2011 10:54:05PM Unknown

Acquire Date:	10/26/2011 10:54:	:05PM		Sample Type:	Unknown
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	0.6995	ug/L	0.5611	80.21	-559.4
Al3961_R	86,140	ug/L	692.4	0.8038	76,100
As1891_A	· 68.67	ug/L	0.2719	0.3960	13.64
Au2427_A	-3.525	ug/L	0.5674	16.10	84.88
B_2089_A	6.779	ug/L	1.012	14.92	8.510
Ba4554_R	1,052	ug/L	1.470	0.1398	61,540
Be3130_R	5.754	ug/L	0.05182	0.9006	567.1
Ca3158_R	70,900	ug/L	15.13	0.02134	113,300
Cd2265_A	0.02539	ug/L	0.03209	126.4	177.5
Co2286_A	30.57	ug/L	0.05716	0.1870	129.5
Cr2677_A	61.11	ug/L	0.2455	0.4018	929.6
Cu3273_A	7.813	ug/L	0.1281	1.639	35.86
Fe2599_R	141,200	ug/L	1,246	0.8823	276,600
K_7664_R	688.4	ug/L	18.60	2.703	460.3
Li6707_R	80.47	ug/L	0.7511	0.9334	878.6
Mg2025_A	4,368	ug/L	5.533	0.1267	824.0
Mn2576_R	399.7	ug/L	0.9087	0.2274	4,487
Mo2020_A	1.114	ug/L	0.1806	16.21	1.404
Na5895_R	638.6	ug/L	6.115	0.9575	1,271
Ni2316_A	35.95	ug/L	0.02952	0.08211	76.01
Pb2203_A	79.51	ug/L	0.2252	0.2832	80.35
Sb2068_A	-2.513	ug/L	0.4388	17.46	2.186
Se1960_A	0.6169	ug/L	5.078	823.1	3.187
Si2516_R	4,705	ug/L	2.561	0.05444	2,714
Sn1899_A	13.92	ug/L	0.9043	6.497	8.896
Sr4215_R	271.2	ug/L	0.004937	0.001820	21,600
Ti3349_A	330.6	ug/L	2.635	0.7970	10,690
TI1908_A	-1.378	ug/L	0.9707	70.44	-2.044
V_2924_A	189.8	ug/L	1.445	0.7612	3,065
Zn2062_A	24.03	ug/L	0.03222	0.1341	79.19
Y_3600_R	24,543	Cts/S	137.06	0.55842	24,543
Y_2243_A	9,255.8	Cts/S	3.3089	0.035749	9,255.8
Y_3600_A	251,100	Cts/S	4,238.2	1.6879	251,100

SE6778-006

Method Name: K6010-2011

EAM Analyst Name:

Acquire Date:	10/26/20	11 10:58:4	2PM		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		0.9490	ug/L	0.4493	47.35		-191.4
Al3961_R		59,790	ug/L	491.3	0.8216		51,850
As1891_A		24.80	ug/L	0.2762	1.114		4.554
Au2427_A		-0.06402	ug/L	0.09884	154.4		34.77
B_2089_A		17.75	ug/L	0.3361	1.893		19.11
Ba4554_R		419.0	ug/L	4.452	1.062		24,120
Be3130_R		1.670	ug/L	0.07648	4.578		116.6
Ca3158_R		14,260	ug/L	118.6	0.8314		22,330
Cd2265_A		17.99	ug/L	0.09123	0.5071		346.3
Co2286_A		9.353	ug/L	0.04241	0.4535		50.39
Cr2677_A		89.66	ug/L	0.6075	0.6775		1,345
Cu3273_A		188.9	ug/L	2.754	1.458		2,671
Fe2599_R		44,820	ug/L	402.9	0.8989		86,150
K_7664_R		1,398	ug/L	56.81	4.064		906.7
Li6707_R		35.36	ug/L	1.112	3.145		377.3
Mg2025_A		2,465	ug/L	7.776	0.3155		467.4
Mn2576_R		298.1	ug/L	3.244	1.088		3,281
Mo2020_A		3.500	ug/L	0.1907	5.448		6.646

10/27/2011 8:52:03AM Published:

50

Method Revision:

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 10:58:42PM Sample Type: Unknown

Acquire Date:	10/26/20)11 10:58:42	PM		Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio	
Na5895 R		314.1	ug/L	0.1157	0.03682	628.8	
Ni2316_A		20.03	ug/L	0.1184	0.5911	45.21	
Pb2203_A		323.3	ug/L	0.2671	0.08261	356.8	
Sb2068 A		-0.1074	ug/L	0.3353	312.3	1.795	
Se1960 A		3.019	ug/L	1.353	44.82	3.224	
Si2516_R		5,087	ug/L	53.53	1.052	2,883	
Sn1899_A		24.55	ug/L	0.4123	1.680	14.83	
Sr4215_R		106.8	ug/L	1.094	1.024	8,303	
Ti3349_A		845.5	ug/L	9.211	1.089	27,550	
T11908_A		-1.749	ug/L	0.4138	23.65	-1.969	
V 2924_A		101.7	ug/L	0.8542	0.8398	1,646	
Zn2062_A		303.3	ug/L	1.558	0.5138	1,005	
Y_3600_R		24,085	Cts/S	64.099	0.26613	24,085	
Y 2243 A		9,341.6	Cts/S	42.494	0.45489	9,341.6	
Y_3600_A		252,560	Cts/S	3,023.3	1.1970	252,560	

SE6778-007

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/26/2011 11:03:13PM Sample Type: Unknown

10/26/2011 11:0	13:13PM		Sample Type:	Unknown
Flags A	/g Units	Stddev	%RSD	Intensity Ratio
0.0184	15 ug/L	0.3160	1,713	-567. 6
122,00	00 ug/L	122.3	0.1002	55,530
75.	59 ug/L	0.1148	0.1519	3.830
-2.97	72 ug/L	1.798	60.49	92.61
18.6	31 ug/L	0.1575	0.8462	11.34
540	.2 ug/L	2.285	0.4230	16,350
14.9	95 ug/L	0.1606	1.074	763.8
59,60	00 ug/L	136.0	0.2282	49,020
0.382	27 ug/L	0.3491	91.23	177.8
66.0	64 ug/L	0.5363	0.8046	146.3
147	.7 ug/L	2.164	1.465	1,159
14.	50 ug/L	0.4824	3.328	32.35
267,10	00 ug/L	1,492	0.5587	269,500
2,10)2 ug/L	17.11		718.3
105	.3 ug/L	5.268	5.004	591.0
11,9	10 ug/L	2.133	0.01786	1,175
982	.7 ug/L	3.958	0.4027	5,676
0.54	78 ug/L	0.4803	87.68	-0.4165
1,08	35 ug/L	17.19	1.585	1,117
78.0	00 ug/L	0.2633	0.3375	87.73
105	.6 ug/L	0.4989	0.4724	56.17
-3.2	50 ug/L	0.1077	3.314	2.464
0.92	18 ug/L	0.4288	46.52	3.085
5,0	02 ug/L	2.849	0.05695	1,490
15.4	11 ug/L	0.7384	4.791	5.742
439	.3 ug/L	0.6316	0.1438	18,000
722	.1 ug/L	10.82	1.499	12,120
-4.1	24 ug/L	0.6000	14.55	-2.566
364	.0 ug/L	4.835	1.328	3,048
78.	12 ug/L	0.7014	0.8944	134.5
25,2	32 Cts/S	13.768	0.054459	25,282
9,650	.5 Cts/S	3.0552	0.031659	9,650.5
260,5	90 Cts/S	4,130.4	1.5850	260,590
	Flags Ax 0.0184 122,00 75.5 18.6 540 14.5 59,60 14.5 267,10 2,10 105 11,94 982 0.547 1,08 78.6 105 -3.25 0.92 5,00 15.4 439 722 -4.12 364 78.4 25,28 9,650	Flags Avg Units 0.01845 ug/L 122,000 ug/L 75.59 ug/L -2.972 ug/L 18.61 ug/L 540.2 ug/L 14.95 ug/L 59,600 ug/L 0.3827 ug/L 66.64 ug/L 14.77 ug/L 267,100 ug/L 2,102 ug/L 105.3 ug/L 982.7 ug/L 1,940 ug/L 982.7 ug/L 1,085 ug/L 7,000 ug/L 1,085 ug/L 1,085 ug/L 1,085 ug/L 1,086 ug/L 1,087 ug/L 1,086 ug/L 1,087 ug/L 1,085 ug/L 1,085 ug/L 1,085 ug/L 1,085 ug/L 1,085 <td>0.01845 ug/L 0.3160 122,000 ug/L 122.3 75.59 ug/L 0.1148 -2.972 ug/L 1.798 18.61 ug/L 0.1575 540.2 ug/L 0.1606 59,600 ug/L 0.3491 66.64 ug/L 0.5363 147.7 ug/L 0.4824 267,100 ug/L 0.4824 267,100 ug/L 1,492 2,102 ug/L 17.11 105.3 ug/L 1,492 2,102 ug/L 17.11 105.3 ug/L 2.133 982.7 ug/L 3.958 0.5478 ug/L 0.4803 1,085 ug/L 0.4803 1,085 ug/L 0.4803 105.6 ug/L 0.4989 -3.250 ug/L 0.4989 5,002 ug/L 0.4288 5,002 ug/L 0.4288</td> <td> Flags</td>	0.01845 ug/L 0.3160 122,000 ug/L 122.3 75.59 ug/L 0.1148 -2.972 ug/L 1.798 18.61 ug/L 0.1575 540.2 ug/L 0.1606 59,600 ug/L 0.3491 66.64 ug/L 0.5363 147.7 ug/L 0.4824 267,100 ug/L 0.4824 267,100 ug/L 1,492 2,102 ug/L 17.11 105.3 ug/L 1,492 2,102 ug/L 17.11 105.3 ug/L 2.133 982.7 ug/L 3.958 0.5478 ug/L 0.4803 1,085 ug/L 0.4803 1,085 ug/L 0.4803 105.6 ug/L 0.4989 -3.250 ug/L 0.4989 5,002 ug/L 0.4288 5,002 ug/L 0.4288	Flags

SE6778-007L

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 67 of 101

50

Method Revision:

SE6778-007L

Method Name: K6010-2011

0-2011 Method Revision:

Analyst Name:	EAM							
Acquire Date:	10/26/201	11 11:07:5	2PM			Sample Type:	Unknown	
Elem	Flags	A vg		Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		2.586		ug/L	2.375	91.84		-140.1
Al3961_R		127,300		ug/L	5.078	0.003989		11,210
As1891_A		79.29		ug/L	7.126	8.988		-0.2225
Au2427_A		-0.2940		ug/L	2.342	796.5		20.77
B_2089_A		26.17		ug/L	2.447	9.353		4.617
Ba4554_R		564.5		ug/L	3.098	0.5488		3,380
Be3130_R		15.52		ug/L	0.2205	1.421		150.4
Ca3158_R		63,090		ug/L	49.01	0.07767		9,990
Cd2265_A		0.4889		ug/L	0.1657	33.89		35.16
Co2286_A		72.77		ug/L	1.368	1.879		35.57
Cr2677_A		156.5		ug/L	1.293	0.8266		244.0
Cu3273_A		14.31		ug/L	5.418	37.86		2.427
Fe2599_R		281,500		ug/L	360.8	0.1282		54,850
K_7664_R		1,664		ug/L	406.5	24.43		118.5
Li6707_R		147.7		ug/L	15.42	10.44		158.1
Mg2025_A		12,850		ug/L	4.189	0.03261		243.0
Mn2576_R		1,034		ug/L	4.401	0.4255		1,159
Mo2020_A		3.693		ug/L	1.521	41.19		-0.1489
Na5895_R		1,102		ug/L	145.4	13.19		243.4
Ni2316_A		85.11		ug/L	0.06538	0.07682		18.03
Pb2203_A		118.6		ug/L	5.842	4.926		11.96
Sb2068_A		-19.24		ug/L	11.60	60.30		0.4691
Se1960_A		9.928		ug/L	18.87	190.1		2.425
Si2516_R		5,371		ug/L	105.2	1.958		317.6
Sn1899_A		20.77		ug/L	0.3189	1.535		2.467
Sr4215_R		461.1		ug/L	2.304	0.4997		3,593
Ti3349_A		752.1		ug/L	10.74	1.427		2,440
TI1908_A		-6.017		ug/L	0.5007	8.322		-0.8987
V_2924_A		375.1		ug/L	5.299	1.413		613.0
Zn2062_A		84.12		ug/L	0.8449	1.004		28.45
Y_3600_R		24,418		Cts/S	76.532	0.31343		24,418
Y_2243_A		9,373.2		Cts/S	40.021	0.42697		9,373.2
V 2000 A		254.040		04-10	0.450.0	4 0000		054.040

SE6778-007A

Y_3600_A

Method Name: K6010-2011

254,940

Analyst Name: EAM

Anguiro Doto: 10/26/2011 11:12:27PM Some Some Turos Helenour

Cts/S

Acquire Date:	10/26/20)11 11:12:2	7PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	_	955.4	ug/L	9.296	0 .9730	11,120
Al3961_R		140,100	ug/L	174.2	0.1243	62,780
As1891_A		995.0	ug/L	1.017	0.1022	163.2
Au2427_A		-2.912	ug/L	1.629	55.95	100.5
B_2089_A		926.0	ug/L	1.374	0.1484	462.5
Ba4554_R		1,441	ug/L	2.520	0.1750	42,760
Be3130_R		985.9	ug/L	0.2753	0.02792	51,060
Ca3158_R		68,830	ug/L	141.8	0.2061	55,730
Cd2265_A		907.5	ug/L	1.327	0.1462	7,659
Co2286_A		997.6	ug/L	1.995	0.2000	2,009
Cr2677_A		1,062	ug/L	11.72	1.103	8,086
Cu3273_A		960.7	ug/L	8.452	0.8798	6,940
Fe2599_R		279,300	ug/L	2,215	0.7932	277,400
K_7664_R		20,180	ug/L	22.22	0.1101	6,701
Li6707_R		1,030	ug/L	0.5350	0.05193	5,719
Mg2025_A		21,750	ug/L	27.90	0.1283	2,114
Mn2576_R		1,907	ug/L	2.751	0.1443	10,830
Mo2020_A		925.2	ug/L	7.345	0.7939	1,024

3,156.3

1.2380

Method Revision:

Published: 10/27/2011 8:52:03AM

254,940

50

SE6778-007A

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Acquire Date:	10/26/20	11:12:27	РМ		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		10,740	ug/L	69.91	0.6507	10,610
Ni2316_A		995.3	ug/L	2.984	0.2999	1,250
Pb2203 A		1,024	ug/L	0.05277	0.005156	582.0
Sb2068 A		918.1	ug/L	3.608	0.3929	186.6
Se1960 A		916.5	ug/L	1.634	0.1782	96.42
Si2516 R		5,455	ug/L	17.77	0.3258	1,602
Sn1899 A		998.6	ug/L	4.081	0.4087	281.7
Sr4215_R		1,332	ug/L	1.088	0.08168	53,910
Ti3349 A		1,640	ug/L	15.68	0.9562	27,280
TI1908_A		907.9	ug/L	1.663	0.1832	209.6
V 2924 A		1,305	ug/L	13.71	1.051	10,690
Zn2062 A		1,001	ug/L	2.522	0.2520	1,689
Y 3600 R		24,888	Cts/S	140.28	0.56362	24,888
Y 2243 A		9,527.7	Cts/S	23.102	0.24247	9,527.7
Y_3600_A		257,760	Cts/S	2,971.7	1.1529	257,760

SE6778-007D

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/26/2011 11:17:00PM		PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.4727	ug/L	0.01277	2.700	-189.5
Al3961_R		75,640	ug/L	22.35	0.02955	34,960
As1891_A		43.97	ug/L	0.2856	0.6495	4.052
Au2427_A		0.6703	ug/L	1.060	158.2	33.30
B_2089_A		15.52	ug/L	0.3110	2.003	9.878
Ba4554_R		450.5	ug/L	0.2160	0.04794	13,870
Be3130_R		6.998	ug/L	0.06730	0.9616	351.9
Ca3158_R		40,420	ug/L	109.9	0.2720	33,740
Cd2265_A		-0.02979	ug/L	0.06976	234.2	49.91
Co2286_A		29.16	ug/L	0.06540	0.2242	68.61
Cr2677_A		96.74	ug/L	0.9578	0.9901	753.8
Cu3273_A		11.82	ug/L	0.8321	7.041	60.98
Fe2599_R		78,550	ug/L	380.4	0.4842	80,460
K_7664_R		1,573	ug/L	51.73	3.289	548.3
Li6707_R		71.28	ug/L	0.2222	0.3118	405.3
Mg2025_A		6,488	ug/L	19.96	0.3077	637.8
Mn2576_R		556.9	ug/L	2.536	0.4554	3,265
Mo2020_A		3.880	ug/L	0.03290	0.8480	3.377
Na5895_R		777.9	ug/L	1.214	0.1561	822.2
Ni2316_A		36.10	ug/L	0.1345	0.3727	
Pb2203_A		77.18	ug/L	3.364	4.359	
Sb2068_A		-4.762	ug/L	2.599	54.57	0.6578
Se1960_A		2.152	ug/L	1.268	58.91	2.749
Si2516_R		4,546	ug/L	30.92	0.6801	1,378
Sn1899_A		14.27	ug/L	0.1989	1.394	5.427
Sr4215_R		316.2	ug/L	0.05060	0.01601	13,140
Ti3349_A		630.2	ug/L	6.013	0.9542	10,580
TI1908_A		-5.019	ug/L	1.540	30.68	-2.141
V_2924_A		120.9	ug/L	0.3195	0.2644	
Zn2062_A		49.50	ug/L	0.05013	0.1013	
Y_3600_R		25,671	Cts/S	392.57	1.5292	
Y_2243_A		9,668.8	Cts/S	33.709	0.34863	•
Y_3600_A		260,760	Cts/S	3,117.0	1.1953	260,760

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 69 of 101

CCV

Method Name: K6010-2011

Analyst Name: **EAM**

Method Revision:

50

10/26/2011 11:21:35PM QC Acquire Date: Sample Type: Units Elem Flags Stddev %RSD Intensity Ratio Avg Ag3280_A 497.9 1.272 ug/L 0.2554 11,760 Al3961 R 12,580 ug/L 142.1 1.129 10,920 As1891 A 495.4 2.571 0.5190 ug/L 163.7 Au2427 A 500.8 4.520 0.9027 ug/L 1,904 B 2089 A 497.2 ug/L 0.9658 0.1942 477.6 Ba4554_R 484.9 ug/L 0.3473 0.07162 27,840 Be3130_R 506.0 0.6987 ug/L 3.535 50,650 Ca3158_R 12,420 34.03 0.2740 ug/L 19,400 Cd2265_A 491.3 ug/L 0.7840 0.1596 7,805 Co2286_A 499.5 ug/L 0.2817 0.05639 1,931 Cr2677_A 487.8 ug/L 2.823 0.5787 7,189 Cu3273_A 492.5 ug/L 3.481 0.7067 6,973 Fe2599_R 12,560 ug/L 130.9 1.042 24,100 K 7664 R 12,140 ug/L 38.45 0.3166 7,786 Li6707 R 500.3 ug/L 1.674 0.3345 5,365 Mg2025 A 12,600 9.674 ug/L 0.07676 2,357 Mn2576_R 500.2 ug/L 4.653 0.9301 5,484 493.7 Mo2020_A ug/L 2.525 0.5116 1,052 Na5895_R W 11,800 ug/L 27.97 0.2371 22,470 Ni2316_A 0.02686 500.2 ug/L 0.1344 1,219 Pb2203_A 498.0 ug/L 0.9756 0.1959 548.9 Sb2068_A 475.0 ug/L 7.260 1.528 183.5 Se1960 A 492.7 ug/L 2.850 0.5784 98.73 Si2516 R ug/L 12.620 67.80 0.5372 7,130 Sn1899_A 499.1 ug/L 1.113 0.2230 270.9 Sr4215 R 493.8 ug/L 1.936 0.3922 38,580 Ti3349_A 489.6 ug/L 2.651 0.5415 15,800 TI1908_A 500.1 ug/L 2.966 0.5930 223.6 ug/L V_2924 A 500.1 0.8079 0.1615 7,921 Zn2062_A 495.9 ug/L 1.001 0.2018 1,611 Y_3600_R 24,041 Cts/S 13.282 0.055248 24,041 Y_2243_A 9,166.8 Cts/S 18.179 0.19831 9,166.8 Y_3600_A 250,140 Cts/S 613.01 0.24507 250,140

CCB

Method Name:

Analyst Name: **EAM**

K6010-2011

Method Revision:

50

Acquire Date:	10/26/20	011 11:26:00)PM		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.4274	ug/L	0.1714	40.10	-26.51
Al3961_R		-11.72	ug/L	4.910	41.91	10.39
As1891_A		3.101	ug/L	0.5441	17.55	-0.1962
Au2427_A		1.070	ug/L	0.09427	8.814	4.946
B_2089_A		0.3839	ug/L	0.3508	91.37	2.466
Ba4554_R		-0.1933	ug/L	0.1893	97.93	87.66
Be3130_R		0.04670	ug/L	0.06215	133.1	1.325
Ca3158_R		4.035	ug/L	5.809	144.0	-36.51
Cd2265_A		0.04971	ug/L	0.01777	35.75	-0.9040
Co2286_A		0.1069	ug/L	0.009375	8.771	6.170
Cr2677_A		0.09382	ug/L	0.1067	113.7	6.147
Cu3273_A		0.2288	ug/L	0.5444	238.0	-0.2895
Fe2599_R		2.133	ug/L	1.061	49.74	7.606
K_7664_R		-43.50	ug/L	34.94	80.32	-17.70
Li6707_R		5.140	ug/L	1.217	23.67	52.72
Mg2025_A		1.399	ug/L	3.298	235.7	-2.846
Mn2576_R		-0.09211	ug/L	0.1951	211.8	4.964
Mo2020_A		2.022	ug/L	0.3221	15.93	3.400

Published:

10/27/2011 8:52:03AM

ССВ

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

50

Acquire Date:	10/26/20)11 11:26:00)PM	Sample Type: QC			
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio	
Na5895_R		-5.560	ug/L	8.375	150.6	19.57	
Ni2316_A		0.3191	ug/L	0.1163	36.43	-0.03247	
Pb2203_A		0.5832	ug/L	0.6269	107.5	0.1729	
Sb2068_A		-0.05778	ug/L	0.4017	695.2	0.7035	
Se1960_A		1.718	ug/L	0.04549	2.648	2.345	
Si2516 R		8.546	ug/L	2.879	33.69	15.72	
Sn1899_A		0.4888	ug/L	0.2956	60.47	1.559	
Sr4215 R		0.1453	ug/L	0.07215	49.65	-60.28	
Ti3349_A		0.4567	ug/L	0.2163	47.37	-22.31	
TI1908_A		0.3791	ug/L	0.6895	181.9	-0.2003	
V 2924 A		0.2059	ug/L	0.03009	14.61	1.051	
Zn2062 A		-0.1033	ug/L	0.004614	4.465	0.1965	
Y 3600 R		24,150	Cts/S	304.28	1.2600	24,150	
Y 2243 A		9,193.2	Cts/S	15.673	0.17048	9,193.2	
Y_3600_A		252,370	Cts/S	2,324.2	0.92097	252,370	

SE6778-007S

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Analyst Name:	10/26/2011 1	1-30-33DM	1		Sample Type:	Unknown	
Acquire Date:			Units	Stddev	%RSD	Intensity	Ratio
Elem Ag3280_A	Flags	Avg 16.74	ug/L	1,210	2.589		295.8
AJ3961 R		3,200	ug/L ug/L	690.4	0.3163		7,100
As1891_A		210.8	ug/L	4.444	2.108		21.99
Au2427_A		1.544	ug/L ug/L	1.546	100.2		147.9
B_2089_A		383.2	ug/L	0.7153	0.1867		187.2
B_2009_A Ba4554_R		2,553	ug/L	0.1519	0.005950		5,210
Be3130 R		39.47	ug/L	0.1752	0.2522		3,539
Ca3158_R		2,400	ug/L	187.0	0.2997		0,190
Cd2265_A		239.6	ug/L	0.09093	0.03795		2,202
Co2286_A		588.0	ug/L	0.3330	0.05663		1,165
Cr2677_A		136.7	ug/L	1.877	0.4297		3,264
Cu3273 A		269.5	ug/L	0.3380	0.1254		1,805
Fe2599_R		7,200	ug/L	1,449	0.3391		1,400
K 7664 R		2,150	ug/L	107.9	0.8883		4,011
Li6707_R		648.8	ug/L	0.01960	0.003022		3,576
Mg2025_A		2,030	ug/L	15.80	0.07172		2,096
Mn2576_R		1,598	ug/L	6.748	0.4223		9,021
Mo2020 A		261.7	ug/L	1.572	0.6008		282.7
Na5895_R		3,195	ug/L	28.24	0.3446	1	B,047
Ni2316_A		512.6	ug/L	1.659	0.2709		741.2
Pb2203 A		215.9	ug/L	0.5126	0.2374		111.8
Sb2068 A		15.35	ug/L	1.284	2.832		13.28
Se1960_A		34.49	ug/L	2.725	3.225		11.92
Si2516_R		5,751	ug/L	44.63	0.6610		1,962
Sn1899 A		165.1	ug/L	3.489	0.7503	,	129.1
Sr4215_R		914.5	ug/L	2.568	0.2808	30	6,730
Ti3349 A		1,325	ug/L	10.63	0.8025	2	1,450
TI1908_A		93.26	ug/L	0.8437	0.9048		18.54
V 2924 A		1,231	ug/L	9.167	0.7448	,	9,878
Zn2062_A		595.7	ug/L	1.227	0.2059	,	984.5
Y_3600_R	24	1,720	Cts/S	13.720	0.055503	24	4,720
Y 2243 A	9,3	321.8	Cts/S	11.056	0.11861	9,3	321.8
Y_3600_A		1,010	Cts/S	2,422.6	0.96516	25	1,010

SE6778-008

Method Revision: K6010-2011 Method Name:

Page 71 of 101 10/27/2011 8:52:03AM Published:

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 11:35:09PM Sample Type: Unknown

Acquire Date:	10/26/20	111 11:35:0	9PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1774	ug/L	0.1064	59.94	-178.6
Al3961_R		94,840	ug/L	232.6	0.2452	83,810
As1891_A		12.50	ug/L	1.049	8.396	0.9047
Au2427_A		-0.4095	ug/L	1.402	342.3	25.85
B_2089_A		11.81	ug/L	0.9402	7.959	13.48
Ba4554_R		168.5	ug/L	0.6113	0.3628	9,944
Be3130_R		1.391	ug/L	0.01111	0.7992	74.27
Ca3158_R		20,210	ug/L	88.71	0.4389	32,270
Cd2265_A		0.3968	ug/L	0.09812	24.73	50.84
Co2286_A		6.087	ug/L	0.02904	0.4771	39.95
Cr2677_A		114.9	ug/L	0.2754	0.2396	1,728
Cu3273_A		13.58	ug/L	0.1833	1.350	164.4
Fe2599_R		35,950	ug/L	193.3	0.5377	70,420
K_7664_R		1,811	ug/L	20.12	1.111	1,195
Li6707_R		39.13	ug/L	1.221	3.121	425.8
Mg2025_A		3,667	ug/L	6.297	0.1717	700.0
Mn2576_R		142.2	ug/L	1.336	0.9390	1,600
Mo2020_A		2.589	ug/L	0.04105	1.586	4.687
Na5895_R		179.7	ug/L	13.26	7.380	379.9
Ni2316_A		21.13	ug/L	0.06076	0.2876	48.88
Pb2203_A		60.27	ug/L	0.4212	0.6989	55.06
Sb2068_A		-1.821	ug/L	0.1962	10.77	1.221
Se1960_A		2.974	ug/L	0.09392	3.158	3.453
Si2516_R		4,394	ug/L	10.18	0.2317	2,540
Sn1899_A		14.06	ug/L	0.2887	2.053	9.097
Sr4215_R		177.0	ug/L	0.1104	0.06238	14,070
Ti3349_A		1,119	ug/L	1.096	0.09794	36,660
TI1908_A		-0.8244	ug/L	0.3613	43.83	-1.450
V_2924_A		113.2	ug/L	0.6959	0.6147	1,840
Zn2062_A		69.92	ug/L	0.1881	0.2691	232.8
Y_3600_R		24,548	Cts/S	473.90	1.9305	24,548
Y_2243_A		9,381.8	Cts/S	49.096	0.52331	9,381.8
Y_3600_A		253,790	Cts/S	309.65	0.12201	253,790

SE6778-009

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 11:39:39PM Sample Type: Unknow

Acquire Date:	10/26/2011 11:39:39PM		9PM		Sample Type:	Unknown
<u>Ele</u> m	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-0 .4594	ug/L	0.1177	25.61	-272.3
Al3961_R		111,000	ug/L	695.8	0.6268	98,820
As1891_A		18.48	ug/L	0.5576	3.018	1.643
Au2427_A		0.2479	ug/L	0.06651	26.83	42.39
B_2089_A		11.55	ug/L	0.8554	7.404	13.24
Ba4554_R		194.6	ug/L	0.5157	0.2651	11,550
Be3130_R		3.747	ug/L	0.01115	0.2976	337.1
Ca3158_R		25,590	ug/L	37.09	0.1449	41,180
Cd2265_A		0.03190	ug/L	0.08487	266.0	73.16
Co2286_A		9.470	ug/L	0.1592	1.681	50.88
Cr2677_A		91.32	ug/L	0.08478	0.09283	1,359
Cu3273_A		6.877	ug/L	0.1249	1.816	59.39
Fe2599_R		57,880	ug/L	326.0	0.5632	114,200
K_7664_R		589.7	ug/L	28.42	4.819	398.8
Li6707_R		80.56	ug/L	0.04212	0.05229	886.3
Mg2025_A		2,747	ug/L	1.144	0.04166	524.5
Mn2576_R		110.9	ug/L	0.1350	0.1217	1,262
Mo2020_A		2.288	ug/L	0.09654	4.220	4.015

Published: 10/27/2011 8:52:03AM

50

Method Revision:

Method Revision:

Elem

Na5895_R

Ni2316_A

Pb2203_A

Sb2068_A

Se1960_A

Si2516_R

Sn1899_A

Sr4215_R

Ti3349_A

TI1908_A

V_2924_A

Zn2062_A

Y_3600_R

Y_2243_A

Y_3600_A

K6010-2011 Method Name:

EAM Analyst Name:

10/26/2011 11:39:39PM Acquire Date: Flags

Avg

526.6

13.94

98.01

-2.514

0.5085

5,076

15.86

158.2

793.5

-2.980

149.1 24.64

24,732

9,392.4

250,300

Units

ug/L

Cts/S

Cts/S

Cts/S

1.184

0.09107

39.885

19.359

59.866

Method Revision: 50

Unknown Sample Type: %RSD Intensity Ratio Stddev 0.6321 1,061 3.328 0.4128 29.14 0.05755 0.1483 96.27 0.1453 12.25 1.246 0.3079 193.3 3.143 0.9832 1.037 2,953 52.62 2.032 10.10 0.3224 0.3958 0.2502 12,670 1.778 0.2240 25,630 -2.410 0.3992 13.40

0.7943

0.3696

0.16127

0.20612

0.023917

SE6778-010

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision:

50

2,391

82.29

24,732

9,392.4 250,300

Acquire Date:	10/26/20	011 11:44:16	6PM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1974	ug/L	0.1239	62 .79	-229.3
Al3961_R		74,410	ug/L	642.1	0.8630	65,000
As1891_A		25.64	ug/L	0.9603	3.745	4.421
Au2427_A		-0.9552	ug/L	0.7233	75.72	34.66
B_2089_A		11.19	ug/L	0.1672	1.495	12.76
Ba4554_R		234.9	ug/L	0.2732	0.1163	13,670
Be3130_R		1.694	ug/L	0.05207	3.074	109.6
Ca3158_R		46,470	ug/L	106.2	0.2285	73,400
Cd2265_A		2.768	ug/L	0.09434	3.408	108.1
Co2286_A		7.269	ug/L	0.04880	0.6713	43.63
Cr2677_A		87.57	ug/L	0.1234	0.1409	1,277
Cu3273_A		38.39	ug/L	0.02274	0.05923	497.3
Fe2599_R		51,480	ug/L	623.2	1.211	99,690
K_7664_R		1,580	ug/L	36.70	2.322	1,032
Li6707_R		41.67	ug/L	0.3136	0.7524	448.6
Mg2025_A		3,363	ug/L	7.804	0.2321	634.8
Mn2576_R		235.6	ug/L	0.9472	0.4020	2,615
Mo2020_A		3.321	ug/L	0.03848	1.159	6.189
Na5895_R		270.2	ug/L	0.4995	0.1849	
Ni2316_A		23.70	ug/L	0.09823	0.4145	
Pb2203_A		130.6	ug/L	0.5603	0.4290	136.7
Sb2068_A		-0.8392	ug/L	0.4076	48.57	
Se1960_A		1.681	ug/L	0.8010	47.66	
Si2516_R		4,661	ug/L	23.13	0.4962	
Sn1899_A		21.05	ug/L	0.1633	0.7756	
Sr4215_R		119.9	ug/L	0.4257	0.3550	9,401
Ti3349_A		1,032	ug/L	2.270	0.2200	32,650
Tl1908_A		-1.141	ug/L	0.7659	67.14	
V_2924_A		167.3	ug/L	0.2428	0.1452	2,627
Zn2062_A		139.9	ug/L	0.1541	0.1101	460.7
Y_3600_R		24,267	Cts/S	34.652	0.14280	
Y_2243_A		9,280.2	Cts/S	6.9078	0.074436	9,280.2
Y_3600_A		245,250	Cts/S	976.28	0.39808	245,250

SE6778-011

50 Method Revision: K6010-2011 Method Name:

Page 73 of 101 10/27/2011 8:52:03AM Published:

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/26/2011 11:48:51PM Sample Type: Unknown

Acquire Date:	10/26/20	11 11:48:5	1PM		Sample Type:	Unknown
Elem	Flags	A vg	Unit	s Stddev	%RSD	Intensity Ratio
Ag3280_A		-0.08791	ug/	_ 0.02137	24.31	-137.2
Al3961_R		70,610	ug/	_ 89.54	0.1268	61,720
As1891_A		10.75	ug/	_ 0.4868	4.526	1.021
Au2427_A		-0.3943	ug/	_ 0.3315	84.07	16.93
B_2089_A		8.572	ug/	0.1025	1.196	10.28
Ba4554_R		120.9	ug/	_ 0.1476	0.1221	7,082
Be3130_R		1.066	ug/	0.03945	3.702	41.45
Ca3158_R		7,092	ug/	7.855	0.1108	11,170
Cd2265_A		0.3625	ug/	0.09925	27.38	34.33
Co2286_A		5.086	ug/	_ 0.1155	2.271	35.39
Cr2677_A		79.02	ug/	1.123	1.421	1,183
Cu3273_A		15.35	ug/		0.2644	195.1
Fe2599_R		23,720	ug/	_ 112.2	0.4728	45,960
K_7664_R		1,159	ug/	5.070	0.4376	759.4
Li6707_R		36.17	ug/	1.503	4.155	389.1
Mg2025_A		2,616	ug/	0.8452	0.03231	494.8
Mn2576_R		100.2	ug/	0.005056	0.005048	1,116
Mo2020_A		1.886	ug/	0.1823	9.670	3.139
Na5895_R		124.3	ug/	12.41	9.978	269.1
Ni2316_A		19.69	ug/	0.3006	1.526	45.98
Pb2203_A		52.13	ug/	0.1928	0.3699	48.62
Sb2068_A		-1.936	ug/		84.57	0.8071
Se1960_A		2.449	ug/l	1.859	75.91	3.108
Si2516_R		4,377	ug/l	2.080	0.04753	2,502
Sn1899_A		14.98	ug/l	0.2233	1.490	9.536
Sr4215_R		99.75	ug/l		0.02057	7,814
Ti3349_A		1,099	ug/l		0.5513	35,830
TI1908_A		-2.608	ug/l		34.68	-2.121
V_2924_A		72.61	ug/l	0.8419	1.159	1,176
Zn2062_A		80.96	ug/l	0.08288	0.1024	267.7
Y_3600_R		24,278	Cts/S	61.782	0.25447	24,278
Y_2243_A		9,314.0	Cts/S		0.39669	9,314.0
Y_3600_A		252,630	Cts/S	900.51	0.35646	252,630

SE6778-012

Method Name: K6010-2011 Method Revision:

Analyst Name: EAM

Acquire Date:	10/26/20	011 11:53:23	3PM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1416	ug/L	0.03630	25.64	-96.84
Al3961_R		25,800	ug/L	159.0	0.6160	22,950
As1891_A		12.93	ug/L	0.08312	0.6430	2.222
Au2427_A		0.005759	ug/L	0.7903	13,720	13.43
B_2089_A		5.620	ug/L	0.3414	6.075	7.507
Ba4554_R		132.4	ug/L	0.3710	0.2802	7,882
Be3130_R		0.9175	ug/L	0.04537	4.944	64.03
Ca3158_R		8,808	ug/L	14.96	0.1698	14,120
Cd2265_A		10.55	ug/L	0.01366	0.1294	187.2
Co2286_A		2.510	ug/L	0.1156	4.607	19.70
Cr2677_A		87.61	ug/L	1.881	2.147	1,317
Cu3273_A		45.53	ug/L	0.2648	0.5816	640.2
Fe2599_R		15,620	ug/L	0.6475	0.004146	30,780
K_7664_R		437.2	ug/L	29.32	6.705	298.1
Li6707_R		14.23	ug/L	0.2066	1.452	154.1
Mg2025_A		1,094	ug/L	0.4654	0.04253	203.9
Mn2576_R		148.2	ug/L	0.5089	0.3434	1,675
Mo2020_A		5.364	ug/L	0.4176	7.786	10.63

Published: 10/27/2011 8:52:03AM Page 74 of 101

Method Revision:

50

K6010-2011 Method Name:

Method Revision:

50

EAM Analyst Name:

Acquire Date:	10/26/20	11 11:53:23	3PM		Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R		159.1	ug/L	1.032	0.6488		341.8
Ni2316_A		12.02	ug/L	0.1676	1.395		27.51
Pb2203_A		189.8	ug/L	0.3828	0.2018		208.4
Sb2068_A		-1.878	ug/L	0.02656	1.414		0.5647
Se1960 A		2.150	ug/L	1.887	87.79		2.688
Si2516 R		3,338	ug/L	25.06	0.7508		1,944
Sn1899_A		14.66	ug/L	0.3691	2.518		9.306
Sr4215 R		132.8	ug/L	0.08534	0.06426		10,610
Ti3349_A		464.6	ug/L	8.849	1.905		15,200
TI1908_A		-1.485	ug/L	0.7543	50.80		-1.434
V 2924 A		42.94	ug/L	1.208	2.814		694.5
Zn2062 A		188.6	ug/L	0.3554	0.1884		619.8
Y 3600 R		24,697	Cts/S	255.87	1.0360		24,697
Y 2243 A		9,263.0	Cts/S	28.162	0.30403		9,263.0
Y_3600_A		253,950	Cts/S	3,468.8	1.3659		253,950

SE6778-013

Method Name: K6010-2011

EAM

Method Revision:

50

Analyst Name: Unknown 10/26/2011 11:58:01PM Sample Type: Acquire Date: %RSD **Intensity Ratio** Stddev Units Elem Flags Avg **-0**.6928 0.06949 10.03 -417.7 Ag3280_A ug/L 1,095 0.9672 102,300 Al3961_R 113,200 ug/L 0.6789 3.627 -0.5548 As1891_A 18.72 ug/L Au2427_A -2.059 ug/L 0.1851 8.989 59.30 ug/L 0.2155 1.662 14.71 B_2089_A 12.96 ug/L 0.1895 0.06044 18,840 Ba4554_R 313.6 1,048 Be3130_R 10.29 ug/L 0.1663 1.617 75,320 46,100 ug/L 102.0 0.2213 Ca3158_R 122.2 379.2 Cd2265 A -0.04513 ug/L 0.1711 0.1051 196.9 Co2286 A 46.66 ug/L 0.04902 1,460 Cr2677_A 98.30 ug/L 0.3495 0.3555 3.938 45.30 Cu3273 A 6.997 ug/L 0.2755 1.089 192,300 1,045 Fe2599 R 96,000 ug/L 0.05590 716.8 ug/L 0.5904 K 7664 R 1,056 0.2578 1,081 Li6707_R 96.72 ug/L 0.2494 0.04280 1,284 Mg2025 A ug/L 2.839 6,632 0.7157 1,668 1.034 Mn2576_R 144.5 ug/L -0.4475 76.61 0.1871 0.2442 ug/L Mo2020_A 12.53 1.023 2,464 ug/L 1,224 Na5895_R 99.74 ug/L 0.2513 0.5837 Ni2316_A 43.05 0.5488 115.3 ug/L 0.6195 Pb2203_A 112.9 2.544 1.413 ug/L 0.09136 -3.592 Sb2068_A 0.7389 ug/L 1.305 176.6 3.348 Se1960_A 4,498 0.7077 2,656 Si2516_R ug/L 31.83 Sn1899_A 14.42 ug/L 0.6243 4.328 9.407 1.542 0.4663 26,950 Sr4215_R 330.7 ug/L Ti3349_A 1.483 0.3520 13,520 421.5 ug/L -2.280 0.3122 10.96 TI1908 A -2.848 ug/L 129.5 ug/L 0.6012 0.4644 2,071 V 2924 A 107.5 Zn2062_A 31.87 ug/L 0.1420 0.4457 0.39202 25,104 Y_3600_R 25,104 Cts/S 98.411 0.16568 9,494.3 Y_2243_A 9,494.3 Cts/S 15.731 Y_3600_A 1,380.1 0.55428 248,990 248,990 Cts/S

PBSBJ25ICS1

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 75 of 101

PBSBJ25ICS1

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

10/27/2011 12:02:36AM Unknown Acquire Date: Sample Type: Elem Flags Units Stddev %RSD **Intensity Ratio** Avg Ag3280_A 0.2719 ug/L 0.2219 81.61 -30.68 Al3961_R 11.45 ug/L 2.188 19.12 30.64 As1891_A -0.4574ug/L 0.9799 214.2 -1.390 Au2427_A 0.1230 ug/L 0.8035 653.4 1.413 B_2089_A 1.090 ug/L 0.1507 13.83 3.098 Ba4554_R 0.4446 ug/L 0.4747 106.8 124.8 Be3130_R 0.02419 ug/L 0.03853 159.3 -0.8795 F Ca3158_R 120.5 ug/L 1.227 1.018 147.6 Cd2265_A 0.01848 0.06377 345.0 ug/L -1.370 Co2286_A 0.1543 ug/L 0.1109 71.84 6.355 Cr2677_A 0.6047 0.01926 3.185 ug/L 13.88 Cu3273_A 3.340 ug/L 1.008 30.17 44.79 Fe2599 R 33.10 ug/L 2.294 6.928 67.66 K 7664 R -53.49ug/L 28.29 52.90 -24.30 Li6707 R 0.1021 ug/L 0.9920 971.1 -1.734Mg2025_A 34.91 0.5332 ug/L 0.1862 3,444 Mn2576 R 0.8234 0.2007 ug/L 24.38 15.15 Mo2020_A 0.4908 0.2341 47.70 0.1227 ug/L Na5895_R 14.39 ug/L 5.228 36.32 58.01 Ni2316_A 2.674 ug/L 0.02980 1.115 5.720 Pb2203_A 0.1985 ug/L 0.03518 17.72 -0.2543 Sb2068_A -1.212ug/L 0.8817 72.72 0.2647 Se1960_A 2.012 ug/L 1.193 59.30 2.403 Si2516_R 16.67 ug/L 3.421 20.53 20.40 Sn1899_A 13.42 ug/L 0.5773 4.303 8.568 Sr4215_R 0.5938 27.10 ug/L 0.1609 -25.05Ti3349_A ug/L 0.4127 0.1300 31.50 -23.94TI1908_A -0.6759 ug/L 1.015 150.2 -0.6757 V_2924_A 0.09841 ug/L 0.1795 182.4 -0.5995 Zn2062_A 3.794 ug/L 0.1674 4.413 12.90 Y_3600_R 24,295 Cts/S 1.2542 304.71 24,295 Y_2243_A 9,195.8 Cts/S 92.890 1.0101 9,195.8 Y_3600_A 254,870 Cts/S 3,566.7 1.3994 254,870

LCSOBJ25ICS1

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/27/2011 12:07:16AM Sample Type: Unknown

Acquire Date:	10/27/2011	1 12:07:1	6AM			Sample Type:	Unknown	
Elem	Flags	A vg	Un	its	Stddev	%RSD		Intensity Ratio
Ag3280_A		49.17	u	g/L	0.8068	1.641		1,119
Al3961_R		2,028	u	g/L	74.78	3.688		1,776
As1891_A		100.1	u	g/L	0.3933	0.3930		32.13
Au2427_A		0.8055	u	g/L	0.6703	83.21		9.728
B_2089_A		476.6	u	g/L	0.7441	0.1561		453.0
Ba4554_R		1,986	u	g/L	83.04	4.182		113,100
Be3130_R		53.39	u	g/L	2.004	3.754		5,290
Ca3158_R		2,624	u	g/L	113.1	4.308		4,043
Cd2265_A		254.7	u	g/L	0.6860	0.2693		4,027
Co2286_A		515.8	u	g/L	1.859	0.3605		1,987
Cr2677_A		203.2	u	g/L	4.718	2.322		2,980
Cu3273_A		257.0	ug	J/L	4.328	1.684		3,617
Fe2599_R		1,059	u	g/L	43.74	4.132		2,023
K_7664_R		9,936	u	J/L	413.2	4.158		6,336
Li6707_R		498.6	u	J/L	20.91	4.194		5,317
Mg2025_A		5,143	u	g/L	12.54	0.2438		956.8
Mn2576_R		512.3	ug	J/L	21.63	4.222		5,584
Mo2020_A		301.6	uç	J/L	2.014	0.6678		640.3

Published: 10/27/2011 8:52:03AM Page 76 of 101

LCSOBJ25ICS1

K6010-2011 Method Name:

EAM Analyst Name:

10/27/2011 12:07:16AM Sample Type: Unknown Acquire Date:

Acquire Date:	10/2//20	111 12.07.10/	-NVI		Sample Type.	CHRIOWH
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		7,380	ug/L	305.6	4.141	13,990
Ni2316_A		513.1	ug/L	1.793	0.3494	1,247
Pb2203 A		103.2	ug/L	0.8466	0.8204	113.1
Sb2068 A		96.93	ug/L	0.9363	0.9659	37.82
Se1960 A		100.2	ug/L	2.009	2.005	21.63
Si2516 R	W	4,114	ug/L	141.3	3.436	2,319
Sn1899 A		504.5	ug/L	1.714	0.3398	273.0
Sr4215 R		486.2	ug/L	20.59	4.235	37,780
Ti3349 A		496.8	ug/L	5.812	1.170	15,930
TI1908_A		102.9	ug/L	1.456	1.416	44.35
V 2924 A		516.1	ug/L	10.10	1.957	8,155
Zn2062 A		513.9	ug/L	3.114	0.6059	1,666
Y 3600 R		23,921	Cts/S	707.37	2.9571	23,921
Y 2243 A		9,139.7	Cts/S	54.460	0.59586	9,139.7
Y_3600_A		248,680	Cts/S	3,302.2	1.3279	248,680

SE6618-001

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

Method Revision:

50

50

Unknown 10/27/2011 12:11:48AM Sample Type: Acquire Date: Stddev %RSD Intensity Ratio Units Elem Flags Avg 1.315 ug/L 0.06330 4.815 -1,279 Ag3280_A 7.071 0.005754 109,900 Al3961_R 122,900 ug/L 0.2557 0.1615 32.44 As1891_A 158.3 ug/L ug/L 260.7 Au2427_A -0.8062 1.368 169.7 160.1 ug/L 0.5580 0.3336 B_2089_A 167.3 221.1 ug/L 0.2627 0.1188 13,170 Ba4554_R 337.0 0.04023 Be3130 R 5.574 ug/L 0.002243 46,410 0.3281 28,710 ug/L 94.20 Ca3158 R 487.8 0.7714 17.40 4.434 ug/L Cd2265 A 581.9 1.203 0.8642 Co2286 A 139.2 ug/L 4,015 1.107 Cr2677_A 272.1 ug/L 3.014 3.805 1.046 4,894 Cu3273 A 363.8 ug/L 1.997 660,500 ug/L 6,654 Fe2599 R 333,100 0.09837 12.240 ug/L 18.18 K 7664_R 18,480 ug/L 1.903 0.6255 3,371 Li6707_R 304.2 10,390 269.0 0.4865 55,290 ug/L Mg2025_A 0.2994 38,000 10.04 ug/L Mn2576_R 3,355 0.4159 91.51 0.1798 ug/L 43.22 Mo2020_A 65.98 0.1098 118,200 60,100 ug/L Na5895 R ug/L 0.5852 696.2 296.0 1.732 Ni2316_A 0.5921 323.7 298.8 ug/L 1.769 Pb2203_A 1.299 46.20 7.511 2.811 ug/L Sb2068_A 7.013 ug/L 2.463 35.12 5.348 Se1960_A 26.61 0.8942 1,736 Si2516_R 2.975 ug/L Sn1899_A 18.48 31.70 ug/L 0.1663 0.5245 22,060 0.3973 0.1452 Sr4215_R 273.6 ug/L 129,000 ug/L 40.03 0.9902 Ti3349_A 4.042 25.88 -8.248 -4.677 ug/L 1.210 TI1908_A 5,440 341.5 ug/L 3.201 0.9372 V_2924_A 3,224 0.5093 Zn2062_A 988.5 ug/L 5.034 24,848 0.71036 Y_3600_R 24,848 Cts/S 176.51 9,198.3 Y_2243_A 0.31222 9,198.3 Cts/S 28.719 Y_3600_A 1,837.5 0.74388 247,010 247,010 Cts/S

CCV

50 Method Revision: K6010-2011 Method Name:

Page 77 of 101 Published: 10/27/2011 8:52:03AM

CCV

Method Name: K6010-2011

Analyst Name: **EAM**

Acquire Date: 10/27/2011 12:16:22AM Sample Type: QC

Elem Flags Avg Units Stddev %RSD Intensity Ratio Ag3280_A 499.3 ug/L 2.082 0.4171 11,710 Al3961_R 12,760 ug/L 27.36 0.2143 10,970 As1891_A 499.9 ug/L 2.734 0.5470 163.9 Au2427_A 499.7 ug/L 1.638 0.3305 472.2 Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Be3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L	Acquire Date:	10/2//2011 12:16:	:22AM		Sample Type: QC		
Al3961_R 12,760 ug/L 27.36 0.2143 10,970 As1891_A 499.9 ug/L 2.734 0.5470 163.9 Au242_A 499.7 ug/L 7.290 1.459 1,884 B_2089_A 495.7 ug/L 1.638 0.3305 472.2 Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Ba3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15				Stddev	%RSD	Intensity Ratio	
As189_A 499.9 ug/L 2.734 0.5470 163.9 Au2427_A 499.7 ug/L 7.290 1.459 1,884 B_2089_A 495.7 ug/L 1.638 0.3305 472.2 Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Ba3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.5776 0.1149 1,926 Cr287_A 488.3 ug/L 0.5776 0.1149 1,926 Cr267_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 14.89 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 <	Ag3280_A	499.3	ug/L	2.082	0.4171	11,710	
Au2427_A 499.7 ug/L 7.290 1.459 1,884 B_2089_A 495.7 ug/L 1.638 0.3305 472.2 Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Be3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 0.7983 0.1621 7,757 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 1.813 <td< td=""><td></td><td>12,760</td><td>ug/L</td><td>27.36</td><td>0.2143</td><td>10,970</td></td<>		12,760	ug/L	27.36	0.2143	10,970	
B_2089_A 495.7 ug/L 1.638 0.3305 472.2 Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Be3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr267_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873	As1891_A	499.9	ug/L	2.734	0.5470	163.9	
Ba4554_R 487.4 ug/L 0.1788 0.03669 27,700 Ba3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr267_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.18	Au2427_A	499.7	ug/L	7.290	1.459	1,884	
Be3130_R 511.7 ug/L 0.9218 0.1801 50,690 Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr267_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 0.8777	B_2089_A			1.638	0.3305	472.2	
Ca3158_R 12,490 ug/L 15.29 0.1224 19,310 Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777	Ba4554_R	487.4	ug/L	0.1788	0.03669	27,700	
Cd2265_A 492.4 ug/L 0.7983 0.1621 7,757 Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr267_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mo2025_A 12,630 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882	Be3130_R	511.7	ug/L	0.9218	0.1801	50,690	
Co2286_A 502.6 ug/L 0.5776 0.1149 1,926 Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li670_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887	Ca3158_R	12,490	ug/L	15.29	0.1224	19,310	
Cr2677_A 488.3 ug/L 0.02834 0.005804 7,151 Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 <td< td=""><td>Cd2265_A</td><td>492.4</td><td>ug/L</td><td>0.7983</td><td>0.1621</td><td>7,757</td></td<>	Cd2265_A	492.4	ug/L	0.7983	0.1621	7,757	
Cu3273_A 493.9 ug/L 1.489 0.3015 6,947 Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 0.6725 0	Co2286_A	502.6	ug/L	0.5776	0.1149	1,926	
Fe2599_R 12,700 ug/L 19.95 0.1571 24,120 K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493	Cr2677_A	488.3	ug/L	0.02834	0.005804	7,151	
K_7664_R 12,210 ug/L 28.15 0.2306 7,747 Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 6.700 1.410 182.0 Se1960_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 3.469 0.0	Cu3273_A	493.9	ug/L	1.489	0.3015	6,947	
Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 <td< td=""><td></td><td>12,700</td><td>ug/L</td><td>19.95</td><td>0.1571</td><td>24,120</td></td<>		12,700	ug/L	19.95	0.1571	24,120	
Li6707_R 501.7 ug/L 1.517 0.3023 5,326 Mg2025_A 12,630 ug/L 22.07 0.1747 2,343 Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.9343 <td< td=""><td></td><td>12,210</td><td>ug/L</td><td>28.15</td><td>0.2306</td><td>7,747</td></td<>		12,210	ug/L	28.15	0.2306	7,747	
Mn2576_R 505.3 ug/L 1.873 0.3708 5,483 Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 0.003732	Li6707_R	501.7	ug/L	1.517	0.3023	5,326	
Mo2020_A 493.9 ug/L 4.118 0.8337 1,044 Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94,731	Mg2025_A	12,630	ug/L	22.07	0.1747	2,343	
Na5895_R 11,950 ug/L 32.33 0.2706 22,520 Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731		505.3	ug/L	1.873	0.3708	5,483	
Ni2316_A 501.7 ug/L 0.8777 0.1749 1,213 Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94,731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24,371 </td <td>Mo2020_A</td> <td>493.9</td> <td>ug/L</td> <td>4.118</td> <td>0.8337</td> <td>1,044</td>	Mo2020_A	493.9	ug/L	4.118	0.8337	1,044	
Pb2203_A 499.5 ug/L 1.882 0.3768 545.9 Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 TI1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9	Na5895_R	11,950	ug/L	32.33	0.2706	22,520	
Sb2068_A 475.1 ug/L 6.700 1.410 182.0 Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94,731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24,371 0.26811 9,089.9	Ni2316_A	501.7	ug/L	0.8777	0.1749	1,213	
Se1960_A 490.2 ug/L 4.887 0.9969 97.41 Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94,731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24,371 0.26811 9,089.9		499.5	ug/L	1.882	0.3768	545.9	
Si2516_R 12,730 ug/L 3.469 0.02724 7,118 Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9	Sb2068_A	475.1	ug/L	6.700	1.410	182.0	
Sn1899_A 502.0 ug/L 0.6725 0.1340 270.2 Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9	Se1960_A	490.2	ug/L	4.887	0.9969	97.41	
Sr4215_R 496.1 ug/L 0.2493 0.05025 38,370 Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		12,730	ug/L	3.469	0.02724	7,118	
Ti3349_A 490.9 ug/L 0.1103 0.02248 15,740 Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9	Sn1899_A	502.0	ug/L	0.6725	0.1340	270.2	
Ti1908_A 504.4 ug/L 0.9343 0.1852 223.6 V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		496.1	ug/L	0.2493	0.05025	38,370	
V_2924_A 503.3 ug/L 1.962 0.3898 7,921 Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		490.9	ug/L	0.1103	0.02248	15,740	
Zn2062_A 498.9 ug/L 0.003732 0.0007481 1,607 Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		504.4	ug/L	0.9343	0.1852	223.6	
Y_3600_R 23,795 Cts/S 94.731 0.39811 23,795 Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		503.3	ug/L	1.962	0.3898	7,921	
Y_2243_A 9,089.9 Cts/S 24.371 0.26811 9,089.9		498.9	ug/L	0.003732	0.0007481	1,607	
	Y_3600_R	23,795	Cts/S	94.731	0.39811	23,795	
Y_3600_A 248,520 Cts/S 571.89 0.23012 248,520		9,089.9	Cts/S	24.371	0.26811	9,089.9	
	Y_3600_A	248,520	Cts/S	571.89	0.23012	248,520	

CCB

K6010-2011 Method Name:

EAM Analyst Name:

Method	Revision:	50

50

Method Revision:

10/27/2011 12:20:44AM Acquire Date: Sample Type: QC Elem **A**vg Stddev Flags Units %RSD Intensity Ratio Ag3280_A 0.1183 ug/L 0.09269 78.35 -33.50 Al3961_R 3.123 ug/L 0.3481 11.14 23.19 As1891_A 1.583 ug/L 1.242 78.49 -0.7025 Au2427_A 0.5588 ug/L 0.4695 84.02 3.000 B_2089_A 0.2098 ug/L 0.2258 107.6 2.291 Ba4554_R -0.1726ug/L 0.007680 4.448 88.53 Be3130_R 0.08521 ug/L 0.01908 22.40 5.233 Ca3158_R 0.1513 ug/L 0.3950 261.0 -42.45 Cd2265_A 0.03882 ug/L 0.04495 115.8 -1.076Co2286_A 0.2361 ug/L 0.2016 85.38 6.647 Cr2677_A 0.2225 ug/L 0.3492 156.9 7.950 Cu3273_A 0.3503 ug/L 0.4640 132.4 1.500 Fe2599_R 1.474 ug/L 0.4222 28.64 6.308 K_7664_R -20.04 ug/L 20.13 100.4 -2.727 Li6707_R 4.657 ug/L 2.449 52.59 47.34 Mg2025_A -0.5451 ug/L 0.5112 93.78 -3.203Mn2576 R -0.4225 0.6120 144.8 ug/L 1.351 Mo2020_A 1.779 ug/L 0.2630 14.78 2.873

Published: 10/27/2011 8:52:03AM **CCB**

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date: 10/27/2011 12:20:44AM Sample Type: QC

Acquire Date:	10/2//20	JII 12.20.44	AIVI	Sa	imple Type. QC	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		-5.413	ug/L	4.573	84.48	19.68
Ni2316 A		0.3964	ug/L	0.2422	61.10	0.1558
Pb2203 A		0.5786	ug/L	0.4926	85.14	0.1655
Sb2068 A		0.6256	ug/L	0.2340	37.41	0.9634
Se1960 A		1.775	ug/L	1.418	79.89	2.350
Si2516_R		2.986	ug/L	2.632	88.17	12.52
Sn1899 A		0.6165	ug/L	0.4092	66.38	1.624
Sr4215_R		0.1630	ug/L	0.1468	90.02	-58.71
Ti3349 A		0.2772	ug/L	0.1110	40.06	-27.83
TI1908_A		0.5409	ug/L	0.7534	139.3	-0.1272
V 2924 A		0.3553	ug/L	0.09390	26.43	3.424
Zn2062 A		-0.05130	ug/L	0.03025	58.97	0.3644
Y 3600 R		24,084	Cts/S	74.104	0.30769	24,084
Y 2243 A		9,165.2	Cts/S	19.552	0.21333	9,165.2
Y_3600_A		249,460	Cts/S	2,174.0	0.87148	249,460

SE6618-002

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/27/2011 12:25:24AM Sample Type: Unknown

Acquire Date:	10/27/201	1 12:25:2	4AM			Sample Type:	Unknown
Elem	Flags	A vg		Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.6334		ug/L	0.1177	18.59	-345.0
Al3961_R		36,120		ug/L	238.5	0.6604	32,080
As1891_A		32.91		ug/L	2.169	6.590	4.978
Au2427_A		-0.7084		ug/L	0.9337	131.8	62.10
B 2089 A		35.02		ug/L	0.3132	0.8942	35.21
Ba4554 R		43.20		ug/L	0.3366	0.7791	2,637
Be3130_R		1.130		ug/L	0.02803	2.480	31.49
Ca3158 R		7,626		ug/L	37.55	0.4924	12,210
Cd2265_A		0.5606		ug/L	0.07535	13.44	111.2
Co2286 A		25.79		ug/L	0.1428	0.5537	118.2
Cr2677_A		63.72		ug/L	0.3126	0.4906	958.4
Cu3273_A		34.82		ug/L	0.4013	1.153	438.2
Fe2599 R		82,700		ug/L	712.9	0.8620	162,800
K_7664_R		4,216		ug/L	7.778	0.1845	2,780
Li6707_R		112.1		ug/L	0.8502	0.7587	1,231
Mg2025_A		16,940		ug/L	61.51	0.3630	3,180
Mn2576_R		735.1		ug/L	1.507	0.2050	8,272
Mo2020_A		12.80		ug/L	0.2308	1.804	26.43
Na5895_R		25,230		ug/L	17.45	0.06918	49,290
Ni2316_A		70.69		ug/L	0.6855	0.9697	165.3
Pb2203_A		24.60		ug/L	0.7445	3.026	24.12
Sb2068_A		0.3370		ug/L	0.02399	7.118	2.283
Se1960_A		2.633		ug/L	4.015	152.5	3.050
Si2516 R		3,192		ug/L	26.68	0.8357	1,855
Sn1899_A		14.90		ug/L	0.3488	2.341	9.366
Sr4215_R		79.59		ug/L	0.3860	0.4850	6,319
Ti3349 A		1,394		ug/L	2.736	0.1963	45,120
TI1908_A		-2.139		ug/L	1.052	49.18	-2.781
V 2924 A		85.15		ug/L	0.2277	0.2674	
Zn2062_A		180.8		ug/L	0.4294	0.2375	589.9
Y_3600_R		24,667		Cts/S	343.85	1.3940	
Y_2243_A		9,193.7		Cts/S	44.327	0.48215	9,193.7
Y_3600_A		250,660		Cts/S	107.56	0.042911	250,660

SE6618-003

Method Name: K6010-2011 Method Revision: 50

Published: 10/27/2011 8:52:03AM Page 79 of 101

50

Method Revision:

SE6618-003

Method Name: K6010-2011

Analyst Name: **EAM**

Method Revision:

Acquire Date:	10/27/2011 12:	29:54AM		Sample Type:	Unknown
Elem	Flags A	vg Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	6.7	00 ug/L	0.1983	2.960	-523.4
Al3961_R	81,3	70 ug/L	804.5	0.9887	71,040
As1891_A	57.	37 ug/L	2.259	3.937	8.310
Au2427_A	-1.7	19 ug/L	1.581	91.98	122.2
B_2089_A	249	9.2 ug/L	2.873	1.153	234.1
Ba4554_R	247	7.6 ug/L	1.847	0.7459	14,390
Be3130_R	5.0	34 ug/L	0.04760	0.9456	301.2
Ca3158_R	47,4	60 ug/L	293.3	0.6179	74,930
Cd2265_A	3.0	63 ug/L	0.01784	0.5825	252.5
Co2286_A	41.	71 ug/L	0.4709	1.129	197.2
Cr2677_A	296	6.4 ug/L	9.035	3.048	4,355
Cu3273_A	544	1.0 ug/L	17.50	3.218	7,527
Fe2599_R	165,4	00 ug/L	1,715	1.037	320,200
K_7664_R	22,6	00 ug/L	167.0	0.7386	14,610
Li6707_R	182	2.7 ug/L	2.300	1.259	1,974
Mg2025_A	43,6	40 ug/L	453.1	1.038	8,114
Mn2576_R	1,5	43 ug/L	11.24	0.7281	17,070
Mo2020_A	12.	44 ug/L	0.1067	0.8578	25.38
Na5895_R	84,4	90 ug/L	609.7	0.7216	162,200
Ni2316_A	139		1.078	0.7733	323.2
Pb2203_A	360).6 ug/L	2.628	0.7285	389.3
Sb2068_A	18.	65 ug/L	2.048	10.98	11.12
Se1960_A	6.9	59 ug/L	0.3514	5.050	4.458
Si2516_R	3,3	99 ug/L	19.00	0.5591	1,940
Sn1899_A	56.	53 ug/L	0.5585	0.9881	31.61
Sr4215_R	316	3.9 ug/L	2.777	0.8762	24,960
Ti3349_A	3,5	73 ug/L	109.7	3.070	114,400
TI1908_A	-2.8	35 ug/L	0.4138	14.60	-5.063
V_2924_A	304	l.5 ug/L	9.710	3.189	4,846
Zn2062_A	1,10	68 ug/L	14.60	1.250	3,771
Y_3600_R	24,2		27.826	0.11473	24,254
Y_2243_A	9,104	.4 Cts/S	68.040	0.74733	9,104.4
Y_3600_A	247,8	70 Cts/S	5,742.4	2.3167	247,870

SE6618-004

K6010-2011 Method Name:

Analyst Name: **EAM** Method Revision: 50

10/27/2011 12:34:30AM Acquire Date: Sample Type: Unknown Elem Flags Avg Units Stddev %RSD Intensity Ratio Ag3280_A **6**.789 ug/L 0.2439 3.592 -696.4 Al3961_R 107,700 ug/L 382.2 0.3550 95,790 As1891_A 86.13 ug/L 0.4719 0.5479 15.22 Au2427_A 0.2326 ug/L 0.08485 36.49 167.3 B_2089_A 324.1 ug/L 0.7318 0.2258 305.1 Ba4554_R 336.7 ug/L 0.3860 0.1146 19,900 Be3130_R 0.05875 6.718 ug/L 0.8744 418.3 Ca3158_R 72,920 ug/L 43.58 0.05977 117,300 Cd2265_A 0.05964 8.180 ug/L 0.7291 393.6 Co2286_A 56.90 ug/L 0.06995 0.1229 266.0 Cr2677_A 470.0 ug/L 4.358 0.9273 6,797 Cu3273_A 1,187 ug/L 11.76 0.9911 16,300 Fe2599 R 212,800 ug/L 350.0 0.1645 419,700 K 7664 R 29,820 ug/L 58.81 0.1972 19,640 Li6707 R 239.8 ug/L 0.3227 0.1346 2,642 Mg2025_A 57,020 ug/L 101.0 0.1771 10,650 Mn2576_R 2,019 ug/L 5.296 0.2624 22,750 Mo2020_A 20.77 ug/L 0.1738 0.8369 43.17

Published:

10/27/2011 8:52:03AM

Page 80 of 101

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

i ilaly or i vario.							
Acquire Date:	10/27/2011	12:34:30AM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Na5895_R	1	02,700	ug/L	125.7	0.1223		201,000
Ni2316_A		203.7	ug/L	0.4073	0.2000		477.1
Pb2203 A		796.4	ug/L	1.076	0.1351		869.6
Sb2068 A		44.16	ug/L	1.064	2.410		22.08
Se1960 A		5.159	ug/L	2.463	47.74		4.475
Si2516_R		3,822	ug/L	18.70	0.4893		2,222
Sn1899 A		78.04	ug/L	0.7086	0.9080		43.33
Sr4215 R		448.2	ug/L	0.7018	0.1566		36,000
Ti3349_A		4,651	ug/L	48.91	1.051		146,800
TI1908_A		-3.378	ug/L	0.2393	7.082		-6.549
V 2924 A		488.0	ug/L	4.495	0.9211		7,645
Zn2062 A		1,962	ug/L	0.7306	0.03724		6,361
Y 3600 R		24,717	Cts/S	20.231	0.081852		24,717
Y 2243 A	9	,142.1	Cts/S	26.927	0.29453		9,142.1
Y_3600_A	2	44,320	Cts/S	2,573.3	1.0533		244,320

SE6618-005

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

Flags	Acquire Date:	10/27/20	11 12:39:06	SAM		Sample Type:	Unknown
Ag3280_A 6.682 ug/L 0.08474 1.268 -673.1 AJ3961_R 83,250 ug/L 238.6 0.2866 73,390 As1891_A 77.69 ug/L 1.310 1.686 12.69 Au2427_A -2.334 ug/L 0.01389 0.5951 147.6 B_2089_A 170.5 ug/L 1.072 0.6289 161.9 Ba4554_R 178.4 ug/L 0.2329 0.1306 10,500 Be3130_R 4.308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638	Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
A3961_R 83,250 ug/L 238.6 0.2866 73,390 As1891_A 77.69 ug/L 1.310 1.686 12.69 Au2427_A -2.334 ug/L 0.01389 0.5951 147.6 B_2089_A 170.5 ug/L 1.072 0.6289 161.9 Ba4554_R 178.4 ug/L 0.2329 0.1306 10,500 Ba3130_R 4.308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 0.02958 0.3571 387.7 Co2266_A 61.26 ug/L 0.02457 0.4010 269.4 Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 </td <td>Ag3280_A</td> <td></td> <td></td> <td>ug/L</td> <td>0.08474</td> <td>1.268</td> <td>-673.1</td>	Ag3280_A			ug/L	0.08474	1.268	-673.1
Au2427_A -2.334 ug/L 0.01389 0.5951 147.6 B_2089_A 170.5 ug/L 1.072 0.6289 161.9 Ba4554_R 178.4 ug/L 0.2329 0.1306 10,500 Be3130_R 4.308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,638 0.7904 405,000 K_7664_R 16,610 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6362			83,250	ug/L	238.6	0.2866	73,390
Au2427_A -2.334 ug/L 0.01389 0.5951 147.6 B_2089_A 170.5 ug/L 1.072 0.6289 161.9 Ba4554_R 178.4 ug/L 0.2329 0.1306 10,500 Ba3130_R 4.308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.262 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6362	As1891 A		77.69	ug/L	1.310	1.686	12.69
B_2089_A 170.5 ug/L 1.072 0.6289 161.9 Ba4554_R 178.4 ug/L 0.2329 0.1306 10,500 Be3130_R 4.308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6931 0.04306 17,980 Mn2576_R 1,610 ug/L 0.6931	_		-2.334	ug/L	0.01389	0.5951	147.6
Be3130_R 4,308 ug/L 0.004728 0.1097 259.1 Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr267_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Ni2316_A 256.3 ug/L 0.2	_		170.5	ug/L	1.072	0.6289	161.9
Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr267_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li670_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6931 0.04306 17,980 Mo202_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb203_A 1,104 ug/L 0.2548	Ba4554 R		178.4	ug/L	0.2329	0.1306	10,500
Ca3158_R 22,230 ug/L 25.72 0.1157 35,420 Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2266_A 61.26 ug/L 0.2457 0.4010 269.4 Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 N8589_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.4	Be3130 R		4.308	ug/L	0.004728	0.1097	
Cd2265_A 8.282 ug/L 0.02958 0.3571 387.7 Co2286_A 61.26 ug/L 0.2457 0.4010 269.4 Cr267_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.055	_		22,230	ug/L	25.72	0.1157	35,420
Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1,368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.2	Cd2265_A		8.282	ug/L	0.02958	0.3571	387.7
Cr2677_A 424.6 ug/L 0.1304 0.03071 6,189 Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe259_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 11.6	Co2286_A		61.26	ug/L	0.2457	0.4010	269.4
Cu3273_A 1,172 ug/L 2.221 0.1895 16,220 Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li670_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 1.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550<			424.6	ug/L	0.1304	0.03071	•
Fe2599_R 207,300 ug/L 1,638 0.7904 405,000 K_7664_R 16,740 ug/L 1.368 0.008170 10,930 Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550<	_		1,172	ug/L	2.221	0.1895	
Li6707_R 217.0 ug/L 0.8362 0.3853 2,369 Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti1908_A -0.5118 ug/L 0.4898 </td <td>Fe2599_R</td> <td></td> <td>207,300</td> <td></td> <td>1,638</td> <td>0.7904</td> <td></td>	Fe2599_R		207,300		1,638	0.7904	
Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 TI1908_A -0.5118 ug/L 0.4898 </td <td>K_7664_R</td> <td></td> <td>16,740</td> <td>ug/L</td> <td>1.368</td> <td>0.008170</td> <td></td>	K_7664_R		16,740	ug/L	1.368	0.008170	
Mg2025_A 41,150 ug/L 16.45 0.03999 7,668 Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 TI1908_A -0.5118 ug/L 0.4898 </td <td></td> <td></td> <td>217.0</td> <td></td> <td>0.8362</td> <td>0.3853</td> <td>2,369</td>			217.0		0.8362	0.3853	2,369
Mn2576_R 1,610 ug/L 0.6931 0.04306 17,980 Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 TI1908_A -0.5118 ug/L 1.733 0.3344 8,166 V_2924_A 518.1 ug/L 1.733	_		41,150	ug/L	16.45	0.03999	7,668
Mo2020_A 46.66 ug/L 0.03452 0.07397 98.07 Na5895_R 64,910 ug/L 50.21 0.07735 125,800 Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Tl1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602			1,610	ug/L	0.6931	0.04306	17,980
Ni2316_A 256.3 ug/L 0.2548 0.09939 604.7 Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 <td></td> <td></td> <td>46.66</td> <td>ug/L</td> <td>0.03452</td> <td>0.07397</td> <td></td>			46.66	ug/L	0.03452	0.07397	
Pb2203_A 1,104 ug/L 2.438 0.2208 1,211 Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Na5895_R		64,910	ug/L	50.21	0.07735	
Sb2068_A 86.59 ug/L 0.05574 0.06437 37.87 Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Ni2316_A		256.3	ug/L	0.2548	0.09939	
Se1960_A 6.498 ug/L 3.256 50.11 4.529 Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Pb2203_A		1,104	ug/L	2.438		
Si2516_R 3,566 ug/L 11.65 0.3267 2,054 Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Sb2068_A	,	86.59	ug/L	0.05574	0.06437	
Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Tl1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Se1960_A		6.498	ug/L	3.256	50.11	
Sn1899_A 87.74 ug/L 0.6550 0.7466 48.48 Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Si2516_R		3,566	ug/L	11.65	0.3267	•
Sr4215_R 215.2 ug/L 0.06862 0.03189 17,080 Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0	Sn1899_A		87.74	ug/L	0.6550	0.7466	
Ti3349_A 3,105 ug/L 4.050 0.1304 98,700 Ti1908_A -0.5118 ug/L 0.4898 95.71 -4.456 V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0			215.2	ug/L	0.06862	0.03189	
Ti1908_A			3,105	ug/L	4.050	0.1304	•
V_2924_A 518.1 ug/L 1.733 0.3344 8,166 Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0			-0.5118		0.4898		
Zn2062_A 3,211 ug/L 8.602 0.2679 10,390 Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0			518.1		1.733	0.3344	
Y_3600_R 24,488 Cts/S 120.48 0.49201 24,488 Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0			3,211		8.602		
Y_2243_A 9,127.0 Cts/S 13.118 0.14373 9,127.0			24,488	Cts/S	120.48	0.49201	24,488
			9,127.0	Cts/S	13.118	0.14373	•
			246,120	Cts/S	1,834.5	0.74536	246,120

SE6618-006

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 81 of 101

Method Name:

K6010-2011

Method Revision:

50

Analysi Name.	EAM	2011			IVIE	illog Revision. 50
Analyst Name:		011 12:43:39) A B 4		OI- T	Unknown
Acquire Date:					Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		5.198	ug/L	1.018	19.58	-1,196
Al3961_R		99,450	ug/L	24.74	0.02488	88,680
As1891_A		120.8	ug/L	0.4550	0.3767	19.49
Au2427_A		-1.567	ug/L	1.634	104.3	250.0
B_2089_A		215.5	ug/L	0.3361	0.1559	204.1
Ba4554_R		207.4	ug/L	0.5641	0.2720	12,330
Be3130_R		6.312	ug/L	0.02632	0.4170	441.5
Ca3158_R		28,450	ug/L	33.60	0.1181	45,850
Cd2265_A		11.67	ug/L	0.1210	1.037	604.2
Co2286_A		97.96	ug/L	0.1661	0.1695	416.2
Cr2677_A		544.2	ug/L	6.336	1.164	7,931
Cu3273_A		1,393	ug/L	14.89	1.069	19,220
Fe2599_R	F	337,700	ug/L	915.7	0.2712	667,500
K_7664_R		19,530	ug/L	57.69	0.2954	12,900
Li6707_R		238.4	ug/L	0.3239	0.1359	2,632
Mg2025_A		48,350	ug/L	61.96	0.1281	9,012
Mn2576_R		2,761	ug/L	5.743	0.2080	31,190
Mo2020_A		52.02	ug/L	0.2204	0.4236	109.4
Na5895_R		68,960	ug/L	436.2	0.6325	135,200
Ni2316_A		307.3	ug/L	0.1953	0.06355	717.9
Pb2203_A		1,373	ug/L	3.829	0.2788	1,509
Sb2068_A		109.9	ug/L	0.9815	0.8934	48.81
Se1960_A		7.853	ug/L	4.904	62.44	5.343
Si2516_R		3,870	ug/L	7.431	0.1920	2,250
Sn1899_A		84.92	ug/L	0.1490	0.1754	46.97
Sr4215_R		266.8	ug/L	0.1252	0.04694	21,450
Ti3349_A		3,616	ug/L	27.01	0.7469	114,800
TI1908_A		-2.363	ug/L	1.127	47.71	-7.597
V_2924_A		876.8	ug/L	7.524	0.8581	13,800
Zn2062_A		5,496	ug/L	2.321	0.04223	17,790
Y_3600_R		24,771	Cts/S	203.63	0.82206	24,771
Y 2243 A		9,128.8	Cts/S	19.155	0.20983	9,128.8
Y_3600_A		245,790	Cts/S	1,447.1	0.58877	245,790

SE6618-008

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision:

50

Acquire Date:	10/27/201	1 12:48:1	4AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		4.750	ug/L	0.6198	13.05	-541 .2
Al3961_R		84,780	ug/L	183.7	0.2167	75,090
As1891_A		66.91	ug/L	0.2425	0.3625	11.81
Au2427_A		-0.2188	ug/L	0.1498	68.48	124.3
B_2089_A		257.4	ug/L	1.984	0.7710	240.8
Ba4554_R		259.3	ug/L	0.4627	0.1784	15,280
Be3130_R		5.569	ug/L	0.01093	0.1963	351.8
Ca3158_R		121,800	ug/L	330.3	0.2712	195,100
Cd2265_A		4.162	ug/L	0.2021	4.857	261.2
Co2286_A		43.39	ug/L	0.2399	0.5529	204.1
Cr2677_A		329.3	ug/L	0.5162	0.1567	4,783
Cu3273_A		580.1	ug/L	1.924	0.3316	7,951
Fe2599_R		159,200	ug/L	3,218	2.021	312,600
K_7664_R		24,370	ug/L	120.9	0.4959	15,980
Li6707_R		195.1	ug/L	1.450	0.7435	2,139
Mg2025_A		47,020	ug/L	145.2	0.3088	8,714
Mn2576_R		1,599	ug/L	2.605	0.1629	17,940
Mo2020_A		11.01	ug/L	0.08112	0.7365	22.30

Published:

10/27/2011 8:52:03AM

Page 82 of 101

Method Name: K6010-2011

Analyst Name: EAM

50 Method Revision:

Acquire Date:	10/27/20	11 12:48:1	4AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	-	94,290	ug/L	39.76	0.04217	183,600
Ni2316 A		144.1	ug/L	0.06543	0.04541	334.1
Pb2203 A		396.8	ug/L	0.4396	0.1108	427.0
Sb2068_A		2.137	ug/L	2.471	115.6	4.852
Se1960 A		7.986	ug/L	0.5931	7.427	4.653
Si2516 R		3,456	ug/L	13.39	0.3875	2,002
Sn1899 A		59.46	ug/L	0.07161	0.1204	33.08
Sr4215 R		675.9	ug/L	0.1659	0.02454	54,080
Ti3349 A		3,721	ug/L	0.5642	0.01516	117,800
TI1908_A		-2.030	ug/L	0.4477	22.06	-4.782
V 2924 A		307.3	ug/L	1.679	0.5464	4,836
Zn2062_A		1,146	ug/L	0.3440	0.03001	3,689
Y 3600 R		24,604	Cts/S	314.35	1.2776	24,604
Y 2243 A		9,075.3	Cts/S	49.758	0.54828	9,075.3
Y_3600_A		245,150	Cts/S	1,164.6	0.47505	245,150

SE6618-009

K6010-2011 Method Name:

Analyst Name:

EAM

Method Revision:

50

Acquire Date:	10/27/2	011 12:52:47	7AM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		12.33	ug/L	0.2835	2.299	-552.7
Al3961 R		105,300	ug/L	1,118	1.061	. 93,430
As1891_A		84.23	ug/L	1.684	1.999	14.98
Au2427_A		-0.6140	ug/L	0.1333	21.71	160.5
B_2089_A		300.2	ug/L	3.017	1.005	285.6
Ba4554 R		312.1	ug/L	3.607	1.156	18,400
Be3130 R		6.791	ug/L	0.09676	1.425	435.4
Ca3158 R		24,660	ug/L	272.1	1.103	39,530
Cd2265_A		16.04	ug/L	0.2630	1.640	516.5
Co2286_A		63.57	ug/L	0.7451	1.172	292.6
Cr2677_A		655.5	ug/L	2.066	0.3152	9,493
Cu3273 A		1,490	ug/L	2.101	0.1409	20,560
Fe2599 R		208,600	ug/L	994.0	0.4765	410,200
K 7664 R		28,600	ug/L	136.7	0.4780	18,780
Li6707_R		238.9	ug/L	0.6275	0.2627	2,625
Mg2025_A		53,500	ug/L	608.9	1.138	10,060
Mn2576_R		1,874	ug/L	16.70	0.8910	21,050
Mo2020 A		49.97	ug/L	0.3516	0.7038	106.0
Na5895 R		91,900	ug/L	844.7	0.9192	179,200
Ni2316_A		306.6	ug/L	2.522	0.8224	733.5
Pb2203_A		1,699	ug/L	16.53	0.9729	1,880
Sb2068_A		42.57	ug/L	2.048	4.810	21.95
Se1960 A		7.649	ug/L	2.210	28.89	4.995
Si2516 R		3,234	ug/L	42.74	1.322	1,875
Sn1899 A		164.0	ug/L	2.324	1.417	
Sr4215_R		257.7	ug/L	1.982	0.7692	
Ti3349_A		4,514	ug/L	17.20	0.3809	
TI1908_A		-2.734	ug/L	0.1891	6.918	-6.838
V_2924_A		817.0	ug/L	1.670	0.2044	12,800
Zn2062_A		5,042	ug/L	53.24	1.056	
Y_3600_R		24,644	Cts/S	387.89	1.5740	•
Y_2243_A		9,213.5	Cts/S	56.880	0.61735	
Y_3600_A		245,050	Cts/S	743.55	0.30343	245,050

SE6618-010

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 83 of 101

Method Name:

K6010-2011

FAM

Method Revision:

50

Analyst Name:	EAM					
Acquire Date:	10/27/2	011 12:57:24	AM		Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		5.350	ug/L	0.9649	18.04	-979.5
Al3961_R		93,400	ug/L	1,025	1.098	81,880
As1891_A		97.52	ug/L	0.6499	0.6665	15.26
Au2427_A		-4.870	ug/L	1.039	21.33	194.6
B_2089_A		132.6	ug/L	1.425	1.074	126.3
Ba4554_R		174.3	ug/L	2.065	1.185	10,200
Be3130_R		4.059	ug/L	0.07194	1.772	236.3
Ca3158_R		33,100	ug/L	401.6	1.213	52,450
Cd2265_A		4.153	ug/L	0.1056	2.543	408.8
Co2286_A		90.76	ug/L	0.4378	0.4824	382.8
Cr2677_A		258.3	ug/L	1.919	0.7428	3,864
Cu3273_A		350.8	ug/L	2.123	0.6052	4,824
Fe2599_R	W	276,200	ug/L	3,422	1.239	536,800
K_7664_R		13,760	ug/L	176.2	1.281	8,934
Li6707_R		247.4	ug/L	2.740	1.108	2,686
Mg2025_A		44,960	ug/L	191.2	0.4253	8,384
Mn2576_R		2,486	ug/L	32.31	1.300	27,600
Mo2020_A		29.72	ug/L	0.1113	0.3746	62.13
Na5895_R		49,580	ug/L	498.6	1.006	95,590
Ni2316_A		238.7	ug/L	1.185	0.4963	556.5
Pb2203_A		457.7	ug/L	1.654	0.3614	498.9
Sb2068_A		38.10	ug/L	1.735	4.555	19.98
Se1960_A		3.012	ug/L	3.091	102.6	4.133
Si2516_R		2,983	ug/L	47.69	1.598	1,707
Sn1899_A		226.9	ug/L	1.799	0.7925	123.4
Sr4215_R		276.0	ug/L	3.105	1.125	21,810
Ti3349_A		3,016	ug/L	36.20	1.200	97,730
TI1908_A		-2.073	ug/L	0.06761	3.262	-5.837
V_2924_A		365.4	ug/L	1.615	0.4421	5,896
Zn2062_A		1,667	ug/L	7.792	0.4674	5,397
Y_3600_R		24,354	Cts/S	334.70	1.3743	24,354
Y_2243_A		9,130.0	Cts/S	22.538	0.24686	9,130.0
Y_3600_A		250,870	Cts/S	1,006.8	0.40135	250,870

SE6618-011

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/27/2011	1:01:58AM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		6.620	ug/L	0.2363	3.569	-562.0
Al3961_R	(90,280	ug/L	97.30	0.1078	80,370
As1891_A		73.80	ug/L	1.080	1.464	13.25
Au2427_A	-(0.9078	ug/L	0.5723	63.04	136.1
B_2089_A		308.4	ug/L	2.211	0.7171	290.3
Ba4554_R		254.4	ug/L	0.1391	0.05466	15,080
Be3130_R		5.696	ug/L	0.02386	0.4189	354.1
Ca3158_R		57,170	ug/L	4.638	0.008113	92,030
Cd2265_A		3.931	ug/L	0.07573	1.926	279.9
Co2286_A		48.28	ug/L	0.5584	1.157	226.4
Cr2677_A		321.4	ug/L	2.037	0.6339	4,694
Cu3273_A		421.3	ug/L	0.2752	0.06534	5,763
Fe2599_R	17	75,400	ug/L	653.3	0.3724	346,200
K_7664_R	2	24,880	ug/L	66.43	0.2670	16,400
Li6707_R		204.5	ug/L	0.5499	0.2689	2,254
Mg2025_A	5	54,810	ug/L	339.9	0.6201	10,240
Mn2576_R		1,807	ug/L	0.9192	0.05086	20,380
Mo2020_A		11.37	ug/L	0.1440	1.266	23.22

Published:

10/27/2011 8:52:03AM

Page 84 of 101

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Analyst Harrie.	_,					
Acquire Date:	10/27/2011	1:01:58AN	1		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895 R		38,710	ug/L	236.2	0.2663	173,600
Ni2316 A		146.6	ug/L	0.7330	0.4999	341.5
Pb2203_A		352.4	ug/L	0.4295	0.1219	380.9
Sb2068 A	(0.7385	ug/L	0.007180	0.9722	4.569
Se1960 A		7.432	ug/L	2.150	28.93	4.671
Si2516 R		3,299	ug/L	18.05	0.5471	1,920
Sn1899_A		52.56	ug/L	0.9913	1.886	29.61
Sr4215_R		358.8	ug/L	0.2335	0.06506	28,820
Ti3349 A		3,935	ug/L	17.27	0.4389	125,300
TI1908 A		-2.646	ug/L	0.6534	24.70	-5.439
V_2924_A		323.9	ug/L	1.754	0.5415	5,126
Zn2062_A		982.5	ug/L	5.717	0.5819	3,186
Y 3600 R	:	24,730	Cts/S	123.18	0.49809	24,730
Y_2243_A	g	,144.7	Cts/S	63.859	0.69832	9,144.7
Y_3600_A		46,410	Cts/S	2,773.1	1.1254	246,410

SE6618-012

Method Name: K6010-2011

Analyst Name: EAM Method Revision:

50

Etem Flags Avg Units Stddev %RSD Intensity Ratio Ag3280_A 7.294 ug/L 0.3148 4.315 -628.0 Al3961_R 104,500 ug/L 113.9 0.1090 90,620 As1891_A 81.82 ug/L 1.610 1.968 13.87 Au2427_A -4.638 ug/L 0.3325 7.170 137.5 Ba4554_R 318.8 ug/L 0.2315 0.06978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr267_A 453.3 ug/L 0.03676 0.6991 248.7 Cr267_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 864.6 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L	Acquire Date:	10/27/2011	1:06:3	1AM			Sample Type:	Unknown	
Ag3280_A 7.294 ug/L 0.3148 4.315 -628.0 Al3961_R 104,500 ug/L 113.9 0.1090 90,620 As1891_A 81.82 ug/L 1.610 1.968 13.87 Au2427_A -4.638 ug/L 0.3325 7.170 137.5 B_2089_A 318.8 ug/L 1.546 0.4848 290.7 Ba4554_R 331.8 ug/L 0.2315 0.06978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 849.7 0.1412 943,800 Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr2677_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe259_R 203,500 ug/L 1,766	Elem	Flags	A vg		Units	Stddev	%RSD	ı	Intensity Ratio
As1891_A 81.82 ug/L 1.610 1.968 13.87 Au2427_A -4.638 ug/L 0.3325 7.170 137.5 B_2089_A 318.8 ug/L 1.546 0.4848 290.7 Ba4554_R 331.8 ug/L 0.2315 0.06978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca158_R 601,800 ug/L 0.8061 1.500 327.1 Ca2266_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr267_A 453.3 ug/L 0.2054 0.04532 6.358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250	Ag3280_A		7.294		ug/L	0.3148	4.315		-628.0
Au2427_A -4.638 ug/L 0.3325 7.170 137.5 B 2089_A 318.8 ug/L 1.546 0.4848 290.7 B 4554_R 331.8 ug/L 0.2315 0.06978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 849.7 0.1412 943,800 Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 5.544 ug/L 0.3876 0.6991 248.7 Cr2677_A 453.3 ug/L 0.0254 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li670_R 247.0 ug/L 2.250 0.9109 2.652 Mg2025_A 53,960 ug/L 171.8	Al3961_R	1	04,500		ug/L	113.9	0.1090		90,620
B_2089_A 318.8 ug/L 1.546 0.4848 290.7 Ba4554_R 331.8 ug/L 0.2315 0.09978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 0.8961 1.500 327.1 Ca2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr267_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 12.250 0.9109 2,652 Mg2025_A 1,946 ug/L 2.664 0.1369 21,370 Mc2020_A 13.02 ug/L 0.1033	As1891_A		81.82		ug/L	1.610	1.968		
Ba4554_R 331.8 ug/L 0.2315 0.06978 19,120 Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 849.7 0.1412 943,800 Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr2677_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 <td>Au2427_A</td> <td></td> <td>-4.638</td> <td></td> <td>ug/L</td> <td>0.3325</td> <td>7.170</td> <td></td> <td></td>	Au2427_A		-4.638		ug/L	0.3325	7.170		
Be3130_R 6.403 ug/L 0.07392 1.154 399.7 Ca3158_R 601,800 ug/L 849.7 0.1412 943,800 Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr2677_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 2.664 0.1369 21,370 Mc2576_R 1,946 ug/L 2.664 0.1369 21,370 Mc2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 0.1033 <td>B_2089_A</td> <td></td> <td>318.8</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td>	B_2089_A		318.8		ug/L				
Ca3158_R 601,800 ug/L 849.7 0.1412 943,800 Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2266_A 55.44 ug/L 0.3876 0.6991 248.7 Cr267_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li670_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na589_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954	Ba4554_R		331.8		ug/L	0.2315	0.06978		
Cd2265_A 5.372 ug/L 0.08061 1.500 327.1 Co2286_A 55.44 ug/L 0.3876 0.6991 248.7 Cr2677_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 0.3424	Be3130_R		6.403		ug/L	0.07392	1.154		
Co2286 A 55.44 ug/L 0.3876 0.6991 248.7 Cr2677 A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273 A 846.4 ug/L 2.049 0.2421 11,240 Fe2599 R 203,500 ug/L 1,766 0.8679 391,200 K 7664 R 27,900 ug/L 3.286 0.01178 17,910 Li6707 R 247.0 ug/L 2.250 0.9109 2,652 Mg2025 A 53,960 ug/L 171.8 0.3184 9,761 Mn2576 R 1,946 ug/L 2.664 0.1369 21,370 Mo2020 A 13.02 ug/L 0.1033 0.7932 25.89 Na5895 R 95,740 ug/L 19.59 0.02047 182,500 Ni2316 A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203 A 553.6 ug/L 0.3954 0.1826 493.1 Pb2203 A 4.473 ug/L 0.3448	Ca3158_R	6	01,800		ug/L	849.7	0.1412		
Cr2677_A 453.3 ug/L 0.2054 0.04532 6,358 Cu3273_A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 0.3954 0.1826 493.1 Pb2203_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 0.5571	Cd2265_A		5.372		ug/L	0.08061			
Cu3273 A 846.4 ug/L 2.049 0.2421 11,240 Fe2599_R 203,500 ug/L 1,766 0.8679 391,200 K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204	Co2286_A		55.44		ug/L	0.3876			
Fe2599 R 203,500 ug/L 1,766 0.8679 391,200 K_7664 R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mc2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424	Cr2677_A		453.3			0.2054			
K_7664_R 27,900 ug/L 3.286 0.01178 17,910 Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 <t< td=""><td>Cu3273_A</td><td></td><td>846.4</td><td></td><td>ug/L</td><td>2.049</td><td></td><td></td><td>•</td></t<>	Cu3273_A		846.4		ug/L	2.049			•
Li6707_R 247.0 ug/L 2.250 0.9109 2,652 Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 <t< td=""><td>Fe2599_R</td><td>2</td><td>03,500</td><td></td><td>ug/L</td><td>1,766</td><td></td><td></td><td></td></t<>	Fe2599_R	2	03,500		ug/L	1,766			
Mg2025_A 53,960 ug/L 171.8 0.3184 9,761 Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 TI1908_A -1.461 ug/L 0.4988	K_7664_R		27,900		ug/L	3.286			
Mn2576_R 1,946 ug/L 2.664 0.1369 21,370 Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 TI1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988	Li6707_R		247.0		ug/L	2.250	0.9109)	
Mo2020_A 13.02 ug/L 0.1033 0.7932 25.89 Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 TI1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486	Mg2025_A		53,960		ug/L	171.8	0.3184		
Na5895_R 95,740 ug/L 19.59 0.02047 182,500 Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773	Mn2576_R		1,946		ug/L	2.664			
Ni2316_A 216.5 ug/L 0.3954 0.1826 493.1 Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018	Mo2020_A		13.02		ug/L	0.1033			
Pb2203_A 553.6 ug/L 2.118 0.3827 583.0 Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Na5895_R		95,740			19.59			
Sb2068_A 4.473 ug/L 0.5571 12.46 6.569 Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Ni2316_A		216.5		ug/L				
Se1960_A 8.091 ug/L 3.448 42.62 4.835 Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Pb2203_A		553.6		ug/L				
Si2516_R 3,191 ug/L 7.204 0.2258 1,808 Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Sb2068_A		4.473		ug/L	0.5571			
Sn1899_A 71.87 ug/L 0.3424 0.4763 38.77 Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Se1960_A		8.091		ug/L	3.448			
Sr4215_R 2,544 ug/L 2.309 0.09076 199,400 Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Si2516_R		3,191		ug/L	7.204			
Ti3349_A 4,224 ug/L 3.916 0.09271 129,300 Ti1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Sn1899_A		71.87		ug/L				
Tl1908_A -1.461 ug/L 1.172 80.25 -5.120 V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Sr4215_R		2,544		ug/L	2.309	0.09076	;	
V_2924_A 392.6 ug/L 0.4988 0.1270 5,968 Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Ti3349_A		4,224		ug/L				
Zn2062_A 1,698 ug/L 2.486 0.1464 5,333 Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	TI1908_A		-1.461		ug/L				
Y_3600_R 24,083 Cts/S 86.773 0.36031 24,083 Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	V_2924_A		392.6		ug/L	0.4988			
Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Zn2062_A		1,698		ug/L				
Y_2243_A 8,857.3 Cts/S 4.5018 0.050826 8,857.3	Y_3600_R		24,083		Cts/S	86.773			
Y_3600_A 236,930 Cts/S 360.15 0.15201 236,930			8,857.3		Cts/S	4.5018			•
	Y_3600_A	2	236,930		Cts/S	360.15	0.15201		236,930

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 85 of 101

CCV

K6010-2011 Method Name:

Method Revision: EAM Analyst Name: Acquire Date: 10/27/2011 1:11:10AM OC. Sample Type:

Acquire Date:	10/27/2	011 1:11:10/	AM	Sa	ample Type: QC	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		498.2	ug/L	0.7447	0.1495	11,710
Al3961_R		12,690	ug/L	110.1	0.8673	10,910
As1891_A		496.7	ug/L	1.030	0.2074	163.6
Au2427_A		497.3	ug/L	6.456	1.298	1,884
B_2089_A		496.3	ug/L	0.7321	0.1475	475.0
Ba4554_R		484.7	ug/L	0.7611	0.1570	27,540
Be3130_R		509.0	ug/L	3.326	0.6535	50,420
Ca3158_R		12,470	ug/L	36.86	0.2956	19,280
Cd2265_A		490.4	ug/L	0.4560	0.09299	7,762
Co2286_A		498.5	ug/L	1.229	0.2466	1,920
Cr2677_A		488.4	ug/L	1.531	0.3135	7,167
Cu3273_A		491.5	ug/L	1.338	0.2723	6,927
Fe2599_R		12,700	ug/L	149.3	1.176	24,110
K_7664_R		12,330	ug/L	106.1	0.8604	7,823
Li6707_R		504.0	ug/L	0.7109	0.1411	5,349
Mg2025_A		12,560	ug/L	8.816	0.07019	2,340
Mn2576_R		503.5	ug/L	4.015	0.7973	5,464
Mo2020_A		491.8	ug/L	0.5949	0.1210	1,044
Na5895_R	W	11,410	ug/L	33.53	0.2939	21,510
Ni2316_A		499.2	ug/L	0.9349	0.1873	1,212
Pb2203_A		498.5	ug/L	0.8829	0.1771	547.5
Sb2068_A		475.4	ug/L	9.924	2.087	183.0
Se1960_A		491.8	ug/L	0.9898	0.2012	98.19
Si2516_R		12,740	ug/L	96.50	0.7576	7,121
Sn1899_A		499.4	ug/L	1.469	0.2941	270.1
Sr4215_R		494.1	ug/L	2.729	0.5522	38,210
Ti3349_A		488.9	ug/L	0.1802	0.03687	15,700
TI1908_A		500.3	ug/L	0.2543	0.05082	222.8
V_2924_A		502.6	ug/L	1.252	0.2491	7,926
Zn2062_A		494.0	ug/L	0.9592	0.1942	1,599
Y_3600_R		23,794	Cts/S	43.993	0.18489	23,794
Y_2243_A		9,132.7	Cts/S	13.718	0.15021	9,132.7
Y_3600_A		249,040	Cts/S	995.15	0.39960	249,040

CCB

Method Name: K6010-2011

Analyst Name:

EAM

Method	Revision:	50

50

Acquire Date:	10/27/2011	1:15:3	2AM			Sample Type:	QC	
Elem	Flags	A vg	ι	Inits	Stddev	%RSD		Intensity Ratio
Ag3280_A	0	.09954		ug/L	0.4395	441.5		-33.65
Al3961_R		-9.032		ug/L	15.82	175.2		12.60
As1891_A		1.352		ug/L	0.5486	40.56		-0.7809
Au2427_A		0.2381		ug/L	0.2382	100.1		1.788
B_2089_A		0.7689		ug/L	0.2084	27.10		2.811
Ba4554_R	-	0.1316		ug/L	0.03488	26.50		90.16
Be3130_R	0	.03657		ug/L	0.02412	65.95		0.3655
Ca3158_R		2.955		ug/L	3.556	120.3		-37.72
Cd2265_A	0.0	003781		ug/L	0.006137	162.3		-1.633
Co2286_A		0.1309		ug/L	0.1841	140.6		6.247
Cr2677_A	0	.02209		ug/L	0.1963	888.7		4.990
Cu3273_A	0	.02930		ug/L	1.190	4,063		-3.100
Fe2599_R		0.6659		ug/L	0.3416	51.29		4.717
K_7664_R		71.49		ug/L	11.47	16.04		55.54
Li6707_R		8.831		ug/L	0.1471	1.665		91.44
Mg2025_A		2.407		ug/L	1.980	82.26		-2.652
Mn2576_R	_	0.4669		ug/L	0.5042	108.0		0.8256
Mo2020_A		1.482		ug/L	0.4498	30.35		2.242

Published:

10/27/2011 8:52:03AM

Page 86 of 101

ССВ

Method Name: K6010-2011

EAM Analyst Name:

Method Revision:

50

, wilding out that the							
Acquire Date:	10/27/2011	1:15:32AM			Sample Type:	QC	
Elem	Flags	Avg	Units	Stddev	%RS	D	Intensity Ratio
Na5895_R		83.20	ug/L	15.28	18.3	6	187.2
Ni2316 A	(0.2946	ug/L	0.1790	60.7	6	-0.09342
Pb2203 A	-0.	.03044	ug/L	0.2256	741.	1	-0.5077
Sb2068_A		-1.458	ug/L	1.999	137.	1	0.1668
Se1960 A		1.545	ug/L	0.4006	25.9	3	2.307
Si2516 R		4.383	ug/L	1.576	35.9	5	13.20
Sn1899 A		0.3475	ug/L	0.07917	22.7	8	1.479
Sr4215_R	0.	.08630	ug/L	0.08458	98.0	1	-64.16
Ti3349 A		0.2112	ug/L	0.07260	34.3	8	-29.65
TI1908_A	-(0.1600	ug/L	0.2659	166.	2	-0.4430
V 2924 A	(0.3630	ug/L	0.2119	58.3	9	3.538
Zn2062 A	-0.	.02717	ug/L	0.01057	38.9	2	0.4442
Y 3600 R	:	23,891	Cts/S	177.98	0.7449	6	23,891
Y 2243 A	9	,173.4	Cts/S	22.540	0.2457	2	9,173.4
Y_3600_A	2	46,960	Cts/S	1,857.0	0.7519	3	246,960

SE6618-013

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision:

50

Acquire Date:	10/27/20	1:20:12	AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.739	ug/L	1.876	107.9	-1,023
Al3961_R		99,060	ug/L	80.80	0.08158	87,710
As1891_A		96.29	ug/L	0.1075	0.1116	15.28
Au2427_A		-0.3317	ug/L	2.037	614.2	213.9
B_2089_A		106.8	ug/L	0.7223	0.6762	102.7
Ba4554_R		145.9	ug/L	0.4496	0.3082	8,642
Be3130_R		3.979	ug/L	0.05952	1.496	237.4
Ca3158_R		15,230	ug/L	13.74	0.09016	24,360
Cd2265_A		3.525	ug/L	0.3670	10.41	394.4
Co2286_A		118.4	ug/L	0.5416	0.4574	490.8
Cr2677_A		228.3	ug/L	3.451	1.511	3,353
Cu3273_A		387.7	ug/L	6.121	1.579	5,246
Fe2599_R	W	270,600	ug/L	2,821	1.042	531,200
K_7664_R		11,340	ug/L	10.75	0.09476	7,443
Li6707_R		245.1	ug/L	0.004909	0.002003	2,688
Mg2025_A		44,730	ug/L	99.95	0.2234	8,398
Mn2576_R		2,789	ug/L	4.710	0.1689	31,270
Mo2020_A		18.16	ug/L	0.1515	0.8340	37.85
Na5895_R		45,080	ug/L	73.32	0.1627	87,780
Ni2316_A		258.9	ug/L	0.5626	0.2173	609.9
Pb2203_A		256.7	ug/L	0.9171	0.3573	278.4
Sb2068_A		6.832	ug/L	0.2369	3.468	7.994
Se1960_A		2.670	ug/L	0.6476	24.25	4.123
Si2516_R		3,208	ug/L	27.79	0.8664	1,854
Sn1899_A		35.25	ug/L	0.9658	2.740	20.39
Sr4215_R		209.0	ug/L	0.6471	0.3097	16,670
Ti3349_A		2,889	ug/L	34.71	1.201	91,780
TI1908_A		-3.756	ug/L	0.8247	21.96	-6.759
V_2924_A		307.4	ug/L	5.384	1.751	4,868
Zn2062_A		1,013	ug/L	3.364	0.3323	3,300
Y_3600_R		24,600	Cts/S	76.465	0.31084	24,600
Y_2243_A		9,190.8	Cts/S	10.823	0.11776	9,190.8
Y_3600_A		245,940	Cts/S	3,327.4	1.3529	245,940

SE6618-014

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 87 of 101

Method Name: K6010-2011

EAM Analyst Name:

Acquire Date:	10/27/201	1 1:24:4	19AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.447	ug/L	0.6293	25.72	-934.9
Al3961_R		103,100	ug/L	322.7	0.3129	91,470
As1891_A		84.20	ug/L	0.7539	0.8953	12.31
Au2427_A		-1.566	ug/L	0.3915	25.01	185.6
B_2089_A		137.6	ug/L	0.4794	0.3485	131.3
Ba4554_R		163.0	ug/L	0.7822	0.4799	9,659
Be3130_R		4.420	ug/L	0.02770	0.6267	289.7
Ca3158_R		24,650	ug/L	61.64	0.2500	39,510
Cd2265_A		3.262	ug/L	0.4319	13.24	366.2
Co2286_A		86.88	ug/L	0.2440	0.2809	367.5
Cr2677_A		264.2	ug/L	2.534	0.9591	3,867
Cu3273_A		380.5	ug/L	4.183	1.099	5,152
Fe2599_R	W	251,800	ug/L	4,144	1.645	495,100
K_7664_R		13,620	ug/L	12.70	0.09325	8,950
Li6707_R		271.1	ug/L	1.141	0.4208	2,978
Mg2025_A		47,280	ug/L	167.8	0.3549	8,866
Mn2576_R		2,004	ug/L	0.5338	0.02664	22,510
Mo2020_A		14.64	ug/L	0.3811	2.604	30.29
Na5895_R		54,120	ug/L	8.664	0.01601	105,600
Ni2316_A		223.1	ug/L	0.9668	0.4334	523.3
Pb2203_A		290.5	ug/L	2.368	0.8149	314.4
Sb2068_A		2.210	ug/L	2.228	100.8	6.094
Se1960_A		-0.2103	ug/L	1.902	904.5	3.497
Si2516_R		2,884	ug/L	10.78	0.3737	1,670
Sn1899_A		40.10	ug/L	0.2622	0.6540	22.99
Sr4215_R		234.8	ug/L	0.3097	0.1319	18,760
Ti3349_A		2,774	ug/L	42.70	1.539	88,060
TI1908_A		-4.579	ug/L	0.01865	0.4072	-6.190
V_2924_A		286.3	ug/L	3.059	1.068	4,532
Zn2062_A		1,056	ug/L	2.560	0.2425	3,437
Y_3600_R		24,638	Cts/S	141.42	0.57400	24,638
Y_2243_A		9,180.8	Cts/S	32.884	0.35818	9,180.8
Y_3600_A		245,760	Cts/S	1,522.6	0.61957	245,760

SE6618-015

Method Name: K6010-2011

Analyst Name: EAM

Acquire Date:	10/27/2011	1:29:2	7AM			Sample Type:	Unknown	
Elem	Flags	Avg		Units	Stddev	%RSI)	Intensity Ratio
Ag3280_A		2.242		ug/L	0.1135	5.062	2	-938.0
Al3961_R		88,090		ug/L	748.4	0.8490	3	76,980
As1891_A		94.04		ug/L	2.941	3.12	7	15.04
Au2427_A		-2.925		ug/L	0.1429	4.884	ŀ	178.5
B_2089_A		77.47		ug/L	0.08738	0.1128	3	73.23
Ba4554_R		97.54		ug/L	0.6215	0.637	l	5,734
Be3130_R		3.041		ug/L	0.006572	0.216		183.4
Ca3158_R	•	161,200		ug/L	222.0	0.1378	3	254,700
Cd2265_A		2.576		ug/L	0.1220	4.734	ļ	349.4
Co2286_A		105.3		ug/L	0.1054	0.100		422.0
Cr2677_A		176.2		ug/L	0.6622	0.3759)	2,574
Cu3273_A		289.3		ug/L	0.9387	0.324	5	3,858
Fe2599_R	W 2	254,400		ug/L	2,140	0.841		492,900
K_7664_R		8,487		ug/L	0.7610	0.008967	•	5,497
Li6707_R		238.9		ug/L	0.1002	0.04192	2	2,585
Mg2025_A		38,180		ug/L	56.35	0.1476	;	6,975
Mn2576_R		2,090		ug/L	9.062	0.4335	;	23,140
Mo2020_A		22.47		ug/L	0.5984	2.663	3	45.81

10/27/2011 8:52:03AM Published:

Page 88 of 101

Method Revision:

50

Method Revision:

50

Method Name:

K6010-2011

Analyst Name: EAM

Method Revision:

50

Sample 7	Гуре:	Unknown
----------	-------	---------

, and jot marries						
Acquire Date:	10/27/20	11 1:29:27 <i>F</i>	AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		33,990	ug/L	14.86	0.04373	65,330
Ni2316_A		217.5	ug/L	0.8548	0.3931	496.3
Pb2203 A		211.1	ug/L	1.394	0.6606	222.7
Sb2068 A		4.190	ug/L	0.4164	9.937	6.418
Se1960 A		7.493	ug/L	1.018	13.59	4.781
Si2516 R		3,242	ug/L	27.59	0.8509	1,849
Sn1899 A		25.43	ug/L	0.2404	0.9455	14.66
Sr4215 R		601.6	ug/L	2.258	0.3754	47,480
Ti3349 A		2,119	ug/L	1.340	0.06323	66,760
TI1908 A		-3.375	ug/L	0.5088	15.07	-5.292
V 2924 A		228.9	ug/L	0.3993	0.1744	3,604
Zn2062 A		815.0	ug/L	1.337	0.1640	2,585
Y 3600 R		24,275	Cts/S	168.06	0.69233	24,275
Y 2243 A		8,944.5	Cts/S	31.558	0.35282	8,944.5
Y_3600_A		243,920	Cts/S	320.28	0.13131	243,920
_ _						

SE6618-016

Method Name:

K6010-2011

Method Revision:

50

Method Name:	K6010-	2011			Method Revision: 30			
Analyst Name:	EAM							
Acquire Date:	10/27/20	011 1:34:00/	AM		Sample Type:	Unknown		
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio		
Ag3280_A		1.602	ug/L	0.6481	40.46	-845.6		
Al3961_R		80,460	ug/L	399.2	0.4962	71,220		
As1891_A		79.52	ug/L	0.9089	1.143	12.41		
Au2427_A		-1.880	ug/L	1.153	61.31	164.7		
B_2089_A		53.00	ug/L	0.6620	1.249	52.15		
Ba4554_R		86.43	ug/L	0.5096	0.5896	5,158		
Be3130_R		2.626	ug/L	0.02387	0.9087	149.2		
Ca3158_R		13,100	ug/L	37.43	0.2857	20,930		
Cd2265_A		1.426	ug/L	0.07496	5.256	300.6		
Co2286_A		85.46	ug/L	0.04654	0.05446	355.1		
Cr2677_A		139.5	ug/L	1.455	1.043	2,068		
Cu3273_A		153.5	ug/L	1.753	1.142	2,020		
Fe2599_R		222,900	ug/L	2,760	1.239	437,200		
K_7664_R		7,347	ug/L	19.43	0.2645	4,821		
Li6707_R		216.6	ug/L	1.591	0.7343	2,374		
Mg2025_A		34,490	ug/L	73.31	0.2125	6,466		
Mn2576_R		1,933	ug/L	7.122	0.3684	21,680		
Mo2020_A		20.25	ug/L	0.1883	0.9299	42.28		
Na5895_R		29,360	ug/L	155.2	0.5286	57,150		
Ni2316_A		176.2	ug/L	0.6610	0.3751	411.1		
Pb2203_A		95.28	ug/L	1.051	1.103	100.4		
Sb2068_A		0.5099	ug/L	0.6839	134.1	4.626		
Se1960_A		1.233	ug/L	0.2287	18.54	3.526		
Si2516_R		3,156	ug/L	11.50	0.3643	1,824		
Sn1899_A		18.72	ug/L	1.525	8.147	11.42		
Sr4215_R		130.0	ug/L	0.8773	0.6751	10,330		
Ti3349_A		2,012	ug/L	23.89	1.187	64,160		
TI1908_A		-2.968	ug/L	0.1071	3.608	-4.928		
V_2924_A		181.8	ug/L	1.871	1.029	2,901		
Zn2062_A		526.5	ug/L	1.758	0.3340	1,714		
Y_3600_R		24,589	Cts/S	380.28	1.5466	24,589		
Y_2243_A		9,177.4	Cts/S	14.321	0.15604	9,177.4		
V 3600 A		246 040	Ctc/S	2 455 0	0.00468	246 910		

2,455.9

SE6618-016L

Method Name:

K6010-2011

Method Revision:

0.99468

50

246,910

Published:

Y_3600_A

10/27/2011 8:52:03AM

246,910

Cts/S

Page 89 of 101

SE6618-016L

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

Analyst Name:	EAIVI				
Acquire Date:	10/27/2011 1:38:38			Sample Type:	Unknown
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	4.065	ug/L	1.560	38.38	-206.0
Al3961_R	82,320	ug/L	184.0	0.2235	14,350
As1891_A	86.29	ug/L	5.236	6.067	1.742
Au2427_A	-1.372	ug/L	1.012	73.75	36.72
B_2089_A	53.50	ug/L	3.608	6.744	12.22
Ba4554_R	89.62	ug/L	0.4408	0.4918	1,131
Be3130_R	2.940	ug/L	0.1784	6.069	32.87
Ca3158_R	13,740	ug/L	20.92	0.1523	4,284
Cd2265_A	0.5595	ug/L	0.09448	16.89	60.78
Co2286_A	90.69	ug/L	1.751	1.931	79.99
Cr2677_A	143.9	ug/L	3.820	2.655	443.7
Cu3273_A	158.4	ug/L	0.6301	0.3977	425.7
Fe2599_R	241,000	ug/L	860.8	0.3572	93,040
K_7664_R	7,577	ug/L	138.0	1.821	986.5
Li6707_R	250.4	ug/L	14.59	5.828	537.7
Mg2025_A	37,110	ug/L	207.4	0.5588	1,393
Mn2576_R	2,016	ug/L	0.7578	0.03759	4,452
Mo2020_A	21.58	ug/L	0.2798	1.297	8.314
Na5895_R	30,770	ug/L	114.5	0.3721	11,810
Ni2316_A	188.2	ug/L	1.112	0.5909	87.39
Pb2203_A	97.59	ug/L	4.918	5.040	20.33
Sb2068_A	-9.465	ug/L	1.812	19.15	0.7981
Se1960_A	10.39	ug/L	0.9107	8.769	2.691
Si2516_R	3,333	ug/L	58.27	1.749	387.5
Sn1899_A	20.84	ug/L	1.974	9.473	3.559
Sr4215_R	135.1	ug/L	0.6399	0.4737	2,056
Ti3349_A	2,025	ug/L	13.50	0.6663	13,280
TI1908_A	3.173	ug/L	2.764	87.13	-0.7539
V_2924_A	183.1	ug/L	0.004542	0.002480	601.0
Zn2062_A	555.5	ug/L	2.786	0.5016	363.3
Y_3600_R	24,187	Cts/S	113.27	0.46831	24,187
Y_2243_A	9,208.3	Cts/S	30.221	0.32819	9,208.3
Y_3600_A	254,400	Cts/S	1,669.3	0.65617	254,400

SE6618-016A

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

Acquire Date:	10/27/201	1 1:43:14AM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%R\$D	Intensity Ratio
Ag3280_A		501.1	ug/L	4.687	0.9352	10,620
Al3961_R		88,960	ug/L	55.66	0.06256	77,850
As1891_A		556.2	ug/L	1.074	0.1930	169.9
Au2427_A		-0.4152	ug/L	0.7291	175.6	176.1
B_2089_A		516.6	ug/L	0.5524	0.1069	491.1
Ba4554_R		552.6	ug/L	1.651	0.2988	32,060
Be3130_R		502.5	ug/L	0.3550	0.07064	50,730
Ca3158_R		17,950	ug/L	46.40	0.2585	28,370
Cd2265_A		467.9	ug/L	1.506	0.3219	7,629
Co2286_A		559.5	ug/L	3.223	0.5760	2,160
Cr2677_A		619.5	ug/L	7.140	1.153	8,845
Cu3273_A		647.5	ug/L	6.235	0.9629	8,733
Fe2599_R		228,300	ug/L	327.8	0.1436	442,800
K_7664_R		16,520	ug/L	3.693	0.02236	10,700
Li6707_R		684.5	ug/L	0.6948	0.1015	7,422
Mg2025_A		39,090	ug/L	134.4	0.3438	7,246
Mn2576_R		2,374	ug/L	7.429	0.3129	26,310
Mo2020_A		499.5	ug/L	3.845	0.7699	1,054

Published:

10/27/2011 8:52:03AM

Page 90 of 101

SE6618-016A

K6010-2011 Method Name:

EAM Analyst Name:

Acquire Date:	10/27/201	1:43:14	4AM		Sample Type:	Unknown	
Elem	Flags	Avg	Units	Stddev	%RSD		ntensity Ratio
Na5895_R		33,990	ug/L	17.64	0.05191		65,410
Ni2316_A		641.6	ug/L	2.221	0.3461		1,531
Pb2203 A		561.1	ug/L	2.780	0.4955		608.4
Sb2068 A		475.1	ug/L	4.722	0.9938		185.3
Se1960 A		474.8	ug/L	8.033	1.692		95.49
Si2516 R		3,449	ug/L	0.5782	0.01676		1,974
Sn1899 A		522.1	ug/L	1.322	0.2532		280.6
Sr4215 R		589.7	ug/L	0.05227	0.008863		46,600
Ti3349 A		2,491	ug/L	22.50	0.9034		77,680
TI1908 A		460.3	ug/L	1.977	0.4295		200.5
V 2924 A		680.2	ug/L	4.858	0.7143		10,460
Zn2062 A		991.2	ug/L	4.185	0.4222		3,189
Y 3600 R		24,304	Cts/S	74.893	0.30815		24,304
Y 2243 A		9,077.3	Cts/S	25.996	0.28638		9,077.3
Y_3600_A		241,460	Cts/S	3,100.5	1.2841		241,460

SE6618-016D

50 Method Revision: Method Name: K6010-2011

Analyst Name: EAM 10/27/2011 1:47:49AM Unknown Sample Type:

Acquire Date:	10/27/20	11 1:47:49	9AM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.07762	ug/L	0.7248	933.8	-1,133
Al3961_R		102,400	ug/L	1,264	1.234	91,590
As1891_A		100.6	ug/L	0.7913	0.7867	15.97
Au2427_A		-0.6029	ug/L	2.359	391.3	234.4
B_2089_A		62.47	ug/L	0.5462	0.8744	61.37
Ba4554_R		135.5	ug/L	0.6043	0.4459	8,114
Be3130_R		4.174	ug/L	0.01535	0.3676	260.4
Ca3158_R		32,110	ug/L	68.52	0.2134	51,910
Cd2265_A		2.140	ug/L	0.3233	15.11	391.4
Co2286_A		115.1	ug/L	0.1941	0.1686	480.3
Cr2677_A		166.4	ug/L	0.3057	0.1837	2,506
Cu3273_A		181.0	ug/L	0.09542	0.05271	2,403
Fe2599_R	W	284,300	ug/L	4,273	1.503	563,600
K_7664_R		10,280	ug/L	58.32	0.5675	6,810
Li6707_R		267.7	ug/L	1.150	0.4295	2,965
Mg2025_A		41,640	ug/L	45.40	0.1090	7,852
Mn2576_R		3,579	ug/L	31.20	0.8717	40,520
Mo2020_A		18.92	ug/L	0.2700	1.427	39.66
Na5895_R		33,250	ug/L	83.82	0.2521	65,400
Ni2316_A		235.1	ug/L	0.1046	0.04447	553.1
Pb2203_A		96.86	ug/L	1.115	1.151	101.4
Sb2068 A		2.847	ug/L	0.4697	16.50	6.555
Se1960_A		4.435	ug/L	1.342	30.26	4.576
Si2516_R		3,058	ug/L	47.54	1.555	
Sn1899_A		19.05	ug/L	0.3272	1.717	
Sr4215_R		292.9	ug/L	1.236	0.4219	23,620
Ti3349_A		2,871	ug/L	2.280	0.07942	92,900
TI1908_A		-4.338	ug/L	0.9982	23.01	-7.728
V 2924 A		218.3	ug/L	0.7328	0.3356	
Zn2062_A		602.2	ug/L	1.300	0.2159	
Y_3600_R		24,844	Cts/S	303.80	1.2229	
Y_2243_A		9,232.2	Cts/S	33.358	0.36133	
Y_3600_A		250,520	Cts/S	42.503	0.016966	250,520

SE6618-016S

50 K6010-2011 Method Revision: Method Name:

Page 91 of 101 10/27/2011 8:52:03AM Published:

50

Method Revision:

SE6618-016S

K6010-2011 Method Name:

EAM Analyst Name:

50 Method Revision:

Acquire Date:	10/27/20	11 1:52:24/	ΑM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		47.26	ug/L	0.5642	1.194	83.46
Al3961_R		103,300	ug/L	59.77	0.05789	91,550
As1891_A		197.5	ug/L	2.309	1.169	49.85
Au2427_A		-0.05632	ug/L	0.7973	1,416	207.5
B_2089_A		500.2	ug/L	0.3037	0.06070	477.4
Ba4554_R		1,994	ug/L	1.773	0.08890	117,000
Be3130_R		53.49	ug/L	0.3311	0.6189	5,306
Ca3158_R		20,430	ug/L	17.70	0.08662	32,720
Cd2265_A		235.1	ug/L	0.4815	0.2048	4,057
Co2286_A		573.2	ug/L	0.1143	0.01995	2,244
Cr2677_A		350.4	ug/L	4.121	1.176	5,168
Cu3273_A		416.2	ug/L	3.830	0.9202	5,702
Fe2599_R	W	259,200	ug/L	162.9	0.06285	509,300
K_7664_R		18,190	ug/L	22.65	0.1245	11,940
Li6707_R		729.5	ug/L	2.822	0.3869	8,015
Mg2025_A		42,700	ug/L	26.78	0.06272	8,008
Mn2576_R		2,934	ug/L	1.671	0.05697	32,930
Mo2020_A		304.2	ug/L	1.105	0.3631	648.9
Na5895_R		40,880	ug/L	141.8	0.3470	79,710
Ni2316_A		674.3	ug/L	0.9762	0.1448	1,626
Pb2203_A		194.6	ug/L	0.7409	0.3808	208.2
Sb2068_A		52.84	ug/L	0.6186	1.171	25.41
Se1960_A		95.21	ug/L	3.804	3.996	22.30
Si2516_R		6,385	ug/L	7.959	0.1247	3,693
Sn1899_A		464.9	ug/L	0.9303	0.2001	252.8
Sr4215_R		652.4	ug/L	0.3028	0.04641	52,250
Ti3349_A		3,144	ug/L	26.62	0.8465	100,800
TI1908_A		88.02	ug/L	0.05148	0.05849	33.88
V_2924_A		699.0	ug/L	7.313	1.046	11,090
Zn2062_A		1,065	ug/L	3.082	0.2894	3,466
Y_3600_R		24,627	Cts/S	300.94	1.2220	24,627
Y_2243_A		9,181.6	Cts/S	10.265	0.11180	9,181.6
Y_3600_A		248,230	Cts/S	2,877.9	1.1594	248,230

SE6618-017

K6010-2011 Method Name:

Analyst Name: EAM

Method Revision:

50

A individuality.	40/07/0044	4.50.50444				11.1
Acquire Date:	10/27/2011	1:56:59AM			Sample Type:	Unknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		5.814	ug/L	0.06170	1.061	-432.8
Al3961_R	(60,630	ug/L	457.1	0.7538	53,460
As1891_A		49.33	ug/L	2.423	4.912	7.264
Au2427_A		-1.507	ug/L	0.1899	12.60	105.0
B_2089_A		207.6	ug/L	0.9046	0.4358	195.7
Ba4554_R		205.4	ug/L	0.4677	0.2277	12,070
Be3130_R		3.995	ug/L	0.1119	2.802	242.9
Ca3158_R		29,540	ug/L	120.1	0.4068	47,060
Cd2265_A		4.930	ug/L	0.2215	4.492	247.6
Co2286_A		32.81	ug/L	0.006042	0.01842	156.7
Cr2677_A		323.6	ug/L	0.4649	0.1437	4,727
Cu3273_A		803.9	ug/L	3.169	0.3942	11,150
Fe2599_R	1;	37,600	ug/L	1,104	0.8021	268,900
K_7664_R	•	17,570	ug/L	159.5	0.9080	11,470
Li6707_R		137.3	ug/L	1.065	0.7758	1,498
Mg2025_A		37,580	ug/L	63.97	0.1702	6,996
Mn2576_R		1,517	ug/L	11.27	0.7432	16,940
Mo2020_A		15.38	ug/L	0.1565	1.017	31.61

Published: 10/27/2011 8:52:03AM

Method Name: K6010-2011

Analyst Name: **EAM** Method Revision:

50

Acquire Date:	10/27/2011	1:56:59AM			Sample Type:	Unknown	
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio	
Na5895_R	(63,480	ug/L	73.77	0.1162	123,100	
Ni2316_A		139.4	ug/L	0.1155	0.08282	326.2	
Pb2203_A		408.1	ug/L	0.2443	0.05985	444.3	
Sb2068_A		10.83	ug/L	0.9883	9.122	7.732	
Se1960_A		5.318	ug/L	1.854	34.86	3.930	
Si2516_R		3,244	ug/L	35.74	1.102	1,871	
Sn1899_A		77.65	ug/L	0.4641	0.5977	43.01	
Sr4215_R		243.1	ug/L	0.6942	0.2856	19,310	
Ti3349_A		2,820	ug/L	9.452	0.3352	89,860	
TI1908_A		-1.397	ug/L	0.4953	35.46	-4.399	
V_2924_A		411.5	ug/L	0.6320	0.1536	6,498	
Zn2062_A		2,000	ug/L	1.295	0.06475	6,468	
Y_3600_R		24,489	Cts/S	82.406	0.33650	24,489	
Y_2243_A	9	,117.0	Cts/S	1.3496	0.014803	9,117.0	
Y_3600_A	2	46,710	Cts/S	627.66	0.25441	246,710	

SE6618-018

K6010-2011 Method Name: Analyst Name:

EAM

Method Revision:

50

Acquire Date:	10/27/2	011 2:01:34	λM		Sample Type:	Unknown
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		5.002	ug/L	0.1460	2.919	-1,015
Al3961_R		71,550	ug/L	754.4	1.054	63,760
As1891_A		89.81	ug/L	0.6843	0.7620	12.15
Au2427_A		6.318	ug/L	1.271	20.11	486.5
B_2089_A		199.3	ug/L	1.652	0.8290	188.4
Ba4554_R		216.8	ug/L	0.8286	0.3822	12,870
Be3130_R		4.050	ug/L	0.02805	0.6927	218.2
Ca3158_R		25,210	ug/L	14.99	0.05949	40,590
Cd2265_A		22.79	ug/L	0.1966	0.8629	714.2
Co2286 A		90.01	ug/L	0.5022	0.5579	382.5
Cr2677 A		817.1	ug/L	1.732	0.2120	11,960
Cu3273 A		2,119	ug/L	1.421	0.06706	29,500
Fe2599_R	W	286,900	ug/L	498.8	0.1739	566,600
K 7664 R		14,250	ug/L	48.82	0.3426	9,405
Li6707_R		182.7	ug/L	2.469	1.351	2,015
Mg2025_A		52,900	ug/L	55.18	0.1043	9,822
Mn2576_R		19,160	ug/L	74.54	0.3891	216,000
Mo2020_A		45.65	ug/L	0.2858	0.6261	95.80
Na5895_R		48,960	ug/L	24.33	0.04970	95,930
Ni2316_A		640.9	ug/L	0.1416	0.02210	1,529
Pb2203_A		4,781	ug/L	7.589	0.1587	5,255
Sb2068 A		93.18	ug/L	1.446	1.552	42.38
Se1960 A		13.15	ug/L	3.957	30.08	6.658
Si2516_R		2,935	ug/L	9.369	0.3192	1,707
Sn1899 A		238.1	ug/L	1.486	0.6242	129.1
Sr4215 R		245.7	ug/L	1.122	0.4565	19,730
Ti3349 A		3,403	ug/L	12.40	0.3644	108,600
TI1908_A		-8.829	ug/L	1.094	12.40	-27.14
V_2924_A		580.6	ug/L	0.5897	0.1016	9,099
Zn2062_A	F	20,720	ug/L	43.54	0.2101	66,950
Y_3600_R		24,753	Cts/S	27.639	0.11166	24,753
Y_2243_A		9,109.0	Cts/S	17.404	0.19106	9,109.0
Y_3600_A		247,000	Cts/S	74.824	0.030294	247,000

CCV

K6010-2011 Method Name:

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 93 of 101

CCV

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM
Acquire Date: 10/27/2011 2:06:06AM Sample Type: QC

Acquire Date:	10/27/2	011 2:06:06/	ΑM		Sample Type: QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		494.7	ug/L	0.6717	0.1358	11,680
Al3961_R		12,410	ug/L	6.003	0.04835	10,930
As1891_A		491.8	ug/L	1.802	0.3664	162.5
Au2427_A		496.1	ug/L	6.852	1.381	1,886
B_2089_A		492.8	ug/L	0.1692	0.03433	473.2
Ba4554_R		477.9	ug/L	1.328	0.2779	27,810
Be3130_R		502.7	ug/L	1.344	0.2674	51,000
Ca3158_R		12,340	ug/L	13.85	0.1122	19,540
Cd2265_A		488.4	ug/L	0.9029	0.1849	7,756
Co2286_A		495.6	ug/L	2.218	0.4475	1,915
Cr2677_A		485.7	ug/L	0.5111	0.1052	7,160
Cu3273_A		490.5	ug/L	0.08447	0.01722	6,945
Fe2599_R		12,530	ug/L	66.95	0.5343	24,370
K_7664_R		12,020	ug/L	19.58	0.1629	7,813
Li6707_R		498.6	ug/L	1.736	0.3483	5,419
Mg2025_A		12,500	ug/L	21.41	0.1713	2,337
Mn2576_R		500.2	ug/L	1.333	0.2665	5,558
Mo2020_A		490.2	ug/L	1.802	0.3675	1,044
Na5895_R	W	11,360	ug/L	62.60	0.5510	21,940
Ni2316_A		496.3	ug/L	1.495	0.3013	1,209
Pb2203_A		496.6	ug/L	0.2642	0.05320	547.2
Sb2068_A	W	472.3	ug/L	6.067	1.284	182.4
Se1960_A		490.5	ug/L	2.525	0.5148	98.27
Si2516_R		12,560	ug/L	58.59	0.4664	7,191
Sn1899_A		497.0	ug/L	0.3314	0.06667	269.7
Sr4215_R		487.6	ug/L	1.261	0.2587	38,610
Ti3349_A		485.8	ug/L	1.029	0.2119	15,680
TI1908_A		500.0	ug/L	0.9161	0.1832	223.4
V_2924_A		496.9	ug/L	1.404	0.2826	7,873
Zn2062_A		491.7	ug/L	2.492	0.5068	1,597
Y_3600_R		24,366	Cts/S	154.66	0.63472	24,366
Y_2243_A		9,164.0	Cts/S	5.0000	0.054561	9,164.0
Y_3600_A		250,190	Cts/S	404.98	0.16187	250,190

CCB

Method Name: K6010-2011 Method Revision: 50

Analyst Name: EAM

7 indiyot i vario.	_,					
Acquire Date:	10/27/20	011 2:10:30	λM		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1839	ug/L	0.3035	165.0	-32.29
Al3961_R		-8.870	ug/L	13.15	148.2	12.72
As1891_A		1.001	ug/L	0.9173	91.64	-0.8972
Au2427_A		0.5755	ug/L	1.054	183.2	3.050
B_2089_A		1.146	ug/L	0.3229	28.19	3.157
Ba4554_R		-0.1106	ug/L	0.03440	31.10	91.86
Be3130_R		0.04490	ug/L	0.02230	49.66	1.188
Ca3158_R		0.6610	ug/L	7.510	1,136	-41.50
Cd2265_A		0.02653	ug/L	0.06274	236.4	-1.261
Co2286_A		0.07381	ug/L	0.1711	231.8	6.014
Cr2677_A		0.09380	ug/L	0.1838	195.9	6.169
Cu3273_A		0.07545	ug/L	0.04722	62.58	-2.450
Fe2599_R		4.614	ug/L	2.584	56.00	12.29
K_7664_R		48.86	ug/L	13.30	27.22	41.31
Li6707_R		8.650	ug/L	1.510	17.46	90.06
Mg2025_A		4.420	ug/L	0.5000	11.31	-2.269
Mn2576_R		-0.3430	ug/L	0.3502	102.1	2.220
Mo2020_A		1.506	ug/L	0.1925	12.79	2.287

Published: 10/27/2011 8:52:03AM Page 94 of 101

ССВ

Method Name: K6010-2011

Analyst Name: EAM

Method Revision:

50

10/27/2011	2:10:30AM			Sample Type:	QC	
Flags	Avg	Units	Stddev	%RSD		Intensity Ratio
	40.46	ug/L	10.97	27.10	1	106.8
0.	08527	ug/L	0.1541	180.7	•	-0.6044
().3665	ug/L	0.5783	157.8	i	-0.06613
().3481	ug/L	0.3391	97.40	•	0.8563
().4843	ug/L	1.278	263.9	1	2.094
	8.064	ug/L	7.238	89.75	j	15.33
0.	03314	ug/L	0.4947	1,493	1	1.306
().1138	ug/L	0.01611	14.16	i	-62.40
0.	09014	ug/L	0.2214	245.6	i	-34.19
0.	08848	ug/L	0.2166	244.8	}	-0.3297
-0.	07517	ug/L	0.3283	436.7	,	-3.403
0.0	07374	ug/L	0.0007610	10.32	!	0.5549
2	24,024	Cts/S	166.26	0.69204		24,024
9	,151.8	Cts/S	47.689	0.52109)	9,151.8
25	52,330	Cts/S	3,074.7	1.2185	,	252,330
	Flags 0. 0. 0. 0. 0. 0. 0. 2. 9	Flags Avg 40.46 0.08527 0.3665 0.3481 0.4843	Flags Avg Units 40.46 ug/L 0.08527 ug/L 0.3665 ug/L 0.3481 ug/L 0.4843 ug/L 8.064 ug/L 0.03314 ug/L 0.1138 ug/L 0.09014 ug/L 0.08848 ug/L 0.007374 ug/L 24,024 Cts/S 9,151.8 Cts/S	Flags Avg Units Stddev 40.46 ug/L 10.97 0.08527 ug/L 0.1541 0.3665 ug/L 0.5783 0.3481 ug/L 0.3391 0.4843 ug/L 1.278 8.064 ug/L 7.238 0.03314 ug/L 0.4947 0.1138 ug/L 0.01611 0.09014 ug/L 0.2214 0.08848 ug/L 0.2166 -0.07517 ug/L 0.3283 0.007374 ug/L 0.0007610 24,024 Cts/S 166.26 9,151.8 Cts/S 47.689	Flags Avg Units Stddev %RSD 40.46 ug/L 10.97 27.10 0.08527 ug/L 0.1541 180.7 0.3665 ug/L 0.5783 157.8 0.3481 ug/L 0.3391 97.40 0.4843 ug/L 1.278 263.9 8.064 ug/L 7.238 89.75 0.03314 ug/L 0.4947 1,493 0.1138 ug/L 0.01611 14.16 0.09014 ug/L 0.2214 245.6 0.08848 ug/L 0.2166 244.8 -0.07517 ug/L 0.3283 436.7 0.0007374 ug/L 0.0007610 10.32 24,024 Cts/S 166.26 0.69204 9,151.8 Cts/S 47.689 0.52109	Flags Avg Units Stddev %RSD 40.46 ug/L 10.97 27.10 0.08527 ug/L 0.1541 180.7 0.3665 ug/L 0.5783 157.8 0.3481 ug/L 0.3391 97.40 0.4843 ug/L 1.278 263.9 8.064 ug/L 7.238 89.75 0.03314 ug/L 0.4947 1,493 0.1138 ug/L 0.01611 14.16 0.09014 ug/L 0.2214 245.6 0.08848 ug/L 0.2166 244.8 -0.07517 ug/L 0.3283 436.7 0.007374 ug/L 0.0007610 10.32 24,024 Cts/S 166.26 0.69204 9,151.8 Cts/S 47.689 0.52109

SE6618-019

Method Name: Kanalyst Name: E

K6010-2011

EAM

Method Revision:

50

Elem Flags Avg Units Stddev %RSD Intensity Ratio Ag3280_A 0.2976 ug/L 0.8991 302.1 -673.9 Al3961_R 78,260 ug/L 92.43 0.1181 69,050 As1891_A 67.60 ug/L 1.317 1.948 11.82 Au2427_A -0.5338 ug/L 0.06434 12.05 135.7 B_2089_A 166.9 ug/L 0.1266 0.08772 8,519 Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 0.02134 0.9112 240.3 Ca2266_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2277_A 162.3 ug/L 0.4208 0.2593 2.423 Cu3273_A 99.28 ug/L 0.4208 0.2593 2.423 Cu3275_A 99.28 ug/L 0.4208 0.2593 2.423 Li6707_R 164,000 ug/L </th <th>Acquire Date:</th> <th>10/27/20</th> <th>11 2:15:10</th> <th>0AM</th> <th></th> <th>Sample Type:</th> <th>Unknown</th>	Acquire Date:	10/27/20	11 2:15:10	0AM		Sample Type:	Unknown
Ag3280_A 0.2976 ug/L 0.8991 302.1 -673.9 AJ3961_R 78,260 ug/L 92.43 0.1181 69,050 As1891_A 67.60 ug/L 1.317 1.948 11.82 Au2427_A -0.5338 ug/L 0.06434 12.05 135.7 B_2089_A 166.9 ug/L 1.091 0.6536 158.4 Ba4554_R 144.3 ug/L 0.1266 0.08772 8.519 Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 246.8 0.3176 124.000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.99774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.41035 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 <td>•</td> <td>Flags</td> <td>Avg</td> <td>Units</td> <td>Stddev</td> <td>%RSD</td> <td>Intensity Ratio</td>	•	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ai3961_R 78,260 ug/L 92.43 0.1181 69,050 As1891_A 67.60 ug/L 1.317 1.948 11.82 Au2427_A -0.5338 ug/L 0.06434 12.05 135.7 B_2089_A 166.9 ug/L 1.091 0.6536 158.4 Ba4554_R 144.3 ug/L 0.1266 0.08772 8.519 Ba3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 246.8 0.3176 124,000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 <td>Aq3280 A</td> <td></td> <td></td> <td>ug/L</td> <td>0.8991</td> <td>302.1</td> <td>-673.9</td>	Aq3280 A			ug/L	0.8991	302.1	-673.9
As1891_A 67.60 ug/L 1.317 1.948 11.82 Au2427_A -0.5338 ug/L 0.06434 12.05 135.7 B_2089_A 166.9 ug/L 1.091 0.6536 158.4 B_4554_R 144.3 ug/L 0.1266 0.08772 8,519 Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,7720 ug/L 246.8 0.3176 124,000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.5586 <td>-</td> <td></td> <td>78,260</td> <td>ug/L</td> <td>92.43</td> <td>0.1181</td> <td>69,050</td>	-		78,260	ug/L	92.43	0.1181	69,050
B_2089_A 166.9 ug/L 1.091 0.6536 158.4 Ba4554_R 144.3 ug/L 0.1266 0.08772 8.519 Ba3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 246.8 0.3176 124,000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr267_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283			67.60	ug/L	1.317	1.948	11.82
B_2089_A 166.9 ug/L 1.091 0.6536 158.4 Ba4554_R 144.3 ug/L 0.1266 0.08772 8,519 Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 0.02734 0.9112 240.3 Co2265_A 2.342 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2.423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 1.283 0.05668 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 0.3526 <td>Au2427 A</td> <td></td> <td>-0.5338</td> <td>ug/L</td> <td>0.06434</td> <td>12.05</td> <td>135.7</td>	Au2427 A		-0.5338	ug/L	0.06434	12.05	135.7
Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 77,720 ug/L 246.8 0.3176 124,000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr267_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mm2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 1.57.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.5295 <td></td> <td></td> <td>166.9</td> <td>ug/L</td> <td>1.091</td> <td>0.6536</td> <td></td>			166.9	ug/L	1.091	0.6536	
Be3130_R 3.407 ug/L 0.02725 0.7998 148.0 Ca3158_R 777,720 ug/L 246.8 0.3176 124,000 Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3268 0.2457 309.3 Ni2316_A 133.0 ug/L 0.5295 </td <td>Ba4554_R</td> <td></td> <td>144.3</td> <td>ug/L</td> <td>0.1266</td> <td>0.08772</td> <td>8,519</td>	Ba4554_R		144.3	ug/L	0.1266	0.08772	8,519
Cd2265_A 2.342 ug/L 0.02134 0.9112 240.3 Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K 7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo202_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 0.3954 1.433 57.73 N5206_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295	_		3.407	ug/L	0.02725	0.7998	148.0
Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5295	Ca3158 R		77,720	ug/L	246.8		124,000
Co2286_A 47.84 ug/L 0.04676 0.09774 220.0 Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5295 0.7106 75.45 Se1960_A 2.138 ug/L 0.5128	Cd2265_A		2.342	ug/L	0.02134	0.9112	240.3
Cr2677_A 162.3 ug/L 0.4208 0.2593 2,423 Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5295 0.7106 75.45 Sb2068_A -2.138 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 0.5128			47.84	ug/L	0.04676	0.09774	220.0
Cu3273_A 99.28 ug/L 0.4135 0.4165 1,294 Fe2599_R 164,000 ug/L 1,093 0.6664 320,600 K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 0.1370			162.3	ug/L	0.4208	0.2593	
K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 <			99.28	ug/L	0.4135	0.4165	
K_7664_R 14,340 ug/L 27.66 0.1929 9,369 Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 <	Fe2599 R		164,000	ug/L	1,093	0.6664	320,600
Li6707_R 215.5 ug/L 0.6506 0.3020 2,354 Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 0.5071	_		14,340	ug/L	27.66	0.1929	9,369
Mg2025_A 38,590 ug/L 25.80 0.06687 7,206 Mn2576_R 2,191 ug/L 1.283 0.05858 24,470 Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 V_2924_A 214.5 ug/L 0.1378			215.5	ug/L	0.6506	0.3020	2,354
Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 TI1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892	_		38,590	ug/L	25.80	0.06687	7,206
Mo2020_A 27.60 ug/L 0.3954 1.433 57.73 Na5895_R 45,020 ug/L 157.5 0.3498 87,350 Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 TI1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892	Mn2576_R		2,191	ug/L	1.283	0.05858	24,470
Ni2316_A 133.0 ug/L 0.3268 0.2457 309.3 Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Tl1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 <td></td> <td></td> <td>27.60</td> <td>ug/L</td> <td>0.3954</td> <td>1.433</td> <td>57.73</td>			27.60	ug/L	0.3954	1.433	57.73
Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Tl1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Na5895 R		45,020	ug/L	157.5	0.3498	87,350
Pb2203_A 74.52 ug/L 0.5295 0.7106 75.45 Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 TI1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Ni2316 A		133.0	ug/L	0.3268	0.2457	309.3
Sb2068_A -1.136 ug/L 0.5128 45.13 3.215 Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Tl1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Pb2203_A		74.52	ug/L	0.5295	0.7106	
Se1960_A 2.138 ug/L 3.293 154.0 3.526 Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Tl1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9			-1.136	ug/L	0.5128	45.13	3.215
Si2516_R 2,711 ug/L 3.229 0.1191 1,566 Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Tl1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9			2.138	ug/L	3.293	154.0	3.526
Sn1899_A 20.40 ug/L 0.1130 0.5537 12.28 Sr4215_R 664.8 ug/L 0.4293 0.06457 52,980 Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Ti1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9			2,711	ug/L	3.229	0.1191	
Ti3349_A 3,392 ug/L 7.751 0.2285 109,600 Ti1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	_		20.40		0.1130	0.5537	
Ti1908_A -2.953 ug/L 0.5071 17.18 -5.600 V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Sr4215 R		664.8	ug/L	0.4293	0.06457	52,980
V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Ti3349 A		3,392	ug/L	7.751	0.2285	109,600
V_2924_A 214.5 ug/L 0.1378 0.06422 3,457 Zn2062_A 420.0 ug/L 0.3892 0.09267 1,362 Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	TI1908_A		-2.953	ug/L	0.5071	17.18	-5.600
Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	_		214.5		0.1378	0.06422	
Y_3600_R 24,506 Cts/S 230.40 0.94016 24,506 Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9	Zn2062_A		420.0	ug/L	0.3892	0.09267	•
Y_2243_A 9,141.9 Cts/S 0.57042 0.0062397 9,141.9			24,506	Cts/S	230.40	0.94016	24,506
			9,141.9	Cts/S	0.57042	0.0062397	9,141.9
			250,170	Cts/S	1,215.6	0.48593	250,170

SE6618-020

Method Name: K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 95 of 101

K6010-2011 Method Name:

Analyst Name: EAM

Acquire Date: 10/27/2011 2:19:45AM Sample Type: Unknown

7 toquilo Dato.	10/21/2011 2110.	07 1111		Cample Type.	Official
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	8.053	ug/L	0.03669	0.4557	-375.0
Al3961_R	52,940	ug/L	51.70	0.09766	46,980
As1891_A	65.49	ug/L	2.584	3.946	12.68
Au2427_A	-0.2698	ug/L	1.206	447.2	119.1
B_2089_A	182.1	ug/L	0.6959	0.3821	171.2
Ba4554_R	205.9	ug/L	0.4000	0.1943	12,180
Be3130_R	3.703	ug/L	0.01784	0.4818	237.8
Ca3158_R	27,640	ug/L	23.86	0.08634	44,320
Cd2265_A	13.10	ug/L	0.2829	2.160	373.5
Co2286_A	54.11	ug/L	0.3513	0.6493	233.4
Cr2677_A	840.6	ug/L	3.188	0.3793	12,200
Cu3273_A	879.2	ug/L	4.967	0.5650	12,170
Fe2599_R	137,200	ug/L	1,851	1.350	269,800
K_7664_R	15,070	ug/L	3.186	0.02115	9,900
Li6707_R	120.6	ug/L	0.4394	0.3644	1,323
Mg2025_A	42,050	ug/L	28.18	0.06701	7,772
Mn2576_R	2,242	ug/L	4.589	0.2046	25,190
Mo2020_A	28.22	ug/L	0.4024	1.426	58.60
Na5895_R	62,700	ug/L	136.3	0.2174	122,300
Ni2316_A	229.9	ug/L	0.5347	0.2326	542.2
Pb2203_A	7,220	ug/L	6.981	0.09669	7,892
Sb2068_A	75.84	ug/L	0.7540	0.9942	33.68
Se1960_A	3.940	ug/L	1.036	26.28	3.617
Si2516_R	2,706	ug/L	29.89	1.104	1,572
Sn1899_A	121.3	ug/L	0.4018	0.3313	66.05
Sr4215_R	240.1	ug/L	0.01388	0.005779	19,200
Ti3349_A	2,432	ug/L	8.544	0.3513	77,290
TI1908_A	-0.6047	ug/L	0.3633	60.07	-4.797
V_2924_A	469.0	ug/L	2.443	0.5208	7,354
Zn2062_A	10,570	ug/L	30.69	0.2904	33,970
Y_3600_R	24,647	Cts/S	132.36	0.53700	24,647
Y_2243_A	9,061.6	Cts/S	17.094	0.18865	9,061.6
Y_3600_A	246,030	Cts/S	730.06	0.29674	246,030

CCV

Method Name: K6010-2011

Analyst Name: EAM Method Revision: 50

50

Method Revision:

Allalyst Name.	L/JIVI						
Acquire Date:	10/27/2011	2:24:21AM			Sample Type:	QC	
Elem	Flags	A vg	Units	Stddev	%RSD)	Intensity Ratio
Ag3280_A		496.0	ug/L	2.847	0.5739	1	11,680
Al3961_R		12,810	ug/L	393.3	3.071		10,870
As1891_A		493.9	ug/L	7.809	1.581		163.3
Au2427_A		494.9	ug/L	5.274	1.066	i	1,883
B_2089_A		490.5	ug/L	6.046	1.233	i	471.3
Ba4554_R		489.8	ug/L	12.00	2.449	ı	27,500
Be3130_R		516.6	ug/L	15.43	2.987	•	50,560
Ca3158_R		12,620	ug/L	310.7	2.461		19,280
Cd2265_A		485.6	ug/L	5.731	1.180		7,717
Co2286_A		495.1	ug/L	4.698	0.9491		1,914
Cr2677_A		484.5	ug/L	1.062	0.2193		7,120
Cu3273_A		489.2	ug/L	0.9605	0.1963		6,907
Fe2599_R	•	12,720	ug/L	451.5	3.549		23,860
K_7664_R	•	12,260	ug/L	425.5	3.470		7,687
Li6707_R		505.7	ug/L	11.83	2.339		5,303
Mg2025_A	•	12,430	ug/L	139.3	1.120		2,325
Mn2576_R		508.3	ug/L	15.98	3.143		5,448
Mo2020_A		487.4	ug/L	8.408	1.725		1,039

Published: 10/27/2011 8:52:03AM Page 96 of 101 **CCV**

Method Name: Analyst Name:

K6010-2011

EAM

Method Revision:

50

QC Sample Type:

Acquire Date:	10/27/20	11 2:24:21A	M	Sar	mple Type: QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	W	11,690	ug/L	192.4	1.645	21,780
Ni2316 A		495.5	ug/L	5.803	1.171	1,208
Pb2203_A		492.2	ug/L	4.003	0.8132	542.7
Sb2068_A		474.2	ug/L	16.16	3.408	183.2
Se1960 A		486.3	ug/L	10.48	2.156	97.50
Si2516 R		12,850	ug/L	364.7	2.839	7,094
Sn1899 A		495.9	ug/L	5.230	1.055	269.3
Sr4215 R		497.6	ug/L	13.27	2.666	38,020
Ti3349_A		486.9	ug/L	1.804	0.3706	15,660
TI1908_A		496.4	ug/L	5.745	1.157	221.9
V 2924 A		499.5	ug/L	2.321	0.4646	7,891
Zn2062 A		492.1	ug/L	5.660	1.150	1,599
Y 3600 R		23,506	Cts/S	101.54	0.43197	23,506
Y 2243 A		9,169.9	Cts/S	95.144	1.0376	9,169.9
Y_3600_A		249,440	Cts/S	1,905.7	0.76400	249,440

CCB

Method Name: Analyst Name: K6010-2011

EAM

Method Revision:

50

10/27/2011 2:28:46AM Sample Type: QC Acquire Date: Units Stddev %RSD Intensity Ratio Flags Avg Elem 104.6 -30.02 Ag3280_A 0.2767 ug/L 0.2895 19.41 Al3961_R -1.382ug/L 7.772 562.4 -0.7773As1891_A 1.345 ug/L 1.318 97.94 1.637 269.7 Au2427 A 0.2030 ug/L 0.5475 2.497 71.59 B 2089 A 0.4542 ug/L 0.3251 91.86 104.7 Ba4554 R -0.1235 ug/L 0.1293 -1.007 66.18 0.01521 Be3130 R 0.02298 ug/L -43.42 ug/L 1,303 4.421 Ca3158 R -0.3394 0.02117 172.9 -1.4860.01225 ug/L Cd2265_A 165.4 6.177 0.1285 ug/L 0.2125 Co2286_A 0.2901 236.9 6.583 Cr2677_A 0.1225 ug/L 0.01164 -5.196 9.895 -0.1176 ug/L Cu3273_A 5.027 0.6872 86.16 Fe2599_R 0.7975 ug/L 29.72 1.139 3.834 29.32 K 7664_R ug/L 14.25 58.71 5.687 ug/L 0.8103 Li6707_R 97.07 -2.877 1.070 ug/L 1.038 Mg2025_A 0.2100 81.81 3.168 -0.2567 ug/L Mn2576_R 0.3220 18.54 2.762 1.737 ug/L Mo2020_A Na5895_R 33.65 ug/L 3.317 9.856 94.67 Ni2316_A 0.006207 1.822 0.01897 0.3406 ug/L ug/L 0.3737 77.70 -0.9969Pb2203_A -0.4810 1.047 0.8659 ug/L 0.6405 73.97 Sb2068_A 2.844 Se1960 A 4.415 ug/L 1.448 32.80 471.1 11.80 1.626 ug/L 7.660 Si2516 R 1.330 917.8 Sn1899_A 0.09021 ug/L 0.8280 -72.41 794.9 Sr4215_R -0.006818 ug/L 0.05420 702.0 -35.01 0.4424 Ti3349 A 0.06302 ug/L -0.1649 ug/L 0.3206 70.90 TI1908_A 0.4523 74.71 1.892 V_2924_A 0.2578 ug/L 0.1926 210.3 0.4863 0.02688 ug/L Zn2062_A -0.01278 176.08 0.72724 24,212 Cts/S Y_3600_R 24,212 0.67649 9.089.2 Y_2243_A 9,089.2 Cts/S 61.487 0.68166 251,930 251,930 Cts/S 1,717.3 Y_3600_A

PQL

Method Name:

K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 97 of 101

PQL

K6010-2011 Method Name:

Analyst Name: EAM

10/27/2011 2:33:22AM Acquire Date: Sample Type: OC.

Acquire Date:	10/27/2011	2:33:22AM			Sample Type:	QC
Elem_	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		10.68	ug/L	0.1790	1.676	220.5
Al3961_R		295.2	ug/L	3.824	1.295	279.3
As1891_A		7.877	ug/L	0.7429	9.431	1.391
Au2427_A		98.93	ug/L	0.6816	0.6890	372.8
B_2089_A		50.28	ug/L	0.4784	0.9515	49.15
Ba4554_R		4.949	ug/L	0.4067	8.218	385.6
Be3130_R		5.229	ug/L	0.08330	1.593	525.3
Ca3158_R		103.9	ug/L	6.716	6.466	121.3
Cd2265_A		5.195	ug/L	0.02526	0.4862	80.47
Co2286_A		10.78	ug/L	0.1624	1.506	47.13
Cr2677_A		10.19	ug/L	0.3079	3.021	157.1
Cu3273_A		26.17	ug/L	0.3264	1.247	373.1
Fe2599_R		103.5	ug/L	0.4429	0.4280	204.2
K_7664_R		992.7	ug/L	40.37	4.067	652.8
Li6707_R		105.1	ug/L	0.5249	0.4993	1,138
Mg2025_A		103.3	ug/L	0.9131	0.8841	16.15
Mn2576_R		4.694	ug/L	0.02370	0.5048	58.00
Mo2020_A		11.30	ug/L	0.1226	1.085	23.07
Na5895_R		957.4	ug/L	6.117	0.6389	1,872
Ni2316_A		10.71	ug/L	0.1180	1.101	25.21
Pb2203_A		5.178	ug/L	0.2256	4.356	5.197
Sb2068_A		7.243	ug/L	0.8456	11.67	3.499
Se1960_A		10.81	ug/L	1.062	9.833	4.105
Si2516_R		204.4	ug/L	4.789	2.343	127.5
Sn1899_A		101.7	ug/L	0.7312	0.7186	56.02
Sr4215_R		9.976	ug/L	0.08659	0.8680	717.4
Ti3349_A		15.35	ug/L	0.2848	1.855	466.3
TI1908_A		16.07	ug/L	1.297	8.073	6.816
V_2924_A		10.43	ug/L	0.1855	1.779	165.5
Zn2062_A		20.87	ug/L	0.3870	1.854	68.05
Y_3600_R	2	24,305	Cts/S	68.922	0.28357	24,305
Y_2243_A	9	,128.0	Cts/S	55.994	0.61343	9,128.0
Y_3600_A	25	53,930	Cts/S	3,446.2	1.3571	253,930

ICSA

Method Name: K6010-2011

Analyst Name:

EAM

Acquire Date:	10/27/20	11 2:37:58A	M		Sample Type:	QC	
Elem	Flags	A vg	Units	Stddev	%RSD		Intensity Ratio
Ag3280_A		-1.562	ug/L	0.7350	47.05		-669.6
Al3961_R		478,300	ug/L	2,923	0.6111		411,200
As1891_A		-0.5619	ug/L	0.3998	71.16		-10.64
Au2427_A		-4.923	ug/L	1.744	35.43		91.07
B_2089_A		-0.4034	ug/L	0.7008	173.7		1.491
Ba4554_R		0.9752	ug/L	0.07143	7.325		153.0
Be3130_R		-0.03454	ug/L	0.04596	133.1		-6.792
Ca3158_R		443,300	ug/L	13,290	2.997		689,500
Cd2265_A		1.475	ug/L	0.4030	27.32		222.5
Co2286_A		-0.9619	ug/L	0.02749	2.858		4.400
Cr2677_A		4.699	ug/L	0.05412	1.152		89.94
Cu3273_A		9.545	ug/L	0.8331	8.729		41.40
Fe2599_R		177,200	ug/L	3,843	2.169		337,700
K_7664_R		115.2	ug/L	8.431	7.320		83.33
Li6707_R		15.99	ug/L	0.5121	3.202		167.7
Mg2025_A		445,700	ug/L	371.8	0.08342		76,120
Mn2576_R		-0.9182	ug/L	0.1451	15.80		17.23
Mo2020 A		-2.231	ua/L	0.2090	9.367		-5.180

Published: 10/27/2011 8:52:03AM

Page 98 of 101

50

Method Revision:

Method Revision:

50

ICSA

Method Name: K6010-2011

Analyst Name: EAM

EAM

Method Revision:

50

Acquire Date:	10/27/2011	2:37:58AI	М		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		114.0	ug/L	0.8623	0.7562	245.3
Ni2316_A		1.488	ug/L	0.2521	16.94	-10.68
Pb2203_A		0.2658	ug/L	2.205	829.6	-56.95
Sb2068 A	-	0.2204	ug/L	1.049	475.6	4.585
Se1960 A		4.142	ug/L	2.217	53.53	6.113
Si2516 R		1.812	ug/L	0.2950	16.29	5.877
Sn1899 A		4.087	ug/L	0.7830	19.16	3.191
Sr4215 R	W	54.05	ug/L	0.004316	0.007986	4,133
Ti3349_A		1.865	ug/L	0.09954	5.337	21.02
TI1908_A		3.059	ug/L	0.5345	17.48	1.172
V 2924 A	0	.03316	ug/L	0.1546	466.2	29.74
Zn2062 A		1.959	ug/L	0.04711	2.405	6.279
Y 3600 R		23,887	Cts/S	245.13	1.0262	23,887
Y 2243 A	8	3,360.4	Cts/S	5.2886	0.063258	8,360.4
Y_3600_A	2	24,800	Cts/S	1,061.4	0.47217	224,800

ICSAB

Method Name: K6010-2011

Analyst Name: EAM

EAM

Method Revision:

50

Acquire Date:	10/27/20	11 2:42:4	4AM		Sample Type:	QC
Elem	Flags	A vg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		215.0	ug/L	0.1274	0.05926	3,924
Al3961_R		480,200	ug/L	2,782	0.5794	402,400
As1891_A		100.3	ug/L	0.8987	0.8960	20.01
Au2427 A		495.7	ug/L	4.482	0.9042	1,809
B_2089_A		491.0	ug/L	2.273	0.4631	427.7
Ba4554_R		488.1	ug/L	0.03191	0.006539	27,140
Be3130_R		508.7	ug/L	1.194	0.2347	49,310
Ca3158_R		448,700	ug/L	4,558	1.016	680,200
Cd2265_A		905.6	ug/L	2.179	0.2406	13,230
Co2286_A		458.2	ug/L	0.5183	0.1131	1,610
Cr2677_A		474.5	ug/L	2.520	0.5311	6,265
Cu3273_A		521.1	ug/L	0.7434	0.1427	6,513
Fe2599_R		179,000	ug/L	1,217	0.6798	332,600
K_7664_R		20,190	ug/L	85.65	0.4242	12,530
Li6707_R		527.3	ug/L	1.268	0.2405	5,476
Mg2025_A		435,600	ug/L	742.0	0.1703	73,980
Mn2576_R		474.9	ug/L	3.242	0.6828	5,062
Mo2020_A		480.7	ug/L	1.758	0.3656	929.0
Na5895_R		19,620	ug/L	23.07	0.1176	
Ni2316_A		898.8	ug/L	1.522	0.1694	•
Pb2203_A		46.61	ug/L	1.023	2.194	
Sb2068_A		597.7	ug/L	3.252	0.5441	212.7
Se1960_A		51.87	ug/L	0.9067	1.748	
Si2516_R		1,988	ug/L	14.67	0.7377	
Sn1899_A		459.3	ug/L	1.323	0.2881	226.2
Sr4215_R		542.8	ug/L	1.242	0.2287	41,080
Ti3349_A		497.3	ug/L	0.5765	0.1159	•
TI1908_A		90.12	ug/L	1.676	1.859	
V_2924_A		492.0	ug/L	1.332	0.2707	
Zn2062_A		922.9	ug/L	0.9017	0.09771	2,720
Y_3600_R		23,283	Cts/S	118.86	0.51050	· · · · · · · · · · · · · · · · · · ·
Y_2243_A		8,313.7	Cts/S	28.749	0.34580	-
Y_3600_A		223,280	Cts/S	908.40	0.40684	223,280

CCV

Method Name: K6010-2011

Method Revision:

50

Published:

10/27/2011 8:52:03AM

Page 99 of 101

CCV

K6010-2011 Method Name:

EAM Analyst Name:

10/27/2011 2:47:24AM Acquire Date: Sample Type: QC

Acquire Date.	10/2//20	011 2.47.247	-VIVI	3	ample Type. QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		492.5	ug/L	1.971	0.4003	11,630
Al3961_R		12,280	ug/L	224.9	1.831	10,850
As1891_A		497.1	ug/L	0.9479	0.1907	162.9
Au2427_A		494.4	ug/L	2.779	0.5621	1,863
B_2089_A		495.5	ug/L	0.4369	0.08818	471.9
Ba4554_R	W	468.5	ug/L	6.064	1.294	27,360
Be3130_R		494.1	ug/L	8.050	1.629	50,310
Ca3158_R		12,140	ug/L	174.7	1.439	19,280
Cd2265_A		490.9	ug/L	0.4513	0.09194	7,730
Co2286_A		500.5	ug/L	0.4754	0.09499	1,917
Cr2677_A		483.2	ug/L	1.894	0.3921	7,123
Cu3273_A		487.0	ug/L	2.378	0.4884	6,897
Fe2599_R		12,370	ug/L	254.3	2.055	24,140
K_7664_R		11,870	ug/L	139.3	1.173	7,744
Li6707_R		484.0	ug/L	5.453	1.127	5,280
Mg2025_A		12,560	ug/L	9.020	0.07183	2,328
Mn2576_R		493.6	ug/L	8.914	1.806	5,504
Mo2020_A		494.6	ug/L	0.5199	0.1051	1,045
Na5895_R	W	11,400	ug/L	134.6	1.181	22,090
Ni2316_A		499.7	ug/L	0.07476	0.01496	1,207
Pb2203_A		497.6	ug/L	2.218	0.4457	543.8
Sb2068_A		478.0	ug/L	4.129	0.8637	183.0
Se1960_A		491.0	ug/L	2.425	0.4939	97.53
Si2516_R		12,420	ug/L	244.2	1.966	7,135
Sn1899_A		500.6	ug/L	1.795	0.3585	269.3
Sr4215_R		478.8	ug/L	6.400	1.337	38,050
Ti3349_A		485.2	ug/L	2.297	0.4734	15,660
TI1908_A		500.4	ug/L	0.9215	0.1841	221.7
V_2924_A		494.0	ug/L	0.02371	0.004800	7,826
Zn2062_A		497.0	ug/L	0.04188	0.008425	1,601
Y_3600_R		24,458	Cts/S	529.77	2.1660	24,458
Y_2243_A		9,086.3	Cts/S	30.655	0.33737	9,086.3
Y_3600_A		250,190	Cts/S	19.589	0.0078297	250,190

CCB

K6010-2011 Method Name:

Analyst Name: **EAM**

Acquire Date: 10/27/2011 2:51:47AM Sample Type: QC Elem Flags Units Stddev %RSD Intensity Ratio **A**vg Ag3280_A 0.8034 ug/L 0.3669 45.67 -17.33 Al3961 R 2.709 ug/L 2.283 84.27 22.81 As1891_A 0.9607 ug/L 0.2604 27.11 -0.9097 0.3980 Au2427 A 0.7220 ug/L 55.12 3.613 B_2089 A 0.5830 ug/L 0.1228 21.07 2.639 Ba4554_R -0.1920 ug/L 0.01445 7.525 87.35 Be3130_R 0.05085 ug/L 0.02433 47.85 1.790 Ca3158_R -1.014 ug/L 1.958 193.2 -44.23 Cd2265_A 0.04449 ug/L 0.007963 17.90 -0.9857 Co2286_A 0.2991 ug/L 0.1388 46.40 6.881 Cr2677_A 0.1192 ug/L 0.3303 277.1 6.474 Cu3273_A 0.2911 ug/L 0.2663 91.48 0.6625 Fe2599_R -0.1697ug/L 0.7918 466.6 3.147 K_7664_R -24.13 ug/L 102.6 24.75 -5.333 Li6707_R 5.553 ug/L 0.08967 1.615 56.89 Mg2025_A -1.132 ug/L 1.311 115.7 -3.309 Mn2576_R -0.05791 ug/L 0.6561 1,133 5.350 Mo2020_A 1.877 0.5710 30.42 3.080 ug/L

10/27/2011 8:52:03AM Published:

50

50

Method Revision:

Method Revision:

ССВ

K6010-2011 Method Name:

EAM Analyst Name:

Method Revision:

50

Analysi Name.	10/27/201	1 2:51:47A	M		Sample Type:	QC	
Acquire Date:				Ctalalass	%RSD		Intensity Patie
Elem	Flags	Avg	Units	Stddev			Intensity Ratio
Na5895_R		28.23	ug/L	7.629	27.02		83.72
Ni2316_A		0.1041	ug/L	0.05249	50.42		-0.5563
Pb2203_A		-0.2044	ug/L	0.1750	85.61		-0.7009
Sb2068_A		0.06564	ug/L	0.8956	1,364		0.7484
Se1960 A		2.373	ug/L	1.458	61.43		2.464
Si2516 R		3.585	ug/L	1.085	30.26		12.85
Sn1899 A	-	0.05484	ug/L	0.1369	249.7		1.260
Sr4215 R		0.1754	ug/L	0.01047	5.969		-57.67
Ti3349 A		0.1132	ug/L	0.1067	94.24		-33.31
TI1908 A		0.2013	ug/L	1.427	708.7		-0.2790
V 2924 A		0.2845	ug/L	0.2729	95.92		2.340
Zn2062 A	-0	.001787	ug/L	0.04530	2,536		0.5252
Y 3600 R		24,064	Cts/S	101.05	0.41994		24,064
Y_2243_A		9,156.0	Cts/S	21.476	0.23455	;	9,156.0
Y 3600 A		251,270	Cts/S	2,983.0	1.1871		251,270

Page 101 of 101 Published: 10/27/2011 8:52:03AM

Logbooks and Supporting Documents

3010	REVIEWED \$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3	Artifacts Bottle		A.							>() -	4	¥		7.50							SAN TOPICA DA SAN TANDAN CONTRACTOR CONTRACT	Revision: 00	
Method: 3010	X	Final	Clarity	N/A																						Page: BJ140	
		Final	Color	N/A																							
	Filter Paper:	Initial	Clarity	N/A N/A															1							10/26/11	
N/A	0° 1' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6'	Initial	Color	V/Y																Andrew Commence of the Commenc					4	Ou: 10	
н202:	18 / 94 19:15 / 94 14:00 97 18: ALCI		İ	10/26/2011	10/26/2011	10/26/2011	10/26/2011	10/26/2011	10/26/2011	10/26/2011			10/26/2011		_	 7				ed on Federates	10/3/01				,	12	
	Hot Plate/Block ID: Beart Time/Temp.: 10:15 /		£	IC NAT			5 t	IC NAT	ַ בַ	ט נ	2 2	2 2	S	Ω.		,				de	0					rmed by:	
нст: 1630036		Final Final	its	COL AQ				AC -	7 -							→ 						2.				Digestion performed by:	
HCL:_	0	Initial Initial Fi	nits			7	7] -	<u> </u>	 - -	3 -	 -		1 1	0.0021	1500.0											
Reagent Information: HNO3: 人みろのみみ	LCS/Spiking Information: CLPP-SPK-1 (ID/Vol): MSTTIT / CLPP-SPK-INT1 (ID/Vol): MMI3348. CLPP-SPK-INT2 (ID/Vol): MMI3348. Uranium Spike (ID/Vol): MMI366.	eran e an mare al talaba compando de l'algumenta de la l'algumenta de l'algumenta	Batch ID	BJ26ICW1 BJ26ICW1	B.1261CW1	BJ26ICW1	BJ26ICW1	BJ26ICW1	BJZ6ICWI	BJZ6ICWI	DIZGIC WI	BJ26ICW1	B126ICW1	BJ26ICW1		→								A CONTRACTOR OF THE PARTY OF TH		- 09/23/2010	
Rea HNO3:	LCS / Spike LCS	10 to	Sample ID	LCSWBJ26ICW1	SE6546-001	SE6546-002	SE6546-003	SE6546-004	SE6546-005	SE6546-006	SE6546-006F	SE0340-000S SE6546-007	SE6762-001	SE6762-001	5-1259-2	SE 7059-3								Y	The state of the s	QA-064-Revision 1 - 09/23/2010	

Metals Preparation Benchsheet

Katahdin Analytical Services, Inc.

PROJECT NAME/NO. OB Grounds LTM Round 6

SDG: <u>SE6546</u>

FRACTION: metals (copper and lead)

LAB: CAS
MEDIA: Groundwater

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	If no, specify analysis IDs which do not meet criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes		The cooler temperature was 1.9° C upon receipt by the laboratory. All samples were received in good condition based on the laboratory login report. Sample pH was below 2. Holding time met criteria.	No
Calibration	Yes		Calibrations available, taken every ten samples, and within recovery limits (90-110%) for metals. Initial calibration R2 >0.99.	No
Blanks (method blank, prep blank)	No	Prep Blank detected Cu >MDL but <crdl< td=""><td>ICB analyzed for Copper and Lead and both were not detected. CCB analyzed for Cu and Pb every ten samples, all samples were less than the reporting limits (i.e., IDLs) for Lead and Copper. Lead was not detected in the preparation blank, however Copper (0.816 ug/L) was detected. Qualify Copper results >MDL (0.63 ug/L) but <crdl (25="" and="" as="" blank="" collected="" crdl="" for="" l)="" no="" raise="" rinsate="" sdg.<="" td="" the="" this="" to="" u="" ug="" value.="" was=""><td>Yes</td></crdl></td></crdl<>	ICB analyzed for Copper and Lead and both were not detected. CCB analyzed for Cu and Pb every ten samples, all samples were less than the reporting limits (i.e., IDLs) for Lead and Copper. Lead was not detected in the preparation blank, however Copper (0.816 ug/L) was detected. Qualify Copper results >MDL (0.63 ug/L) but <crdl (25="" and="" as="" blank="" collected="" crdl="" for="" l)="" no="" raise="" rinsate="" sdg.<="" td="" the="" this="" to="" u="" ug="" value.="" was=""><td>Yes</td></crdl>	Yes
Interference Check Sample	Yes		Met requirements (80-120%) for Copper and Lead.	No
CRQL Standard	Yes		CRQL Check Standards performed and within QC limit of 70-130%R.	No
Laboratory Control Sample	Yes		LCS results within limits (i.e., 80-120%) for copper and lead, no action was taken.	No
Duplicates	Yes		Laboratory duplicate analysis was not conducted for this SDG. However, laboratory duplicate precision was evaluated using MS/MSD precision. A field duplicate pair (OBLM20041 and OBLM20042) was collected for this SDG. Copper and lead were detected in both samples but less than the CRQL.	No
Spike Sample Analysis	YES		Spike analysis was conducted for OBLM20041 and the spike results were within 75%-125% limits.	No
ICP Serial Dilution	YES		ICP serial dilution was conducted for OBLM20041. As copper and lead were detected in the original sample above the reporting limts. No action was taken since original sample concentration was <50xMDL.	No
Detection Limits	YES		IDL's available used as reporting limits. IDLs of copper and lead are less than CRDLs. No action was taken.	No
ICP Linear Range	YES		All results within the ICP linear range.	No